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Abstract

In the (preprocessing) Decisional Diffie-Hellman (DDH) problem, we are given a cyclic group G with
a generator g and a prime order N , and we want to prepare some advice of size S, such that we can
efficiently distinguish (gx, gy, gxy) from (gx, gy, gz) in time T for uniformly and independently chosen
x, y, z from ZN . This is a central cryptographic problem whose computational hardness underpins many
widely deployed schemes, such as the Diffie–Hellman key exchange protocol.

We prove that any generic preprocessing DDH algorithm (operating in any cyclic group) achieves
advantage at most O(ST 2/N). This bound matches the best known attack up to poly-log factors, and
confirms that DDH is as secure as the (seemingly harder) discrete logarithm problem against preprocessing
attacks. Our result resolves an open question by Corrigan-Gibbs and Kogan (EUROCRYPT 2018),
who proved optimal bounds for many variants of discrete logarithm problems except DDH (with an
Õ(

√
ST 2/N) bound).

We obtain our results by adopting and refining the approach by Gravin, Guo, Kwok, Lu (SODA 2021)
and by Yun (EUROCRYPT 2015). Along the way, we significantly simplified and extended the above
techniques which may be of independent interest. The highlights of our techniques are as follows:

• We obtain a simpler reduction from decisional problems against S-bit advice to their S-wise XOR
lemmas against zero-advice, recovering the reduction by Gravin, Guo, Kwok and Lu (SODA 2021).

• We show how to reduce generic hardness of decisional problems to their variants in the simpler
hyperplane query model proposed by Yun (EUROCRYPT 2015). This is the first work analyzing a
decisional problem in Yun’s model, answering an open problem proposed by Auerbach, Hoffman,
and Pascual-Perez (TCC 2023).

• We prove an S-wise XOR lemma of DDH in Yun’s model. As a corollary, we obtain the generic
hardness of the S-XOR DDH problem.
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Shanghai Boost Fund. Parts of the work are done while visiting CIFRA Institute, Bocconi University supported by Fondazione
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1 Introduction and Overview

The Decisional Diffie-Hellman (DDH) problem is a classic problem in cryptography. The assumption
that it is a hard problem forms the basis for the security claims of the Diffie-Hellman key exchange protocol,
which was introduced in a 1976 paper by Diffie and Hellman [DH76], and is still used to this day to secure a
large chunk of communication that takes place both over the public internet and between private parties. As
such, strong theoretical bounds on algorithms attacking this problem are quintessential for guaranteeing the
security of its users.

The DDH problem may be roughly summarized as follows: given a cyclic group G with a generator g and
(usually prime) order N , sample three random integers x, y, z from ZN . Then, an attacker is tasked with
determining, given the values (gx, gy), whether a third, unknown element h ∈ G is equal to the value gxy or
gz, chosen at random in each instance.

When this problem was introduced, there was only an assumption that it was difficult to solve. It is
clear that an algorithm able to solve for the discrete logarithm of a given group element would be able to
differentiate by computing gxy and comparing it to the value h after finding the discrete logarithm value
x = logG(g

x) of the second input element. But is there a more efficient way? It was later shown by Shoup in
[Sho97] that no algorithm solving the Diffie-Hellman problem for a generic group G can be more efficient
than an algorithm solving for the discrete logarithm of a random element h = gx ∈ G. Thus, in this simple
case, solving the Diffie-Hellman problem is as difficult as solving the discrete logarithm problem (without
relying on special techniques exploiting the structure of a specific group or class of groups G).

In the modern age of computation, however, a security bound for this simple setting is not enough. It
is not unreasonable for strong adversaries, with lots of computation power, to invest their resources in a
one-time large pre-computation, which can significantly reduce the time required to solve an instance of
a problem later. In some cases, there can be time limits to solve an instance of a problem, and using the
pre-computation may allow the adversary to solve the problem within the given time frame. For instance,
while it may be hard to invert a cryptographic hash function, an attacker with enough computation power
and time may pre-compute rainbow tables in advance so as to more efficiently invert a single hash value given
at a later point in time. In this case, we assume the time for pre-computations is effectively unlimited, and we
concern ourselves with the size of the pre-computed input required to find inversions efficiently. Specifically,
it becomes interesting to analyze the trade-off between the space used in pre-computation and the amount of
time taken when presented with an actual instance.

While auxiliary input was originally defined for the random oracle model in [Unr07, DGK17], it was later
extended to the Generic Group Model (GGM) by Corrigan-Gibbs and Kogan in [CK18] and by Coretti et al.
in [CDG18]. An adversary A in the auxiliary input(AI) idealized oracle (random oracle/random permutation/
generic group) model can be thought of as a two-stage algorithm (A0,A1):

• In the first stage, which we will refer to as the “offline” stage or the “pre-computation” stage, A0 gets
unbounded access to the oracle but has to output bounded advice γ about the oracle.

• In the second stage, which we will refer to as the “online” stage, A1 gets the advice γ from A0 and a
challenge about the oracle as input. A1 makes a bounded number of queries to the oracle.

In the Generic Group Model, a group of order N is described in terms of a random injective labeling
function σ mapping ZN to a set of labels L such that σ(1), . . . , σ(N − 1) correspond to the elements of the
group with discrete logarithms 1, . . . , N − 1 respectively. Group operations are performed by querying a
generic group oracle Oσ(·, ·) corresponding to the labeling function σ such that for any X,Y ∈ L, Oσ(X,Y)
outputs

• σ(x+ y) if there exists x, y ∈ ZN such that σ(x) = X and σ(y) = Y

• ⊥ otherwise.

For any adversary A = (A0,A1) in AI-GGM, A0 gets input σ(1) and unbounded access to the oracle Oσ.
In effect, then, A0 gets access to the entire function table of σ. However, A0 can output only bounded length
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advice, say some γ where |γ| = S bits. Then A1 takes γ and a challenge as input, makes a bounded number
of queries, say T , to Oσ and computes an output.

Note that the challenge and the output of A1 depend on the problem A is solving. For an algorithm A
solving the discrete logarithm problem, A1 gets (σ(1), σ(x)) as challenge for a random x ∈ ZN . To “win”, A1

needs to output x. For an algorithm A solving the DDH problem, A1 gets a tuple (σ(1), σ(x), σ(y), σ(u)) as
challenge where for random and independent x, y, z ∈ ZN and random b ∈ {0, 1}, u := (1− b)xy+ bz, and A1

outputs a guess, say b̂, for b and “wins” if b̂ = b.

1.1 Our Results

In this work, we analyze the Decisional Diffie-Hellman (DDH) problem in the AI-GGM setting. We try to
understand the following aspects of the DDH problem: for any algorithm with bounded space given access to
the cyclic group G, what is the lower bound on the number of group operations required to solve a given
instance of the problem? Is the DDH problem in this setting still asymptotically as difficult as the discrete
logarithm problem? We successfully obtained answers to both questions, positively affirming the latter.

