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Abstract. Dimension 4 isogenies have first been introduced in cryptography

for the cryptanalysis of Supersingular Isogeny Diffie-Hellman (SIDH) and have
been used constructively in several schemes, including SQIsignHD, a derivative

of SQIsign isogeny based signature scheme. Unlike in dimensions 2 and 3,

we can no longer rely on the Jacobian model and its derivatives to compute
isogenies. In dimension 4 (and higher), we can only use theta-models. Previous

works by Romain Cosset, David Lubicz and Damien Robert have focused on

the computation of ℓ-isogenies in theta-models of level n coprime to ℓ (which
requires to use ng coordinates in dimension g). For cryptographic applications,

we need to compute chains of 2-isogenies, requiring to use ≥ 3g coordinates in

dimension g with state of the art algorithms.
In this paper, we present algorithms to compute chains of 2-isogenies be-

tween abelian varieties of dimension g ≥ 1 with theta-coordinates of level
n = 2, generalizing a previous work by Pierrick Dartois, Luciano Maino, Gi-

acomo Pope and Damien Robert in dimension g = 2. We propose an im-

plementation of these algorithms in dimension g = 4 to compute endomor-
phisms of elliptic curve products derived from Kani’s lemma with applications

to SQIsignHD and SIDH cryptanalysis. We are now able to run a complete key

recovery attack on SIDH when the endomorphism ring of the starting curve is
unknown within a few seconds on a laptop for all NIST SIKE parameters.

1. Introduction

Higher dimensional isogenies have become a popular and widely used tool in
cryptography since they were introduced to attack the Supersingular Isogeny Diffie-
Hellman (SIDH) key exchange [22–24]. The attacks against SIDH used a result due
to Kani [26, proof of Theorem 2.3], abusively called Kani’s lemma, to ”embed” a
(presumably secret) isogeny φ between elliptic curves into an isogeny F between
elliptic products of dimension 2, 4 or 8. This higher dimensional isogeny F could be
computed in polynomial time given images of φ on some torsion points, that were
given in SIDH. The ability to evaluate F could be used to evaluate φ everywhere,
leading to a full key recovery.

With this new method involving higher dimensional isogenies, we are now able
to evaluate an isogeny everywhere given its images on torsion points. This allows
in particular to evaluate non-smooth degree isogenies efficiently [32], which could
not be done with previous state of the art techniques. After its cryptanalytic use
against SIDH, Kani’s lemma has been leveraged for several constructive applications
in cryptography: among others, the public-key encryption schemes FESTA [27]
and its improvement QFESTA [28], SQIsignHD [5] followed by [6–9] improving
the digital signature NIST candidate SQIsign [4], SCALLOP-HD [29] improving
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the SCALLOP group action [30], a key encapsulation mechanism IS-CUBE [31]
and a verifiable random function DeuringVRF [21]. From an algorithmic point
of view, Kani’s lemma offers a way to make the Deuring correspondence between
ideals of an elliptic curve endomorphism ring and isogenies defined on this elliptic
curve effective for ideals of non-smooth norms [25]. This effective way to translate
ideals into isogenies has been leveraged in SQIsignHD and follow-up works [5–7,9],
DeuringVRF [21] and also in the group action setting [29] where an orientation of
elliptic curves is fixed.

1.1. Previous works. In the works of W. Castryck, T. Decru, L. Maino, C. Mar-
tindale, L. Panny, G. Pope and B. Wesolowski against SIDH [23, 24], dimension 2
isogenies were used which constrained the attack. When the endomorphism ring
of the starting curve is unknown, a subexponential search for parameter tweaks
and a subexponential auxiliary 1-dimensional isogeny computation were necessary.
In [22, § 2, 4], D. Robert proved that using dimension 4 or 8 isogenies would relax
these constraints and make the attack polynomial. Unlike 2-dimensional attacks1,
Robert’s 4-dimensional attack has not been implemented yet.

Finding fast higher dimensional isogeny formulas was not crucial to cryptanalytic
applications but has become relevant to constructive applications. Most applica-
tions use 2-dimensional isogenies and some of them use 4-dimensional isogenies
[5, 21]. In dimension 2, state of the art techniques using Richelot isogenies [33, 34]
became the bottleneck of these cryptographic protocols, making them impracti-
cal. Recently, efficient formulas using theta coordinates have been introduced to
compute 2-dimensional 2 and 3-isogenies [1, 2].

While still useful in practice, especially for SQIsignHD [5], 4-dimensional iso-
genies have been the focus of very little attention. Algorithmic efforts have been
made to compute ℓ-isogenies between abelian varieties of any dimension in the
Theta model [35–37]. The state of the art technique [37] enables to compute ℓ-
isogenies between abelian varieties of dimension g with theta-coordinates of level
n coprime to ℓ in time O((nℓ)g). In particular, we can compute 2-isogenies us-
ing ng theta-coordinates of level n with n ≥ 3. Generalizing this method to level
n = ℓ = 2 is essential to reduce complexity. This has been done and implemented
in dimension 2 [1], leading to very fast computations. The algorithmic approach
of [1] was based on formulas valid in any dimension introduced in a note by Damien
Robert [18, Chapter 7]. However, no proof was provided for these formulas.

1.2. Our contribution. In this paper, we generalize the algorithms of [1] to com-
pute 2-isogenies in any dimension g with level 2 theta-coordinates. We provide
proofs for the formulas introduced in [18, Chapter 7]. We also introduce and prove
formulas to change theta-coordinates required for isogeny computations. Finally,
we provide an implementation of 4-dimensional 2-isogenies with applications to
SQIsignHD2 and SIDH torsion point attacks with a random starting curve [22]
along with implementation details that were missing in the original SQIsignHD
paper [5, Appendix F].

1See https://github.com/Breaking-SIDH/direct-attack and https://github.com/

GiacomoPope/Castryck-Decru-SageMath
2This implementation can be found here https://github.com/Pierrick-Dartois/

SQISignHD-lib.

https://github.com/Breaking-SIDH/direct-attack
https://github.com/GiacomoPope/Castryck-Decru-SageMath
https://github.com/GiacomoPope/Castryck-Decru-SageMath
https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/Pierrick-Dartois/SQISignHD-lib
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Section 2 recalls foundational notions on polarized abelian varieties and theta
functions, following the approach of Mumford [15]. Section 3 introduces a for-
mula to compute new theta-coordinates associated to a change of symmetric theta-
structure. In Section 4, we provide formulas and an algorithmic approach to com-
pute chains of 2-isogenies in any dimension g. In Section 5, we apply this approach
to the computation of 4-dimensional 2e-isogenies between elliptic products derived
from Kani’s lemma, e.g. in the context of SQIsignHD and SIDH torsion attacks.
Our SIDH attacks run in a few seconds on a laptop for all NIST SIKE parame-
ters. Appendix B and Appendix C give implementation details, focusing on how
to compute the necessary changes of theta-coordinates in this context. Finally,
Appendix E explains how optimal divide an conquer strategies can be adapted to
compute chains of 4-dimensional isogenies.

2. Preliminaries on the Theta model

2.1. Polarized abelian varieties. In the following, k is an algebraically closed
field of characteristic char(k) ̸= 2 and A is an abelian variety of dimension g defined
over k. Abelian varieties are projective connected group varieties. By rigidity, their
group structure is always abelian [3, Corollary 2.4]. In particular, elliptic curves
are abelian varieties of dimension 1.

An isogeny between abelian varieties is a group variety homomorphism (homo-
morphism of varieties respecting the group law) which is surjective and has finite
kernel. In particular, if f : A −→ B is an isogeny, then A and B have the same
dimension. As in dimension 1, in higher dimension, we can compute f with the
knowledge of ker(f). This will be the goal of this paper.

A line bundle L over A is a locally free sheaf ofOA-modules of rank 1. This means
that L is locally isomorphic to the sheaf of regular functions OA of A. Isomorphism
classes of line bundles on A form a group denoted by Pic(A) [13, Chapter 7, p. 178].
Line bundles can be seen as divisors, since there is a group isomorphism between
Pic(A) and equivalence classes of divisors modulo principal divisors [14, Proposition
II.6.15]. We denote by Pic0(A) the subgroup of line bundles invariant by translation:

Pic0(A) = {[L] | ∀a ∈ A(k), t∗aL ∼= L}.

Pic0(A) identifies with the group of k-rational points Â(k) of the dual abelian variety

Â. If L is a line bundle on A generated by global sections s1, · · · , sn ∈ Γ(A,L) i.e.
when s1,x, · · · , sn,x generate the stalk Lx for all x ∈ A, these global sections define

a morphism of k-varieties A −→ Pn−1
k [14, Theorem II.7.1]. We say that L is very

ample when it induces such a map A −→ Pn−1
k which is a closed immersion and that

L is ample when one of its powers is very ample. Abelian varieties are projective
[3, Theorem 7.1] so (very) ample line bundles always exist on A.

Given a line bundle L on A, one defines a group homomorphism φL : A(k) −→
Pic(A), a 7−→ [t∗aL ⊗ L−1]. As a consequence of the theorem of the square [3,
Theorem 6.7], this homomorphism maps into Pic0(A) [3, Proposition 10.1]. When

L is ample, φL has finite kernel. In that case, φL defines an isogeny A −→ Â,
which is called a polarization of A. We say that (A,φL) or (A,L) is a polarized
abelian variety. Intuitively, a polarization on A might be seen as a way to orient A.
We can derive models from them (eg. the Theta model). We say that L or φL is
separable when char(k) ̸ | deg(φL). Throughout this paper, we shall assume
that line bunldes are ample and separable.
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We say that a polarization φL is principal and that (A,L) is a principally po-

larised abelian variety (PPAV) when φL is an isomorphism A
∼−→ Â. All elliptic

curves are principally polarized but this is not the case of all abelian varieties. If
(A,L0) and (B,M0) are PPAVs and f : A −→ B is an isogeny and d ∈ N∗, we

say that f is d-isogeny when f̂ ◦ φM0 ◦ f = [d] ◦ φL0 i.e. f̃ ◦ f = [d], where

f̃ := φ−1
L0
◦ f̂ ◦φM0 . By abuse, we shall call f̃ the dual of f (instead of f̂). If L and

M are polarisations on A and B respectively, we say that f is a polarised isogeny

from (A,L) to (B,M) and denote f : (A,L) −→ (B,M) when f̂ ◦φM ◦ f = φL. If
L = Ld0 andM =M0, then f is a d-isogeny if and only if it is a polarised isogeny
(A,L) −→ (B,M). Indeed, we have φL = φLd

0
= [d] ◦ φL0

by the theorem of the

square [3, Theorem 6.7].

2.2. The Theta group. Let L be an ample and separable line bundle on A and
K(L) := {x ∈ A(k) | t∗xL ∼= L} be the kernel of φL. The theta-group of L, denoted
by G(L) is made of pairs (x, ϕx), where x ∈ K(L) and ϕx is an isomorphism L ∼−→
t∗xL (which always exists by the definition of K(L)). G(L) is indeed a group for the
group law given by (x, ϕx)·(y, ϕy) := (x+y, t∗xϕy ◦ϕx) for all (x, ϕx), (y, ϕy) ∈ G(L),
where t∗xϕy ◦ ϕx is the map:

L ϕx−→ t∗xL
t∗xϕy−→ t∗x(t

∗
yL) = t∗x+yL,

tx being the translation by x.
There is an exact sequence:

1 −→ k∗ −→ G(L) −→ K(L) −→ 0,

where the first arrow is λ 7−→ (0, λ idL) and the last arrow is the forgetful map
ρL : (x, ϕx) 7−→ x.
G(L) is not abelian. To measure the commutativity defect of two elements,

we introduce the commutator pairing eL : K(L) × K(L) −→ k∗, given for all
x, y ∈ K(L) by eL(x, y) := x̃ · ỹ · x̃−1 · ỹ−1, where x̃ and ỹ are respectively lifts of x
and y in G(L). By the above exact sequence, this quantity eL(x, y) defines a scalar
in k∗ and does not depend on the lifts x̃ and ỹ of x and y. The commutator pairing
is bilinear, skew-symmetric and non-degenerate [15, Theorem 1].

An isogeny between polarised abelian varieties f : (A,L) −→ (B,M) satisfies
f∗M ∼= L. Then, it is easy to check that K(L) contains K := ker(f). Besides, K

can be lifted in G(L) as follows. Given an isomorphism α : f∗M ∼−→ L, we define

K̃ := {(x, t∗xα ◦ α−1) | x ∈ K} ⊂ G(L). The forgetful map induces an isomorphism

K̃
∼−→ K. We say that K̃ is a level subgroup lying above K. In particular, K̃ is

abelian so eL is trivial on K. We say that K is isotropic. Conversely, it can be
proved that a subgroup K ⊆ K(L) admits a level subgroup lying above it if and
only if K is isotropic. There is a one to one correspondence between level subgroups

K̃ in G(L) and pairs (f, α) as above [15, Proposition 1, p. 291].

2.3. Theta structures. The commutator pairing being non-degenerate, it can be
proved that K(L) admits a symplectic decomposition, namely there exists maximal
isotropic subgroups K1(L) and K2(L) such that K(L) = K1(L)⊕K2(L) and such

that eL induces an isomorphism K2(L) ∼= K̂1(L) := Hom(K1(L), k∗). By the
finite abelian groups structure theorem, there exists a unique tuple of integers
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δ = (d1, · · · , dr) such that d1| · · · |dr and K1(L) ∼= K1(δ) and K2(L) ∼= K2(δ),
where:

K1(δ) :=

r∏
i=1

Z/diZ and K2(δ) := K̂1(δ) = Hom(K1(δ), k
∗).

We say that L is of type δ. It follows that K(L) ⊆ A[dr], with A[dr] ∼= (Z/drZ)f
and f ≤ 2g = 2dim(A) by [3, Remarks 8.4 and 8.5]. Hence, we can assume that
r = g without loss of generality.

Let K(δ) := K1(δ) × K2(δ). As K(L), K(δ) can be equipped with a non-
degenerate skew-symmetric pairing eδ : K(δ)×K(δ) −→ k∗, given by:

∀(x, χ), (x′, χ′) ∈ K(δ), eδ((x, χ), (x
′, χ′)) = χ′(x)χ(x)−1.

K(L) is not only isomorphic to K(δ). Actually, there exists a symplectic isomor-

phism σ : K(L) ∼−→ K(δ) mapping Ki(L) to Ki(δ) and such that eδ(σ(x), σ(y)) =
eL(x, y) for all x, y ∈ K(L).

We define the Heisenberg group as H(δ) := k∗ × K(δ), with the following non
abelian group law:

(α, x, χ) · (β, x′, χ′) := (αβχ′(x), x+ x′, χχ′),

for all (α, x, χ), (β, x′, χ′) ∈ k∗ × K1(δ) × K2(δ). As for G(L), there is an exact
sequence:

1 −→ k∗ −→ H(δ) −→ K(δ) −→ 0.

If L is of type δ, a theta-structure is an isomorphism ΘL : H(δ) ∼−→ G(L) inducing
an isomorphism of exact sequences:

1 // k∗ // H(δ) //

ΘL

��

K(δ) //

ΘL
��

0

1 // k∗ // G(L) // K(L) // 0

Such theta structures always exist and are in bijection with triples (ΘL, s1, s2),

where ΘL is a symplectic isomorphismK(δ)
∼−→ K(L) and si are sectionsKi(L)

∼−→
K̃i(L), the K̃i(L) ⊂ G(L) being level subgroups lying above Ki(L) for i ∈ {1, 2}.
Note that theKi(L) are fully determined by ΘL via the formulaKi(L) = ΘL(Ki(δ)).

In the following, we denoteKi(ΘL) orKi(ΘL) instead ofKi(L) and K̃i(ΘL) instead

of K̃i(L) to stress this dependence.

2.4. Theta functions. The Heisenberg group H(δ) acts on the space V (δ) of func-
tions K1(δ) −→ k as follows:

(1) ∀f ∈ V (δ), (α, x, χ) ∈ H(δ), (α, x, χ) · f : y 7−→ αχ(y)−1f(y − x).

This action defines the only irreducible representation of H(δ) on which k∗ acts
naturally [15, Proposition 3, p. 295]. Similarly, the theta-group G(L) acts on the
ring of global sections Γ(A,L) as follows:

∀s ∈ Γ(A,L), (x, ϕx) ∈ G(L), (x, ϕx) · s = t∗−x(ϕx(s)).

When L is of type δ, this representation is irreducible [15, Theorem 2, p. 297] and

naturally isomorphic to V (δ). Hence, there is an isomorphism β : V (δ)
∼−→ Γ(A,L)
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respecting the group actions of H(δ) and G(L), namely such that:

(2) ∀v ∈ V (δ), h ∈ H(δ), β(h · v) = ΘL(h) · β(v).
As a consequence of Schur’s lemma [16, Lemma XVIII.5.9], β is unique up to scalar
multiplication. Consider the basis of V (δ) given by Kronecker functions (δi)i∈K1(δ)

and the basis of Γ(A,L) given by θLi := β(δi) for all i ∈ K1(δ). We call this
basis (θLi )i∈K1(δ) the basis of theta functions associated to ΘL or the basis of ΘL-
coordinates. It is defined up to multiplication by a scalar in k∗.

When L is generated by global sections, theta functions define a map A −→ Pd−1
k

[14, Theorem II.7.1],where d :=
∏g
i=1 di and δ := (d1, · · · , dg), so they give a way to

represent the polarised abelian variety (A,L) in the projective space. When dg ≥ 3,

L is generated by global sections and the induced map A −→ Pd−1
k is a closed

immersion [39, p. 163]. When 2|δ, L is also generated by global sections [39, p. 60]
but the theta functions only define a closed immersion of the Kummer variety
A/± ↪−→ Pd−1

k under the assumption that (A,L) is not a product of polarised
abelian varieties and that L is totally symmetric, as we shall see in Section 2.9
[40, Theorem 4.8.1].

When we work with a polarization L of type δ, we obtain d =
∏g
i=1 di theta

coordinates to represent points. In practice, to minimize computational complexity,
we assume δ = 2 := (2, · · · , 2) to obtain 2g theta-coordinates only. In that case,
we say that ΘL is a theta-structure of level 2. We work on the Kummer variety so
points are represented up to sign.

Theta functions are convenient because we can easily compute the action of the
theta-group on these functions. The theta group action can be leveraged to derive
arithmetic formulas (including differential addition, doubling, isogeny computation,
change of basis).

2.5. The Theta-null point. As we have seen previously, we may see theta-functions
as projective coordinates. The theta-null point is the projective point (θLi (0))i∈K1(δ).
In [17, p. 51], Robert proves that the theta-null point determines the sections

si : Ki(ΘL)
∼−→ K̃i(ΘL) induced by the theta-structure ΘL

3. When 4|δ, the theta-

null point even determines the symplectic isomorphism ΘL : K(δ)
∼−→ K(L), so

the whole theta structure. When 2|δ, ΘL is only determined up to signs.
In practice, this means that if x = ΘL(j, χ) ∈ K(L), then we have:

(3) (θLi (x))i∈K1(δ) = (ΘL(1, j, χ) · θLi (0))i = (χ(i+ j)−1 · θLi+j(0))i,
where the first equality is proved in [17, p. 51] and the last follows from (1). More
generally, the theta-group action can be used to translate any point y ∈ A(k) by a
point of K(L):
(4) (θLi (x+ y))i∈K1(δ) = (ΘL(1, j, χ) · θLi (y))i = (χ(i+ j)−1 · θLi+j(y))i.

2.6. The product Theta structure. Let (A1,L1), · · · , (Ar,Lr) be polarised abelian
varieties, A :=

∏r
i=1Ai and L :=

⊗r
i=1 π

∗
i Li, where πi : A −→ Ai is the projection

for all i ∈ J1 ; rK. Then (A,L) is an abelian variety equipped with the product
polarization. We have natural isomorphisms K(L) ∼=

⊕r
i=1K(Li) and

G(L) ∼=
r∏
i=1

G(Li)/{(λ1, · · · , λr) ∈ k∗ | λ1 · · ·λr = 1}.

3Provided it is not identically zero, which is always the case in practice.
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Let δ(i) be the type of Li for all i ∈ J1 ; rK and δ := δ(1) ∨ · · · ∨ δ(r) be the
concatenation of the δ(i). Then, we also have:

H(δ) ∼=
r∏
i=1

H(δ(i))/{(λ1, · · · , λr) ∈ k∗ | λ1 · · ·λr = 1}.

If ΘL1 , · · · ,ΘLr are theta-structures on G(L1), · · · , G(Lr) respectively, the prod-

uct theta-structure ΘL :=
∏r
i=1 ΘLi

is the isomorphism H(δ) ∼−→ G(L) induced
by (h1, · · · , hr) 7−→ (ΘL1

(h1), · · · ,ΘLr
(hr)). This theta-structure induces a nat-

ural symplectic decomposition of K(L) = K1(ΘL) ⊕ K2(ΘL), where Ki(ΘL) :=∏r
j=1Ki(ΘLj ) for i ∈ {1, 2}.

Lemma 1. [17, p. 70] For all i := (i1, · · · , ir) ∈ K1(δ
(1))× · · · ×K1(δ

(r)),

θLi =

r⊗
j=1

π∗
j θ

Lj

ij
.

Proof. With the notations of Section 2.4, we have V (δ) ∼=
⊕r

j=1 V (δ(j)) and Γ(A,L) =⊕r
j=1 π

∗
jΓ(Aj ,Lj). For all j ∈ J1 ; rK, let βj : V (δ(j))

∼−→ Γ(Aj ,Lj) be an iso-

morphism satisfying (2) for ΘLj . Then, the isomorphism β : V (δ)
∼−→ Γ(A,L),

v1 ⊗ · · · ⊗ vr 7−→ π∗
1β1(v1)⊗ · · · ⊗ π∗

rβr(vr) also satisfies (2) for the product theta-
structure ΘL. The result follows. □

Our goal is to work with a product of elliptic curves. By Lemma 1, we just
have to multiply theta coordinates of elliptic curves to obtain theta coordinates on
the product. However, a question remains: how can we translate elliptic curves
Montgomery coordinates into theta coordinates?

2.7. From Montgomery to Theta coordinates in level 2. In [18, Chapter 7,
Appendix A], formulas were introduced to convert Montgomery coordinates into
level 2 theta-coordinates and vice versa. Let E be an elliptic curve in the Mont-
gomery model and (T ′

1, T
′
2) be a basis of E[4] such that T ′

2 := (−1 : 1). Let us write
T ′
1 := (r : s). Then, we may define a level 2 theta-structure on E with theta-null

point (a : b) := (r + s : r − s). The conversion map from Montgomery to theta
coordinates is then (x : z) 7−→ (a(x − z) : b(x + z)). Conversely, if (a : b) is
the theta-null point, the conversion map from theta to Montgomery coordinates is
(θ0, θ1) 7−→ (aθ1 + bθ0 : aθ1 − bθ0).

We see here is that a basis of the 4-torsion can determine a theta-structure of
level 2. This is a consequence of a general result for symmetric theta-structures
(Theorem 5.(ii)).

2.8. The isogeny theorem. Here we explain how to compute isogenies with theta
coordinates. Let f : (A,L) −→ (B,M) be an isogeny between polarised abelian
varieties. Let δ and δM be respectively the types of L andM. We want to express
the f∗θMi for all i ∈ K1(δM) (seen as functions x 7−→ θMi (f(x))) in the basis
(θLj )j∈K1(δ) (seen as functions x 7−→ θLj (x)).

We begin by choosing compatible theta-structures on G(L) and G(M) determin-
ing these theta functions. Let K := ker(f). Assume that K ⊆ K(L) is isotropic,

let K̃ be a level subgroup lying over K and Z(K̃) be the centralizer of K̃ in G(L).
Then, the isomorphism α : f∗M ∼−→ L associated to K̃ by [15, Proposition 1,

p. 291] induces a surjective map αf : Z(K̃) −↠ G(M) of kernel K̃ [15, Proposition
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2, p. 291]. For i ∈ {1, 2}, let K̃i(ΘL) (respectively K̃i(ΘM)) be the level subgroups
lying above Ki(ΘL) (respectively Ki(ΘM)) induced by the theta-structure (as we
saw in Section 2.3).

Definition 2. We say that two theta-structures ΘL and ΘM on G(L) and G(M)

respectively are compatible when: (i) K̃ = (K̃ ∩ K̃1(ΘL))⊕ (K̃ ∩ K̃2(ΘL)) and (ii)

αf maps Z(K̃) ∩ K̃i(ΘL) to K̃i(ΘM) for i ∈ {1, 2}.

Let K⊥ = {x ∈ K(L) | ∀y ∈ K, eL(x, y) = 1} and let us write K := K1 ⊕K2

and K⊥ := K⊥,1 ⊕K⊥,2, with Ki,K
⊥,i ⊆ Ki(ΘL) for i ∈ {1, 2}. Then, if we fix a

theta-structure ΘL on G(L), there is a one to one correspondence between theta-

structures ΘM on G(M) compatible with ΘL and isomorphisms σ : K⊥,1/K1
∼−→

K1(δM) [17, Proposition 3.6.2]. In [15, Theorem 4, p. 302], Mumford proved the
following theorem to compute isogenies with theta coordinates, which has been
reformulated by Robert [17, Theorem 3.6.4].

Theorem 3. Let ΘL and ΘM be compatible theta-structures on G(L) and G(M)

respectively and let σ : K⊥,1/K1
∼−→ K1(δM) be the isomorphism induced by ΘM.

