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Abstract

Known attacks on the tropical implementation of Stickel protocol involve solving a
minimal covering problem, and this leads to an exponential growth in the time required
to recover the secret key as the used polynomial degree increases. Consequently, it can
be argued that Alice and Bob can still securely execute the protocol by utilizing very
high polynomial degrees, a feasible approach due to the efficiency of tropical operations.
The same is true for the implementation of Stickel protocol over some other semirings
with idempotent addition (such as the max-min or fuzzy semiring). In this paper,
we propose alternative methods to attacking Stickel protocol that avoid this minimal
covering problem and the associated exponential time complexity. These methods
involve framing the attacks as a mixed integer linear programming (MILP) problem or
applying certain global optimization techniques.

Keywords: public key cryptography; key exchange protocol; cryptographic attack; tropical
cryptography
Classification: 94A60, 15A80

1 Introduction

A key exchange protocol is a process where two parties, commonly referred to as Alice and
Bob, collaboratively generate a shared secret key using public information and messages
exchanged over a public channel. The security of a protocol is determined by its ability
to prevent an attacker from easily recovering the shared secret key using these public in-
formation and intercepted messages, typically by ensuring that the attacker must solve a
computationally hard problem to succeed. These protocols often rely on various algebraic
tools to achieve the desired security properties.

Polynomials over the tropical (max-plus) semiring are one of the recent tools utilized
in key exchange protocols, appearing inthe tropical implementation of the Stickel protocol
proposed by Grigoriev and Shpilrain [7]. This new implementation followed Shpilrain’s
successful attack [15] on the initial Stickel protocol [16] and has become one of the most
popular key exchange protocols utilizing tropical operations. The rationale behind suggesting
a tropical implementation of the protocol was to avoid obvious attacks involving linear
algebra and matrix inverses, which were effective against the original protocol. The Stickel
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protocol can be similarly implemented over any semiring, and its implementation over max-
min and max-T semirings (where the symbol T stands for arbitrary T -norm [10]) is analyzed
in [2].

Kotov and Ushakov [11] later suggested an attack on the tropical Stickel protocol by
transforming the underlying problem into finding a special solution to the protocol’s asso-
ciated system of equations of the form A ⊗ x = b. Despite this, the attacker still faces a
significant challenge: solving a minimal covering problem to find a minimal cover that sat-
isfies certain conditions. Therefore, this approach is less effective when Alice and Bob use
high-degree polynomials, which can be efficiently managed by Alice and Bob with minimal
computational resources due to the efficient nature of tropical operations. An analogue of the
Kotov-Ushakov attack against the max-min and, more generally, max-T implementations of
the Stickel protocol can be similarly proposed [2]. However, it encounters a similar challenge
of finding a minimal solution with special properties, resulting in an exponential increase in
complexity.

The main idea of this paper is to introduce alternative attack strategies that avoid the
hard problem or exponential complexity encountered in the conventional Kotov-Ushakov
attack. Specifically, we propose an attack where we instead find a solution x that minimizes
the protocol’s associated objective function

∑
i((A⊗x)i− bi)

2 using a heuristic optimization
technique. We will compare this with a different approach where some of the known attacks
are formulated as mixed integer linear programs, allowing the shared key to be recovered
using MILP solver.

This paper is organized as follows: Section 2 covers preliminaries and basic definitions,
particularly those related to the matrix algebra over the tropical and max-min semirings,
as well as the targeted key exchange protocols based on these semirings. In Section 3,
we present our alternative attacks, provide numerical implementations demonstrating their
performance, and compare them with the typical Kotov-Ushakov attack. In Section 4,
we discuss how these proposed attacks can also target a recent implementation of Stickel
protocol over a newly introduced semiring known as the ”digital semiring” [9]. Section 5 is
dedicated to conslusions and discussion. Our code implementations have been made available
on GitHub 1.

2 Preliminaries

In this section we are going to introduce the matrix algebra over the tropical and max-
min semirings, followed by the Stickel protocol over these semirings and two versions of
the Kotov-Ushakov attack. Note that we use the standard notation [m] = {1, . . . ,m} and
[n] = {1, . . . , n} for most common index sets.

Definition 2.1 (Matrix Algebra over Semirings [6]). We define the tropical semiring as
Rmax = (R∪{−∞},⊕,⊗), and the max-min semiring as Rmax,min = (R∪{−∞}∪{∞},⊕,⊗),
where the arithmetical operations are defined by x ⊕ y = max{x, y} and x ⊗ y = x + y for
all x, y ∈ Rmax in the tropical case, and by x⊕ y := max(x, y) and x⊗ y = min(x, y) for all

1https://github.com/suliman1n/Attacking-Tropical-Stickel-Protocol-by-MILP-and-Heuristic-
Optimization-Techniques
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x, y ∈ Rmax,min for the max-min case. When addressing both semirings at the same time or
any semiring more generally, we will use the symbol RT (also reminiscent of max-T semirings,
of which the max-min semiring and the non-positive part of the tropical semiring are special
cases).
The arithmetic operations over any semiring are naturally extended to include matrices and
vectors. In particular, the operation A ⊗ α = α ⊗ A, where α ∈ RT , A ∈ Rm×n

T and
(A)ij = aij for i ∈ [m] and j ∈ [n], is defined by

(A⊗ α)ij = (α⊗ A)ij = α⊗ aij ∀i ∈ [m] and ∀j ∈ [n].

