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Abstract. We construct two efficient post-quantum ring signatures with anonymity against full key
exposure from isogenies, addressing the limitations of existing isogeny-based ring signatures.

First, we present an efficient concrete distinguisher for the SQIsign simulator when the signing key is
provided using one transcript. This shows that turning SQIsign into an efficient full anonymous ring
signature requires some new ideas.

Second, we propose a variant of SQIsign (Asiacrypt’20) that is resistant to the distinguisher attack
with only a ˆ1.33 increase in size and we render it to a ring signature, that we refer as Erebor. This
variant introduces a new zero-knowledge assumption that ensures full anonymity. The efficiency of
Erebor remains comparable to that of SQIsign, with only a proportional increase due to the ring size.
This results in a signature size of 0.68 KB for 4 users and 1.35 KB for 8 users, making it the most
compact post-quantum ring signature for up to 31 users.

Third, we revisit the GPS signature scheme (Asiacrypt’17), developing efficient subroutines to make
the scheme more efficient and significantly reduce the resulting signature size. By integrating our
scheme with the paradigm by Beullens, Katsumata, and Pintore (Asiacrypt’20), we achieve an efficient
logarithmic ring signature, that we call Durian, resulting in a signature size of 9.87 KB for a ring of size
1024.

1 Introduction

Ring Signatures. Ring signatures, a cryptographic primitive introduced by Rivest, Shamir, and Tauman-Kalai
[53], enable a member of a group (referred to as a ring) to sign a message on behalf of the entire group without
revealing which specific member signed the message. The original application of ring signatures was to protect
whistle-blowers, allowing them to leak information anonymously while ensuring the information’s credibility
by proving it was released by someone within the group due to unforgeability. Today, ring signatures are
widely utilized in various fields, such as electronic voting systems [41], confidential transactions in blockchain
technology [48,62,26], secure messaging [31], deniable key exchanges [9] and deniable AKEM [28]. In many
applications, full anonymity of the underlying ring signature is essential, ensuring the signer’s anonymity
even if all signing keys are exposed.

Ring signatures exist for a variety of classical assumptions [53,2,7,30,61]. However, these number-theoretic
assumptions can be solved by a quantum computer in polynomial time [56], rendering these schemes insecure
against adversaries equipped with sufficiently powerful quantum computers. To address this issue, many
post-quantum ring signature schemes have been proposed [33,42,61,6,5,26,28]. Among the state-of-the-art
proposals are lattice-based instances of the linear4 ring signatures Gandalf [28] and DualRing [61], which
needs 1.2 KB for 2 users and 4.7 KB for 8 users respectively and grow linearly with the ring size. The
logarithmic5 ring signature SMILE [43] requires 18 KB for a ring of size 1024. Among the post-quantum

4 The signature size grows linear to the ring size.
5 The signature size grows logarithmic to the ring size.
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proposals, there are two constructions from isogenies [6,5], which are linkable and accountable ring signatures
respectively, by using the isogeny group actions [11].

The isogeny problem, which lies at the heart of isogeny-based cryptography, asserts that given two
isogenous elliptic curves, it is hard to compute an isogeny between them. Imposing restrictions on the
elliptic curves leads to the isogeny group action, which offers richer algebraic properties and has proven to
be a versatile branch in isogeny-based cryptography [38,6,23,5,32]. However, due to the innate structure of
abelian group actions, it suffers from the subexponential time attacks [35,36], so the efficient instantiations
of the ring signature [6,5] does not meet the quantum security of NIST 1 [51]. To have efficient instantiations
by scaling the underlying schemes has been an open problem [19,13] and is currently a bottleneck for its
constructions and applications. Meanwhile, translating these constructions to the general isogeny case by
removing the use of group action has been recognized as a non-trivial task. This brings us to the main
question of this work:

Can we have efficient ring signatures from isogenies

that provides both full anonymity and sufficient post-quantum security?

Isogeny Proof of Knowledge. Isogeny zero-knowledge proof of knowledge (ZKPoK) for an isogeny problem is
an active research area in isogeny research [20,29,60,58,18]. Before the SIDH attacks [10,54,44], incorporating
auxiliary information like torsion points was a common research object to consider [20,60,58,18]. The GPS
signature scheme [29] is another example of an isogeny ZKPoK, where the signature size is nearly tens of KB
to one hundred KB. However, due to the algorithm’s high complexity, the scheme remains theoretical. The
state-of-art works of isogeny ZKPoK owe credit to distinct approaches showcased in recent papers [3,14],
both exhibiting comparable performance metrics in proof size and runtime. Yet, both methodologies entail
proof sizes of at least a few hundred KB.

Besides, the prominent isogeny-based signature schemes [21,22,17], known as SQIsign and SQIsignHD,
operate on a sigma-protocol framework without employing parallel repetitions. This simplifies the proof
process while still demonstrating “partial” knowledge of the endomorphism ring of a supersingular curve
E. Full knowledge of this ring is equivalent to knowing an isogeny between E and a specific E0 with a
j-invariant of 0 or 1728. The recent improvements of SQIsign2Ds share the same feature [46,4]. Notably,
SQIsign stands out for its compactness among NIST submissions for post-quantum signatures [12]. These
schemes are natural candidates for adaptation into ring signatures.

Methodology. It is believed that the schemes mentioned above can be transformed into 1-out-of-many proofs
or ring signatures using standard approaches [16,2,33,61]. However, this is not always the case. This limitation
arises from the design of the simulators used in the constructions [21,22,17].

The simulator of a signature scheme is crucial for constructing a ring signature. For example, the simu-
lators for SQIsignHD and SQIsign2Ds rely on access to an oracle, making it infeasible to simulate transcripts
for a ring signature in a real-world setting. Similarly, the simulator for SQIsign cannot generate a transcript
with a prefix challenge, rendering it incompatible with the sequential approach [2,61]. It is folklore that if the
signing key is given, an efficient distinguisher for the SQISign simulator exists. However, a rigorous analysis
has never been given in the literature. In this work, we present an efficient algorithm demonstrating that it
is possible to distinguish simulated transcripts, which precludes the use of existing methods to achieve fully
anonymous ring signatures with SQIsign.

1.1 Contributions.

1. We present a concrete distinguisher in theorem 3.3 for the simulator of SQIsign when the signing key is
provided. Supported by the experimental result, the algorithm is efficient, requiring only one transcript
to distinguish. We stress again that this does not constitute an attack on SQIsign, as it necessitates the
secret key to execute, and that the core ideas of this distinguisher were already known to the community,
but never considered relevant for a real-world construction.
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2. We propose Erebor 6, a linear ring signature based on a variant of SQIsign that is resistant to the
aforementioned distinguisher attack and introduce a new assumption for zero-knowledge. Unlike the
original SQIsign, this variant is compatible with both parallel and sequential OR proofs [16,2]. The
resulting linear ring signatures offer full anonymity based on the new assumption, for which we provide
a security argument. This leads to the most compact post-quantum ring signatures with full anonymity
with a ring size less than 32. As an independent interest, we provide a shorter version considering
anonymity without key exposure.

3. We revisit the GPS signature scheme. By tweaking the scheme and developing efficient subroutines, we
make the scheme feasible and significantly reduce the resulting signature size. Additionally, by integrating
our new scheme with an adaptation of the group action paradigm introduced in [6], we achieve an efficient
logarithmic ring signature Durian 7. This results in the most compact logarithmic post-quantum ring
signatures, providing full anonymity in a statistical sense.

1.2 Technical Overview

Due to the Deuring correspondence (Table 1), an isogeny between two supersingular curves E and E1 corre-
sponds to a connecting ideal, which serves as both a left EndpEq-ideal and a right EndpE1q-ideal within the
quaternion algebra. For simplicity, we may occasionally interchange the objects “curve” and “endomorphism
ring” and the terms “ideal” and “isogeny” when the context is clear.

We now explain our contributions in detail. In the context of signatures derived from non-interactive
proof of knowledge identification protocols we can see ring signatures as a special case of an one-out-of-
many proof (namely, R-proofs): to prove of one knowledge out of many public statements or problems.
Classical techniques like sequential and parallel OR-proofs [16,2] exploit the same simulator used to prove the
honest-verifier zero knowledge property. For identification protocols achieving statistical indistinguishability
between honest transcripts and simulated ones this immediately implies statistical full-anonymity, while for
protocols relying on computational assumptions to prove the indistinguishability, like [21], there are two
major differences:

– we need the same computational assumption to prove the anonymity,
– to achieve full-anonymity we need indistinguishability to hold even with access to the secret key.

We start by formally showing that for SQIsign this last point does not hold.

Distinguisher. The high-level idea of the distinguisher is to use the secret key to do the “reverse engineer” to
recover the randomness used in the signing algorithm by exploiting the Eichler orders’ properties. Roughly,
the signing algorithm of SQIsign proceeds as follows. The protocol is to prove knowledge of the endomorphism
ring of a curve Epk. This is equivalent to proving knowledge of an ideal between Epk and E0, where E0 has
a j-invariant of 1728.

The main algorithm, SigningKLPT, takes as input an ideal I and the secret ideal and returns a random,
equivalent ideal of a power-smooth norm. Here, I is the ideal connecting the public curve Epk and a challenge
curve Ech chosen by the verifier. Importantly, the randomness of the ideal returned by SigningKLPT hides
information about the secret ideal. In detail, I is first randomized within a class group to obtain Ĩ. Next,
the algorithm finds an equivalent ideal for Ĩ with a power-smooth norm by a few subroutines. Finally, the
resulting ideal is translated into an isogeny between Epk and Ech and sent to the verifier together with the
commitment curve and the challenge isogeny.

In contrast, the simulator procedure is much simpler. It generates a random isogeny σ1 : Epk Ñ E1
ch of

a specific degree and then computes a random challenge isogeny ϕ̂1
ch : E1

ch Ñ E1
cmt of a specific degree. The

simulator outputs a simulated transcript as pE1
cmt, ϕ

1
ch, σ

1q. The main difference between the transcripts is the
way to generate the isogeny σ1. The indistinguishability ensures the computational zero-knowledge property
of SQIsign.

6 Short for “Eichler order RE-randomizing-Based OR-proof.”
7 Short for “DeUring correspondence-based RIng signature with full ANonymity.”
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Our distinguisher proceeds as follows. By assuming access to the secret ideal, we can translate both
isogenies to left EndpEpkq-ideals. We may assume the distributions of the ideals are uniformly random over
each support, denoted by Sreal and Ssim, respectively. We note that even though Sreal Ă Ssim and Sreal is
negligible compared to Ssim, the size of Sreal is still exponentially large in the security parameter. Hence,
enumerating the ideals to distinguish by querying the oracle will be infeasible. On the other hand, it suffices
to determine if the resulting ideals are in Sreal to distinguish.

In the case of the real transcript, we observe three facts: 1). The ideal, translated from the isogeny, is the
output of SigningKLPT and stays in the same class as Ĩ. 2). The procedure for finding the equivalent ideal of a
power-smooth norm does not depend on the representative of a class. 3). We can invoke a meet-in-the-middle
type approach to recover the randomness used in the previous procedure.

The last step is feasible because the former part of the equivalent-ideal-finding procedure has only
polynomially-many solutions (see the estimation of 6) and the latter part has a specific structure (due
to the strong approximation) to derive the output. For a more detailed explanation, refer to Item 2. There-
fore, by fixing this ideal and running the equivalent-ideal-finding subroutines of SigningKLPT, we can recover
the randomness used in SigningKLPT. In contrast, when running on input the simulated transcripts, the
distinguisher will not terminate. Supported by the implementation, the distinguisher succeeds with an over-
whelming probability using just one transcript.

Linear-size Ring Signature. The blueprint under Erebor design is the classical AOS framework [2], which
provides simple and efficient ring signatures from any identification protocol. To have a full-anonymous ring
signature, we need to modify SQIsignin two ways. The primary goal is to address the distinguishability
issue when the secret key is available. We introduce a new KLPT variant (Algorithm 3) for the signing
algorithm. The high-level idea is to randomize and find an equivalent ideal for the secret ideal before executing
SigningKLPT. This gives a better zero-knowledge than SQISign for two reasons. First, since now the pullback
would send an endomorphism to random morphisms, it is hard to recover the left O0-class using in the signing
algorithm. Furthermore, this increases the possibilities for each intermediate variable by an exponential factor
by choosing a sufficiently large degree for the equivalent ideal. Hence, our new signing KLPT algorithm makes
the abovementioned distinguisher fail. As a result, we obtain an SQISign variant with a better zero-knowledge
guarantee, incurring only minor overheads in efficiency and signature size. We provide a careful counting
argument to analyze the new assumption and conjecture its hardness in Section 4.3.