Tight time-space lower bounds for the DDH Problem. The main result of this work is the tight
lower bound ST 2 = Ω(εN) for any generic algorithm with S-bit advice/auxiliary input, making T oracle
queries on a group of order N and solving the DDH problem in AI-GGM with probability at least 1/2 + ε.
Formally,

Theorem 1. Let N be a prime and S, T ≥ 1 be integers. For any generic algorithm with preprocessing
A = (A0,A1) over L for ZN such that A0 outputs an S-bit advice string, and A1 makes at most T oracle
queries, it holds that

P
[
AOσ

1

(
AOσ

0

(
σ(1)

)
, σ(1), σ(x), σ(y), σ(u)

)
= b

]
≤ 1

2
+ 211

ST 2

N
,

where x, y, z ← ZN , b← {0, 1}, u = bz + (1− b)xy, and σ : ZN → L is a random injective function.

There is a corresponding algorithm for DDH with advantage Ω̃(ST 2/N) based on known algorithms for
the discrete logarithm problem with an asymptotically equivalent advantage in the preprocessing setting (see
Appendix A). Thus, the above security bound is tight for all values S, T,N up to poly-log factors.

Prior to this work, the best-known security bound in this setting was Õ(
√

ST 2/N) in [CK19], leaving a
quadratic gap between security upper and lower bounds. Our result closes this gap and confirms that DDH is
as secure against preprocessing attacks as the (seemingly more difficult) discrete logarithm problem.

Generic hardness of the k-XOR DDH Problem. To prove this theorem, we consider a fundamental
variant of DDH, called the k-XOR DDH problem. Let’s define the DDH bit of a given DDH instance as a bit
indicating whether the third coordinate is xy or z. The k-XOR DDH problem can be described as follows:
given k independently sampled DDH instances, compute the XORed DDH bits of the k DDH instances.

We prove the lower bound kT 2 = Ω(ε1/kN) for any generic algorithm (without preprocessing) with kT
oracle queries on a group of order N that solves the k-XOR DDH problem in GGM with probability at least
1/2 + ε.

Theorem 2. Let N be a prime and k, T ≥ 1 be integers. For any generic algorithm B over L for ZN such
that B makes at most kT oracle queries, it holds that

P
[
BOσ

(
σ(1), σ(w)

)
=

k⊕
i=1

bi

]
≤ 1

2
+

1

2

(
211

kT 2

N

)k
,

where σ(w) :=
{
σ(xi), σ(yi), σ(ui)

}k
i=1

for ui = bizi + (1 − bi)xiyi,
{
xi, yi, zi

}k
i=1
← Z3k

N , {b1, . . . , bk} ←
{0, 1}k, and σ : ZN → L a uniformly random injective function.
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Notice that when k = 1, the security bound from the theorem above is exactly the lower bound for the
standard DDH problem, which was proven tight in [Sho97]. For general k, our bound confirms that XOR
amplifies the hardness of DDH.

Yun [Yun15] considered the generic hardness of solving multiple discrete logarithm problems simultaneously
and showed a similar lower bound kT 2 = Ω(ε1/kN) for solving k-discrete logarithm problems using kT queries
with success probability at least ε. Our result suggests that the (seemingly easier) k-XOR DDH admits
similar hardness to the k-discrete logarithm problem.

1.2 Our Proofs

To obtain this result, we adopt and further improve the techniques from [GGKL21] and [Yun15]. Our
simplification and refinement of these techniques not only allow us to obtain the desired time-space lower
bounds for the DDH problem but also characterize the potential of these techniques, which could be of
independent interest. The proof of our main results will be split into three stages, each corresponding to one
of the three lemmas in Section 3.

From preprocessing DDH to k-XOR DDH. Once a single bit of advice about σ is allowed, standard
analyzing techniques for the generic group model (such as the commonly used lazy sampling technique)
may become inapplicable. One natural idea is reducing preprocessing problems to their variants without
preprocessing so we can apply standard techniques.

Thus, in Lemma 1 (see Section 3.1 for details), we reduce the DDH problem with S-bit advice to the
S-XOR DDH problem without advice. In particular, we show that, for any even S, a preprocessing adversary
A for DDH with advantage ϵ, by simply guessing the advice uniformly and randomly, and then running its
online algorithm S times, we obtain an adversary B for the S-XOR DDH problem with advantage at least
(ϵ/2)S . The restriction on S being even is minor because we can reduce an odd S to an even S before using
Lemma 1. Intuitively, if σ is fixed, guessing the S-bit advice correctly happens with probability 1/2S , and
conditioning on that, the advantage of solving S-XOR DDH is ϵS if A has advantage ϵ (for this fixed σ).
Thus, the advantage of B is at least ϵS/2S . To obtain the formal argument, we use the fact that S is an even
number to argue that the advantage is at least zero when conditioning on any wrong guess, and we apply
Jensen’s inequality to take care of the distributional case of σ.

Reducing decisional problems with S-bit advice to their S-wise XOR variants without advice was first
proposed by Gravin et al. [GGKL21] in the context of proving tight time-space tradeoffs for the hardcore bit
problem. The reduction in [GGKL21] requires proving a concentration bound for distributions satisfying a
related k-wise XOR condition. Our reduction, which provides an algorithm for the k-XOR variant by guessing
the advice based on the preprocessing algorithm, is considerably simpler and more constructive. The idea
of guessing the advice is inspired by the reduction for reducing search problems with S-bit advice to their
S-wise multi-instance variants without advice in [CGLQ20] (and its refinement [AGL22]). Our reduction can
be viewed as an analog to their reductions for decisional problems.

From Generic Group Model to Hyperplane Query Model. By Lemma 1, we can shift our attention
to the k-XOR DDH problem in the generic group model. The encoding σ and the oracle Oσ are slightly
complex to work with for problems involving multiple instances. Inspired by Yun [Yun15]’s approach for the
multiple discrete logarithm problem, we aim to remove the encoding σ and work with a simpler oracle.

Thus, in Lemma 2 (see Section 3.2 for details), we reduce the k-XOR DDH problem in the generic group
model to a corresponding k-XOR DDH problem in the Hyperplane Query Model (HQM) introduced by
Yun [Yun15]. In particular, we show that any algorithm with input

(
σ(1), σ(w)

)
, where w := {xi, yi, ui}ki=1

and with oracle access to Oσ, can be simulated by an algorithm with only a few hyperplane queries to Hw,
and incurs a quadratic blow-up in the query complexity. The hyperplane query simply submits a linear
equation of the form L(·) = c, and the hyperplane query oracle Hw outputs 1 if L(w) = c, otherwise it
outputs 0.
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Our proof is largely based on Yun’s proof, which utilizes the lazy sampling property of σ — i.e., new
input-output pairs can be generated on the fly with limited information from previously generated pairs.
To record the generated input-output pairs, the simulation maintains a list {(Li, si)}i≥0, where Li is a
multi-linear polynomial in variables {X1, Y1, U1, . . . , Xk, Yk, Uk} such that σ(Li(w)) = si. To simulate σ(·)
and σ−1(·) (and thus Oσ), we demonstrate how to search an existing pair and how to sample a new pair in
the maintained list using a few hyperplane queries to w.

One of the main differences between our proof and Yun’s proof is that Yun’s reduction assumes that the
adversary in the generic group model never queries the oracle on labels that have not appeared previously.
Our proof makes no such assumptions and shows how to sample new preimages using only a few hyperplane
queries in total (see the subroutine FindPreimage in Section 3.2).

k-XOR DDH in the Hyperplane Query Model. In Lemma 3, we show that any algorithm with q
queries for the k-XOR DDH problem has advantage ≈ (q/NK)k. Plugging in q ≈ (kT )2, we obtain that
the generic hardness of k-XOR DDH against kT -query adversaries is (kT 2/N)k, and the generic hardness of
preprocessing DDH against S-bit advice and T -query algorithm is ≈ ST 2/N . See Section 3.4 for details.

