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Abstract. Traceable Receipt-free Encryption (TREnc) is a verifiable public-key encryption primitive
introduced at Asiacrypt 2022. A TREnc allows randomizing ciphertexts in transit in order to remove any
subliminal information up to a public trace that ensures the non-malleability of the underlying plaintext.
A remarkable property of TREnc is the indistinguishability of the randomization of chosen ciphertexts
against traceable chosen-ciphertext attacks (TCCA). This property can support applications like voting,
and it was shown that receipt-free non-interactive voting, where voters are unable to convince any third
party of the content of their vote, can be generically built from a TREnc.
While being a very promising primitive, the few existing TREnc mechanisms either require a secret coin
CRS or are fairly demanding in time and space requirements. Their security proofs also come with a
linear security degradation in the number of challenge ciphertexts.
We address these limitations and offer two efficient public coin TREnc mechanisms tailored for the two
common tallying approaches in elections: homomorphic and mixnet-based. The TCCA security of our
mechanisms also enjoys an almost-tight reduction to SXDH, based on a new randomizable technique of
independent interest in the random oracle model.
A Rust implementation of our TREnc mechanisms demonstrates that we can verifiably encrypt 64 bits
in less than a second, and full group elements in around 30 ms., which is sufficient for most real-world
applications. While comparing with other solutions, we show that our approaches lead to the most
efficient non-interactive receipt-free voting system to date.

1 Introduction

At Asiacrypt 2022, Devillez, Pereira and Peters [14] proposed a new verifiable public-key encryption primitive
that they showed to be sufficient to build a non-interactive receipt-free voting system, generically. By the
way, voters simply encrypt their votes through this new primitive and send the resulting ciphertext while
keeping a trace of it. The ciphertext is processed by a server that is trusted for receipt-freeness (but not for
privacy or integrity) and then posted on a public bulletin board, where the voter can verify its presence, if
they wish so. That is, while the ciphertext processing by the server prevents any voter from proving to a
third party how they voted, the ciphertext trace can convince the voter that their vote has not been altered.
These two features of the encryption scheme led to the naming Traceable Receipt-free Encryption, or TREnc
for short. More concretely, a TREnc enjoys mainly two additional features:

– Traceability. Each ciphertext comes with a public trace that is independent of the plaintext: as long as
a voter keeps secret (or properly erases) the random coins used to compute the ciphertext, it will be
infeasible for anyone, even with the secret decryption key, to produce a ciphertext encrypting a different
message while having the same trace. This trace is what makes it possible for a voter to track his ballot
through the voting system.

– Traceable-CCA Security. If an adversary chooses two ciphertexts with identical traces and is returned
one of them after it has been randomized by a challenger, then the adversary cannot recognize which
ciphertext was randomized, even with access to a decryption oracle (that refuses to decrypt ciphertexts
with that same trace, but only on post-challenge query). This guarantees that, if a voter encrypts a vote,
possibly in a malicious way, and submits it, and if the ciphertext is randomized before being posted on a
bulletin board, then the voter becomes unable to demonstrate the content of that ciphertext to any third
party.



Devillez et al. [14] also designed two constructions in the standard model to realize a TREnc under the
SXDH assumption, i.e. under the DDH assumption in the bilinear groups endowed with pairings. However,
the first construction is generic and relies on heavy public-key ingredients and no instantiation was specified.
The second construction is fully instantiated and reasonably efficient but relies on a secret-key common
reference string, which is challenging in practice and weakens the trust model required for elections. Moreover,
while both schemes allow encrypting a full group element into a ciphertext, the authors left open the task of
designing a practical public-coin TREnc, let alone one that allows to verifiably encrypt bits as needed in a
voting system with homomorphic tally.

1.1 Our Contributions

We propose two new practical TREnc schemes that do not rely on any trusted setup and support the verifiable
encryption of `-bit strings for the first construction and the encryption of a full group element for the second.
As a first step, we design these two public-coin schemes in the standard model from pairings and prove their
security under the SXDH assumption. In particular, the TCCA security holds in the original (single-challenge)
definition. In parallel, we observe that the proof of the generic transformation of Devillez [14] of a TREnc into
a receipt-free voting system implicitly relies on a tight reduction to a multi-challenge extension of the TCCA
definition, and that the TCCA notion implies its multi-challenge variant with a security loss proportional to
the number of challenges. We formally state the multi-challenge notion and the implication here. As a second
step, we bring a very slight modification to our constructions by turning them in the random oracle model
(ROM), which allows us to prove the multi-challenge TCCA notion with tighter reduction to SXDH. More
precisely, we have an almost-tight security for the first scheme, where the security loss is proportional to the
number ` of bits per ciphertext and is essentially independent of the adversary and its number of challenge,
decryption and hash queries. The proof of the second construction encrypting group elements is tight.

As an implication, we get two practical voting schemes that are tailored for the two common tallying
approaches in elections: the homomorphic approach where encrypted votes are aggregated into an encrypted
tally that is decrypted, and the mixnet-based approach where encrypted votes are going through a mixnet
before being decrypted. Furthermore, the receipt-freeness of these schemes (almost) tightly relates to SXDH.
Moreover, since ` is usually selected independently of the security parameter in a voting system, this further
shortens the security loss.

Eventually, we implement our TREnc mechanisms in Rust to demonstrate that we can verifiably encrypt
64 bits in less than a second and a full group element in around 30 ms., which is sufficient for most real-world
applications. In our comparison section, we also provide benchmarks also showing that our design are more
than twice as fast and 33% shorter than the most efficient alternative to build a non-interactive receipt-free
voting scheme without a TREnc.

1.2 Other related works

The first design of a receipt-free voting protocol that relies on a randomizing server that is only trusted for
receipt-freeness comes from Hirt and Sako [19]. Hirt’s construction requires interaction between the voter
and the server, which can be cumbersome. More than 10 years later, Blazy et al. introduced the concept
of signatures on randomizable ciphertexts [9], which opened the way to non-interactive receipt-free voting.
Non-interactive receipt-free voting was then formalized and a full construction was proposed by Chaidos
et al. in BeleniosRF [10]. The BeleniosRF solution supports bit-by-bit encryption and encrypts ` bits into
a ciphertext of size dominated by 6` group elements in the first and second pairing groups. Our TREnc
mechanism tailored for the encryption of bits has a ciphertext size dominated by 4` group elements in the first
and second groups. Moreover, the security analysis of the BeleniosRF encryption mechanism has a simulated
decryption complexity that is exponential in the number of encrypted bits, which makes it poorly adapted to
secure expressive ballots that may contain hundreds of voter selections and are traditionally tallied using a
mixnet.

Recently, Doan et al. [15] proposed a novel public-coin TREnc to verifiably encrypt one bit under the
SXDH assumption. However, the goal of this scheme was to show how a TREnc can also be designed to offer
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another security property valuable in election called perfectly-private audit trail. In that case, only a perfectly
hiding portion of a ciphertext is made available on the bulletin board, in a way that keeps all the other
security notions, and the recept-freeness. Achieving both properties together actually comes with additional
elements in the ciphertext – around 100 group elements for encrypting a single bit – which makes the scheme
more of a conceptual interest, very far from the efficiency goals of the constructions presented here.

Recently, Pointcheval designed new efficient NIZK of subset membership for proving vote validity and
demonstrates their compatibility with TREnc mechanisms [22]. The benefits of TREnc mechanisms have also
been further explored in the context of the cast-as-intended verifiability property [13].

1.3 Overview and Techniques
In both constructions, our ciphertexts have the following structure

CT = (c, ovk,σtrace,πvalid),

where c is a chosen-plaintext (CPA) secure encryption of the message, ovk is a one-time verification key of a
linearly homomorphic structure-preserving signature (LHSP) scheme [21] that is freshly generated at the
encryption time and constitutes the trace of the ciphertext, σtrace is the component offering traceability, and
πvalid is a tag-based randomizable proof with associated tag ovk and that ensures that the CPA part c is
well-formed.

Below, we give more insight about how these ciphertext parts are designed. We first start with the
construction encrypting `-bit string and then move to the other that encrypts a group element. In both cases,
we begin with the description in the standard model before turning to the tighter ROM-based variant.

Encrypting ` bits To encrypt an `-bit message m = (m1, . . . ,m`), we rely on a homomorphic ElGamal-like
encryption c = (d1, d2, c1, . . . , c`) ∈ G`+2 such that

c = (1, 1, gm1
1 , . . . , gm`` ) · (g, h, f1, . . . , f`)θ

with a single random coin θ, where fi = gαihβi and gi are part of the public key, for all 1 ≤ i ≤ `. The
secret key SK = (ski)`i=1 = (α1, β1, . . . , α`, β`) allows extracting gm1

1 , . . . , gm`` . Reusing θ saves a linear term
in ` with respect to ` independent ElGamal encryptions of the bits mi.

Public-coin construction in the standard model. The tracing part σtrace prevents the malleability of the message-
carrying components gm1

1 , . . . , gm`` while keeping the randomizability of the ciphertext c. It relies on LHSP
signatures on the vectors (g, c1, . . . , c`, d1) from the CPA encryption and (1, f1, . . . , f`, g) for randomizing the
CPA part that allow deriving signatures on any linear combination. However, we restrict the validity on
vectors that start with the component g to ensure that the underlying (g, gm1

1 , . . . , gm`` , 1) remains unchanged
after randomization. We excluded d2 and h from the elements signed with the LHSP signature scheme because
πvalid will ensure that (d1, d2) = (g, h)θ as well as any of its randomization; there is no need to further enforces
d2 to follow the same randomization via the LHSP signatures. To reduce the linear size of σtrace in ` to a
constant, we actually shrink these vectors as (g, c, d1) and (1, f, g), where c =

∏`
i=1 ci and f =

∏`
i=1 fi, which

still allows randomizing c and adapting its LHSP signature. Since c = gm1
1 · · · g

m`
` fθ can be seen as a binding

commitment, we can combine the unforgeability with the hardness of computing discrete logarithms to keep
the traceability. While this strategy seems enough for traceability, like [14] we have to sign a third vector that
will help randomizing with an SXDH instance in the TCCA proof. That is because the TCCA notion requires
the challenger to reuse the same trace ovk of the adversary, while ignoring the corresponding one-time signing
key osk. Another solution would have been to add a proof of knowledge of osk with an online extractor, but
it would be very expensive. In summary, up to additional technical modifications, σtrace authenticates the
row space of the matrix

T =

g c d1

1 f g

1 F G

 , (1)
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where F and G are uniform elements in G added to the public-key PK. Now, we turn to the randomizable
tag-based proof πvalid that c is well-formed. To ensure that each triple (d1, d2, ci) for i ∈ [`] is indeed an
encryption of a bit mi, we not only need a randomizable proof, but a malleable proof that can be adapted
when the word c in the language is modified through randomization. In pairing groups, we can thus follow two
directions: either the Groth-Sahai (GS) proof system system [18] or Couteau and Hartmann (CH) compiler [12]
of Σ-protocols even if this property in less commonly known for the latter. For our needs, it happens that
both choices lead to the same efficiency under SXDH (as we need them to be partially extractable), and
both are public coin. For simplicity, we rely on GS proofs to ensure that each triple (d1, d2, ci) for i ∈ [`] is
indeed an encryption of a bit mi by showing that mi(1−mi) = 0 in the field of scalars in the exponents. To
optimize the proof, and unlike [10, 15], we avoid relying on quadratic multi-scalar multiplication equations or
quadratic pairing product equations (in the terminology of GS) that respectively have proof sizes of 6` and
8` group elements in both source groups. Instead, we “linearize” the multi-scalar multiplication equation by
observing that it is enough to satisfy

d1 = gθ d2 = hθ ci = gmii fθi (2)
= dmigϑi = cmii fϑii , (3)

where ϑi = θ(1−mi). Intuitively, Equation 2 implies that the ciphertext (d1, d2, ci) encrypts some message
mi ∈ Zq, and Equation 3 then implies that (d1, ci)(1−mi) is an encryption of 0.3 This representation leads
to proofs of size 4` group elements in both source groups. However, we do not only need zero-knowledge
proof of knowledge of the mi’s. We actually need a tag-based simulation-sound extractable proof, where
simulating a proof for a false statement does not help the adversary to produce valid proofs for which we
cannot compute the witness (mi)`i=1 ∈ {0, 1}`. To build such a proof, we rely on the well-known OR-proof
technique, and show that either the statement is true or that “I know an opening of a perfectly hiding
commitment C”, where the commitment is derived from the tag τ ← Hash(ovk) as C = Cτ0C1 for uniform
elements C0 and C1 of G included in PK and seen as Pedersen commitments. If the adversary manages
to prove the simulated branch, i.e. the knowledge of an opening, the challenger will be able to extract
another opening than the one it programs in the public key, which contradicts the binding property. To
remain randomizable, we implement this OR-proof by following a technique due to Rafols [23] which first
computes two correlated common reference strings (CRS) so that at most one allows simulating GS proofs.4
We observe that it is indeed possible to also randomize the CRSes. The resulting proof system allows us
to answer decryption queries even for C = Cτ0C1 that will occur in the challenge query as long as the
decryption query associated to ovk happens before. Nevertheless, we have to bring a last modification to
this proof system to switch between the branches being proved during the computation of the randomized
challenge ciphertexts in the TCCA security game. That is because the given ciphertexts must use the “real”
branch while by randomizing with the SXDH instance related to (F,G) we will push the word outside
the language, which forces us to use the “simulated branch.” For technical reason, we need to add another
statement in parallel of C for which we control, during the transition of the games, whether proving the
simulated branch is feasible at all or not, which allows us to implicitly control the distribution of the
correlated CRSes (when the reduction must still does not know any trapdoor information). This last step is
crucial to proving the TCCA security and it is made clear in the intuition and in the security proof (Section 6).

Almost-Tightness in the ROM. The concept of tight multi-challenge CCA encryption (mCCA) was put forth
by Bellare, Boldyreva and Micali [6]. Thanks to the random-self reducibility of DDH (and thus SXDH) it is
easy to get a tightly-secure publicly-verifiable mCCA encryption by combining this technique with Gennaro-
Shoup [24]. Indeed, the special soundness of the underlying Σ-protocol is enough to have a tight unbounded
simulation-sound argument with the Fiat-Shamir transform without rewinding. However, achieving tight
TCCA TREnc is not that straightforward. As argued above, and independently of tightness, achieving TCCA
in the single challenge setting already requires to avoid partitioning the tags derived from the traces between
3 This is why we can also rely on CH compiler as there is a natural Σ-protocol to show this statement.
4 We can still rely on CH to have the same property with the same size.
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the adversary and the challenger: the challenger must use the traces generated by the adversary, and their
related proofs must remain extractable when computed by the adversary, and simulatable when randomized
by the challenger. Therefore, the random oracle cannot be programmed differently for the adversary and the
challenger. Moreover, even if we rely on the ROM, our TREnc still needs the randomizability property and
the adaptability of the proof σtrace. Since the Fiat-Shamir transform fixes the challenge and that we also
need a practical online extractable proof, it is not compatible with the TREnc features. Therefore, we almost
keep the whole above proof system we just described in the standard model but modify the computation
of the tag-based commitment to allow injecting fresh values of C for each new value of the trace ovk. This
makes it possible to refresh the argument on the openings and the binding property on any challenge queries
since this is where the simulation-sound extractability emerges. This was the easy step related to the proof
that c is well-formed. Now, we turn to the randomization of those c that should become independent of the
choice made by the challenger in all the challenge queries of the TCCA game in the multi-challenge setting.5
The issue if we stick with the standard model description lies in the use of the last row of the matrix T in
Equation 1. Even if we are able to use (1, F,G) to “over-randomize” (g, c, d1) in all the challenge queries, we
must over-randomize all the ci individually and through all the queries. To rely on an information theoretic
argument to ensure that all the randomized challenge ciphertexts are made independent of each other, we
need a fresh row per ciphertext with uniform F,G. Therefore, we derive from the trace (C,F,G)← Hash(ovk),
where C is the tag-based commitment described above, and (F,G) is fresh for every new trace as we need.
With a carefull analysis, we manage to show that we can also rely on the random self reducibility to control
these rows together per index i ∈ [`].

Encrypting a group element To encrypt a group element m ∈ G, we compute the CPA encryption part
as c = (d1, d2, d3) = (1, 1,m) · (g, h, f)θ, where the secret key SK = (α, β) satisfies f = gαhβ . We could
simply replace gm1

1 by m in the first construction, set ` = 1, and remove from πvalid the parts related to the
satisfiability of bits. This would enjoy all the properties, but we can shorten the ciphertext size by relying on
another idea.