Then, to apply the AOS framework [2], we tweak the SQISign diagram: having the challenge starting
from the public key Epk instead of from E0. In this way we can produce a simulated transcript for any given
challenge isogeny. With minor modification we can employ the same building blocks of SQIsign and achieve
the same final results. As a result, we present the most compact full-anonymous post-quantum ring signature
for up to 31 users.

Logarithmic-size Ring Signature. The GPS signature scheme [29] is based on a parallel-repeated sigma
protocol with a challenge space of size 2. The prover shows the knowledge of an isogeny between E0 and E,
where the endomorphism ring of E0 is known.

At a high level, the prover selects a subgroup S of E of power-smooth size, computes the codomain curve
of the isogeny with the kernel S, and commits to this curve, denoted as E1. Depending on the challenge bit
from t0, 1u, the prover reveals an isogeny path from either E0 or E to E1. Revealing S suffices to compute
the isogeny between E and E1, which is also simulatable since it does not require a secret key.

When revealing the isogeny between E0 and E1, the prover uses the secret isogeny between E0 and E
to produce the isogeny between E0 and E1. Revealing the composed isogeny will leak the secret key, so the
prover has to compute the endomorphism ring EndpE1q using the isogeny and the known EndpE0q. Here, we
can use the Ramanujan property of the supersingular isogeny graph to simulate the transcript. Then, the
prover computes the connecting ideal between EndpE0q and EndpE1q and translates the ideal to an isogeny
from E0 to E1 with a power-smooth degree. This translation is the primary source of inefficiency.

Here, we adopt a different approach. Instead of revealing the isogeny between E0 and E
1, the prover reveals

the optimal connecting ideal, which has the smallest norm by using the lattice reduction in dimension 4. The
benefit of using this approach is twofold. First, this does not require the norm to be power-smooth, thereby
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avoiding the lengthy loop in generating the response. Second, the optimal ideal can be represented using
approximately log2ppq, which is nearly optimal given that there are roughly Oppq isomorphism classes for
supersingular curves. By generalizing the algorithms in [22], we can efficiently compute this representation,
estimating the process to take less than 10ms. To reconstruct the curve E1 in our scheme, the verifier computes
the isogeny using a simple adaptation of the new ideal-to-isogeny algorithm developed in [4, Algorithm 3].
This computation is estimated to take less than 40 ms.

Beullens, Katsumata and Pintore [6] provide a group-action-based framework for logarithmic ring sig-
natures. Although we are not using group action here, it is straightforward to construct a logarithmic ring
signature using our improved signature scheme based on the same principles. Given E0 and E1, ¨ ¨ ¨ , EN , to
prove the knowledge of an isogeny between E0 and EI for some I P rN s, the prover computes an isogeny for
each Ei where i P rN s by randomly choosing a subgroup of smooth size over each Ei. The prover then shuffles
and commits to the codomain curves E1

i. Depending on the challenge bit in t0, 1u, the prover reveals either
all subgroups or an optimal connecting ideal between EndpE0q and E1

I . We utilize standard optimization
techniques to improve the signature size, as detailed in section 5. Surprisingly, the resulting logarithmic ring
signature is only slightly larger than the group-action counterpart while achieving NIST level 1 security, as
shown in table 4.

2 Preliminaries

Notations. We write N,Z,Q for the sets of natural numbers, integers, and rational numbers. For N P N,
P1pZ{NZq denote the projective space modulo N . For M P N we let rM s :“ t1, ¨ ¨ ¨ ,Mu. For an ideal I, let
OLpIq and ORpIq denote the left and the right order of I respectively.

2.1 Sigma protocols

Definition 2.1 (Sigma Protocol). A sigma protocol ΠΣ is a three-move identification protocol for a
NP relation R consists of oracle-calling PPT algorithms Gen and pP “ pP1,P2q,V “ pV1,V2qq, where V2 is
deterministic. We assume Gen, P1 and P2 share states and so does V1 and V2. Let ChSet denote the challenge
space. Then, ΠΣ proceeds as follows.

– The prover, gets a valid relation px,wq Ð Genp1λq and publish x;
– The prover, on input px,wq P R, runs com Ð PO

1 px,wq and sends a commitment com to the verifier.

– The verifier runs ch $
Ð VO

1 p1λq, drawing a random challenge from ChSet, and sends it to the prover.
– The prover, given ch, runs rsp Ð PO

2 px,w, chq and returns a response rsp to the verifier.
– The verifier runs VO

2 px, com, ch, rspq and outputs 1 (accept) or 0 (reject).

Here, O is modeled as a random oracle. For simplicity, we often drop O from the superscript when it is clear
from the context. We assume the statement x is always given as input to both the prover and the verifier.
The protocol transcript pcom, ch, rspq is said to be valid in case V2pcom, ch, rspq outputs 1.

We consider the following properties for a Σ-protocol:

Correctness. A sigma protocol ΠΣ is said to be correct if for all px,wq P R and the prover and the verifier
both follow the protocol specification, the verifier always outputs 1.

Honest Verifier Zero-Knowledge. We have a few distinct notions for zero-knowledge. We start with the
standard one, then we consider the concepts more relevant to the SQIsign protocol and our constructions.

We say ΠΣ is tstatistically, computationallyu honest-verifier-zero-knowledge (HVZK ) for relation R if
there exists a PPT simulator SO with access to a random oracle O such that for any λ P N , pair px,wq P R
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and any tcomputationally unbounded, PPTu adversary A that makes at most a polynomial number of
queries to O, we have

AdvHVZKΠΣ
pAq :“ |PrrAOpPOpx,wqq “ 1s ´ PrrAOpSOpxqq “ 1s| “ neglpλq, (1)

where P “ pP1, P2q is a prover running on px,wq and the probability is taken over the randomness used
by pP, V q and by the random oracle.

– ΠΣ is said to be special HVZK if the challenge ch P ChSet is fixed in advance for both the prover
and the simulator and (1) holds for any ch P ChSet.

– ΠΣ is said to be strong HVZK if (1) holds conditioned on that px,wq Ð Genp1λq and the A is has
access to w.

– ΠΣ is said to be weak HVZK if (1) holds conditioned on that px,wq Ð Genp1λq and the A is has no
access to w.

Looking ahead, we will use computationally special strong HVZK and statistically special HVZK proper-
ties respectively to construct ring signatures with full anonymity. Intuitively, the indistinguishability provided
by these properties ensures anonymity even when the secret key (i.e. w) is exposed. In contrast, we will also
show that the sigma protocol of SQIsign, which has been shown to be weak HVZK, does not satisfy strong
HVZK and hence cannot be transformed into a fully anonymous ring signature using existing paradigms.

Special Soundness. We say a sigma protocol ΠΣ has special soundness if there exists a polynomial-time
extraction algorithm Extract such that, given a statement x and any two valid transcripts pcom, ch, rspq

and pcom, ch1, rsp1q relative to x and such that ch ‰ ch1, outputs a witness w satisfying px,wq P R.

High Min-Entropy. We say a sigma protocol ΠΣ has αpλq min-entropy if for any px,wq P R, and a possibly
computationally-unbounded adversary A, we have

Pr
“

com “ com1
ˇ

ˇcom Ð PO
1 px,wq, com1 Ð AOpx,wq

‰

ď 2´α,

where the probability is taken over the randomness used by P1 and by the random oracle. We say ΠΣ

has high min-entropy if 2´α is negligible in λ.

A sigma protocol can be rendered to a digital signature via the well-known Fiat-Shamir transform [27]
and substituting the random oracle O with a cryptographic hash function.

2.2 Ring Signature

We give here basic definitions for identification protocols, ring signatures. Then we show how to construct
the latter from AOS squential OR-proofs [2], providing proofs of security tailored to our situations.

Definition 2.2 (Ring signature). A ring signature scheme ΠRS consists of four PPT algorithms
pRS.Setup,RS.KeyGen,RS.Sign,RS.Verifyq such that:

RS.Setupp1λq Ñ pp : On input a security parameter 1λ, it returns public parameters pp used by the scheme.

RS.KeyGenppp, rrq Ñ ppk, skq : On input the public parameters pp and a randomness rr, it outputs a pair of
public and secret keys ppk, skq.

RS.Signpsk, rr,m,Rq Ñ σ : On input a secret key sk, a randomness rr, a message m, and a list of public keys,
i.e., a ring, R “ tpk1, . . . , pkNu, it outputs a signature σ.

RS.VerifypR,m, σq Ñ 1{0 : On input a ring R “ tpk1, . . . , pkNu, a message m, and a signature σ, it outputs
either 1 (accept) or 0 (reject).
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Correctness: For every security parameter λ P N, N “ polypλq, j P rN s, and every message m the following
holds:

Pr

»

—

—

–

RS.VerifypR,m, σq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð RS.Setupp1λq,
ppki, skiq Ð RS.KeyGenppp, rriq @i P rN s,

R :“ ppk1, ¨ ¨ ¨ , pkN q,
σ Ð RS.Signpskj ,m,Rq.

fi

ffi

ffi

fl

“ 1.

Anonymity: A ring signature scheme ΠRS is anonymous if, for all λ P N and N “ polypλq, any PPT
adversary A has at most negligible advantage in the following game played against a challenger.
(i) The challenger runs pp Ð RS.Setup

`

1λ
˘

and ppki, skiq Ð RS.KeyGenppp, rriq for all i P rN s using the
randomness rri. It also samples a random bit b Ð t0, 1u;

(ii) The challenger provides pp to A;
(iii) A outputs a challenge pR,m, i0, i1q to the challenger, where the ring R must contain pki0 and pki1 .
(iv) The challenger then runs σ˚ Ð RS.Signpskib , rr

˚,m,Rq, and provides σ˚ to A;
(v) A outputs a guess b˚. If b˚ “ b, we say the adversary A wins.
The advantage of A is defined as

AdvAnonΠRS
pAq :“ |PrrA winss ´ 1{2| .

The scheme is full-anonymous or anonymous against full key exposure if any PPT adversary A has still
negligible advantage in the game where at Item ii the challenger provides also trriuiPrNs to A.

Unforgeability (UF-CMA): A ring signature scheme ΠRS is unforgeable (with respect to insider corrup-
tion) if, for all λ P N and N “ polypλq, any PPT adversary A has at most negligible advantage in the
following game played against a challenger.
(i) The challenger runs pp Ð RS.Setupp1λq and generates key pairs ppki, skiq “ RS.KeyGenppp; rriq for

all i P rN s using random coins rri. It sets PK :“ tpkiuiPrNs and initializes two empty sets S and C.
(ii) The challenger provides pp and PK to A;
(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

– psign, i,m,Rq: The challenger checks if pki P R and if so it computes the signature σ Ð

RS.Signpski,m,Rq. The challenger provides σ to A and adds pi,m,Rq to S;
– pcorrupt, iq: The challenger adds pki to C and returns rri to A.

(iv) A outputs pR˚,m˚, σ˚q. If R˚ Ă PKzC, p ¨ ,m˚,R˚q R S, and RS.VerifypR˚,m˚, σ˚q “ 1, then we say
the adversary A wins.

The advantage of A is defined as AdvUnfRS pAq “ PrrA winss.

In [2] the authors show how to render a set of 3-pass identification protocols satisfying the Special HVZK
property to a ring signature using a circular version of the Fiat-Shamir transform [27]. Since we focus in the
application of this construction to the SQIsign protocol to simplify the exposition we only consider the case
in which all the considered identification protocols are the same. For the signature definition we consider
as public parameters pp the security parameter λ, the relation R, algorithms Gen,P1,P2,V2, plus the hash
function H : t0, 1u˚ Ñ ChSet (that takes the role of V1) and the simulator S from the Special HVZK property.
Note that it is important that S generates the transcript given a predetermined challenge ch P ChSet.

The specification are in Algorithm 1. If the Σ-protocol is commitment recoverable (i.e. we can recover
the commitment from the challenge and the response) we can avoid inserting com1, ..., comN in the output
signature.

