
Lightweight Dynamic Linear Components for
Symmetric Cryptography

S. M. Dehnavi, M. R. Mirzaee Shamsabad

1 Kharazmi University, Iran,dehnavism@ipm.ir
2 Shahid Beheshti University, Iran,m_mirzaee@sbu.ac.ir

Abstract. In this paper, using the concept of equivalence of mappings we characterize
all of the one-XOR matrices which are used in hardware applications and propose a
family of lightweight linear mappings for software-oriented applications in symmetric
cryptography. Then, we investigate interleaved linear mappings and based upon this
study, we present generalized dynamic primitive LFSRs along with dynamic linear
components for construction of diffusion layers.
From the mathematical viewpoint, this paper presents involutive sparse binary ma-
trices as well as sparse binary matrices with sparse inverses. Another interesting
result of our investigation is that, by our characterization of one-XOR matrices, the
search space for finding a k such that xn + xk + 1 is a primitive trinomial could be
reduced.
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1 Introduction
Linear mappings have many applications in symmetric cryptography. For example, LFSRs
are linear mappings which are used extensively in stream ciphers to provide a sequence
with a desirably long period and good statistical properties [6, 18]. As another example,
the diffusion layers of many symmetric ciphers such as block ciphers, stream ciphers, hash
functions and authenticated encryption schemes use linear mappings of desired branch
numbers [2, 7, 9, 10]. These linear diffusion layers usually apply some component linear
mappings: the lighter are these component mappings, the lighter would be the diffusion
layer.
The component linear mappings of lightweight symmetric ciphers should be implemented
in the target platforms (hardware and/or software) with a low implementation cost [17,
14, 9, 10]. Some papers study the concept of optimizing the implementation of MDS
matrices from various aspects [1, 12, 11, 13]. In [1] the authors investigate lightweight
multiplication in F2n . They study the mappings x → αx in the field F2n and present
such elements with the lightest implementation in hardware: one-XOR or two-XOR com-
ponent matrices. In [12], the study of one-XOR and two-XOR matrices for the use in
symmetric cryptography is continued and a conjecture from [1] is proved. The paper [11]
continues these examinations and proves another conjecture from [1]. In this paper, we
investigate this topic from another viewpoint and somehow more generally: our results
are independent of the field F2n , n > 1. Based on the concept of equivalence of matrices,
we characterize all the one-XOR matrices for hardware applications.
Then, after investigating a family of software-oriented lightweight linear mappings for the
use in symmetric cryptography, we examine interleaved linear mappings and based on this
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concept, we propose lightweight and/or dynamic linear mappings for the use in software
implementations. Most notably, based upon a previous representation of the ring of bi-
nary matrices [16], we present a variety of linear components with provable properties for
construction of software-oriented diffusion layers.
As for another application, we present generalized dynamic primitive LFSRs along with
dynamic component mappings for hardware and/or software applications. The dynamic
components could be used in the design of lightweight diffusion layers such as MDS dif-
fusion layers. These kind of component mappings could make symmetric ciphers more
resistant against cryptanalysis [15, 4].
As a mathematical result, the current paper presents sparse involutive matrices as well as
sparse matrices wirth a sparse inverse. Another interesting result of this paper is that, by
our characterization of one-XOR matrices, the search space for finding a k such that the
trinomial xn + xk + 1 is primitive, could be reduced.

2 Preliminary Notations and Definitions
In this paper, we use the usual notation Zn = {0, 1, . . . , n − 1}. The inverse of a per-
mutation P is denoted by P −1. The r-times composition of the function P with itself is
denoted by P r. We denote by Mn(F2) the set (ring) of all n × n bibary matrices.
The operation of XOR is denoted by + and the AND operation as well as the composition
of permutations are denoted by juxtaposition of symbols. The finite field with 2 elements
is denoted by F2 and the n-dimensional linear space over F2 by Fn

2 . The right cyclic shift
or rotation x ≫ i is denoted by xi. We denote the zero vector by 0, the all-one vector
by 1 and every identity matrix by I.
Let X ∈ Fmk

2 be a vector over Fm
2 ; i.e. X = (Xk−1, · · · , X0), where Xi ∈ Fm

2 , 0 ≤ i < k.
The weight of X with respect to m-bit words is denoted by wm(X) and is defined as

wm(X) = |{i : 0 ≤ i < k, Xi ̸= 0}|.