Public-coin construction in the standard model. The traceability part σtrace is like in the first construction,
but without compression since we have a single message-carrying part d3. So, let us focus on the validity
proof. Here, we adapt the CH technique to be compatible with the adaptive tag and the simulation technique
by randomization. We can make a proof for witness-samplable parameter (g, h) as we manage to rely on
(simulation) soundness only at the end of all our transitions in the TCCA proof, and especially after the
SXDH transition involving a uniform instance (g, h,G,H) to “over-randomize” c also with f = gαhβ and
F = GαHβ . Therefore, we can start with the most efficient CH proof of the form (X1, X2, Ẑ) based on a
Σ-protocol, where (X1, X2) relates to the commit phase (i.e., the first flow) and Z ∈ Ĝ relates to the response
phase (i.e., the third flow), and with a uniform element E ∈ Ĝ encoding the (fixed) challenge (i.e. the second
flow) available in the CRS of the system so that e(d1, E) · e(X1, ĝ) = e(g, Ẑ) and e(d2, E) · e(X2, ĝ) = e(h, Ẑ).
Even if we do not use an OR-proof technique anymore, we still need simulation by randomization as with
the perfectly hiding commitment of the first construction so as to also ensure that the adversary cannot
simulate proofs given a simulated proof of a false statement. However, CH proof only provides soundness.
Nevertheless, by somehow embedding this principle into E, the reduction can represent it as a Pedersen
commitment E = ĝxĥy with (x, y) as the simulation key. Therefore, we include uniform E0 = ĝx0 ĥy0 and
E1 = ĝx1 ĥy1 in PK, and only compute E = Eτ0E1 in the proof with τ ← Hash(ovk). Now, a valid proof
(X1, X2, Y1, Y2, Ẑ) satisfies

e(d1, E) · e(X1, ĝ) · e(Y1, ĥ) = e(g, Ẑ)
e(d2, E) · e(X2, ĝ) · e(Y2, ĥ) = e(h, Ẑ)

and we get all what we want at the cost of only two additional elements. To show the one-time simulation-
soundness, we rely on the trapdoor membership ω = logg h that we are free to use after the SXDH transition
5 We extend the TCCA notion in the multi-challenge setting. It is also easy to extend it in the multi-user setting. For
simplicity, we do not focus on the latter as it is anyway easy to achieve from the random self reducibility of SXDH.
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related to (g, h). First, we note that in the pre-challenge phase any E perfectly hides the simulation key, and in
the post-challenge phase the same holds for any E 6= E∗ with τ∗ 6= τ ← Hash(ovk). That is, even if simulation
is possible for an unbounded adversary, it will use another simulation key than the challenger, which is enough
to distinguish a (last) SXDH instance related to (ĝ, ĥ) as long as the word (d1, d2) is not in the language.
Indeed, if dω1 6= d2 it would lead to the non trivial equation e(dω1 /d2, E) · e(Xω

1 /X2, ĝ) · e(Y ω1 /Y2, ĥ) = 1GT
and the challenger will have its own based on the corresponding (hidden) (x, y), will leads to the non-trivial
relation e(A, ĝ) · e(B, ĥ) = 1GT .

Tightness in the ROM. For this part we can simply follows the technique described for the first construction
as `=1, but with (E,F,G)← Hash(ovk).

1.4 Paper Roadmap

We organize the paper as follows. Section 2 provides the cryptographic building blocks of our constructions.
Section 3 describes our new TREnc mechanisms and Section 4 describes a more efficient variant of the
construction tailored to Mixnet voting. In Section 5, we detail our implementations and compare our
performance with the state of the art, and we conclude in Section 6 by recalling the voting application.

2 Building blocks

We recall the syntax and the security definitions of the cryptographic primitive of TREnc [14] before turning
to other cryptographic schemes that will be helpful for our new TREnc constructions with, unlike [14],
public-coin parameters.

2.1 Traceable Receipt-Free Encryption

Definition 1 (TREnc). A Traceable Receipt-Free Encryption scheme is a public-key encryption scheme
(Gen,Enc,Dec) augmented with a 5-tuple of algorithms (LGen, LEnc,Trace,Rand,Ver) where Enc(pk,m) =
LEnc(pk, LGen(pk),m), and:

– LGen(pk; r): The link generation algorithm takes as input a public encryption key pk in the range of Gen
and randomness r, and outputs a link key lk.

– LEnc(pk, lk,m; r): The linked encryption algorithm takes as input a pair of public/link keys (pk, lk), a
message m and randomness r and outputs a ciphertext.

– Trace(pk, c) : The tracing algorithm takes as input a public key pk, a ciphertext c and outputs a trace t.
We call t the trace of c.

– Rand(pk, c; r): The randomization algorithm takes as input a public key pk, a ciphertext c and randomness
r and outputs another ciphertext.

– Ver(pk, c): The verification algorithm takes as input a public key pk, a ciphertext c and outputs 1 if the
ciphertext is valid, 0 otherwise.

Sometimes, we omit the randomness r from the notations. By abusing notation, c ∈ Enc(pk) means that the
ciphertext c belongs to the range of honestly generated encryptions of some message with pk, and c ∈ Enc(pk,m)
means that the ciphertext c belongs to the range of honestly generated encryptions of m with pk.

Correctness Beyond the usual correctness of encryption scheme, a TREnc must satisfy:

– Link traceability: For every pk in the range of Gen, every lk in the range of LGen(pk), and every pair of
messages (m0,m1), the following equality holds: Trace(pk, LEnc(pk, lk,m0)) = Trace(pk, LEnc(pk, lk,m1)).

– Honest verifiability: For every pk in the range of Gen and every messagem, it holds that Ver(pk,Enc(pk,m)) =
1.
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– Publicly Traceable Randomization: For every pk in the range of Gen, every message m and every c in the
range of Enc(pk,m), we have that Dec(sk, c) = Dec(sk,Rand(pk, c)) and Trace(pk, c) = Trace(pk,Rand(pk, c)).

We note that the link traceability property ensures that the trace of a ciphertext does not depend on the
message that is encrypted: the link key is (fortunately) not a receipt of a ciphertext.

Security notions A TREnc must be verifiable, strongly randomizable, traceable and TCCA-secure, as
defined next. The first three notions hold even when the adversary is given the secret key of the TREnc so
that malicious authorities cannot abuse the users. The last notion of TCCA is a privacy notion that holds
even if the user is malicious.

Definition 2 (Verifiability). A TREnc is verifiable if for every efficient adversary A, Pr[Ver(pk, c) =
1 and c 6∈ Enc(pk, ·)|(pk, sk)← Gen(1λ); c← A(pk, sk)] is negligible in λ.

Definition 3 (Strong Randomization). A TREnc is strongly randomizable if for every c ∈ LEnc(pk, lk,m)
with pk from (pk, sk)←$ Gen(1λ) and lk in the range of LGen(pk), the following computational indistinguishability
relation holds:

Rand(pk, c) ≈c LEnc(pk, lk,m)

Together with the verifiability notion, this definition tells that a re-randomized valid ciphertext is still valid,
and then belongs to the range of honest ciphertexts. The publicly traceable randomization from the correctness
then implies that this re-randomized ciphertext decrypt to the same message.

The next definition ensures that valid ciphertexts that trace to each other contain the same message as
long as a link key is only used once.

Definition 4 (Traceability). A TREnc is traceable if for every efficient adversary A = (A1,A2), the
experiment Exptrace

A (λ) in Figure 1 (right) returns 1 with a probability negligible in λ.

So, even if TREnc ciphertexts are malleable, the traceability implies the non-malleability of the plaintexts
against malicious authorities with access to sk.

The TCCA security is a CCA-like security notion that differs from all existing CCA-like notions by letting
the adversary submit pairs of ciphertexts instead of pairs of messages. It guarantees that a randomized
ciphertext becomes indistinguishable from any other ciphertext that has the same trace. Furthermore, we know
from the link traceability that the encryption of any vote could have that trace. This essentially guarantees
the absence of a vote receipt, even if voters bias the ciphertexts they send.

We introduce here the notion of mTCCA security, in which the adversary can make a polynomial number
of challenge queries. It can be observed that, in this definition, the adversary can always request decryption
on any ciphertext as long as its trace was not already involved in a challenge query. That is, decryption is
allowed for any trace even if they later occur in a challenge query. This property was crucial in the original
definition to allow reaching receipt-freeness when a TREnc is used in a voting system because the secret key
always make it possible to compute (or simulate) the result of the election. Our new experiment respects this
fundamental feature.

Definition 5 (mTCCA). A TREnc is secure against traceable chosen-ciphertext attacks in the multi-
challenge setting if for every efficient adversary A = (A1,A2) the experiment Expm−tcca

A (λ) defined in Figure 1
(left) returns 1 with a probability negligibly close in λ to 1

2 .

Obviously, the mTCCA notion implies the TCCA notion. Conversely, we state that new mTCCA notion
is implied by the the original TCCA notion of [14].

Lemma 1. If a TREnc is TCCA, then it is mTCCA. More precisely, for any adversary A with success
probability ε∗tcca in the mTCCA game and making q challenge queries, we have |ε∗tcca− 1/2| ≤ q · |εtcca− 1/2|,
where εtcca is the maximal success probability of any adversary in the TCCA experiment.
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Expm−tcca
A (λ)

(pk, sk)←$ Gen(1λ)
b←$ {0, 1}
L← {}
b
′ ←$ADec(·),Chall(·)(pk)

return b
′ = b

Chall(c0, c1)
if Trace(c0) ∈ L or
Trace(pk, c0) 6= Trace(pk, c1)or
Ver(pk, c0) = 0 or Ver(pk, c1) = 0 :

return ⊥
else L← L ∪ {Trace(cb)}
return Rand(pk, cb)

Dec(c)
if Trace(c) ∈ L : return ⊥
else return Dec(sk, c)

Exptrace
A (λ)

(pk, sk)←$ Gen(1λ)
(m, st)←$A1(pk, sk)
c←$ Enc(pk,m)
c
? ←$A2(c, st)

if Trace(pk, c) = Trace(pk, c?) and
Ver(pk, c?) = 1 and Dec(sk, c?) 6= m

then return 1
else return 0

Fig. 1: mTCCA and trace experiments.
Proof (Proof of Lemma 1). Let q be the total number of challenge queries made by an adversary A in the
multi-challenge TCCA experiment. We build a sequence of q + 1 hybrids. In the i-th hybrid, we randomize
c1 in the first i challenges and randomize c0 in the last q − i challenges. For i = 0, A is in the mTCCA
experiment when the random bit is 0. For i = q, A is in the mTCCA experiment when the random bit is 1.
In the multi-challenge TCCA experiment, the adversary A will not notice the difference between the first and
the last hybrid as proven next.

We reduce each transition to the single-challenge TCCA experiment. Let i ∈ [q]. Given A, we build an
adversary B emulating the transition between the i− 1-th and i-th hybrid from the its TCCA experiment.
The adversary B can query its own decryption oracle to answer these analogue queries made by A. However,
if A tries to get the decryption of a ciphertext that contains a trace for which B already emulated the answer
to a j-th challenge query for some j 6= i, B returns ⊥ and does not call its decryption oracle.

For each j-th challenge query with j < i, B checks if the pair of ciphertexts given by A are valid, if they
share the same trace, and if this trace was not already involved in a previous challenge query. If not, B
outputs ⊥. Otherwise, it simply randomizes the second ciphertext of the pair and returns it to A. If j > i, B
does the same except that it randomizes the first ciphertext of the pair if it does not return ⊥. For the i-th
query, B simply calls its own challenge oracle and return the received output to A.

If the hidden bit is 0, B emulates the (i− 1)-th hybrid. In contrary, if the hidden bit is 1, B emulates the
i-th hybrid. If we let εi be A’s probability to rightly guess the hidden bit in the above i-th game, we clearly
have |εi − 1/2| ≤ |εtcca − 1/2|, where εtcca it the maximal probability that B succeeds in guessing the right
bit in the single-challenge TCCA game. Now, if ε∗tcca is A’s success probability in the multi-challenge TCCE
game, we clearly have |ε∗tcca − 1/2| ≤ q · |εtcca − 1/2|. ut

2.2 Computational setting

Given a security parameter λ, Setup is an efficient algorithm that generates common public parameters such
that Setup(1λ) outputs a bilinear group pp = (G, Ĝ,GT , p, e, g, ĝ) with (G, Ĝ,GT of prime order p > 2poly(λ)

for some polynomial poly, where g←$G and ĝ←$ Ĝ are generators and e : G× Ĝ→ GT is a bilinear map. In
this setting, we rely on the SXDH assumption, which states that the DDH problem is hard in both G and Ĝ.

Following the common Groth-Sahai notation, we define the map ι : G → G2 that maps X ∈ G to
ι(X) = (X, 1) and the map ιT : GT → GT 2 that maps T ∈ GT to ιT (T ) = (T, 1). We also extend the
pairing as E1 : G2 × Ĝ → G2

T such that E1(a, b) = (e(a1, b), e(a2, b)) and as E2 : G × Ĝ2 → G2
T such that

E2(a, b) = (e(a, b1), e(a, b2)), where a = (a1, a2) and b = (b1, b2). We use the multiplicative notation for
vector space operations.

2.3 Linearly Homomorphic Structure-Preserving Signatures

A central tool for our efficient TREnc construction is linearly homomorphic structure-preserving (LHSP)
signatures. The structure preserving [4, 5] property makes it possible to sign messages that are vectors of
group elements. In our case, these elements will be components of an encrypted vote intent. The additional
linearly homomorphic feature, introduced by Libert et al. [21], allows deriving a signature on any linear
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combination (in the exponents) of already signed vectors so that its validity attests of its linear membership
in the related linear span. In the voting protocol, it will be possible to re-randomize the ciphertext and adapt
its signature while carefully guaranteeing the non-malleability of the plaintext.

Here, we only recall the one-time LHSP signature scheme of [21] (expressed in the SXDH setting as in [20])
as the voter will use the secret signing key to authenticate a single encryption/subspace. Below, ĥ←$ Ĝ is
added to pp← Setup(1λ).

Keygen(pp, n): given the public parameter pp and the (polynomial) space dimension n ∈ N, choose
χi, γi←$Zp and compute ĝi = ĝχi ĥγi , for i = 1 to n. The private key is sk = {(χi, γi)}ni=1 and
the public key is pk = {ĝi}ni=1 ∈ Gn.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using sk = {(χi, γi)}ni=1, output σ = (Z,R) =(∏n
i=1 M

χi
i ,
∏n
i=1,M

γi
i

)
.

SignDerive(pk, {(ωj, σj)}`i=1): given pk as well as ` tuples (ωj , σj), parse σj as σj =
(
Zj , Rj

)
for j = 1 to

`. Return the triple σ = (Z,R) ∈ G, where Z =
∏`
j=1 Z

ωj
j , R =

∏`
j=1 R

ωj
j . That is, σ =

∏`
j=1 σ

ωj
j ∈ G2.

Note: if σj is a signature on Vj ∈ Gn, for j = 1 to `, then σ is a signature on V =
∏`
j=1 Vj

ωj .
Verify(pk, σ, (M1, . . . ,Mn)): given σ = (Z,R) ∈ G2 and (M1, . . . ,Mn), return 1 if and only if (M1, . . . ,Mn) 6=

(1G, . . . , 1G) and (Z,R) satisfies

e(Z, ĝ) · e(R, ĥ) =
n∏
i=1

e(Mi, ĝi) . (4)

2.4 Groth-Sahai proof system

Groth-Sahai (GS) proof system [18] comes in handy when proving satisfiability of quadratic equations over
bilinear groups. Moreover, GS proofs are randomizable and can be adapted to satisfy some modifications
of the public equations. While it provides security in the CRS model, it is easy to make it public coin by
deriving the CRS from a random oracle.

In this paper, we only rely on the satisfiability of linear pairing-product equations (PPE) and linear
multi-scalar equations in G (MSE). That is, we would like to commit to groups elements X1, . . . , Xm ∈ G or
to scalars y1, . . . , ŷn ∈ Zp and prove that they satisfy respectively one of the following equations

m∏
i=1

e(Xi, B̂i) = T

n∏
i=1

Ayii = U (5)

for some public elements B̂1, . . . , B̂m ∈ Ĝ, A1, . . . , An, U ∈ G, and T ∈ GT . For instance, the verification
equation (4) of the LHSP signature above is a PPE. In our TREnc, we will commit to elements like Z,R ∈ G.
Note that LHSP equation is linear and T =

∏n
i=1 e(Mi, ĝi) above.

For our purpose, we only recall some of the Groth-Sahai algorithms, and let the others implicit like the
verification.

Gen(pp): given the public parameter pp, choose u1 = (u1,1, u1,2), u2 = (u2,1, u2,2) ∈ G2 and ϕ = (ϕ1, ϕ2),
ψ = (ψ1, ψ2) ∈ Ĝ2. The crs of the proof system is given by crsPPE = (u1,u2) and crsMSE = (ϕ,ψ).

Com(crsPPE, X; r): to commit to a group element X in G with randomness r = (r1, r2) ∈ Zp, compute
C = ι(X)ur1

1 u
r2
2 . Let aux = r.

com(crsMS, y; ρ): to commit to a scalar y in Zp with randomness ρ ∈ Zp, compute ĉ = ϕyψρ. Let aux = ρ.
Prove(crsPPE, (B̂i)mi=1, aux): Parse aux as (ri1, ri2)mi=1, and computes the proof π̂ = (π̂1, π̂2) in Ĝ2 such that

π̂1 =
∏m
i=1 B̂

ri1
i and π̂2 =

∏m
i=1 B̂

ri2
i .

prove(crsMSE, (Ai)ni=1, aux): Parse aux as (ρi)ni=1, and computes the proof π in G such that π =
∏n
i=1 A

ρi
i .
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Verify(crsPPE, (Ci)mi=1, (B̂i)mi=1, T, π̂): Parse the proof π̂ as (π̂1, π̂2) and the CRS as crsPPE = (u1,u2),
and check

m∏
i=1

E1(Ci, B̂i) = T · E1(u1, π1) · E1(u2, π2).

verify(crsMSE, (ĉi)ni=1, (Ai)ni=1, U, π): Parse the CRS as crsMSE = (ϕ,ψ), and check

n∏
i=1

E2(Ai, ĉi) = E2(U,ϕ) · E2(π,ψ).

In the hiding mode, (u1,u2) of the CRS are linearly independent over G2, while (ϕ1, ϕ2) are linearly
dependent. In that case, it is easy to see that the commitments are distributed as perfectly hiding commitments.
Moreover, the Groth-Sahai proofs are perfectly witness indistinguishable (WI): proofs can be explained for
any X1, . . . , Xm ∈ G or y1, . . . , yn ∈ Zp satisfying the PPE or the MSE, respectively, with equiprobability.

In the extractable mode, (u1,u2) of the CRS are linearly dependent over G2, while (ϕ1, ϕ2) are linearly
independent. In that case, it is easy to see that the commitments are distributed as ElGamal ciphertexts.
Moreover, the Groth-Sahai proofs are perfectly sound: extracted X1, . . . , Xm ∈ G satisfy the PPE and the
exponents of the extracted f̂y1 , . . . , f̂yn ∈ Ĝ, for some f̂ ∈ Ĝ, satisfy the MSE, both with probability 1. Both
modes are indistinguishable under the SXDH assumption.