Then, there exists λ ∈ k∗ such that for all i ∈ K1(δM),

(5) f∗θMi = λ
∑

j∈Θ
−1
L (σ−1({i}))

θLj .

When K ⊆ K2(ΘL), there is always only one index j in the sum of Equation (5)
and the isogeny is simpler to compute. In this paper, we always work in that case.
When K ̸⊆ K2(ΘL), we may do a change of basis between theta-structures. This
is explained in the section 3.

2.9. Symmetric Theta structures. A line bundle L on A is symmetric when
[−1]∗L ∼= L. It is totally symmetric when there exists a symmetric line bundleM
such that L ∼= M2. By [15, Proposition 1, p. 305], L is totally symmetric if and
only if it descends to a line bundle N on the Kummer variety KA := A/± via the
projection π : A −→ KA i.e. such that L ∼= π∗N .

Let L be a symmetric line bundle of type δ. In [15, p. 308], Mumford defines
δ−1, an automorphism of G(L) making the following diagram commute:

1 // k∗ // G(L)

δ−1

��

ρL // K(L)

[−1]

��

// 0

1 // k∗ // G(L)
ρL // K(L) // 0

He also defines an Heisenberg group analogue D−1 ∈ Aut(H(δ)). We say that a
theta structure ΘL on G(L) is symmetric when ΘL ◦ D−1 = δ−1 ◦ ΘL. We say
that an element g ∈ G(L) is symmetric when δ−1(g) = g−1. A theta-structure ΘL
is symmetric if and only if its induced level subgroups K̃i(ΘL) are symmetric i.e.
made of symmetric elements [17, Proposition 4.2.9].

Let f : A −→ B be an isogeny of kernel K. Let L be a symmetric line bundle
on A. Then, there exists a symmetric line bundleM on B such that f∗M ∼= L if

and only if there is a symmetric level subgroups K̃ lying above K [17, Proposition
4.2.12]. Assuming M exists, if ΘL is a symmetric theta structure on G(L), then
any theta-structure ΘM on G(M) which is compatible with ΘL in the sense of
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Definition 2, is automatically symmetric [17, Remark 4.2.15]. This property is
very convenient to compute isogeny chains, because we can obtain a symmetric
theta-structure on the codomain from a symmetric theta structure on the domain.

Now, we assume that L is totally symmetric. We explain compatibility conditions
between theta structures on G(L) and G(L2). Note that K(L2) = [2]−1K(L)
[15, Proposition 4, p. 310], so that K(L) ⊂ K(L2). In [15, pp. 309-310], Mumford
defines group homomorphisms ε2 and η2 between G(L) and G(L2) making the
following diagrams commute:

1 // k∗

λ7→λ2

��

// G(L)

ε2

��

ρL // K(L)� _

��

// 0

1 // k∗ // G(L2)
ρL2
// K(L2) // 0

1 // k∗

λ7→λ2

��

// G(L2)

η2

��

ρL2
// K(L2)

[2]

��

// 0

1 // k∗ // G(L)
ρL // K(L) // 0

In [15, p. 316], he also defines their Heisenberg analogues E2 : H(δ) −→ H(2δ) and
H2 : H(2δ) −→ H(δ).

Definition 4. We say that theta-structures ΘL and ΘL2 on G(L) and G(L2)
respectively are compatible when ΘL2 ◦E2 = ε2 ◦ΘL and ΘL ◦H2 = η2 ◦ΘL2 . We
also say that (ΘL,ΘL2) is a pair of symmetric theta-structures (for (L,L2)).

Theorem 5.
(i) Every symmetric theta-structure ΘL2 on G(L2) induces a unique symmetric

theta-structure ΘL on G(L) that is compatible with ΘL2 .
(ii) The resulting theta-structure ΘL on G(L) only depends on the symplectic

isomorphism ΘL2 : K(2δ)
∼−→ K(L2).

(iii) Every symmetric theta-structure on G(L) is induced by a symmetric theta-

structure on G(L2), or equivalently, by a symplectic isomorphism K(2δ)
∼−→

K(L2).

Proof. (i) is [15, Remark 1, p. 317], (ii) is [15, Remark 3, p. 319] and (iii) is
[15, Remark 4, p. 319]. □

2.10. Addition and duplication formulas. Let L be a totally symmetric line
bundle of type δ on A. Let (ΘL,ΘL2) be a pair of symmetric theta-structures
for (L,L2). Then, by [17, Corollary 4.3.7], we have for all x, y ∈ A(k), and all
i, j ∈ K1(δ),

(6) θLi (x+ y)θLj (x− y) =
∑

{
u,v∈K1(2δ)
u+v=2i
u−v=2j

θL
2

u (x)θL
2

v (y).

We have an injective map (Z/2Z)g ↪−→ K1(2δ), mapping t := (t1, · · · , tg) to tδ =
(t1d1, · · · , tgdg). We can then define the following change of variables: for all
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χ ∈ ̂(Z/2Z)g and i ∈ K1(2δ),

(7) UL2

χ,i :=
∑

t∈(Z/2Z)g
χ(t)θL

2

i+tδ.

Using this change of variable, we can rewrite and revert Equation (6):

Theorem 6. [17, Theorem 4.4.3] Let x, y ∈ A(k). Then there exists λ1, λ2 ∈ k∗

such that for all i, j ∈ K1(2δ) such that i ≡ j mod 2 and χ ∈ ̂(Z/2Z)g, we have:

(8) θL(i+j)/2(x+ y)θL(i−j)/2(x− y) = λ1
∑

χ∈ ̂(Z/2Z)g

UL2

χ,i(x)U
L2

χ,j(y)

(9) UL2

χ,i(x)U
L2

χ,j(y) = λ2
∑

t∈(Z/2Z)g
χ(t)θL(i+j+tδ)/2(x+ y)θL(i−j+tδ)/2(x− y).

These formulas can be used to compute differential addition. Knowing the co-
ordinates θLi (x), θ

L
i (y) and θ

L
i (x − y), we can obtain the θLi (x + y) [17, Algorithm

4.4.10]. In particular, for doubling (x = y), (θLi (x−y))i = (θLi (0))i is the theta-null
point, so we only need to know the θLi (x), provided the theta-null point has been
precomputed (see Algorithm 8).

2.11. Heisenberg group automorphisms. We denote by Autk∗(H(δ)) the group
of automorphisms of H(δ) fixing k∗. Every such automorphism ψ ∈ Autk∗(H(δ))
induces a symplectic isomorphism ψ ∈ Sp(K(δ)), and by [17, Proposition 3.5.1], we
have an exact sequence:

0 −→ K(δ) −→ Autk∗(H(δ)) −→ Sp(K(δ)) −→ 1.

Every ψ ∈ Autk∗(H(δ)), can be written explicitly as

(10) ψ(α, x, χ) := (αξ(x, χ), ψ(x, χ))

for all (α, x, χ) ∈ H(δ), where ψ ∈ Sp(K(δ)) is the induced symplectic isomorphism
and ξ : K(δ) −→ k∗ is a semi-character, satisfying the following property:

ξ(x1 + x2, χ1 · χ2) =
ξ(x1, χ2)ξ(x2, χ2)ψ2(x2, χ2)(ψ1(x1, χ1))

χ2(x1)

for all (x1, χ1), (x2, χ2) ∈ K(δ) [17, Remark 3.5.2]. If L has type δ, then Autk∗(H(δ))
acts faithfully and transitively on the set of theta-structures on G(L) by right-
composition [17, p. 52].

Now, what happens if we restrict to symmetric theta-structures? An automor-
phism ψ ∈ Autk∗(H(δ)) is symmetric if ψ ◦D−1 = D−1 ◦ ψ (where D−1 has been
defined in Section 2.9). We denote by Aut0k∗(H(δ)) the subgroup of symmetric
automorphisms. Let L be a totally symmetric theta structure of type δ. Then,
as previously, Aut0k∗(H(δ)) acts faithfully and transitively on the set of symmetric
theta structures on G(L). By [17, p. 67], we also have an exact sequence:

0 −→ K(δ)[2] −→ Aut0k∗(H(δ)) −→ Sp(K(δ)) −→ 1.

Lemma 7. Let ψ ∈ Autk∗(H(δ)) and ψ, ξ as in Equation (10). Then ψ is sym-
metric if and only if

(11) ∀(x, χ) ∈ K(δ), ξ(x, χ)2 = χ(x)−1ψ2(x, χ)(ψ1(x, χ)).
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Proof. Let (α, x, χ) ∈ H(δ). Then, by the definition of D−1 [15, p. 316], we have
D−1(α, x, χ) = (α,−x, χ−1) = α2/χ(x)(α, x, χ)−1, so that:

ψ ◦D−1(α, x, χ) = ψ

(
α2

χ(x)
(α, x, χ)−1

)
=

α2

χ(x)
ψ(α, x, χ)−1

and D−1 ◦ ψ(α, x, χ) =
α2ξ(x, χ)2

ψ2(x, χ)(ψ1(x, χ))
ψ(α, x, χ)−1

The result follows. □

2.12. Action of Heisenberg automorphisms on Theta functions. Let L be
a line bundle of type δ on A, ΘL be a theta-structure on G(L), ψ ∈ Autk∗(H(δ))
and Θ′

L := ΘL ◦ψ. The group actions introduced in Section 2.4 give a way to com-
pute the change of basis matrix between theta-functions (θi)i∈K1(δ) and (θ′i)i∈K1(δ)

associated to ΘL and Θ′
L respectively.

By the definition of the theta-group action (1), we have:

(12) δi = (1, i, 1) · δ0 and (1, 0, χ) · δ0 = δ0

for all i ∈ K1(δ) and χ ∈ K2(δ), where the δi are the Kronecker functions. It

follows that the action of the level subgroup K̃2(Θ
′
L) associated to Θ′

L stabilizes θ′
L
0 .

Besides, Ti :=
∑
j∈K2(δ)

ΘL◦ψ(1, 0, j)·θi is stable under the action of K̃2(Θ
′
L) for all

i ∈ K1(δ). But this level subgroup is maximal (since K2(ΘL) is maximal isotropic
in K(L)), so [15, Proposition 3, p. 295] ensures that the subspace of V (δ) stabilized

by K̃2(Θ
′
L) has dimension 1. The following result follows:

Proposition 8. [17, p. 53] There exists i0 ∈ K1(δ) and λ ∈ k∗ such that:

θ′0 = λ
∑

j∈K2(δ)

ΘL(δ) ◦ ψ(1, 0, j) · θi0 .

Once we found θ′0, we can obtain θ′i for all i ∈ K1(δ), by the formula θ′i =
ΘL ◦ ψ(1, i, 1) · θ′0 derived from Equation (12).

3. Change of basis formulas

In this section, we derive explicit change of basis formulas from Proposition 8
in the case of symmetric theta structures. Given a totally symmetric line bundle
L of type δ on an abelian variety A and a symmetric theta-structure ΘL on G(L),
we know that ΘL is completely determined by a symplectic isomorphism ΘL2 :
K(2δ)

∼−→ K(L2) by Theorem 5. Our change of basis formula (Theorem 12) only
depends on the symplectic isomorphism of Sp(K(2δ)) induced by the change of
basis. This formula was already known to Igusa [19, Theorem V.2] and Cosset
[20, Proposition 3.1.24] but was proved in the analytic setting of complex theta
functions. Our proof only uses the algebraic setting of [15]. In this setting, we
obtain more convenient formulas to implement for isogeny computations over finite
fields.

3.1. Action of Heisenberg automorphisms on pairs of symmetric theta
structures. Throughout this section, we fix a totally symmetric line bundle L of
type δ := (d1, · · · , dg) on an abelian variety A. We study the action of Autk∗(H(2δ))
on pairs of symmetric theta structures (ΘL,ΘL2) for (L,L2).
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First, we give more details on the maps E2 and H2 introduced in Section 2.9 and
defined in [15, p. 316]. We have a natural embeddingK1(δ) ↪−→ K1(2δ) via the mul-
tiplication by 2 map and conversely, we have a natural surjective map K1(2δ) −↠
K1(δ) mapping x := (x1 mod 2d1, · · · , xg mod 2dg) to x := (x1 mod d1, · · · , xg
mod dg). Looking at the dual, we also have a natural embedding K2(δ) ↪−→ K2(2δ)
mapping every χ ∈ K2(δ) to 2 ⋆χ : x ∈ K1(2δ) 7−→ χ(x) ∈ k∗ and a surjective map
K2(2δ) −↠ K2(δ) mapping every χ ∈ K2(2δ) to χ : x ∈ K1(δ) 7−→ χ(2x) ∈ k∗.
Then E2 : H(δ) −→ H(2δ) and H2 : H(2δ) −→ H(δ) are given by:

∀(α, x, χ) ∈ H(δ), E2(α, x, χ) := (α2, 2x, 2 ⋆ χ),

∀(α, x, χ) ∈ H(2δ), H2(α, x, χ) := (α2, x, χ).

Let E2 : K(δ) −→ K(2δ) andH2 : K(2δ) −→ K(δ) be the homomorphisms induced
by E2 and H2 respectively. We also define Dn : H(δ) −→ H(δ) by Dn(α, x, χ) :=

(αn
2

, nx, χn) for all (α, x, χ) ∈ H(δ) and n ∈ Z.

Lemma 9. [15, p. 316] Assume that 2|δ. Then:

(i) ker(H2) = {h ∈ H(2δ) | h2 = 1}.
(ii) E2◦DH(δ)

−1 = D
H(2δ)
−1 ◦E2 and H2◦DH(2δ)

−1 = D
H(δ)
−1 ◦H2 (where the exponents

indicate the group of definition).

(iii) E2 ◦H2 = D
H(2δ)
2 and H2 ◦ E2 = D

H(δ)
2 .

(iv) For all h ∈ H(δ), Dn(h) = hn(n+1)/2D−1(h)
n(n−1)/2.

Proposition 10. Assume that 2|δ. Then:

(i) For all ψ ∈ Aut0(H(2δ)), there exists a unique ψ′ ∈ Aut0(H(δ)) such that
ψ′ ◦H2 = H2 ◦ ψ and ψ ◦ E2 = E2 ◦ ψ′.

(ii) Let ψ,ψ
′
, ξ, ξ′ be respectively the symplectic automorphisms and semi-characters

associated to ψ and ψ′ as in Equation (10). Then, we have ψ
′◦H2 = H2◦ψ,

E2 ◦ ψ
′
= ψ ◦ E2 and:

∀(x, χ) ∈ K(2δ), ξ′(x, χ) = χ(x)−1ψ2(x, χ)(ψ1(x, χ)).

(iii) Let (ΘL,ΘL2) and (Θ′
L,Θ

′
L2) be two pairs of symmetric theta-structures for

(L,L2). Then, there exists ψ ∈ Aut0(H(2δ)) such that Θ′
L2 = ΘL2 ◦ ψ and

Θ′
L = ΘL ◦ ψ′, where ψ′ ∈ Aut0(H(δ)) is induced by ψ.

Proof. (i) Since 2|δ, Lemma 9.(i) ensures that ker(H2) = H(2δ)[2], so that ker(H2◦
ψ) = H(2δ)[2] = ker(H2) as well since ψ is an automorphism. Hence, H2 ◦ ψ
factors through H2 and this defines an automorphism ψ′ : H(δ) ∼−→ H(δ) such that
ψ′ ◦H2 = H2 ◦ ψ. This automorphism ψ′ is trivial on k∗ because ψ is and H2 acts
as λ 7−→ λ2. Besides, ψ′ is symmetric by Lemma 9.(ii) and since H2 is surjective,
so ψ′ ∈ Aut0(H(2δ)). The uniqueness is a consequence of the surjectivity of H2.

We now prove that ψ ◦ E2 = E2 ◦ ψ′. By surjectivity of H2, it suffices to prove
that ψ ◦ E2 ◦H2 = E2 ◦ ψ′ ◦H2 i.e. that ψ ◦D2 = D2 ◦ ψ since ψ′ ◦H2 = H2 ◦ ψ
and E2 ◦H2 = D2 by Lemma 9.(iii). Let h ∈ H(2δ). Then, D2(h) = h3D−1(h) by
Lemma 9.(iv) and:

ψ ◦D2(h) = ψ(h3D−1(h)) = ψ(h)3ψ ◦D−1(h) = ψ(h)3D−1 ◦ ψ(h) = D2 ◦ ψ(h)

The result follows.
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(ii) Let (α, x, χ) ∈ H(2δ). The equalities ψ′ ◦H2 = H2 ◦ψ and E2 ◦ψ
′
= ψ ◦E2

immediately follow from ψ′ ◦H2 = H2 ◦ ψ and ψ ◦ E2 = E2 ◦ ψ′. By Lemma 7:

ξ′(x, χ) = ξ(x, χ)2 = χ(x)−1ψ2(x, χ)(ψ1(x, χ)).

The result follows.
(iii) Let ψ := Θ−1

L2 ◦Θ′
L2 . Then, ΘL2 and Θ′

L2 being symmetric, we have:

ψ ◦D−1 = Θ−1
L2 ◦Θ′

L2 ◦D−1 = Θ−1
L2 ◦ γ−1 ◦Θ′

L2 = D−1 ◦Θ−1
L2 ◦Θ′

L2 = D−1 ◦ ψ,

so ψ ∈ Aut0(H(2δ)). Besides by compatibility of the pairs (ΘL,ΘL2) and (Θ′
L,Θ

′
L2):

Θ′
L ◦H2 = η2 ◦Θ′

L2 = η2 ◦ΘL2 ◦ ψ = ΘL ◦H2 ◦ ψ = ΘL ◦ ψ′ ◦H2,

so that Θ′
L = ΘL ◦ ψ′ since H2 is surjective. This completes the proof. □

3.2. Change of basis of symmetric theta structures. Let δ := (d1, · · · , dg)
with d1| · · · |dg and ζ ∈ k∗ be a dg-th primitive root of unity. Let us fix a canonical
symplectic basis of K(δ) as follows. For i ∈ J1 ; gK, let ei be the vector of K1(δ)
with 1 at index i and 0 everywhere else. For all l ∈ J1 ; gK, let χl ∈ K2(δ) be
the character such that χl(em) = ζdg/dlδl,m for all l ∈ J1 ; gK. Then K1(δ) can be

canonically identified with K2(δ) via the map i ∈ K1(δ) 7−→ χi :=
∏g
l=1 χ

il
l . We

then have

∀i, j ∈ K1(δ), χi(j) = ζ⟨i|j⟩ with ⟨i|j⟩ :=
g∑
l=1

dg
dl
iljl.

Such a basis is called a ζ-canonical symplectic basis.

Lemma 11. Let σ : K(δ)
∼−→ K(δ) be an automorphism of K(δ) and M be

its matrix in the ζ-canonical symplectic basis (e1, · · · , eg, χ1, · · · , χg). Then σ is
symplectic if and only if

tM · J∆ ·M ≡ J∆ mod dg, where J∆ :=

(
0 ∆
−∆ 0

)
and ∆ := Diag(dg/d1, · · · , dg/dg−1, 1).

If we write

M :=

(
A C
B D

)
,

this is equivalent to tB∆A ≡ tA∆B, tD∆C ≡ tC∆D and tA∆D − tB∆C ≡ ∆
modulo dg.

Proof. Let l,m ∈ J1 ; gK. Then

eδ(σ(el, 1), σ(em, 1)) = eδ((Ael, χ
Bel), (Aem, χ

Bem)) = χBej (Ael)χ
−Bel(Aem)

= ζ⟨Ael|Bem⟩−⟨Bel|Aem⟩ = ζ
tel(

tA∆B− tB∆A)em

and eδ((el, 1), (em, 1)) = 1. Besides

eδ(σ(0, χl), σ(0, χm)) = eδ((Cel, χ
Del), (Cem, χ

Dem)) = χDem(Cel)χ
−Del(Cem)

= ζ⟨Cel|Dem⟩−⟨Del|Cem⟩ = ζ
tel(

tC∆D−em− tD∆C)em

and eδ((0, χl), (0, χm)) = 1. Finally

eδ(σ(el, 1), σ(0, χm)) = eδ((Ael, χ
Bel), (Cem, χ

Dem)) = χDem(Ael)χ
−Bel(Cem)

= ζ⟨Ael|Dem⟩−⟨Bel|Cem⟩ = ζ
tel(

tA∆D−em− tB∆C)em
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and eδ((el, 1), (0, χm)) = ζdg/dlδl,m . Hence, σ is symplectic if and only if tB∆A ≡
tA∆B, tD∆C ≡ tC∆B and tA∆D− tB∆C ≡ ∆ modulo dg. The result immedi-
ately follows. □

We now finally prove an explicit change of basis formula between symmetric
Theta structures ΘL and Θ′

L. This formula provides a change of coordinates matrix
from ΘL to Θ′

L. In the rest of the paper, we shall only consider symmetric
Theta structures (and simply mention them as Theta structures) in order to be
able to use the following theorem.

Theorem 12 (Symplectic change of basis). Let ΘL2 be a symmetric theta-structure
on G(L2) and ΘL be the induced compatible theta-structure on G(L). Let ψ ∈
Aut0(H(2δ)) and ψ′ ∈ Aut0(H(δ)) be the induced symmetric automorphism (fol-
lowing Proposition 10.(i)). Let ζ be a primitive 2dg-th root of unitiy and

M :=

(
A C
B D

)
be the matrix of ψ ∈ Sp(K(2δ)) in the ζ-canonical symplectic basis. Let (θLi )i∈K1(δ)

and (θ′
L
i )i∈K1(δ) be respectively the ΘL and Θ′

L-coordinates (where Θ′
L := ΘL ◦ψ′).

Then, there exists i0 ∈ K1(δ) and λ ∈ k∗ such that for all i ∈ K1(δ),

θ′
L
i = λ

∑
j∈K1(δ)

ζ⟨i|j⟩−⟨Ai+Cj+2i0|Bi+Dj⟩θLAi+Cj+i0 .

We can choose any value of i0 ∈ K1(δ) such that∑
j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩θLi0+Cj ̸= 0.

Proof. By Proposition 8, there exists i0 ∈ K1(δ) and λ ∈ k∗ such that θ′
L
0 = λTi0 ,

where

Ti0 :=
∑

j∈K2(δ)

ΘL ◦ ψ′(1, 0, j) · θLi0

is non-zero.
As explained before, we can identify K1(δ) with K2(δ) via the map j 7−→ χj ,

where χj(i) := ζ2⟨i|j⟩ for all i, j ∈ K1(δ) (ζ
2 being a primitive dg-th root of unity).

Similarly, we identifyK1(2δ) withK2(2δ) via the map j 7−→ χ̃j , where χ̃j(i) = ζ⟨i|j⟩

for all i, j ∈ K1(2δ). Now, by Proposition 10, we can express ψ′ as follows: for all
i, j ∈ K1(δ), we have:

ψ′(1, i, χj) =
(
χ̃j

′
(i′)−1ψ2(i

′, χ̃j
′
)(ψ1(i

′, χ̃j
′
)), ψ1(i

′, χ̃j
′
), ψ2(i

′, χ̃j
′
)
)
,

with i′, j′ ∈ K1(2δ) such that i′ = i and j′ = j. It follows that for all (i, j) ∈ K1(δ),

ψ′(1, i, χj) =
(
ζ−⟨i′|j′⟩χ̃Bi

′+Dj′(Ai′ + Cj′), Ai′ + Cj′, χ̃Bi′+Dj′
)

= (ζ−⟨i′|j′⟩+⟨Bi′+Dj′|Ai′+Cj′⟩, Ai+ Cj, χBi+Dj)

= (ζ−⟨i|j⟩+⟨Bi+Dj|Ai+Cj⟩, Ai+ Cj, χBi+Dj)
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For the last equality, we can easily check that −⟨i′|j′⟩+ ⟨Bi′ +Dj′|Ai′ +Cj′⟩ only
depends on the values of i′ and j′ modulo dg. Consequently,

Ti0 =
∑

j∈K1(δ)

ζ⟨Dj|Cj⟩χDj(Cj + i0)
−1θLCj+i0

=
∑

j∈K1(δ)

ζ⟨Dj|Cj⟩ζ−2⟨Cj+i0|Dj⟩θLCj+i0

=
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩θLCj+i0

And, if Ti0 ̸= 0, we have for all i ∈ K1(δ),

θ′
L
i = Θ′

L(1, i, 1) · θ′
L
0 = λΘL ◦ ψ(1, i, 1) · Ti0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ΘL ◦ ψ(1, i, 1) · θLCj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ζ⟨Bi|Ai⟩χBi(Ai+ Cj + i0)
−1θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ζ⟨Bi|Ai⟩ζ−2⟨Bi|Ai+Cj+i0⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ζ−⟨Bi|Ai+2Cj+2i0⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Bi+Dj⟩−⟨Bi|Ai+Cj⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+⟨Ai|Bi+Dj⟩−⟨Bi|Ai+Cj⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+⟨Ai|Dj⟩−⟨Bi|Cj⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+ ti( tA∆D− tB∆C)jθLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+ ti∆jθLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+⟨i|j⟩θLAi+Cj+i0

This completes the proof. □

4. An algorithm to compute 2e-isogenies with level 2 Theta
coordinates

In this section, we explain how to compute a 2e-isogeny F : A −→ B between
principally polarised abelian varieties abelian varieties (PPAV) of any dimension g
with the Theta model of level 2. As in dimension 1, we compute F as a chain of
2-isogenies. In Section 4.1, we give an overview of this isogeny chain computation
given an isotropic subgroupK ′′ ⊂ A[2e+2] such that ker(F ) = [4]K ′′. In Section 4.2,
we give a generic algorithm to compute a 2-isogeny in the Theta model of level 2
and we adapt this algorithm in Section 4.3 to the case of gluing isogenies, namely
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isogenies defined over products of abelian varieties (eg. elliptic products, as in
SQIsignHD) whose codomain is not isomorphic to a product of abelian varieties.
Finally, we explain how to compute the dual of a 2-isogeny in Section 4.4.