The matrix A ∈ Mn(F2), n = mk, could also be represented as follows

A = [Ai,j ]k×k, Ai,j ∈ Mm(F2), 1 ≤ i, j ≤ k. (1)

The (differential) branch number of A with respect to m-bit words is defined as

Bm
d (A) = min

X∈Fn
2 \{0}

{wm(X) + wm(AXT )},

where XT is the transpose of X and the linear branch number of A with respect to m-bit
words as

Bm
l (A) = min

X∈Fn
2 \{0}

{wm(X) + wm(AT XT )}.

For a linear mapping A ∈ Mn(F2), we denote the order of A i.e. the least integer m such
that Am = I, by O(A) and the number of fixed points of A, i.e. the number of X ∈ Fn

2
such that AX = X, by F(A).
Let n be a natural number and p be a permutation of Zn. The permutation p induces a
permutation P on Fn

2 with

P (xn−1, . . . , x0) = (x
p(n−1) , . . . , x

p(0)).

Hereafter, we call such a mapping P a coordinate permuting permutation on Fn
2 and denote

the set of all such permutations by P(Fn
2 ). Further, we call p the base permutation of P .
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Let A be a finite set and P be a permutation of A. It is well-known that P could be
decomposed into disjoint cycles Di, 1 ≤ i ≤ z, for some z. In this case, we write

P = D1D2 . . . Dz,

where Di = (di,1, . . . , di,ti
), 1 ≤ i ≤ z, such that P (di,r) = di,r+1, for 1 ≤ r < ti and

P (di,ti
) = di,1. In the case that z = 1 we call P a single cycle or say that P is a single-cycle

permutation.
Let P and Q be permutations on A and

P = D1D2 . . . Dz,

Q = D′
1D′

2 . . . D′
z′ ,

with |Di| = ti, 1 ≤ i ≤ z, and |D′
j | = t′

j , 1 ≤ j ≤ z′. Now, suppose that we have z = z′

and (possibly permuting Di’s) we have ti = t′
i, 1 ≤ i ≤ z. In this case, P and Q have the

same cyclic structure: we write P ≡ Q.
Let P and H be permutations of a finite set A. We denote the permutation HPH−1 by
PH . It is well-known that P ≡ PH . This notation shall be used extensively in the sequel.
Let j be a non-negative integer. We define ej = (xn−1, . . . , xj , . . . , x0) with

xi =

{
1 i = j,

0 i ̸= j.

We also define Ij,k on Fn
2 as follows

Ij,k(xn−1, . . . , x0) = (xrn−1 , . . . , xr0),

where

rt =


t t ̸= j, k,

k t = j,

j t = k.

In [16], an equivalent representation for the set of all n × n binary matrices Mn(F2) is
given. We denote by Rn the ring presented in [16] which is isomorphic to the ring of all
n × n binary matrices. Suppose that p is a single-cycle permutation on Zn. In the same
manner as done in [16], we see that another ring isomorphic to the ring of all n × n binary
matrices could be defined with the aid of p which we denote by Rp

n. The addition and
multiplication in Rp

n shall be demonstrated through the following example. Note that we
show the effect of p on x by xp, and we have xpi

xpj = xpt , t = i + j mod n.

Example 1. Suppose that
r1 = axp2

+ bxp + c,

r2 = dxp + e.

Then, in Rp
n, we have

r1 + r2 = axp2
+ (b + d)xp + (c + e),

and
r1r2 = adp2

xp3
+ (aep

2
+ bdp)xp2

+ (bep + cd)xp + ce.

This means that if we define f1(x) = aP 2(x) + bP (x) + cx and f2(x) = dP (x) + ex, such
that p is the base permutation of P , then we have

f1(f2(x)) = adp2
P 3(x) + (aep

2
+ bdp)P 2(x) + (bep + cd)P (x) + (ce)x.

Here, for example we have ap2 := P 2(a).
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In the case of hardware applications, the lightest linear matrices are obviously one-
XOR matrices; i.e. matrices that could be implemented by only one XOR in hardware.
One can check that all the one-XOR n×n binary matrices could be represented as follows

f(x) = P (x) + ejIj,k(x).

We use this representation extensively in the sequel.
In the case of software-oriented applications, the lightest ones or one category of the
lightest ones (which satisfy good cryptographic propeties) are of the form

f(x) = (x ≫ i) ⊕ (c ∧ x),

which is equivalent to the element xi + c in the ring Rn. We also use this representation,
hereafter.
Let L be a linear mapping defined on Fn

2 . We call L a primitive mapping, if the consecutive
outputs of L (refrain from 0) construct a single cycle of length 2n − 1. The companion
matrices of primitive LFSR’s are well-known examples of primitive linear mappings.