Furthermore, it is well known that Groth-Sahai (commitments and) proofs are perfectly re-randomizable,
and malleable. For a single linear equation, linear combination of proofs is a proof for the same linear
combination of the witness groups elements as the verification equations are homomorphic. Other modifications
are possible which modify the equations of the statement and adapt the commitments and the proofs [11, 16].
In this paper, we will also adapt the CRS in a verifiable way.

3 Construction

In this section, we describe our first construction supporting the encryption of ` bits per ciphertext. Due to
space limitations, we defer the description of our construction supporting the efficient encryption of group
elements to Appendix 4. Since the constructions in the standard model and in the random oracle are very
close, we provide a single description and highlight where the schemes diverge.

3.1 Intuition

We provide a thorough intuition about our first TREnc construction in the random oracle to encrypt `-bit
strings.

A ciphertext is of the form CT = (c, ovk,σtrace,πvalid), where c is a chosen-plaintext (CPA) secure
encryption of the message, ovk is a one-time LHSP verification key that is freshly generated at the encryption
time, σtrace is the component offering traceability, and πvalid is a tag-based randomizable proof with associated
tag ovk that the CPA part c is well-formed. Below, we describe the structure of these four components in
more details and provide the intuition about the security of the scheme. Eventually, we offer a high level
outline of how winning the TCCA experiment tightly reduces to solving the SXDH problem in the random
oracle model.

To encrypt `-bit messages m = (m1, . . . ,m`), we start by computing an homomorphic ElGamal-like
encryption with randomness-reuse as c = (d1, d2, c1, . . . , c`) ∈ G`+2 such that

c = (1, 1, gm1
1 , . . . , gm`` ) · (g, h, f1, . . . , f`)θ,

where fi = gαihβi and gi are part of the public key, for all 1 ≤ i ≤ `, and the secret key is SK = (ski)`i=1 =
(α1, β1, . . . , α`, β`) which allows decrypting c to gm1

1 , . . . , gm`` . Note that usual ` ElGamal encryptions would
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require ` independent random scalars θi and would lead to 2` elements of G instead of `+ 2 with a single
randomness θ. The use of two elements (d1, d2) = (g, h)θ allows us to show the traceability property as
explained later.

The tracing part σtrace prevents the malleability of the message-carrying components gm1
1 , . . . , gm`` while

keeping the randomizability of the ciphertext c. It relies on the LHSP signature scheme recalled in Section 2.3
to authenticate the following vectors: the vector (g, c1, . . . , c`, d1) from the CPA encryption, and the vector
(1, f1, . . . , f`, g) for randomizing the CPA part. The one-time flavor of the LHSP signatures are enough
since the verification key ovk is only used once to authenticate the linear span generated by these vectors.
Therefore, ovk is computed in each encryption from a new uniform one-time secret key osk defined as the link
key lk of the TREnc ciphertext, and ovk is the corresponding trace. While one can derive a valid signature
on any linear combination of these vectors, we will reject those for which the first component differs from
g. This has the effect of forcing the exponent coefficient of (g, c1, . . . , c`, d) to 1, meaning that the vector
of the underlying message-carrying part (g, gm1

1 , . . . , gm`` , 1) remains unchanged as desired. We note that is
unnecessary to include d2 and h in the above two authenticated vectors because the validity proof πvalid that
we will discuss later already ensures that (d1, d2) = (g, h)θ. Therefore, any randomization of d1 is enforced to
be carried on d2, and we do not need to further imply that a second time by the unforgeability of the LHSP
signatures. To reduce the linear size of σtrace in ` to a constant, we shrink these vectors in a way to keep
the traceability property brought by the LHSP signatures. Since each ci = gmii fθi relies on an independent
basis gi, we can shrink these components into a single group element c =

∏`
i=1 ci and combine the one-time

LHSP unforgeability with the hardness of computing discrete logarithms. Following this idea, we get the
shrunk vectors (g, c, d1) and (1, f, g), where f =

∏`
i=1 fi, that still allows randomizing c and adapting its

LHSP signature accordingly. Since c = gm1
1 · · · g

m`
` fθ can be seen as a binding commitment of the message

(even given d1 = gθ and d2 = hθ) and the signature technique fixes M = gm1
1 · · · g

m`
` , any (valid) ciphertext

sharing the same trace ovk must decrypt to m, except if we get another discrete-log representation M .

Although the above strategy looks enough to ensure traceability, we also need to be able to authenticate
an apparently randomized ciphertext for an adversarially chosen trace ovk to ensure the TCCA notion. That
is, in the TCCA proof we still have to produce a valid-looking randomization of CT with trace ovk while we
have to inject an SXDH instance during the simulated randomization of c. One attempt to facilitate this fake
randomization is to rely on a zero-knowledge proof of knowledge of osk. Given an extracted osk, it is easy to
authenticate any vectors even those that are not a proper randomization of c, and no one would notice that
if the modified c is indistinguishable of c. However, such proofs are costly and even if our security analysis
relies on the random oracle model, we still want to rely on online extraction only without rewinding technique
and practical efficiency. Therefore, we follow [14] and add a third authenticated vector in σtrace that can only
be used in the reduction, without compromising traceability. This third vector is (1, F,G) for random group
elements F,G ∈ G, but unlike [14] they are derived from the trace for each ciphertext from the random oracle.
This allows us to have a tight reduction to SXDH from the TCCA game as explained later since we can recycle
the same argument with fresh (F,G) as long as their distributions can be correlated. In part, this is due to
the fact that we build πvalid as a tight unbounded simulation-sound tag-based argument, where the trace
ovk also plays the role of the tag. Back to traceability, it is infeasible to use (1, F,G) in order to randomize
the CPA part without computing a valid proof πvalid that the randomized c is still honestly computed.
Nevertheless, in the TCCA proof, computing proofs of false statements is feasible, and this is in (1, F,G) that
we can inject a related SXDH instance from a single instance thanks to the random-self reducibility property.
Now, we are able to explain why ski = (αi, βi) and c contains a component d2. If ski = αi with fi = gαi

and c = (d1, (ci)`i=1) one could not show traceability. To show traceability, we at least have to ensure that
M = gm1

1 · · · g
m`
` in c =

∏`
i=1 ci cannot be modified. Even if πvalid must imply the validity of the apparently

randomized c, that does not mean that it cannot be of the form (d′1, (c′i)`i=) = (gθ+θ′ , (gm
′
i

i fθ+θ′
i )`i=1 with

M 6= M ′ = g
m′1
1 · · · g

m′`
` . To show that this reduces to forging an LHSP signature, we first have to make

sure that (g, c′, d′1) with c′ =
∏`
i=1 c

′
i is outside the linear vector space spanned by the signed three vectors.

However, if (1, F,G) is random it is not in the linear vector space spanned by (g, c, d1) and (1, f, g) with
overwhelming probability. That means that by definition, there is no forgery as all the vector space G3 is
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already authenticated. We thus have to turn back (1, F,G) in the two-dimensional vector space generated
by (g, c, d1) and (1, f, g) in the proof, which leaves us with a single possibility of (1, F,G) = (1, f, g)µ for
any (random) µ ∈ Zq. Now, it is easy to see why traceability cannot hold since we would have F = Gα with
α =

∑`
i=1 αi and the adversary is given SK = (ski)`i=1. Our additional elements h ∈ PK and thus d2 ∈ c

ensure that no party knows neither the discrete logarithm of fi in base g nor the one of F in base G.
Before completely moving to πvalid, we still have to bring a last modification to σtrace to achieve the

TCCA security. Since the reason and the way to circumvent the last issue is like [14], we simply go quickly
through it. The LHSP signature on the first vector (g, c, d) derived from c must only be available through
a witness indistinguishable proof of knowledge (that must also be randomizable). That is because given
two valid ciphertexts for the same trace ovk in a challenge phase, we are not able to check whether the
adversary managed to produce two first LHSP signatures on their respective first vector without introducing
a subliminal information into them. Since adapting these signatures to the randomization of the CPA part
would not remove this information, the adversary could be able to distinguish which ciphertext has been
processed. Therefore, σtrace contains a Groth-Sahai proof of the LHSP signature on (g, c, d) instead of the
signature itself. It is well-known that the Groth-Sahai proof system offers all these properties for group
elements. Indeed, if the CRS available in the public key, and denoted crsσ, is in the hiding mode, randomized
proofs are perfectly redistributed among all valid proofs of the same statement. Moreover, crsσ can safely be
derived from the random oracle.

Now, we turn to the randomizable proof πvalid that c is well-formed. To ensure that each triple (d1, d2, ci)
for i ∈ [`] is indeed an ElGamal-like encryption of a bit mi we use the randomizable Groth-Sahai system
for scalars with another CRS crsπ. This CRS can also be derived from the random oracle to ensure no one
knows any hidden discrete-log relation. We observe that the each honest triple satisfies

d1 = gθ d2 = hθ ci = gmii fθi (6)
= dmi1 gϑi = cmii fϑii , (7)

where ϑi = θ(1 − mi). It turns out that satisfying these equations implies that (d1, d2, ci) is indeed an
encryption of a bit. Intuitively, Equation 6 implies that the ciphertext (d1, d2, ci) encrypts some message
mi ∈ Zq, and Equation 7 then implies that (d1, ci)(1−mi) is an ElGamal encryption of 0. This leads to
mi(1−mi) = 0 and thus mi ∈ {0, 1} since Zq is a field. This overall implication essentially holds because
there is no gi component in the equation ci = cmii fϑii and there is no need to prove that ϑi = θ(1 −mi);
only the existence of some common ϑi matters. For such kinds of (linear) statements about scalars, the
Groth-Sahai proofs are zero-knowledge. This is fundamental as witness indistinguishability only would not
make our TCCA security analysis going through. That is because a fake randomization of c with F and G
will turn it outside the set of true statements for which there exist no witness to prove validity. (Besides, true
statements are in one-to-one correspondence with their witnesses.) Moreover, the GS proof can be adapted
when c is faithfully randomized. However, zero-knowledge is not enough in our case as we also need the
proofs to be simulation-sound. More precisely, our tag-based proofs are even simulation-sound extractable
in m, which means that even if we prove some false statement related to a tag ovk, the adversary remains
unable to produce a valid proof related to another tag and for which we cannot extract a witness m (which
implies that it cannot produce a valid proof of a false statement). Even more, this should hold without being
able to program the tag in a specific way since it is chosen by the adversary. That means techniques such as
programmable hash functions would not help not only because we target a tight reduction, but because we
must be able to decrypt without SK at some point in the transitions of games even for a tag ovk that can
be used later in a challenge query. Therefore, it is useless to rely on (tight) techniques that try to partition
the distribution of tags for which simulation is possible from those that lead to extractability. We need both
together, and in a tight fashion for all the challenge queries.

We rely on a well-known technique turning a ZK proof into a simulation-sound proof. To compile the
ZK proof, we make on OR-proof that either the statement hold or that “I know on opening of some public
commitment” related to a tag derived from a part of the ciphertext. The idea behind introducing a tag is to
prevent the adversary from reusing a proof for another tag than the one derived from the ciphertext. In our
case, the tag is defined as the trace of the ciphertext since ovk cannot be reused through different ciphertexts
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that are not a randomization of each another. Conversely, we also need to adapt and randomize the validity
proof when we randomize a ciphertext (that then keep the same trace). Now, we turn to explaining the
structure of our validity proof step by step.

First, we define the tag of the proof as the trace of the ciphertext, and from the tag we derive a commitment
C as a single random group element seen as a Pedersen commitment. That way, an opening of C can only be
associated to the randomization of ciphertexts. More technically, this strategy allows separating simulated
proofs for a set of tags from adversarially generated valid proofs for other tags that can appear in follow-up
decryption queries. However, in the TCCA game, the adversary may query decryption of ciphertexts with a
trace that will be present in a later challenge query. This is where we rely on the perfectly hiding property of
the Pedersen commitments: as long as we do not provide any information about an opening of a commitment
C related to a trace ovk, the opening that we can program thanks to the random oracle remains statistically
unpredictable. Therefore, even if we have to produce an opening of C to simulate the randomization of CTb
when emulating the answer to a later challenge query, the adversary could not have produced a previous
opening of C (so, for the same trace) without allowing us to break the binding property of the Pedersen
commitment. This argument will be used in the TCCA proof of security to show that the adversary is forced
to proof the branch of the OR proof related to the right structure of the CPA ciphertext part c. Nevertheless,
we should rely on this binding property with care since the Groth-Sahai proof of the openings does not
allow extracting the witnesses when they are scalars. Fortunately, if we see the commitment as C = gxhy

for random scalars x, y ∈ Zp (programmed by a random oracle), we observe that it is enough to extract
(X = ĝx, Y = ĝy) seen as a modified opening satisfying e(C, ĝ) = e(g,X)e(h, Y ). It is easy to see that two
different valid openings (X1, Y1) and (X2, Y2) lead to a Double Pairing solution 1 = e(g,X1/X2)e(h, Y1/Y2)
that breaks SXDH.

Second, in the TCCA security proof we also need a way to switch between the branches being proved
during the computation of the randomized challenge ciphertexts. Indeed, while the first step above shows that
the adversary cannot produce a valid proof (for a trace of a ciphertext queried for pre-challenge decryption)
related to the branch including C, we have to be able to “activate” this branch at some point during the
emulation of the randomization in the challenge phases. That is, by apparently randomizing the ciphertext
and its tag-based proof for the underlying CPA part, we must be able to simulate the proof by proving
knowledge of an opening of C (because we will later make the CPA part independent of the given c). To make
this transition possible and indistinguishable, we rely on the GS-based OR-proof technique due to Rafols [23]
that we adapt to our switching-branch randomization. The idea behind [23] is to let the prover a degree
of freedom to generate a Groth-Sahai CRS crssim allowing simulating proofs (here for C) but forcing the
complement CRS crssound to be in the perfect soundness mode. These CRSes are related by a simple relation
like crsπ = crssoundcrssim, where crsπ is the (fixed) CRS given in the public key. As long as crsπ is the binding
mode, at most a single CRS between crssound and crssim can be in the hiding mode, and for which simulating is
possible. An honest prover would thus use the witness to prove the statement for each (d1, d2, ci) with crssound
and simulate the proof for C with crssim. This technique hides which branch of the statement is really proven
and which is simulated. To make this technique compatible with our needs, not only the Groth-Sahai proofs
computed from crssound and crssim have to be randomizable but these CRSes as well. Fortunately, GS proofs
support such kinds of malleability and we can randomize crssound and crssim and adapt the proofs related to
them before randomizing the adapted proofs related to this refresh. Although it is almost straightforward to
verify this property, we encounter another technical obstacle preventing us from indistinguishably switching
the mode of the CRSes crssound and crssim given in the challenge while this is exactly what we should do
to allow switching the branches being proved. To tackle this problem, we will modify the statement of the
branch containing C for simulation.

To simplify notations, let crs0 be the CRS involved in showing the validity of the CPA ciphertext c and
crs1 be the CRS involved in proving knowledge of an opening of the commitment C and which should be
simulated. The general simulator of [23] first turns crsπ included the public key in the hiding mode so that it
is feasible to have both CRSes crs0 ans crs1 in the hiding mode and satisfying crsπ = crs0crs1. This change
allows simulating both branches of the OR proof: the validity of c and the opening of C. All these steps can
be applied to our case but the problem to tackle comes next. While hiding-mode CRSes crs0 and crs1 can be
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regenerated from scratch without randomizing them, nothing ensures that those given in the ciphertexts by
the adversary in a challenge phase are not both in the binding modes. If they are in the binding mode, we are
stuck in the TCCA security proof since we cannot show the transition be indistinguishable. Assuming that
the adversarial crs1 is binding, it is tempting to think that everything works since we could extract another
opening of C. However, this needs a trapdoor related to crsπ to extract partial witness. But, at that point
in the security proof, we will still need to turn it back in the binding mode later. That is because, we want
to reach a point where we use the witness for C and simulate the proof for c but so that no adversarially
generated proofs for c is related to a crs0 in the hiding mode allowing proving a false statement. If we were
to use the trapdoor, we could no more prove the next transition for crsπ. We thus need a technique to force
the components crs0 and crs1 of the challenge ciphertexts to be both in the hiding mode when we would like
to modify the distribution of crsπ back and forth from the binding mode to the hiding mode. Our simple idea
is to add a statement in the simulated branch of the OR-proof (that already includes the commitment C) for
which we control whether it is true or false. Controlling the veracity of the statement is the key ingredient
because of the following. Before our first transition for crsπ we can program this statement to be false so
that the validity of πvalid always imply that crs1 is in the hiding mode since otherwise the proof would be
perfectly sound, leading to a contradiction. When we will program crsπ in the hiding mode, so will be all the
crs0 and crs1 computed by the adversary, and our simulated proof can be indistinguishably introduced in
the game hops as explained above. Before turning back crsπ in the binding mode and keep simulating the
ciphertext branch, we simply have to program the additional statement to be true and to use a related witness.
Obviously, this strategy works as long as flipping from the statement from true to false, and conversely, is
indistinguishable. Still, this is easy to achieve: it suffices to generate an additional pair of random elements
(A,B) from the random oracle in the public key and define the additional statement as “(A,B) is an additive
ElGamal encryption of zero” and everything works under the SXDH assumption. It is worth mentioning that
C could not play this role since there always exists an opening for C, making the statement for C always true.

On achieving tightness. The compression of the vectors composing the matrix T makes the task of achieving
tight TCCA security harder. Indeed, if the matrix was with `+ 1 rows in addition to the first row carrying
the vector from the CPA part, having a sub-square matrix of full rank will allow us to directly redistribute all
the CPA parts individually for each index i ∈ [`] by “over-randomization” with all the rows with additional
random coins θ′i, for each i ∈ [`]. Moreover, with our matrices of dimension 3 already gives a linear combination
of potential random group elements that can be used to make the randomized CPA part independent of
the challenger’s choice for all the indexes i ∈ [`] and simultaneously for all the q challenge queries to avoid
a tightness loss proportional to q. Fortunately, we are able to use the random-self reducibility of SXDH to
create additional random group elements to make all the c′i independent.