4.1. Algorithmic overview of a 2e-isogeny computation. Let F : A −→ B
be a 2e-isogeny between PPAV with kernel K ⊂ A[2e] of rank g. This means that
K is a free (Z/2eZ)-module of rank g. Then, we can decompose F as a chain of
2-isogenies F := fe ◦ · · · ◦f1, with ker(fi) = [2e−i]fi−1 ◦ · · · ◦f1(K) for all i ∈ J1 ; eK
[5, Lemma 51].

In the following, we say that we compute F when we compute all the 2-isogenies fi
which form a chain representation of F . As we shall see in Section 4.2, we can easily
evaluate fi once we know the dual theta-null point of its codomain (Algorithm 1).
Hence, we shall represent the fi with this data: computing fi means computing
the dual theta-null point of its codomain. In addition to a list of dual theta-null
points (representing the fi), the representation of F may include relevant change
of basis matrices of theta-coordinates to ensure we can apply f1 and compose the
fi in compatible theta-coordinates. This way, once we have computed (a chain
representation of) F , we can evaluate it easily on points.

To compute the 2-isogeny fi : Ai −→ Ai+1, one needs to know an isotropic
subgroup K ′′

i ⊂ Ai[8] such that [4]K ′′
i = ker(fi). Otherwise, we would have to

compute square roots, and guess signs which is more costly (see Remark 18). To
simplify the isogeny theorem formula (see Theorem 3 and Lemma 13), we also need
to make sure that the level 2 Theta-structure ΘLi

on (Ai,Li) satisfies K2(ΘLi
) =

ker(fi).
To ensure these conditions for all i ∈ J1 ; eK, we proceed as follows. We as-

sume that we know an isotropic subgroup K ′′ ⊂ A[2e+2] such that K = [4]K ′′.
To compute f1, we first make sure the level 2 Theta structure ΘL1

on (A,L1) sat-
isfies K2(ΘL1

) = [2e+1]K ′′ (where, for instance, L1 = L2
0 and L0 is the principal

polarization). Consider a totally symmetric level 2 Theta structure ΘL1
on A that

is naturally given to us (eg. the product Theta structure on a product of elliptic
curves). By Theorem 5.(ii), ΘL1 is completely determined by a symplectic basis B
of A[4]. We compute a symplectic matrix M ∈ Sp2g(Z/4Z) mapping B to a sym-
plectic basis C := (S′

1, · · · , S′
g, T

′
1, · · · , T ′

g) of A[4] such that (T ′
1, · · · , T ′

g) is a basis
of [2e]K ′′. Let Θ′

L1
be the Theta structure induced by the action of M on ΘL1

.
By Theorem 12, we know how to compute the new Theta coordinates associated to
Θ′

L1
and we now have K2(Θ

′
L1
) = [2e+1]K ′′ by construction. We can then compute

f1 with the algorithms of Sections 4.2 and 4.3.
By [5, Theorem 56], ([2]f1(S

′
1), · · · , [2]f1(S′

g), f1(T
′
1), · · · , f1(T ′

g)) is a symplectic
basis of A2[2], so we easily obtain a level 2 Theta structure on (A2,L2,ΘL2

) such
that K2(ΘL2

) = ker(f2) = ⟨f1(T ′
1), · · · , f1(T ′

g)⟩ (see Section 4.2). Hence, once we

have evaluated [2e−2]f1(K
′′), we can compute f2 without computing a change of

basis. The same applies for all i ≥ 2: we can compute fi given K
′′
i := [2e−i]fi−1 ◦

· · · ◦ f1(K ′′), without computing a change of basis.
As in dimension 1, the K ′′

i are the leaves of a computation tree whose nodes
are basis of rank g isotropic subgroups (with K ′′ as root node), left edges are
doublings and right edges are evaluations by the fi (see Fig. 1). Evaluating this
tree can be done in quasi-linear time O(e log(e)) with optimal strategies depending
on the relative cost of evaluation and doublings. We refer Appendix E for a detailed
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explanation on how these strategies are obtained and used to compute 2e-isogenies
(see Algorithm 20 in particular).

4.2. Generic algorithm to compute a 2-isogeny in dimension g. Let (A,L0)
and (B,M0) be to PPAVs and L := L2

0 andM :=M2
0. Both L andM are totally

symmetric line bundles of level 2. Let f : A −→ B be a 2-isogeny with respect to
the principal polarizations φL0

and φM0
. Then f is also an isogeny of polarised

abelian varieties with respect to φL2 and φM.
LetK := ker(f). In the following, we assume thatK = K2(ΘL). Let (T1, · · · , Tg)

be a basis of K and B′′ := (S′′
1 , · · · , S′′

g , T
′′
1 , · · · , T ′′

g ) be a symplectic basis of

K(L4) = A[8] with respect to an 8-th root of unity ζ8 ∈ k∗ such that [4]T ′′
k = Tk

for all k ∈ J1 ; gK. Then B′′ induces a symmetric theta-structure ΘL2 on G(L2)
by Theorem 5. Besides, C := ([2]f(S′′

1 ), · · · , [2]f(S′′
g ), f(T

′′
1 ), · · · , f(T ′′

g )) is a ζ28 -
symplectic basis of B[4] which induces a theta-structure ΘM on G(M) which is
compatible with ΘL2 by [5, Theorem 56]. ΘM is also symmetric by [17, Remark
4.2.15].

Lemma 13. With this choice of theta-structure ΘM, we have for all i ∈ (Z/2Z)g,

f∗θMi = θL
2

2i .

Proof. In K(L2) = [2]−1K(L), we have K⊥ = [2]K1(ΘL2)⊕K2(ΘL2) = K1(ΘL)⊕
K2(ΘL2), so that K⊥,1 = K1(ΘL) and K1 = {0}. Taking the notations of Theorem
3 (applied to ΘL2 and ΘM), we get that ΘM is determined by an isomorphism

σ : K1(ΘL)
∼−→ (Z/2Z)g. By the definition of ΘM with respect to ΘL2 and σ

[15, Theorem 4, p. 302], we get that:

∀i ∈ (Z/2Z)g, ΘM(i, 1) = f(σ−1(i)).

Hence, with our choice of theta-structure ΘM, we get that for all l ∈ J1 ; gK,
σ([4]S′′

l ) = el, where el ∈ (Z/2Z)g is the vector with component 1 at index l and 0

elsewhere. Besides, for all l ∈ J1 ; gK, Θ
−1

L2 ([2]S′′
l ) = el ∈ K1(4) so Θ

−1

L2 ◦ σ−1 is the
map i ∈ (Z/2Z)g 7−→ 2i ∈ (Z/4Z)g. The result follows. □

By the above lemma, to compute the θMi (f(x)), we have to compute the θL
2

2i (x)
knowing the θLi (x). We may use the duplication formulas introduced in Section 2.10
for that.

Notation 14. We introduce two operators on k(Z/2Z)
g

:

• theHadamard operatorH : (xi)i∈(Z/2Z)g 7−→
(∑

i∈(Z/2Z)g (−1)⟨i|j⟩xi
)
j∈(Z/2Z)g

;

• the squaring operator S : (xi)i∈(Z/2Z)g 7−→ (x2i )i∈(Z/2Z)g .

We also denote by ⋆ the component-wise product on k(Z/2Z)
g

. Note that H ◦H =
2g id, so H is an involution up to a projective factor.

For all l ∈ J1 ; gK, we denote by χl ∈ ̂(Z/2Z)g the character i 7−→ (−1)il . The

χl form a basis of ̂(Z/2Z)g since every character χ ∈ ̂(Z/2Z)g can be written as

χ = χj for a unique j ∈ (Z/2Z)g, where χj :=
∏g
l=1 χ

jl
l : i 7−→ (−1)⟨i|j⟩. Using

this canonical isomorphism between (Z/2Z)g and ̂(Z/2Z)g, we can index dual theta
points by characters. In particular, we may write (UM

χ,0(x))χ = H((θMi (x))i).
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Proposition 15. [1, Equation (3)] Let x ∈ A(k) and (θMi (0B))i∈(Z/2Z)g be the
theta-null point of (B,M,ΘM). Then, we have (up to a projective constant):

(13) H((θMi (f(x)))i) ⋆ H((θMi (0B))i) = H ◦ S((θLi (x))i).

Proof. Equation (9) ensures that (up to a projective constant), we have for all

χ ∈ ̂(Z/2Z)g,
UL2

χ,0(x)U
L2

χ,0(0A) =
∑

t∈(Z/2Z)g
χ(t)θLt (x)

2,

so that (UL2

χ,0(x))χ ⋆ (UL2

χ,0(0A))χ = H ◦ S((θLi (x))i). Besides, Equation (7) and

Lemma 13, ensure that (UL2

χ,0(x))χ = H((θL
2

2i (x))i) = H((θMi (f(x))i), up to a pro-

jective constant. Finally, we also have (UL2

χ,0(0A))χ = H((θMi (f(0A))i) = H((θMi (0B))i).
The result follows. □

Using the formula (13), we easily obtain an algorithm to evaluate f when the
codomain theta-null point (or its dual) is known. This is a simple generalization of
[1, Algorithm 6]. This algorithm only works when the dual theta constants of B do
not vanish. We treat the vanishing case in the next section.

Algorithm 1: Generic isogeny evaluation algorithm.

Data: A theta point (θLi (x))i of A and the dual theta-null point
H((θMi (0B))i) of B with non-vanishing coordinates.

Result: (θLi (f(x)))i.
1 Precompute Cj ←− 1/H((θMi (0B))i)j for all j ∈ (Z/2Z)g;
2 Compute (Zj)j ←− H ◦ S((θLi (x))i);
3 Compute (Yj)j ←− (Cj · Zj)j ;
4 return H((Yj)j);

We now explain how to compute the dual theta-null point of B. Let B :=
(S′

1, · · · , S′
g, T

′
1, · · · , T ′

g) be a symplectic basis of K(L2) adapted to the decom-

position K(L2) = K1(ΘL2) ⊕ K2(ΘL2). Let ζ4 ∈ k such that ζ24 = −1 and

e4(S
′
l , T

′
m) = ζ

δl,m
4 for all l,m ∈ J1 ; gK. Then, ([2]T ′

1, · · · , [2]T ′
g) is a basis of

[2]K2(ΘL2) = K2(ΘL) = K. Besides, B determines a symplectic isomorphism

ΘL2 : K(4)
∼−→ K(L2) mapping the ζ4-canonical symplectic basis of K(4) (as

defined in Section 3.2) to B. By Theorem 5.(ii), ΘL2 determines the symmetric
theta-structure ΘL on G(L). Via this isomorphism ΘL2 , for all l ∈ J1 ; gK, the
character χ′

l : j 7−→ ζjl4 corresponds to T ′
l , so the character χl = χ′

l
2
: j 7−→ (−1)jl

corresponds to Tl := [2]T ′
l .

Lemma 16. Let T ′′
l such that [2]T ′′

l = T ′
l for all l ∈ J1 ; gK. Then for all l ∈ J1 ; gK

and χ ∈ ̂(Z/2Z)g,
(14) UM

χχl,0
(0B) ·H ◦ S((θLi (T ′′

l ))i)χ = UM
χ,0(0B) ·H ◦ S((θLi (T ′′

l ))i)χχl
.

Proof. Let l ∈ J1 ; gK and χ ∈ ̂(Z/2Z)g. Then, by (13), we get that

(15) UM
χ,0(0B) · UM

χ,0(f(T
′′
l )) = H ◦ S((θLi (T ′′

l ))i)χ.

Since [4]T ′′
l = Tl ∈ K, f(T ′′

l ) has order 4 so f(T ′′
l ) ≡ f(T ′′

l ) + [2]f(T ′′
l ) in the

Kummer variety A/± and θLi (f(T
′′
l )) = θLi (f(T

′′
l ) + [2]f(T ′′

l )) for all i ∈ (Z/2Z)g.
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Besides, ΘL2 and ΘM are compatible so [2]f(T ′′
l ) ∈ K2(ΘM) since [2]T ′′

l = T ′
l ∈

K2(ΘL2). Assuming we have made the canonical choice of theta-structure ΘM, the

symplectic isomorphism ΘM : K(2)
∼−→ K(M) maps χl to [2]f(T ′′

l ) [5, Theorem
56]. Hence, equation (4) ensures that:

∀i ∈ (Z/2Z)g, θLi (f(T
′′
l )) = θLi (f(T

′′
l ) + [2]f(T ′′

l )) = χl(i)
−1θLi (f(T

′′
l )),

so that,

UM
χ,0(f(T

′′
l )) =

∑
t∈(Z/2Z)g

χ(t)θMt (f(T ′′
l )) =

∑
t∈(Z/2Z)g

χ(t)χl(t)
−1θMt (f(T ′′

l ))

= UM
χχ−1

l ,0
(f(T ′′

l )) = UM
χχl,0

(f(T ′′
l )),

since χ−1
l = χl. Combining this with (15), we finally obtain (14). □

Given a basis of 8-torsion points (T ′′
1 , · · · , T ′′

g ) lying above the basis of K,

as in Lemma 16, we can compute the dual theta-null point (UM
χ,0(0B))χ of B

with Equation (14). First, we select χ0 ∈ ̂(Z/2Z)g and l ∈ J1 ; gK such that
H ◦ S((θMi (T ′′

l ))i)χ0 ̸= 0 (so that UM
χ0,0(0B) ̸= 0 by (15)), and then we com-

pute UM
χ0χl,0

(0B)/U
M
χ0,0(0B) = H ◦ S((θLi (T ′′

l ))i)χ0χl
/H ◦ S((θLi (T ′′

l ))i)χ0 . Then,

taking χ := χ0χl, we find l′ ∈ J1 ; gK such that H ◦ S((θLi (T ′′
l′ ))i)χ ̸= 0 and ob-

tain UM
χχl′ ,0

(0B)/U
M
χ,0(0B). Multiplying this by the previous quotient, we can get

UM
χχl′ ,0

(0B)/U
M
χ0,0(0B). We repeat the same procedure until we have covered all

indices in χ ∈ ̂(Z/2Z)g, so we are finally able to compute (UM
χ,0(0B)/U

M
χ0,0(0B))χ.

To perform this computation, we fill in a computation tree whose nodes are char-

acters of ̂(Z/2Z)g related to each other by multiplication by a χl for l ∈ J1 ; gK.
Each edge between a parent χ and a child χχl stores the value U

M
χχl,0

(0B)/U
M
χ,0(0B).

The tree filling algorithm is summarized in Algorithm 2. The full algorithm comput-
ing the codomain dual theta-null point is Algorithm 4, generalizing [1, Algorithm 5].

Remark 17. Algorithm 4 does not always terminate when some theta-constants
UM
χ,0(0B) vanish. This can happen when we compute a gluing isogeny (see Sec-

tion 4.3). In this case, we may need more than g points to fill in the tree. This is
not a problem because (14) generalizes to sums of T ′′

l and products of χl.

Remark 18 (Codomain computation without 8-torsion points). When the 8-
torsion points T ′′

1 , · · · , T ′′
g are not known but only a 2-torsion basis of the ker-

nel is known, we can still compute the codomain of f . Using (13), we get that
S ◦ H((θMi (0B))i) = H ◦ S((θLi (0A))i), so we can compute the codomain theta
null-point (θMi (0B))i with 2g − 1 square root computations and choices of sings
(projectively). This method is not only more costly but also not sufficient to de-
termine (θMi (0B))i in general because all sign choices may not be valid.

As Robert did in [18, Chapter 7, Appendix B.2], we can prove that we can make
at least g(g + 1)/2 arbitrary sign choices among 2g − 1. Indeed, we may act on a
symplectic basis of B[4] inducing the theta-structure ΘM via the symplectic matrix:

M :=

(
Ig 0
B Ig

)
∈ Sp2g(Z/4Z),

which fixes K2(M2). By Theorem 12, the new resulting theta-coordinates are

θ′
M
i = ζ−⟨i|Bi⟩θMi for all i ∈ (Z/2Z)g (up to a projective factor), where ζ2 = −1.
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Algorithm 2: Tree filling algorithm for the codomain dual theta-null point
computation.

Data: Theta-coordinates θLi of 8-torsion points T ′′
1 , · · · , T ′′

g such that K =
⟨[4]T ′′

1 , · · · , [4]T ′′
g ⟩.

Result: Full computation tree T as described above.
1 Initialize the computation tree T ←− ∅;
2 while T does not cover ̂(Z/2Z)g do

3 Select χ0 ∈ ̂(Z/2Z)g and initialize T at root χ0;

4 while all terminal nodes of T are not not marked as leaves do
5 for every terminal node χ of T not marked as a leaf do
6 leaf ←− True;

7 for l = 1 to g do
8 if χχl ̸∈ T and H ◦ S((θLi (T ′′

l ))i)χχl
̸= 0 then

9 E(χ, χχl)←− H ◦ S((θLi (T ′′
l ))i)χχl

/H ◦ S((θLi (T ′′
l ))i)χ;

10 Add χχl as the child of χ in T and store E(χ, χχl) on the

edge;

11 leaf ←− False;

12 end

13 end

14 if leaf then
15 Mark χ as a leaf;

16 end

17 end

18 end

19 end

20 return T ;

Algorithm 3: Tree evaluation recursive algorithm.

Data: A computation tree T as above and a root value u.
Result: (UM

χ,0(0B))χ∈T .

1 Let χ0 be the root of T . Set UM
χ0,0(0B)←− u;

2 if T = {χ0} then
3 return u;

4 else
5 for every child χ of χ0 do
6 Let UM

χ,0(0B)←− E(χ0, χ) · u;
7 Recurse on subtree Tχ with root χ and root value UM

χ,0(0B);

8 end

9 return all the computed values (UM
χ,0(0B))χ∈T ;

10 end



FAST COMPUTATION OF 2-ISOGENIES IN DIMENSION 4 21

Algorithm 4: Codomain dual theta-null point computation algorithm.

Data: Theta-coordinates θLi of 8-torsion points T ′′
1 , · · · , T ′′

g such that K =
⟨[4]T ′′

1 , · · · , [4]T ′′
g ⟩.

Result: (UM
χ,0(0B))χ∈ ̂(Z/2Z)g .

1 Call Algorithm 2 to get a computation tree T ;
2 Call Algorithm 3 on T with root value UM

χ0,0(0B) = 1 to compute

(UM
χ,0(0B))χ∈ ̂(Z/2Z)g ;

3 return (UM
χ,0(0B))χ∈ ̂(Z/2Z)g ;

Since M is symplectic, we have tB = B by Lemma 11 so we have g(g+1)/2 values
to choose. We have:

∀i ∈ (Z/2Z)g, ⟨i|Bi⟩ =
g∑
k=1

i2kBk,k + 2
∑

1≤k<l≤g

ikilBk,l,

so the ⟨i|Bi⟩ are determined by the Bk,k and the Bk,l mod 2. For all k ∈ J1 ; gK
and l ∈ Jk + 1 ; gK, we may fix Bk,k ∈ {0, 2} and Bk,l ∈ {0, 1} and obtain θ′

M
ek

=

(−1)−Bk,k/2θMek , θ
′M
ek+el

= (−1)−(Bk,k+Bl,l+2Bk,l)/2θMek+el and θ′
M
i = ±θMi for all

i ∈ (Z/2Z)g. This amounts to choosing g(g + 2)/2 signs among 2g − 1 and fixing
the others.

In dimension g = 2, it was already remarked in [1, § 4.2] that all g(g + 1)/2 =
3 = 2g − 1 arbitrary sign choices are valid. This is no longer true in dimension
g > 2. In dimension g = 3, only 6 among 7 sign choices determine the last one with
an explicit formula [41]. In dimension g ≥ 4, we have no such explicit formulas so
the theta null-point is harder to guess.

4.3. Gluing isogenies. In the previous section, we have seen how to compute
2-isogenies when none of the dual theta-coordinates (UM

χ,0(0B))χ vanish. In this
section, we treat the vanishing case which is frequent when we want to compute a
gluing isogeny, namely isogenies defined over a product of abelian varieties whose
codomain is not isomorphic to a product of abelian varieties f : A1 × A2 −→ B.
There is a heuristic explanation of this phenomenon. The level 2 Theta coordi-
nates that we use represent points on the Kummer abelian variety, so up to a sign
ambiguity. On a product of Kummer varieties A1/ ± ×A2/± we have two sign
ambiguities and on B/±, only one so we need additional information to evaluate
f and remove one sign ambiguity. This additional information will be provided by
point translates.

Assuming we have already computed the dual theta-constants UM
χ,0(0B) (which

may vanish), we immediately see that Algorithm 1 may no longer be used (to avoid
divisions by zero). However, in order to evaluate x ∈ A(k), we may still use (13)
with translates of x. Let T ′

1, · · · , T ′
g be points such that ⟨[2]T ′

1, · · · , [2]T ′
g⟩ = K as

in the previous section. Then, for all l ∈ J1 ; gK and χ ∈ ̂(Z/2Z)g, we have:

(16) UM
χ,0(f(x+ T ′

l )) · UM
χ,0(0B) = H ◦ S((θLi (x+ T ′

l ))i)χ.

As we have seen in the proof of Lemma 16, the Theta structure ΘM maps f(T ′
l )

to χl so there exists a projective constant λl ∈ k∗ such that UM
χ,0(f(x + T ′

l )) =
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λlU
M
χχl,0

(f(x)) for all χ ∈ ̂(Z/2Z)g. It follows by (13) and (16) that for all l ∈ J1 ; gK

and χ ∈ ̂(Z/2Z)g, we have:

(17) λl ·H ◦ S((θLi (x))i)χχl
· UM

χ,0(0B) = H ◦ S((θLi (x+ T ′
l ))i)χ · UM

χχl,0
(0B),

so we can compute the λl once we know the coordinates of x and the x+ T ′
l (and

0B). Since χ
2
l = 1, we also obtain by (13) that for all l ∈ J1 ; gK, we have:

(18) ∀χ ∈ ̂(Z/2Z)g, λl · UM
χ,0(f(x)) · UM

χχl,0
(0B) = H ◦ S((θLi (x+ T ′

l ))i)χχl
.

Hence, to compute UM
χ,0(f(x)), we may use (13) when UM

χ,0(0B) ̸= 0 and otherwise,

find l ∈ J1 ; gK such that UM
χχl,0

(0B) ̸= 0 and use (18). We summarize the evaluation
procedure in Algorithm 5.

Remark 19. In practice, we do not need to use all the translates x+T ′
l to compute

the coordinates of f(x). When g = 2 and f : E1 × E2 −→ B is a gluing of
elliptic curves, one point (T ′

1) is sufficient [1, Algorithm 8]. When g = 4 and
f : A1 × A2 −→ B is a gluing of abelian surfaces, two points (T ′

1 and T ′
2) are

sufficient.

Remark 20. Computing the x+ T ′
l with the Theta model may not be easy since

we also need to know the x−T ′
l to apply differential addition formulas (Theorem 6).

This is not an issue when we work on elliptic curve products because we can use
standard arithmetic. In practice, we compute chains of 2-isogenies starting from
an elliptic curve product so we can always perform the additions of preimages of
the points on this elliptic curve product and then push the result through several
2-isogenies.

The evaluation procedure of a gluing isogeny differs significantly from the generic
one. However, the codomain theta-null point computation is very similar. As in
the previous section, let T ′′

1 , · · · , T ′′
g be 8-torsion points such that T ′

l = [2]T ′′
l for all

l ∈ J1 ; gK (K = ⟨[4]T ′′
1 , · · · , [4]T ′′

g ⟩). For all multi-index j ∈ (Z/2Z)g, we denote

T ′′
j :=

∑g
k=1[jk]T

′′
k and recall that χj :=

∏g
i=1 χ

jk
k . Then, (14) is still valid for

multi-indices: for all j ∈ (Z/2Z)g and χ ∈ ̂(Z/2Z)g,
UM
χχj ,0(0B) ·H ◦ S((θ

M
i (T ′′

j ))i)χ = UM
χ,0(0B) ·H ◦ S((θMi (T ′′

j ))i)χχj .

Using the above equation, we may obtain the dual theta constants UM
χ,0(0B) from

the theta-coordinates of (sums of) the T ′′
1 , · · · , T ′′

g with tree filling algorithms as in
the generic case (see Algorithms 2, 3 and 4).

Remark 21. For g = 2, when we glue a product of elliptic curves, only two points
T ′′
1 , T

′′
2 (and no sum of points) are needed [1, Algorithm 7]. For g = 4, in practice,

when we glue two abelian surfaces only one point T ′′
1 +T

′′
2 , in addition to T ′′

1 , · · · , T ′′
4

is needed for the codomain computation. As mentioned in Remark 20, when we
compute a chain of 2-isogenies starting from an elliptic product, sums of preimages
of the T ′′

1 , · · · , T ′′
g may be computed on the domain and then pushed through several

2-isogenies.