3 Lightweight and/or dynamic linear components
In this section, based on the idea of equivalence of mappings we investigate hardware-
oriented as well as software-oriented lightweight linear mappings. These lightweight map-
pings could be used as components in (lightweight) symmetric ciphers. Also, after exam-
ining interleaved linear mappings, dynamic components for the use in symmetric ciphers
are presented.

3.1 Algebra of lightweight mappings
In this subsection, we lay a mathematical foundation for the next two subsections. Firstly,
we give a lemma concerning the invertibility of linear mappings.

Lemma 1. Let P ∈ P(Fn
2 ) with the base permutation p ∈ Zn and let c ∈ Fn

2 . Consider
the function f(x) = P (x) + cx on Fn

2 . Let p = D1D2 . . . Dz, with

Di = (Di,1, . . . , Di,ti), 1 ≤ i ≤ z,

and
ci = (c

Di,1
, . . . , c

Di,ti
), 1 ≤ i ≤ z.

In fact, ci’s are bitwise nonregular segments of c, corresponding to cyclic decomposition
of p. In this case, f is invertible iff for each 1 ≤ i ≤ z, we have ci ̸= 1.

Proof. Without loss of generality, we prove the theorem for a permutation D with the
single-cycle base permutation d, |d| = t. Since f is linear, we must prove that if D(x)+cx =
0, then x = 0. We have 

x(0) + c0x0 = 0,

x
d(1) + c1x1 = 0,

...
x

d(t−1) + ct−1xt−1 = 0.

(2)

At first, suppose that c = 1. In this case x = 1 is a non-zero solution of the system of
Equation 2, or equivalently, x = 1 is a solution of f(x) = 0. This means that f is not
invertible. Conversely, suppose that at least one coordinate in c, say cr, 1 ≤ r ≤ t, is zero:
cr = 0. So, we have x

d(r) = 0. It follows that x
d(2)(r)

= 0, x
d(3)(r)

= 0, and so on. Since d

is a single cycle, we deduce that x = 0.
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Let P and Q be permutations on Fn
2 . It is obvious that f(x) = P (x) + cQ(x) on Fn

2 is
invertible iff the function g(x) = f(Q−1(x)) is invertible. So, we have the next corollary.

Corollary 1. Suppose that P, Q ∈ P(Fn
2 ) with corresponding base permutations p, q ∈ Zn

and let c ∈ Fn
2 . Consider the function f(x) = P (x) + cQ(x) on Fn

2 . Let

pq−1 = D1D2 . . . Dz,

where Di’s, 1 ≤ i ≤ z, are disjoint cycles in cyclic decopmposition of pq−1. Let

Di = (Di,1, . . . , Di,ti), 1 ≤ i ≤ z,

and
ci = (c

Di,1
, . . . , c

Di,ti
), 1 ≤ i ≤ z.

Then, f is invertible iff for each 1 ≤ i ≤ z, we have ci ̸= 1.

In the following lemma, we give a sufficient condition for invertibility of a special kind
of lightweight mappings which have a lightweight inverse. We also give the direct form of
their inverses.

Lemma 2. Suppose that P, Q ∈ P(Fn
2 ) with base permutations p, q and let c ∈ Fn

2 . Con-
sider the function f(x) = P (x) + cQ(x) on Fn

2 . Suppose that R = QP −1 with base
permutation r. If ccr = 0, then f is invertible and its inverse is

f−1(x) = P −1(x) + cp
−1

P −1QP −1(x).

Note that, as stated in Section 2, cr stands for R(c).

Proof. Simply, we see that

f(f−1(x)) = P (P −1(x) + cp
−1

P −1QP −1(x))

+cQ(P −1(x) + cp
−1

P −1QP −1(x))
= x + cR(x) + cR(x) + ccrR2(x)
= x + ccrR2(x) = x,

because ccr = 0.

Remark 1. In Lemma 2, put P = I. Then, we have a sparse involutive linear mapping
f(x) = x + cQ(x), provided that ccq = 0. It is not hard to see that the number of ones in
the binary matrix representing f is less than 2n and each matrix in this family of matrices
could be implemented with at most n − 1 XORs.
Remark 2. We know that the inverse of a sparse matrix is not sparse in general. An
interesting result of Lemma 2 is providing a large family of invertible sparse matrices with
sparse inverses. It is straightforward to see that the number of ones in the the binary
matrix representing f as well as its inverse is less than 2n and they could be implemented
with at most n − 1 XORs.

The proof of next theorem is not hard.

Theorem 1. Fix P, Q ∈ P(Fn
2 ) with corresponding base permutations p and q and let

c ∈ Fn
2 . Consider the function f(x) = P (x)+ cQ(x) on Fn

2 . Let pq−1 = D1D2 . . . Dz, with

Di = (Di,1, . . . , Di,ti), 1 ≤ i ≤ z.