The matrix addition A ⊕ B of two matrices A ∈ Rm×n
T and B ∈ Rm×n

T , where (A)ij = aij
and (B)ij = bij for i ∈ [m] and j ∈ [n], is defined by

(A⊕B)ij = aij ⊕ bij ∀i ∈ [m] and ∀j ∈ [n].

The matrix multiplication of two matrices is also similar to the “traditional” algebra. Namely,
we define A⊗B for two matrices, where A ∈ Rm×p

T and B ∈ Rp×n
T , as follows:

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj = (ai1 ⊗ b1j ⊕ ai2 ⊗ b2j ⊕ . . .⊕ ain ⊗ bnj) ∀i ∈ [m] and ∀j ∈ [n].

Note that, despite introducing this arithmetic, we will also quite often utilize the usual
arithmetical operations to introduce concepts and explain arguments, mostly since the opti-
mization methods that we are going to exploit are based on the usual arithmetic.

Definition 2.2 (Matrix Powers). For M ∈ Rn×n
T , the n-th power of M is denoted by M⊗n,

and is equal to
M⊗n = M ⊗M ⊗ . . .⊗M︸ ︷︷ ︸

n times

By definition, any square matrix to the power 0 is the identity.

Definition 2.3. (Identity Matrix). The identity matrix I ∈ Rn×n
T is of the form (I)ij = δij

where

δij =

{
0 for tropical case, or ∞ for max-min case if i = j

−∞ otherwise

Note that the identity matrix can be defined also for a general semiring: one sets the
diagonal entries equal to the semiring unity and the off-diagonal entries to the semiring
zero [6].

Subsequently, we define the matrix polynomials.

Definition 2.4. (Matrix Polynomials). Matrix polynomial is a function of the form

A 7→ p(A) =
d⊕

k=0

ak ⊗ A⊗k.

where ak ∈ RT for k = 0, 1, . . . , d. Here A ∈ Rn×n
T is a square matrix of any dimension n.
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Any two matrix polynomials of the same matrix over any semiring commute just like in
the classical algebra [6], and this fact was utilized by Grigoriev and Shpilrain [7] to construct
a tropical implementation of the Stickel protocol (Protocol 1). Quite obviously, this protocol
can be implemented over any semiring (and in particular, over the max-min semiring).

Protocol 1 (Stickel Protocol over Semirings).

1. Alice and Bob agree on public matrices A,B,W ∈ Rn×n
T .

2. Alice chooses two random tropical polynomials p1(x) and p2(x) and sends U = p1(A)⊗
W ⊗ p2(B) to Bob.

3. Bob chooses two random tropical polynomials q1(x) and q2(x) and sends V = q1(A)⊗
W ⊗ q2(B) to Alice.

4. Alice computes her secret key using a public key V obtained from Bob, which is
Ka = p1(A)⊗ V ⊗ p2(B).

5. Bob also computes his secret key using Alice’s public key U , which is Kb = q1(A) ⊗
U ⊗ q2(B).

The two parties end up with an identical key in both protocols due to the commutativity
of polynomials of the same matrix. Formally, we have Ka = p1(A) ⊗ V ⊗ p2(B) = p1(A) ⊗
q1(A)⊗W ⊗ q2(B)⊗p2(B) = q1(A)⊗p1(A)⊗W ⊗p2(B)⊗ q2(B) = q1(A)⊗U ⊗ q2(B) = Kb.

An attack against Protocol 1 over the tropical semiring was published by Kotov and
Ushakov [11], and an analogue of this attack against Protocol 1 over max-min semiring
(and, more generally, max-T semiring with continuous T -norm) was discussed in [2]. In the
next section, we will compare their performance with the optimization methods proposed in
the present paper.

The objectives of the attacks is to find the polynomial coefficients xα, yβ ∀α, β ∈
{0, . . . D} where D is the maximum polynomial degree used in the protocols, and hence
construct X =

⊕D
α=0 (xα ⊗ A⊗α) and Y =

⊕D
β=0

(
yβ ⊗B⊗β

)
that satisfy X ⊗W ⊗ Y = U .

Thus, the attacks aim to recover the shared secret key, by turning X ⊗W ⊗ Y = U into the
form of a system of linear equations of the shape A ⊗ x = b and search for a solution that
satisfies a special structure among all possible solutions. Thus, these attacks encounter the
problem of finding all minimal solutions of a linear system of the shape A⊗ x = b, which is
easy to solve when Alice and Bob use low-degree polynomials, as demonstrated numerically
in [1, 11, 13] for the tropical case, or in [2] for the max-min case. However, it becomes sig-
nificantly more challenging for higher-degree polynomials due to the exponential increase in
minimal solutions of the system. The full details of the Kotov-Ushakov attack are described
below.
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We are aiming to find two matrices X and Y , where they are expressed as

X =
D⊕

α=0

(
xα ⊗ A⊗α

)
Y =

D⊕
β=0

(
yβ ⊗B⊗β

)
,

such that D is sufficiently large to exceed the maximal degree of any polynomial that Alice
and Bob might use. Then, we substitute these expressions into X ⊗W ⊗ Y = U to obtain

U =
D⊕

α=0

(
xα ⊗ A⊗α

)
⊗W ⊗

D⊕
β=0

(
yβ ⊗B⊗β

)
.