Our proof proceeds by induction on (k, q). In particular, in Claim 2 and Claim 3, we bound the best
advantage of q-query algorithm for k-XOR DDH problem by related best advantages achieved by (q−1)-query
algorithms for k-XOR problem or q-query algorithm for (k − 1)-XOR DDH problem. Then by carefully
choosing an inductive hypothesis

(
q+k
k

)
(4/N)k and an inductive step, we obtain the desired bound.

Given the best q-query algorithm for the k-XOR DDH problem, it is helpful to view it as a decision tree
of depth q such that each internal node is a hyperplane query, and its subtrees represent the sub-algorithms
executed according to the answer from the hyperplane query oracle. Let H denote the first hyperplane query.
We will bound the advantage of the algorithm based on whether H is satisfied or not.

Intuitively, if H is not satisfied, this query should be somewhat useless because it provides very little
information about the variables. So the contribution of this case should be roughly the same as that of its
(q − 1) sub-algorithm for the k-XOR DDH problem. We capture this intuition in Claim 2. In particular, we
show that, at the cost of an additional item of the best advantage assuming that H holds (which we will
handle later anyway), we can bound the advantage when H is not satisfied by the advantage of a (q−1)-query
algorithm for the k-XOR DDH problem.

If H is satisfied, the intuition is that this happens with a probability of only O(1/N). Conditioning on H
happens, the sub-algorithm executed can be converted into either a (q − 1) algorithm for the (k − 1)-XOR
problem or a q algorithm for the (k − 1)-XOR problem where the first equation is satisfied. See Claim 3 for
the details.

1.3 Prior and Other Related Works

Several works [BL13, LCH11, Mih10] have unveiled the ability of generic algorithms with preprocessing
to tackle the discrete logarithm problem. These works have shown that generic algorithms for every group
of order N use N1/3 bits of group-specific advice and approximately N1/3 online time to solve the discrete
logarithm problem. This beats Shoup’s bound without preprocessing of Ω(

√
N) group operations for a group

of order N in [Sho97]. Inspired by these preprocessing attacks, Corrigan-Gibbs and Kogan [CK18] were
the first to define and analyze generic algorithms with precomputation for the discrete logarithm, DDH,
Computational Diffie Hellman and multiple discrete logarithm problems. Corrigan-Gibbs and Kogan showed
the optimal generic hardness ST 2 = Ω̃(εN) for the discrete logarithm problem in the auxiliary input model,
where the advice is S-bits, the algorithm makes T queries in the online stage, and the success probability is ε
for a group of (prime) size N . Later, Bartusek, Ma, and Zhandry [BMZ19] found that the fixed-generator
and the random-generator variants of the discrete logarithm problem are not equally hard and proved the
security bound of the random-generator variant of the discrete logarithm problem is ST 2 = Θ̃(

√
εN) using

the presampling technique from [CDG18].
Corrigan-Gibbs and Kogan also studied the multiple discrete logarithm problem (where the algorithm is

tasked with solving multiple instances of the discrete logarithm problem simultaneously) for preprocessing
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generic algorithms (with S-bit advice and T online queries) and proved a security bound for solving M
instances of the discrete logarithm with a probability of at least ε of ST 2 = Ω(ε1/MNM). They were the first
to study the multiple discrete logarithm problem with auxiliary input. Several works [FJM14, KS01, Yun15]
prior to [CK18] studied both upper and lower bounds for the problem without preprocessing. One work of
particular importance is [Yun15]. To show the generic hardness of solving the multiple discrete logarithm
problem, Yun introduced a related computational model called the search-by-hyperplane-queries model and
reduced the security of the multiple discrete logarithm problems in this model.

For the DDH problem in the auxiliary input model, Corrigan-Gibbs and Kogan showed the bound
ST 2 = Ω̃(ε2N) for any generic algorithm solving the problem with a probability of at least 1/2 + ε. There
is a gap between this Corrigan-Gibbs and Kogan bound and the best-known preprocessing attack for the
DDH problem. At the same time, they propose a new attack for square DDH (distinguishing g, gx, gx

2

from
g, gx, gy for random x, y ∼ ZN ) showing that, unlike in the non-preprocessing setting, square DDH is less
secure than the discrete logarithm problem. Their result motivates the question of whether DDH is as hard
as the discrete logarithm problem in this setting. Corrigan-Gibbs and Kogan’s results are based on the
incompressibility argument and a non-trivial batching technique. In the same year, Coretti et al. in [CDG18],
using their refined presampling techniques (first developed by Unruh [Unr07] for the Random Oracle model)
proved the same bound. In the same work, Coretti et al. showed hardness bounds for several other security
applications in the Auxiliary Input Generic Group model, including the discrete logarithm problem and the
DDH problem, using their presampling technique.

Gravin et al.[GGKL21], inspired by the elegant and short application of union-bounds in Impagliazzo’s
proof in [Imp11], reduced the security for algorithms with S-bit advice to showing a roughly 2−S concentration
bound on the advantage of algorithms with no advice. Thus, they derived concentration bounds for the
k-wise XOR version of the problem. For a decision problem G, if no algorithm with zero advice and kT
queries can solve the k-wise XOR version of problem G with a probability of more than 1/2 + εk, then for
any k ≤ S + logN , no algorithm with S-bit advice making T online queries can solve G with a probability of
more than ε′ where ε′ = 2ε+O(

√
S/N).

We note several previous works [Hel80, FN91, DGK17, CDG18, CDGS18, CK19, CHM20, ACDW20,
CGLQ20, Liu23, AGL22, GK22, FGK22, FGK23, GGPS23, ADGL23, GLLZ21] that have explored the
time-space lower bounds for various cryptographic primitives and applications in idealized models.

2 Preliminaries

In this paper, we write ZN for N ≥ 1 to denote the ring of integers modulo N . Let [n] = {1, . . . , n} for
any integer n ≥ 1. We use the notation Õ, Ω̃, and Θ̃ to denote asymptotic bounds up to a poly-log factor.
An algorithm A taking an input the value x is denoted A(x). Given a set S, let x ← S denote that x is
sampled randomly from the uniform distribution over S.

Next, we formally define the idealized models used to prove our results.

Definition (Generic Group Model (GGM) [Sho97, CK18]). For any cyclic group G of order N with generator
g, let σ : ZN → L be a random injective “labeling” function, where L is an arbitrary set of “labels” for
encoding the set of group elements. We identify group elements with their images {gi}N−1

i=0
∼= {σ(i)}N−1

i=0 . As
such, we will say that an element i ∈ ZN is the discrete logarithm of the label σ(i). The generic group
oracle Oσ : L × L → L is a function that takes two elements x, y ∈ L as input and response as follows:

• If there exists i, j ∈ ZN such that σ(i) = x and σ(j) = y respectively, then the oracle responds with
σ(i+ j), where addition is modulo the group order N .

• If there exists no such i or j, then the oracle responds with ⊥.