Then, there are exactly
z∏

i=1
(2ti − 1)

many c ∈ Fn
2 such that f is invertible.
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Based upon the previous lemma, we have the following corollary.

Corollary 2. Consider the function f(x) = xi + cx on Fn
2 , where xi = x ≫ i, as stated

in the notations. Then, f is invertible if cci = 0. In this case we have

f−1(x) = x−i + c−ix−2i.

Note that the indices are computed modulo n, in the previous corollary. Also, in the
next corollary, j − i and 2j − 2i are computed modulo n.

Corollary 3. Consider the function f(x) = xi + cxj on Ft
2. Then f is invertible if

ccj−i = 0. In this case, we have

f−1(x) = xj−i + cj−ix2j−2i.

Similar to the method provided in [3], the next theorem could be proved.

Theorem 2. Fix 1 ≤ i, j < 2t such that i − j is odd. Then, the function f(x) = xi + cxj

on Ft
2 with c ∈ Ft

2 is invertible for exactly F2t+1 + F2t−1 number of c’s. Here, Fi denotes
the i-th Fibonacci number: F1 = F2 = 1 and

Fi = Fi−1 + Fi+1, i > 2.

Now, we show the applicability of the concept of equivalence, for construction of map-
pings useful in symmetric cryptography.

Theorem 3. Let L, M ∈ Mn(F2). Note that we identfy these matrices with their cor-
responding linear mappings on Fn

2 . Let L ≡ M and suppose that Lr + I is invertible for
some r. Then, Mr + I is also invertible.

Proof. Suppose that Mr +I is not invertible. So we have Mr(x)+x = 0 for some nonzero
x ∈ Fn

2 . It follows that Mr(x) = x, which means that x is on a cycle of length t such that
t is a divisor of r. Since L ≡ M , so L has also a cycle of length t. Suppose that y ̸= 0 is
on this cycle. It follows that Lt(y) = y, or Lr(y) = y. We deduce that Lr(y) + y = 0 for
a nonzero y. Therefore, Lr + I is not invertible, which is a contradiction.

Corollary 4. Let L and M be two linear mappings on Fn
2 with L ≡ M . Suppose that

for any ri, 1 ≤ i ≤ n, the linear mapping Lri + I is invertible. In this case, for every ri,
1 ≤ i ≤ n, the linear mapping Mri + I would also be invertible.

Remark 3. In Table 1 of [14], some mappings presented with the property that L2i + I
are invertible for 0 ≤ i < 14. Now, suppose that L is a fixed matrix of this table. Then,
any matrix M ≡ L also satisfies the presented property, i.e. M2i + I is invertible. Now,
we can see that, based on the concepts presented up to now, there are a lot of lightweight
matrices which are equivalent to L. This provides more flexibility and a vast variety of
matrices for the designers of (lightweight) symmetric ciphers

The proof of next corollary is straightforward.

Corollary 5. Let L and M be two linear mappings on Fn
2 with L ≡ M . Suppose that L

is primitive. Then, M is also primitive.

Remark 4. Similar to the case of the Remark 3, Corollary 5 presents a variety of primitive
linear mappings through the concept of equivalence.

The following lemma illustrates the crucial application of the concept of equivalence
in symmetric cryptography.
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Lemma 3. Consider the function f(x) = P (x) + cQ(x) with P, Q ∈ P(Fn
2 ) and c ∈ Fn

2 .
Let H ∈ P(Fn

2 ) with base permutation h. Then we have

fH(x) = PH(x) + chQH(x).

Proof. Since P, Q and H are linear, we have

fH(x) = HfH−1(x) = H(PH−1(x) + cQH−1(x))

= HPH−1(x) + H(c)HQH−1(x) = PH + chQH(x).

Lemma 3 shows that for a given mapping of the presented form, there are many
equivalent linear mappings with the same cyclic structure. The important point in the
previous lemma is the fact that w(c) = w(H(c)), which means that f and fH have the
same implementation cost in hardware applications.

Corollary 6. Let f(x) = xi +cxj and g(x) = xi +crxj be defined on Fn
2 . Here, 1 ≤ r < n,

is arbitrary. Then, f and g are equivalent.

In almost all applications in symmetric cryptography, the component linear mappings
are such that they must not have any fixed points. The next theorem gives a useful
criterion for the lightweight linear mappings without any fixed points.