Combining the summations, we obtain

U =
D⊕

α,β=0

(
xα ⊗ A⊗α

)
⊗W ⊗

(
yβ ⊗B⊗β

)
.

Rearranging those using the distributivity law will give

D⊕
α,β=0

xα ⊗ yβ ⊗
(
A⊗α ⊗W ⊗B⊗β

)
= U.

We then denote Rαβ = A⊗α ⊗W ⊗B⊗β and therefore we can write

D⊕
α,β=0

xα ⊗ yβ ⊗
(
Rαβ

)
γδ

= Uγδ ∀γ, δ ∈ [n]× [n]. (1)

If we additionally denote zαβ = xα ⊗ yβ, we have

D⊕
α,β=0

zαβ ⊗
(
Rαβ

)
γδ

= Uγδ ∀γ, δ ∈ [n]× [n]. (2)

We have arrived at a system of linear equations of the shape A ⊗ x = b with coefficients(
Rαβ

)
γδ

and unknowns zαβ.

We now need to scan all solutions to this system, and get the solution that satisfies
zαβ = xα⊗yβ for some xα, yβ ∈ N ∀α, β ∈ {0, 1, . . . , D}. Thus, using the theory of A⊗x = b
solvability, we need to find the greatest solution, and all minimal solutions. For each mini-
mal solution, we need to search for a vector (zαβ) in the range [minimal solution,maximum
solution] that solves zαβ = xα ⊗ yβ for some xα, yβ.

Note that, for the tropical case, a minimal solution can be found by finding a minimal
cover (i.e. the minimal number of variables that satisfies all the equation in the system),
and the other variables are set to −∞. The following algorithm captures this process.
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Attack 1 (Tropical Kotov-Ushakov attack [11]).

1. Compute

cαβ = min
γ,δ∈[n]

(
Uγδ −Rαβ

γδ )
)

Sαβ = arg min
γ,δ∈[n]

(
Uγδ −Rαβ

γδ )
)
.

2. Among all minimal covers of [n] × [n] by Sαβ, that is, all minimal subsets C ⊆
{0, . . . , D} × {0, . . . , D} such that⋃

(α,β)∈C

Sαβ = [n]× [n],

find a cover for which the system

xα + yβ = cαβ, if (α, β) ∈ C,
xα + yβ ⩽ cαβ, if otherwise.

(3)

is solvable.

For the max-min case, we similarly need to compute the greatest solution c (using Lemma
3.2 in [5]) and all minimal solutions d(i)’s (using Section 3.3 in [17] or Chapter 3 in [14]),
and search for the required solution. The following algorithm captures this process.

Attack 2 (Max-min Kotov-Ushakov attack [2]).

1. Compute the maximum solution c of Equation (2) as:

cαβ = min
γ,δ∈[n]

(
Uγδ : R

αβ
γδ > Uγδ

)
∀α, β ∈ {0, . . . , D}

2. Compute all minimal solutions d(i) of Equation (2).

3. Find a minimal solution d(i) with components d
(i)
αβ for which the system

d
(i)
αβ ≤ xα ⊗ yβ ≤ cαβ ∀α, β ∈ {0, . . . , D} (4)

is solvable.

Note that system (4) can be transformed into a problem of mixed-integer linear program-
ming as shown in [2].

These attack always succeeds due to it producing X and Y that satisfy X⊗W ⊗Y = U .
The proof can be found in [2, 13]. Numerical experiments showing the time taken by these
attacks to compromise the tropical implementation of Protocol 1 can be found in [1, 11, 13],
and for the max-min implementation see [2].
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3 Attacks using Optimization

In this section, we explore more efficient approaches to attacking the tropical and max-min
implementations of Protocol 1 that avoid the minimal covering problem and the associated
exponential complexity, which are evident in Attack 1 and Attack 2. For all experiments,
we use a matrix dimension of 10, which is the default parameter suggested in [7, 11]. This
choice allows us to compare the performance of the optimization methods discussed in this
paper with the performance of Attack 1 and Attack 2.

3.1 Simulated Annealing

Both Attack 1 and Attack 2 aim to find all minimal solutions that satisfy all equations in
system (2). In this approach, we aim to find a solution that minimizes the Euclidean distance
between the left hand side and the right hand side of the system. Formally, we solve:

min
xα,yβ

∑
(γ,δ)∈[n]×[n]

f 2
γδ

where
fγδ = max

α∈{0,1,...,D}
β∈{0,1,...,D}

(xα ⊗ yβ ⊗Rαβ
γδ )− Uγδ (5)

This objective function is complex with numerous local minima. However, the simulated
annealing algorithm (see, e.g., [12]), when initialized with a sufficiently high temperature
parameter, effectively navigates these local minima and converges to the global minimum,
where the objective function equals zero.