4.4. Computing dual isogenies. Once we have computed a 2-isogeny f :
(A,L2) −→ (B,M) as in Sections 4.2 and 4.3, it is then easy to compute its

dual f̃ : B −→ A with the data we already have. By the following lemma, we only
have to precompute the inverse theta-constants (1/θLi (0A))i to be able to evaluate

f̃ . Up to Hadamard transforms, the formulas are similar to those of Section 4.2.
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Algorithm 5: Gluing isogeny evaluation algorithm.

Data: 4-torsion points T ′
1, · · · , T ′

g such that K = ⟨[2]T ′
1, · · · , [4]T ′

g⟩, a subset

of indices L ⊆ J1 ; gK, theta points of A (θLi (x))i and (θLi (x + T ′
l ))i

for all l ∈ L and the dual theta-null point (UM
χ,0(0B))χ of B.

Result: (θLi (f(x)))i.

1 Precompute Cχ ←− 1/UM
χ,0(0B) for all χ ∈ ̂(Z/2Z)g such that UM

χ,0(0B) ̸= 0;

2 Compute H ◦ S((θLi (x))i) and H ◦ S((θLi (x+ T ′
l ))i) for all l ∈ L;

3 for l ∈ L do

4 Find χ ∈ ̂(Z/2Z)g such that H ◦ S((θLi (x+ T ′
l ))i)χ · UM

χχl,0
(0B) ̸= 0;

5 λ−1
l ←− H ◦S((θLi (x))i)χχl

·UM
χ,0(0B)/(H ◦S((θLi (x+T ′

l ))i)χ ·UM
χχl,0

(0B));

6 end

7 for χ ∈ ̂(Z/2Z)g do
8 if UM

χ,0(0B) ̸= 0 then
9 UM

χ,0(f(x))←− Cχ ·H ◦ S((θLi (x))i)χ;
10 else
11 Find l ∈ L such that UM

χχl,0
(0B) ̸= 0;

12 UM
χ,0(f(x))←− λ−1

l Cχχl
·H ◦ S((θLi (x+ T ′

l ))i)χχl
;

13 end

14 end

15 return H((UM
χ,0(f(x)))χ);

Lemma 22. Let f : (A,L2) −→ (B,M) be a 2-isogeny. As in Section 4.2, let
(ΘL,ΘL2) be a pair of symmetric theta-structures for (L,L2) such that ker(f) =
K2(ΘL) and ΘM be a theta-structure on G(M) compatible with ΘL2 with respect
to f . Then:

(i) f̃ is a polarised abelian variety (B,M2) −→ (A,L) of kernel ker(f̃) =
K1(ΘM).

(ii) We have for all y ∈ B(k),

(θLi (f̃(y)))i ⋆ (θ
L
i (0A))i = H ◦ S((UM

χ,0(y))χ),

up to a projective constant.

Proof. (i) Recall that L = L2
0 and M = M2

0 where φL0
and φM0

are principal

polarizations. Since f is a 2-isogeny, we have f ◦ f̃ = [2], where f̃ = φ−1
L0
◦ f̂ ◦φM0

.

Hence,
̂̃
f = φ̂M0◦f◦φ̂−1

L0
but φ̂M0 = φM0 and φ̂

−1
L0

= φ−1
L0

, so that
̂̃
f = φM0◦f◦φ−1

L0
.

It follows that:

[2] = f ◦ f̃ = φ−1
M0
◦ ̂̃f ◦ φL0

◦ f̃ ,

and
̂̃
f ◦φL0

◦ f̃ = [2]φM0
. Since L = L2

0 andM =M2
0, we have φL = [2] ◦φL0

and
φM2 = [4] ◦ φL0

by the theorem of the square [3, Theorem 6.7]. We conclude that̂̃
f ◦ φL ◦ f̃ = φM2 so f̃ is a polarised abelian variety (A,L2) −→ (B,M).

Besides, f(A[2]) ⊆ ker(f̃) since f̃ ◦ f = [2] and f̃ is separable since char(k) is

odd so #ker(f̃) = deg(f̃) = deg(f) = 2g. We also have f(A[2]) = f(K1(ΘL)) =

K1(ΘM) by construction and #K1(ΘM) = 2g so the inclusion f(A[2]) ⊆ ker(f̃) is
an equality, which proves (i).
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(ii) Consider the symplectic basis B′′ = (S′′
1 , · · · , S′′

g , T
′′
1 , · · · , T ′′

g ) of K(L2) =
A[8] introduced in Section 4.2 to define ΘL2 and a symplectic basis B′′′ =
(S′′′

1 , · · · , S′′′
g , T

′′′
1 , · · · , T ′′′

g ) of K(L4) = A[16] such that S′′
l = [2]S′′′

l and T ′′
l =

[2]T ′′′
l for all l ∈ J1 ; gK. By Theorem 5.(ii), B′′′ induces a symmetric Theta-

structure ΘL4 on G(L4). In addition, by Theorem 5.(i), ΘL4 induces a symmet-
ric Theta-structure Θ′

L2 on G(L2) and by Theorem 5.(ii), Θ′
L2 is determined by

[2]B′′′ = B′′ so Θ′
L2 = ΘL2 and ΘL4 is compatible with ΘL2 . Then, one can prove

exactly as in [5, Theorem 56], that C ′ = (f(S′′
1 ), · · · , f(S′′

g ), f(T
′′′
1 ), · · · , f(T ′′′

g )) is a

symplectic basis of B[8] which induces a symmetric theta-structure ΘM2 on G(M2)
which is compatible with ΘL4 with respect to f . Since C = [2]C ′ is the symplectic
basis determining ΘM, we can conclude by Theorem 5 that ΘM2 is compatible
with ΘM.

Let ζ8 := e16(S
′′
1 , T

′′
1 ) and ψ ∈ Aut0(H(8)) such that ψ has matrix

Mψ :=

(
0 −Ig
Ig 0

)
∈ Sp(K(8)),

in the ζ8-canonical symplectic basis. Let ψ′ ∈ Aut0(H(4)) be the symmet-
ric Heisenberg automorphism induced by ψ (Proposition 10.(i)). Let Θ′

M2 :=
ΘM2 ◦ ψ, Θ′

M := ΘM ◦ ψ′ and Θ′
L := ΘL ◦ ψ′. Then, by Theorem 12,

the Θ′
M-coordinates are the dual of the ΘM-coordinates (obtained after a

Hadamard transform) and similarly for the Θ′
L and ΘL-coordinates. Besides,

Mψ · C ′ = (−f(T ′′′
1 ), · · · ,−f(T ′′′

g ), f(S′′
1 ), · · · , f(S′′

g )) induces Θ′
M2 and Mψ ·B =

(−T ′
1, · · · ,−T ′

g, S
′
1, · · · , S′

g) induces Θ
′
L. Hence, [5, Theorem 56] ensures that Θ′

M2

and Θ′
L are compatible with respect to f̃ . We also have ker(f̃) = K1(ΘL) = K2(Θ

′
L)

by (i). We conclude by Proposition 15 that for all y ∈ B(k),

H(UL
χ,0(f̃(y)))χ) ⋆ H((UL

χ,0(0A))χ) = H ◦ S((UM
χ,0(y))χ),

up to a projective constant, UL
χ,0 and UM

χ,0 being the Θ′
L and Θ′

M-coordinates

respectively. Since H((UL
χ,0(x))χ) = (θLi (x))i for all x ∈ A(k), this completes the

proof. □

4.5. Complexity. In Table 1, we give some operation counts for 2-isogeny com-
putations. Unlike what we have assumed so far, in practice, the base field k that
we use is not algebraically closed. All operations take place in the field of defini-
tion of torsion points used to compute isogenies (that we also denote by k). We
denote by M , S, I and a the cost (in bit operations) of multiplication, squaring,
inversion and addition/subtraction over k. In general, inversions are much more
costly than multiplications so we compute them by batch. This enables to replace
nI by 3(n−1)M + I as explained in Appendix D.1. We can even work projectively
and remove the inversion4. While additions are much less costly than multipli-
cations, Hadamard transforms require a lot of them, which can impact concrete
performance. For that reason, we propose in Appendix D.2 a recursive method to
compute Hadamard transforms which reduces their cost from 22ga to g2ga.

5. Cryptographic applications

In this section, we apply the algorithms presented in Section 4 to compute a
4 dimensional 2e-isogeny between elliptic curve products. The main applications

4This optimisation is not implemented in our dimension 4 code.
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Table 1. Cost of algorithms involved in 2-isogeny computations.
Here, L ⊆ J1 ; gK is the subset given on entry of Algorithm 5.
#L = 2 for g = 4 (Remark 19). Inversions in parenthesis could be
removed by working purely projectively.

Dimension g Dimension 4

Doubling Precomp. (I) + 3(2g+1 − 1)M + 2gS + g2g+1a (I) + 62M + 16S + 128a
Algorithm 8 Main 2g+1M + 2g+1S + g2g+1a 32M + 32S + 128a

Codomain (Algorithm 4) (I) + (2g + 3g − 4)M + g2gS + g22ga (I) + 24M + 64S + 256a

Evaluation Precomp. (I) + 3(2g − 1)M (I) + 45M
Algorithm 1 Main 2gM + 2gS + g2g+1a 16M + 16S + 128a

Evaluation Precomp. ≤ (I) + 3(2g − 1)M ≤ (I) + 45M
(gluing) Main ≤ (I) + (2g+1 + 5#L− 1)M+ ≤ (I) + 41M + 48S

Algorithm 5 (#L+ 1)2gS + (#L+ 2)g2ga +256a

we have in mind is the verification procedure in SQIsignHD [5] and SIDH torsion
attacks [22] but this could also be applied to other cryptographic constructions [21],
or more generally, an improvement of the Deuring correspondence [25, Remark 2.9].
In [5, Appendix F], algorithms for the verification procedure were briefly presented
but they differ significantly from the real implementation5 relying on the ideas
of Section 4 and do not include several optimizations and implementation details
presented here.

Recall that in SQIsignHD, we compute the 2e-isogeny given by Kani’s lemma
[26] as follows:

(19) F :=

(
α1 Σ̃
−Σ α̃2

)
∈ End(E2

1 × E2
2),

where Σ := Diag(σ, σ) : E2
1 −→ E2

2 with σ : E1 −→ E2 a q-isogeny and for
i ∈ {1, 2},

αi :=

(
a1 a2
−a2 a1

)
∈ End(E2

i ),

with a1, a2 ∈ Z such that a21 + a22 + q = 2e. Input data a1, a2 is given along with a
basis (P1, P2) of E1[2

f ] (where f ≥ e/2+ 2) and its image (σ(P1), σ(P2)). We have
to compute F and evaluate it on some points. We shall keep those notations in the
following.

5.1. Gluing isogenies. As explained previously, F will be computed as a chain
of 2-isogenies. Our goal here is to determine where gluing isogenies appear in the
chain in order to optimize our computations (because gluing isogenies are computed
differently than generic ones and more expensive).

Since q is odd, either one of the a1 or a2 must be even. Without loss of generality,
we can assume that a2 is even (so that a1 is odd). Then, we have:

Lemma 23. Assume that 2|a2 and let m := v2(a2) be its 2-adic valuation. Then
F := G ◦ fm+1 ◦ fm ◦ · · · ◦ f1, with

E2
1 × E2

2
f1−−−→ A2

1 · · · A2
m−1

fm−−−→ A2
m

fm+1−−−→ B,

5This implementation can be found here https://github.com/Pierrick-Dartois/

SQISignHD-lib.

https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/Pierrick-Dartois/SQISignHD-lib
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a chain of 2-isogenies, where the Ai are abelian surfaces and B is an abelian variety
of dimension 4. For all i ∈ J2 ; mK, fi := (φi, φi), with φi : Ai−1 −→ Ai and f1 :
(R1, S1, R2, S2) 7−→ (φ1(R1, R2), φ1(S1, S2)), with φ1 : E1 × E2 −→ A1. Besides,

ker(φm ◦ · · · ◦ φ1) = {([a1]P, σ(P )) | P ∈ E1[2
m]}.

Proof. Kani’s lemma [26] ensures that

ker(F ) = {([a1]P − [a2]Q, [a2]P + [a1]Q, σ(P ), σ(Q)) | P,Q ∈ E1[2
e]}.

Let f1, · · · , fm+1 be the m+ 1 first elements of the 2-isogeny chain F . Then, since
a2 ≡ 0 mod 2m, we have

ker(fm ◦ · · · ◦ f1) = [2e−m] ker(F ) = K1 ⊕K2,

where K1 := {([a1]P, 0, σ(P ), 0) | P ∈ E1[2
m]} and K2 := {(0, [a1]P, 0, σ(P )) | P ∈

E1[2
m]}. This proves the chain fm ◦ · · · ◦ f1 has the desired form. This completes

the proof. □

The above lemma indicates we should compute the first m := v2(a2) isogenies
of the chain in dimension 2 and treat fm+1 as a gluing isogeny. This is how we
proceed in the following.

5.2. Computing a 4 dimensional endomorphism derived from Kani’s
lemma with full available torsion. In this paragraph, we assume we can access
to 2e+2-torsion points of supersingular elliptic curves. This way, we can compute at
once the isogeny F ∈ End(E2

1 × E2
2) as a chain of 2-isogenies. Using the notations

of Lemma 23, we propose the following strategy:

(1) We compute the first m = v2(a2) isogenies by computing the 2-isogeny
chain Φ := φm ◦ · · · ◦ φ1 in dimension 2. Our implementation of this step
relies on [1].

(2) We then compute the isogeny fm+1 : A2
m −→ B assuming it is a gluing

isogeny, so using Algorithm 4 with 5 points on entry instead of 4 (Re-
mark 21).

(3) We can compute a maximal isotropic subgroup K ′′ ⊂ B[2e−m+1] such that
[4]K ′′ = ker(G) and we can finally compute the 2e−m−1-isogeny G : B −→
E2

1 × E2
2 .

(4) We compute a change of theta-coordinates to express image points by G in
(x : z)-Montgomery coordinates on E2

1 × E2
2 .

Prior to the computation of (gluing) isogenies φ1 and fm+1, we have to compute
changes of theta-coordinates. These changes of basis are described in full detail in
Appendices B.1 and B.2. Since m can be significantly bigger than 1 in some cases,
the computation of Φ in step 1 above uses optimal strategies that can be computed
as in dimension 1 [10,12].

However, for the computation of G := fe ◦ · · · ◦ fm+2 in step 3 the optimal
strategy has to satisfy several constraints:

• First, we select a strategy of depth e−m instead of e−m−1 that integrates
the first m+1 isogenies fm+1 ◦ · · · ◦f1 as one ”first step” (more costly than
a regular isogeny evaluation). Indeed, if we started the strategy at fm+2,
we would need to compute [2e−m−2]K ′′ to obtain fm+2. Doubling e−m−2
times a basis of K ′′ may be more costly than reusing some point doublings
we already have computed on E2

1×E2
2 to compute the first m isogenies and

pushing them through fm+1 ◦ · · · ◦ f1.



FAST COMPUTATION OF 2-ISOGENIES IN DIMENSION 4 27

• Second, the strategy should not contain any doubling on the codomain B
of fm+1. Indeed, B may have zero dual theta constants as we have seen in
Section 4.3, which dramatically increases the cost of doublings.
• Third, the strategy should not contain any doubling on the domain of fe−m,

for the same reason. Indeed, Lemma 23 also applies to F̃ so f̃e−m may be
a gluing isogeny and its dual theta constants may vanish.

We refer to Appendix E.2 for the construction of such optimal strategies.
Algorithm 6 summarizes steps 1-3 above to compute F as a 2-isogeny chain. The

output is used in Algorithm 7 to evaluate F on a point. The evaluation procedure
requires a change of Theta coordinates on the codomain E2

1 × E2
2 to recover the

product Theta structure (step 4) as explained in Appendix B.3. Points can then
be converted into (x : z)-Montgomery coordinates with Algorithm 12.

5.3. Cutting the endomorphism computation in two. In this paragraph, we
explain how to compute F ∈ End(E2

1 × E2
2) as defined in (19) when we cannot

access the 2e+2-torsion of elliptic curves but only ”half” of it. Namely, we can
access the 2e

′+2-torsion with e′ ≥ e/2. We follow the approach of [5, § 4.4]: we
write F := F2◦F1 where Fi is a 2

ei-isogeny with ei ≤ e′ for i ∈ {1, 2} and e = e1+e2.

We compute F1 and F̃2 whose kernels are respectively:

ker(F1) = {([a1]P − [a2]Q, [a2]P + [a1]Q, σ(P ), σ(Q)) | P,Q ∈ E1[2
e1 ]}

ker(F̃2) = {([a1]P + [a2]Q,−[a2]P + [a1]Q,−σ(P ),−σ(Q)) | P,Q ∈ E1[2
e2 ]}.

And we compute the dual F2 =
˜̃
F 2 to obtain F = F2 ◦ F1.

Since ker(F1) = ker(F )[2e1 ] and ker(F̃2) = ker(F̃ )[2e2 ], Lemma 23 applies to F1

and an analogue of Lemma 23 applies to F̃2 (see Lemma 28), so we may assume

e1, e2 ≥ m. Then the computation of F1 and F̃2 starts by a chain of m isogenies of
dimension 2 and a gluing isogeny in dimension 4.

Unlike previously, we do not expect any splitting in the chains of 2-isogenies

representing F1 and F̃2 (except in very rare cases). However, we expect to be able

to recover the same codomain C for F1 and F̃2, or more exactly, to identify the

theta-structures on C induced by F1 and F̃2. This identification is not automatic
and depends on the choice of theta-structures (i.e. of symplectic basis of the 2e

′
-

torsion) that we make on E2
1×E2

2 prior to the computation of F1 and F̃2. We explain
how to make this choice in Appendix C.2. This choice also affects the change of
theta-coordinates that we perform to compute the (m + 1)-th gluing isogenies in

the 2-isogeny chains F1 and F̃2. This is explained in Appendix C.2.2.

To compute the dual F2 =
˜̃
F 2, we only have to compute the dual isogeny of

every 2-isogeny intervening in the chain F̃2. This can be done easily by Lemma 22.

However, note that Lemma 23 also applies to F̃2. As a consequence, the first m

isogenies of the chain F̃2 are computed in dimension 2 and the (m+1)-th isogeny is

a gluing isogeny gm+1 : A′2
m −→ B′. After the computation of g̃m+1, the product

theta-structure on the codomain A′2
m has to be recovered before computing the

dual of the m 2-dimensional 2-isogenies. This is explained in Appendix C.3. We
refer to Algorithm 13 in Appendix C for a detailed overview of the computation of
F with half available torsion and to Algorithm 14 for its evaluation.
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Algorithm 6: Computation of a 4 dimensional endomorphism derived from
Kani’s lemma with full available torsion.

Data: a1, a2, q such that a2 is even, q is odd and a21 + a22 + q = 2e, two
supersingular elliptic curves E1 and E2 defined over Fp2 , (P ′′

1 , Q
′′
1) a

basis of E1[2
e+2], (σ(P ′′

1 ), σ(Q
′′
1)) for some q-isogeny σ : E1 −→ E2.

Result: A chain representation of the isogeny F ∈ End(E2
1 × E2

2) given
by (19).

1 m←− v2(a2), r ←− 1/q mod 4, µ←− 1/a1 mod 2e+2;

2 (Pre)compute an optimal strategy S with m leaves [11, Algorithm 60];

3 (Pre)compute an optimal strategy S′ with e −m leaves with constraints

at the beginning and m steps before the end (see Appendix E.2);

/* Step 1: First m isogenies in dimension 2 */

4 c←− e−m− 1, P ′
1, Q

′
1, P

′
2, R

′
2 ←− [2c]P ′′

1 , [2
c]Q′′

1 , [2
c]σ(P ′′

1 ), [2
c]σ(Q′′

1);

5 P1, Q1, P2, Q2 ←− [2m+1]P ′
1, [2

m+1]Q′
1, [2

m+1]P ′
2, [r2

m+1]R′
2;

6 ζ4 ←− e4(P1, Q1);

7 T1, T2 ←− [2]([a1]P
′
1 − [a2]Q

′
1, P

′
2), [2]([a2]P

′
1 + [a1]Q

′
1, R

′
2);

8 For i ∈ {1, 2}, compute a basis (αi, βi) of Ei[4] such that βi = (−1 : 1) in

(x : z)-Montgomery coordinates and e4(αi, βi) = ζ4;

9 Compute the change of basis matrices Mi from (αi, βi) to (Pi, Qi) for

i ∈ {1, 2};
10 Find a Theta structure Θ′

L on (E1 × E2,L) such that K2(Θ
′
L) =

[2m+1]⟨T1, T2⟩ and compute the change of coordinates matrix N12 from
(x : z) to Θ′

L (using Algorithm 9 with input a1, a2, q, (αi : βi),Mi, ζ4);

11 (θ′
L
j (Ti))j ←− N12· t(x1(Ti)x2(Ti), x1(Ti)z2(Ti), z1(Ti)x2(Ti), z1(Ti)z2(Ti))

for i ∈ {1, 2};
12 Use the coordinates (θ′

L
j (Ti))j and strategy S to compute a 2-dimensional

2-isogeny chain Φ := φm ◦ · · · ◦ φ1 of kernel ker(Φ) = [4]⟨T1, T2⟩ (see [1]);

/* Step 2: Gluing isogeny fm+1 in dimension 4 */

13 V1 ←− (Φ([a1]P
′
1, P

′
2),Φ([a2]P

′
1, 0));

14 V2 ←− (Φ([a1]Q
′
1, R

′
2),Φ([a2]Q

′
1, 0));

15 V3 ←− (Φ(−[a2]P ′
1, 0),Φ([a1]P

′
1, P

′
2));

16 V4 ←− (Φ(−[a2]Q′
1, 0),Φ([a1]Q

′
1, R

′
2));

17 V5 ←− (Φ([a1](P
′
1 +Q′

1), P
′
2 +R′

2),Φ([a2](P
′
1 +Q′

1), 0)) = V1 + V2;

18 Let ΘLm be the level 2 Theta-structure on the codomain (Am,Lm) of Φ

and ΘMm
:= ΘLm

×ΘLm
;

19 Find a Theta structure Θ′
Mm

on (A2
m,Mm) such that K2(Θ

′
Mm

) =
[4]⟨V1, · · · , V4⟩ and compute the change of basis matrix N24 from ΘMm

to Θ′
Mm

-coordinates (using Algorithm 10 with input a1, a2, q,m, ζ4);

20 (θ′
Mm

j (Vi))j ←− N24 · (θMm
j (Vi))j for i ∈ J1 ; 5K;

21 Using the (θ′
Mm

j (Vi))j for i ∈ J1 ; 5K, compute fm+1 of kernel

[4]⟨V1, · · · , V4⟩ (Algorithm 4 and Remark 21);
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/* Step 3: Last e−m− 1 isogenies in dimension 4 */

24 V ′
1 ←− fm+1(Φ([a1]P

′′
1 − [µ]P1, σ(P

′′
1 )),Φ([a2]P

′′
1 , 0));

25 V ′
2 ←− fm+1(Φ([a1]Q

′′
1 , σ(Q

′′
1)),Φ([a2]Q

′′
1 , 0));

26 V ′
3 ←− fm+1(Φ(−[a2]P ′′

1 , 0),Φ([a1]P
′′
1 , σ(P

′′
1 )));

27 V ′
4 ←− fm+1(Φ(−[a2]Q′′

1 , 0),Φ([a1]Q
′′
1 − [µ]Q1, σ(Q

′′
1)));

28 Use Algorithm 21 with input V ′
1 , · · · , V ′

4 and strategy S′ to compute a

4-dimensional 2-isogeny chain fe ◦ · · · ◦ fm+2 of kernel [4]⟨V ′
1 , · · · , V ′

4⟩;
/* Step 4: Splitting change of Theta coordinates */

29 Let ΘL0 := ΘL1 ×ΘL1 ×ΘL2 ×ΘL2 be the product Theta structure on

(E2
1 × E2

2 ,L0) induced by the (αi, βi) (i ∈ {1, 2});
30 Let Θ′

L0
be the (non-product) level 2 Theta structure on (E2

1 × E2
2 ,L0)

generated when computing fe;

31 Compute the change of basis matrix N41 from Θ′
L0

to ΘL0
-coordinates

(using Algorithm 11 with input a1, a2, q,m,M1,M2, ζ4);

32 return N12, φ1, · · · , φm, N24, fm+1, · · · , fe, N41, (α1, β1), (α2, β2);

Algorithm 7: Evaluation of a 4 dimensional endomorphism derived from
Kani’s lemma with full available torsion given its representation.

Data: A chain C outputted by Algorithm 6 representing F ∈ End(E2
1 ×E2

2)
given by (19), and a point Q ∈ E2

1 × E2
2 .