Theorem 4. Let P ∈ P(Fn
2 ) with the base permutation p. Define f(x) = P (x)+ejIj,k(x)

with j ̸= p(k). The function g(x) = f(x) + x is invertible, iff p is a single-cycle.

Proof. Firstly we prove that, if p is not a single cycle, then g is not invertible. Since g is
linear, it suffices to prove that g(x) = 0 has a non-zero solution, which is equivalent to
the fact that f has a non-zero fixed-point. Suppose that

Di = (di,1, . . . , di,ji
), 1 ≤ i ≤ z,

with z ≥ 1, are the cycles of p. Let k ∈ Dr and h ∈ Ds, 1 ≤ r, s ≤ z. If r = s, then
x = (xn−1, . . . , x0) with

xi =

{
1 i ∈ Dr = Ds,

0 i /∈ Dr = Ds,

is a non-zero solution for g(x) = 0.
Now suppose that r ̸= s. The vector x = (xn−1, . . . , x0) with

xi =

{
1 i ∈ Dr,

0 i ∈ Ds,

is a non-zero solution for g(x) = 0.
Conversely, suppose that p is a single cycle. Since g is linear, it suffices to prove that
g(x) = 0 has no non-zero solution. Consider g(x) = 0. We have{

xp(i) + xi = 0 i ̸= j,

xp(j) + xj + xk = 0 i = j.

Since p is single-cycle, from the above equations we get x0 = x1 = · · · = xn−1 and since
we have xp(j) + xj + xk = 0, they can not be all one.
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3.2 Hardware Applications
In this subsection we investigate one-XOR matrices. In the next lemma, we give the
inverse of one-XOR mappings, in general. The interesting point is that, these inverses are
also one-XOR mappings.

Lemma 4. The function f(x) = P (x) + ejIj,k(x) on Fn
2 is invertible iff k ̸= P (j) and its

inverse is as follows
f−1(x) = P −1(x) + e

P (j)I
P (j),P −1(k).

Proof. Let
f(xn−1, . . . , x0) = (yn−1, . . . , y0),

and
f−1(yn−1, . . . , y0) = (zn−1, . . . , z0).

We have

yt =

{
x

P (t) t ̸= j,

x
P (j) + xk t = j,

and

zi =

{
y

P −1(t)
i ̸= P (j),

yj + y
P −1(k)

i = P (j).

Now if i ̸= P (j), then
zi = y

P −1(j)
= x

P (P −1(i))
= xi,

and if i = P (j), then

zi = yi + y
P −1(k)

= x
P (j) + xk + x

P (P −1(k))
= xi.

Now, we characterize all the equivalent one-XOR matrices.

Lemma 5. Define f(x) = P (x) + ejIi,j(x) on Fn
2 and let H ∈ P(Fn

2 ). Then

fH(x) = PH(x) + e
H (j)I

H(j),H(k)(x).

Proof. The mapping ejP (x) is zero at all coordinates but the j-th, which is x
P −1(j)

. So,
to find e

H (j)HIi,jH−1(x) with x = H(j), we have

(HIj,kH−1)−1(H(j)) = HIj,kH−1(H(j))

= HIj,k(j) = H(k).

Remark 5. Let P ∈ P(Fn
2 ) with the base permutation p. We define Lp(0) = 0 and for

r > 0, s := Lp(r) iff r = ps(0). We know that P is equivalent to f(x) = x1; i.e. there is
an H such that HPH−1 = x1. Here, we present the base permutation h for such an H:

h : Zn → Zn,

h(r) = Lp(r).

Now, let P ∈ P(Fn
2 ) with the single-cycle base permutation p. Consider

f(x) = P (x) + ejIj,k(x)



S. M. Dehnavi, M. R. Mirzaee Shamsabad 9

with j ̸= p(k). We have fH(x) = PH(x) + e
H (j)I

H(j),H(k)(x), or with the presented
notations,

fH(x) = x1 + e
Lp(j)I

Lp(j),Lp(k)(x).

Now consider H ′(x) = xLP (j)+1 and K = HH ′. Then

fK(x) = x1 + en−1In−1,Lp(k)+Lp(j).

In the next example, we illustrate the presented concept.

Example 2. Let
f : F8

2 → F8
2,

f(x7, x6, x5, x4, x3, x2, x1, x0) = (x3, x1, x4, x2, x6 + x6, x7, x0, x5).
By our notations, we have f(x) = P (x) + e3I3,6, where

P (x7, x6, x5, x4, x3, x2, x1) = (x3, x1, x4, x2, x6, x7, x0, x5),

with the single-cycle base permutation

p : Z8 → Z8,

p(0) = 5, p(1) = 0, p(2) = 7, p(3) = 6, p(4) = 2, p(5) = 4, p(6) = 1, p(7) = 3.