3.2 Description

Let Setup be the bilinear group public parameter generation algorithm of Section 2.2. Let also poly′ be a
polynomial and Hash a collision-resistant hash function. We simultaneously define a construction in the
standard model and its variant in the ROM where Hash is modeled as a random oracle.

Gen(1λ): Run pp← Setup(1λ) and let ` = poly′(λ).
1. GenerateA,B,C0, C1, F,G, (gi)`i=1, h←$G`+7 and ĥ←$ Ĝ. In the ROM construction, ignore C0, C1, F,G

and generate all the other values from Hash(g, ĝ, `) instead, where g, ĝ ∈ pp.
2. Pick a random pair ski = (αi, βi)←$Z2

p and compute fi = gαihβi ∈ G, for each i ∈ [`].
3. Generate two tuples of 4 random group elements (crsσ, crsπ)←$G4 × Ĝ4 such that crsσ = (u1,u2)

is seen as a Groth-Sahai CRS to commit to group elements over G and crsπ = (ϕ,ψ) is seen as a
Groth-Sahai CRS to commit to scalars over Ĝ. In the ROM construction, generate these CRSes from
Hash(g, ĝ, (fi)`i=1) instead.
For simplicity, we write Com for the commitment algorithm Com(crsσ, ·).
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The private key consists of SK = (ski)`i=1 = (αi, βi)`i=1 and the public key PK ∈ G12+2` × Ĝ6 is

PK =
(
g, h, (gi, fi)`i=1, A,B,C0, C1, F,G, crsσ, crsπ, ĝ, ĥ

)
.

In the ROM construction, the public key can be derived from pp and (fi)`i=1 ∈ G` only and there is no
value C0, C1, F,G in PK.

Enc(PK,m): Given a message m = (m1, . . . ,m`) ∈ {0, 1}` to encrypt, first run LGen(PK): Generate a
key pair (osk, ovk) for the one-time LHSP recalled in Section 2.3 from the public generators ĝ, ĥ in
order to sign vectors of dimension 3. Let lk = osk = {(ηi, ζi)}3

i=1 be the private key, of which the
corresponding public key is ovk = {l̂i}3

i=1. From ovk, compute τ = Hash(ĝ, ovk) and C = Cτ0C1. In the
ROM construction, derive (C,F,G) = Hash(ĝ, ovk).

Then, conduct the following steps of LEnc(PK, lk,m):
1. Pick θ←$Zp and compute the CPA encryption c = (d1, d2, (ci)`i=1), where d1 = gθ, d2 = hθ and
ci = gmii fθi for each i ∈ [`]. Keep the random coin θ.
Next steps 2-3 are dedicated to the tracing part σtrace.

2. To allow tracing, use lk = osk to authenticate the row space of the matrix T=
(
Ti,j
)

1≤i,j≤3

T =

g c d1

1 f g

1 F G

 , (8)

where c =
∏`
i=1 ci and f =

∏`
i=1 fi. Namely, sign each row T i = (Ti,1, Ti,2, Ti,3) resulting in

σ = (σi)3
i=1 ∈ G6, where σi = (Ri, Si) ∈ G2.

3. Commit to σ1 = (R1, S1) using crsσ as CR = Com(R1), CS = Com(S1). To ensure that σ1 is a valid
one-time LHSP signature on (g, c, d1), compute the Groth-Sahai proof π̂sig ∈ Ĝ2 that

e(R1, ĝ) · e(S1, ĥ) = e(g, l̂1) · e(c, l̂2) · e(d1, l̂3) .

Next steps are dedicated to the validity proof πvalid.
4. For the OR-proof, generate two correlated Groth-Sahai CRSes crsi = (ϕi,ψ) ∈ Ĝ4 to later produce

the proof πi, for i ∈ {0, 1}: Initialize a simulation bit bsim to 1 and pick a random γ ∈ Zq. Then,
compute ϕ0 and ϕ1 such that ϕ = ϕ0ϕ1 and ϕbsim = ψγ over Ĝ2.

5. To compute the proof π0 = (πciph, ĉciph), commit to the 2`+1 (witness) scalars θ,mi and ϑi = θ(1−mi)
with crs0, for all i ∈ [`], resulting in ĉ0 = com0(θ; ρ0), ĉi = com0(mi; ρi) and d̂i = com0(ϑi; τi), for
some random coin ρciph = (ρ0, {ρi, τi}`i=1), where com0 denotes comcrs0 . Let ĉciph = (ĉ0, {ĉi, d̂i}`i=1) ∈
Ĝ4`+2.

6. Compute the Groth-Sahai proof πciph ∈ G3`+2 on input ρciph to show that the equations (2) and (3)
hold for all i ∈ [`], resulting in 3`+ 2 equations. To be explicit, πciph = (π10, π20, (π1i, π2i, π3i)`i=1),
where

π10 = gρ0 π20 = hρ0 π2i = gρii f
ρ0
i (9)

π1i = dρi1 g
τi π3i = cρii f

τi
i . (10)

7. To compute the proof π1 = (ĉenc,πenc, ĉcom, πcom), on input crs1 and the simulation key γ in ϕ1 = ψγ ,
simulate that (A,B) ∈ 〈(g, h)〉 and a knowledge of an opening of the commitment C.
– For the encryption (A,B), compute a fake commitment ĉenc = ψρz and the simulated proof
πenc = (πA, πB) = (A,B)−γ(g, h)ρz ∈ G2 as if ĉenc was a commitment to z such that (A,B) =
(g, h)z.

– For the commitment C, compute fake commitments ĉx = ψρx and ĉy = ψρy for random ρx, ρy ∈ Zq
as well as the simulated proof πcom = C−γgρxhρy ∈ G as if ĉx and ĉy were commitments to an
opening (x, y) of C = gxhy. Let ĉcom = (ĉx, ĉy).
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Output the ciphertext

CT =
(

c, ovk,σtrace,πvalid

)
,

where σtrace = (CR,CS ,σ2,σ3, π̂sig) ∈ G8 × Ĝ2 and πvalid = (ϕ0,π0,π1) with π0 ∈ G3`+2 × Ĝ4`+2 and
π1 ∈ G3 × Ĝ6 up to reordering.

Trace(PK,CT): Parse PK and CT as above, and output ovk.
Rand(PK,CT): Parse the ciphertext as above, and let (C,F,G) be computed from Hash(ĝ, ovk) and PK as

above. Conduct the following steps:
1. Randomize the CPA part c = (d1, d2, (ci)`i=1): Pick θ′←$Zp and compute c′ = (d′1, d′2, (c′i)`i=1) =

(d1g
θ′, d2h

θ′, (cifθ
′

i )`i=1) = c · (g, h, (fi)`i=1)θ′.
Next steps 2-3 are dedicated to the tracing part σ′trace.

2. Adapt the commitment (CR,CS) to the signature σ1 so that it it becomes a commitment (C̃R, C̃S)
to the signature σ′1 = σ1σ

θ′

2 . That is, parse σ2 as (R2, S2) and compute C̃R = CR · ι(Rθ
′

2 ) and
C̃S = CS · ι(Sθ

′

2 ). Note: σ′1 is a valid signature on (g,
∏
c′i, d

′
1) for opk, and π̂sig remains a proof that

σ′1 = (R′1, S′1) satisfies

e(R′1, ĝ) · e(S′1, ĥ) = e(g, l̂1) · e(c, l̂2) · e(d1, l̂3) ,

where (R′1, S′1) = (R1, S1) · (R2, S2)θ′ .
3. Randomize the GS proof ((C̃R, C̃S), π̂sig) for the CRS crsσ leading to ((C ′R,C ′S), π̂′sig). Let σ′trace =

(C ′R,C ′S ,σ2,σ3, π̂
′
sig)6 be the randomized tracing part.

Next steps are dedicated to the validity proof π′valid.
4. Randomize the correlated Groth-Sahai CRSes of the OR-proof: Given ϕ0, compute ϕ1 such that
ϕ = ϕ0ϕ1 and let crsi = (ϕi,ψ), for i ∈ {0, 1}. Then, pick a random γ′ ∈ Zq, and compute
ϕ′0 = ϕ0ψ

−γ′ as well as ϕ′1 = ϕ1ψ
γ′. Let crs′i = (ϕ′i,ψ), for i ∈ {0, 1}.

5. Adapt the proof π0 = (πciph, ĉciph) with respect to the randomized c′ and crs′0 thanks to (θ′, γ′):
– Adapt the witness in ĉciph = (ĉ0, {ĉi, d̂i}`i=1): Compute c̃0 = ĉ0 ·ϕθ

′

0 and d̃i = d̂i · (ϕ0/ĉi)θ
′, for

i = 1 to `. The proof part πciph remains valid for crs0 and c̃ciph = (c̃0, {ĉi, d̃i}`i=1).
– Adapt πciph = (π10, π20, (π1i, π2i, π3i)`i=1) to crs′0 by computing π̃ciph = πciph·(d′1, d′2, (d′1, c′i, c′i)`i=1)γ′ .

6. Randomize the proof π̃0 = (π̃ciph, c̃ciph) for the CRS crs′0 leading to π′0 = (π′ciph, ĉ
′
ciph).

7. Adapt the proof π1 = (ĉenc,πenc, ĉcom, πcom) to the randomized crs′1 thanks to γ′. Namely, compute
(π̃A, π̃B , π̃com) = (πA, πB , πcom) ·(A,B,C)−γ′, where πenc = (πA, πB). Then, randomize the proof π̃1 =
(ĉenc, π̃enc, ĉcom, π̃com) for the CRS crs′1, where π̃enc = (π̃A, π̃B), leading to π′1 = (ĉ′enc,π

′
enc, ĉ

′
com, π

′
com).

Return the randomized ciphertext

CT′ =
(

c′, ovk,σ′trace,π
′
valid = (ϕ′0,π′0,π′1)

)
.

Ver(PK,CT): Conduct the following checks:
1. Verify whether PK and CT parse properly. If not, output 0. Else compute (C,F,G) from Hash(ĝ, ovk)

and PK as above.
Next steps 2-3 verify the tracing part σtrace.

2. Verify the validity of the signatures σ2 and σ3 on the 2 last rows {T i}3
i=2 of the matrix T in (8)

with respect to ovk = {l̂i}3
i=1. Namely, parse σ2 = (R2, S2) and σ3 = (R3, S3) and check the next

equations:

e(R2, ĝ)e(S2, ĥ) = e(f, l̂2)e(g, l̂3)
e(R3, ĝ)e(S3, ĥ) = e(F, l̂2)e(G, l̂3)

6 Since computing these LHSP signatures is deterministic in lk = osk, they cannot be randomized, and we do not
need to randomize them to satisfy the strong randomizability notion.
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3. Verify the validity of the proof π̂sig that committed variables in CR and CS consist of a signature
on the first row (g, c, d) of T under ovk.
Next steps 4-6 verify the validity proof part πvalid.

4. Given ϕ0, compute ϕ1 such that ϕ = ϕ0ϕ1 and let crsi = (ϕi,ψ), for i ∈ {0, 1}.
5. Verify the proof π0 = (πciph, ĉciph). Namely, parse the commitment ĉciph = (ĉ0, {ĉi, d̂i}`i=1) and the

proof πciph = (π10, π20, (π1i, π2i, π3i)`i=1), and check

E2(d1,ϕ0)E2(π10,ψ) = E2(g, ĉ0)
E2(d2,ϕ0)E2(π20,ψ) = E2(h, ĉ0)
E2(ci,ϕ0)E2(π2i,ψ) = E2(gi, ĉi)E2(fi, ĉ0)

for Equation (2) as well as

E2(d1,ϕ0)E2(π1i,ψ) = E2(d1, ĉi)E2(g, d̂i)
E2(ci,ϕ0)E2(π3i,ψ) = E2(ci, ĉi)E2(fi, d̂i)

for Equation (3).
6. Verify the proof π1 = (ĉenc,πenc, ĉcom, πcom). Namely, parse πenc = (πA, πB) and ĉcom = (ĉx, ĉy), and

check

E2(A,ϕ1)E2(πA,ψ) = E2(g, ĉenc)
E2(B,ϕ1)E2(πB ,ψ) = E2(h, ĉenc)
E2(C,ϕ1)E2(πcom,ψ) = E2(g, ĉx)E2(h, ĉy)

Output 1 if all these checks pass, otherwise, output 0.
Dec(SK,PK,CT): If Ver(PK,CT) = 0, output ⊥. Otherwise, given SK = (αi, βi)`i=1 and c = (d1, d2, (ci)`i=1)

included in CT, compute and output m = (mi)`i=1 such that mi = 0 if ci = dαi1 dβi2 , and mi = 1, otherwise.

The ciphertext consists of 4`+ 15 group elements in G and 4`+ 15 group elements in Ĝ, for any ` = poly′(λ).
Correctness of our TREnc follows by inspection and the correctness of the related cryptographic building
blocks.

Theorem 1. In the standard model, our TREnc is statistically verifiable and statistically strongly randomizable,
and computationally traceable and TCCA secure under the SXDH assumption relative to Setup if Hash is
collision-resistant. In the random oracle model, the TREnc variant is statistically verifiable and statistically
strongly randomizable, and computationally traceable and almost-tightly TCCA secure in the multi-challenge
setting under the SXDH assumption relative to Setup, where εtcca ≤ 1

2 + (`+ 6)εsxdh + ε(λ) with negligible ε.

Proof (Verifiability of Theorem 1). Let A be an adversary against the verifiability notion of Definition 2
such that, given (PK,SK)← Gen(1λ), A produces a ciphertext CT. Next, we show that if CT is valid then
CT ∈ Enc(PK) but with probability εver ≤ 5/p, where p > 2poly(λ).

1. Since the distribution of (A,B) ∈ G2 in the key generation is uniform (either from the ROM or from
the generation itself), we can write A = gz and B = Dhz for random z ∈ Zp and D ∈ G. Except with
probability 1/p, we have D 6= 1. That is the statement to prove for (A,B) is false with overwhelming
probability. In that case, since GS CRS in the binding mode leads to perfectly sound proofs, the CRS
crs1 = (ϕ1,ψ) ∈ Ĝ4 to commit to scalars over Ĝ must be in the hiding mode. That is, ϕ1 = ψγ , for some
γ ∈ Zp, as in a honest run of item 4 of the encryption algorithm.
Moreover, as long as ϕ1 = ψγ , the proof π1 = (ĉenc,πenc, ĉcom, πcom) of item 7 can always be explained by
scalars playing the role of the random coins that could have been selected during an honest run (even if
nothing can be stated about their distribution). This is a fact due to the perfect witness-indistinguishability
of GS proof based on a (perfectly) hiding CRS.
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2. Since the distribution of crsπ = (ϕ,ψ) ∈ Ĝ4 is uniform (either from the ROM or the generation itself),
we can write ϕ = (f̂ ϕ̂ξ, ϕ̂) and ψ = (ψ̂ξ, ψ̂) for random f̂ , ϕ̂, ψ̂ ∈ Ĝ as long as ψ̂ 6= 1, which only
occurs with negligible probability 1/p. Therefore, in item 4 of the encryption algorithm, we must have
ϕ0 = ϕψ−γ = (f̂ ϕ̂ξ/ψ̂ξγ , ϕ̂/ψ̂γ) from the previous consideration on ϕ1. That is, ξ is an extraction
trapdoor key for crs0 = (ϕ0,ψ).
As a consequence, by “decrypting” with ξ on top of the verification equations of item 5 of the verification
algorithm we can find, if f̂ 6= 1 (which happens with probability 1/p),

e(d1, f̂) = e(g, ĉ0) e(d2, f̂) = e(g, ĉ0) e(ci, f̂) = e(gi, ĉi)e(fi, ĉ0)
= e(d1, ĉi)e(g, d̂i) = e(ci, ĉi)e(fi, d̂i)

where ĉ0, ĉi, d̂i are the extracted group elements from ĉ0, ĉi, d̂i respectively. Therefore, for some θ,mi, ϑi ∈
Zp such that ĉ0 = f̂θ, ĉi = f̂mi , d̂i = f̂ϑi , we must have d1 = gθ, d2 = hθ, ci = gmii fθi from the first row,
and then gθ(1−mi) = gϑi , gmi(1−mi)

i f
θ(1−mi)
i = fϑii from the second, which in turn implies ϑi = θ(1−mi),

and thus mi(1−mi) = 0.
Then, the CPA part c, crs0, and π0 = (πciph, ĉciph) can also be explained as a honest run of items 1-5-6
of the encryption algorithm for some random coins.

3. Now, we turn to ovk that should lies in the output of LGen and to the remaining items 2-3 of the
encryption algorithm with the LHSP signatures and the GS proof σtrace = (CR,CS ,σ2,σ3, π̂sig).
Since crsσ is hiding as a commitment key to commit to group element, except if it is a DH tuple, which
can only occur with negligible probability 1/p, (CR,CS , π̂sig) can always be explained as an honest run
for any witness satisfying the LHSP equation in (3). Now, let consider the 6 variables forming the potential
lk = osk = {(ηi, ζi)}3

i=1 explaining ovk. This public information impose a single linear relation between ηi
and ζi for each index. Moreover, the verification equations of item 2 of the verification algorithm impose
2 linear conditions (since the two last row of the matrix T in Equation 8 are linearly independent with
overwhelming probability (p− 1)/p due to the uniform generation of F,G ∈ G2 either from the random
oracle or the generation in the Gen algorithm itself. All these conditions leave one degree of freedom for
either η1 or ζ1. Therefore, for any chosen value of η1, we can explain ovk, and then (CR,CS , π̂sig).