We now formally outline how the tropical Stickel protocol (Protocol 1 with RT = Rmax)
is attacked using the simulated annealing method.

Attack 3 (Attacking tropical Stickel by simulated annealing).

1. Compute

Tαβ = A⊗α ⊗W ⊗B⊗β − U ∀(α, β) ∈ {0, 1, . . . , D} × {0, 1, . . . , D}.

2. Let
fγδ = max

α∈{0,1,...,D}
β∈{0,1,...,D}

(xα + yβ + Tαβ
γδ ) ∀(γ, δ) ∈ [n]× [n].

and
F (x, y) =

∑
(γ,δ)∈[n]×[n]

f 2
γδ

3. Select an initial temperature T , and a random point (xc, yc).

4. Repeat until F (xc, yc) = 0:
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(a) Update the temperature with Tk = T × 0.95k, where k is the trial number.

(b) Select a new candidate point (xtest, ytest) from the neighbors of (xc, yc), and eval-
uate F (xtest, ytest).

(c) If e
F (xtest,ytest)−F (xc,yc)

Tk > Random[0,1), then (xc, yc) = (xtest, ytest).

5. Let (x̄, ȳ) = (xc, yc), and construct X =
⊕D

α=0 (x̄α ⊗ A⊗α) and Y =
⊕D

β=0

(
ȳβ ⊗B⊗β

)
,

and hence the recovered key is X ⊗ V ⊗ Y .

To ensure the simulated annealing algorithm effectively escapes local minima, the initial
temperature has to be sufficiently large. This allows the algorithm to accept worse points,
which is necessary for navigating out of encountered local minima. A practical method for
determining this initial temperature is to set it based on the sample variance of multiple
randomly evaluated points within the search space (e.g., [3]). This captures the variability
of the objective function, enabling the algorithm to broadly explore the search space and
reduce the risk of getting stuck in local minima.

The performance of simulated annealing is also highly sensitive to the initial point. An
optimal initial point can facilitate a quicker convergence to the global minimum. However, in
our implementation, we started with a random point, as it seems the high initial temperature
helps to mitigate the potential drawback of this non-optimal initialization.

Furthermore, as Alice and Bob increase the range of entries for public matrices and poly-
nomial coefficients, the objective function becomes more complex. Kotov-Ushakov attack
(Attack 1) is not impacted by this, as it relies on solving a minimal covering problem that
is independent of the individual entries (i.e. finding minimal covers using Sαβ’s which are
independent of the used entries). We will therefore also examine how Attack 3 performs
under such conditions. Figure 1 shows the time taken in seconds to compromise Protocol 1
using Attack 3 for different degrees and entry ranges.

This attack achieved a perfect success rate and is significantly faster than Attack 1, av-
eraging about 30 times the speed for a polynomial degree of 50. (Refer to [1] for detailed
experimental results of Attack 1). Note that the attack still performs well for higher entry
ranges, but it is more likely that we encounter some samples that take significantly longer
than average to converge. This is probably caused by the increased complexity of the ob-
jective function and how optimal the probabilistic selection of the next neighboring point
in the simulated annealing algorithm is, as well as the number of iterations performed until
convergence.

For the max-min implementation of Protocol 1, the simulated annealing algorithm often
struggles to reach the zero of the objective function, frequently getting stuck in local minima.
Therefore, we have to utilizes the lowest local minimum obtained to attempt to recover the
secret key: see Step 4 in Attack 4.

Attack 4 (Attacking max-min Stickel by simulated annealing).

1. Compute

Rαβ = A⊗α ⊗W ⊗B⊗β ∀(α, β) ∈ {0, 1, . . . , D} × {0, 1, . . . , D}.
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Figure 1: Attacking the tropical version of Protocol 1 using Algorithm 3

2. Let
fγδ = max

α∈{0,1,...,D}
β∈{0,1,...,D}

(xα ⊗ yβ ⊗Rαβ
γδ )− Uγδ ∀(γ, δ) ∈ [n]× [n].

and
F (x, y) =

∑
(γ,δ)∈[n]×[n]

f 2
γδ

3. Select an initial temperature T , and a random point (xc, yc).

4. Repeat until F (xc, yc) does not change after N loops:

(a) Update the temperature with Tk = T × 0.95k, where k is the trial number.

(b) Select a new candidate point (xtest, ytest) from the neighbors of (xc, yc), and eval-
uate F (xtest, ytest).

(c) If e
F (xtest,ytest)−F (xc,yc)

Tk > Random[0,1), then (xc, yc) = (xtest, ytest).

5. Let (x̄, ȳ) = (xc, yc), and construct X =
⊕D

α=0 (x̄α ⊗ A⊗α) and Y =
⊕D

β=0

(
ȳβ ⊗B⊗β

)
,

and hence the recovered key is X ⊗ V ⊗ Y .