Definition (Generic Algorithm). A generic algorithm over a label set L for ZN is a probabilistic algorithm
A which has access to the generic group oracle Oσ and takes as input a list of labels {σ(xi)}ℓi=1. Furthermore,
for such an algorithm A, we define the query complexity of A to be the number of calls the algorithm makes
to the oracle Oσ.
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Definition (Generic Algorithm with Preprocessing). A generic algorithm with preprocessing over a
label set L for ZN consists of a pair of generic group algorithms (A0, A1):

• Offline stage: The algorithm A0 takes σ(1) as input, can make an unlimited number of queries to the
oracle Oσ, and computes an advice string sσ ∈ {0, 1}∗.

• Online stage: The algorithm A1 takes an advice string sσ output in the offline stage and a list of labels
{σ(xi)}ℓi=1 as input, makes some number of queries to oracle Oσ, and outputs some result. The query
complexity of the online algorithm A1 is called the online query complexity.

In particular, we focus on generic algorithms with preprocessing where the advice string sσ is limited to
S-bits, i.e. sσ ∈ {0, 1}S and with online query complexity T . Here S, T may be functions of the group order
N .

Definition (Hyperplane Query Model (HQM) [Yun15]). Let N be a prime number and Zℓ
N be the ℓ-

dimensional affine space over finite field ZN . Let X1, . . . , Xℓ be the canonical coordinates of Zℓ
N . Let Λ be the

set of all affine hyperplanes in Zℓ
N . Then an affine hyperplane H ∈ Λ can be described as the set of points in

Zℓ
N satisfying linear equation

∑ℓ
i=1 αiXi = α0 for some {αi}ℓi=0 ⊆ ZN . Let w ∈ Zℓ

N be a point in the affine
space. A hyperplane query oracle Hw : Λ→ {0, 1} is a function that takes as input a hyperplane H and
response as follows:

Hw(H) =

{
1, if w ∈ H

0, if w /∈ H

Definition (Hyperplane Query Algorithm). A hyperplane query algorithm for Zℓ
N is a probabilistic

algorithm B that has access to the oracle Hw. The hyperplane query complexity of such an algorithm is
the number of calls made by the algorithm to the hyperplane query oracle Hw.

3 Tight Time-Space Tradeoffs for DDH

3.1 Reducing Preprocessing DDH to k-XOR DDH Problem

In this section, we show that to prove a security bound on the preprocessing DDH problem, it suffices to
prove a security bound on the k-XOR DDH problem.

Lemma 1. Let N be a prime and S ≥ 2 be an even integer. For any generic algorithm with preprocessing
A = (A0,A1) over L for ZN such that A0 outputs an S-bit advice string, A1 makes at most T oracle queries,
and

AdvA := 2P
[
AOσ

1

(
AOσ

0 (σ(1)), σ(1), σ(x), σ(y), σ(u)
)
= b

]
− 1,

where x, y, z ← ZN , b ← {0, 1}, u = bz + (1− b)xy, and σ : ZN → L is a random injective function, there
exists a generic algorithm B which makes at most ST queries, such that for

AdvB := 2P
[
BOσ

(
σ(1),

{
σ(xi), σ(yi), σ(ui)

}S
i=1

)
=

S⊕
i=1

bi

]
− 1,

where {xi, yi, zi}Si=1 ← Z3S
N , {b1, . . . , bS} ← {0, 1}S, ui = bizi + (1 − bi)xiyi and σ : ZN → L is a random

injective function, it holds that

AdvB ≥
AdvSA
2S

.
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Proof. Without loss of generality, we assume that A is deterministic otherwise we fix the best randomness of
A. Consider the following algorithm B based on A: sample a random advice string s← {0, 1}S , then for all
i ∈ [S], compute

b̂
(σ,s)
i := AOσ

1

(
s, σ(1), σ(xi), σ(yi), σ(ui)

)
,

and output a single bit b̂ :=
⊕S

i=1 b̂
(σ,s)
i . It is clear that B makes at most ST queries. Now, we show that

such an algorithm has the desired advantage. Fix a labeling function σ and some advice string a ∈ {0, 1}S .
The advantage of A and B on a are

εA(σ, a) := 2P
[
b̂(σ,a) = b

]
− 1 = E

[
(−1)b̂

(σ,a)⊕b
]
,

εB(σ, a) := 2P
[ S⊕

i=1

b̂
(σ,a)
i =

S⊕
i=1

bi

]
− 1 = E

[
(−1)

⊕S
i=1 bi⊕b̂

(σ,a)
i

]
.

Because σ, a are fixed and {xi, yi, ui} are independently sampled, we can derive that

εB(σ, a) = E
[
ΠS

i=1(−1)b̂
(σ,a)
i ⊕bi

]
= ΠS

i=1E
[
(−1)b̂

(σ,a)
i ⊕bi

]
= εA(σ, a)

S .

For a fixed σ, let sσ := AOσ
0

(
σ(1)

)
. Note that

AdvB = Eσ,a

[
εB(σ, a)

]
= Eσ,a

[
εA(σ, a)

S
]
≥ 1

2S
Eσ

[
εA(σ, sσ)

S
]
≥ 1

2S
Eσ

[
εA(σ, sσ)

]S
=

1

2S
AdvS

A ,

where the first inequality follows from a being uniformly sampled (so Pr[a = sσ] = 1/2S) and S being even
(so εA(σ, a)

S ≥ 0, ∀a ∈ {0, 1}S), and the second inequality follows from taking the expectation over σ and
using Jensen’s inequality.

3.2 Reducing k-XOR DDH from GGM to HQM

In this section, we prove a reduction of the k-XOR DDH problem from GGM to HQM which increases in
query complexity while maintaining the advantage. Here, we effectively create a hyperplane simulation of a
k-XOR algorithm in GGM which exploits the lazy sampling property of the labeling function to keep the
number of hyperplane queries low.

Lemma 2. Let N be a prime, and k ≥ 1 be an integer. For any generic algorithm B over L for ZN such
that B makes at most Q oracle queries, and

AdvB := 2P
[
BOσ

(
σ(1), σ(w)

)
=

k⊕
i=1

bi

]
− 1,

where σ(w) :=
{
σ(xi), σ(yi), σ(ui)

}k
i=1

, ui = bizi + (1− bi)xiyi, {xi, yi, zi}ki=1 ← Z3k
N , {b1, . . . , bk} ← {0, 1}k,

and σ : ZN → L is a random injective function, there exists a hyperplane query algorithm C which makes at
most 2(3k + 2Q+ 1)(3k + 3Q+ 1) queries, and

AdvC := 2P
[
CHw =

k⊕
i=1

bi

]
− 1 = AdvB,

where w := (x1, y1, u1, . . . , xk, yk, uk), ui = bizi + (1 − bi)xiyi, {xi, yi, zi}ki=1 ← Z3k
N , and {b1, . . . , bk} ←

{0, 1}k.
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Proof. We show how to simulate BOσ (σ(1), σ(w)) given only oracle access to Hw. We rely on the fact that
a random injective function σ can be sampled lazily (i.e. new input-output pairs can be generated on the
fly) with limited information from previously generated pairs. Specifically, the simulation algorithm C will
maintain a global list Curσ :=

{
(Li, si)

}
i≥0

to help record generated input-output pairs of σ during a lazy

sampling process, where Li is a multi-linear polynomial in variables {Xi, Yi, Ui}ki=1 representing an implicit
preimage of si so that si = σ

(
Li(w)

)
. Additionally, C will maintain a global set I ⊆ ZN for tracking explicitly

generated preimages, and a global set J for the image set of σ.
The algorithm C is initialized by randomly choosing a set J ⊆ L of size N as the image set of σ and setting

Curσ = ∅, I = ∅. It then performs the following simulation with the help of two subroutines FindImage
and FindPreimage defined later:

1. Compute challenges σ̂0, . . . , σ̂3k as FindImage(H) for every polynomialH ∈ {1, X1, Y1, U1, . . . Xk, Yk, Uk}.

2. Run B on the input σ̂0, . . . , σ̂3k with the following oracle Ôσ(t1, t2): If t1 /∈ J or t2 /∈ J , return ⊥,
otherwise, return

FindImage
(
FindPreimage(t1) + FindPreimage(t2)

)
.