Consequently, the scheme is statistically verifiable. More precisely, we have εver ≤ 5/p, with p > 2poly(λ).
ut

Proof (Strong randomizability of Theorem 1). Our TREnc is statistically strongly randomizable as defined
in Definition 3. The honestly generated public key is given either by PK = (g, h, (gi, fi)`i=1, A,B,C0, C1, F,G,

crsσ, crsπ, ĝ, ĥ) generated uniformly from G12+2`× Ĝ6 or by PK = (g, h, (gi, fi)`i=1, A,B, crsσ, crsπ, ĝ, ĥ) from
the ROM. Let m = (m1, . . . ,m`) ∈ {0, 1}` be a message and lk = osk = {(ηi, ζi)}3

i=1 ∈ Z6
p be a link key. For

any ciphertext CT ∈ LEnc(PK, lk,m), we show that Rand(PK,CT) ≈s LEnc(PK, osk,m), where ≈s refers to
statistical indistinguishability. Let εrand be the probability to distinguish the two distributions.

By assumption, the ciphertext CT can be parsed as (c, ovk,σtrace,πvalid), where ovk, the tracing part
σtrace = (CR,CS ,σ2,σ3, π̂sig) and the validity proof πvalid = (ϕ0,π0,π1) respect the computation of LEnc
as described in the encryption algorithm, for some values playing the role of the random coins (irrespective
of their distribution). Moreover, as in the previous proof of verifiability, crsσ of PK is in the hiding mode
to commit to group elements, and crsπ = (ϕ,ψ) is in the binding mode to commit to scalars, except with
probability 1/p for each case. Then, we must have:

1. The trace ovk is deterministic in lk = osk as the verification key of the LHSP signature scheme of
Section 2.3.

2. In σtrace, the LHSP signatures σ2,σ3 on the vectors (1, f, g) and (1, F,G) that are the rows of the matrix
T in Equation 2, where F and G are in the public key or are derived from Hash(ĝ, ovk) in the ROM
variant. Those signatures satisfy the relation of the deterministic signing algorithm of Section 2.3.

3. The GS proof (CR,CS , π̂sig) in σtrace is a valid proof of knowledge of a signature σ1 = (R1, S1) on
the vector in the first row of T composed of elements from the CPA part c that can be written as
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(d1, d2, (ci)`i=1), where d1 = gθ, d2 = hθ, and ci = gmii fθi for each i ∈ [`], for some θ ∈ Zp. This proof is
perfectly witness indistinguishable and randomizable.

4. ϕ = ϕ0ϕ1 and ϕ1 = ψγ for some γ ∈ Zp. Therefore, crs0 = (ϕ0,ψ) is in the binding mode, and
crs1 = (ϕ1,ψ) is in the hiding mode for scalars. Then, π0 is perfectly sound and π1 is perfectly witness
indistinguishable and randomizable.

Based on these observations, we next show that the distribution of honest randomization of CT and the
distribution of honest re-encryption of m with the link key lk above are identical.

On the one hand, independently of the precise values taken by θ, γ and the hidden scalars in all the
GS proofs (so, even if θ = γ = 0, for instance) the algorithm Rand perfectly randomize the CPA part c in
item 1 as well as ϕ1 in item 4. Then, the randomized tracing part is fully redistributed among all the valid
proofs with the adapted c (but σ2,σ3 are unchanged as detailed in item 3), and the CRSes crs0 and crs1
are perfectly randomized up to ϕ = ϕ0ϕ1 and remain in the same modes as in CT above. Now, we detail
the distribution of the randomized π0 and π1. The witness of the proof π0 has been perfectly adapted to
the randomized c in item 5 of Rand. Since the commitments ĉciph is perfectly randomized in the next item 6
and the linear proof part πciph depends only on the random coins, π′0 is distributed as a fresh proof for the
updated coins. The proof π1 is also fully redistributed as a fresh proof for the unmodified statement related
to (A,B,C).

On the other hand, with a fresh execution of LEnc on input PK, lk and m, m is unchanged, the link
key lk leads to the same trace ovk as well as the trace-dependent value C generated as CHash(ĝ,ovk)

0 C1 or
directly from the ROM, the same values F,G (either in the public key or derived from ovk in the ROM-based
construction) and the signatures on (1, f, g) and (1, F,G) are uniquely determined since the LHSP signing
algorithm is deterministic. That is LEnc produces the same σ2,σ3 as above. Moreover, the CPA part on
m, ϕ0, and all the GS commitments and proofs are honestly distributed by definition (with π1 relying on
the same C). So these distributions are the same as the output of Rand as justify above when analyzing the
distribution of the randomized ciphertext.

To conclude, the scheme is statistically strongly randomizable. More precisely, we have εrand ≤ 2/p. ut

Proof (Traceability of Theorem 1). Let A be an adversary against the traceability of our TREnc, and
εtrace be its winning probability in the traceability game as defined in Figure 1 (right) of Definition 4. We give
a succession of hybrid games H0, . . . ,H9, where H0 is the real traceability game. For each of those games, we
denote Pi the probability that Hi outputs 1 in the security parameter λ. Also, we define qovk as the number
of distinct Hash-queries of the form (C,F,G)← Hash(ĝ, ovk) made by the adversary for any triple ovk ∈ Ĝ3

in the ROM-based construction.

Game 0: This is the real traceability game where, given (PK,SK)← Gen(1λ), the adversary A chooses
m ∈ {0, 1}` with ` = poly′(λ). It gets CT ← Enc(PK,m) and outputs CT∗. By definition, H0 outputs 1
if Trace(PK,CT) = Trace(PK,CT∗), Ver(PK,CT∗) = 1, but Dec(SK, C∗) 6= m. By definition, we have
P0 = εtrace.

Game 1: In this game, we modify H0 in the way we produce CT. Instead of directly computing
CT ← Enc(PK,m), we first run lk = osk = {(ηi, ζi)}3

i=1 ← LGen(PK) at the outset of the game and
keep osk throughout all the game(s). Then, when the adversary requests the encryption, we compute
CT ← LEnc(PK, osk,m). The trace is then the public key ovk = {l̂i}3

i=1 of the LHSP signature of
Section 2.3 computed from osk. For the ROM-based case, we also assume that the challenger computes
(C,F,G) = Hash(ĝ, ovk) at the outset of the game. By definition of TREnc, we have P1 = P0.

Game 2: In this game, we modify the generation of the Groth-Sahai CRS crsσ = (u1,u2) ∈ G4 in item 3
of the key generation by picking a random exponent ν←$Zp, u1←$G2 and computing u2 = uν1 . In the
ROM variant, we program the random oracle to output this CRS: (crsσ, crsπ)← Hash(g, ĝ, (fi)`i=1), where
the distribution of crsπ is unchanged. Clearly, |P2 − P1| ≤ εsxdh + 1/p.

Game 3: This game is as H2 except in the way we generate u1 = (u1,1, u1,2) in crsσ. Now, we pick a
trapdoor extracting key τσ ←$Zp and compute u1,1 = uτσ1,2. As long as u1,2 6= 1G, u1,1 remains independent
of u1,2. We have |P3 − P2| ≤ 1/p.
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Game 4: In this game, if the adversary A outputs a valid ciphertext CT∗ = (c∗, ovk∗,σ∗trace,π
∗
valid) such

that ovk∗ = ovk, we use the trapdoor key τσ to extract a valid signature σ∗1 = (R∗1, S∗1 ) from the commitments
CR,CS . This is always possible since crsσ is in the binding mode for group elements, and π̂sig is then
perfectly sound. This signature σ∗1 = (R∗1, S∗1 ) satisfies e(R∗1, ĝ) · e(S∗1 , ĥ) = e(g, l̂1) · e(c∗, l̂2) · e(d∗, l̂3), where
ovk = (l̂i)3

i=1 and c∗ =
∏`
i=1 c

∗
i from c∗ = (d∗1, d∗2, (c∗i )`i=1). Now, given the vector (g, c∗, d∗1) we compute a

fresh LHSP signature with osk resulting in σ†1 = (R†1, S
†
1). In the event that σ†1 6= σ∗1, we abort the game and

output 0. If we let this event be F4, we have |P4 − P3| ≤ Pr[F4].
It is easy to see that with two distinct valid LHSP signatures on the same vector we have e(R∗1/R

†
1, ĝ) ·

e(S∗1/S
†
1, ĥ) = 1GT . Given ĝ, ĥ ∈ Ĝ, computing these elements of G comes to break to SXDH assumption. We

thus have Pr[F4] ≤ εsxdh.
Game 5: This game brings a slight modification to H4: we generate crsπ = (ϕ,ψ) such that ϕ = (f̂ ϕ̂ξ, ϕ̂)

and ψ = (ψ̂ξ, ψ̂) for random f̂ , ϕ̂, ψ̂ ∈ Ĝ. In the ROM variant, we again program the random oracle to output
(crsσ, crsπ) ← Hash(g, ĝ, (fi)`i=1) in the generation of PK. Eventually, we abort the game, and output 0 if
f̂ = 1Ĝ. As long as ψ̂ 6= 1Ĝ, the first component of ψ remains independent as in H4. We have |P5−P4| ≤ 2/p.

Game 6: This game is as H5 except that we introduce a failure event F6 which causes the game to abort
and outputs 0. F6 occurs when the adversary A outputs a valid ciphertext CT∗ = (c∗, ovk∗,σ∗trace,π

∗
valid)

such that π∗valid = (ϕ∗0,π∗0,π∗1) with ϕ∗0 = (ϕ∗01, ϕ
∗
02) but ϕ∗01 6= f̂ · (ϕ∗02)ξ.

We have |P6 − P5| ≤ Pr[F6] = 1/p. Indeed, since CT∗ is valid we have ϕ = ϕ∗0ϕ
∗
1 and it suffices to prove that

and ϕ∗1 = ψγ for some γ ∈ Zp, but with probability 1/p. If there is no such γ, crs1 = (ϕ∗1,ψ) would be in the
binding mode to commit to scalars and the GS proofs π∗1 would be perfectly sound. However, the statement
for (A,B) in PK is false since (g, h,A,B) is not a DH tuple except with probability 1/p.
Note: since ϕ∗0 = (f̂(ϕ∗02)ξ, ϕ∗02) and ψ = (ψ̂ξ, ψ̂), the CRS crs0 = (ϕ∗0,ψ) is in the binding mode to commit
to scalars and the GS proofs π∗0 is perfectly sound. Therefore, by computing Dec(SK,CT∗) we can always find
a bit-string message m∗ = (m∗1, . . . ,m∗` ) ∈ Z`p such that c∗ = (d∗1, d∗2, (c∗i )`i=1) can be written as c∗i = g

m∗i
i fθ

∗

i

for each i ∈ [`], and d1 = gθ
∗ and d2 = hθ

∗ , for some θ∗ ∈ Zp. That is, if mi = 1, it is not only because
c∗i 6= (d∗1)αi(d∗2)βi as in the decryption algorithm, but because c∗i = gi · (d∗1)αi(d∗2)βi . (See item 2 in the security
proof of the verifiability for more details.)

Game 7: In this game we bring yet another modification to the previous game H6. First, when we
decrypt the bit-string message m∗ = (m∗1, . . . ,m∗` ) ∈ Z`p, we compute the group element M∗ =

∏`
i=1 g

m∗i
i .

Then, we also compute the group element M =
∏`
i=1 g

mi
i given A’s chosen message m = (m1, . . . ,m`) ∈ Z`p.

Finally, we abort the game and output 0 if M∗ = M but m∗ 6= m. If we call this latter event F7, we find
|P7 − P6| ≤ Pr[F7].
Clearly, if F7 occurs, we can build a reduction to DLog. That is because we can generate the components gi
of PK as gi = gδihχi for random δi, χi←$Zp, for all i ∈ [`]. Assuming that M∗ = M but m∗ 6= m, we can
rewrite the equality as g

∑
i∈[`]

δi(m∗i−mi) = h

∑
i∈[`]

χ(mi−m∗i ). As long as m∗j 6= mj for some j ∈ [`], we have∑
i∈[`] χ(mi −m∗i ) 6= 0, but with probability 1/p. Therefore, Pr[F7] ≤ 1/p+ εsxdh.
Game 8: This game is like H7, but we bring a last modification. In the key generation algorithm of

the standard model construction, we define F = fµ and G = gµ for a random µ ∈ Zp, where f =
∏`
i=1 fi

as in item 2 of the encryption algorithm. In the ROM variant, the challenger simply programs (C,F,G) =
Hash(ĝ, ovk) with those parameters at the outset of the game. In both cases, we have |P8 − P7| ≤ εsxdh.

Indeed, given an SXDH instance (g, h,G,H), the distinguisher defines the public elements fi as fi = gαihβi

for all i ∈ [`] by following the key generation, but it also computes Fi = GαiHβi for all i ∈ [`] and sets
(F =

∏`
i=1 Fi, G) in both cases. Then, it finalizes the generation of PK and finally hands the adversary with

SK = (ski)`i=1 = (αi, βi)`i=1 as in all the previous games. The remaining part of the reduction is trivial.

Conclusion. Now, we argue that Pr[H8 = 1] = P8 ≤ 1/p. To see that, let assume that A wins in H8. From
H4, we know that the extracted signature σ∗1 on (g, c∗, d∗1), where c∗ =

∏`
i=1 c

∗
i from c∗ = (d∗1, d∗2, (c∗i )`i=1) is

equal to the honestly computed one σ†1 from osk. Moreover, during the whole game the adversary only sees
two LHSP signatures related to osk on two independent vectors. That is because the committed signature
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σ1 authenticates the vector (g, c, d1) = (g,
∏`
i=1 ci, d1) = (g,Mfθ, gθ), where M =

∏`
i=1 g

mi
i (as defined

from H7), σ2 authenticates the vector (1, f, g), where f =
∏`
i=1 fi, and σ3 = σµ2 since the third vector

(1, F,G) = (1, f, g)µ from H8. Therefore, the LHSP signatures authenticate a subspace of dimension 2 in
G3. To conclude, we show that the authenticated vector (g, c∗, d∗1) = (g,

∏`
i=1 c

∗
i , d
∗
1) = (g,M∗fθ∗ , gθ∗) of the

adversary is outside the linear span generated by (g, c, d1) and (1, f, g), and then σ†1 remains unpredictable,
but with probability 1/p. It suffices to show that (g,M∗, 1) is not a linear combination of (g,M, 1) and (1, f, g).
But, this is obvious since M∗ 6= M from H7. So, σ†1 = (gη1(c∗)η2(d∗1)η3 , gζ1(c∗)ζ2(d∗1)ζ3) is independent of A’s
view and remains uniform (from linear algebra).

All in all, in both constructions we have εtrace ≤ 4 · εsxdh + 7/p. ut

Proof ((Almost-Tight) TCCA security of Theorem 1). Let A be an adversary against the mTCCA
security of our TREnc, and εtcca be its winning probability in the mTCCA game as defined in Figure 1 (right)
of Definition 5. We give a succession of hybrid games H0, . . . ,H15, where H0 is the real mTCCA game. In each
of those games, the challenger always know the secret key SK to answer any decryption queries appropriately.
For each of those games, we denote Pi the probability that Hi outputs 1 in the security parameter λ.

Let q be the number of challenge queries and qdec be the number of decryption challenge made by A. For
the standard model construction, we have q = 1. For simplicity, we talk about TCCA to refer to both the
single-challenge version and the multi-challenge version. Let also qovk be the total number of Hash-queries of
the form (C,F,G)← Hash(ĝ, ovk) for any triple ovk ∈ Ĝ3 made by the aversary in the ROM-based TREnc
construction.

Game 0: This is the real TCCA game where, the challenger runs Gen(1λ) to generate (PK,SK) with pp←
Setup(1λ) and ` = poly′(λ) such that SK = (ski)`i=1 = (αi)`i=1←$Z`p and PK = (g, h, (gi, fi)`i=1, A,B, crsσ, crsπ, ĝ, ĥ),
where fi = gαi , for each i ∈ [`]. In both constructions, crsσ ∈ G4 and crsπ ∈ Ĝ4 are uniform, meaning that
crsσ is in the perfectly hiding/WI mode for group elements in G, and crsπ is in the perfectly binding/sound
mode for scalars in Zp (as long as it is not a DH tuple). The challenger hands the adversary with PK, and also
flips a random bit b←$ {0, 1}. At each decryption query, given CTi the challenger checks whether its trace is
in the list of the traces that already appeared in a challenge query (where for the standard model construction,
this list is either empty or a singleton). If so, the challenger outputs ⊥. If not, it sends Dec(SK,CTi) to the
adversary A. At each challenge query, given (CT0

j ,CT1
j ) the challenger checks whether both ciphertexts are

valid and share the same trace, and if this trace never appeared in a previous challenge query. If so, we say
that the challenge query is valid. In that case, the challenger adds the common trace, denoted ovk∗j , to the list
L of challenge traces, computes CT∗j ← Rand(PK,CTbj), and sends CT∗j to A. If the query is invalid, it simply
outputs ⊥. At the end of the game, A outputs b′, and the challenger outputs 1 if b = b, and 0, otherwise.
This latter bit is the output of H0. By definition, P0 = εtcca.

In the next games, we assume that the challenger programs the random oracle and consistently replies to
repeating Hash-queries in the ROM case.

Game 1: In this game, the challenger exactly follows H0 except in the ROM variant. In this case, it
directly outputs ⊥ if the adversary makes a challenge query (CT0

j ,CT1
j) with a common trace ovk∗j but for

which there is still no entry in the Hash-list. That is, by emulating the random oracle, the challenger never
defined an input-output pair for (ĝ, ovk∗j ). Since, when defining (C∗j , F ∗j , G∗j )← Hash(ĝ, ovk∗j ) in the ROM
variant, there is a single group element C∗j that fulfills the last verification equation of item 6 in the verification
procedure, the probability of getting a valid proof π1 is thus bounded by 1/p. Therefore, |P1 − P0| ≤ q/p in
the ROM variant, and P1 = P0 otherwise.

Without loss of generality, from now on we assume that all the q challenge queries are valid, which also
means that the output (C∗j , F ∗j , G∗j ) of Hash in the ROM variant on input (ĝ, ovk∗j ) is already defined prior
to the challenge query (CT0

j ,CT1
j ).