A proof for the security of the construction can be found in [61]. We generalize the results to our case
for completeness, since we involve Σ-protocols with different zero-knowledge notions. The proofs are quite
straightforward and we provide them in Appendix A. As for the signature definition we focus on the case of
all Σ protocols Π Id being equal.

Proposition 2.3. If Π Id satisfies the special weak (resp., strong) computational HVZK property the ring
signature scheme (Algorithm 1) is anonymous (resp., full-anonymous) in the programmable random oracle
model.

Proposition 2.4. If Π Id satisfies Definition A.1 the ring signature scheme (Algorithm 1) is unforgeable
(UF-CMA) in the programmable random oracle model.
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Algorithm 1 AOS Sequential Ring Signature from [2]

RS.KeyGenpppq :

1: Get x,w Ð Genp1λq

2: Assign pk, sk Ð x,w
3: return ppk, skq.

RS.Signpskl,m,Rq :

1: Get coml Ð P1ppkl, sklq;
2: Set chl`1 Ð Hpcoml,R,m, pkl`1q;
3: Parse ppk1, ¨ ¨ ¨ , pkN q Ð R
4: for i “ l ` 1, ..., N, 1, ..., l ´ 1 do
5: Get comi, rspi Ð Sppki, chiq;
6: Set chi`1 Ð Hpcomi,R,m, pki`1q;
7: Get rspl Ð P2pskl, coml, chlq;
8: return σ “ pch1, rsp1, ..., rspN ,

com1, ..., comN q.

RS.VerifypR,m, σq :

1: for i “ 1, ..., N do
2: if not V2ppki, comi, chi, rspiq then
3: return reject;
4: chi`1 Ð Hpcomi,R,m, pki`1q;
5: if ch1 “ chN`1 then
6: return accept.
7: else
8: return reject.

2.3 Isogenies and Quaternions

In this section, we recall several useful mathematical definitions. Below, we assume some familiarity of the
reader with basic notions on elliptic curves, isogenies, quaternion algebras and their link through the Deuring
correspondence. We refer the reader to [57,59] for a more complete treatment of the overall theory, and to
[39, Chapter 2] for a presentation of the Deuring correspondence as we use it. We give a brief overview as
follows.

The Deuring correspondence is a mathematical result linking integral lattices of Bp,8, the quaternion
algebra ramified at p and 8 to supersingular elliptic curves and their isogenies. To any isomorphism class of
supersingular supersingular elliptic curves (up to Galois conjugacy) the Deuring correspondence associates
the isomorphism class of its endomorphism ring which is an isomorphism class of maximal orders. For this
reason, in this work, we often implicitly consider curves and orders up to isomorphisms.

Quaternion algebras, orders and ideals. This paragraph is almost a verbatim of [22]. The endomorphism
rings of supersingular elliptic curves over Fp2 are isomorphic to maximal orders of Bp,8, the quaternion
algebra ramified at p and 8. We fix a basis 1, i, j, k of Bp,8, satisfying i2 “ ´q, j2 “ ´p and k “ ij “ ´ji
for some positive integer q. The canonical involution of conjugation sends an element α “ a ` ib ` jc ` kd
to α “ a ´ pib ` jc ` kdq. A fractional ideal I is a Z-lattice of rank four inside Bp,8. We define npαq “ αᾱ.
For an ideal I, we denote by npIq the norm of I as the largest rational number such that npαq P npIqZ for
any α P I. Given fractional ideals I and J , if J Ď I then the index rI : Js is defined to be the order of the
finite quotient group I{J . We define the ideal conjugate I “ tα, α P Iu. An order O is a subring of Bp,8
that is also a fractional ideal. An order is called maximal when it is not contained in any other larger order.
The left order of a fractional ideal is defined as OLpIq “ tα P Bp,8 | αI Ď Iu and similarly for the right
order ORpIq. Then I is said to be an pOLpIq,ORpIqq-ideal or a left OLpIq-ideal. A fractional ideal is integral
if it is contained in its left order, or equivalently in its right order; we refer to integral ideals hereafter as
ideals. An ideal can be written as I “ OLpIqα ` OLpIqnpIq “ OLpIqxα, npIqy for some α P OLpIq. Two
left O-ideals I and J are equivalent if there exists β P Bˆ

p,8, such that I “ Jβ. For a given O, this defines
equivalence classes of left O-ideals, and we denote the set of such classes by ClpOq. Also, for any ideal K
and any α P Bˆ

p,8, we write χIpαq “ Kα{npKq. Ideals equivalent to K are precisely the ideals χIpαq with
α P Izt0u.

Through the notion of kernel ideal, it is possible to associate an isogeny φ : E Ñ E1 with an ideal Iφ of
left order O and right order O1 where Iφ “ tα P O0 : αpP q “ 0 for all P P kerpφqu and O – EndpEq and
O1 – EndpE1q. We will keep this notation Iφ throughout this document.
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Special Extremal Order. A special extremal order is an order O0 in Bp,8 which contains a suborder of the
form R ` jR, where R “ Zrωs Ă Qpiq is a quadratic order and ω has minimal discriminant. When p ” 3
mod 4, we have the special extremal order O0 “ x1, i, i`j2 , 1`k

2 y, with i2 “ ´1, j2 “ ´p and k “ ij. It is
isomorphic to the endomorphism ring EndpE0q of the elliptic curve of j-invariant 1728. For the rest of the
paper, we fix this special extremal order O0, with subring Zrωs, and the corresponding elliptic curve E0.

Eichler Orders An Eichler order is the intersection of two maximal orders inside Bp,8. In our settings we
consider the case D “ O0 X O “ Z ` I, with O0 X O being the endormorphism rings of the supersingular
elliptic curves E0, E linked by the the cyclic isogeny ϕI : E0 Ñ E where the kernel of ϕI is E0rIs :“ tP P

E0pFp2q : αpP q “ 0 for all α P Iu. Endomorphisms contained in Eichler orders have the nice properties to
remain endomorphisms when pushed by ϕI from E0 to E, thus if we consider two equivalent left O0 ideals
J1, J2 of norms coprimes to npIq such that J1 “ χJ2pβq for β P J2 X D then the ideals remain equivalent
when pushed through I, i.e. rIs˚J1 „ rIs˚J2. Because of these properties Eichler orders are essential for
performing calculations on maximal orders different from O0, more on this can be read in [21,59,39].

Supersingular j-invariants over Fp2 Maximal orders in Bp,8
jpEq (up to Galois conjugacy) O – EndpEq (up to isomorphism)

pE1, φq with φ : E Ñ E1 Iφ integral left O-ideal and right O1-ideal

θ P EndpE0q Principal ideal Oθ

degpφq npIφq

φ̂ Īφ

φ : E Ñ E1, ψ : E Ñ E1 Equivalent ideals Iφ „ Iψ

Supersingular j-invariants over Fp2 ClpOq

τ ˝ ρ : E Ñ E1 Ñ E2 Iτ˝ρ “ Iρ ¨ Iτ

N -isogenies (up to isomorphism) ClpOq, with Eichler order O of level N

Table 1: The Deuring correspondence, a summary given in [22].

The Effective Deuring Correspondence. For our applications, we need to make this theoretical correspondence
effective as shown in Table 1. In particular, the most important task for us is to take an ideal and compute
the corresponding isogeny. There now exists several distinct variants of this algorithm [21,22,40,4,49]. In this
work we are going to need two flavours of it. The first one targets the case where the norm is odd, whereas
the second one requires the norm of the ideal to be translated to be a long power of 2.

The odd generic case was recently addressed in [4, Algorithm 3] with an algorithm that takes in input
a left ideal I, and outputs an efficient way to evaluate φI : E Ñ EI on any point of EpFp2q. Note that the
algorithm described in [4] imposes a strong restriction on the domain E (it needs to be a very specific curve
E0), however, a generic algorithm can be derived from the restricted one by applying it twice, once between
E0 and E and once between E0 and EI , and then composing the results to be able to evaluate φI . In the
rest of this work, we call this algorithm AnyIdealToIsogeny, and we assume that it takes an ideal I between
maximal orders in Bp,8 and outputs the domain E and codomain EI of φI , and a representation F of φI
allowing to evaluate φI on any points of EpFpkq in a polynomial (in log p and log npIq) number of operations
over Fpk .

An algorithm for the power of two case is at the heart of the signing procedure of SQIsign [21]. It was
improved several times since then: first in [22], and then later on in [40,46] using dimension 2 isogenies, we
refer to IdealToIsopJ, Iϕq as the algorithm taking as input a left O0-ideal Iϕ, with ϕ : E0 Ñ E, and an ideal
J such that OLpJq “ ORpIϕq of norm a power of 2 that returns the isogeny ϕJ : E Ñ E1.
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We do not provide a full description of all these ideal-to-isogenies algorithms because they are quite
technical and the state of the art bit unstable (there have been a lot of recent improvements), and the inner
details are not really relevant for our work anyway as we only need to use them as black-boxes. We address
the reader to the various references we gave for more details.

We will also need a translation algorithm that works from isogenies to ideal when the degree is a power
of two. For that task, we will use the algorithm described in [17, Appendix A.4]. In the rest of this work,
this algorithm is denoted by IsoToIdeal.

Counting Equivalent Isogenies Thanks to the Deuring correspondence we can associate any left O-ideal I of
reduced norm d to an isogeny ϕI : E Ñ E1 with codomain supersingular elliptic curve E with EndpEq » O
of degree d.

Using [59, Lemma 42.2.8] for any ϕI : E Ñ E1 we have an isomorphism of left O-modules:

ϕ˚
I : hompE,E1q Ñ I

ψ ÞÑ ψ̂ ˝ ϕI .

Our main tool is the Van Der Corput’s inequality used on a lattice Λ Ă R4 [15] (an improvement of the
Minkowski inequality):

# tv⃗ P Λ | }v⃗} ď ru ě 2

Z

π2

32

r4

VolpΛq

^

` 1 . (2)

Given two supersingular elliptic curves E,E1 lets label as IsoBpE,E1q Ď hompE,E1q the set of isogenies
in with domain E and codomain E1 with prime norm lower than B. We want now to lower-bound the

cardinality of IsoBpE,E1q, for that we need to use the normalized norm map nIpαq “
npαq

npIq
, for α P I, to

induce a metric on the lattice in such a way that nIpϕ˚
I pψqq “ degpψq. To effectively use inequality (2) we

need to compute the discriminant of the lattice with respect to nI and we proceed as in [34]. Thanks to [59,
Theorem 15.5.5] we know that detpO0q “ p2 since it is maximal, and by [59, Lemma 15.2.15] we can derive

detpIq from the index of the ideal in the order, since detpIq “ |O{I|
2
detpOq “ npIq4 detpOq. Since we are in

dimension 4 lattices we can conclude that with respect to nI the volume of I is p2.

To use (2) we consider the norm } ¨ } “
a

nIp¨q, then we use the bound on r “
?
B and VolpΛq “ p (the

square root of the discriminant). So we have that there are at least 0.61B
2

p isogenies of degree less than B.
Under the heuristic that degrees are distributed uniformly we know that the probability of it being prime
can be approximated as logpBq´1 using the prime counting function, so we have at least

0.61

logpBq

B2

p
(3)

prime degree isogenies in hompE,E1q.

Supersingular Isogeny Graphs. Let p ě 5 be a prime number. For any ℓ ‰ p, we have an ℓ´isogeny graph
where each vertex corresponds to the j-invariant of a supersingular graph and each edge corresponds to an
ℓ-isogeny between the two vertices (i.e. the supersingular curves). The graph can be viewed as undirected
due to the existence of the dual isogeny. An ℓ-isogeny graph is full-connected and ℓ` 1-regular.

Moreover, the graph is Ramanujan so for a random walk from any vertex in the graph converges to the
stationary distribution fast. We conclude the property with the following theorem from [50].

Theorem 2.5. There is a bound n “ Oplogℓppq ` logℓp2
λqq such that the statistical distance between the

stationary distribution over an ℓ-isogeny graph and the end point distribution of a random walk starting from
any distribution of length not less than n have statistical distance is negligible bounded by neglpλq.