Intuitively, the two subroutines simulate oracle accesses to a (lazily sampled) σ and its inverse function
σ−1. The two subroutines first determine whether the queried input or output has appeared in Curσ, if yes,
then return the assigned (implicit) preimage or image accordingly, and otherwise generate a new pair on the
fly. The main observation is that searching existence (in the form of a polynomial) and lazily generating
new images or preimages can be done with only a few hyperplane queries. We use Pre(Curσ) (respectively
Im(Curσ)) to denote the set of Li’s (respectively si’s) appearing in Curσ. Formally,

• FindImage(H):

1. If Hw(H − L) = 1 for some (L, s) ∈ Curσ, return s.

2. Otherwise, sample snew ← J \ Im(Curσ), add (H, snew) to Curσ, and return snew.

• FindPreimage(t):

1. If t = s for some (L, s) ∈ Curσ, return L.

2. Otherwise, sample β ← ZN \ I and let I = I ∪ {β} until return:
– If Hw(L− β) = 1 for some (L, s) ∈ Curσ, continue.

– Otherwise, let Lnew = β, add (Lnew, t) to Curσ, return Lnew.

We claim that such an algorithm C fulfills the criteria in the theorem.

Query Complexity: The algorithm C makes at most 3k+3Q+1 calls to FindImage and FindPreimage,
each call contributing at most 1 new pair to Curσ. Therefore the size of Curσ and the set of explicitly
generated preimages I are at any time upper bounded by 3k + 3Q+ 1. The calls of FindImage search the
entire list Curσ for (3k +Q+ 1) times, and the calls of FindPreimage search Curσ for at most |I| times
at the end of the simulation. Because searching in Curσ takes at most (3k + 3Q+ 1) hyperplane queries, the
simulation makes at most (|I|+ 3k +Q+ 1)(3k + 3Q+ 1) ≤ 2(3k + 2Q+ 1)(3k + 3Q+ 1) hyperplane queries.

Correctness: We will show that, for any fixed w (and b1, . . . , bk ∈ {0, 1}), CHw distributes the same as
BOσ(σ(1), σ(w)) over the randomness of σ : ZN → L and the internal randomness of B and C. Notice that
BOσ (σ(1), σ(w)) can be computed by the following process D: first randomly choose a set J ⊆ L of size N as
the simulated image set of σ and set the list of generated input-output pairs Listσ = ∅, then perform the
following,

1. Compute challenges σ0, . . . , σ3k as Lazyσ(α) for every α ∈ {1, x1, y1, u1, . . . xk, yk, uk}.
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2. Run B on the input σ0, . . . , σ3k with access to LazyOσ(t1, t2): If t1 /∈ J or t2 /∈ J , return ⊥; otherwise,
return

Lazyσ

(
Lazyσ−1(t1) + Lazyσ−1(t2)

)
,

where Lazyσ(α) returns s (respectively Lazyσ−1(s) returns α) if (α, s) appears in Listσ, and otherwise
samples a new s from J \ Im(Listσ) (respectively a new α from ZN \ Pre(Listσ)), then adds the new pair
(α, s) to Listσ.

It suffices to prove the following claim:

Claim 1. For any fixed w and J , the following two distributions (σ̂0, . . . , σ̂3k, σ̂3k+1, . . . , σ̂3k+Q,Cur3k+Q
σ (w))

and (σ0, . . . , σ3k, σ3k+1, . . . , σ3k+Q,List
3k+Q
σ ) are distributed identically, where σ3k+i (respectively σ̂3k+i) is

the i-th response from LazyOσ (respectively Ôσ), and Curiσ(w) := {(Lj(w), ŝj)}j≥0 (respectively Listiσ :=
{(αj , sj)}j≥0) denote the maintained list after σ̂i (respectively σi) has been generated and all polynomials (if
applicable) have been evaluated at input w.

Proof. We will prove by induction. (σ̂0,Cur0σ(w)) = (ŝ, (1, ŝ)), and (σ0,List
0
σ) = (s, (1, s)) where both s and

s′ are uniformly distributed over J . Therefore the above claim holds for i = 0. For i ≥ 1, assume that the
claim holds for 0 ≤ j < i. Now conditioning on, σj = σ̂j for any j < i and Curi−1

σ (w) = Listi−1
σ , we prove

that (σ̂i,Curiσ(w)) distributes the same as (σi,List
i
σ).

If i ≤ 3k, then σi = Lazyσ(α) and σ̂i = FindImage(H) for some α ∈ {x1, y1, u1, . . . , xk, yk, uk} and
H ∈ {X1, Y1, U1 . . . , XK , YK , UK} such that H(w) = α. Given that Curi−1

σ (w) = Listi−1
σ , (α, s) appears

in Listi−1
σ if and only if there exists an L such that (L, s) appears in Curi−1

σ and H(w) = L(w) = α (i.e.,
Hw(H−L) = 1). If (α, s) appears in Listi−1

σ , then σ = σ̂i = s andCuriσ(w) = Curi−1
σ (w) = Listi−1

σ = Listiσ.
If α is new, then (σi,List

i
σ) = (s,Listi−1

σ ∪ {(α, s)}) and (σ̂i,Curi(w)) = (ŝ,Curi−1(w) ∪ {(H(w), ŝ)}) are
distributed identically because both s, ŝ are uniformly distributed over J \ Im(Listi−1

σ ) and H(w) = α.
If 3k < i ≤ 3k + Q, then σi = LazyOσ(t1, t2) and σ̂i = Ôσ(t1, t2) for some t1 and t2 computed based

on σ0, . . . , σi−1 and the internal randomness of B (here we implicitly use that σ̂j = σj for j < i so the i-th
query admits the same conditional distribution in both simulations). Notice that Curi−1

σ (w) = Listi−1
σ .