Now, we have

Lp(0) = 0, Lp(1) = 7, Lp(2) = 3, Lp(3) = 5, Lp(4) = 2, Lp(5) = 1, Lp(6) = 6, Lp(7) = 4.

Notations as above, f is equivalent to

g(x) = x1 + e7I7,3,

because Lp(3) + Lp(6) = 3 mod 8.

It is worth noting that, using the previous study and the criteria given in [16] for
non-primitivity of trinomials, the search space for checking the primitivity (imprimitivity)
of trinomials, could be reduced.

Before we end this section, we give some interesting algebraic facts.
Remark 6. Note that, with notations presented in Section 2,
a) In the ring Rp

n we have

(xp + c)−1 = xpn−1
+ cp

n−1
xpn−2

,

provided that ccp = 0.
b) In the ring Rn we have

(x + c)−1 = xn−1 + cn−1xn−2,

provided that cc1 = 0.
c) In the ring Rp

n we have

(xp + ejxpk

)−1 = xpn−1
+ e

P −1(j)
xpk−2

.

Here, k − 2 is computed modulo n.
d) In the ring Rn we have

(x + ejxk)−1 = xn−1 + e
j−1xk−2.

Here, k − 2 and j − 1 are computed modulo n.
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3.3 Software Applications
In this subsection, firstly we investigate a family of software-orientd lightweight linear
mappings. Then, we study interleaved linear mappings and their cryptographic applica-
tions.

3.3.1 A Family of Lightweight Mappings

In the case of software-oriented lightweight linear mappings, we present a very useful
theorem concerning the lightest linear ones.

Theorem 5. Consider the mapping f(x) = x1 + cx on Fn
2 . Let c be such that for some

i, we have ci−1 + ci = 0, where c = (cn−1, . . . , c0). Suppose that c is such that

cj =

{
cj j ̸= i, i − 1,

cj j = i − 1, i.

Put g(x) = x1 + cx. Then, we have f ≡ g.

Proof. Put u(x) = x + eiI
i,i−1(x) and R(x) = u(f(u(x))). We show that g = R. Now,

since u is an involution we have also g(x) = u(f(u−1(x))), which means that f ≡ g. To
show that R(x) = u(f(u(x))), firstly define Z(x) = f(u(x)) and suppose that zj is the
j-th output bit of Z(x). We have

zj =


cjxj + xj+1 j ̸= i, i − 1,

xi−2 + ci−1xi−1 + ci−1xi j = i − 1,

xi−1 + cixi j = i.

Now, put T (x) = u(f(x)) and suppose that tj is the j-th output bit of T (x). Then,

tj =


cjxj + xj+1 j ̸= i, i − 1,

xi−2 + ci−1xi−1 + ci−1xi j = i − 1,

xi−1 + cixi j = i.

According to the formula for the j-th output bits of Z and T and supposing that rj is the
j-th output bit of R, we have

rj =


cjxj + xj+1 j ̸= i, i − 1,

xi−2 + ci−1xi−1 + (ci−1 + ci)xi j = i − 1,

xi−1 + cixi j = i.

So, if ci−1 = 0 and ci = 1, we have

rj =


cjxj + xj+1 j ̸= i, i − 1,

xi−2 + xi−1 j = i − 1,

xi−1 j = i,

and if ci−1 = 1 and ci = 0, we have

rj =


cjxj + xj+1 j ̸= i, i − 1,

xi−2 j = i − 1,

xi−1 + xi j = i,

which shows that R = g. This ends the proof.
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Suppose that u, v ∈ Fn
2 , u ̸= 1, v ̸= 1 and w(u) = w(v). It is not hard to see that

u can be transformed into v by interchanging the adjacent zeros and ones. Now, using
Theorem 5 we have the next corollary.

Corollary 7. Let c, c ∈ Fn
2 with w(c) = w(c). Define f(x) = x1 + cx and g(x) = x1 + cx.

Then, we have f ≡ g.

The next two examples show a useful application of Theorem 5 and Corollary 7.

Example 3. Suppose that f(x) = x1 + cx satisfies the conditions of invertibility of
gi(x) = fri(x) + x, 1 ≤ i ≤ t, for some t. Now, using Corollary 7 and Corollary 4, we
could design a dynamic (randomized) component with a suitable software implementation.
Let m be arbitrary. Then, the linear mapping hm(x) = x1 + cm(x) is equivalent to f . So,
for each m, 1 ≤ m < n, the mapping hm also satisfies the conditions of invertibility of
hri

m + x.