In the experiments we set N = 300. Although this attack does not achieve a perfect
success rate, it frequently recovers the majority of the entries of the secret key. The average
number of recovered entries and the average execution time are respectively illustrated in
Figure 2 and Figure 3.
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Figure 2: Attacking the max-min version of Protocol 1 using Algorithm 4: Recover entries

Figure 3: Attacking the max-min version of Protocol 1 using Algorithm 4:Time taken

Note that this attack is significantly faster than Attack 2 (for detailed experimental
results of Attack 2, refer to [2]). However, as shown experimentally, it does not guarantee the
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successful recovery of the entire secret key. Furthermore, the algorithm maintains consistent
performance with higher entry ranges, largely due to the appropriate adjustment of the
initial temperature.

3.2 Kotov-Ushakov Attack Using MILP Solver

We now propose an attack that recovers the secret key by solving a mixed integer linear
program (MILP), following an observation by [4]. Specifically, we start by transforming
system (1) in the Kotov-Ushakov attack into a linear system by converting the disjunctive
constraints into linear constraints by using Boolean variables and a big parameter. This
approach allows us to avoid dealing with system (2) and the associated challenge of enu-
merating all minimal solutions. Then we solve this system of inequalities using the Gurobi
solver [8] (but we could use any other available MILP solver instead). See Attack 5 for a
detailed description.

Attack 5 (Kotov-Ushakov attack on tropical Stickel protocol using MILP solver).

1. Compute

Tαβ = A⊗α ⊗W ⊗B⊗β − U ∀(α, β) ∈ {0, 1, . . . , D} × {0, 1, . . . , D}.

2. Find x, y and z that satisfy the following system where M is a big enough number, α
and β range from 0 to D, and γ and δ range from 1 to n:

xα + yβ + Tαβ
γδ ≤ 0 ∀α, β, γ, δ,

xα + yβ + Tαβ
γδ + (1− zαβγδ)M ≥ 0 ∀α, β, γ, δ,

zαβγδ ∈ {0, 1} ∀α, β, γ, δ,∑
(α,β)

zαβγδ = 1 ∀γ, δ.

(6)

Note that the number of variables in system (6) increases both with the matrix dimension
and the polynomial degree used in the protocol. Specifically, the number of variables would
be 2(D+1)+n2(D+1)2. Also, the number of equations in this system is 2n2(D+1)2 + n2.
Figure 4 illustrates the time taken by Attack 5 when applied to the tropical Stickel protocol.

The attack on the max-min version of Protocol 1 can be similarly described: see Attack 6.

Attack 6 (Kotov-Ushakov attack on max-min Stickel protocol using MILP solver).

1. Compute

Rαβ = A⊗α ⊗W ⊗B⊗β ∀(α, β) ∈ {0, 1, . . . , D} × {0, 1, . . . , D}.
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Figure 4: Attacking tropical version of Protocol 1 using Algorithm 5

2. Solve the following system for all (α, β) ∈ {0, 1, . . . , D} × {0, 1, . . . , D} and (γ, δ) ∈
[n]× [n].

xα − (1− z
(1)
αβγδ)M ≤ Uγδ

yβ − (1− z
(2)
αβγδ)M ≤ Uγδ

Rαβ
γδ − (1− z

(3)
αβγδ)M ≤ Uγδ

z
(i)
αβγδ ∈ {0, 1} and

3∑
i=1

z
(i)
αβγδ = 1

xα + (1− zαβγδ)M ≥ Uγδ

yβ + (1− zαβγδ)M ≥ Uγδ

Rαβ
γδ + (1− zαβγδ)M ≥ Uγδ

zαβγδ ∈ {0, 1} and
∑
(α,β)

zαβγδ = 1

Note that the number of variables in this system similarly increases with both the ma-
trix dimension and the polynomial degree used in the protocol. Specifically, the number of
variables is 2(D + 1) + n2(D + 1)2 + 3n2(D + 1)2. Also, the number of equations in this
system is 7n2(D+1)2+n2. The time taken by Attack 6 when applied to the max-min Stickel
protocol is illustrated in Figure 5. We observe that the computational time required for this
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Figure 5: Attacking max-min version of Protocol 1 using Algorithm 6

approach is worse than that of the tropical case (Figure 4).

Therefore, both Attack 5 and Attack 6 require significantly more time even for lower poly-
nomial degrees compared to the tropical and max-min Kotov-Ushakov attacks (Attack 1 and
Attack 2). This is likely due to the high number of variables involved in the linear system.
Consequently, these attacks does not provide any significant advantage over the previously
described Kotov-Ushakov attacks.

3.3 Shpilrain Attack Using MILP Solver

We now propose an alternative method to formulate the MILP to attack the tropical and
max-min implementations of Protocol 1. Specifically, we introduce the tropical and max-min
versions of the Shpilrain attack [15], where our objective is to find X and Y such that

X ⊗ A = T

A⊗X = T

Y ⊗B = R

B ⊗ Y = R

X ⊗W ⊗ Y = U

(7)

where T and R contain newly introduced auxiliary variables tij, rij for (i, j) ∈ [n] × [n].
Then, the MILP can similarly be formulated by converting the disjunctive constraints into
linear constraints with Boolean variables. In particular, for the first equation of (7), with
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aij being the entries of A, we have

max
k∈[n]

(xik ⊗ akj) = tij ∀(i, j) ∈ [n]× [n],

which can be represented as the following set of inequalities

xik ⊗ akj ≤ tij ∀i, j, k ∈ [n],

and with M being a sufficiently large number

xik ⊗ akj + (1− zkij)M ≥ tij ∀i, j, k ∈ [n],∑
k

zkij = 1, zkij ∈ {0, 1} ∀i, j, k ∈ [n].