Game 2: This game is as H1 except that the challenger aborts the game and outputs a random bit if
the adversary managed to make a valid challenge query on input (CT0

j ,CT1
j ) such that both ciphertexts are

valid for their common trace ovk∗j , but the valid LHSP signatures σj,02 ,σ
j,0
3 ∈ σj,0trace and σj,12 ,σ

j,1
3 ∈ σj,1trace

on the last two (common) rows of their respective matrix T0
j and T1

j (as recomputed in item 2 of the
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verification algorithm) are such that σj,02 6= σj,12 or σj,03 6= σj,13 . Since these LHSP signatures σj,02 ,σ
j,1
2 and

σj,03 ,σ
j,1
3 are valid respectively on (1, f, g) and either (1, F,G) or (1, F ∗j , G∗j ) in the ROM variant, (where

(C∗j , F ∗j , G∗j )← Hash(ĝ, ovk∗j )) for both ciphertexts, the challenger gets two distinct signatures on the same
vector.

Since the validity of the LHSP signatures are all related to the same parameter (ĝ, ĥ) for all the ovk∗j
and the hardness of SXDH implies the infeasibility of producing two distinct LHSP signatures on the same
vectors, |P2 − P1| ≤ εsxdh.

Game 3: For the standard model construction, this game is as H2 except that the challenger aborts the
game and outputs a random bit if the adversary outputs two different ciphertexts containing distinct ovk and
ovk′ such that Hash(ĝ, ovk) =: τ = τ ′ := Hash(ĝ, ovk′). Clearly, this would contradict the collision-resistance
of Hash and thus |P3 − P2| ≤ εcr.

For the ROM variant, this game is as H2 except that the challenger aborts the game and outputs a
random bit if, when the challenger defines a new output (C,F,G) to answer a Hash-query on input a new
(ĝ, ovk), C is already the first component of another output. That is, the challenger directly aborts if there is
a collision on the first component C among the triples (C,F,G) programmed as the outputs of Hash on input
of the form (ĝ, ovk) ∈ Ĝ4. Obviously, |P3 − P2| ≤ qovk(qovk − 1)/2p.

Game 4: This game brings a slight modification to H3 in the way the challenger generates crsπ = (ϕ,ψ)
in PK. Instead of picking crsπ uniformly at random over Ĝ4, it now picks ψ←$ Ĝ2 and ν←$Zp, and computes
ϕ = ψν . Then, in the ROM variant it programs the random oracle to output (crsσ, crsπ)← Hash(g, ĝ, (fi)`i=1)
in the key generation.
In H3, crsπ was in the binding mode while now it is in the hiding mode (allowing simulation). Obviously,
|P4 − P3| ≤ εsxdh + 1/p.

Game 5: In this game, the challenger still honestly randomizes the CPA encryption part cbj and the
tracing part σj,btrace of CTbj = (cbj , ovk∗j ,σ

j,b
trace,π

j,b
valid) in the j-th valid challenge query, but it computes a

simulated proof πj,∗valid from scratch instead of faithfully randomizing πj,bvalid. To do so, the challenger computes
ϕj,∗0 afresh as ϕj,∗0 = ψγj∗ for random γ∗j ←$Zp, and sets crsj,∗0 = (ϕj,∗0 ,ψ). Then, it derives the complement
crsj,∗1 = (ϕj,∗1 ,ψ) so that ϕj,∗0 ϕj,∗1 = ϕ as in the item 4 of the encryption algorithm, but with a simulation
bit bsim = 0. Since ϕj,∗1 = ψ−γj∗+ν , the challenger can compute Groth-Sahai simulated proofs πj,∗0 and πj,∗1
for both branches of the OR-proof from the respective trapdoors γ∗j and −γ∗j + ν.

As long as for all j ∈ [q] such that ϕj,01 (resp. ϕj,11 ) can be written as ψγj,0 (resp. ψγj,1) for some γj,0 ∈ Zp
(resp. γj,0 ∈ Zp), both games are perfectly indistinguishable. Let F5 be the event that there is ϕj,01 or ϕj,11
not in the span generated by ψ. We thus have, |P5 − P4| ≤ Pr[F5]. Next, we argue that as long as (A,B) in
the public key (and derived from Hash in the ROM-based construction) is not in the span generated by (g, h),
which is always the case but with probability 1/p, this event never happens, i.e. Pr[F5] = 1/p.

Indeed, if (A,B) cannot be written as (g, h)z, for some z ∈ Zp, then no CRS crsj,01 = (ϕj,00 ,ψ) (resp.
crsj,11 = (ϕj,10 ,ψ)) from πj,0valid (resp. πj,1valid) can be in the binding mode because the proof πj,01 (resp. πj,11 )
would be perfectly sound whereas the statement is false. To summarize, |P5 − P4| ≤ 1/p.

Game 6: This game is as H5 except that given pp← Setup(1λ) the challenger picks a random h←$G and
a random scalar z←$Zp and computes (A,B) = (g, h)z during the key generation so that the statement about
(A,B) in the OR-proof becomes true, where g ∈ pp. In the ROM variant, it then programs the random oracle
such that A,B, (gi)`i=1, h, ĥ← Hash(g, ĝ, `). The remaining part of H6 is as H5. Clearly, |P6−P5| ≤ εsxdh +1/p

Game 7: For the standard model construction, instead of generating C0, C1 uniformly at random directly
from G2, the challenger picks x0, x1, y0, y1←$Zp and computes C0 = gx0hy0 and C1 = gy1hy1 .

Analogously in the ROM variant, for all the hash queries of the form Hash(ĝ, ovk) with ovk ∈ Ĝ3, the
challenger still picks F,G←$G as before but also picks random x, y←$Zp and computes C = gxhy. Then, it
programs (C,F,G)← Hash(ĝ, ovk).

Since all the so-generated triples are still uniformly distributed as long as g 6= 1 or h 6= 1, we have
|P7 − P6| ≤ 1/p.

Game 8: In this game the challenger changes the way it answers to the challenge queries. Instead of
simulating πj,∗valid from scratch as done from H5 until now, it computes πj,∗valid as a honest run of the OR-proof
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but for the statement (A,B,C∗j ), where either C∗j = C
τ∗j
0 C1 = gx0τ

∗
j +x1hy0τ

∗
j +y1 for τ∗j ← Hash(ĝ, ovk∗j ) in the

standard model construction or C∗j = gx
∗
j hy

∗
j from (C∗j , F ∗j , G∗j )← Hash(ĝ, ovk∗j ) in the ROM variant. That

is, the challenger still no more use πj,bvalid, but when it computes ϕj,∗0 = ψγj∗ and ϕj,∗1 such that ϕ = ϕj,∗0 ϕj,∗1 ,
it no more uses the simulation trapdoor ν introduced in H4. Therefore, the challenger uses γ∗j to compute
a simulated πj,∗0 from crsj,∗0 as before, but it computes an honest proof πj,∗1 from crsj,∗1 with the witness
(x∗j , y∗j , z) satisfying (A,B) = (g, h)z and C∗j = gx

∗
j hy

∗
j . The remaining parts of the answers to valid challenge

queries are addressed as in H7. In particular, cbj and σ
j,b
trace are still honestly adapted and randomized. Answers

to decryption queries are unchanged.
Since crsπ is still in the hiding mode so are crsj,∗0 and crsj,∗1 as in H7, even if ν is useless in this game. In

that case, the proof parts πj,∗valid are distributed exactly as before since they are still in the perfect witness
indistinguishable mode, which leads to P8 = P7.

Game 9: In this game the challenger removes the modification introduced in H4: it truns back crsπ =
(ϕ,ψ) in the binding mode. More precisely, it honestly generate uniform (crsσ, crsπ)←$G4× Ĝ4 as in Gen(1λ)
and programs Hash(g, ĝ, (fi)`i=1) to this value in the ROM variant. Thus, |P9 − P8| ≤ εsxdh + 1/p.

Game 10: The challenger brings a slight modification in the way crsπ = (ϕ,ψ) is generated in the
binding mode. During the key generation, it picks random f̂ , ϕ̂, ψ̂←$ Ĝ and ξ←$Zp, and defines ϕ = (f̂ ϕ̂ξ, ϕ̂)
and ψ = (ψ̂ξ, ψ̂). It then programs again the random oracle such that (crsσ, crsπ)← Hash(g, ĝ, (fi)`i=1) for
the ROM-based construction. As long as ψ̂ 6= 1Ĝ, the first component of ψ remains independent as in H9.
We have |P10 − P9| ≤ 1/p.

Game 11: In this game the challenger changes the way it answers to the decryption and challenge queries.
On non-aborting valid input CT = (c, ovk,σtrace,πvalid) queried for decryption, where πvalid = (ϕ0,π0,π1)
and ϕ0 = (ϕ̂01, ϕ̂02), it outputs ⊥ if ϕ̂01 6= f̂ · ϕ̂ξ02. Similarly, on non-aborting valid input (CT0

j ,CT1
j) in a

challenge query, the challenger makes the analogue checks on both ciphertexts and returns ⊥ if at least one
inequality occurs. If we call this latter event F11, we clearly have |P11 − P10| = Pr[F11].

Now, we argue that Pr[F11] ≤ εsxdh + (qdec + 2q)/p. Indeed, since ϕ = (f̂ ϕ̂ξ, ϕ̂) from H10 by construction
of crsπ in PK and ϕ = ϕ0ϕ1 by the validity of CT, we know that 1G 6= Ĝ := ϕ̂11/ϕ̂

ξ
12, where ϕ1 = (ϕ̂11, ϕ̂12),

if F11 occurs. In that case, the perfectly sound proof π1 = (ĉenc,πenc, ĉcom, πcom) is extractable with ξ. Let us
focus on the proof of opening ĉcom and πcom of C, where C is computed from Hash(ĝ, ovk) and is C = gxhy

for x = τx0 + x1 and y = τy0 + y1 for the standard model construction, or programmed as C = gxhy in
the ROM variant. From H7 and the collision-resistance of C from H3, it is easy to build a Double-Pairing
adversary given the parameter (g, h) that are common to all openings. The extracted X,Y from ĉcom satisfy
e(C, Ĝ) = e(g,X)e(h, Y ). However, (X,Y ) 6= (Ĝx, Ĝy) but with negligible probability 1/p. That is because,
either the decryption query for CT happens before a challenge query that contain the same trace ovk or it is
never the case throughout the game, or CT is queried for decryption after a challenge query with the same
trace. Since by assumption CT is valid the latter case does not occur (since such “post-challenge” query is
forbidden in the TCCA game, so from H0). However, in the former case the TCCA adversary tries to open the
perfectly hiding commitment C for which no additional information are given at that time. So, the first time
it manages to open C it must be with another opening than (Ĝx, Ĝy) except with probability 1/p. The same
argument holds for both ciphertexts in any valid non-aborting challenge query. Finally, if (X,Y ) 6= (Ĝx, Ĝy)
holds, then the DP adversary outputs (X/Ĝx, Y/Ĝy) and always wins. Since a DP adversary implies an
SXDH adversary, the result follows.

Game 12: In this game we bring yet another modification in the way the challenger answers to the
decryption queries. Namely, on the input ciphertext CT queried for decryption by the adversary, the challenger
proceeds as before to determine the validity of CT but it no more uses SK to compute the plaintext from the
CPA part c = (d1, d2, (ci)`i=1). Instead, if CT is deemed valid and does not lead to an early abort, the challenger
uses the trapdoor extracting key ξ to compute m = (mi)`i=1 from π0 = (πciph, ĉciph) in πvalid = (ϕ0,π0,π1)
as follows. On input ξ and the commitments (ci)`i=1 in ĉciph, it extracts the group elements M̂ = (M̂i)`i=1,
and if M̂i = 1Ĝ, the challenger sets mi = 0, else it sets 1.

Now we show that P12 = P11. Indeed, non-rejecting CT from H11 are such that ϕ̂01 = f̂ ϕ̂ξ02 and then the
perfectly sound proof πciph ensures that M̂i = f̂mi for all i ∈ [`], where these mi’s underlie the CPA part
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c = (d1, d2, (ci)`i=1) that must be of the form c = (gθ, hθ, (gmii fθi )`i=1) for some θ ∈ Zp since equation 6 holds,
and such that mi ∈ {0, 1} since equations 7 holds as well. In other words, πvalid = (ϕ0,π0,π1) is a perfectly
sound proof that c is well-formed, and ξ always allows extracting the witness m = (mi)`i=1.

Note: despite this above extraction, we recall that in the answers to any valid non-aborting challenge
query (CT0

j ,CT1
j ), the ciphertext CT∗j is computed from a simulated proof from H8 and such that ϕ̂11 = f̂ ϕ̂ξ12.

These simulated proofs are still computed from a true statement, but by honestly proving the OR-proof
by using the programmed witness for C∗j generated from Hash(ĝ, ovk∗j ) instead of randomizing the valid
adversarially generated proof πj,bvalid.

Game 13: This game deviates from the previous one by the way the challenger computes (F,G) in
PK for the standard model construction, and in each of the qovk answers to the Hash-queries of the form
Hash(ĝ, ovk) for any triple ovk in Ĝ3 for the ROM-based variant. While C is still programmed as in H7, the
challenger now computes (F,G) as a random vector in the linear span generated by (f, g), where f =

∏`
i=1 fi

(as in the previous games), instead of drawing it uniformly at random from G2. To do so, the challenger
simply picks a random w←$Zp, and computes (F,G) = (f, g)w in PK for the standard model construction,
and computes (F,G) = (f, g)w with a fresh exponent before programming (C,F,G)← Hash(ĝ, ovk) in the
ROM-based variant. For the standard model construction, we have |P13 − P12| ≤ εsxdh + 1/p. Next, we show
that |P13 − P12| ≤ εsxdh + 3/p for the ROM-based variant.

To see why a single reduction to SXDH works for all the Hash-queries of this form, we observe that they
can all be answered given a single SXDH challenge (g, f,G0, F0), where g is used to generate the public
parameters of PK as in both games H12 and H13, but for all i ∈ [`], fi is computed as fi = gαi for αi←$Zp
if i > 1, and f1 = f/

∏`
i=2. That means that sk1 is unknown even if PK as the same distribution in both

games. Now, to answer to each fresh Hash-query on input (ĝ, ovk), the reduction simply picks fresh u, v←$Zp,
computes G = guGv0 and F = fuF v0 , and programs (C,F,G)← Hash(ĝ, ovk) with C as from H7.

Assuming that g, f 6= 1G, let (G0, F0) = (g, f)κ(1, gυ)β for some unknown random κ, υ ∈ Zp and β ∈ {0, 1}.
Then, the pair (F,G) in the output of any Hash-query can be written as (F,G) = (f, g)u+κv · (gυv, 1)β , where
gυv is a random element independent to the remaining view even given w = u+ κv conditioned on υ 6= 0.
Therefore, if β = 1 the view is the one of the adversary in H12, and if β = 0 the view is the one of the
adversary in H13.

Game 14: This game is as H13 except that the challenger modifies the way it answers to the valid
non-aborting challenge queries. Given such (CT0

j ,CT1
j), the challenger retrieves w∗j that defines (F ∗j , G∗j ) =

(f, g)w
∗
j in the answer to the Hash-query on input (ĝ, ovk∗j ) from the modification introduced in H13 (or

in the public key for the standard model construction). Then, the challenger computes the intermediate
values (G∗j , H∗j , (F ∗i,j)`i=1) = (g, h, (fi)`i=1)w

∗
j satisfying F ∗j = fw

∗
j =

∏`
i=1f

w∗j
i =

∏`
i=1F

∗
i,j . Next, instead of

randomizing the CPA part cbj = (dj,b1 , dj,b2 , (cj,bi )`i=1) and the tracing part σj,btrace = (Cj,b
R ,Cj,b

S ,σj,b2 ,σj,b3 , π̂j,bsig)
of the ciphertext CTbj according to the real randomizing algorithm, the challenger now conducts the following
steps. First, it picks random θ′j , θ

′′
j ←$Zp and computes

c∗j =
(
dj,∗1 , dj,∗2 , (cj,∗i )`i=1

)
(11)

=
(
dj,b1 , dj,b2 , (cj,bi )`i=1

)
·
(
g, h, (fi)`i=1

)θ′j · (G∗j , H∗j , (F ∗i,j)`i=1
)θ′′j .

That is, with respect to item 1 of the randomizing algorithm, it uses the additional vector (G∗j , H∗j , (F ∗i,j)`i=1)
of intermediate values as a support to introduce the additional randomness θ′′j . Second, it adapts the
commitments Cj,b

R ,Cj,b
S into

C̃
j,b

R = Cj,b
R · ι(R

j,b
2 )θ

′
· ι(Rj,b3 )θ

′′

C̃
j,b

S = Cj,b
S · ι(S

j,b
2 )θ

′
· ι(Sj,b3 )θ

′′
,

(12)

where, with respect to the item 2 of the randomizing algorithm, it not only uses σj,b2 = (Rj,b2 , Sj,b2 ) to adapt the
committed signature but also σj,b3 = (Rj,b3 , Sj,b3 ). In other words, if σj,b1 was the committed LHSP signature
relative to the first row of the matrix Tb

j , the adapted LHSP signature would be σj,∗1 = σj,b1 (σj,b2 )θ′(σj,b3 )θ′′ .
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Finally, the challenger follows the steps of item 3 by honestly randomizing the commitments and the proof
π̂j,bsig leading to σj,∗trace = (Cj,∗

R ,Cj,∗
S ,σj,∗2 ,σj,∗3 , π̂j,∗sig), where σ

j,∗
2 = σj,b2 and σj,∗3 = σj,b3 . The validity proof

part πj,∗valid is computed exactly as in H13.
Since the committed σj,b1 would be an LHSP signature on the first row (g,

∏`
i=1 c

j,b
i , dj,b1 ) of Tb

j , together
with σj,b2 on the second row (1, f, g) and σj,b3 on the last row (1, F ∗j , G∗j ), σ

j,∗
1 would be an LHSP signature on(

g,
∏`
i=1c

j,b
i , dj,b1

)
·
(
1, f, g

)θ′j · (1, F ∗j , G∗j)θ′′j
that is nothing but the vector (g,

∏`
i=1 c

j,∗
i , dj,∗1 ) computed from c∗j . Moreover, due to the definition of the

intermediate tuple (G∗j , H∗j , (F ∗i,j)`i=1) and that (1, F ∗j , G∗j ) = (1, f, g)w
∗
j from H13, the CPA part satisfies

c∗j =
(
dj,b1 , dj,b2 , (cj,bi )`i=1

)
·
(
g, h, (fi)`i=1

)θ′j+w∗j θ
′′
j .