If t1 or t2 is not in J , then σ = σ̂ = ⊥ and no updates are made to either list. If t1 ∈ J \ Im(Listi−1
σ ),

then (α1, t1) will be added to Listi−1
σ by calling Lazyσ−1(t1), and (α′

1, t1) will be added into Curi−1
σ by

calling FindPreimage(t1) where both α1, α
′
1 are uniformly distributed over ZN \ Pre(Listi−1

σ ). Similarly, if
t2 ∈ J \ Im(Listi−1

σ ), we can update both lists in a similar way. Moreover, importantly, the two updated lists,
denoted as List∗σ and Cur∗σ(w) (with t1, t2 in the list now), are still distributed identically. Conditioning on
that List∗σ = Cur∗σ(w) and t1, t2 appear in List∗σ, we have that L1(w) = α1 and L2(w) = α2 for some (L1, t1),
(L2, t2) ∈ Cur∗σ and some (α1, t1), (α2, t2) ∈ List∗σ. If for some s, (α1 + α2, s) ∈ List∗σ, then σ = σ̂ = s and
no updates are made to either list. Otherwise, (α1 + α2, s) will be added to List∗σ and (L1 + L2, s

′) will be
added to Cur∗σ where both s, s′ are distributed uniformly over J \ Im(List∗σ) and L1(w) + L2(w) = α1 + α2.
For both cases, (σ̂i,Curiσ(w)) is distributed the same as (σi,List

i
σ).

3.3 Hardness of k-XOR DDH Problem in the HQM

In this section, we prove the generic hardness of k -XOR DDH problem in the hyperplane query model.
The following lemma will be proven by induction over the number of DDH instances and queries needed by
the optimal algorithm for any given case.

Lemma 3. Let N be a prime, and k ≥ 1 be an integer. For any hyperplane query algorithm C which makes
at most q queries, it holds that

AdvC := 2Pw

[
CHw =

k⊕
i=1

bi

]
− 1 ≤

(
12q

Nk
+

12

N

)k

,

where w = (x1, y1, u1, . . . , xk, yk, uk), ui = bizi+(1−bi)xiyi, {xi, yi, zi}ki=1 ← Z3k
N , and {b1, . . . , bk} ← {0, 1}k.
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For any integer k ≥ 1 and q ≥ 0, we let Ck,q denote the hyperplane query algorithm with q queries for the
k-XOR DDH problem in the HQM which maximizes the following quantity

Adv (k, q) := Pw

[
CHw

k,q =

k⊕
i=1

bi

]
− Pw

[
CHw

k,q ̸=
k⊕

i=1

bi

]
.

Similarly for any k, q ≥ 1, we consider the optimal algorithm Dk,q, making q queries where its first hyperplane
query is denoted by H, which maximizes the following quantity

∆(k, q) := Pw

[
DHw

k,q =

k⊕
i=1

bi ∩ EH

]
− Pw

[
DHw

k,q ̸=
k⊕

i=1

bi ∩ EH

]
,

where EH :=
{
Hw(H) = 1

}
. This is to say that Dk,q is the optimal q query algorithm in the case that the

first query output is 1.
Our proof of the lemma will follow by induction on (k, q). We first state our claims (see claim 2 and 3) for

the bounds on the Adv and ∆ functions, which we will be using in the inductive step, present our inductive
proof of the lemma, and then prove the claims. We consider our proof for claim 3 to be one of the main
technical contributions of this work, which intuitively states that the advantage of any algorithm for k-XOR
DDH problem, making a single successful hyperplane query (oracle output 1), is bounded by the product
of the probability of finding the one successful hyperplane query and the advantage of some algorithm for
(k − 1)-XOR DDH problem.

Claim 2. For any k ≥ 1, and q ≥ 1, Adv(k, q) ≤ Adv(k, q − 1) + 2∆(k, q).

Claim 3. For any k ≥ 2 and q ≥ 1, ∆(k, q) ≤ 3Adv(k − 1, q − 1)/2N +∆(k − 1, q)/2N.

Proof of Lemma 3. Given Claim 2 and 3, we prove the following by induction on (k, q).

Adv (k, q) ≤
( 4

N

)k(q + k

k

)
, (1)

then Lemma 3 follows from the fact that
(
q+k
k

)
≤ (3(q + k)/k)k.

The base cases (k, 0) and (1, q). For any k ≥ 1, (1) holds trivially for (k, 0) by the fact that Adv (k, 0) = 0.
For any q ≥ 1, by representing the first hyperplane query H ∈ ZN [x1, y1, u1] as a polynomial with coefficients
α, β, γ, λ ∈ ZN , we have that

∆(1, q) ≤ Pw

[
DHw

1,q = b ∩Hw(H) = 1
]
≤ Pw[Hw(H) = 1] = Pw

[
αx1 + βy1 + γu1 = λ

]
≤ 3

2N
(2)

where the last inequality is because by the Schwartz–Zippel lemma [Sch80, Zip79], the hyperplane query
H holds with probability at most 1/N conditioning on u1 = z1 and holds with probability at most 2/N
conditioning on u1 = x1y1 (as x1, y1, z1 ← ZN and H is not a constant polynomial by the optimality of D1,q).
Then, by applying Claim 2 with k = 1 recursively together with (2), we obtain that

Adv (1, q) ≤ Adv (1, 0) + 2

q−1∑
i=0

∆(1, q − i) = 2

q−1∑
i=0

∆(1, q − i) ≤ 3q

N
≤ 4

N

(
q + 1

1

)
.

The inductive step. For any fixed k ≥ 2 and q ≥ 1, assume that (1) holds for all tuples (ℓ, r) such that
ℓ ∈ {1, . . . , k − 1}, r ∈ {0, . . . , q − 1}. Then, recursively apply Claim 3 (k − 1) times to the final term in
Claim 2, yielding

Adv (k, q) ≤ Adv (k, q − 1) + 3

( k−1∑
i=1

Adv (k − i, q − 1)

2i−1N i

)
+

∆(1, q)

2k−2Nk−1

≤ Adv (k, q − 1) + 3

( k−1∑
i=1

Adv (k − i, q − 1)

N i

)
+

3

Nk
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where the last inequality uses (2). Then, applying the inductive assumption,

Adv (k, q) ≤
( 4

N

)k(q + k − 1

k

)
+ 3

( k−1∑
i=1

1

N i
· 4

k−i

Nk−i

(
q + (k − i)− 1

k − i

))
+

3

Nk

≤
( 4

N

)k((q + k − 1

k

)
+

(
q + k − 1

k − 1

) k∑
i=1

3

4i

)

≤
( 4

N

)k((q + k − 1

k

)
+

(
q + k − 1

k − 1

))

=
( 4

N

)k(q + k

k

)
where the second inequality uses the fact that

(
q+i−1
i−1

)
≤
(
q+k−1
k−1

)
for 1 ≤ i ≤ k − 1, the third inequality uses

the fact that
∑k

i=1(1/4
i) ≤ 1/3, and the last equality uses the fact that

(
q+k
k

)
=
(
q+k−1
k−1

)
+
(
q+k−1

k

)
.

Proof of Claim 2. For any k, q ≥ 1, let Ck,q be as in the definition of Adv (k, q) above, and let H denote the

first hyperplane query made by Ck,q. We denote the XORed bits of k DDH instances by b, i.e., b =
⊕k

i=1 bi.
It is useful to consider a hyperplane algorithm as a depth-q decision tree, with each branch corresponding

to the output of a single oracle query. Once the branch is selected at the root of a depth-q tree (depending
on the response to the first query), the remaining depth-(q − 1) subtree corresponds to a sub-algorithm
making q − 1 queries. When analyzing Ck,q, we define Ck,q−1 to be the sub-algorithm that gets executed

when Hw(H) = 0 and Ck,q−1 to be the sub-algorithm that gets executed when Hw(H) = 1. In other words,
the algorithms Ck,q−1 and Ck,q−1 can be thought of as the “left” and “right” subtrees of Ck,q corresponding
to the output of the first query H being 0 or 1 respectively. Note that by the definition of the subtrees,

Pw

[
CHw

k,q = b ∩ EH

]
= Pw

[
CHw

k,q−1 = b ∩ EH

]
and Pw

[
CHw

k,q = b ∩ ĒH

]
= Pw

[
CHw

k,q−1 = b ∩ ĒH

]
.