Result: The Montgomery (x : z)-coordinates of F (Q).
1 Parse C as N12, φ1, · · · , φm, N24, fm+1, · · · , fe, N41, (α1, β1), (α2, β2);

2 v ←− t(x(Q1)x(Q3), x(Q1)z(Q3), z(Q1)x(Q3), z(Q1)z(Q3));

3 (θ′
L
i (Q1, Q3))i ←− N12 · v;

4 (θLm
i (R1))i ←− φm ◦ · · · ◦ φ1((θ

′L
i (Q1, Q3))i);

5 w ←− t(x(Q2)x(Q4), x(Q2)z(Q4), z(Q2)x(Q4), z(Q2)z(Q4));

6 (θ′
L
i (Q2, Q4))i ←− N12 · w;

7 (θLm
i (R2))i ←− φm ◦ · · · ◦ φ1((θ

′L
i (Q1, Q3))i);

8 θMm
i1,i2

(R)←− θLm
i1

(R1) · θLm
i2

(R2) for i1, i2 ∈ (Z/2Z)2;
9 (θ′

Mm

i (R))i ←− N24 · (θMm
i (R))i;

10 (θ′
L0

i (S))i ←− fe ◦ · · · ◦ fm+1((θ
′Mm

i (R))i);

11 (θL0
i (S))i ←− N41 · (θ′L0

i (S))i;

12 Use Algorithm 12 with input (θL0
i (S))i and (αi, βi) for i ∈ {1, 2} to obtain

(x1(F (Q)) : z1(F (Q))), · · · , (x4(F (Q)) : z4(F (Q)));

13 return (x1(F (Q)) : z1(F (Q))), · · · , (x4(F (Q)) : z4(F (Q)));

5.4. Performance. The computation and evaluation algorithms of F defined in
Eq. (19) have been implemented in Python/Sagemath for the needs of SQIsignHD.
This computation has been tested on various parameters on random supersingular
elliptic curves E1 defined over finite fields Fp2 of characteristic p between 30 and

378 bits. Primes are of the form p = c · 2f ℓf ′ − 1 with ℓ = 3 or 7, f ≥ e + 2
and c small. The isogeny σ : E1 −→ E2 ”embedded” in F ∈ End(E2

1 × E2
2) in
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dimension 4 as defined in Eq. (19) is always a random cyclic isogeny of degree q|ℓf ′

and integers a1, a2 ∈ Z such that q+ a21 + a22 = 2e are precomputed. In SQIsignHD
verification, q is not smooth and may vary and a1, a2 are computed at runtime,
however we have chosen q|ℓf ′

here to be able to verify that point images of F are
correct. For every set of parameters, we compared the computation and evaluation
of a 2e-isogeny F ∈ End(E2

1 × E2
2) in dimension 4 as defined in Eq. (19) with the

computation and evaluation of a cyclic 2e-isogeny in dimension 1 with domain E1

(using x-only arithmetic code due to Giacomo Pope6). To compute F , both full
torsion algorithms (Algorithms 6 and 7) and half torsion algorithms (Algorithms 13
and 14) were tested7. Computations were repeated 100 times and averaged.

Results are displayed in Tables 2 and 3. We found that computing a 2e-isogeny
in dimension 4 is 16 − 18 times more costly than in dimension 1 over a large
base field Fp2 , with a slight advantage to the half torsion algorithms (due to the
quasilinear complexity of an isogeny chain computation). Timings for evaluation
are ≈ 20 times faster in dimensions 1 than in dimension 4. This suggests that our
algorithmic approach is promising and can be made cryptographically relevant with
a low level implementation (e.g. in C or Rust).

Table 2. Comparison of timings (in ms) for 2e-isogeny compu-
tations in dimension 4 with full available torsion (Algorithm 6),
half available torsion (Algorithm 13) and in dimension 1 with G.
Pope’s code for various parameters in Python/Sagemath on a 2,7
GHz Intel Core i5 CPU.

Dimension 4 Dimension 1
e log2(p) p deg(σ) Full tors. Half tors. G. Pope

16 33 219 · 39 − 1 39 139 164 6
32 55 234 · 313 − 1 313 366 384 12
64 121 11 · 268 · 331 − 1 331 741 695 37
64 125 5 · 266 · 336 − 1 335 678 674 36
128 254 2131 · 378 − 1 375 1519 1428 83
128 261 52 · 2131 · 379 − 1 379 1586 1484 87
192 365 2199 · 3105 − 1 3105 2447 2320 137
192 371 239 · 2194 · 3107 − 1 3107 2459 2309 137
17 30 3 · 220 · 73 − 1 73 142 168 6
17 35 221 · 75 − 1 75 131 164 6
33 52 32 · 235 · 75 − 1 75 256 261 12
33 71 237 · 712 − 1 711 352 351 18
65 110 109 · 267 · 713 − 1 713 691 685 37
65 137 5 · 270 · 723 − 1 723 723 708 39
129 249 261 · 2131 · 739 − 1 739 1559 1449 86
129 257 15 · 2132 · 743 − 1 743 1612 1517 91
193 359 32 · 2196 · 757 − 1 757 2499 2354 137
193 378 97 · 2195 · 763 − 1 763 2488 2370 142

6https://github.com/GiacomoPope/KummerIsogeny
7The 2e+2-torsion is always available but we only used ”half” of it to test Algorithms 13 and 14.

https://github.com/GiacomoPope/KummerIsogeny
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Table 3. Comparison of timings (in ms) for 2e-isogeny evalua-
tions in dimension 4 with full available torsion (Algorithm 7), half
available torsion (Algorithm 14) and in dimension 1 with G. Pope’s
code for various parameters in Python/Sagemath on a 2,7 GHz In-
tel Core i5 CPU.

Dimension 4 Dimension 1
e log2(p) p deg(σ) Full tors. Half tors. G. Pope

16 33 219 · 39 − 1 39 7.1 6.8 0.6
32 55 234 · 313 − 1 313 14.2 13.9 0.8
64 121 11 · 268 · 331 − 1 331 27.5 26.8 1.8
64 125 5 · 266 · 336 − 1 335 25.9 26.1 1.8
128 254 2131 · 378 − 1 375 59.3 59.4 3.5
128 261 52 · 2131 · 379 − 1 379 64.1 64.2 3.7
192 365 2199 · 3105 − 1 3105 107.7 109.9 5.4
192 371 239 · 2194 · 3107 − 1 3107 106.6 106.9 5.4
17 30 3 · 220 · 73 − 1 73 7.1 6.9 0.6
17 35 221 · 75 − 1 75 7.2 6.9 0.6
33 52 32 · 235 · 75 − 1 75 10.0 9.7 0.8
33 71 237 · 712 − 1 711 15.9 15.5 1.2
65 110 109 · 267 · 713 − 1 713 26.4 26.3 1.8
65 137 5 · 270 · 723 − 1 723 29.0 28.8 1.9
129 249 261 · 2131 · 739 − 1 739 60.2 59.3 3.6
129 257 15 · 2132 · 743 − 1 743 66.3 65.2 3.8
193 359 32 · 2196 · 757 − 1 757 108.5 107.4 5.4
193 378 97 · 2195 · 763 − 1 763 108.1 108.9 5.6

5.5. Application to SIDH attacks. In SIDH, Alice and Bob are given a start-
ing supersingular elliptic curve E0 defined over Fp2 where p is a prime of the
form p = 2e23e3 − 1 along with two basis (PA, QA) and (PB , QB) of E0[2

e2 ]
and E0[3

e3 ] respectively. Alice and Bob sample secret integers sA ∈ Z/2e2Z and
sB ∈ Z/3e3Z respectively. Then Alice computes a 2e2-isogeny φA : E0 −→ EA of
kernel ker(φA) = ⟨PA + [sA]QA⟩ and Bob computes a 3e3-isogeny φB : E0 −→ EB
of kernel ker(φB) = ⟨PB + [sB ]QB⟩. Alice sends (EA, φA(PB), φA(QB)) to Bob
and Bob sends (EB , φB(PA), φB(QA)) to Alice. Alice can then compute ψA :=
[φB ]∗φA : EB −→ EBA of kernel ker(ψA) = ⟨φB(PA)+ [sA]φB(QA)⟩ and Bob com-
putes ψB := [φA]∗φB : EA −→ EAB of kernel ker(ψB) = ⟨φA(PB) + [sB ]φA(QB)⟩.
Then, they share knowledge of a secret elliptic curve EAB ∼= EBA.

E0 EA

EB EAB

φA

φB

ψA

ψB
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However, given (EB , φB(PA), φB(QA)), an attacker is able to recover φB
(hence sB) in polynomial time. Knowing sB , they can then compute ψB and
find the secret EAB . To compute φB , the attacker embeds φB into a dimension 4
isogeny:

FB :=

(
α0 Φ̃B
−ΦB α̃B

)
∈ End(E2

0 × E2
B),

where ΦB := Diag(φB , φB) : E
2
0 −→ E2

B and for i = 0, B,

αi :=

(
a1 a2
−a2 a1

)
∈ End(E2

i ),

with a1, a2 ∈ Z such that a21 + a22 + 3e3 = 2e and ⌈e/2⌉+ 2 ≤ e2. Knowing the 2e2 -
torsion point images φB(PA) and φB(QA), the attacker can compute FB = F2 ◦F1

in two parts as in Section 5.3.
The parameters a1, a2 and e such that a21+a

2
2+3e3 = 2e are precomputed before

the attack. In practice, we increment e until 2e − 3e3 is easy to factor in the form
α2βN , where α is smooth, β is smooth and all its prime factors are congruent
to 1 mod 4 and N is a big prime congruent to 1 mod 4. Then 2e − 3e3 can be
easily decomposed as a sum of two squares using Cornacchia’s algorithm [38]. This
procedure terminates and outputs a small value of e (satisfying ⌈e/2⌉ + 2 ≤ e2)
only when e3 is odd. When e3 is even (as in SIKE p610), we look for a1, a2 and e
such that a21 + a22 + 3e3+1 = 2e and embed φ′ ◦ φB instead of φB in dimension 4,
where φ′ : EB −→ E′

B is a random 3-isogeny. The parameter search took less than
1 s on a laptop even for the biggest prime (SIKE p751).

We performed our attack 100 times on all SIKE NIST primes (p434, p503, p610
and p751) with starting elliptic curves E0 sampled at random in the supersingu-
lar isogeny graph with an isogeny walk from the elliptic curve of j-invariant 1728.
Timings and parameters are displayed in Table 4. This attack runs in less than 15
s on a laptop for SIKE p751. This significantly improves previous attack imple-
mentations using 2-dimensional isogenies. The implementation by W. Castryck, T.
Decru, G. Pope and R. Oudompheng8 only worked with a special starting curve of
known endomorphism ring and broke SIKE p751 in 1 h. The implementation by
L. Maino, L. Panny, G. Pope and B. Wesolowski9 worked with any starting curve
but only for small parameters.

Table 4. Timings (in s) and parameters of the complete SIDH key
recovery attack with a random starting curve in Python/Sagemath
for various NIST SIKE primes on a 2,7 GHz Intel Core i5 CPU.

SIKE prime e2 e3 e Attack timing (s)

p434 216 137 225 3.82
p503 250 159 290 5.47
p610 305 192 407 8.61
p751 372 239 589 14.02

8https://github.com/GiacomoPope/Castryck-Decru-SageMath
9https://github.com/Breaking-SIDH/direct-attack

https://github.com/GiacomoPope/Castryck-Decru-SageMath
https://github.com/Breaking-SIDH/direct-attack
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Nancy 1, France, 2010.

[18] Damien Robert, A note on optimising 2n-isogenies in higher dimension, 2024. https://

eprint.iacr.org/2024/406.
[19] Jun-Ichi Igusa, Theta functions, Springer-Verlag, New York, 1972. Die Grundlehren der math-

ematischen Wissenschaften, Band 194.

[20] Romain Cosset, Applications des fonctions thêta à la cryptographie sur courbes hyperellip-
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Philipp Merz and Lorenz Panny and Benjamin Wesolowski, SCALLOP: Scaling the CSI-FiSh
(Alexandra Boldyreva and Vladimir Kolesnikov, ed.), Springer Nature Switzerland, Cham,

2023.

[31] Tomoki Moriya, IS-CUBE: An isogeny-based compact KEM using a boxed SIDH diagram,
2023. https://eprint.iacr.org/2023/1506.

[32] Damien Robert, Evaluating isogenies in polylogarithmic time, 2022. https://eprint.iacr.

org/2022/1068.
[33] Benjamin Smith, Explicit Endomorphisms and Correspondences, The University of Sydney,

2005.

[34] Takashima Katsuyuki and Yoshida Reo, An algorithm for computing a sequence of Richelot
isogenies, Bulletin of the Korean Mathematical Society 46 (2009), no. 4, 789-802.

[35] David Lubicz and Damien Robert, Computing isogenies between abelian varieties, Compositio

Mathematica 148 (2012), no. 5, 1483–1515, DOI 10.1112/S0010437X12000243.
[36] , Computing separable isogenies in quasi-optimal time, LMS Journal of Computation

and Mathematics 18 (2015), no. 1, 198–216, DOI 10.1112/S146115701400045X.
[37] , Fast change of level and applications to isogenies, Research in Number Theory 9

(2022), no. 7, 7, DOI 10.1007/s40993-022-00407-9.

[38] Giuseppe Cornacchia, Su di un metodo per la risoluzione in numeri interi dell’equazione∑n
h=0 Chx

n−hyh = P , Giornale di matematiche di Battaglini 46 (1908), 33–90.

[39] David Mumford, Abelian varieties, Oxford University Press, London, 1974. Second Edition.

Tata Institute of fundamental research studies in mathematics.
[40] Christina Birkenhake and Herbert Lange, Complex Abelian Varieties, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2004.
[41] Sabrina Kunzweiler and Luciano Maino and Tomoki Moriya and Chrstophe Petit and Gia-

como Pope and Damien Robert and Miha Stopar and Yan Bo Ti, Radical isogenies in the

theta model and applications to cryptographic hash functions, 2024. Unpublished.

https://eprint.iacr.org/2023/1766
https://eprint.iacr.org/2023/1468
https://eprint.iacr.org/2023/1506
https://eprint.iacr.org/2022/1068
https://eprint.iacr.org/2022/1068


FAST COMPUTATION OF 2-ISOGENIES IN DIMENSION 4 35

Appendix A. Doubling algorithm

Let ΘL be a level 2 theta-structure on a polarised abelian variety (A,L). We
explain here how to compute (θLi (2x))i when (θLi (x))i is given using the formulas of
Theorem 6. This is described in Algorithm 8, which is derived from [17, Algorithm
4.4.10]. Algorithm 8 requires that:

(20) ∀i ∈ (Z/2Z)g, θLi (0A) ̸= 0 and ∀χ ∈ ̂(Z/2Z)g, UL2

χ,0(0A) ̸= 0.

In practice, this condition is satisfied except when A is a product of abelian varieties
of smaller dimension. In that case, we can either:

• Work with a product theta-structure and compute the doubling in every
component of A (e.g. with elliptic curve arithmetic on product of elliptic
curves).
• Compute random change of coordinates (using Theorem 12) until (20) is
satisfied. This option is generally avoided because it is costly.
• Still use the formulas Theorem 6 in a different way than in Algorithm 8,
which is also costly.

Algorithm 8: Generic doubling algorithm.

Data: A theta point (θLi (x))i of A and the dual theta-null point (UL
χ,0(0A))χ

of A with non-vanishing coordinates.
Result: (θLi (2x))i.

1 Precompute θLi (0A)
−1 ←− H((UL

χ,0(0A))χ)i for all i ∈ (Z/2Z)g;

2 Precompute UL2

χ,0(0A)
−2
←− 1/H ◦ S((θLi (0A))i)χ for all χ ∈ ̂(Z/2Z)g;

3 (Zχ)χ ←− H ◦ S ◦H((θLi (x))i);

4 (Yχ)χ ←− (UL2

χ,0(0A)
−2
· Zχ)χ;

5 (Xi)i ←− H((Yχ)χ);

6 (Wi)i ←− (θLi (0A)
−1 ·Xi)i;

7 return (Wi)i;



36 PIERRICK DARTOIS

Appendix B. Explicit change of basis computations for 4 dimensional
isogenies derived from Kani’s lemma with full available

torsion

Throughout this section, we keep the notations of Section 5. We assume we have
full available torsion (E2

1 × E2
2)[2

e+2] to compute F ∈ End(E2
1 × E2

2) as defined
in Eq. (19).

B.1. Change of basis in dimension 2. In this paragraph, we explain how to per-
form the change of basis prior to the computation of the first (gluing) 2 dimensional
2-isogeny φ1 (see Lemma 23).

For i ∈ {1, 2}, consider a basis (αi, βi) of Ei[4] such that βi = (−1 : 1) in
Montgomery (x : z)-coordinates and the associated level 2 Theta structure ΘLi

on (Ei,Li). We assume that e4(U1, V1) = e4(U2, V2) and we denote by ζ4 this
quantity. Let L := π∗

1L1 ⊗ π∗
2L2, where the πi are the projections E1 × E2 −→ Ei

and consider the product Theta structure ΘL := ΘL1×ΘL2 . Then, ΘL is associated
to the ζ4-symplectic basis of (E1×E2)[4]: B0 := ((α1, 0), (0, α2), (β1, 0), (0, β2)) (see
Section 2.6).

Lemma 24. Let (P1, Q1) be a basis of E1[4] such that e4(P1, Q1) = ζ4 and
(P2, Q2) := (σ(P1), [r]σ(Q1)), where rq ≡ 1 mod 4. Let Mi be the change of
basis matrices (in columns convention) from (αi, βi) to (Pi, Qi) for i ∈ {1, 2}.

Let µ be a modular inverse of a1 modulo 4. Consider B1 given by:

((0,−P2), ([µ]P1, [µa2]P2), ([a1]P1 − [a2]Q1, P2), ([a2]P1 + [a1]Q1, [q]Q2)).

Then B1 is a ζ4-symplectic basis of (E1 × E2)[4] which induces a level 2 Theta
structure Θ′

L on E1 × E2 such that K2(Θ
′
L) = ker(φ1).

Besides, the change of basis matrix (in columns convention) from B0 to B1 is
M :=Ml ·Mr, where:

Ml :=


M1,1,1 0 M1,1,2 0

0 M2,1,1 0 M2,1,2

M1,2,1 0 M1,2,2 0
0 M2,2,1 0 M2,2,2

 and Mr :=


0 µ a1 a2
0 0 1 0
0 0 −a2 a1
−1 µa2 0 q


Proof. The left factorMl is the change of basis matrix from B0 to the ζ4-symplectic
basis B′

0 := ((P1, 0), (0, P2), (Q1, 0), (0, Q2)). The right factor Mr is the change
of basis matrix from B′

0 to B1. Since B0 and B′
0 are both ζ4-symplectic basis

by construction, we have Ml ∈ Sp4(Z/4Z). Besides, we easily check that Mr ∈
Sp4(Z/4Z) by decomposing Mr into 2× 2-blocks:

Mr =

(
A C
B D

)
and verifying that tBA ≡ tAB, tDC ≡ tCD and tAD − tBC ≡ I2 mod 4, as in
Lemma 11. Hence, the change of basis matrix from B0 to B1 M =Ml ·Mr belongs
to Sp4(Z/4Z) and B1 is a ζ4-symplectic basis.

Since 2|a2, we have:

[2]⟨B1,3,B1,4⟩ = [2]⟨([a1]P1, σ(P1)), ([a1]Q1, σ(Q1))⟩ = ker(φ1),

so the level 2 Theta-structure Θ′
L associated to B1 by Theorem 5.(ii) satisfies

K2(Θ
′
L) = ker(φ1). □
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If we want to compute the Θ′
L-coordinates of a point (R1, R2) ∈ E1 × E2 ex-

pressed in Montgomery (x : z)-coordinates, we first have to translate (x(Ri) : z(Ri))

into (θLi
0 (Ri) : θLi

1 (Ri)) for i ∈ {1, 2}, using the formulas of Section 2.7, then

we compute the product ΘL-coordinates θ
L
i,j(R1, R2) = θL1

i (R1) · θL2
j (R2) for all

i, j ∈ Z/2Z (by Lemma 1) and then act on (θLi,j(R1, R2))i,j with the change of basis
matrix N from ΘL to Θ′

L-coordinates obtained by Lemma 24 and Theorem 12.
Assuming N has been precomputed, each conversion of (x : z)-coordinates into
Θ′

L-coordinates costs 2× 2 multiplication to translate (x : z) into ΘLi -coordinates,
4 multiplications to compute the product ΘL-coordinates and 16 multiplication to
apply the matrix N , for a total of 24 multiplications.

Instead, we can translate directly (x : z)-coordinates to Θ′
L-coordinates without

intermediate ΘLi
-coordinates computation. We first compute the product (x : z)-

coordinates (x(R1)x(R2) : x(R1)z(R2) : z(R1)x(R2) : z(R1)z(R2)). Then, we act
with the change of ccordinates matrix from (x : z) to Θ′

L N ′′ := N ·N ′, where N ′

translates product (x : z)-coordinates into ΘL-coordinates and is given by:

N ′ :=


a1a2 −a1a2 −a1a2 a1a2
b1a2 −b1a2 b1a2 −b1a2
a1b2 a1b2 −a1b2 −a1b2
b1b2 b1b2 b1b2 b1b2

 ,

with (ai : bi) the theta-null point of (Ei,Li,ΘLi) for i ∈ {1, 2}. Assuming N ′′

has been precomputed, translating (x : z)-coordinates to Θ′
L-coordinates costs 20

multiplications, saving 4 multiplications compared to the previous method. The
precomputation of the product N ′′ = N · N ′ is not too costly compared to the
computation of N alone since the product N ·N ′ can be computed with 16 multi-
plications only instead of 64 (see Algorithm 9).

B.2. Change of basis in dimension 4 with full available torsion. In this
paragraph, we explain how to perform the change of basis prior to the computation
of the first (gluing) 4 dimensional 2-isogeny fm+1 : A2

m −→ B (see Lemma 23)
when we can access the 2e+2-torsion of E1. We first determine the product Theta
structure ΘMm

on (A2
m,Mm) and then explain how to compute a new Theta

structure such that K2(Θ
′
Mm

) = ker(fm+1).

B.2.1. Computing the Theta structure induced by the 2-dimensional chain. After
the computation of Φ := φm ◦ · · · ◦φ1 : E1×E2 −→ Am, we obtain a level 2 Theta
structure ΘLm

on the polarised abelian surface (Am,Lm). This Theta structure
ΘLm

is induced by the symplectic basis of Am[4] given by

C1 := ([2m]Φ(S1), [2
m]Φ(S2),Φ(T1),Φ(T2)),

where B̃1 := (S1, S2, T1, T2) is a symplectic basis of (E1 × E2)[2
m+2] such that:

(i) [2m]B̃1 is the basis B1 of Lemma 24;
(ii) For all i ∈ J1 ; mK, the 8-torsion points [2m−i−1]φi−1 ◦ · · · ◦ φ1(Tj) where

j ∈ {1, 2} lye above ker(φi) and have been used to compute φi (on entry
of [1, Algorithm 5 or 7] or Algorithm 4).

To satisfy point (ii) above, it is sufficient that B̃1 satisfies the following:

(ii)’ ⟨T1, T2⟩ is a maximal isotropic subgroup of (E1 × E2)[2
m+2] such that:

⟨[4]T1, [4]T2⟩ = ker(Φ) = {([a1]P, σ(P )) | P ∈ E1[2
m]}.
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Algorithm 9: Change of basis in dimension 2.

Data: Integer parameters a1, a2, q, the basis (αi, βi) of Ei[4], the change of
basis matrices Mi from (αi, βi) to (Pi, Qi) (as defined in Lemma 24
for i ∈ {1, 2}) and the Weil pairing ζ4 = e4(P1, Q1).

Result: A change of coordinates matrix from (x : z) to Θ′
L, where Θ

′
L is the

Theta structure induced by B1 (as defined in Lemma 24) satisfying
K2(Θ

′
L) = ker(φ1).

1 µ←− 1/a1 mod 4;

2 Using a1, a2, µ, compute the matrix Mr of Lemma 24;

3 Using M1 and M2, compute the matrix Ml of Lemma 24;

4 M ←−Ml ·Mr;

5 Let ΘL = ΘL1 ×ΘL2 be the product theta-structure of E1 × E2 induced by

(α1, β1) and (α2, β2);

6 Using the formulas of Theorem 12 with M and ζ4 compute the change of

basis matrix N from ΘL to Θ′
L-coordinates;

7 ai ←− x(αi) + z(αi), bi ←− x(αi)− z(αi) for i ∈ {1, 2};
8 c1, c2, c3, c4 ←− a1a2, b1a2, a1b2, b1b2;
9 N ′

i,j ←− Ni,j · cj for all i, j ∈ J1 ; 4K;
10 for i = 1 to 4 do
11 N ′′

i,1 ←− N ′
i,1 +N ′

i,2 +N ′
i,3 +N ′

i,4;

12 N ′′
i,2 ←− −N ′

i,1 −N ′
i,2 +N ′

i,3 +N ′
i,4;

13 N ′′
i,3 ←− −N ′

i,1 +N ′
i,2 −N ′

i,3 +N ′
i,4;

14 N ′′
i,4 ←− N ′

i,1 −N ′
i,2 −N ′

i,3 +N ′
i,4;

15 end

16 return N ′′;

Lemma 25. Let (P ′
1, Q

′
1) be a basis of E1[2

m+2] such that P1 = [2m]P ′
1 and Q1 =

[2m]Q′
1, where (P1, Q1) is the basis of E1[4] of Lemma 24. Let ζ := e2m+2(P ′

1, Q
′
1).

Consider B̃1 := (S1, S2, T1, T2), with:

S1 := ([2m+1]Q′
1, [a]σ(P

′
1) + [b]σ(Q′

1)), S2 := ([µ]P ′
1, [c]σ(P

′
1) + [d]σ(Q′

1)),

T1 := ([a1]P
′
1 − [a2]Q

′
1, σ(P

′
1)) and T2 := ([a2]P

′
1 + [a1]Q

′
1, σ(Q

′
1)),

a ≡ 2m+1a2/q, b ≡ −(1+2m+1a1)/q, µ ≡ (1−2m+1q)/a1, d ≡ −µa2/q mod 2m+2

and c = 2m+1. Then B̃1 is a ζ-symplectic basis of (E1 × E2)[2
m+2] satisfying (i)

and (ii)’.