The rest of inequalities can similarly be formulated using the other equations in (7), and then
we solve the system using MILP solver. The tropical and max-min versions of the attack
are described below in Attack 7 and Attack 8. We observe that the number of variables in
the system increases only with the matrix dimension, but not the polynomial degree used
in the protocol. Specifically, for the tropical case, the number of variables in this system is
4n2 + 4n3 + n4, and the number of equations is 5n2 + 8n3 + 2n4. For the max-min case, the
number of variables is 4n2 + 12n3 + 4n4, and the number of equations is 5n2 + 20n3 + 7n4.

Attack 7 (Attacking tropical Stickel protocol using (7) and MILP solver).

1. Represent (7) (over the tropical semiring) by the following system:

xik + akj ≤ tij ∀i, j, k ∈ [n],

xik + akj + (1− z1kij)M ≥ tij ∀i, j, k ∈ [n],

z1kij ∈ {0, 1}, ∀i, j, k ∈ [n],∑
k

z1kij = 1 ∀i, j ∈ [n],

aik + xkj ≤ tij ∀i, j, k ∈ [n],

aik + xkj + (1− z2kij)M ≥ tij ∀i, j, k ∈ [n],

z2kij ∈ {0, 1}, ∀i, j, k ∈ [n],∑
k

z2kij = 1 ∀i, j ∈ [n],

yik + bkj ≤ rij ∀i, j, k ∈ [n],

yik + bkj + (1− z3kij)M ≥ rij ∀i, j, k ∈ [n],

z3kij ∈ {0, 1} ∀i, j, k ∈ [n],∑
k

z3kij = 1 ∀i, j ∈ [n],
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bik + ykj ≤ rij ∀i, j, k ∈ [n],

bik + ykj + (1− z4kij)M ≥ rij ∀i, j, k ∈ [n],

z4kij ∈ {0, 1}, i, j, k ∈ [n]∑
k

z4kij = 1 ∀i, j ∈ [n],

xik + wkl + ylj ≤ uij ∀i, j, k, l ∈ [n],

xik + wkl + ylj + (1− z5klij)M ≥ uij ∀i, j, k, l ∈ [n],

z5klij ∈ {0, 1},∑
k,l

z5klij = 1 ∀i, j ∈ [n],

where aij, bij, wij are respectively the entries of the public matrices A,B,W .

2. Solve the system using a MILP solver.
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Attack 8 (Attacking max-min Stickel protocol using (7) and MILP solver).

1. Represent (7) (over the max-min semiring) by the following system

xik − (1− z
(1)
1kij)M ≤ tij ∀i, j, k ∈ [n],

akj − (1− z
(2)
1kij)M ≤ tij ∀i, j, k ∈ [n],

z
(1)
1kij + z

(2)
1kij = 1 ∀i, j, k ∈ [n],

xik + (1− z
(3)
1kij)M ≥ tij ∀i, j, k ∈ [n],

akj + (1− z
(3)
1kij)M ≥ tij ∀i, j, k ∈ [n],

z
(1)
1kij, z

(2)
1kij, z

(3)
1kij ∈ {0, 1} ∀i, j, k ∈ [n]∑

k

z
(3)
1kij = 1 ∀i, j ∈ [n],

aik − (1− z
(1)
2kij)M ≤ tij ∀i, j, k ∈ [n],

xkj − (1− z
(2)
2kij)M ≤ tij ∀i, j, k ∈ [n],

z
(1)
2kij + z

(2)
2kij = 1 ∀i, j, k ∈ [n],

aik + (1− z
(3)
2kij)M ≥ tij ∀i, j, k ∈ [n],

xkj + (1− z
(3)
2kij)M ≥ tij ∀i, j, k ∈ [n],

z
(1)
2kij, z

(2)
2kij, z

(3)
2kij ∈ {0, 1} ∀i, j, k ∈ [n]∑

k

z
(3)
2kij = 1 ∀i, j ∈ [n],

yik − (1− z
(1)
3kij)M ≤ rij ∀i, j, k ∈ [n],

bkj − (1− z
(2)
3kij)M ≤ rij ∀i, j, k ∈ [n],

z
(1)
3kij + z

(2)
3kij = 1 ∀i, j, k ∈ [n],

yik + (1− z
(3)
3kij)M ≥ rij ∀i, j, k ∈ [n],

bkj + (1− z
(3)
3kij)M ≥ rij ∀i, j, k ∈ [n],

z
(1)
3kij, z

(2)
3kij, z

(3)
3kij ∈ {0, 1} ∀i, j, k ∈ [n]∑

k

z
(3)
3kij = 1 ∀i, j ∈ [n],
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bik − (1− z
(1)
4kij)M ≤ rij ∀i, j, k ∈ [n],