Therefore, since crsσ is in the hiding mode, the perfect witness indistinguishable proof π̂j,∗sig is distributed
as an honest proof of knowledge of the signature σj,b1 (σj,b2 )θ

′+w∗j θ
′′
on the vector (g,

∏`
i=1 c

j,∗
i , dj,∗1 ) that is

distributed exactly as in H13. Therefore, P14 = P13.
Game 15: In this game, the challenger follows H14 except in the way the uniform public key elements

h, f, . . . , f` ∈ G are generated. Now, it picks random scalars χ, α1, . . . , α`←$Zp, and computes hχ, f1 =
gα1 , . . . , f` = gα` . It then programs PK in the obvious way and sets SK as the empty string. Since SK of H14
was only used to generate these public key elements, the adversary’s view is unchanged. We have P15 = P14.

Game 16: In this game, we bring a last modification in how the challenger answers to the challenge
query in the standard model case, and how it answers to the qovk Hash-queries and to the q challenge
queries in the ROM case. First: (1) In the standard model, the challenger picks and stores G,F1, . . . , F`←$G
during the key generation, and set F =

∏`
i=1 Fi and H = Gχ; (2) In the ROM variant, for the Hash-

queries on input (ĝ, ovk) with a fresh ovk ∈ Ĝ3, the challenger picks and stores random intermediate values
G,F1, . . . , F`←$G, computes F =

∏`
i= Fi and H = Gχ, and programs (C,F,G)← Hash(ĝ, ovk), where C is

still computed as since H7. That is, (1, F,G) is no more a random vector in the linear span generated by
(1, f, g), which cancels the change introduced in H13 and turns back T as a full rank with overwhelming
probability. Second: (1) In the standard model, on input a valid non-aborting challenge query (CT0,CT1)
with common trace ovk∗, the challenger retrieves the intermediate tuple (G,H, (Fi)`i=1) and uses it as a
support the “over-randomize” cb as in H14 with random θ′, θ′′←$Zp; (2) In the ROM variant, on input a valid
non-aborting challenge query (CT0

j ,CT1
j ) with common trace ovk∗j , the challenger retrieves the intermediate

tuple (G∗j , G∗j , (F ∗i,j)`i=1) generated to define (C∗j , F ∗j , G∗j ) as the output of Hash(ĝ, ovk∗j ). Since by assumption
the challenge query is valid (and non-aborting), the challenger always defined this output earlier (since H1),
and thus this intermediate tuple is already defined. Therefore, the challenger uses this newly distributed
tuple (G∗j , H∗j , (F ∗i,j)`i=1) as the support to introducing more randomness in the computation of c∗j as in H14.
Namely, the challenger computes c∗j = (dj,∗1 , dj,∗2 , (cj,∗i )`i=1) as in Equation 11. Finally, the remaining part
of the computation of CT∗j is made as since H14 with the adaptation and randomization of σj,btrace as done
in Equation 12 so that σj,∗trace and πj,∗valid are computed exactly as in these previous games. So, the only
change made in this game to answer to (CT0

j ,CT1
j ) is the use of the new pre-computed intermediate tuples

(G∗j , H∗j , (F ∗i,j)`i=1).
Next, we show that |P16 − P15| ≤ ` · εsxdh + 3`/p. We only focus on the ROM variant since the simpler

case of the standard model construction can be adapted in an easy way. To see why this bound holds, we
first observe that H15 and H16 only differ in the way the intermediate tuples (G∗j , H∗j , (F ∗i,j)`i=1) are defined.
Indeed, in H15 it makes no difference if all the tuples (Gj , Hj , (Fi,j)`i=1) were generated as (g, h, (fi)`i=1)w
at the time the challenger programmed (C,F,G) ← Hash(ĝ, ovk) such that (F,G) = (f, g)w for a uniform
w ∈ Zp per Hash-query. Assuming that all these tuples are pre-computed and stored when answering all the
Hash-queries, given (G∗j , H∗j , (F ∗i,j)`i=1) both games computes CT∗j exactly in the same manner. With this in
mind, we now build `+ 1 hybrid games H16.k, for k = 0 to `, such that H15 = H16.0 and H16 = H16.`:
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Game 16.k: The public key PK is defined as in H15 without secret key but with χ, α1, . . . , α` such that
h = gχ and f1 = gα1 , . . . , f` = gα` . The challenger still uses the trapdoor extracting key ξ to compute
the plaintext m = (mi)`i=1 as in the last modification brought to the way to answer to the decryption
queries, i.e. from H12 to H16.
For each Hash-query on input (ĝ, ovk) for a fresh ovk ∈ Ĝ3, the challenger proceeds as follows: it picks
x, y, w←$Zp,
– It computes C = gxhy as from H7 to H16.
– If computes G = gw and H = hw.
– For all i ∈ [`] such that i ≤ k: it picks Fi←$G.
– For all i ∈ [`] such that i > k: it computes Fi = fwi .
– It stores the intermediate tuple (G,H, (Fi)`i=1), and programs (C,F,G) ← Hash(ĝ, ovk), where
F =

∏`
i= Fi.

All the decryption queries are answered as from H12 to H16, and all the challenge queries (CT0
j ,CT1

j ) are
answered as in H15 and H16 from the intermediate tuple (Gj , Hj , (Fi,j)`i=1) that was stored for ovk∗j in
the corresponding Hash-query by emulating the randomization of CTbj , where b←$ {0, 1} was chosen at
the outset of the game as usual. Moreover, the challenger still aborts and outputs a random bits if a
collision on the C components occurs as from H3.

Now, we show that |P16.k−P16.k−1| ≤ εsxdh +3/p, for all k ∈ [`], where P16.k = Pr[H16.k = 1] is the probability
that the adversary A correctly guesses the bit b, for all 0 ≤ k ≤ `. Let (g, f0, G0, F0) be an SXDH instance.
Next, we build a distinguisher B that uses the TCCA adversary A as a subroutine. First B picks b←$ {0, 1}
and generates PK as in H15 and H16 except in the way it generates (g, h, (fi)`i=1). B picks χ←$Zp and
computes h = gχ. For all i ∈ [`] \ {k}, B picks αi←$Zp and computes fi = gαi , and sets fk = f0 as well as
f =

∏`
i=1 fi. The other parameters are generated as in H15 and H16, where crsσ is in the hiding mode and

crsπ is in the binding mode with a trapdoor extracting key ξ.
The distinguisher B programs the random oracle to answer to the qovk Hash-queries on input (ĝ, ovk) with

a fresh ovk ∈ Ĝ3 as follows: it picks x, y, u, v←$Zp, and then
– It computes C = gxhy as in H7-H16 and aborts as in H3 if a collision occurs.
– If computes G = guGv0, H = Gχ and Fk = fu0 F

v
0 .

– For all i ∈ [`] such that i < k: it picks Fi←$G.
– For all i ∈ [`] such that i > k: it computes Fi = Gαi .
– It stores the intermediate tuple (G,H, (Fi)`i=1), and programs (C,F,G) ← Hash(ĝ, ovk), where F =∏`

i= Fi.
All the decryption queries are answered as from H12 to H16 without SK but with ξ, and all the challenge
queries (CT0

j ,CT1
j ) are answered as in H15 and H16 from the intermediate tuples (Gj , Hj , (Fi,j)`i=1) that was

stored for ovk∗j in the corresponding Hash-query by emulating the randomization of CTbj , for all j ∈ [q]. At
the end of the game the adversary A outputs b′, and B defines and outputs its guess as 1 if b′ = b, and 0
otherwise.

Now, we analyze the reduction. Assuming that g, f0 6= 1G, let (G0, F0) = (g, f0)κ(1, gυ)β for some
unknown random κ, υ ∈ Zp and β ∈ {0, 1}. Then, the public-key elements (g, h, (fi)`i=1) are distributed
exactly as in H16.k and H16.k−1 since we simply have fk = f0 = gαk for some unknown random αk ∈ Zp.
Therefore, fi = gαi for all i ∈ [`] for uniformly distributed exponents αi. Moreover, f =

∏`
i=1 fi as in both

games. We now turn to analyzing the distribution of the answer (C,F,G) to the Hash-queries on input
(ĝ, ovk) with a fresh ovk ∈ Ĝ3. Clearly C is independent of k and is as from H7. If C is involved in a
challenge query, B responds in the same way as in both games by using the random coin (x, y) as part of the
witness to compute the corresponding validity proof as from H8. So, we focus on (F,G). By construction,
(Fk, G) = (fk, g)u+κv · (gυv, 1)β , where gυv is a random element independent to the remaining view even given
w = u+κv conditioned on υ 6= 0 (because v is fresh for any fresh ovk). Since H = Gχ = hw and for all i ∈ [`]
we have Fi←$G if i < k, and Fi = Gαi = fwi if i > k, the intermediate tuple (G,H, (Fi)`i=1) is distributed
as in H16.k−1 if β = 0 (because Fk = fwk ) and as in H16.k if β = 1 (because Fk = fwk g

υv is uniform). In both
cases we also have F =

∏`
i=1 Fi, therefore the output (C,F,G) satisfies the distribution of H16.k−1 or H16.k

accordingly. Moreover, the decryption queries are all answered in the same way. Even if from H16.1 the CPA
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part c∗j of the answer to a valid non-aborting challenge query (CT0
j ,CT1

j) are no more a randomization of
cbj since the computation from Equation 11 modifies the underlying plaintext and is no more a bit-string
with overwhelming probability, the simulated validity proof πj,∗valid made for a false statement does not help
the adversary A in producing such kind of fake proof. Indeed, since the introduction of the failure event
in H11, A remains unable to produce a non-perfectly sound proof πvalid in any valid non-aborting decryption
query CT as argued from the perfectly hiding nature of the opening of C known by the challenger (here, the
distinguisher). This argument still holds here, and if the adversary was able to force B to abort for that reason
with a significant difference in probability, this distinction is implicitly but automatically transmitted to the
distinguishing probability here. This ends the analysis since decryption queries are computed in the same
way in both games and that the challenge queries are also answered in the same way in both games since, if
they are valid and non-aborting, they rely on the intermediate tuples whose distributions have already been
settled.

Conclusion: To conclude, we argue that the random bit b is statistically hidden in H16. First, we note
that there is no secret key SK, and that the public-key components h and (fi)`i=1 = (gαi)`i=1 are generate as
hχ and f1 = gα1 , . . . , f` = gα` , for random scalars χ, α1, . . . , α`←$Zp. Let also write (gi)`i=1 = (gδi)`i=1, for
some random δ1, . . . , δ` ∈ Zp. With probability less than `/p, none of these scalars are equal to 0. Second, for
each Hash-query (ĝ, ovk) that generates the intermediate tuple and defines the output (C,G, F ) let us write
it as (G,H, (Fi)`i=1) = (gw, hw, (gzii fwi )) for random w, z1, . . . , z` ∈ Zp. Then, F =

∏`
i=1 Fi = g

∑
i∈[`]

δizi
fw.

Third, the CPA part c∗j of the answer CT∗j to the valid and non-aborting challenge query (CT0
j ,CT1

j ) can be
written as

c∗j =
(
dj,b1 , dj,b2 , (cj,bi )`i=1

)
·
(
g, h, (fi)`i=1

)θ′j · (G∗j , H∗j , (F ∗i,j)`i=1
)θ′′j

=
(
dj,b1 , dj,b2 , (cj,bi )`i=1

)
·
(
g, h, (fi)`i=1

)θ′j+w∗j θ
′′
j ·
(
1, 1, (gz

∗
i,jθ
′′
j

i )`i=1
)
.

for the random coins w∗j , z∗1,j , . . . , z∗`,j ∈ Zp defined previously in the Hash-query (ĝ, ovk∗j ) and that can be
used a single time since the trace ovk∗j cannot be repeated through different challenge queries. Hence, given

(G∗j , H∗j ) = (g, h)w
∗
j and F ∗j = g

∑
i∈[`]

δiz
∗
i,jfw

∗
j , the computation of c∗j still perfectly hides cbj . Indeed, w∗j and∑

i∈[`] δiz
∗
i,j makes G∗j and F ∗j uniform in G and H∗j = (G∗j )χ. Moreover, θ′j + w∗j θ

′′
j perfectly randomizes

(dj,b1 , dj,b2 ) with the component (g, h) which makes it independent of b. That is because all valid non-aborting
challenge queries (CT0

j ,CT1
j) are also computed with perfectly sound proofs that their respective CPA

part (c0
j , c1

j) are honest due to the change introduced in H11. Then, (dj,01 , dj,02 ), (dj,11 , dj,12 ) ∈ span〈(g, h)〉.
Furthermore, all the cj,bi components are also perfectly hidden by the corresponding zi,j for i = 1 to `− 1.
Since F ∗j reveals one linear equation in all the zi,j , we cannot directly argue about the uniformity of the last
component cj,b` . Nevertheless, it suffices to see that θ′′j hides cj,b` with gz

∗
`,j

` as long as g` 6= 1G and z∗`,j 6= 0, for
which the latter condition always holds but with probability 1/p. Fourth, the validity proof πj,∗valid are simulated
independently of b since the proof is given the above c∗j and uses the witness (x∗j , y∗j ) of C∗j = gx

∗
j hy

∗
j and

the one in (A,B) = (g, h)z from PK. Fifth, the tracing part σj,∗trace = (Cj,∗
R ,Cj,∗

S ,σj,∗2 ,σj,∗3 , π̂j,∗sig) is computed
such that σj,∗2 = σj,02 = σj,12 and σj,∗3 = σj,03 = σj,13 since CT∗j is computed only for non-aborting query
as defined from H2. Also, the Groth-Sahai proof (Cj,∗

R ,Cj,∗
S , π̂j,∗sig) is a valid proof that there exists a valid

LHSP signature for ovk∗j on the vector (g,
∏`
i=1 c

j,∗
i , dj,∗) composed from c∗j . Since crsσ is in the hiding

mode, the perfect witness indistinguishability thus reveals nothing about how the underlying signatures
has been performed, and then remains independent of σj,btrace (because the ability of computing such a proof
was also independent of b). Consequently, P16 ≤ 1/2 + (` + q)/p for the ROM-based construction, and
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P16 ≤ 1/2 + (`+ 1)/p for the standard model construction. For the ROM-based construction, we find

εtcca ≤
1
2 + (`+ 6)εsxdh

+ 4q + qovk(qovk − 1)/2 + qdec + 4`+ 8
p

,

where q is the number of challenge queries, qdec is the number of decryption queries, and qovk is the number
of Hash-queries of the form (ĝ, ovk) made by the adversary. For the standard model construction, we have
εtcca ≤ 1

2 + (`+ 6)εsxdh + εcr + (qdec + 4`+ 9)/p. ut

4 TREnc for Mixnet

In some cases, it is not desirable to encrypt a bit-by-bit decomposition of the message but rather preferable
to encode many bits in a group element, such as in [14]. Indeed, in some voting protocols, the ballots are
decrypted after passing through a mixing network and the validity of the decrypted vote can be verified
directly. Hence we propose a modification of our construction that can be used efficiently with mixing
networks.

4.1 Intuition

First, instead of encrypting the message bit-by-bit in the CPA encryption part, it is tempting to encrypt
directly ci = mif

θ
i for each group element mi. Unfortunately, the different ci cannot be compressed anymore

in the tracing part, as the compression is not a binding commitment of the messages anymore. There is
thus little advantage to batch several group elements in one ciphertext and one could run the encryption
mechanism for a single element on each entry. Furthermore, it is possible in practice to pack a few hundred of
bits in one group element. Hence we focus on the case l = 1 in our construction.

Most of the intuition given for the bit-by-bit scheme still holds. The main difference is that we do not need
to prove most of the relations from equations (6) and (7) anymore as it is not necessary to prove the encryptions
of bits. It remains essentially to construct a ranomizable simulation-sound proof that (d1, d2) ∈ 〈(g, h)〉. We
could use the same approach as the construction using the GS-based OR-techniques from [23], but using
two CRSes and simulating the second branch for the π1 proof is costly, as it requires 5 elements of G and 10
elements of Ĝ.

Instead, we are using a new technique that uses an additional pair of commitments (Y1, Y2) that are
normally redundant. More precisely, the proof consist in (X1, X2) = (g, h)a and (Y1, Y2) = (g, h)b which
are the commitments of some values (a, b), a value E which is derived from Hash(ovk), and a response
Ẑ = Eθĝaĥb. The values verify the pairing equations:

e(d1, E) · e(X1, ĝ) · e(Y1, ĥ) = e(g, Ẑ)
e(d2, E) · e(X2, ĝ) · e(Y2, ĥ) = e(h, Ẑ)

We can simulate this proof by using a trapdoor in E and h. Namely, we generate E as a Pedersen
commitment ĝxĥy and h as gω. Then, for a random Ẑ = ĝsĝt,

X1 = gs/dα1 Y1 = ht/dβ1

X2 = gs/dα2 Y2 = ht/dβ1

form a valid simulated proof. As E is linked to a given ovk, we separate the simulated proofs for each different
trace, similarly to C in the previous construction.