Example 4. Suppose that f(x) = x1 + cx is a primitive linear mapping. Again, using
Corollary 7 and Corollary 4, we could design a dynamic (generalized) LFSR with a suitable
software implementation. Let m be arbitrary. Then, the linear mapping hm(x) = x1 +
cm(x) is equivalent to f . So, for each m, 1 ≤ m < n, the mapping hm is also a primitive
linear mapping.

3.3.2 Interleaved Mappings

In this subsection, we present a strong tool for construction of parallel (bitsliced) imple-
mention of linear mappings for symmetric cryptography. We use the notations presented
in [16] extensively, in the sequel.

Definition 1. Let Lk =
∑n−1

i=0 ak
i xi, 1 ≤ k ≤ m, be m linear mappings on Fn

2 with
ak

i = (ak
i,n−1, . . . , ak

i,0). Then we define Λm
k=1Lk over Fmn

2 as
∑mn−1

t=0 αtx
t with

αt =

{
(am

r,n−1, . . . , am
r,0, . . . , a1

r,n−1, . . . , a1
r,0) t = rm,

0 ow.

Example 5. Suppose that A, B ∈ R3 with

A = (a2
2, a2

1, a2
0)x2 + (a1

2, a1
1, a1

0)x1 + (a0
2, a0

1, a0
0),

B = (b2
2, b2

1, b2
0)x2 + (b1

2, b1
1, b1

0)x1 + (b0
2, b0

1, b0
0).

Then, A Λ B ∈ R6 is equal to

(a2
2, b2

2, a1
2, b1

2, a0
2, b0

2)x4 + (a2
1, b2

1, a1
1, b1

1, a0
1, b0

1)x2 + (a2
0, b2

0, a1
0, b1

0, a0
0, b0

0).

Remark 7. As the previous example illustrates, one can check that, the action of Λm
k=1Lk

on Fmn
2 is the parallel action of the mappings Li, 1 ≤ i ≤ m, regularly interleaved

(or bit-sliced) together. More precisely, the output bits in the coordinates (i − 1)n + j,
1 ≤ i ≤ m, are the output bits corresponding to the action of the linear mapping Li on
the corresponding coordinates of the input. Note that, we could equivalently suppose that
L acts on (x1, . . . , xs), through independent action of Li on xi, 1 ≤ i ≤ m. We use this
notation in the proof of the following theorem.

Theorem 6. Notations as above, let n = st. Consider Λm
k=1Lk. Then, we have

a) Btm
l (L) = minm

i=1 Bt
l (Li).



12 Lightweight Components for Symmetric Cryptography

b) Btm
d (L) = minm

i=1 Bt
d(Li).

c) O(L) = lcm(O(L1), . . . , O(Lm)).

d) F(L) =
∏m

i=1 F(Li).

Proof. a) We know that each Li, 1 ≤ i ≤ m, acts on s many t-bit words and Λm
k=1Lk acts

on s number of mt-bit words. Now, according to Remark 7, we know that Λm
k=1Lk acts

independently on sn number of t-bit words, through Li’s, 1 ≤ i ≤ m. We firstly prove
that

Btm
l (L) ≤

m
min
i=1

Bt
l (Li). (3)

Let Lr be such that b = Bt
l (Lr) = minm

i=1 Bt
l (Li). Suppose that there are p nonzero input

and q nonzero output s-bit words for Lr such that p + q = b. Now, consider the input
words of L such that the corresponding sub-words of L are the mentioned p + q words
and all the other sub-words are zero. In this case, we have p nonzero input and q nonzero
output sm-bit words for L, which proves (3).
Conversely, we prove that

Btm
l (L) ≥

m
min
i=1

Bt
l (Li). (4)

Suppose that d = Btm
l (L) < minm

i=1 Bt
l (Li). So, there are p nonzero input and q nonzero

output sm-bit words for L with p + q = d, which means that there is at least one of the
Li’s, say Lz, such that it has p nonzero input and q nonzero output s-bit words. It follows
that Bt

l (Lz) < minm
i=1 Bt

l (Li). This contradict (4).
b) Similar to the proof of Case a.
c) Note that, if f be a permutation such that its cycles in the cyclic decomposition are of
distinct lengths hi, 1 ≤ i ≤ e, for some e, then

O(f) = lcm(h1, . . . , he).