Thus, the law of total probability gives the relationship

Pw

[
CHw

k,q = b
]
= Pw

[
CHw

k,q = b ∩ EH

]
+ Pw

[
CHw

k,q = b ∩ ĒH

]
= Pw

[
CHw

k,q−1 = b ∩ EH

]
+ Pw

[
CHw

k,q−1 = b ∩ ĒH

]
= Pw

[
CHw

k,q−1 = b ∩ EH

]
+ Pw

[
CHw

k,q−1 = b
]
− Pw

[
CHw

k,q−1 = b ∩ EH

]
.

Similarly,

Pw

[
CHw

k,q ̸= b
]
= Pw

[
CHw

k,q−1 ̸= b ∩ EH

]
+ Pw

[
CHw

k,q−1 ̸= b
]
− Pw

[
CHw

k,q−1 ̸= b ∩ EH

]
.

By the definition of ∆(k, q), we have that for any depth-(q − 1) subtree algorithm C ∈ {Ck,q−1, Ck,q−1},∣∣∣Pw

[
CHw = b ∩ EH

]
− Pw

[
CHw ̸= b ∩ EH

]∣∣∣ ≤ ∆(k, q) .

By the definition of Adv (k, q − 1), we have that,∣∣∣Pw

[
CHw

k,q−1 = b
]
− Pw

[
CHw

k,q−1 ̸= b
]∣∣∣ ≤ Adv (k, q − 1) .

Therefore, by the definition of Adv (k, q) and the triangle inequality,

Adv (k, q) :=
∣∣∣Pw

[
CHw

k,q = b
]
− Pw

[
CHw

k,q ̸= b
]∣∣∣ ≤ 2∆(k, q) +Adv (k, q − 1) .
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Proof of Claim 3. Let D denote the sub-algorithm of that gets executed when Hw(H) = 1 by Dk,q, and H
denote the first hyperplane query made by Dk,q, described by a linear equation L(x1, . . . , uk) = c for some

constant c. Notice that D makes at most q − 1 queries. Let b :=
⊕k

i=1 bi, we further denote for any events
E1, E2,

AdvD
(
E1

∣∣ E2

)
= Pw

[
DHw = b ∩ E1

∣∣ E2

]
− Pw

[
DHw ̸= b ∩ E1

∣∣ E2

]
.

Thus, by definition ∆(k, q) = AdvD
(
EH

∣∣∅). Because L is not a constant polynomial (by the optimality
of Dk,q), there must be an i ∈ [k] such that the coefficients of xi, yi, ui cannot be all zeros. Without loss of
generality, we assume that i = 1, i.e. , the hyperplane query H can be written as

αx1 + βy1 + γu1 + L′({xi, yi, ui}ki=2

)
= c

where (α, β, γ) ̸= 03 and L′ is some linear polynomial in {xi, yi, ui}ki=2. It suffices to show

AdvD
(
EH

∣∣ b1 = 1
)
≤ 1

N
·Adv (k − 1, q − 1) , (3)

and

AdvD
(
EH

∣∣ b1 = 0
)
≤ 2

N
·Adv (k − 1, q − 1) +

1

N
·∆(k − 1, q) . (4)

Then the desired conclusion follows from averaging over b1 and applying (3) and (4).
When b1 = 1, then u1 = z1 where z1 is independent of x1, y1, x2, y2, u2, . . . , xk, yk, uk. Without loss of

generality, we assume that α ̸= 0 (the cases of β ̸= 0 or γ ̸= 0 are the same reasoning by conditioning on
fixed values of other two variables),

AdvD
(
EH

∣∣ b1 = 1
)
= Eδ1,δ2∼ZN

[
AdvD

(
EH

∣∣ y1 = δ1 ∩ z1 = δ2, b1 = 1
)]

= Eδ1,δ2∼ZN

[
AdvD

( ∣∣ EH ∩ y1 = δ1 ∩ z1 = δ2 ∩ b1 = 1
)
P
[
EH

∣∣ y1 = δ1 ∩ z1 = δ2 ∩ b1 = 1
]]

=
1

N
· Eδ1,δ2∼ZN

[
AdvD

( ∣∣ EH ∩ y1 = δ1 ∩ z1 = δ2 ∩ b1 = 1
)]

≤ 1

N
·Adv (k − 1, q − 1)

where the third line is because that for b1 = 1 and any fixed y1 = δ1, z1 = δ2, (αx1 + βy1 + γz1) is uniformly
distributed over ZN and independent from any {xi, yi, ui}ki=2 so EH holds with probability 1/N ; and the
fourth line is because that further conditioning on that EH happens, by substituting x1, y1, z1 with either
constants or linear polynomials in variables {xi, yi, ui}ki=2 in its hyperplane queries, D becomes an algorithm
for solving (k − 1)-XOR DDH with (q − 1) queries, and thus has advantage bounded by Adv (k − 1, q − 1).
(3) follows.

When b = 0, then u1 = x1y1. Without loss of generality, we assume that at least one of γ, α is non-zero (if
not we work with β instead of γy1 + α in the following reasoning).Then we can describe H by the following
equation

(γy1 + α)x1 + βy1 + L′({xi, yi, ui}ki=2

)
= c .

By similar argument as before, for any δ1 such that γδ1 + α ̸= 0, we have

AdvD
(
EH

∣∣ y1 = δ1 ∩ b1 = 0
)
= AdvD

( ∣∣ EH ∩ y1 = δ1 ∩ b1 = 0
)
P
[
EH

∣∣ y1 = δ1 ∩ b1 = 0
]

≤ 1

N
·Adv (k − 1, q − 1)

where the inequality is because for γδ1 + α ̸= 0, (γδ1 + α)x1 is uniformly and distributed over ZN and
independent from any {xi, yi, ui}ki=2 so EH holds with probability 1/N ; and further conditioning on that EH

happens, by replacing y1,x1,u1 by either a constant or a linear polynomial only in variables {xi, yi, ui}ki=2

(according to y1 = δ1 and the equation by H and u1 = δ1x1) in its hyperplane queries, D becomes an
algorithm for (k − 1)-XOR DDH problem, and thus has advantage bounded by Adv (k − 1, q − 1).
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For δ′ such that γδ′ + α = 0, let H ′ denote a new hyperplane query L′({xi, yi, ui}ki=2

)
= c− δ′β . Then,

AdvD
(
EH

∣∣ y1 = δ′ ∩ b1 = 0
)
= AdvD

(
EH′

∣∣ y1 = δ′ ∩ b1 = 0
)

= Eδ2∼ZN

[
AdvD

(
EH′

∣∣ y1 = δ′ ∩ x1 = δ2 ∩ b1 = 0
)]

≤ Adv (k − 1, q − 1) + ∆(k − 1, q)

where the inequality is because by substituting y1 = δ′, x1 = δ2 and u2 = δ′ · δ2, D becomes a (k − 1)-XOR
DDH hyperplane query algorithm in {xi, yi, ui}ki=2. If E

′
H is a non-trivial hyperplane query in {xi, yi, ui}ki=2

(i.e., the degree of L′ is non-zero), then its advantage is upper bounded by ∆(k − 1, q) otherwise is at most
Adv (k − 1, q − 1). Combining both cases and the fact that Pr[γy1 + α = 0] ≤ 1/N given (γ, α) ̸= 02.