The recent work [3] showed that Ramanujan property holds also for the ℓ-isogeny graph of elliptic curves
with d Borel level structures, i.e. the graph with vertices the pairs pE, ϕq with E a supersingular elliptic
curve and ϕ : E Ñ ‹ a cyclic isogeny of degree d not divisible by p, up to isomorphism, with edges the
ℓ-isogenies linking the curves and pushing the d-isogenies one to the other.
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Theorem 2.6 (Theorem 11 [3]). Given any distribution π on the ℓ-isogeny graph of elliptic curves with
d Borel level structures, then the statistical distance between the distribution obtained after a random walk
of length k and the stationary distribution on the graph is bounded by:

?
3

2
K´1 pℓ` 1qpk ` 1q ´ 2

pℓ` 1q
?
ℓk

, (4)

with K “

´

pp´1qd
12

ś

q

´

1 ` 1
q

¯¯´1{2

, for q ranging over the prime divisors of d.

As shown in [34,25,50], there are many equivalent forms of the original isogeny problem on the super-
singular isogeny graph. Here we consider the two following problems, on which our schemes based. Notably,
they are equivalent to original isogeny problem [25,50].

Problem 2.7. Given E0 where EndpE0q is a special extremal order in Bp,8, the supersingular endomorphism
ring problem on a supersingular elliptic curve E requires to find an ideal I which is a left-EndpE0q ideal and
a right-EndpEq ideal.

Problem 2.8. The supersingular endomorphism problem on a supersingular elliptic curve E requires to find
a non-scalar smooth endomorphism α : E Ñ E.

3 Zero-Knowledge for SQISign

In this section, we investigate the zero-knowledge property of the SQIsign identification scheme. The main
result of this section is to present an efficient distinguisher for SQIsign when the secret key is given.

To start, we sketch the SQIsign scheme. The core of the protocol is to prove knowledge of the endo-
morphism ring of a curve Epk. The prover commits to another curve Ecmt and receives a challenge isogeny
ϕch : Ecmt Ñ Ech. The prover must then provide a cyclic isogeny from Epk to Ecmt that factors through ϕch.
Also, we sketch the simulator as follows: it computes a random isogeny σ1 : Epk Ñ E1

ch of a specific degree

and then computes a random challenge isogeny ϕ̂1
ch : E

1
ch Ñ E1

cmt of a specific degree. The simulator outputs
a simulated transcript as pE1

cmt, ϕ
1
ch, σ

1q. For a more detailed description, refer to [21].
Clearly, the simulation above is not special HVZK because the challenge ϕch necessitates the existence of

the curve E1
ch in advance for the simulation. The limitation does not constitute any immediate issue for a

signature scheme but rendering it unusable to define a ring signature with Algorithm 1 for instance. Then, we
will show that it is computationally weak HVZK instead of the strong one. To understand these limitations
we go more into detail for the core procedure SigningKLPT, recalling some security results from literature
and showing how to distinguish simulated transcripts when having access to the secret key.

Procedure of SigningKLPT. Algorithm 2 is the main signing algorithm of SQIsign introduced in [21], which
can be viewed as a modification of the KLPT algorithm from [34]. The algorithm consists of four main
subrountines:

– EquivalentRandomEichlerIdealpI,Nζq: on input a left O-ideal and Nζ P N returning an equivalent ideal
uniformly distributed in the class set ClDpOq of norm coprime to Nζ ;

– EquivalentPrimeIdealO0
pIq: on input a left-O0 ideal returning the smallest equivalent ideal to I of prime

norm;
– FullRepresentIntegerO0

pMq: on inputM P Z andM ą p returning γ “ x`yi`z i`j2 `t 1`k
2 with npγq “ M ;

– FullStrongApproximationFpC,D,Nq: on input C,D P Z, a (semi)prime N , returning µ1 P O0 such that
µ “ λpC ` iDqj `Nµ1 has norm dividing F.

The parameters e0, e1, and e “ e0 `e1 are properly chosen to ensure the termination of the algorithm. Going
into details about the particular algorithms involved is out of the scope of the paper, so we refer the reader
to [21,12,22] for a more detailed treatment.
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Algorithm 2 SigningKLPTpI, Iζq

Require: I left O-ideal, Iζ left O0-ideal, right O-ideal of coprime norms.
Ensure: J „ I of norm ℓe.
1: Get C Ð EquivalentRandomEichlerIdealpI,Nζq; Ź Uniformly distributed in ClDpOq

2: Set C1
Ð rIζs

˚ C;
3: Get L Ð EquivalentPrimeIdealO0

pC1
q of prime norm NL “ npLq;

4: Store δ P C1 such that L “ χC1 pδq;
5: Compute γ Ð FullRepresentIntegerO0

pNLℓ
e0q;

6: Find pC0 : D0q P P1
pZ{NLZq with γj pC0 ` iD0q P L;

7: Find pC1 : D1q P P1
pZ{NζZq such that γj pC1 ` ωD1q δ P Z ` Iζ “ D;

8: Compute C “ CRTNζ ,N pC0, C1q and D “ CRTNζ ,N pD0, D1q

9: Fix N Ð NLNζ and e1 “ e´ e0;
10: Get µ Ð FullStrongApproximationℓe1 pC,D,Nq Ź µ “ λpC ` iDqj `Nµ1 of norm ℓe1

11: Set β “ γµ; Ź npβq “ Nℓe, β P L and βδ P D
12: return J “ rIζs

˚
χLpβq Ź J “ rIζs

˚
χC1 pβδq

Distribution of SigningKLPT’s outputs. We recall the characterization of the distribution of the output of
SigningKLPT from [21, Section 7.2] and [22, Section 6]. Let ζ : E0 Ñ E of degree Nζ , O be the endomorphism
ring of E and D be the Eichler order O0 XO. We consider UC,Nζ

, equivalently UL,Nζ
, the set of all isogenies ι

from the isomorphism class of E0 of degree Drsp such that ι̂˝ϕL “ β P L where C and L are the intermediate
variables defined as in Algorithm 2.

Proposition 3.1 (Prop 10 and Lemma 14 [21]). The set

PNζ
:“

ď

CPClpO0q

UC,Nζ
(5)

can be computed from the sole knowledge of Nζ . Moreover, under the heuristic assumptions from [21, Section
7.3] the output distribution of SigningKLPT pI, Iζq, on input I drawn uniformly from the non-trivial classes
in ClpOq, is statistically indistinguishable form the uniform distribution on the set

␣

rIζs
˚
Iι | ι P PNζ

(

.

Hence, the security assumption of SQIsign zero-knowledge can thereby be summarised as follows:

Problem 3.2. Let p be a prime, and Drsp a smooth integer. Let ζ : E0 Ñ E be a random isogeny drawn from
a probability distribution on the set of cyclic isogenies with domain E0 of degree Nζ .

The problem is, given p,Drsp, E,Nζ , to distinguish which of the following cases is, given access to an
oracle that outputs isogenies σ : E Ñ ‹ of degree Drsp sampled uniformly at random:

1. From a set of cyclic isogenies of degree Drsp; or
2. From rζs˚PNζ

, where PNζ
is defined in eq. (5).

Our distinguisher is based on two following facts.

1. L, the output of EquivalentPrimeIdealO0
pC1q, is deterministic up to C P ClDpOq drawn in Line 1;

2. β computed in Line 11 as γ ¨ µ has the following traits:
(a) γ is one of the possible output of FullRepresentIntegerpNℓe0q with NL “ npLq (Line 5). Note that

from [34] we can estimate the number of solutions to

?
NLℓe0

?
p logppqhpRq

(6)

with hpRq the class number of the ring R “ Z ‘ Zi;
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(b) µ “ pC ` iDqj P Rj mod NNζO0, with ppC2 `D2qℓe1 being a quadratic residue modulo NLNζ and
γpC ` iDqj P L modulo NL (Line 6).

Theorem 3.3. Let the parameters to be specified as SQIsign ([12]). There exists a polynomial-time algorithm
solving Problem 3.2 with only one query when the secret ζ : E0 Ñ E is given. Equivalently if ζ given, we can
distinguish a simulated transcripts from the real ones.

Proof. Let σ : E Ñ Ech be the received isogeny, thanks to ζ we can compute the pullback ι “ rζs˚σ and the
associated ideal Iι using IsoToIdeal. Even though PNτ

has a size of Θ̃ppNτ q, which is exponentially large in
the security parameter λ, it remains a set of negligible cardinality relative to the number of cyclic isogenies
of degree Drsp due to the choice of parameter. Therefore, for a uniformly sampled cyclic isogeny σ of degree
Drsp, the probability that ι P PNτ is negligible. Hence, to solve Problem 3.2, we only need to efficiently verify
whether ι P PNτ or not.

Observe that the output I 1 of SigningKLPT is rIζs˚χLpβq for β P D (where L is defined in Line 3), so, if
actually ι P PNτ we can compute the deterministic prime norm ideal L “ EquivalentPrimeIdealpIιq, that only
depends on the equivalence class of Iι. We define β as the unique element of L such that χLpβq “ Iι.

Then, given L, we can enumerate in polynomial time all possible γ Ð FullRepresentIntegerpNℓe0q where
the number of possible solutions of γ is polynomial thanks to Equation (6). For each possible γ we can
compute µ Ð γ´1β. If ι P PNτ

then µ mod pNNτ q P Rj and we can rewrite it as Ci`Dij. Then we check
if it satisfies the condition from step Item 2b. If this is true we output that σ comes from the second isogeny.

Remark 3.4. Even in the case in which we are given another connecting isogeny κ : E0 Ñ E we can still
recover ζ : E0 Ñ E if Nζ is smaller than

?
p. In fact in this case, with high probability, ζ is the isogeny of

smallest degree connecting E0 Ñ E, that can be recovered by looking at the shortest vector in the ideal Iκ.

We provide our proof-of-concept implementation in SageMath. The experimental validates Theorem 3.3
and only requires a few seconds to distinguish. Our proof-of-concept implementation in SageMath can be
found in giacomoborin/RingSQISign-poc. Note that the folder is written as a fork of the SageMath SQISign
implementation LearningToSQI/SQISign-SageMath that provides the mathematical functionalities used in
the scheme.

4 Linear Ring Signatures

The primary goal of this section is to present a fully anonymous ring signature. To achieve this, we introduce a
new KLPT variant for the signing algorithm to address the distinguishability issues described in the previous
section. Subsequently, we propose a new SQISign variant that offers a better zero-knowledge guarantee with
mild overhead. To apply the AOS construction (Algorithm 1), we slightly modify the SQISign framework to
enable the simulation of a signature with a given challenge isogeny. Finally, we then provide an analysis of
the new zero-knowledge assumption.

These two modifications are independent of each other. We begin with the simple modification of the
SQISign framework, which is more straightforward, to streamline the presentation.

Remark 4.1. As described in Section 1, the SQIsignHD protocol [17], a variant of SQIsign that leverages
efficient representations involving higher-dimensional isogenies, cannot be used to construct ring signatures
using known paradigms in the literature. This limitation boils down to its simulation procedure requiring
the uniform generation of random isogenies of arbitrary degrees, and there is no known method to construct
such an oracle in polynomial time. The same limitation applies to other HD variants [4,46,24].

4.1 Computational Special Zero-knowledge Variant

There are several ways to get a SQIsign variant with Special Honest-verifier Zero-knowledge, arguably the
simpler one is to generate the challenge starting from the public key Epk as in Figure 1. The choice to compute
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the challenge isogeny from the commitment curve in the original scheme was probably motivated by efficiency,
but it is not at all a necessity, for example in other SQIsign variants relying on higher dimensional isogenies
we are already dealing with a diagram as in Figure 1, like [4,52]. For the one dimensional case, the protocol
can be modified as follows.

Protocol 1 We assume Setup is run as in SQIsign, then:

– Key Generation: Sample a random isogeny walk τsk : E0 Ñ Epk of degree « p and return the public
key Epk and the secret key τsk;

– Commitment: Sample a random isogeny walk ψ : E0 Ñ Ecmt of prime degree bounded by an integer
Bcmt and commit to Ecmt.

– Challenge: Sample a random isogeny ϕch : Epk Ñ Ech of degree Dc « 2λ and send ϕch as a challenge;

– Response: Consider the ideal I associated to the composition ϕch˝τsk˝ψ̂, get an equivalent ideal of power-
smooth norm Drsp via executing SigningKLPTpI, Iψq. Then translate it to an isogeny σ : Ecmt Ñ Ech such

that ϕ̂ch ˝ σ of degree Drsp and being cyclic. Then, return σ as response.