Firstly, we prove that O(L) ≥ lcm(O(L1), . . . , O(Lm)). Suppose that an Li, 1 ≤ i ≤
m, has a cycle of length l. According to Remark 7, considering all the inputs of the
other Lj ’s, h ̸= i, we observe that L has a cycle of length l. It follows that O(L) ≥
lcm(O(L1), . . . , O(Lm)), because, for 1 ≤ i ≤ m, we have O(Li) = lcm(l1, . . . , lv), where
Li’s, 1 ≤ i ≤ v, are the distinct cycle lengths of Li.
Now, we prove that Llcm(O(L1),...,O(Lm)) = I. For simplicity, we suppose that L acts on
xi’s, 1 ≤ i ≤ m. Again, by Remark 7 we see that each Li acts independently on xi. Now,
since for each i, we have L

O(Li)
i = I, we deduce that

Llcm(O(L1),...,O(Lm)) = I,

which ends the proof.
d) Again, we suppose that L acts on xi’s, 1 ≤ i ≤ m. By Remark 7 we see that each
Li acts independently on xi. On one hand, considering a fixed-point of Li, for some
1 ≤ i ≤ m, shows that F(L) ≥

∏m
i=1 F(Li). On the other hand, if x = (x1, . . . , xm) is a

fixed-point of L, then for each i, xi should be a fixed-point of Li. So, F(L) ≤
∏m

i=1 F(Li).
This ends the proof.

Example 6. Let L =
∑n−1

i=0 aix
i, be a linear mapping on Fn

2 with ai = (ai,n−1, . . . , ai,0).
Then, we have

Λm
k=1L =

mn−1∑
t=0

αtx
t,
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which is defined over over Fmn
2 and,

αt =

{
(ar,n−1, . . . , ar,0, . . . , ar,n−1, . . . , ar,0) t = rm,

0 ow.

Corollary 8. Notations as above, consider Λm
k=1L. Then, we have

a) Bkm
l (Λm

k=1L) = Bn
l (L).

b) Bkm
d (Λm

k=1L) = Bn
d (L).

c) O(Λm
k=1L) = O(L).

d) F(Λm
k=1L) = (F(L))m.

Similar to the case of equivalent mappings, we have the following facts.

Theorem 7. Let Li, 1 ≤ i ≤ m, be m linear mappings on Fn
2 such that for each 1 ≤ i ≤ m,

Lr
i + I is invertible. Put L = Λm

k=1L. Then, Lr + i is invertible.

Proof. Suppose that Lr + I is not invertible. So we have Lr(x) + x = 0 for some nonzero
x ∈ Fmn

2 . It follows that Lr(x) = x, which means that x is on a cycle of length t such
that t is a divisor of r. We deduce that for each 1 ≤ i ≤ m, there is an xi ∈ Fn

2 such that
Lr

i (xi) = xi. This contradicts the fact that Lr
i + I is invertible.

Corollary 9. Let Li, 1 ≤ i ≤ m, be m linear mappings on Fn
2 such that for each 1 ≤

i ≤ m, and every j, 1 ≤ j ≤ s, the linear mapping L
rj

i + I is invertible. Let L = Λm
k=1L.

Then, for every j, 1 ≤ j ≤ s, the linear mapping Lrj + I is invertible.

Now, we give two examples illustrating the usage of the concept of interleaving.

Example 7. Let fi(x) = x1+cix, 1 ≤ i ≤ m, be defined on Fn
2 . Here, ci = (ci,n−1, . . . , ci,0).

Then, f = Λm
i=1fi on Fmn

2 is
f(x) = xm + Cx,

where
C = (cm,n−1, . . . , c1,n−1, . . . , cm,0, . . . , c1,0).

Remark 8. Note that, the above example provides a method for construction of dynamic
(randomized) linear components with little extra cost in software implementations: as
studied in [16], these dynamic components could make symmetric ciphers more resistant
against various kinds of cryptanalysis.

Example 8. Let f(x) =
∑m

i=1 xij , 1 ≤ i ≤ m. Then,

Λm
i=1f =

m∑
i=1

xmij .

Remark 9. Another proof of Theorem 3.5 in [5] could be given by the concepts studied in
this paper.
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4 Conclusion
In this paper, we present the concept of equivalence of mappings and based on this stusy,
we characterize all of one-XOR matrices which are used in hardware applications. Also,
we present a family of lightweight linear mappings for software-oriented applications in
symmetric cryptography. Then, we investigate interleaved linear mappings and based
upon this concept, we presente generalized dynamic primitive LFSRs along with dynamic
linear components for construction of diffusion layers.
As a mathematical result, we presente invoutive sparse binary matrices as well as sparse
binary matrices with sparse inverses. Another interesting result of this study is that, with
the aid of our characterization of one-XOR matrices, the search space for finding a k such
that xn + xk + 1 is primitive, could be reduced
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