AdvD
(
EH

∣∣ b1 = 0
)
= AdvD

(
EH ∩ γy1 + α ̸= 0

∣∣ b1 = 0
)
+AdvD

(
EH ∩ γy1 + α = 0

∣∣ b1 = 0
)

≤ AdvD
(
EH

∣∣ γy1 + α ̸= 0 ∩ b1 = 0
)
+ Pr[γy1 + α = 0] ·AdvD

(
EH

∣∣ γy1 + α = 0 ∩ b1 = 0
)

≤ 1

N
·Adv (k − 1, q − 1) +

1

N
(Adv (k − 1, q − 1) + ∆(k − 1, q))

implying (4).

3.4 Putting It All Together

We can use the above reductions and the final security bound to prove our two main theorems. At this
point, both proofs follow in a relatively straightforward manner.

Theorem 1. Let N be a prime and S, T ≥ 1 be integers. For any generic algorithm with preprocessing
A = (A0,A1) over L for ZN such that A0 outputs an S-bit advice string, and A1 makes at most T oracle
queries, it holds that

P
[
AOσ

1

(
AOσ

0

(
σ(1)

)
, σ(1), σ(x), σ(y), σ(u)

)
= b

]
≤ 1

2
+ 211

ST 2

N
,

where x, y, z ← ZN , b← {0, 1}, u = bz + (1− b)xy, and σ : ZN → L is a random injective function.

Proof. Let A′ be a generic algorithm with preprocessing such that A′ produces a (2S)-bit advice string and
makes at most T online queries. The advantage of A′ is at least that of A.

Now, let k = 2S,Q = 2ST, q = 2(4ST +6S+1)(6ST +6S+1), apply Lemma 1 and Lemma 2 to construct
a (2S)-XOR DDH algorithm B and a hyperplane query algorithm C, then apply Lemma 3, such that

Adv2S
A′ ≤ 22SAdvB = 22SAdvC ≤

(
24(4ST + 6S + 1)(6ST + 6S + 1)

SN
+

24

N

)2S

,

and thus

AdvA ≤ AdvA′ ≤
3432(ST )2

SN
+

24

N
≤ 212

(
ST 2

N

)
.

Theorem 2. Let N be a prime and k, T ≥ 1 be integers. For any generic algorithm B over L for ZN such
that B makes at most kT oracle queries, it holds that

P
[
BOσ

(
σ(1), σ(w)

)
=

k⊕
i=1

bi

]
≤ 1

2
+

1

2

(
211

kT 2

N

)k
,

where σ(w) :=
{
σ(xi), σ(yi), σ(ui)

}k
i=1

for ui = bizi + (1 − bi)xiyi,
{
xi, yi, zi

}k
i=1
← Z3k

N , {b1, . . . , bk} ←
{0, 1}k, and σ : ZN → L a uniformly random injective function.
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Proof. Let B be a k-XOR DDH algorithm such that B makes at most kT queries. Let q = 2(2kT + 3k +
1)(3kT +3k+1), apply Lemma 2 to construct a hyperplane query algorithm C and apply Lemma 3, such that

AdvB = AdvC ≤
(1008k2T 2

kN
+

12

N

)k
≤
(
211

kT 2

N

)k
.
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A Preprocessing algorithms for DDH

Here, we show that any preprocessing algorithm for the discrete logarithm problem yields a preprocessing
algorithm for the DDH problem with roughly the same advantage and complexity.

Proposition 1. Let N be a prime and S, T ≥ 1 be integers. For any generic algorithm with preprocessing
A = (A0,A1) over L for ZN such that A0 outputs an S-bit advice string, A1 makes at most T oracle queries,
and

P
[
AOσ

1

(
AOσ

0

(
σ(1)

)
, σ(1), σ(x)

)
= x

]
= ε,
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where x ← ZN and σ : ZN → L is a random injective function, there exists a generic algorithm with
preprocessing B = (B0,B1) over L for ZN such that B0 outputs an S-bit advice string, B1 makes at most
T + 4 ⌈logN⌉ oracle queries, and

P
[
BOσ
1

(
BOσ
0 (σ(1)), σ(1), σ(x), σ(y), σ(u)

)
= b

]
=

1

2
+

ε

2
(1− 1

N
),

where x, y, z ← ZN , b← {0, 1}, u = bz + (1− b)xy, and σ : ZN → L is a random injective function.

Proof. Let B0 be the same as A0 which outputs an S-bit advice, and B1 be the following algorithm:

1. Simulate A1 with the output from B0 on (σ(1), σ(x)) and obtain x̂.

2. Compute σ(x̂) given σ(1) and x̂. If σ(x) ̸= σ(x̂), return a random bit b̂← {0, 1}.

3. Compute σ(x̂y) given σ(y) and x̂. If σ(u) = σ(x̂y), return b̂ := 0 otherwise b̂ := 1.

Note that for two integers x, y ∈ ZN , we can compute the value of σ(xy) given x and σ(y) with at most
2 ⌈logN⌉ queries to Oσ

1. Therefore B1 makes at most T + 4 ⌈logN⌉ oracle queries.

Observe that, conditioning on σ(x) ̸= σ(x̂), b̂ = b happens with probability exactly 1/2. Conditioning on
σ(x) = σ(x̂), by the injectivity of σ, and the independence of y, z, b from x̂ and σ,

P
[
b̂ = b

∣∣ x̂ = x
]
= P

[
b = 0

]
+ P

[
z ̸= xy ∩ b = 1

]
=

1

2
+

1

2

(
1− 1

N

)
= 1− 1

2N
.

Therefore, the overall success probability of B is

P
[
b̂ = b

∣∣ x̂ ̸= x
]
P
[
x̂ ̸= x

]
+ P

[
b̂ = b

∣∣ x̂ = x
]
=

1

2
(1− ε) +

(
1− 1

2N

)
ε =

1

2
+

ε

2

(
1− 1

N

)
.

Combine this proposition with known generic preprocessing algorithms for discrete-log problem [BL13,
LCH11, Mih10], we obtain the following corollary:

Corollary. Let N be a prime and S, T ≥ 1 be integers, there exists a generic preprocessing algorithm
A = (A0,A1) over L for ZN for the DDH problem such that A0 outputs an S-bit advice string, A1 makes at

most T oracle queries with advantage Ω̃(ST 2/N).

1Given σ(y) and an integer x ∈ ZN , we can compute σ(xy) using recursion: if x = 1, return σ(y); otherwise first compute
Z := σ(⌊x/2⌋y) using recursion, then return Oσ(Z,Z) if x is even, and return Oσ(σ(y),Oσ(Z,Z)) if x is odd. Because each
recursion reduces computing σ(xy) to a single sub-problem of computing σ(⌊x/2⌋y), and makes at most two oracle queries to
Oσ . The number of recursion calls is at most ⌈logN⌉ and the number of oracle queries is at most 2 ⌈logN⌉.
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