Proof. Let r be the modular inverse of q modulo 2m+2, P ′
2 := σ(P1) and Q′

2 :=

[r]σ(Q′
1). Consider the ζ-symplectic basis of (E1 × E2)[2

m+2] given by B̃0 :=

((P ′
1, 0), (0, P

′
1), (Q

′
1, 0), (0, Q

′
2)). Then, the change of basis matrix from B̃0 to B̃1

is:

M :=


0 µ a1 a2
a c 1 0

2m+1 0 −a2 a1
bq dq 0 q


As in the proof of Lemma 24, we easily check that M ∈ Sp4(Z/2m+2Z), which
proves that B̃1 is a ζ-symplectic basis of (E1 × E2)[2

m+2].
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We also see that the reduction ofM modulo 4 is the matrixMr introduced in the
proof of Lemma 24, which is the change of basis matrix from B′

0 to B1. Besides,

[2m]B̃0 = B′
0 so we obtain [2m]B̃1 = B1, which proves (i).

Finally, since 2m|a2, we see that:

⟨[4]T1, [4]T2⟩ = ⟨([4a1]P ′
1, σ([4]P

′
1)), ([4a1]Q

′
1, σ([4]Q

′
1))⟩

= {([a1]P, σ(P )) | P ∈ E1[2
m]} = ker(Φ),

which proves (ii)’ and completes the proof. □

B.2.2. Computing the change of Theta structure before the 4-dimensional gluing.
Consider the product (A2

m,Mm) withMm := π∗
1Lm⊗ π∗

2Lm, where the πi are the
projections A2

m −→ Am on the i-th component and the product Theta structure
ΘMm := ΘLm ×ΘLm . Then ΘMm is associated to the 4-torsion symplectic basis:

C1 × C1 := (([2m]Φ(S1), 0), ([2
m]Φ(S2), 0), (0, [2

m]Φ(S1)), (0, [2
m]Φ(S2)),

(Φ(T1), 0), (Φ(T2), 0), (0,Φ(T1)), (0,Φ(T2)))

We want to compute a Theta structure Θ′
Mm

on (A2
m,Mm) such that K2(Θ

′
Mm

) =
ker(fm+1). In order to do that, we compute a change of basis from C1 × C1 to a
symplectic basis C := (U1, · · · , U4, V1, · · · , V4) such that:

V1 = (Φ([a1]P
′
1, σ(P

′
1)),Φ([a2]P

′
1, 0)), V2 = (Φ([a1]Q

′
1, σ(Q

′
1)),Φ([a2]Q

′
1, 0)),

V3 = (Φ(−[a2]P ′
1, 0),Φ([a1]P

′
1, σ(P

′
1))), V4 = (Φ(−[a2]Q′

1, 0),Φ([a1]Q
′
1, σ(Q

′
1))),

so that ⟨V1, · · · , V4⟩ = [2e−m]fm ◦ · · · ◦ f1(K ′′). Any symplectic complement
(U1, · · · , U4) of (V1, · · · , V4) is acceptable. When we cannot access the full 2e+2-
torsion, we may choose a different basis C because we have to satisfy more con-
straints. Here, to compute C we first compute the matrix of (V1, · · · , V4) in the
basis C1 × C1 and complete it to obtain a symplectic matrix of Sp8(Z/4Z) (which
can be done with easy linear algebra over Z/4Z).

Lemma 26. The matrix of (V1, · · · , V4) in C1 × C1 is:

−a1a2/2m a22/2
m a22/2

m a1a2/2
m

−a22/2m −a1a2/2m −a1a2/2m a22/2
m

−a22/2m −a1a2/2m −a1a2/2m a22/2
m

a1a2/2
m −a22/2m −a22/2m −a1a2/2m

1 0 0 0
µa2 1 0 −µa2
0 0 1 0
0 µa2 µa2 1


,

where µ has been defined in Lemma 25.

Proof. Let W1 := Φ([a1]P
′
1, σ(P

′
1)), W2 := Φ([a1]Q

′
1, σ(Q

′
1)), W3 := Φ([a2]P

′
1, 0)

and W4 := Φ([a2]Q
′
1, 0). To conclude, it suffices to compute the matrix of

(W1, · · · ,W4) in C1. Let us write:

Wj :=

2∑
i=1

[ci,j2
m]Φ(Si) +

2∑
i=1

[di,j ]Φ(Ti)

for all j ∈ J1 ; 4K. Then, we have for all i ∈ {1, 2} and j ∈ J1 ; 4K,

e4(Wj , [2
m]Φ(Si)) = e4([2

m]Φ(Si),Φ(Ti))
−di,j = ζ

−di,j
4
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and e4(Wj ,Φ(Ti)) = e4([2
m]Φ(Si),Φ(Ti))

ci,j = ζ
ci,j
4 ,

where ζ4 = ζ2
m

= e2m+2(P ′
1, Q

′
1)

2m . Hence, we can obtain the coefficients ci,j and
di,j that we are looking for by computing Weil pairings.

We have:

e4(W1, [2
m]Φ(S1)) = e4(Φ([a1]P

′
1, σ(P

′
1)), [2

m]Φ(S1))

= e4(([a1]P
′
1, σ(P

′
1)), [2

m]Φ̃ ◦ Φ(S1)) [3, Lemma 16.2.(a)]

= e4(([a1]P
′
1, σ(P

′
1)), [2

2m]S1)

= e4([2
m]([a1]P

′
1, σ(P

′
1)), [2

m]S1)

= e2m+2(([a1]P
′
1, σ(P

′
1)), S1)

2m [3, Lemma 16.1]

= e2m+2(([a1]P
′
1, σ(P

′
1)), ([2

m+1]Q′
1, [a]σ(P

′
1) + [b]σ(Q′

1)))
2m

= e2m+2(P ′
1, Q

′
1)

2m(a12
m+1+bq) = ζa12

m+1+bq
4 = ζbq4 = ζ−1

4 ,

so that d1,1 = 1. Similarly, we obtain:

e4(W1, [2
m]Φ(S2)) = e2m+2(([a1]P

′
1, σ(P

′
1)), S2)

2m

= e2m+2(([a1]P
′
1, σ(P

′
1)), ([µ]P

′
1, [c]σ(P

′
1) + [d]σ(Q′

1)))
2m

= e2m+2(P ′
1, Q

′
1)

2mdq = ζdq4 = ζ−µa24 ,

e4(W1,Φ(T1)) = e4(Φ([a1]P
′
1, σ(P

′
1)),Φ([a1]P

′
1 − [a2]Q

′
1, σ(P

′
1)))

= e4(Φ([a1]P
′
1, σ(P

′
1)),Φ(−[a2]Q′

1, 0))

× e4(Φ([a1]P ′
1, σ(P

′
1)),Φ([a1]P

′
1, σ(P

′
1)))

= e4(Φ([a1]P
′
1, σ(P

′
1)),Φ(−[a2]Q′

1, 0))

= e4(Φ([a1]P
′
1, σ(P

′
1)), [2

m]Φ(−[a2/2m]Q′
1, 0))

= e2m+2(([a1]P
′
1, σ(P

′
1)), (−[a2/2m]Q′

1, 0))
2m

= e2m+2(P ′
1, Q

′
1)

−a1a2 = ζ−a1a2 = ζ
−a1a2/2m
4 ,

so that d2,1 = µa2 and c1,1 = −a1a2/2m. Let W ′
1 ∈ Am[2m+2] and T ′

2 ∈ (E1 ×
E2)[2

2m+2] such that [2m]W ′
1 =W1 and [2m]T ′

2 = T2. Then:

e4(W1,Φ(T2)) = e4([2
m]W ′

1, [2
m]Φ(T ′

2)) = e2m+2(W ′
1,Φ(T

′
2))

2m

= e2m+2([2m]W ′
1,Φ(T

′
2)) = e2m+2(Φ([a1]P

′
1, σ(P

′
1)),Φ(T

′
2))

= e2m+2(([a1]P
′
1, σ(P

′
1)), Φ̃ ◦ Φ(T ′

2))

= e2m+2(([a1]P
′
1, σ(P

′
1)), [2

m]T ′
2)

= e2m+2(([a1]P
′
1, σ(P

′
1)), ([a2]P

′
1 + [a1]Q

′
1, σ(Q

′
1)))

= e2m+2(P ′
1, Q

′
1)
a21+q = ζ2

e−a22 = ζ−a
2
2 = ζ

−a22/2
m

4 ,

so that c2,1 = −a22/2m. It follows that:

W1 = −
[a1a2
2m

]
[2m]Φ(S1)−

[
a22
2m

]
[2m]Φ(S2) + Φ(T1) + [µa2]Φ(T2).
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Similarly, we obtain the coordinates of W2,W3 and W4 to finally get the matrix of
(W1, · · · ,W4) in C1:

−a1a2/2m a22 −a22/2m −a1a2/2m
−a22/2m −a1a2/2m a1a2/2

m −a22/2m
1 0 0 0
µa2 1 0 µa2

 .

Since V1 = (W1,W3), V2 = (W2,W4), V3 = (−W3,W1) and V4 = (−W4,W2), we
easily obtain the matrix of (V1, · · · , V4) in C1 × C1. □

We summarize the change of basis computation prior to the gluing fm+1 :
A2
m −→ B in Algorithm 10.

Algorithm 10: Change of basis in dimension 4 (full torsion case).

Data: Integer parameters a1, a2, q,m = v2(a2) and the Weil pairing ζ4 =
e4(P1, Q1) = e2m+2(P ′

1, Q
′
1)

2m .
Result: A change of basis matrix from ΘMm

to Θ′
Mm

-coordinates, where

ΘMm
is the level 2 product Theta structure on (A2

m,Mm) and Θ′
Mm

satisfies K2(Θ
′
Mm

) = ker(fm+1).

1 µ←− (1− 2m+1q)/a1 mod 2m+2;

2 Using µ, compute the matrix M of Lemma 26;

3 Decompose M in 4× 4-blocks M :=

(
C
D

)
;

4 Find A,B ∈M4(Z/4Z) such that tBA = tAB, tDC = tCD and
tAD − tBC = I4;

5 M ′ ←−
(
A C
B D

)
;

6 Let Θ′
Mm

be the Theta structure given by the action of M ′ on ΘMm
;

7 Using Theorem 12, compute the change of basis matrix N from ΘMm
to

Θ′
Mm

-coordinates;

8 return N ;

B.3. Recovering the product Theta structure on the codomain with full
available torsion. When we can access the full 2e+2-torsion and compute F ∈
End(E2

1 × E2
2) as a 2-isogeny chain at once, we have to recover the product Theta

structure on the codomain E2
1 ×E2

2 at the end in order to be able to evaluate F in
Montgomery coordinates.

Once we have computed the whole 2-isogeny chain F , the level 2 Theta structure
Θ′

L0
naturally induced on the codomain (E2

1×E2
2 ,L0) is associated to the symplectic

4-torsion basis:

(21) D := ([2e−m]H(U ′
1), · · · , [2e−m]H(U ′

4), H(V ′
1), · · · , H(V ′

4)),

where H := fe ◦ · · · ◦fm+1, so that F := H ◦fm ◦ · · · ◦f1 and C̃1 := (U ′
1, · · · , U ′

4, V
′
1 ,

· · · , V ′
4) is a symplectic basis of A2

m[2e−m+2] such that:

(i) [2e−m]C̃ is the basis C of A2
m[4] introduced in Appendix B.2.
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(ii) For all i ∈ Jm+ 1 ; eK, the 8-torsion points [2e−i−1]fi−1 ◦ · · · ◦ fm+1(V
′
j )

where j ∈ J1 ; 4K lye above ker(fi) and have been used to compute fi on
entry of Algorithm 4.

As in Appendix B.2, to satisfy point (ii) above, it is sufficient that C̃ satisfies
the following:

(ii)’ ⟨V ′
1 , · · · , V ′

4⟩ is a maximal isotropic subgroup of A2
m[2e−m+2] such that

⟨[4]V ′
1 , · · · , [4]V ′

4⟩ = ker(H).

In the following lemma, we give an explicit construction of D induced by a basis

C̃ satisfying (i) and (ii)’.

Lemma 27. Let:

• (P1, Q1) and (P2, Q2) := (σ(P1), [r]σ(Q1)) be the ζ4-symplectic basis of
E1[4] and E2[4] introduced in Lemma 24.
• B′

0 ×B′
0 be the ζ4-symplectic basis of (E2

1 × E2
2)[4] given by:

B′
0 ×B′

0 := ((P1, 0, 0, 0), (0, P1, 0, 0), (0, 0, P2, 0), (0, 0, 0, P2),

(Q1, 0, 0, 0), (0, Q1, 0, 0), (0, 0, Q2, 0), (0, 0, 0, Q2)).

• D ′ be the basis:

D ′ := ([2e−m]H(Φ(S1), 0), [2
e−m]H(Φ(S2), 0), [2

e−m]H(0,Φ(S1)), [2
e−m]H(0,Φ(S2)),

H(Φ(T1), 0), H(Φ(T2), 0), H(0,Φ(T1)), H(0,Φ(T2))),

with S1, S2, T1, T2 as in Lemma 25.
• MB′

0×B′
0,D

′ be the change of basis matrix from B′
0 ×B′

0 to D ′.
• MC1×C1,C be the change of basis matrix from C1 × C1 to C (intro-

duced in Appendix B.2) decomposed into two 8 × 4 blocks MC1×C1,C :=
(LC1×C1,C |RC1×C1,C ).

Then, there exists a symplectic basis of Am[2e−m+2], C̃ :=
(U ′

1, · · · , U ′
4, V

′
1 , · · · , V ′

4) satisfying conditions (i) and (ii)’ such that the change of

basis matrix from B′
0 ×B′

0 to the basis D related to C̃ by (21) is given by:

MB′
0×B′

0,D
= (MB′

0×B′
0,D

′ · LC1×C1,C |RB′
0×B′

0,D
),

with MB′
0×B′

0,D
′ , the matrix:



0 1 0 µa2 (a21 + q)/2m a1a2/2
m a1a2/2

m a22/2
m

0 −µa2 0 1 −a1a2/2m −a22/2m (a21 + q)/2m a1a2/2
m

0 −µ 0 0 0 −a2/2m −a2/2m 0
0 0 0 −µ a2/2

m 0 0 −a2/2m
−1 −µa2 0 0 −a1a2/2m (a21 + q)/2m −a22/2m a1a2/2

m

0 0 −1 −µa2 a22/2
m −a1a2/2m −a1a2/2m (a21 + q)/2m

−a1 −µa1a2 a2 µa22 a2q/2
m 0 0 −a2q/2m

−a2 −µa22 −a1 −µa1a2 0 a2q/2
m a2q/2

m 0


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and:

RB′
0×B′

0,D
:=



0 0 0 0
µa2 0 1 0
µ 0 0 0
0 0 0 0
0 1 0 −µa2
0 0 0 0
0 0 0 0
0 0 0 µq


,

where µ ≡ 1/a1 mod 4.

Proof. Let (P ′′
1 , Q

′′
1) be a basis of E1[2

e+2] such that [2e−m]P ′′
1 = P ′

1 and
[2e−m]Q′′

1 = Q′
1, where (P ′

1, Q
′
1) has been introduced in Lemma 25, so that

[2e]P ′′
1 = P1 and [2e]Q′′

1 = Q1. Then, we may choose:

V ′
1 = (Φ([a1]P

′′
1 − [µ]P1, σ(P

′′
1 )),Φ([a2]P

′′
1 , 0)),

V ′
2 = (Φ([a1]Q

′′
1 , σ(Q

′′
1)),Φ([a2]Q

′′
1 , 0)),

V ′
3 = (Φ(−[a2]P ′′

1 , 0),Φ([a1]P
′′
1 , σ(P

′′
1 ))),

V ′
4 = (Φ(−[a2]Q′′

1 , 0),Φ([a1]Q
′′
1 − [µ]Q1, σ(Q

′′
1))),

and the U ′
i in a symplectic complement, so that [2e−m]U ′

i = Ui for all i ∈ J1 ; 4K
and (i) is satisfied. By construction of the V ′

i , we have ⟨[4]V ′
1 , · · · , [4]V ′

4⟩ = ker(H)
and we can also easily check that e2e−m+2(V ′

i , V
′
j ) = 1 for all i, j ∈ J1 ; 4K. Hence,

(ii)’ is also satisfied.
Besides, we have:

H(V ′
1) = F ([a1]P

′′
1 − [µ]P1, [a2]P

′′
1 , σ(P

′′
1 ), 0) = (0, [µa2]P1, [µ]σ(P1), 0)

H(V ′
2) = F ([a1]Q

′′
1 , [a2]Q

′′
1 , σ(Q

′′
1), 0) = (Q1, 0, 0, 0)

H(V ′
3) = F (−[a2]P ′′

1 , [a1]P
′′
1 , 0, σ(P

′′
1 )) = (0, P1, 0, 0)

H(V ′
4) = F (−[a2]Q′′

1 , [a1]Q
′′
1 − [µ]Q1, 0, σ(P

′′
1 )) = (−[µa2]Q1, 0, 0, [µ]Q1).

The expression of RB′
0×B′

0,D
follows.

Let us write MC1×C1,C := (Mi,j)1≤i,j≤8, MB′
0×B′

0,D
′ := (M ′

i,j)1≤i,j≤8 and B′
0 ×

B′
0 := (x1, · · · , x8). We have chosen C̃ such that for all j ∈ J1 ; 4K,

[2e−m]U ′
j = Uj =

2∑
i=1

[Mi,j ]([2
m]Φ(Si), 0) +

2∑
i=1

[Mi+2,j ](0, [2
m]Φ(Si))

+

2∑
i=1

[Mi+4,j ](Φ(Ti), 0) +

2∑
i=1

[Mi+6,j ](0,Φ(Ti))
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Hence,

[2e−m]H(U ′
j) =

2∑
i=1

[Mi,j ]H([2m]Φ(Si), 0) +

2∑
i=1

[Mi+2,j ]H(0, [2m]Φ(Si))

+

2∑
i=1

[Mi+4,j ]H(Φ(Ti), 0) +

2∑
i=1

[Mi+6,j ]H(0,Φ(Ti))

=

8∑
i=1

[Mi,j ]D
′
i =

8∑
i=1

[Mi,j ]

8∑
k=1

[M ′
k,i]xk

=

8∑
k=1

[
8∑
i=1

M ′
k,iMi,j

]
xk =

8∑
k=1

[(MB′
0×B′

0,D
′ · LC1×C1,C )k,j ]xk

The expression of MB′
0×B′

0,D
follows.

Finally, to obtain the expression of MB′
0×B′

0,D
′ it suffices to evaluate F on sev-

eral points, given that F is determined by H and Φ and given the expression of
S1, S2, T1, T2 in Lemma 25. □

Algorithm 11: Splitting change of Theta coordinates (from dimension 4
to 1).

Data: Integer parameters a1, a2, q,m = v2(a2), the left 4×8 block LC1×C1,C

of the change of basis matrix from C1 × C1 to C (as defined in
Appendix B.2), the change of basis matrices Mi from (αi, βi) to
(Pi, Qi) (as defined in Lemma 24 for i ∈ {1, 2}) and the Weil pairing
ζ4 = e4(P1, Q1).

Result: A change of basis matrix from Θ′
L0

to ΘL0 -coordinates, where Θ′
L0

is the Theta structure induced by D (21) on (E2
1 ×E2

2 ,L0) and ΘL0

is the product Theta structure on (E2
1 ×E2

2 ,L0) induced by (αi, βi)
(i ∈ {1, 2}).

1 µ←− 1/a1 mod 4;

2 Using µ, a1, a2, q,m, compute the matrices MB′
0×B′

0,D
′ and RB′

0×B′
0,D

of

Lemma 27;

3 MB′
0×B′

0,D
←− (MB′

0×B′
0,D

′ · LC1×C1,C |RB′
0×B′

0,D
);

4 M0 ←−

M1,1,1 0 0 0 M1,1,2 0 0 0
0 M1,1,1 0 0 0 M1,1,2 0 0
0 0 M2,1,1 0 0 0 M2,1,2 0
0 0 0 M2,1,1 0 0 0 M2,1,2

M1,2,1 0 0 0 M1,2,2 0 0 0
0 M1,2,1 0 0 0 M1,2,2 0 0
0 0 M2,2,1 0 0 0 M2,2,2 0
0 0 0 M2,2,1 0 0 0 M2,2,2


;

5 M ←− (M0 ·MB′
0×B′

0,D
)−1;

6 Apply the formulas of Theorem 12 to M and ζ4 to compute a change of

basis matrix N from Θ′
L0

to ΘL0
-coordinates;

7 return N ;
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Algorithm 12: Product Theta coordinates to Montgomery coordinates (in
dimension 4).

Data: Product ΘL0 -coordinates (θ
L0
i (Q))i of a pointQ ∈ E2

1×E2
2 , where ΘL0

is the product Theta structure on (E2
1 × E2

2 ,L0) induced by (αk, βk)
(as defined in Lemma 24 for k ∈ {1, 2}), and the Montgomery (x : z)-
coordinates of αk for k ∈ {1, 2}.

Result: Montgomery (x : z)-coordinates of Q.
1 Parse αk := (rk : sk) in Montgomery (x : z)-coordinates for k ∈ {1, 2};
2 ak, bk ←− rk + sk, rk − sk for k ∈ {1, 2};
3 for j = 1 to 4 do

4 if ∃ i ∈ (Z/2Z)4, ij = 1 ∧ θL0
i (Q) ̸= 0 then

5 Find such i ∈ (Z/2Z)4;
6 Let i′ ∈ (Z/2Z)4 such that i′l = il if l ̸= j and i′j = 0;

7 θ0(Qj)←− θL0

i′ (Q)/θL0
i (Q), θ1(Qj)←− 1;

8 else
9 θ0(Qj)←− 1, θ1(Qj)←− 0;

10 end

11 x(Qj), z(Qj)←− a⌈j/2⌉θ1(Qj)+b⌈j/2⌉θ0(Qj), a⌈j/2⌉θ1(Qj)−b⌈j/2⌉θ0(Qj);
12 end

13 return (x(Q1) : z(Q1)), · · · , (x(Q4) : z(Q4));

From Lemma 27, we derive Algorithm 11 to compute the the change of basis
matrix from the Theta coordinates associated to the Theta structure Θ′

L0
induced

by D to the product ΘL0
-coordinates on E2

1 × E2
2 .

Then, we can evaluate F in (x : z)-Montgomery coordinates. If P ∈ E2
1 × E2

2

and if we have computed the Θ′
L0
-coordinates (θ′L0

i (F (P ))))i, then we apply the
change of basis matrix of Theta coordinates N outputted by Algorithm 11 to obtain
the product ΘL0 -coordinates (θ

L0
i (F (P ))))i. Then, Algorithm 12 transforms these

coordinates into the (x : z)-Montgomery coordinates of F (P ).
The underlying idea of Algorithm 12 is the following. Let Q := F (P ), Then,

we may write Q := (Q1, · · · , Q4) and by Lemma 1, θL0
i (x) =

∏4
j=1 θij (Qj) for all

i := (i1, · · · , i4) ∈ (Z/2Z)4, where the Theta coordinates θij (Qj) are the level 2
Theta coordinates of E⌈j/2⌉ (induced by the basis (α⌈j/2⌉, β⌈j/2⌉) from Lemma 24).

Assuming θ1(Qj) ̸= 0, then we can find i ∈ (Z/2Z)4 such that ij = 1 and θL0
i (Qj) ̸=

0 and we have θ0(Qj)/θ1(Qj) = θL0

i′ (Q)/θL0
i (Q), where i′ ∈ (Z/2Z)4 satisfies i′l = il

for all l ̸= j and i′j = 0. This way, we can compute (θ0(Qj) : θ1(Qj)) for all
j ∈ J1 ; 4K. If we denote by (ak, bk) the Theta-null point of Ek for k ∈ {1, 2}, we
can then write Qj := (a⌈j/2⌉θ1(Qj) + b⌈j/2⌉θ0(Qj) : a⌈j/2⌉θ1(Qj)− b⌈j/2⌉θ0(Qj)) in
Montgomery (x : z)-coordinates for all j ∈ J1 ; 4K.
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Appendix C. Computing 4 dimensional isogenies derived from Kani’s
lemma with half available torsion

Throughout this section, we keep the notations of Section 5. Unlike in Appen-
dix B, we assume that all the 2e+2-torsion is not available. Namely, we can access
the 2e

′+2-torsion with e′ ≥ e/2. We proceed as explained in Section 5.3 to compute

F in two parts F1 : E2
1×E2

2 −→ C and F̃2 : E2
1×E2

2 −→ C such that F = F2◦F1, F1

being a 2e1 -isogeny and F2 being a 2e2-isogeny with e = e1+e2 and m ≤ e1, e2 ≤ e′.
Since ker(F1) = ker(F )[2e1 ] and ker(F̃2) = ker(F̃ )[2e2 ], Lemma 23 applies to F1

and an analogue of Lemma 23 applies to F̃2.