– Verification: Check that σ is an isogeny from Ecmt to the expected codomain Ech and ϕ̂ch ˝ σ is cyclic.

E0

Ecmt

Epk

Ech

τsk

ψ

σ

ϕch

Fig. 1: Special variant.

To analyze the underlying security of Protocol 1 we consider a slightly different characterization analogue
to Problem 3.2 to take into account the runtime generation of the connecting isogeny.

Problem 4.2. Let p be a prime, and Drsp a smooth integer and a supersingular elliptic curve E1. The problem
ask to distinguish between isogenies σ : E Ñ E1 of degree Drsp sampled either

1. uniformly random between cyclic isogenies of degree Drsp with E a uniformly random supersingular
elliptic curve;

2. uniformly random in rζs˚PNζ
, where PNζ

is defined in (5), where ζ : E0 Ñ E is a random isogeny drawn
from a probability distribution on the set of cyclic isogenies with domain E0, and Nζ is its degree.

Proposition 4.3. Protocol 1 is correct, special sound for the relation defined in Problem 2.8, and computa-
tionally special weak honest-verifier zero-knowledge basing on the hardness of Problem 4.2 and the heuristic
assumptions from [21, Section 7.3].

Proof. The correctness is implied by the correctness of the SigningKLPT procedure. We prove the special
soundness essentially in the same way as in [21]. Given two valid transcripts for the same commitment:
pEcmt, ϕch, σq and pEcmt, ϕ

1
ch, σ

1q with ϕch ‰ ϕ1
ch, then the composition

ϕ̂1
ch ˝ σ1 ˝ σ̂ ˝ ϕch

is a by definition an endomorphism of smooth degree pDcDrspq2. We claim this is a non-scalar endomorphism.

Since they are valid transcripts the endomorphism is a composition of cyclic isogenies ϕ̂1
ch ˝ σ1 and the dual

of ϕ̂ch ˝ σ. Suppose for the purpose of a contradiction that the endomorphism is scalar, then we have

ϕ̂1
ch ˝ σ1 “ ϕ̂ch ˝ σ ,
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due to the uniqueness of the dual isogeny. This contradicts to the fact that ϕch ‰ ϕ1
ch. Hence, the protocol

has special soundness for the relation defined by the Supersingular Endomorphsim Problem on Epk (Problem
2.8).

Regarding computational special zero-knowledge, we first consider the simple simulator SpEpk, Drsp, ϕchq

as follows. On input an arbitrary challenge ϕch : Epk Ñ Ech, it samples uniformly σ1 : Ech Ñ E of degree
Drsp and outputs pE, ϕch, σ

1q. We consider now Problem 4.2 with E1 “ Ech. The simulator distribution is
clearly the same as the first distribution of Problem 4.2, while the original output is equivalent to second
distribution due to Proposition 3.1 under the same heuristic assumptions as SQIsign. [\

It is clear that this simple variant is still not “strong” HVZK for the same reason described in the previous
section. Indeed, the commitment isogeny ψ can be recovered from the knowledge of the endomorphism ring
of Epk, we can thereby construct a distinguisher, with access to the secret key, using again Theorem 3.3 to
distinguish simulated transcripts.

4.2 Connecting Isogeny Randomization

This subsection presents a variant of the KLPT algorithm providing a better zero-knowledge guarantee and
the strong HVZK property. Our key idea here is to randomize the connecting ideal between the starting
curve E0 and the commitment one Ecmt prior to SigningKLPT. In this way, we will have exponentially many
possible connecting isogeny candidates. From the perspective of Deuring correspondence, this implies that
even if we know the endomorphism ring of Ecmt because of σ̂ ˝ ϕch ˝ τsk, we still cannot individuate the
connecting ideal used for SigningKLPT.

Accordingly, we can implement this strategy by modifying Protocol 1 in the response phase. Prior to the
execution of SigningKLPT, we take a uniformly random equivalent ideal to Iψ of prime norm bounded by
Bcmt, which corresponds to a random connecting isogeny of prime degree. We select Bcmt in such a way that
there are exponentially many possibilities. We summarize this process via a new procedure RSigningKLPT
in Algorithm 3.

Algorithm 3 RSigningKLPTpJ, I, Bcmtq

Require: A left O-ideal J , and I, a left O0-ideal and right O-ideal, Bcmt ą
?
p

Ensure: J 1
„ J of norm ℓe

1: Compute a reduced basis tα1, ..., α4u of I,
2: Fix mi accordingly to the basis;
3: repeat
4: Sample xi P r´mi,mis for i “ 1, 2, 3, 4;
5: Set α Ð

ř4
i“1 xiαi

6: until npαq ď npIqBcmt

7: Set Iψ Ð I ᾱ
npIq

; Ź We get ψ P IsoBcmtpE0, ψq

8: Set J Ð α
npIq

J ; Ź Ensure OLpJq “ ORpIψq

9: return SigningKLPTpJ, Iψq.

Selection of mi The selection of the integers mi in Line 2 is crucial both to achieve efficiency and a uniform
distribution of ψ in IsoBcmtpE0, Ecmtq. Since by triangular inequality we know that npαq ď

ř4
i“1m

2
iλi, with

λi “ npαiq, we can expect to fix mi slightly larger than
a

BcmtnpIq{4λi (say twice the size). To do that we
consider the Gram-Schmidt orthogonalization tα˚

1 , ..., α
˚
4 u and the Gram-Schmidt coefficient µij for our basis

(see e.g. [47]), with respect to the inner product induced by the reduced trace, in such a way that

αi “ α˚
i `

ÿ

jăi

µijα
˚
j .
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Then we fix m4 “
a

BcmtnpIq{λ˚
4 and recursively mi “

a

BcmtnpIq{λ˚
i `

ř

jąi |µji|mj for i “ 3, 2, 1 (with
λ˚
i “ npα˚

i q). In this way we can ensure that if npαq ď BcmtnpIq then |xi| ď mi. Anyway for our subsequent
security reduction we need the following assumption:

Assumption 1 The distribution of the isogenies obtained at Line 7 are statistically close to the uniform
distribution on IsoBcmtpE0, Ecmtq.

4.3 Security.

We now argue about the strong HVZK property of the new protocol instantiated with this additional
randomization step by reducing it to a new version of Problem 4.2 that consider the new randomization step
Then we analysis why the knowledge of a connecting isogeny cannot lead to a distinguisher attack as for
Theorem 3.3.

Problem 4.4. Let p ” 1 mod 4 be a prime, Bcmt an integer, Drsp a smooth integer. Given E0 elliptic curve
of j-invariant 1728 and E a random curve of known endomorphism ring O, and a cyclic left O-ideal Iη of
norm Drsp, distinguish from which of the two set Iη has been uniformly sampled:

– all cyclic left O-ideals of norm Drsp;
– the union:

␣

rIψs˚Iι | ι P Pdegpψq, ψ P IsoBcmtpE0, Eq
(

. (7)

where Pdegpψq is defined as in (5).

Lemma 4.5. For Protocol 1 used with Algorithm 3 the strong computational HVZK reduces to the hardness
of Problem 4.4 if the heuristic assumptions from [21, Section 7.3] and Assumption 1 hold.

Proof. To prove the proposition we consider the same simulator from the proof of Proposition 4.3 that
outputs a uniformly random isogeny of degree Drsp and we show that a distinguisher for this simulator,
aided with the secret key τsk : E0 Ñ Epk, can be render to a distinguisher for Problem 4.4. Given the curve
E and an input left O-ideal Iζ we can translate it to a cyclic isogeny ζ : E Ñ E1

ch, we generate then an

isogeny ϕ̂1
ch : E1

ch Ñ E1
pk and we compute a connecting isogeny τ 1

sk : E0 Ñ E1
pk using the knowledge of the

endomorphism ring. So we have the valid transcript pE, ϕ1
ch, ζq associated to the key τ 1

sk : E0 Ñ E1
pk that we

can feed to the HVZK distinguisher.
We argue now about the statistical indistinguishability of the inputs for the two cases. While it is clear

that for the uniformly random one the distributions are the same, while for the second one we need to
argue that the output of Algorithm 3 is statistically indistinguishable from the uniform distribution on
the set from (7). This is immediate from the construction of the protocol, in fact the set is indexed over
the connecting isogenies of prime bounded degree IsoBcmtpE0, Eq, that results from the first randomization
step in Algorithm 3 and are statistically indistinguishable thanks to Assumption 1. Fixed an isogeny ψ, so
equivalently an ideal Iψ, we need to prove that the output ideal distribution of SigningKLPT is statistically
indistinguishable from the uniform distribution on:

␣

rIψs˚Iι | ι P Pdegpψq

(

,

that is implied by Proposition 4.3 under the assumptions from [21, Section 7.3]. [\

Security Analysis We argue now about the hardness of Problem 4.4. The set in (7) is constructed by using
multiple of pushforward of the sets PNζ

, so all the security arguments from [21, Appendix B] and [22] still
applies. Also, the hardness of the problem is immediately related to the size of the set IsoBcmtpE0, Eq, so to the
bound Bcmt. In fact we can consider as a distinguisher that search through all the possible connecting isogeny
of prime degree and apply theorem 3.3 (let C be the computational cost of this attack). The computational
cost of this algorithm is

O p#IsoBcmtpE0, Eq ¨ Cq .
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For this reason we choose Bcmt accordingly to (3) such that #IsoBcmtpE0, Eq is exponential, in particular we
go for the conservative choice of taking it bigger than 2λ.

We analyse further how the randomization thwarts the distinguisher. Note that the first step of the
distinguisher is the recover of the prime norm ideal L obtained from EquivalentPrimeIdealpCq. However the
correctness of this step relies on individuating the correct equivalence class C via rIψs˚Iσ, but this happens
only with negligible probability if we are pulling through a random connecting isogeny. To see this consider
the response isogeny σ : ψ Ñ E1 of large degree Drsp, two random isogenies ψ0, ψ1 P IsoBcmtpE0, Eq (let
ψ0 be the one used to generate the response) and the ideals I0, I1 associated to the pullback isogenies
rψ0s˚σ, rψ1s˚σ.

Thanks to the Deuring correspondence we know that the ideals I0, I1 are equivalent if and only if rψ0s˚σ,
rψ1s˚σ share the same codomain, but, by the commutativity property of the diagrams, this is equivalent to
ask that rσs˚ψ0, rσs˚ψ1 share the same codomain, as you can see from the following scheme.

Ecmt E1

E0 E2

σ

ψ0 ψ1 rσs
˚ψ0rσs

˚ψ1

rψ0s
˚σ

rψ1s
˚σ

Now, observe that the pushforward isogenies rσs˚ψ0, rσs˚ψ1 distribution is statistically indistinguishable
from the uniform distribution of cyclic isogenies with the same respective degrees. To prove this, since we
have that Drsp “ ℓe “ O

`

p3B3
cmt

˘

(more on that in Section 4.4), we can use Theorem 2.6 and bound the
statistical distance from the uniform distribution is bounded by the negligible quantity

O

˜

pBcmt
a

p3B3
cmt

¸

“ O
´

ppBcmtq
´ 1

2

¯

.

Hence, since the pushforward isogenies are random walks in the supersingular isogeny graph of degree
bigger than

?
p, also their domains distributions are statically close to uniform by Theorem 2.5. We conclude

that I0 and I1 are equivalent with negligible probability. Suppose however that in some way we recover
even partial information about the ideal L or the involved endomorphism, we still cannot use it to start
a meet-in-the-middle like attack since the isogenies are of prime degree. Given the previous discussion we
conclude that we have reasonable evidence that Problem 4.4 is hard.

4.4 Our Ring Signature Construction

We can finally define our first ring signature Erebor obtained by applying Algorithm 1 to Protocol 1. Observe
that both the optimizations from [55,22] known for KLPT-based SQIsign can be used for our ring signature.
We have in Algorithm 4 a full-anonymous version Erebor-full that uses Algorithm 3. To sample the challenge
we use an hash function H that on input a curve E1, a ring R, a message M, and a curve E returns the
coordinates of a cyclic subgroup of E of order Dc with respect to a deterministically generated torsion basis
of ErDcs. For compactness we do not go into details on the various translations between kernels, isogenies
and ideals.