ykj − (1− z
(2)
4kij)M ≤ rij ∀i, j, k ∈ [n],

z
(1)
4kij + z

(2)
4kij = 1 ∀i, j, k ∈ [n],

bik + (1− z
(3)
4kij)M ≥ rij ∀i, j, k ∈ [n],

ykj + (1− z
(3)
4kij)M ≥ rij ∀i, j, k ∈ [n],

z
(1)
4kij, z

(2)
4kij, z

(3)
4kij ∈ {0, 1} ∀i, j, k ∈ [n]∑

k

z
(3)
4kij = 1 ∀i, j ∈ [n],

xik − (1− z
(1)
5klij)M ≤ uij ∀i, j, k, l ∈ [n],

wkl − (1− z
(2)
5klij)M ≤ uij ∀i, j, k, l ∈ [n],

ylj − (1− z
(3)
5klij)M ≤ uij ∀i, j, k, l ∈ [n],

z
(1)
5klij + z

(2)
5klij + z

(3)
5klij = 1 ∀i, j, k, l ∈ [n],

xik + (1− z
(4)
5klij)M ≥ uij ∀i, j, k, l ∈ [n],

wkl + (1− z
(4)
5klij)M ≥ uij ∀i, j, k, l ∈ [n],

ylj + (1− z
(4)
5klij)M ≥ uij ∀i, j, k, l ∈ [n],

z
(1)
5klij, z

(2)
5klij, z

(3)
5klij, z

(4)
5klij ∈ {0, 1},∑

k,l

z
(4)
5klij = 1 ∀i, j ∈ [n].

Here aij, bij, wij are, respectively, the entries of the public matrices A,B,W .

2. Solve the system using a MILP solver.

Note that a distinct advantage of these attacks is that they are independent of the
polynomial degree used in the protocol. Therefore, Alice and Bob cannot improve the
protocol’s resistance against these attacks by increasing the polynomial degree, a way that
is very effective against Kotov-Ushakov attack and its max-min analogue (Attack 1 and
Attack 2). A major drawback, however, is the high number of equations and hence variables
involved in the linear program, which demands substantial memory storage. Figure 6 shows
the time taken by Attack 7 for different polynomial degrees.

As illustrated in Figure 6, this attack is much faster than Attack 1 and maintains con-
sistent computational efficiency across varying polynomial degrees. It is worth noting that
for larger matrix dimensions, such as n = 10 or higher, the Gurobi solver may encounter
challenges in directly solving the system in some trials. Fine-tuning of the solver parame-
ters is required to solve the system in such cases. The time taken by Attack 8 for different
polynomial degrees is shown in Figure 7. Note that due to the higher number of equations
and variables in the max-min case compared with the tropical case, the memory required
for encoding the linear program for a dimension higher than 8 would exceed the available
memory threshold.
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Figure 6: Attacking tropical version of Protocol 1 using Algorithm 7

Figure 7: Attacking max-min version of Protocol 1 using Algorithm 8
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4 Attacking Stickel’s protocol over digital semiring

A recent implementation of Stickel protocol (Protocol 1) was introduced by [9] which employs
a newly defined semiring referred to by the authors as the ”digital semiring”. The authors
claim that this new implementation of Stickel protocol resists the known attacks such as the
Kotov-Ushakov attack. Let us discuss how the methods outlined in this paper as well as
those in [2] can be applied in this new situation.

The digital semiring of [9], which we here denote by N(∨,∧) is defined over the set of
natural numbers N with adjoined +∞, and is based on an unconventional order relation
defined by

a ⪯ b ⇔

{
(a) ≤ (b), if (a) ̸= (b),

a ≤ b, if (a) = (b),
(8)

where (a) denotes the sum of digits of a ∈ N. It is understood that the sum of digits of +∞
is +∞, so this is the greatest element of the semiring. Based on this order relation we then
define the new addition a ⊕ b as the greratest element (also denoted as a ∨ b) among a, b
with respect to this order relation, and a⊗ b as the smallest element (also denoted as a∧ b)
among a, b with respect to this order relation.

For the practical purposes of software implementation, Alice and Bob are always lim-
ited by a big enough number M , and therefore they would actually be using a semiring of
the form NM(∨,∧) similarly defined using (8) over the natural numbers not exceeding M .
However, then it can be shown that this semiring NM(∨,∧) is isomorphic to the semiring
NM(max,min), which is the set of natural numbers not exceedingM for which the operations
are defined by a⊕ b = max(a, b) and a⊗ b = min(a, b). Indeed, the isomorphism is given by
the mapping f : NM(∨,∧) 7→ NM(max,min), for which

f(a) =

{
0, if a = 0,∑(a)−1

i=1 |[i]≤M |+ |[(a)]≤a|, otherwise.
(9)

where [i]≤a, for natural a, i such that 0 ≤ i, a ≤ M , denotes the set of natural numbers
whose sum of digits is equal to i and which do not exceed a, and |[i]≤a| denotes the number
of elements in this set.