Lemma 28. Assume that 2|a2 and let m := v2(a2) be its 2-adic valuation. Then

F̃2 = ge2 ◦ · · · ◦ g1, with

E2
1 × E2

2
g1−−−→ A′2

1 · · · A′2
m−1

gm−−−→ A′2
m

gm+1−−−→ B′,

a chain of 2-isogenies, where the A′
i are abelian surfaces and B′ is an abelian

variety of dimension 4. For all i ∈ J2 ; mK, gi := (ψi, ψi), with ψi : A
′
i−1 −→ A′

i

and g1 : (R1, S1, R2, S2) 7−→ (ψ1(R1, R2), ψ1(S1, S2)), with ψ1 : E1 × E2 −→ A′
1.

Besides,
ker(ψm ◦ · · · ◦ ψ1) = {([a1]P,−σ(P )) | P ∈ E1[2

m]}.

Proof. We proceed as in the proof of Lemma 23. We have:

ker(F̃ ) = {([a1]P + [a2]Q,−[a2]P + [a1]Q,−σ(P ),−σ(Q)) | P,Q ∈ E1[2
e]}.

Let g1, · · · , gm+1 be the m+ 1 first elements of the 2-isogeny chain F̃ . Then, since
a2 ≡ 0 mod 2m, we have

ker(gm ◦ · · · ◦ g1) = [2e−m] ker(F̃ ) = K1 ⊕K2,

where K1 := {([a1]P, 0,−σ(P ), 0) | P ∈ E1[2
m]} and K2 := {(0, [a1]P, 0,−σ(P )) |

P ∈ E1[2
m]}. This proves the chain gm ◦ · · · ◦ g1 has the desired form. □

Hence, we can compute F̃2 exactly as we would compute F1 (or F with the full
torsion available). We give a detailed algorithmic overview of the computation of
F in Algorithm 13.

C.1. Change of basis in dimension 2 with half available torsion. By

Lemma 28, we can compute F̃2 exactly as we would compute F1 (or F with the full
torsion available). We start by computing a chain of m 2-isogenies ψ1, · · · , ψm in
dimension 2. To compute ψ1, we have to compute a theta-structure Θ′

L satisfying
K2(Θ

′
L) = ker(ψ1). Θ

′
L is induced by the symplectic basis:

((0, P2), ([µ]P1,−[µa2]P2), ([a1]P1 + [a2]Q1,−P2), (−[a2]P1 + [a1]Q1,−[q]Q2)).

where (P1, Q1) is a basis of E1[4] and (P2, Q2) := (σ(P1), [r]σ(Q1)), with rq ≡ 1
mod 4 and µa1 ≡ 1 mod 4. Hence, the change of coordinates matrix from (x : z)
to Θ′

L can be computed with Algorithm 9 where the matrix Mr in Lemma 24 is
replaced by:

Mr :=


0 µ a1 −a2
0 0 −1 0
0 0 a2 a1
1 −µa2 0 −q

 .
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Algorithm 13: Computation of a 4 dimensional endomorphism derived
from Kani’s lemma with half available torsion.

Data: a1, a2, q such that a2 is even, q is odd and a21 + a22 + q = 2e, two
supersingular elliptic curves E1 and E2 defined over Fp2 , (P ′′

1 , Q
′′
1) a

basis of E1[2
e′+2] with e′ ≥ e/2, (σ(P ′′

1 ), σ(Q
′′
1)) for some q-isogeny

σ : E1 −→ E2 and two 4-torsion basis (αi, βi) of Ei for i ∈ {1, 2}.
Result: A chain representation of the isogeny F ∈ End(E2

1 × E2
2) given

by (19).

1 m ←− v2(a2), e1 ←− ⌈e/2⌉ and e2 ←− e − e1, r ←− 1/q mod 2e
′+2,

µ←− 1/a1 mod 2e
′+2;

2 (Pre)compute an optimal strategy S with m leaves [11, Algorithm 60];

3 (Pre)compute optimal strategies Si (i ∈ {1, 2}) with ei − m leaves with

constraints at the beginning and m steps before the end (see Appendix E.2);

/* Step 1: Two symplectic basis inducing dual theta-structures on C */

4 B0 ←− ((P ′′
1 , 0, 0, 0), (0, P

′′
1 , 0, 0), (0, 0, σ(P

′′
1 ), 0), (0, 0, 0, σ(P

′′
1 )), (Q

′′
1 , 0, 0, 0),

(0, Q′′
1 , 0, 0), (0, 0, [r]σ(Q

′′
1), 0), (0, 0, 0, [r]σ(Q

′′
1));

5 Compute symplectic basis of (E2
1 × E2

2)[2
e′+2], B1 and B2 satisfying the

conditions of Lemma 29 and the symplectic change of basis matrices M1

and M2 from B0 to B1 and B2 using Algorithm 15;

/* Step 2.a: First m isogenies of F1 in dimension 2 */

6 c←− e′ −m, P ′
1, Q

′
1, P

′
2, R

′
2 ←− [2c]P ′′

1 , [2
c]Q′′

1 , [2
c]σ(P ′′

1 ), [2
c]σ(Q′′

1);

7 P1, Q1, P2, Q2 ←− [2m]P ′
1, [2

m]Q′
1, [2

m]P ′
2, [r2

m]R′
2;

8 ζ4 ←− e4(P1, Q1);

9 T1, T2 ←− [2]([a1]P
′
1 − [a2]Q

′
1, P

′
2), [2]([a2]P

′
1 + [a1]Q

′
1, R

′
2);

10 For i ∈ {1, 2}, compute a basis (αi, βi) of Ei[4] such that βi = (−1 : 1) in

(x : z)-Montgomery coordinates and e4(αi, βi) = ζ4;

11 Compute the change of basis matrices Mi from (αi, βi) to (Pi, Qi) for

i ∈ {1, 2};
12 Find a Theta structure Θ′

L on (E1 × E2,L) such that K2(Θ
′
L) =

[2m+1]⟨T1, T2⟩ and compute the change of basis matrix N12 from (x : z)
to Θ′

L-coordinates (using Algorithm 9 with input a1, a2, q, (αi : βi),Mi, ζ4);

13 (θ′
L
j (Ti))j ←− N12· t(x1(Ti)x2(Ti), x1(Ti)z2(Ti), z1(Ti)x2(Ti), z1(Ti)z2(Ti))

for i ∈ {1, 2};
14 Use the coordinates (θ′

L
j (Ti))j and strategy S to compute a 2-dimensional

2-isogeny chain Φ := φm ◦ · · · ◦ φ1 of kernel ker(Φ) = [4]⟨T1, T2⟩ (see [1]);

/* Step 2.b: Gluing isogeny fm+1 of F1 in dimension 4 */

15 Parse X1, · · · , X4, Y1, · · · , Y4 ←− B1 and let G : (P1, · · · , P4) 7−→
(Φ(P1, P3),Φ(P2, P4));

16 Compute Y ′
i ←− [2e

′−m−1]G(Yi) for all i ∈ J1 ; 4K and Y ′
5 ←−

[2e
′−m−1]G(Y1 + Y2);

17 Let ΘLm be the level 2 Theta-structure on the codomain (Am,Lm) of Φ

and ΘMm
:= ΘLm

×ΘLm
;
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18 Find a Theta structure Θ′
Mm

on (A2
m,Mm) such that K2(Θ

′
Mm

) =
[4]⟨Y ′

1 , · · · , Y ′
4⟩ and compute the change of coordinates matrix N24 from

ΘMm to Θ′
Mm

(using Lemma 30 and Theorem 12);

19 (θ′
Mm

j (Y ′
i ))j ←− N24 · (θMm

j (Y ′
i ))j for i ∈ J1 ; 5K;

20 Using the (θ′
Mm

j (Y ′
i ))j for i ∈ J1 ; 5K, compute fm+1 of kernel

[4]⟨Y ′
1 , · · · , Y ′

4⟩ (Algorithm 4 and Remark 21);

/* Step 2.c: Last e1 −m− 1 isogenies of F1 in dimension 4 */

21 Y ′′
i ←− [2e

′−e1 ]fm+1 ◦G(Yi) for all i ∈ J1 ; 4K;
22 Use Algorithm 21 with input Y ′′

1 , · · · , Y ′′
4 and strategy S1 to compute a

4-dimensional 2-isogeny chain fe1 ◦ · · · ◦ fm+2 of kernel [4]⟨Y ′′
1 , · · · , Y ′′

4 ⟩;
/* Step 3.a: First m isogenies of F̃2 in dimension 2 */

23 T̃1, T̃2 ←− [2]([a1]P
′
1 + [a2]Q

′
1,−P ′

2), [2](−[a2]P ′
1 + [a1]Q

′
1,−R′

2);

24 Find a Theta structure Θ′′
L on (E1 × E2,L) such that K2(Θ

′′
L) =

[2m]⟨T̃1, T̃2⟩ and compute the change of coordinates matrix Ñ12 from (x : z)
to Θ′′

L (using Algorithm 9 with the matrix Mr of Appendix C.1);

25 (θ′′
L
j (T̃i))j ←− Ñ12· t(x1(T̃i)x2(T̃i), x1(T̃i)z2(T̃i), z1(T̃i)x2(T̃i), z1(T̃i)z2(T̃i))

for i ∈ {1, 2};
26 Use the coordinates (θ′′

L
j (T̃i))j and strategy S to compute a 2-dimensional

2-isogeny chain Ψ := ψm ◦ · · · ◦ ψ1 of kernel ker(Ψ) = [4]⟨T̃1, T̃2⟩ (see [1]);

/* Step 3.b: Gluing isogeny gm+1 of F̃2 in dimension 4 */

27 Parse U1, · · · , U4, V1, · · · , V4 ←− B1 and let H : (P1, · · · , P4) 7−→
(Ψ(P1, P3),Ψ(P2, P4));

28 Compute V ′
i ←− [2e

′−m−1]H(Vi) for all i ∈ J1 ; 4K and V ′
5 ←−

[2e
′−m−1]H(V1 + V2);

29 Let ΘL′
m

be the level 2 Theta-structure on the codomain (A′
m,L′

m) of Ψ

and ΘM′
m
:= ΘL′

m
×ΘL′

m
;

30 Find a Theta structure Θ′
M′

m
on (A′2

m,M′
m) such that K2(Θ

′
M′

m
) =

[4]⟨V ′
1 , · · · , V ′

4⟩ and compute the change of basis matrix Ñ24 from ΘM′
m

to Θ′
M′

m
-coordinates (using Lemma 31 and Theorem 12);

31 (θ′
M′

m
j (V ′

i ))j ←− Ñ24 · (θ
M′

m
j (V ′

i ))j for i ∈ J1 ; 5K;

32 Using the (θ′
M′

m
j (V ′

i ))j for i ∈ J1 ; 5K, compute gm+1 of kernel

[4]⟨V ′
1 , · · · , V ′

4⟩ (Algorithm 4 and Remark 21);

/* Step 3.c: Last e2 −m− 1 isogenies of F̃2 in dimension 4 */

33 V ′′
i ←− [2e

′−e1 ]gm+1 ◦H(Vi) for all i ∈ J1 ; 4K;
34 Use Algorithm 21 with input V ′′

1 , · · · , V ′′
4 and strategy S2 to compute a

4-dimensional 2-isogeny chain ge2 ◦ · · · ◦ gm+2 of kernel [4]⟨V ′′
1 , · · · , V ′′

4 ⟩;

/* Step 4: Computing F2 =
˜̃
F 2 */

35 Compute ψ̃1, · · · , ψ̃m, g̃1, · · · , g̃e2 using Lemma 22;

36 return φ1, · · · , φm, f1, · · · , fe1 , ψ̃1, · · · , ψ̃m, g̃1, · · · , g̃e2 , N12, N24, Ñ
−1
24 , Ñ

−1
12 ;
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Algorithm 14: Evaluation of a 4 dimensional endomorphism derived from
Kani’s lemma with half available torsion given its representation.

Data: A chain C outputted by Algorithm 13 representing F ∈ End(E2
1×E2

2)
given by (19), and a point Q ∈ E2

1 × E2
2 .

Result: The Montgomery (x : z)-coordinates of F (Q).

1 Parse C as φ1, · · · , φm, f1, · · · , fe1 , ψ̃1, · · · , ψ̃m, g̃1, · · · , g̃e2 , N12, N24, Ñ
−1
24 ,

Ñ−1
12 ;

2 v ←− t(x(Q1)x(Q3), x(Q1)z(Q3), z(Q1)x(Q3), z(Q1)z(Q3));

3 (θ′
L
i (Q1, Q3))i ←− N12 · v;

4 (θLm
i (R1))i ←− φm ◦ · · · ◦ φ1((θ

′L
i (Q1, Q3))i);

5 w ←− t(x(Q2)x(Q4), x(Q2)z(Q4), z(Q2)x(Q4), z(Q2)z(Q4));

6 (θ′
L
i (Q2, Q4))i ←− N12 · w;

7 (θLm
i (R2))i ←− φm ◦ · · · ◦ φ1((θ

′L
i (Q1, Q3))i);

8 θMm
i1,i2

(R)←− θLm
i1

(R1) · θLm
i2

(R2) for i1, i2 ∈ (Z/2Z)2;
9 (θ′

Mm

i (R))i ←− N24 · (θMm
i (R))i;

10 (θ′
M′

m
i (S1, S2))i ←− g̃m+1 ◦ · · · ◦ g̃e2 ◦ fe1 ◦ · · · ◦ fm+1((θ

′Mm

i (R))i);

11 (θ
M′

m
i (S1, S2))i ←− Ñ−1

24 · (θ′
M′

m
i (S))i;

12 Use Algorithm 16 with input (θ
M′

m
i,j (S1, S2))i,j∈(Z/2Z)2 to obtain

(θ
L′

m
i (S1))i∈(Z/2Z)2 and (θ

L′
m

i (S2))i∈(Z/2Z)2 ;

13 (θ′′
L
j (Ti))j ←− ψ̃1 ◦ · · · ◦ ψ̃m((θ

L′
m

j (Si))j) for all i ∈ {1, 2};
14 (x1(F (Q))x3(F (Q)), x1(F (Q))z3(F (Q)), z1(F (Q))x3(F (Q)),

z1(F (Q))z3(F (Q)))←− Ñ−1
12 · (θ′′

L
j (T1))j ;

15 (x2(F (Q))x4(F (Q)), x2(F (Q))z4(F (Q)), z2(F (Q))x4(F (Q)),

z2(F (Q))z4(F (Q)))←− Ñ−1
12 · (θ′′

L
j (T2))j ;

16 Use Algorithm 17 to recover (x1(F (Q)) : z1(F (Q))), · · · , (x4(F (Q)) :

z4(F (Q)));

17 return (x1(F (Q)) : z1(F (Q))), · · · , (x4(F (Q)) : z4(F (Q)));

C.2. Change of basis in dimension 4 with half available torsion.

C.2.1. Finding two symplectic basis inducing dual theta-structures on C. Our goal

is to find symplectic basis of (E2
1×E2

2)[2
e′+2] inducing via F1 and F̃2 the same level

2 theta-structure on their common codomain C (up to a Hadamard transform).
This is explained in the following lemma:

Lemma 29. [5, Corollary 58] Consider two ζ-symplectic basis of (E2
1 ×E2

2)[2
e′+2],

(X1, · · · , X4, Y1, · · · , Y4) and (U1, · · · , U4, V1, · · · , V4) such that:

(i) ker(F1) = [c1]⟨Y1, · · · , Y4⟩ and ker(F̃2) = [c2]⟨V1, · · · , V4⟩;
(ii) [c2]F (Xl) = −[c2]Vl and [c1]F̃ (Ul) = [c1]Yl for all l ∈ J1 ; 4K;

where ci := 2e
′+2−ei for i ∈ {1, 2}. Then the symplectic basis of C[4]:

B1 := ([2e
′
]F1(X1), · · · , [2e

′
]F1(X4), [c1]F1(Y1), · · · , [c1]F1(Y4))

B2 := ([2e
′
]F̃2(U1), · · · , [2e

′
]F̃2(U4), [c2]F̃2(V1), · · · , [c2]F̃2(V4))
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induced by F1 and F̃2 respectively are related by the standard symplectic matrix
B2 = J ·B1, with:

J :=

(
0 −I4
I4 0

)
∈ Sp8(Z/4Z).

In particular, the theta-coordinates induced by F1 and F̃2 on C are the dual of each
other i.e. related by a Hadamard transform.

To find symplectic basis B1 := (X1, · · · , X4, Y1, · · · , Y4) and B2 :=

(U1, · · · , U4, V1, · · · , V4) of (E2
1 × E2

2)[2
e′+2] as in Lemma 29, the idea is to com-

pute a basis of ker(F1), find a symplectic complement (X1, · · · , X4), evaluate
F (X1), · · · , F (X4), find a symplectic complement (U1, · · · , U4), and finally evaluate

F̃ (U1), · · · , F̃ (U4). We then set Vl := −F (Xl) and Yl := F̃ (Ul) for all l ∈ J1 ; 4K.
Evaluating F and F̃ can be easily done with the knowledge of σ(E1[2

e′+2]), q, a1
and a2. All these operations can be done with linear algebra computations over
Z/2e′+2Z. We summarize them in Algorithm 15.

C.2.2. Change of basis before the (m + 1)-th isogeny computation (gluing). Let
m = v2(a2). When we compute F1, we start by computing the m first 2-isogenies
of the chain in dimension 2 as we do in the full available torsion case. We also use
Algorithm 9 introduced in Appendix B.1 to compute the change of theta structure
prior to the computation of the first 2-dimensional isogeny φ1 : E1 × E2 −→ A1.
Hence, after the computation of the 2-isogeny chain Φ := φm◦· · ·◦φ1 : E1×E2 −→
Am (using the notations of Lemma 23 applied to F1) we obtain the level 2 product
theta structure ΘmMm

on (A2
m,Mm) induced by the symplectic basis of A2

m[4]:

C1 × C1 := (([2m]Φ(S1), 0), ([2
m]Φ(S2), 0), (0, [2

m]Φ(S1)), (0, [2
m]Φ(S2)),

(Φ(T1), 0), (Φ(T2), 0), (0,Φ(T1)), (0,Φ(T2)))

introduced in Appendix B.2.2 (with S1, S2, T1, T2 defined in Lemma 25).
However, this product theta-structure Θm is not suitable to compute fm+1 :

A2
m −→ B and subsequent isogenies of the chain, since K2(ΘL) ̸= ker(fm+1). The

isogeny fm+1 is computed with the theta-structure Θ′
Mm

induced by the following

symplectic basis of A2
m[4]:

C := ([2e
′
]fm ◦ · · · ◦ f1(X1), · · · , [2e

′
]fm ◦ · · · ◦ f1(X4), [2

e′−m]fm ◦ · · · ◦ f1(Y1),

· · · , [2e
′−m]fm ◦ · · · ◦ f1(Y4))

where B1 := (X1, · · · , X4, Y1, · · · , Y4) is an output of Algorithm 15. We then have
to compute the change of basis between ΘMm

and Θ′
Mm

. This can be done with
the following lemma:

Lemma 30. Let

(
A C
B D

)
∈ Sp8(Z/2e

′+2Z) be the basis change matrix from B0

to B1, where B0 has been defined on Line 2 of Algorithm 15. Then change of basis
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Algorithm 15: Two basis of (E2
1×E2

2)[2
e′+2] inducing dual theta-structures

on C.
Data: a1, a2, q such that a2 is even, q is odd and a21 + a22 + q = 2e, two

supersingular elliptic curves E1 and E2 defined over Fp2 , (P ′′
1 , Q

′′
1) a

basis of E1[2
e′+2], (σ(P ′′

1 ), σ(Q
′′
1)) for some q-isogeny σ : E1 −→ E2.

Result: Two ζ-symplectic basis of (E2
1 × E2

2)[2
e′+2], B1 and B2 satisfying

the conditions of Lemma 29, with ζ := e2e′+2(P ′′
1 , Q

′′
1) and the sym-

plectic change of basis matrices from B0 defined on Line 2 to B1

and B2.
1 r ←− 1/q mod 2e

′+2;

2 B0 ←− ((P ′′
1 , 0, 0, 0), (0, P

′′
1 , 0, 0), (0, 0, σ(P

′′
1 ), 0), (0, 0, 0, σ(P

′′
1 )), (Q

′′
1 , 0, 0, 0),

(0, Q′′
1 , 0, 0), (0, 0, [r]σ(Q

′′
1), 0), (0, 0, 0, [r]σ(Q

′′
1));

3 C1 ←−


a1 0 −a2 0
a2 0 a1 0
1 0 0 0
0 0 1 0

 and D1 ←−


0 a1 0 −a2
0 a2 0 a1
0 q 0 0
0 0 0 q

;

4 Find A1, B1 ∈M4(Z/2e
′+2Z) satisfying tB1A1 ≡ tA1B1,

tD1C1 ≡ tC1D1,

tA1D1 − tB1C1 ≡ I4 mod 2e
′+2, so that

(
A1 C1

B1 D1

)
∈ Sp8(Z/2e

′+2Z);

5 E1 ←−


a1 a2 q 0
−a2 a1 0 q
−1 0 a1 −a2
0 −1 a2 a1

 and E2 ←−


a1 a2 1 0
−a2 a1 0 1
−q 0 a1 −a2
0 −q a2 a1

;

6 MF ←− Diag(E1, E2);

7

(
C2

D2

)
←−MF ·

(
A1

B1

)
;

8 Find C2, D2 ∈M4(Z/2e
′+2Z) satisfying tB2A2 ≡ tA2B2,

tD2C2 ≡ tC2D2,
tA2D2 − tB2C2 ≡ I4 mod 2e

′+2;

9 M2 ←−
(
A1 C1

B1 D1

)
∈ Sp8(Z/2e

′+2Z);

10 E3 ←−


a1 −a2 −q 0
a2 a1 0 −q
1 0 a1 a2
0 1 −a2 a1

 and E4 ←−


a1 −a2 −1 0
a2 a1 0 −1
q 0 a1 a2
0 q −a2 a1

;

11 MF̃ ←− Diag(E3, E4);

12

(
C ′

1

D′
1

)
←−MF̃ ·

(
A2

B2

)
;

13 M ′
1 ←−

(
A1 −C ′

1

B1 −D′
1

)
∈ Sp8(Z/2e

′+2Z);

14 B1 ←−M ′
1 ·B0 and B2 ←−M2 ·B0;

15 return B1,B2,M
′
1,M2;
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matrix from C1 × C1 to C is:

−a1 ·B1 − a2 ·A1 −B3 (−a1 ·D1 − a2 · C1 −D3)/2
m

a1 ·A1 − a2 ·B1 + q ·A3 (a1 · C1 − a2 ·D1 + q · C3)/2
m

−a1 ·B2 − a2 ·A2 −B4 (−a1 ·D2 − a2 · C2 −D4)/2
m

a1 ·A2 − a2 ·B2 + q ·A4 (a1 · C2 − a2 ·D2 + q · C4)/2
m

2m ·A3 C3

2m(µ ·B1 + µa2 ·A3) µ ·D1 + µa2 · C3

2m ·A4 C4

2m(µ ·B2 + µa2 ·A4) µ ·D2 + µa2 · C4


,

where µ ≡ 1/a1 mod 4 and the Ai, Bi, Ci, Di are the i-th lines of A,B,C,D re-
spectively.

Proof. The basis change matrix can be computed via 4-th Weil pairings as in the
proof of Lemma 26. □

The same method applies for the computation of F̃2. Using notations introduced

in Appendix C.1, the product theta-structure we obtain on A′2
m is induced by the

symplectic basis of A′2
m[4]:

C2 × C2 := (([2m]Ψ(S1), 0), ([2
m]Ψ(S2), 0), (0, [2

m]Ψ(S1)), (0, [2
m]Ψ(S2)),

(Ψ(T1), 0), (Ψ(T2), 0), (0,Ψ(T1)), (0,Ψ(T2)))

with Ψ := ψm ◦ · · · ◦ ψ1,

S1 := ([2m+1]Q′
1, [a]σ(P

′
1) + [b]σ(Q′

1)), S2 := ([µ]P ′
1, [c]σ(P

′
1) + [d]σ(Q′

1)),

T1 := ([a1]P
′
1 + [a2]Q

′
1,−σ(P ′

1)) and T2 := (−[a2]P ′
1 + [a1]Q

′
1,−σ(Q′

1)),

P ′
1 = [2e

′−m]P ′′
1 , Q

′
1 = [2e

′−m]Q′′
1 (where (P ′′

1 , Q
′′
1) is the input basis of Algo-

rithm 15), a ≡ 2m+1a2/q, b ≡ −(1 + 2m+1a1)/q, µ ≡ (1− 2m+1q)/a1, d ≡ −µa2/q
mod 2m+2 and c = 2m+1.