As for [21] we take a prime p « 22λ to ensure the hardness of Problem 2.8. The public keys are the
j-invariant of the supersingular curves (so we need N ¨ 4 log2ppq bits to represent them). Each transcript
of Protocol 1 pEcmt, ϕch, σq can be compressed to pkerpϕchq, σ̂q since kerpϕchq is a subgroup of Epk and the
commitment Ecmt can be recovered as the codomain of σ̂. Thus the signature size is:

costpϕchq
looomooon

ch1

` N ¨ costpσ̂q
loomoon

rsp‚

. (8)
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We can bound the final degree Drsp for the response σ using Lemma 11. of r21s, so

Drsp “ 3 logppq ` 3 logpBcmtq `O plog logppqq .

We fix Bcmt ě 2
λ
2 p

1
2 (in this way from the estimation 3 we have at least 2λ prime degree equivalent isogenies)

and get logpDrspq « 9
2 logppq ` λ

2 `O plog logppqq.
Note that if we are not interested in achieving full-anonymity we do not need to use Algorithm 3 at

Line 9 and we can actually employ in the commitment generation (Line 1) the same procedure used in the
optimized KeyGen from [21, Section 8.3]. In this way we get a much smaller degree for the commitment

isogeny Nψ « p
1
4 , so the response degree is again logpDrspq « 15

4 logppq, resulting in a shorter signature. We
refer to this construction as Erebor-short.

Thanks to the previous discussions on Protocol 1 we can finally prove:

Theorem 4.6. The Erebor-full (resp., short) ring signature scheme is unforgeable and full-anonymous (resp., anony-
mous) over the programmable random oracle model if Problems 4.4 and 2.8 (resp., Problems 4.2 and 2.8)
are hard under the same heuristic assumptions from [21, Section 7.3] and Assumption 1.

Proof. Regarding Erebor-full, since the underlying sigma protocol (Protocol 1) is special sound and strong
special HVZK by Proposition 4.3. Also, Erebor-short has weak special HVZK as explained above. By Propo-
sition 2.4, we prove the results. [\

Remark 4.7. We point out that a similar linear ring signature construction can be achieved using the parallel
OR-proof [16], however this would lean an increase in signature length by a factor of pN ´ 1qcostpϕchq.

Algorithm 4 Erebor-full Ring Signature Scheme

RS.Setupp1λq :

1: Get SQI-friendly prime p « 22λ

2: Set Bcmt ě 2
λ
2 p

1
2 ;

3: return pp,Bcmtq.

RS.KeyGenpppq :

1: Sample Iτsk of norm 22λ

2: Compute τsk : E0 Ñ Epk;
3: return pEpk, Iτskq.

RS.SignpI
plq
τsk ,M,R “ tE

p1q

pk , ..., E
pNq

pk uq :

1: Sample ψ : E0 Ñ E
plq
cmt and Iψ;

Ź For short take Nψ « p1{4

2: Set Kl`1 Ð H
´

E
plq
cmt,R,M, E

pl`1q

pk

¯

;

3: for i “ l ` 1, ..., N, 1, ..., l ´ 1 do
4: Get ϕ

piq
ch : E

piq
pk Ñ E

piq
ch

5: Sample σ̂piq : E
piq
ch Ñ E

piq
cmt;

6: Set Ki`1 Ð H
´

E
piq
cmt,R,M, E

pi`1q

pk

¯

;

7: Get ϕ
plq
ch : E

plq
pk Ñ E

plq
ch and I

plq
ϕch

;

8: Set J Ð Īψ ¨ I
plq
τsk ¨ I

plq
ϕch

9: Get J 1
Ð RSigningKLPTpJ, Iψ, Bcmtq;

Ź For short use SigningKLPT
10: Get σplq

Ð IdealToIsopJ 1, Iψq;
11: return σ “ pK1, σ̂

piq, ..., σ̂pNq
q.

RS.VerifypR,m, σq :

1: for i “ 1, ..., r do
2: Check σpiq degree;
3: Get ϕ

piq
ch : E

piq
pk Ñ E

piq
ch from Ki;

4: Compute σ̂piq
˝ ϕ

piq
ch : E

piq
pk Ñ Epiq;

5: if σ̂piq
˝ ϕ

piq
ch is not cyclic then

6: return reject;

7: Ki`1 Ð H
´

Epiq,R,M, Epi`1q

pk

¯

;

8: if K1 “ KN`1 then
9: return accept.
10: else
11: return reject.

5 Logarithmic Ring Signatures

In this section we describe how to construct logarithmic ring signatures based on the endomorphism ring
problem (Problem 2.7).
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Unlike our other construction introduced in Section 4, this ring signature protocol is not directly based
on SQIsign. In fact, it is conceptually closer to the GPS signature [29], and we can improve it with the
recent algorithmic improvements obtained by the use of higher dimensional isogenies and in particular the
recent algorithm to translate ideal to isogenies from [4]. This algorithm is the most important subroutine of
an efficient method OrderToCurve to compute the curve associated through the Deuring correspondence to
a given maximal order that is at the heart of our signing method.

5.1 Compressed Endomorphism Ring Representation.

In this section, we give a heuristic method to encode the isomorphism class of maximal order O Ă Bp,8 in
approximately log p bits. This method works very well in practice and is very efficient. Also, note that it is
essentially optimal as there are Oppq distinct isomorphism classes of maximal order in Bp,8.

A maximal order O in Bp,8 is a dimension-4 lattice contained inside Bp,8. Thus, it can be given by a
basis of 4 elements. Since 1 is always contained in any order O, we always know one basis element, and so
3 other elements of B‹

p,8 suffice to define O. Each element of Bp,8 can be given by four coefficients in Q as
their coefficients in the basis 1, i, j, k of Bp,8. However, this representation is not very compact. The best
bound on the coefficients of the smallest basis of O allows us to get a representation of size « 3 log p at best.
As we explained already this is not optimal, as there are less than p maximal orders inside Bp,8.

Our idea to obtain an optimal compression is to use an ideal connecting O (or rather an order isomorphic
to O) and O0, i.e. an ideal whose left order is O0 and right order is isomorphic to O, where O0 is the special
extremal order in Bp,8 (for instance when p “ 3 mod 4, we have O0 “ x1, i, i`j2 , 1`k

2 y).
It can be shown that there always exists such an ideal of norm N ă

?
p (see [34, Section 3.1] for instance).

The purpose of the rest of this section is to show that it is possible to encode an O0 ideal of norm N in
approximately logN bits.

The main result behind our representation method is the following lemma. We recall that a primitive
quaternion element is an element γ contained in an order O such that there does not exists any integer k ą 1
such that γ{k P O.

Lemma 5.1. Let p be a prime, and N be any integer coprime to p. Let O0 be a maximal order of Bp,8
and let I be a left O0-ideal of norm N and let ι, γ be two primitive quaternion elements in O0 such that
npιq is coprime to N , γ R Zris and gcdpnpγq, N2q “ N . Then, there exists pa : bq P P1pZ{NZq such that
I “ O0xγpa` ιbq, Ny and gcdpa, b,Nq “ 1.

Proof. By the definition of γ, the ideal O0xγ,Ny, has norm N . We adapt the proof of [22, Lemma 8] to the
case of generic N easily as the norm is not required to be of the form ℓf in the proof. Together with existence
shown in the proof of [22, Proposition 9], we know there exists a, b such that γpa` ιbq P I and gcdpa, bq “ 1.
This implies I “ O0xγpa` ιbq, Ny; otherwise, there exists n P N dividing N such that Erns Ă kerpγpa` ιbqq,
which is not possible since gcdpa, b,Nq “ 1 and ι, γ are primitive. Since multiplying both a and b by any
integer coprime to N will not change that fact, we can consider pa : bq as an element in P1pZ{NZq. [\

When O0 is a special extremal order, it is easy to devise a way to generate a ι and a γ satisfying the
requirements of Lemma 5.1 from O0 and N . Then, finding suitable a, b can be done by linear algebra modulo
N as is done in [22, Algorithm 4].

Thus, when O0 is canonical, giving N and an element pa : bq P P1pZ{NZq suffices to determine uniquely
any ideal of norm N and recover it efficiently.

It only remains to show that we can give the data of an integer N and an element pa : bq P P1pZ{NZq

with gcdpa, bq “ 1 in « 2 logN bits.
Let a0 “ gcdpa,Nq and b0 “ gcdpb,Nq and let c ă N be an integer such that c “ pb{b0qpa{a0q´1 mod N .

Then, pa : bq “ pa0 : b0cq, and N, pa : bq can be represented by the four integers N{pa0b0q, a0, b0, c. It is easy
to see that this four elements can be represented in « 2 logN bits.

We give a precise description of the algorithm CompressMaxOrder in the section as in Algorithm 5. We
also require following efficient algorithms as subroutines, which can be found in [21].
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– ConnectingIdealpO1,O2q: on input two maximal orders O1,O2 in Bp,8 returning a connecting ideal;

– FullRepresentIntegerO0
pMq: on inputM P Z andM ą p returning γ “ x`yi`z i`j2 `t 1`k

2 with npγq “ M ;

– EquivalentIdealO0
pIq: on input a left O0-ideal I returning the equivalent left O0-ideal of the smallest

norm.

Algorithm 5 CompressMaxOrderO0

Require: O Ă Bp,8 a maximal order.
Ensure: a compressed representation of O
1: I Ð ConnectingIdealpO0,Oq.
2: J Ð EquivalentIdealO0

pIq.
3: N Ð npJq.
4: γ Ð FullRepresentIntegerO0

pNpp` 1qq Ź Primitive γ
5: Take random elements in O0 until finding an element ι of norm coprime to N .
6: Compute values a, b with gcdpa, b,Nq “ 1 such that J “ O0xγpa` ιbq, Ny.
7: a0 Ð gcdpa,Nq, b0 Ð gcdpb,Nq, c Ð pb{b0qpa{a0q

´1 mod N .
8: return N{pa0b0q, a0, b0, c.

The length of the output of CompressMaxOrder depends on N , which can be bounded above by
?
p as we

explained already. Looking ahead, we will use our compression technique to represent the isogeny between
the curves corresponding to O0 and O1 respectively. Since CompressMaxOrder uses the connecting ideal of
the smallest norm and does not depend on the representative of the input order, the representation does not
leak the information of the exact isogeny used to reach the corresponding curves.

If CompressMaxOrder is running in such a way that the “random” choices made to generate γ and ι are
deterministic (meaning that anyone running the computation for the same values of p,N,O0 will end up with
the same γ and ι), then it is possible to decompress an output of CompressMaxOrder to find the maximal
order given in input (or at least a maximal order in the same isomorphism class which is enough for us).
This yields the decompression algorithm that we describe as Algorithm 6.

Algorithm 6 DecompressMaxOrder

Require: a compressed representation s of O.
Ensure: a maximal order O P Bp,8
1: Parse s as four integers x, a1, b1, c1.
2: N Ð xa1b1

3: γ Ð FullRepresentIntegerO0
pNpp` 1qq Ź Primitive γ

4: Take random elements in O0 until finding an element ι of norm coprime to N .
5: Compute J “ O0xγpa1

` ιb1c1
q, Ny.

6: return ORpJq.

5.2 Maximal Order to Curve

In this section, we give a brief description of an algorithm OrderToCurve to compute an elliptic curve whose
endomorphism ring is isomorphic to a maximal order O Ă Bp,8 given in input. This algorithm is quite easily
built from AnyIdealToIsogeny algorithm introduced as [4, Algorithm 3] (see Section 2.3 for more details on
this algorithm).
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Algorithm 7 OrderToCurve

Require: a maximal order O P Bp,8
Ensure: a curve E with EndpEq – O
1: Compute I “ IpO0,Oq the ideal connecting O0 and O.
2: E0, E, F Ð AnyIdealToIsogenypIq

3: return E.

5.3 Our Sigma Protocol for Logarithmic Size Ring Signature

We consider the “OR relation” defined in Problem 2.7, where the prover proves the possession of an ideal
which is a connecting ideal between E0 and one of E1, ¨ ¨ ¨ , EM . Concretely,

RE0
“ tptEiuiPrMs, pl, Iqq | OLpIq – EndpE0q ^ ORpIq – EndpElqu.