Still, the adversary cannot simulate this proof. If it manages to find a proof (X1, X2, Y1, Y2, Ẑ) in a
pre-challenge query for a statement (d1, d2) /∈ 〈(g, h)〉, then we have:

e(dω1 /d2, E) · e(Xω
1 /X2, ĝ) · e(Y ω1 /Y2, ĥ) = e(gω/h, Z) = 1
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for a non-trivial D = dω1 /d2. Also, at least one of X = Xω
1 /X2 or Y = Y ω1 /Y2 is non trivial and we can

rewrite the previous equation as

e(D, ĝxĥy) · e(X, ĝ) · e(Y, ĥ) = e(XDx, ĝ) · e(Y Dy, ĥ) = 1.

Since the x is perfectly hidden from the adversary when he chooses the proof, XDx will be non-trivial with
overwhelming probability and we can reduce to SXDH.

Unfortunately, this technique would not be competitive in the bit-by-bit case. Indeed, to take advantage of
the perfectly hidding property of the Pedersen commitment E, we need two commitments Xi and Yi for each
relation that needs to be proven. The cost is thus asymptotically twice as big as the previous construction
and it is thus more efficient to pay the fix-cost of the OR-branches technique that is cheaper in the long term.

As the previous construction, we simultaneously define a construction in the standard model and a variant
in the ROM.

4.2 Description

Gen(1λ): Run pp← Setup(1λ).
1. Generate h,E0, E1, F,G←$G5, ĥ←$ Ĝ. In the ROM construction, ignore E0, E1, F,G and generate

all the other values from Hash(g, ĝ, `) instead, where g, ĝ ∈ pp.
2. Pick a random pair sk = (α, β)←$Z2

p of scalars and compute f = gαhβ .
3. Generate a tuple of 4 random group elements crsσ ←$G4 is seen as a Groth-Sahai CRS to commit to

group elements over G. For simplicity, we write Com for the commitment algorithm Com(crsσ, ·).
In the ROM construction, generate this CRS from Hash(g, ĝ, f) instead.

The private key consists of SK = sk = (α, β) and the public key PK ∈ G11 × Ĝ2 that can be derived from
pp and f only is

PK =
(
g, h, f, E0, E1, F,G, crsσ, ĝ, ĥ

)
.

In the ROM construction, the public key can be derived from pp and f only and the values E0, E1, F,G
are stripped from PK.

Enc(PK,m): Given a message m ∈ G to encrypt, first run LGen(PK): Generate a key pair (osk, ovk) for the
one-time linearly homomorphic signature of Section 2.3 from the public generators ĝ, ĥ in order to sign
vectors of dimension 3. Let lk = osk = {(ηi, ζi)}3

i=1 be the private key, of which the corresponding public
key is ovk = {l̂i}3

i=1. From ovk, compute τ = Hash(ĝ, ovk) and C = Eτ0E1. In the ROM construction,
derive (C,F,G) = Hash(ĝ, ovk).
Then, conduct the following steps of LEnc(PK, lk,m):
1. Pick θ←$Zp and compute the CPA encryption c = (d1, d2, d3), where d1 = gθ, d2 = hθ and d3 = mfθ.

Keep the random coin θ.
Next steps 2-3 are dedicated to the tracing part σtrace.

2. To allow tracing, use lk = osk to authenticate the row space of the matrix T=
(
Ti,j
)

1≤i,j≤3

T =

g d3 d1

1 f g

1 F G

 , (13)

Namely, sign each row T i of T resulting in σ = (σi)3
i=1, where σi = (Ri, Si) ∈ G2.

3. Commit to σ1 = (R1, S1) using crsσ as CR = Com(R1), CS = Com(S1). To ensure that each σ1 is a
valid one-time LHSP signature on (g, d3, d1), compute the Groth-Sahai proof π̂sig ∈ Ĝ2 that

e(R1, ĝ) · e(S1, ĥ)
= e(g, l̂1) · e(d3, l̂2) · e(d1, l̂3)

The next step shows the validity of c associated to ovk.
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4. Given θ, compute the randomizable simulation-sound proof π0 that (d1, d2) ∈ 〈g, h〉. More precisely,
compute the commitments (X1, X2) = (g, h)a and (Y1, Y2) = (g, h)b for random a, b ∈ Zp.
Then, compute the response Ẑ = Eθ ĝaĥb that verifies the equations:

e(d1, E) · e(X1, ĝ) · e(Y1, ĥ) = e(g, Ẑ)
e(d2, E) · e(X2, ĝ) · e(Y2, ĥ) = e(h, Ẑ)

Let πvalid = (X1, X2, Y1, Y2, Ẑ) ∈ G4 × Ĝ
Output the ciphertext

CT =
(

c, ovk,σtrace,πvalid

)
,

where σtrace = (CR,CS , σ2, σ3, π̂sig) ∈ G8 × Ĝ2 and πvalid ∈ G4 × Ĝ.
Trace(PK,CT): Parse PK and CT as above, and output ovk.
Rand(PK,CT): Parse the ciphertext as above, and compute (C,F,G) from Hash(ĝ, ovk) and PK as above

and conduct the following steps:
1. Randomize the CPA part c = (d1, d2, d3): Pick random θ′←$Zp and compute c′ = (d′1, d′2, d′3) =

(d1 · gθ
′
, d2 · hθ

′
, d3 · fθ

′) = c · (g, h, f)θ′.
Next steps 2-3 are dedicated to the tracing part σ′trace.

2. Adapt the commitments CR and CS to the signature σ1 so that it it becomes commitments C̃R and
C̃S to the signature σ′1 = σ1σ

θ′

2 . That is, parse σ2 as (R2, S2) and compute C̃R = CR · ι(Rθ
′

2 ) and
C̃S = CS · ι(Sθ

′

2 ). Note: σ′1 is a valid signature on (g, d′3, d′1) for opk, and π̂sig remains a proof that
σ′1 = (R′1, S′1) satisfies

e(R′1, ĝ) · e(S′1, ĥ)
= e(g, l̂1) · e(d3, l̂2) · e(d1, l̂3)

where (R′1, S′1) = (R1, S1) · (R2, S2)θ′ .
3. Randomize the GS proof (C̃R, C̃S , π̂sig) for the CRS crsσ leading to (C ′R,C ′S , π̂′sig). Let the

randomized tracing part be σ′trace = (C ′R,C ′S , σ2, σ3, π̂
′
sig)7.

The next step is dedicated to the validity proof π′valid.
4. Adapt the proof πvalid = (X1, X2, Y1, Y2, Z) to (d′1, d′2) using θ′. Namely, compute (X1, X2)′ =

(X1, X2) · (g, h)a′ , (Y1, Y2)′ = (Y1, Y2) · (g, h)b′ and Ẑ ′ = Ẑ · Eθ′ ĝa′ ĥb′ for random a′, b′ ∈ Zp. Let
π′valid = (X ′1, X ′2, Y ′1 , Y ′2 , Ẑ ′)

Return the randomized ciphertext

CT′ =
(

c′, ovk,σ′trace,π
′
valid

)
.

Ver(PK,CT): Conduct the following checks:
1. Verify whether PK and CT parse properly. If not, output 0. Else compute (C,F,G) from Hash(ĝ, ovk)

and PK as above.
Next steps 2-3 verify the tracing part σtrace.

2. Verify the validity of the signatures σ2 and σ3 on the last two rows T 1,T 2 of the matrix T in (13)
with respect to ovk = {l̂i}3

i=1. Namely, parse σi = (Ri, Si) for i = 2, 3 and check the next equations:

e(R2, ĝ)e(S2, ĥ) = e(f, l̂2) · e(g, l̂3)
e(R3, ĝ)e(S3, ĥ) = e(F, l̂2) · e(G, l̂3)

7 Since computing these LHSP signatures is deterministic in lk = osk, they cannot be randomized, and we do not
need to randomize them to satisfy the strong randomizability notion.
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3. Verify the validity of the proof π̂sig that committed variables in (CR,CS) consist of a signature on
the first row (g, d3, d1) of T under ovk.
Next step verifies the validity proof part πvalid.

4. Verify the proof πvalid. Namely, parse the proof πvalid = (X1, X2, Y1, Y2, Z), and check

e(d1, E) · e(X1, ĝ) · e(Y1, ĥ) = e(g, Z)
e(d2, E) · e(X2, ĝ) · e(Y2, ĥ) = e(h, Z)

Output 1 if all these checks pass, otherwise, output 0.
Dec(SK,PK,CT): If ver(PK,CT) = 0, output ⊥. Otherwise, given SK = (α, β) and c = (d1, d2, d3) included

in CT, compute and output m = d3 · d−α1 d−β2 .

The ciphertext consists of 15 group elements in G and 6 group elements in Ĝ.

5 Performance & comparison

5.1 Performance & comparison

We provide a Rust implementation [3] to evaluate the time to encrypt and craft ballots encrypting votes
of various sizes and styles using the construction of BeleniosRF [10] for the encryption of bits, the original
TREnc construction for the encryption of group elements [14] and our bit-by-bit and group-encoded TREncs.
We assume that the critical computation steps are done by the voter client-side, as they could typically use a
smartphone, a browser or a low-end voting device. On the other hand, the operations on the rerandomization
server can be done on the fly as ballots come in.

We conducted our experiments on a laptop with a 1.8Ghz Intel i7 processor and 16GB of RAM running
Ubuntu 20.04 LTS. We used the bls12_381 Rust crate [2] with the pairing-friendly elliptic curve of the
same name and the criterion library to perform the benchmarks. For our comparison with BeleniosRF, we
reimplemented in Rust the referenced Javascript implementation [1].

Table 1: Time to encrypt the vote of a ballot containing ` = 1, 2, 4, 8, 64 bits or group element. The times
reported are in milliseconds.

Bit-by-bit constructions
Number of bits ` 1 2 4 8 64 Group elements Exponentiations
BeleniosRF [10] 58.5 82.2 124.7 191.0 1211.7 G6`+14 × Ĝ6`+7 G9`+23 × Ĝ8`+17

This paper 67.3 78.4 95.1 132.6 628.7 G4`+13 × Ĝ4`+15 G4`+33 × Ĝ4`+26

Group-encoded constructions
Original TREnc [14] 27.3 G13 × Ĝ5 G29 × Ĝ10

This paper 32.6 G15 × Ĝ6 G25 × Ĝ13

We see in Table 1 that even for a 64-choices race, the encrypting time of the bit-by-bit TREnc is beneath
one second. For the variant of the TREnc that encodes messages as a group element of G, the encrypting time
remains constant (until messages are too big to be fitted in one element of G, which may happen around 360
bits depending on the chosen encoding method – but one may want to avoid packing too much information
in one group element anyway, in order to avoid having unique ballots).

BeleniosRF is only compatible with a short (logarithm) bit-by-bit decomposition of the message (in the
security parameter) and is slightly less efficient, mostly because of the costly quadratic Groth-Sahai proofs.
Moreover, this mechanism also needs another computational assumption in addition to SXDH. On the other
hand, the original TREnc construction for group-encoded messages is slightly more efficient than the one
we propose here, but it does not have a public coin CRS. A full comparison composed of the size of the
ciphertexts and the number of exponentiations to encrypt a message is also given in Table 1.
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6 Application to E-Voting

As of today, the main application of TREncs is receipt-free voting. Receipt-Freeness is a security property of
voting schemes ensuring that a voter cannot craft a proof (the receipt) to convince another party of how they
have voted [7]. For example, a compliant voter might be incentivized by a vote buyer to vote in a certain
way in exchange of some money or under some threat. A definition of receipt-freeness for single-pass voting
schemes is given in Appendix A.

It has been shown in [14] that we can generically instantiate a receipt-free protocol voting from a TREnc.
Even more, the reduction uses a tight transition equivalent to our mTCCA definition to prove the receipt-
freeness, but with a linear loss of security since their scheme is not tightly mTCCA secure. On the contrary,
we can instantiate a voting system from our TREnc scheme that is almost tightly receipt-free.

Intuitively, this generic voting scheme makes use of an intermediate server that rerandomizes ballots before
publishing them. Here, the TCCA property of the TREnc essentially guarantees the indistinguishability of
the rerandomization of a ballot containing some vote to another ballot containing another vote from the same
voter.

Apart from receipt-freeness, verifiability and privacy are two important notions in electronic-voting.
Intuitively, a protocol is verifiable if, by performing a determined set of verifications, the participants have the
guarantee that their vote is properly recorded and that the tally is properly computed from the set of recorded
votes. In a TREnc-based receipt-free protocol the traceable property precisely ensures a voter that if they
see a ballot on the public bulletin board with the same trace as the ballot they sent to the rerandomization
server, then the content of the ballot has remained unaltered (assuming the secrecy of the link key).

Regarding privacy, we can transform the key generation algorithm of our construction into a distributed
key generation (DKG) using a standard technique [17]. At the end of the protocol, all the parties that behave
honestly get a secret share of sk = (α1, . . . , α`) so that any set of t + 1 shares allows recomputing sk by
Lagrange interpolation. Each secret share skj comes along with an associated public key pkj allowing party
j to prove she honestly computes decryption shares through an additional (simulation-sound) ZK proof.
Such proofs are useful for the talliers to ensure correctness of the election outcome. We do not discuss these
standard proofs here.
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[Security proofs]

A Voting Scheme & Receipt-Freeness

A.1 Voting Protocol syntax

Let C be a set of voting options (e.g. candidates or ordered lists of candidates), R be a set of results (e.g. the
name of the winner(s)) and ρ : C∗ → R be some counting function. The goal of a voting protocol is to evaluate
ρ on the private choices of the voters, in a verifiable manner. In our work, a voting protocol is a tuple of protocols
(Setup,Vote,Valid,Append,Publish,TraceBallot,VerifyVote,
Tally,Verify) which involve the following parties:

– The election administrator EA organizes the election and coordinates the phases of the protocol.
– The public board PB is a public, append-only board where various information concerning the voting

protocol are stored.
– The voters cast an encrypted ballot to the rerandomization server.
– The rerandomization server RS receives the encrypted ballots submitted by the voters, rerandomizes

them and submits them to the public board.
– The talliers T compute the result of the election from the (encrypted) valid ballots.
– The auditors A check that the public board is consistent and that the result is correct with respect to the

public board.

Those protocols have the following signatures and functionalities:
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– Setup is a protocol run by EA and T. It takes as input λ, the security parameter and outputs some
cryptographic information such as the group used and the public encryption key. They are stored in the
public board. That protocol involves EA and T, so that at the end of the protocol, the talliers each have
a share of the decryption key. To simplify the notations, we denote (pk, sk)←− Setup(λ) the output of
the setup, even if sk may never be explicitly created or if the setup may output additional information.

– Vote is an algorithm run by a voter. It takes as input a voting intention v ∈ C and outputs a ballot b
which is sent to RS.

– Valid is an algorithm that takes as input a ballot b and the public board PB. It outputs 1 if the ballot is
valid with respect to the public board, and 0 otherwise.

– Append is an algorithm run by RS. It that takes as input the bulletin board PB and a ballot ballot. It
updates PB with a processing of ballot (e.g. a rerandomization).

– Publish is an algorithm that takes an input the bulletin board PB and outputs its public view.
– TraceBallot is an algorithm that takes as input a ballot b and outputs a tag t. The tag is the information

that the voter can use to track their ballot with the VerifyVote algorithm.
– VerifyVote is an algorithm run by the voter to verify that their vote is indeed contained in PB. It takes as

input the bulletin board PB and a tag t and should return true if the voter is convinced that their last
ballot has been recorded correctly on PB.

– Tally is a protocol run by the talliers. It uses as input their shares of the election secret key and PB to
compute the result r of the election, as well as a transcript Π which is used for verifiability.

– Verify takes as input r ∈ R, PB and the transcript Π and outputs 1 of the data are consistent, 0 otherwise.
This algorithm is ran by the auditors.

A.2 Receipt-freeness

For single-pass voting schemes, [10] formalized this notion into a game-based definition, which has been
extended to voting schemes with tracing mechanisms [14].

Definition 6 (Receipt-Freeness). A voting system V has receipt-freeness if there exists PPT algorithms
SimSetupElection and SimProof such that no PPT adversary A can distinguish between games Expsrf,0

A,V (λ) and
Expsrf,1
A,V (λ) defined by the oracles in Figure 2, that is for any efficient algorithm A:∣∣∣Pr [Expsrf,0

A,V (λ) = 1
]
− Pr

[
Expsrf,1
A,V (λ) = 1

]∣∣∣
is negligible in λ.

Oinit(λ)
if β = 0 then (pk, sk)← Setup(1λ)
else (pk, sk, τ)← SimSetupElection(1λ)
PB0 ← ⊥; PB1 ← ⊥
return pk

OreceiptLR(b0, b1)
if TraceBallot(b0) 6= TraceBallot(b1)
or Valid(PB0, b0) = 0 or Valid(PB1, b1) = 0
then return ⊥
else Append(PB0, b0); Append(PB1, b1)

Oboard()
return Publish(PBβ)

Otally()
(r,Π)← Tally(PB0, sk)
if β = 1 then Π← SimProof(PB1, r)
return (r,Π)

Fig. 2: Oracles used in the Expsrf,β
A,V (λ) experiment. The adversary first calls Oinit and then can call Oboard

and OreceiptLR as much as it wants. Finally, the adversary calls Otally, receives the result of the election and
must return its guess, which is the output of the experiment.

Intuitively, this security is reminiscent of BPRIV [8] with an additional OreceiptLR oracle. This oracle
enables the adversary to cast ballots on behalf of the voter, as long as these two ballots share the same trace.
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More precisely we consider two experiments parametrized by the value β. In each experiment, there
are two bulletin boards, PB0 and PB1. The goal of the adversary is to distinguish if it interacts with the
experiment using β = 0 or β = 1. To do so, it has the view of PBβ (through the Oboard) oracle and can cast
two ballots ballot0 to PB0 and ballot1 to PB1. Those ballots need to have the same trace (otherwise it would
be trivial to distinguish the boards) and are processed (through a rerandomization for example) before being
added on the boards. Finally, the adversary has access to the result of the tally of PB0 as well as the proof
that the result is valid. In the case of β = 1, this proof is simulated as the result is inconsistent with the
ballots on PB1.
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