Lemma 31. Let

(
A C
B D

)
∈ Sp8(Z/2e

′+2Z) be the basis change matrix from B0

to B2, where B0 has been defined on Line 2 of Algorithm 15. Then change of basis

matrix from C2 × C2 to C̃ is:

−a1 ·B1 + a2 ·A1 +B3 (−a1 ·D1 + a2 · C1 +D3)/2
m

a1 ·A1 + a2 ·B1 − q ·A3 (a1 · C1 + a2 ·D1 − q · C3)/2
m

−a1 ·B2 + a2 ·A2 +B4 (−a1 ·D2 + a2 · C2 +D4)/2
m

a1 ·A2 + a2 ·B2 − q ·A4 (a1 · C2 + a2 ·D2 − q · C4)/2
m

−2m ·A3 −C3

2m(µ ·B1 + µa2 ·A3) µ ·D1 + µa2 · C3

−2m ·A4 −C4

2m(µ ·B2 + µa2 ·A4) µ ·D2 + µa2 · C4


,

where µ ≡ 1/a1 mod 4 and the Ai, Bi, Ci, Di are the i-th lines of A,B,C,D re-
spectively.
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C.3. Recovering the product theta structure on an intermediate product

of abelian surfaces. When computing the ”second part” F̃2 of F , we also have to
compute a chain of 2-isogenies ψi in dimension 2 of length m = v2(a2) and a gluing

isogeny gm+1 : A′2
m −→ B′ (Lemma 23). To recover F2 =

˜̃
F 2, we compute the

dual of every isogeny in the chain. In particular, we compute g̃m+1 : B′ −→ A′2
m

and φ̃i for all i ∈ J1 ; mK. To be able to evaluate the composition g̃m ◦ g̃m+1 =

(ψ̃m × ψ̃m) ◦ g̃m+1, we need to convert the theta-coordinates of images of g̃m+1 for

a non-product theta-structure Θ′
M′

m
on (A′2

m,M′
m) into product theta-coordinates

(for ΘM′
m

= ΘL′
m
×ΘL′

m
). To translate Θ′

M′
m
-coordinates into ΘM′

m
-coordinates,

we can simply act by the inverse of the change of basis matrix from ΘM′
m

to
Θ′

M′
m
-coordinates that has been computed to obtain the gluing isogeny gm+1 (using

Lemma 31 and Theorem 12).

We then need to split the ΘM′
m
-coordinates on (A′2

m,M′
m) into couples of

ΘL′
m
-coordinates on (A′

m,L′
m). Our approach is similar to Appendix B.3. Let

x, y ∈ A′
m. Given (θ

M′
m

i,j (x, y))(i,j)∈(Z/2Z)4 , we want to compute (θ
L′

m
i (x))i∈(Z/2Z)2

and (θ
L′

m
i (y))i∈(Z/2Z)2 up to a projective constant. By Lemma 1, we have for all

i, j ∈ (Z/2Z)2, θM
′
m

i,j (x, y) = θ
L′

m
i (x) ·θL

′
m

j (y). Hence we can start by finding i0, j0 ∈
(Z/2Z)2 such that θ

M′
m

i0,j0
(x, y) ̸= 0 and then compute θ

M′
m

i,j0
(x, y)/θ

M′
m

i0,j0
(x, y) =

θ
L′

m
i (x)/θ

L′
m

i0
(x) and θ

M′
m

i0,j
(x, y)/θ

M′
m

i0,j0
(x, y) = θ

L′
m

j (y)/θ
L′

m
j0

(y) for all i, j ∈ (Z/2Z)2.
This is explained in Algorithm 16.

Algorithm 16: Splitting Product Theta coordinates (from dimension 4 to
dimension 2).

Data: Product ΘM′
m
-coordinates (θ

M′
m

i,j (x, y))i,j∈(Z/2Z)2 of (x, y) ∈ A′2
m.

Result: The ΘL′
m
-coordinates (θ

L′
m

i (x))i∈(Z/2Z)2 and (θ
L′

m
i (x))i∈(Z/2Z)2 .

1 Find i0, j0 ∈ (Z/2Z)2 such that θ
M′

m
i0,j0

(x, y) ̸= 0;

2 xi0 ←− 1, yj0 ←− 1;

3 Compute xi ←− θ
M′

m
i,j0

(x, y)/θ
M′

m
i0,j0

(x, y) for all i ∈ (Z/2Z)2 \ {i0};
4 Compute yj ←− θ

M′
m

i0,j
(x, y)/θ

M′
m

i0,j0
(x, y) for all j ∈ (Z/2Z)2 \ {j0};

5 return (xi)i∈(Z/2Z)2 , (yj)j∈(Z/2Z)2 ;

C.4. Recovering the product theta structure in dimension 2. When we
evaluate F = F2 ◦ F1, the last isogeny of the chain to be evaluated is the 2-

dimensional splitting isogeny ψ̃1 : A′
1 −→ E1 × E2. The resulting image points

are expressed in non-product Θ′′
L-coordinates. We have to translate these points

into (x : z)-Montgomery coordinates. Given Θ′′
L-coordinates (θ′′

L
i (R1, R2))i of a

point (R1, R2) ∈ E1 × E2, we can apply the inverse of the change of coordi-
nates matrix from (x : z) to Θ′′

L computed in Appendix C.1. We then obtain
(x(R1)x(R2) : x(R1)z(R2) : z(R1)x(R2) : z(R1)z(R2)). If z(R1)z(R2) ̸= 0, we can
then compute (x(R1)/z(R1) : 1) and (x(R2)/z(R2) : 1) as follows: x(R1)/z(R1) =
x(R1)z(R2)/z(R1)z(R2) and x(R2)/z(R2) = z(R1)x(R2)/z(R1)z(R2). Otherwise,
we have R1 = 0 or R2 = 0 and we can also recover the Montgomery (x : z)-
coordinates (with the convention (x(0) : z(0)) = (1 : 0)). We refer to Algorithm 17
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for the complete conversion procedure of Θ′′
L-coordinates into Montgomery (x : z)-

coordinates.

Algorithm 17: Splitting non product theta coordinates (from dimension
2 to dimension 1).

Data: Θ′′
L-coordinates (θ

′′L
i (R))i∈(Z/2Z)2 of a point R := (R1, R2) ∈ E1×E2

and the inverse of the change of coordinates matrix N−1 from (x : z)
to Θ′′

L.
Result: Montgomery (x : z)-coordinates (x(R1) : z(R1)), (x(R2) : z(R2)).

1 (x(R1)x(R2) : x(R1)z(R2) : z(R1)x(R2) : z(R1)z(R2))←− N−1 · (θ′′Li (R))i;
2 if z(R1)z(R2) ̸= 0 then
3 t←− 1/(z(R1)z(R2));

4 x1 ←− x(R1)z(R2) · t;
5 x2 ←− z(R1)x(R2) · t;
6 return (x1 : 1), (x2 : 1);

7 else if z(R1)x(R2) = 0 and x(R1)z(R2) ̸= 0 then
8 t←− 1/(x(R1)z(R2));

9 x2 ←− x(R1)x(R2) · t;
10 return (1 : 0), (x2 : 1);

11 else if z(R1)x(R2) ̸= 0 and x(R1)z(R2) = 0 then
12 t←− 1/(z(R1)x(R2));

13 x1 ←− x(R1)x(R2) · t;
14 return (x1 : 1), (1 : 0);

15 else
16 return (1 : 0), (1 : 0);
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Appendix D. Basic arithmetic optimisations

D.1. Batch inversion. Let k be a base field in which we want to invert several
elements. In general inversions are much more costly than multiplications over k
(e.g. when k is a finite field). In Algorithm 18, we present how to invert n elements
with only one inversion at the expense of 3(n− 1) multiplications.

Algorithm 18: Batch inversion.

Data: a1, · · · , an ∈ k∗.
Result: 1/a1, · · · , 1/an.

1 b1 ←− a0 for i = 2 to n do
2 bi ←− bi−1 · ai ; // bi = a1 · · · ai
3 end

4 c1 ←− 1/bn;

5 for i = 2 to n do
6 ci ←− ci−1 · an−i+2 ; // ci = 1/(a1 · · · an−i+1)

7 end

8 d1 ←− cn;
9 for i = 2 to n do

10 di ←− cn−i+1 · bi−1; // di = 1/(a1 · · · ai) · (a1 · · · ai−1) = 1/ai
11 end

12 return d1, · · · , dn;

If we are willing to work projectively and obtain λ/a1, · · · , λ/an with λ ∈ k∗

a projective constant when a1, · · · , an ∈ k∗ are given, we can simply remove the
inversion on Line 4 (c1 ←− 1) and compute 3(n− 1) multiplications only. Though
considered and recommended, this optimization is not implemented in our dimen-
sion 4 code.

D.2. Recursive Hadamard transform. For all g ∈ N∗, let Hg be the Hadamard

transform over k(Z/2Z)
g

:

Hg : (xi)i∈(Z/2Z)g 7−→

 ∑
i∈(Z/2Z)g

(−1)⟨i|j⟩xi


j∈(Z/2Z)g

.

A naive evaluation of Hg would cost 22g additions/subtractions which can become
costly. Instead, we propose a recursive method to compute Hg. We notice that for

all g ≥ 2 and (x, y) ∈ (k(Z/2Z)
g−1

)2:

Hg(x, y) =
(
H1(Hg−1(x)(j1,··· ,jg−1), Hg−1(y)(j1,··· ,jg−1)))jg

)
j∈(Z/2Z)g ,

where:
∀x ∈ kZ/2Z, H1(x0, x1) = (x0 + x1, x0 − x1).

We can then apply Algorithm 19 to evaluate Hg with only g · 2g addi-
tions/subtractions. For g = 4, this decreases the complexity from 256 to 64 addi-
tions/subtractions.
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Algorithm 19: Recursive Hadamard transform.

Data: (xi)i∈(Z/2Z)g ∈ k(Z/2Z)
g

.
Result: H((xi)i∈(Z/2Z)g ).

1 if g = 1 then
2 return (x0 + x1, x0 − x1);
3 else
4 x, y ←− (xi,0)i∈(Z/2Z)g−1 , (xi,1)i∈(Z/2Z)g−1 ;

5 z, t←− Hg−1(x), Hg−1(y) ; // Recursive calls

6 for j ∈ (Z/2Z)g do
7 uj ←− z(j1,··· ,jg−1) + (−1)jg t(j1,··· ,jg−1);

8 end

9 return (uj)j∈(Z/2Z)g ;

10 end

Appendix E. Optimal strategies for isogenies derived from Kani’s
lemma

E.1. Definition of optimal strategies. Let us assume we want to compute a
2e-isogeny F : A −→ B (in dimension g), decomposed as a chain of 2-isogenies:

A1 = A f1−−−→ A2 · · · Ae
fe−−−→ Ae+1 = B,

and that we are given a basis BK′′ of a maximal isotropic subgroup K ′′ ⊆ A[2e+2]
such that ker(F ) = [4]K ′′. For all i ∈ J1 ; eK, we need to know Bi−1,e−i :=
[2e−i]fi−1 ◦ · · · ◦ f1(BK′′) in order to compute fi (using Algorithm 4).

Hence, computing F reduces to computing the leaves Bi−1,e−i of the binary
computation tree whose:

• vertices are the basis Bi,j := [2j ]fi ◦ · · · ◦ f1(BK′′) for all i, j ∈ N such that
i+ j ≤ e− 1;

• left edges are doublings Bi,j−1
[2]−→ Bi,j ;

• right edges are 2-isogeny evaluations Bi−1,j
fi−→ Bi,j .

Such a tree is displayed in Fig. 1 for e = 510. The computation tree can only
be evaluated depth first and left first since the leaf Bi−1,e−i has to be computed
prior to any evaluation by fi. However, evaluating all the vertices Bi,j would be a
waste of computational resources leading to a quadratic complexity O(e2). Optimal
strategies consist in navigating the computation tree depth first and left first with
a minimal number of doublings and evaluations to evaluate the leaves Bi−1,e−i.

As in [10], we can represent the computation tree as a discrete equilateral triangle
Te formed by points of the unit triangular equilateral lattice delimited by the x axis
and the straight lines y =

√
3x and y =

√
3(e− 1− x):

Te :=

{(
r +

s

2
,
s
√
3

2

)∣∣∣∣∣ r, s ∈ N, r + s ≤ e− 1

}
In Te, edges are unit segments connecting two points of Te. A left edge is a segment
of positive slope and a right edge is a segment of negative slope. Edges are oriented

10This tree is inspired from [5, Figure 2].
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Figure 1. Computational structure of the 2e isogeny F with e = 5.

Figure 2. Three strategies of depth 3 sharing
the same tree topology. The middle one is canon-
ical.

Figure 3. Tree topology
of the strategies on the
left.

in the direction of decreasing y coordinates. This defines an oriented graph structure
on Te. Vertices on x, y ∈ Te are ordered x → y if there exists a path from x to y.
On a subgraph of Te, the root is the initial points and leaves are final points.

Definition 32. A strategy S of Te is a subgraph of Te having a unique root. In
the following, we only consider strategies that are:

(1) full, meaning that S contains all leaves of Te.
(2) well-formed, meaning that there is only one path going through interior

point of S and no leaf in S distinct from the leaves of Te.

Such a (full and well formed) strategy of Te is also called a strategy of depth e− 1.
We denote |S| = e its number of leaves.

To compare strategies, we fix a measure (α, β) ∈ R2
+ on them, where α is the

cost of a left edge (accounting for doubling cost) and β is the cost of a right edge
(accounting for evaluation cost). Given such a measure, an optimal strategy of
depth e− 1 is a strategy of Te with minimal cost.

We define the tree topology of a strategy S of depth e−1 as the binary tree with
e leaves obtained by forgetting internal vertices of out degree less than two and
keeping the same connectivity structure. Conversely, to any binary tree T with e
leaves we associate a canonical strategy ST of depth e − 1 recursively as follows.
If e = 1, we take ST := T1. If e ≥ 2, we consider the left and right branches T ′

and T ′′ of T respectively and consider the canonical strategies S′ := ST ′ and ST ′′

associated to them. Let S′′ be the translate of ST ′′ by |S′| to the right. Let r′

and r′′ be the roots of S′ and S′′ in Te respectively and r be the root of Te. Then
the shortest paths rr′ and rr′′ from r to r′ and r′′ respectively are respectively
made of left edges only and right edges only. We can then consider the strategy
ST := rr′ ∪ rr′′ ∪ S′ ∪ S′′.

The following result has been proved in [10]:
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γ γ γ

Figure 4. Three strategies of depth 4 with the new measure µ′. Only the left one
respects the constraint at the beginning, unlike the others.

Lemma 33. [10, Lemma 4.3] The canonical strategy is minimal, with respect to
any measure, among all the strategies sharing the same tree topology.

It follows that we can restrict to canonical strategies to find optimal strategies
in the following. If S is a canonical strategy, we can consider its left and right
branches S′ and S′′ as follows. If S has i leaves to the left of its root, we define
S′ := S ∩ Ti and S′′ := S ∩ ((i, 0) + T|S|−i).

Lemma 34. [10, Lemma 4.5] Let S be an optimal (canonical) strategy and let S′

and S′′ be its left and right branches respectively. Then, S′ and S′′ translated by
−|S′| are optimal strategies of T|S′| and T|S′′| respectively.

Proof. The proof is very natural. By [10, Lemma 4.3], we know that S is a canonical
strategy, so S′ and S′′ are well defined. If S′ were not optimal, then by substituting
an optimal strategy for S′ inside S, we obtain a strategy with measure lower than
µ(S). Contradiction. The same argument holds for S′′. □

As pointed out in [10], this suggests a dynamic programming approach to com-
pute optimal strategies. For e = 1, the only optimal strategy is trivially S = T1.
Now, if we assume that we have computed optimal strategies S1, · · · , Se−1 of
T1, · · · , Te−1 of respective measures µ(S1), · · · , µ(Se−1), then the optimal strategy
Se will have left branch Si and right branch Se−i where:

i := argmin
1≤j≤e−1

(µ(Sj) + µ(Se−j) + (e− j)α+ jβ).

E.2. Constrained optimal strategies for isogenies derived from Kani’s
lemma.

E.2.1. Constraint at the beginning. Suppose we want to compute a 2e-isogeny F ∈
End(E2

1 ×E2
2) derived from Kani’s lemma as in (19) but we cannot access to 2e+2-

torsion points. Then, we divide the computation of F := F2◦F1 in two by computing

F1 and F̃2 as explained in Section 5.3. Assume we want to compute the 2e1 -isogeny
F1. Since Lemma 23 applies to F1, we look for an optimal strategy of depth e1−m
(with m = v2(a2)) for a measure different from the previous one and satisfying a
constraint at the beginning.

The new measure µ′ is parametrized by (α, β, γ) ∈ R3
+ where α is the cost of a

left edge (accounting for doubling cost), β is the cost of a right edge not starting
from the root (accounting for a generic evaluation cost) and γ is the cost of a right
edge starting from the root (accounting for the evaluation by fm+1 ◦ · · · ◦ f1 with
the notations of Lemma 23). In addition, we want a strategy with no left edge on

the line y =
√
3(x − 1) in order to avoid doublings on the codomain B of fm+1.

Such an optimal strategy (for the new measure µ′) is called an optimal strategy
with constraint at the beginning.
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γ γ γ

Figure 5. Three strategies of depth 5. Only the left one respects the constraints
at the beginning and 2 steps before the end. The middle one respects the constraint
at the beginning and the right one respects the constraint 2 steps before the end.

[10, Lemma 4.3] generalizes to strategies with constraint at the beginning for
the measure µ′, so we can restrict to canonical strategies. Indeed, the two key
ingredients used in the proof of [10, Lemma 4.3] still hold. First, if there is a
path from x to y in Te (we denote x → y), then all paths going from x to y
have the same measure µ′(xy). Second, if x → y, y → y′ and y → y′′, then
µ′(xy) + µ′(yy′) + µ′(yy′′) ≤ µ′(xy′) + µ′(xy′′). Hence, we can also generalize
[10, Lemma 4.5].

Lemma 35. Let S be a (canonical) optimal strategy with constraint at the beginning
such that |S| ≥ 2 and let S′ and S′′ be its left and right branches respectively. Then,
|S′| ≥ 2, S′ is an optimal strategy of T|S′| for µ

′ with constraint at the beginning
and S′′ translated by −|S′| is an optimal strategy of T|S′′| for µ (without constraint
at the beginning).

Hence, a dynamic programming approach is still valid here. Assuming we
have computed optimal strategies of T1, · · · , Tn−1 with constraint at the beginning
S′
1, · · · , S′

n−1 and without constraint at the beginning S1, · · · , Sn−1 respectively, we
can compute an optimal strategy with constraint at the beginning S′

n of Tn with
left branch S′

i and right branch Sn−i, where i ≥ 2 is given by:

i := argmin
2≤j≤n−1

(µ′(S′
j) + µ(Sn−j) + (n− j)α+ (j − 1)β + γ),

µ is the measure introduced in Appendix E.1 parametrized by (α, β) and µ′ is the
new measure parametrized by (α, β, γ).

E.2.2. Constraints at the beginning and the end. Now, suppose we want to compute
a 2e-isogeny F ∈ End(E2

1×E2
2) derived from Kani’s lemma as in (19) with access to

2e+2-torsion points this time. As explained in Section 5.2, we compute an optimal
strategy of depth |S| = e−m for the new measure µ′ we just introduced satisfying
the following constraints:

• There is no left edge on the line y =
√
3(x− 1) (in order to avoid doublings

on the codomain of fm+1);

• There is no left edge on the line y =
√
3(x − (|S| − 1 − m)) (in order to

avoid doublings on the domain of fe−m).

Such a strategy is called an optimal strategy with constraints at the beginning and
m steps before the end. An optimal strategy of depth n > m+1 for the measure µ
introduced in Appendix E.1 satisfying only the last constraint (and not necessarily
the first one) is called an optimal strategy with constraint m steps before the end
(see Fig. 5).
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We can generalize again [10, Lemma 4.3] to this case and obtain that optimal
strategies with constraints at the beginning and m steps before the end are canon-
ical. Hence, we obtain the following generalization of [10, Lemma 4.5].

Lemma 36. Let S be an optimal strategy with constraint at the beginning and m
steps before the end (with |S| ≥ m+ 1). Let S′ and S′′ be respectively the left and
right branches of S. Then |S′| ≥ 2 and one of these cases hold:

(i) |S′| ≤ |S| − m − 2, S′ is an optimal strategy for µ′ with constraint at
the beginning and S′′ translated by −|S′| is an optimal strategy for µ with
constraint m steps before the end.

(ii) |S′| = |S| − m, S′ is an optimal strategy for µ′ with constraint at the
beginning and S′′ translated by −|S′| is an optimal strategy for µ (without
constraint).

(iii) |S′| > |S| − m, S′ is an optimal strategy for µ′ with constraint at the
beginning and |S′|− |S|+m steps before the end and S′′ translated by −|S′|
is an optimal strategy for µ (without constraint).

By the above lemma, the dynamic programming approach used previously still
holds but it is a bit more complex to implement. If we want to compute an optimal
strategy of depth n − 1 ≥ m + 1 with constraints at the beginning and m steps
before the end, we need to have previously computed:

• All optimal strategies for µ′ of more than n −m leaves with constraint at
the beginning;
• All optimal strategies for µ of less than n− 1 and more than m+ 2 leaves
with constraint m steps before the end;
• All optimal strategies S′ for µ′ of n − m + 1 ≤ |S′| ≤ n − 1 leaves with
constraint at the beginning and |S′| − n+m steps before the end;
• All optimal strategies for µ of at most m leaves (without constraint).

We can then test all possibilities for left and right branches to minimize the cost.

E.3. Using optimal strategies in isogeny computations. As suggested in [11,
§ 1.3.8], we can represent any strategy S in a unique way as a sequence of integers
(s1, · · · , st−1) by considering the tree topology TS of S (as defined in Appendix E.1).
To establish this sequence (s1, · · · , st−1), we write down for every internal node of
the tree TS the number of leaves to its right and walk on it depth-first left-first.

4

1

2

1 1

Figure 6. Strategy of depth 5 represented by (4, 1, 2, 1, 1).

Given a strategy and a basis of the kernel, it is natural to compute the isogeny
chain recursively, as proposed in [11, § 1.3.8]. An iterative version of the same
algorithm derived from [12, Algorithm 2] and [1] has been implemented in this
work. We present it in Algorithm 20 for the generic case (in any dimension, not
taking gluing constraints into account).
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Algorithm 21 applies specifically to dimension 4 isogenies derived from Kani’s
lemma when the first isogenies of the chain involving gluings f1, · · · , fm+1 are
already computed. The changes between Algorithms 20 and 21 are modest and are
due to the fact that fm+1 ◦ · · · ◦ f1 is given on entry and that we want to avoid an
unnecessary doubling corresponding to the extreme left edge of the strategy (going
to the leaf at the origin, which is not used). Note that Algorithm 21 not only applies
to full isogeny computation F = fe ◦ · · · ◦ f1 but also to partial chain computation
when we cannot access the 2e+2-torsion.

Algorithm 20: Computing an isogeny chain with a strategy.

Data: A level 2 theta-structure (A,L,ΘL), a basis BK′′ := (T ′′
1 , · · · , T ′′

g ) of

a maximal isotropic subgroup K ′′ ⊆ A[2e+2] such that [2e+1]K ′′ =
K2(ΘL) and a strategy S = (s1, · · · , st−1) of depth e− 1.

Result: A 2e-isogeny F : A −→ B of kernel [4]K ′′ expressed as a chain of
2-isogenies fi : Ai −→ Ai+1 (1 ≤ i ≤ e).

1 k ←− 1;

2 Llevels ←− [0];

3 Lbasis ←− [BK′′ ];

4 for i = 1 to e do
5 B ←− last element of Lbasis;

6 while
∑
x∈Llevels

x ̸= e− k do
7 Append sk to Llevels;

8 B ←− [2sk ]B;

9 Append B to Lbasis;

10 k ←− k + 1;

11 end

12 Use Algorithm 4 with input B to compute the isogeny fi of kernel

[4]⟨B⟩;
13 Remove the last elements of Llevels and Lbasis;

14 Lbasis ←− [fi(C ) | C ∈ Lbasis] (Algorithm 1);

15 end

16 return f1, · · · , fe;
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France and INRIA, IMB, UMR 5251, F-33400, Talence, France
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Algorithm 21: Computing an isogeny chain derived from Kani’s lemma in
dimension 4 with a strategy.

Data: A basis BK′′ := (T ′′
1 , · · · , T ′′

4 ) of a maximal isotropic subgroup K ′′ ⊆
E2

1 × E2
2 [2

e+2] such that [2e+1]K ′′ = K2(ΘL) and [4]K ′′ = ker(F )
where F ∈ End(E2

1 × E2
2) is given by (19), the 2m+1-isogeny chain

fm+1◦· · ·◦f1 of Lemma 23 and a strategy S = (s1, · · · , st−1) of depth
e − m − 1 with constraint at the beginning and m steps before the
end.

Result: A chain of 2-isogenies f1, · · · , fe such that F = fe ◦ · · · ◦ f1.
1 k ←− 1;

2 Llevels ←− [0];

3 Lbasis ←− [BK′′ ];

4 for i = m+ 1 to e do
5 B ←− last element of Lbasis;

6 while
∑
x∈Llevels

x ̸= e− k do
7 Append sk to Llevels;

8 if i > m+ 1 or
∑
x∈Llevels

x ̸= e− k then
/* We avoid a useless doubling when i = m+ 1 */

9 B ←− [2sk ]B;

10 Append B to Lbasis;

11 end

12 k ←− k + 1;

13 end

14 Remove the last element of Llevels;

15 if i > m+ 1 then
16 Use Algorithm 4 with input B to compute the isogeny fi of kernel

[4]⟨B⟩;
17 Remove the last element of Lbasis;

18 Lbasis ←− [fi(C ) | C ∈ Lbasis];
19 else
20 Lbasis ←− [fm+1 ◦ · · · ◦ f1(C ) | C ∈ Lbasis];
21 end

22 end

23 return f1, · · · , fe;
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