Before introducing the base OR sigma protocol for the logarithmic ring signature. We need the following
efficient algorithms as the ingredients:

– KerGenDpE, rq : on input a smooth number smooth D, a curve E and r P rD ` 1s returning a cyclic
kernel over E of degree D « p, which is deterministic conditioned on r. This can be instantiated by
generating a canonical basis tP,Qu for ErDs and determining the kernel with r.

– IsoToIdealIpϕq : on input a left O0-ideal I and ϕ : E Ñ E1 where ORpIq – EndpE1q returning an O0-ideal
J such that ORpJq – EndpE1q.

– A pseudorandom number generator. We will instantiate it by using a random oracle OpExpand}¨q.
– A collision-resistant hash function. We will use this to compress the input for the Merkle tree function.

We will instantiate it by using a random oracle OpCom}¨q.
– MerkleTreep¨q, getMerklePathp¨q,ReconstructRootp¨q : the collision-resistant Merkle Tree function set that

are able to hide the index for any node and path pair given by getMerklePathp¨q is given. We use the
instantiation in [6] together with its properties, which is can be instantiated by using a collision-resistant
hash function from t0, 1uλ to t0, 1u2λ. We give a brief overview in Appendix B.

We now sketch the base OR sigma protocol as shown in Figure 2.

Theorem 5.2. The sigma protocol ΠΣ described in Figure 2 has correctness and λ min-entroy.

Proof. When the challenge is ch “ 0, the prover sends the seed to the verifier. The computation of the verifier
will result in the same commitment (root) in this case.

When ch “ 1, the prover sends psO, path, bitslq to the verifier, where sO Ð

CompressMaxOrderpORpJqq and ORpJq – EndpE1
lq. For O1, the output of

DecompressMaxOrderpsOq, we haveO1 – EndpE1
lq by the Deuring’s correspondence, since DecompressMaxOrder

obtains O1 by reconstructing a connecting ideal equivalent to J . Hence, OrderToCurvepO1q gives a curve iso-
morphic to E1

l and results in the same j-invariant. Hence, ReconstructRoot will produce the same commitment.
Besides, since we model OpCom}¨q as a random, the scheme has λ entropy. [\

Theorem 5.3. The ΠΣ depicted in Figure 2 has Special Soundness if OpCom}¨q and MerkleTreep¨q is collision
resistant.

Proof. Given two valid transcripts pcom, 0, rsp0q and pcom, 1, rsp1q under the same statement ptEiuiPrMsq,
the extractor Extract proceeds as follows.

1. Generate by using the transcript pcom, 0, rsp0q and following the prover’s first round procedure, obtain
ϕi, Ci Ð OpCom}jpE1

iq}bitsiq for each i P rN s and the root pcom, treeq Ð MerkleTreepC1, ¨ ¨ ¨ ,CN q.
2. Generate by using the transcript pcom, 0, rsp1q and following the verification procedure, obtain O1 Ð

DecompressMaxOrderpsq, E1 Ð OrderToCurvepO1q and rC Ð OpCom}jpE1q}bitsq.

Also, extract the ideal rJ during the execution of DecompressMaxOrder.

21



round 1: P1O
1 ptEiuiPrMs, pl, Iqq

1: seed $
Ð t0, 1u

λ

2: pr, bits1, ¨ ¨ ¨ , bitsM q Ð OpExpand}seedq Ź Sample r1
P rD ` 1s and bitsi P t0, 1u

λ

3: for i from 1 to M do
4: E1

i, ϕ
1
i Ð KerGenDpEi, rq

5: Ci Ð OpCom}jpE1
iq}bitsiq Ź Create commitments Ci P t0, 1u

2λ

6: proot, treeq Ð MerkleTreepC1, ¨ ¨ ¨ ,CN q

7: Prover sends com Ð root to Verifier.

round 2: V1
1pcomq

1: ch $
Ð t0, 1u

2: Verifier sends ch to Prover.

round 3: P1
2ppl, Iq, chq

1: if ch “ 1 then
2: J Ð IsoToIdealIpϕ1

iq

3: path Ð getMerklePathptree, lq
4: sO Ð CompressMaxOrderpORpJqq

5: rsp Ð psO, path, bitslq
6: else
7: rsp Ð seed
8: Prover sends rsp to Verifier

Verification: V1O
2 pcom, ch, rspq

1: proot, chq Ð pcom, chq

2: if ch “ 1 then
3: ps, path, bitsq Ð rsp
4: O1

Ð DecompressMaxOrderpsq
5: E1

Ð OrderToCurvepO1
q

6: rC Ð OpCom}jpE1
q}bitsq

7: Ąroot Ð ReconstructRootprC, pathq

8: Verifier accepts if Ąroot “ root
9: else
10: Repeat round 1 with seed Ð rsp
11: Output accept if the computation

results in root, otherwise reject

Fig. 2: Construction of the base OR sigma protocol ΠΣ “ pP1 “ pP1
1,P

1
2q,V1 “ pV1

1,V
1
2qq for the relation Rsig.

Informally, OpExpand}¨q and OpCom}¨q are a PRG and a commitment scheme instantiated by the random
oracle, respectively.

3. Find l̃ P rN s such that Cl̃ “ rC and assert jpE1q “ jpE1

l̃
q.

4. Return rI where the ideal rI Ð IsoToIdeal
rJpϕ̂lq.

In Item 3, if such an index rI does not exist, then a collision occurs in the Merkle tree as shown in [6,
Lemma 2.9]. Similarly, if the first condition is satisfied and jpE1q ‰ jpE1

l̃
q, a collision is detected for OpCom}¨q.

It suffices to show that rI is a connecting ideal between EndpE0q and EndpEIq. Given that rJ is a connecting

ideal between EndpE0q and EndpE1
Iq and ϕ̂I : E

1
I Ñ EI , the mapping IsoToIdeal

rJpϕ̂Iq provides the connecting
ideal between EndpE0q and EndpEIq. Therefore, the scheme demonstrates special soundness. [\

Theorem 5.4. The scheme ΠΣ depicted in Figure 2 is statistically special honest-verifier zero-knowledge.
Concretely, there exists a simulator S such that for any statement and witness in the relation and computationally-
unbounded adversary A with at most Q queries to the random oracle, we have

AdvHVZKΠΣ
pAq ď Q{2λ ` neglpλq

for some negligible function neglpλq.

Proof. Let x “ tEiuiPrMs be a statement and fixed. The simulator S with access to the random oracle O
runs on input x and ch P t0, 1u as follows.

1. When ch “ 0, S follows the same procedure as a real prover and outputs a transcript pcom, 0, rspq where
a witness is not required in this case.

2. When ch “ 1, the simulator generates a cyclic isogeny from E0 of degree D uniformly at random and
computes the codomain curve E1, generates bits $

Ð t0, 1uλ, and computes C1 “ OpCom}jpE1q}bitsq.
S computes the connecting ideal J by using IsoToIdeal such that ORpJq – EndpE1q, then computes

sO by using CompressMaxOrder. Next, S generates dummy commitments C2, ¨ ¨ ¨ ,CM
$

Ð t0, 1u2λ and
computes proot, treeq Ð MerkleTreepC1, ¨ ¨ ¨ ,CM q. Then, S computes path Ð ptree, 1q. Set com “ root
and rsp “ psO, path, bitsq. S returns pcom, 1, rspq.
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Clearly, for the case ch “ 0, the simulation is perfect. To show the transcripts are indistinguishable, we
use a hybrid argument by introducing a series of simulators S0 “ P,S1,S2,S3 “ S. In each simulation, we
gradually modify the transcripts from S0, identical to the real prover P using a witness, to S3, identical to
S witness. For i P t1, 2, 3u, we define the advantage of Si to be

AdvipAq :“
ˇ

ˇPrrAOpSO
i´1px,w, 1qq “ 1s ´ PrrAOpSO

i px,w, 1qq “ 1s
ˇ

ˇ .

S1 proceeds the same as a real prover P except that it is not using OpExpand}¨q and OpCom}¨q to
generate pr, bits1, ¨ ¨ ¨ , bitsM q and tCiuiPrMs´tIu. Instead, it samples the elements uniformly at random from
the corresponding domain. Since OpExpand}¨q and OpCom}¨q are modeled by a random oracle, the elements
follows the same distribution except for those that have been queried. Since seed and bitsi for each i have λ
bits of min-entropy, we have Adv1pAq ď Q{2λ.

S2 proceeds the same as S1 except that it is not using generating E1
l from El and is not using the secret

ideal I between E0 and El to generate the ideal J . Instead, it generates a cyclic isogeny from E0 of degree D
uniformly at random and computes the codomain curve E1

l. Also, it is able to compute J by using IsoToIdeal
without using I. Due to the choice of D, by Theorem 2.5, the statistical distances of the output distributions
is bounded by neglpλq for some negligible function neglpλq. We have Adv1pAq ď Adv2pAq ` neglpλq.

S3 “ S is using 1 as the index to generate the root instead of l P rM s. By Lemma B.2, the output follows
the same distribution. Hence, we have Adv2pAq “ Adv3pAq. By a union bound, we have AdvHVZKΠΣ

pAq ď

Q{2λ ` neglpλq. [\

6 Instantiations

We estimate the parameters and the performance for Erebor and Durian, summarized in Tables 3 and 4 with
a comparison with the state-of-art ring signature schemes in the post-quantum literature and the isogeny
literature.

Linear-size Ring Signature. For Erebor the final signature parameters and the timings depends on the
particular prime p and the subroutines used during the computations. We try to provide some size estimates
below as functions of p, e, where 2e “ Drsp, the security parameter λ and the number of users in the ring
N . We write costpxq for the size of a compressed representation of the data x. Most of the compression
techniques mentioned below are rather standard for SQIsign.

Since the starting curve of ϕch is the public key we can represent it with the coordinates of a generator
of the kernel subgroup, so costpϕchq “ λ « log2pDcq. Moreover, σ̂ : Ech Ñ Ecmt can be compressed too as
described in [21, Section 8.5] e` 4pre{f s ´ 1q, where f is the exponent of the maximum available power-of-2
torsion (i.e. the maximum such that 2f | pp2 ´ 1q), also, all the other compression techniques from [55] can
be used in this context, obtaining different trade off of efficiency vs. compression. For level of security NIST
I we consider the prime p3923 from [22], we get costpσ̂q “ 170B for the full version and 130B for the short
one.

With respect to timings, we need to perform N ´ 1 simulations, that means computing a degree Dc ¨Drsp

isogeny (we need it to compute σ̂ ˝ ϕch to get the commitment), and one generation of a response, that has
the same cost of performing a SQIsign KLPT based signature, possibly adjusted to the increased value for
Drsp. It is important to observe that if we need to generate ψ of small degree, as in the KeyGen procedure
of SQIsign, the cost of the commitment generation greatly increases. The verification cost correspond, as for
the simulation, to the computation of N degree Dc ¨Drsp isogenies.

For NIST I, we provide in Table 2 an estimate of the costs as a function of the number of users N in
millions of cycles. As a baseline, we take the numbers provided in [22] for the optimized C implementation
with the prime p3923 scaled linearly with the rate of the length of the response in the variant of Erebor we
consider over the length of the response in SQIsign.

Note that these estimates give a lower-bound on the actual efficiency. Leroux in [40], and Onuki and
Nakagawa in [49] described improved variant of SQIsign’s ideal-to-isogeny translation method using high
dimensional isogenies that should outperform the approach in [22]. Since no competitive implementation
was provided yet for these new algorithms, we rather use the results from [22].

23



NIST I Signing (MC) Ver. (MC) Signature size (B)

Erebor-full pN ´ 1q ¨ 41 ` 2683 N ¨ 41 16 `N ¨ 170

Erebor-short pN ´ 1q ¨ 30 ` 2408 N ¨ 30 16 `N ¨ 130

Table 2: Size in bytes (B) and efficiency estimates in Millions of CPU cycles (MC) for Erebor.