Consequently, the attacks on the max-min semiring implementation of Stickel protocol
discussed in this paper are equally applicable to the digital semiring implementation, due to
the known limitations of Alice and Bob and the isomorphism given by (9). This also includes
the guaranteed attack described in [2] (the max-min version of Kotov-Ushakov attack). Thus,
the attacker only needs to take one additional step to exploit this isomorphism. A possible
approach for such exploitation is to group the elements of the digital semiring by their digit
sums, arranging the groups and the numbers within each group in ascending order. Each
element in the digital semiring is then mapped to a corresponding element in the max-
min semiring with the natural order from smallest to largest. The resulting algorithm has
complexity at most O(M log10M) since we have to go through each number and compute
the sum of its digits (which has complexity not exceeding O(log10M)).

Figure 8 illustrates the computational time needed to execute it for different maximum
values M .
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Figure 8: Digital semiring pre-computation

As shown in Figure 8, the computational time required for this isomorphism mapping
is relatively minor, but it obviously increases as Alice and Bob agree on higher ranges.
However, it can be argued that they cannot extend these ranges indefinitely due to the risk
of potential numerical instability. Thus, while attacking the Stickel protocol over the digital
semiring involves this additional computational overhead, it is a one-time setup and does not
affect the computational time during individual attack sessions since it should only be pre-
computed once. Therefore, to keep the paper more concise, we have not included numerical
experiments for attacking the Stickel protocol over the digital semiring, as these would be
identical to the experiments on attacking the Stickel protocol over the max-min semiring
described in the previous section and in [2].

5 Conclusion

In this paper, we proposed three new attacks against the tropical and max-min implemen-
tations of Stickel protocol. Our aim was to avoid the hard problem of minimal covers
enumeration and the associated exponential complexity encountered in the typical Kotov-
Ushakov attack. While we previously proposed an attack against these protocols [1], [2] that
avoided enumerating all minimal solutions by carefully selecting a single minimal solution,
this method, although very successful for the tropical case, occasionally fails. Consequently,
it is plausible that Alice and Bob could design the protocol’s public matrices to resist this
attack, and this method still shows increasing complexity with the polynomial degree used,

20



though not exponentially. Thus, the goal of the three attacks was to achieve a perfect suc-
cess rate with the lowest possible execution time and reduced dependence on the polynomial
degree, which is commonly the variable parameter controlled by Alice and Bob.

The first proposed attack aims to find a solution x that minimizes an objective function
of the shape

∑
i((A ⊗ x)i − bi)

2 instead of finding all solutions of a system of the shape
A ⊗ x = b as in the typical Kotov-Ushakov attack. This attack employs the simulated
annealing algorithm, a global optimization technique, to find such solution. It achieved a
perfect success rate against the tropical Stickel protocol and a high success rate against the
max-min Stickel protocol, both with very fast execution times. Additionally, the execution
time showed only a minor increase as the polynomial degree increased. However, unlike the
Kotov-Ushakov attack, this approach is sensitive to the size of public matrix entries and
polynomial coefficients used in the protocol. While it remains effective even for large values,
we are more likely to encounter some trials that take significantly longer than average to solve.

The second proposed attack aims to solve the system of the shape A ⊗ x = b by trans-
forming it into a mixed-integer linear system and then solving it using MILP solver. Unfor-
tunately, this attack demonstrated slower execution times compared to the typical Kotov-
Ushakov attack, and it remains heavily dependent on the polynomial degree used in the
targeted protocols. Consequently, similar to the typical Kotov-Ushakov attack, Alice and
Bob can resist this attack by increasing the polynomial degree.

The third proposed attack (which we call Shpilrain’s attack) aims to solve equations (7)
by formulating them as a mixed-integer linear program. Interestingly, this attack is com-
pletely independent from the used polynomial degree in the protocol, which makes it effective
even if Alice and Bob use very high polynomial degrees. The attack has also demonstrated
remarkably fast execution times. A significant limitation of this attack is its high memory
requirement due to the need of encoding a large number of equations. Consequently, Alice
and Bob could potentially defend against it by employing large matrix dimensions. How-
ever, it is worth noting that the typical Kotov-Ushakov attack would likely encounter similar
challenges in such scenarios, specifically those related to the high number of minimal covers.

Let us also observe that Shpilrain’s attack also applies to the modifications of Stickel pro-
tocol based on Jones matrices and Linde-de la Puente matrices suggested in [13]. Namely,
the protocol based on Jones matrices is only replacing the tropical polynomials of A and B
with tropical quasi-polynomials of the same matrices, so we can still find X and Y directly
from (7) (and its MILP reformulation). As for the Linde-de la Puente matrices, equations
X⊗A = A⊗X and Y ⊗B = B⊗Y have to be replaced with linear inequalities and equations
that define Linde-de la Puente matrices. We are not including the numerical results here
but the situation is similar to what is reported in Figure 6.

Finally, it is notable that the findings presented in this paper likely indicate that the max-
min and hence also “digital” implementations of the Stickel protocol overall tend to be more
resistant to the attacks described in this paper and [2] than the tropical implementation.
This conclusion arises because two of the three proposed attacks in this paper, alongside
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the single cover heuristic [1], demonstrate much greater effectiveness against the tropical
case. Furthermore, the typical Kotov-Ushakov attack is more efficient against the tropical
Stickel protocol compared to its analogue against the max-min Stickel protocol. Better
implementation of Shpilrain’s attack and alternative ideas which would allow for breaking
protocols with higher dimensional matrices are still to be considered.
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