Logarithmic-size Ring Signature. For Durian in Section 5, we can take the underlying prime the same as [4]
p “ 5 ¨ 2248 ´ 1 where we can find a smooth torsion subgroup easily and the execution of KerGen is fast when
the degree D is a power of 2 smaller than 2248. We remark that the signature size of Durian is solely based
on the parameter p and the security parameter λ regardless of other parameters like D. For the ring size
N , when the challenge is 0, the response has λ bits. When the challenge is 1, the response is approximately
log2ppq`rlog2pNqs¨2λ`λ where log2ppq upper-bounds the output of CompressMaxOrder. Hence, the signature
is expected to take plog2ppq ` rlog2pNqs ¨ 2λ ` 2λq ¨ λ{2 bits. However, if we use the standard Fiat-Shamir
with unbalanced challenge space technique to mitigate the overhead incurred by the increasing ring size, as
in [6] (see [5,37] for obtaining a tight reduction without rewinding) and a seed tree to compress the seeds
for the zero challenges [6] (see [8, Appendix B] for a precise upperbound to the size). Here, the challenge
space consists of n-bits strings of Hamming weight k. We consider N “ 2, N “ 8 and N “ 210. By taking
λ “ 128 and log2ppq “ 251 targeting NIST 1, if we choose mild parameters pn, kq “ p193, 35q, p193, 35q and
p455, 23q respectively such that

`

n
k

˘

ą 2λ to obtain more compact signatures of 4.08KB, 6.29KB and 9.87KB
respectively. The choice will not slow down the overall performance too much.

We did not implement Durian but we can estimate the running time based on extrapolation from the
recent C implementation from [4] (exact cycle counts for the underlying operations were not presented so we
don’t have a more precise estimate). The operations: KerGen, IsoToIdeal and CompressMaxOrder operations
do not take more than 10ms each on average to generate a response. During verification, each execution of
the DecompressMaxOrder and OrderToCurve operations takes less than 40 ms on average.

Therefore, for N “ 2, we estimate that Durian would take approximately 4.2 seconds for signing. Un-
fortunately, due to the slow subroutines DecompressMaxOrder and OrderToCurve, verification would require
about 4.5 seconds. When N “ 8, we estimate the signing time to be 15 seconds and the verification time
to be 14 seconds. When N “ 1024, it will take tens of minutes to 1 hour to sign and verify. Despite these
times, we expect Durian to be faster than its isogeny group action counterpart, Calamari, where each group
action takes 40 ms.

pk sk N Hardness Security
size size 2 4 8 Assumption Level

Erebor-full (4) 0.06 0.03 0.35 0.68 1.35 Problems 4.4 and 2.8 NIST 1
Gandalf [28] 0.89 * 1.2 2.4 4.8 R-NTRU, R-SIS NIST 1
DualRing [61] 2.84 0.23 4.56 4.64 4.74 M-LWE, M-SIS NIST 1

Table 3: A comparison between full anonymous ring signatures in the literature where the signature size grows
linearly in the ring size. The size unit is in KB. N represents the ring size. Problem 2.8, the supersingular
endomorphism problem, is equivalent to the isogeny problem [25,50].

Acknowledgement

We thank Luca De Feo for his advice all along the project. Yi-Fu Lai is supported by the European Union
(ERC AdG REWORC - 101054911). Giacomo Borin is supported by SNSF Consolidator Grant CryptonIs
213766.

24



pk sk N Hardness Security
size size 2 23 210 Assumption Level

Durian (Figure 2) 0.06 0.8 4.08 6.29 9.87 Problem 2.7 NIST 1
SMILE` [43] 2.00 1.73 / { 17.27 M-SIS, M-LWE NIST 1
Calamari [6] 0.06 0.03 3.5 5.4 9.6 GAIP ě 60

Table 4: A comparison between full anonymous logarithmic-size ring signatures in the literature. The size unit
is in KB. N represents the ring size. SMILE provides logarithmic ring signature with size of form N “ 32i and
has 15.96KB for N “ 32. Problem 2.7, the supersingular endomorphism ring problem, is tightly equivalent
to the isogeny problem [25].
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A Proofs for Algorithm 1 Security

A sigma protocol can be rendered to a digital signature via the well-known Fiat-Shamir transform [27] and
substituting the random oracle O with a cryptographic hash function H. We consider another useful security
definition for identification protocols, that, as proven in [1], is equivalent to the security of the signature
obtained via the Fiat-Shamir transform and it is implied by the previously given definitions (see e.g. [12,
Section 9.1]).

Definition A.1 ([1]). A sigma-protocol ΠΣ is secure against impersonation under passive attacks if, for
any polynomial time adversary A, the probability of winning the following impersonator game is negligible
in λ:

(i) The challenger sample a random pair px,wq Ð Genp1λq and send x to A;
(ii) A can query a polynomial number of valid transcripts;
(iii) A send a valid commitment com˚ to the challenger;
(iv) the challenger send a uniformly random ch˚

P ChSet;
(v) A output a response rsp˚, A wins if V2px, com, ch, rspq “ 1 (accepts).

For convenience we restate the Proposition 2.3 and 2.4, then provide the proofs using basic game based
arguments.

Proposition A.2. If Π Id satisfies the special weak (strong) computational HVZK property the AOS ring
signature (Algorithm 1) is anonymous (against key exposure) in the programmable random oracle model.

Proof (Proof of Proposition 2.3). Consider and adversaryA against the anonymity property playing the game
G. We start a modified version of the game G˚ in which using the random oracle we generate the signature
σ˚ without using skib . This can be done by sampling chib at random, obtaining comib , rspib Ð Spchibq and
then reprogramming the random oracle so that Hpcomib´1,R,m, pkibq Ñ chib . If a record for that input
already exists we can just restart the signature simulation process.

Since G˚ outputs are independent of b necessarily PrrA wins G˚s “ 1
2 , so

AdvAnonΠRS
pAq “ |PrrA wins Gs ´ PrrA wins G˚s| ,

but the only difference between the two games is the use of the simulator S, so |PrrA wins Gs´PrrA wins G˚s|

is bounded by the advantage against the weak HVZK. It is immediate to notice that if we also feed the secret
keys (i.e. the witnesses) to A we are in the same case of the strong HVZK. [\

Proposition A.3. If Π Id satisfies Definition A.1 the AOS ring signature (Algorithm 1) is unforgeable (UF-
CMA) in the programmable random oracle model.

Proof (Proof of Proposition 2.4).
Consider and adversary A against the UF-CMA property playing the game G. In the reprogramming

random oracle model we show how to render it to an adversary against the impersonation game Gimp ([1,
Definition 2.1]) for the sigma protocol involved in the ring signature. Let ϵ be the probability of winning this
game and qH, qsig the number of respectively random oracle and signing queries.
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We start the impersonator game and we receive from the challenger the public key (i.e. statement) pkimp,
we then query the impersonator challenger for qsig valid transcripts. Then we simulate the UF-CMA game
in this way:

(i) We generate key pairs ppki, skiq “ RS.KeyGenppp; rriq for all i P rN s but for one random index iimp, and
we fix pkiimp

Ð pkimp. We set PK :“ tpkiuiPrNs and initializes two empty sets S and C.
(ii) The challenger provides PK to A;
(iii) A can make signing and corruption queries an arbitrary polynomial number of times:

– psign, pki,m,Rq: if i ‰ iimp and pki P R we sign the message and return the signature σ to A.
If i “ iimp we use one of the valid transcripts pcomq, chq, rspqq previously queried to simulate the
signature via reprogramming the random oracle. We surely have enough of them since the number
of singing queries is bounded. We start the signature procedure committing to comq, then we
reprogram the random oracle so that the last query output chq. and return it to A. We then always
add pi,m,R, σq to S.

– pcorrupt, iq: If i “ iimp we declare failure and exit, otherwise we add pki to C and returns rri to A.

The simulation of H as a random oracle is our main tool for the reduction. We can assume without loos
of generality that the queries are always of the form com˚,R˚,M˚, pk˚. We also keep a time-ordered registry
R of any query pcom˚,R˚,M˚, pk˚, ch˚q, with ch˚ being the output. Also at the start we select at random
two of the qH queries q1, q2 to be reprogrammed.

At the q1-th query we take the commitment comq1 . If it is valid for pkimp we send it to the challenger and
receive the challenge chimp. We then reprogram the q2-th query to output chimp if pkimp is queried.

If the adversary A outputs a valid forgery σ “ pch˚
1 , rsp

˚
1 , ..., rsp

˚
r , com

˚
1 , ..., com

˚
r q for M˚,R˚ we then look

in the register at the oracle queries. Also we index the keys with respect to the order in R.
Because of the ring structure of the oracle calls there must exist at least one reverse index iR such

that pcom˚
iR
,R˚,M˚, pkiR`1q has been queried before pcom˚

iR´1,R
˚,M˚, pkiRq. Since the public key are all

generated by Gen with probability at least 1{n the reverse index is the one associated to pkimp
8. Also, with

probability
`

qH
2

˘´1
these two queries are exactly q1, q2, so com˚

iR
is the one sent to the challenger and chiR “

chimp is the received challenge. The validity of the final signature implies that ppkimp, com
˚
iR
, chimp, rsp

˚
iR

q is a
valid transcript, that we can send to the challenger, so

AdvUnfRS pAq ď n ¨

ˆ

qH
2

˙

¨ ϵ . (9)

[\

B Index-hiding Merkle trees

The definition an index-hiding Merkle tree is taken almost verbatim from [6]. Merkle trees [45] allow one to
hash a list of elements A “ pa0, ¨ ¨ ¨ , aN q into one hash value (often called the root). At a later point, one
can efficiently prove to a third party that an element ai was included at a certain position in the list A. In
the following, we consider a slight modification of the standard Merkle tree construction, such that one can
prove that a single element ai was included in the tree without revealing its position in the list.
Formally, the Merkle tree technique consists of three algorithms (MerkleTree, getMerklePath, ReconstructRoot)
with access to a common hash function HColl : t0, 1u‹ Ñ t0, 1u2λ.

– MerkleTreepAq Ñ proot, treeq: On input a list of 2k elements A “ pa1, ¨ ¨ ¨ , a2kq, with k P N, it constructs
a binary tree of height k with tli “ HCollpaiquiPr2ks as its leaf nodes, and where every internal node h
with children hleft and hright equals the hash digest of a concatenation of its two children. While it is
standard to consider the concatenation hleft}hright, we consider a variation which consists in ordering
the two children according to the lexicographical order (or any other total order on binary strings). We
denote by (hleft, hrightqlex this modified concatenation. The algorithm then outputs the root root of the
Merkle tree, as well as a description of the entire tree tree.

8 note that here we take into consideration also the case in which pkimp R R˚
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– getMerklePathptree, Iq Ñ path: On input the description of a Merkle tree tree and an index i P r2ks, it
outputs the list path, which contains the sibling of li (i.e. a node, different from li, that has the same
parent as li), as well as the sibling of any ancestor of li, ordered by decreasing height.

– ReconstructRootpa, pathq Ñ root: On input an element a in the list of elements A “ pa1, ¨ ¨ ¨ , a2kq and
path “ pn1, ¨ ¨ ¨ , nkq, it outputs a reconstructed root root1 “ hk, which is calculated by putting h0 “

HCollpaq and defining hi for i P rks recursively as hi “ HCollpphi´1, niqlexq.

If the hash function HColl that is used in the Merkle tree is collision-resistant, then the following easy
lemma implies that the Merkle tree construction is binding, i.e. that one cannot construct a path that
“proves” that a value b R A “ pa1, . . . , aN q is part of the list A that was used to construct the Merkle tree
without breaking the collision-resistance of the underlying hash function HColl.

Lemma B.1 (Binding for Merkle Tree). There is an efficient extractor algorithm that, given the de-
scription tree of a Merkle tree (having root root and constructed using the list of elements A) and pb, pathq

such that b R A and ReconstructRootpb, pathq “ root, outputs a collision for the hash function HColl.

The use of the lexicographical order to concatenate two children nodes in the Merkle tree construction
implies that the output path of the getMerklePath algorithm information-theoretically hides the index i P rN s

given as input. Formally, we have the following.

Lemma B.2 (Index Hiding for Merkle Tree). Let N P N be a power of 2, D,D1 be two arbitrary
distributions over t0, 1u˚ and DI , with I P rN s, be the distribution defined as

DI “

»

—

—

–

paI , path, rootq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

aI Ð D,
ai Ð D1 @ 1 ď i ‰ I ď N,

ptree, rootq Ð MerkleTreepAq,
path Ð getMerklePathptree, Iq

fi

ffi

ffi

fl

where A “ pa1, . . . , aN q. Then we have DI “ DJ for all I, J P rN s.
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