
Hyperion: Transparent End-to-End Verifiable Voting with
Coercion Mitigation

Aditya Damodaran

SnT, University of Luxembourg, Luxembourg

aditya.damodaran@uni.lu

Simon Rastikian

IBM Research Europe, Zurich

ETH, Zurich

sra@zurich.ibm.com

Peter B. Rønne

Université de Lorraine, LORIA, CNRS, Nancy

SnT, University of Luxembourg, Luxembourg

peter.roenne@gmail.com

Peter Y. A. Ryan

FSTM, University of Luxembourg, Luxembourg

peter.ryan@uni.lu

ABSTRACT
We present Hyperion, an end-to-end verifiable e-voting scheme

that allows the voters to identify their votes in cleartext in the final

tally. In contrast to schemes like Selene or sElect, identification is not
via (private) tracker numbers but via cryptographic commitment

terms. After publishing the tally, the Election Authority provides

each voter with an individual dual key. Voters identify their votes

by raising their dual key to their secret trapdoor key and finding

the matching commitment term in the tally.

The dual keys are self-certifying in that, without the voter’s

trapdoor key, it is intractable to forge a dual key that, when raised

to the trapdoor key, will match an alternative commitment. On the

other hand, a voter can use their own trapdoor key to forge a dual

key to fool any would-be coercer.

Additionally, we propose a variant of Hyperion that counters the

tracker collision threat present in Selene. We introduce individual

verifiable views: each voter gets their own independently shuffled

view of the master Bulletin Board.
We provide new improved definitions of privacy and verifiability

for e-voting schemes and prove the scheme secure against these, as

well as proving security with respect to earlier definitions in the

literature.

Finally, we provide a prototype implementation and provide

measurements which demonstrate that our scheme is practical for

large scale elections.

KEYWORDS
End-to-end verifiable voting, game-based proofs, benchmarks

1 INTRODUCTION
Many democracies are moving towards voting over the internet,

and some, e.g. Estonia, have already adopted it. While internet

voting has many attractions it introduces new, poorly understood

threats. The internet is inherently insecure and remote voting intro-

duces coercion threats not present in in-person voting. To counter

these threats, cryptographic mechanisms and protocols have been

proposed. However, designing and analysing such protocols is very

challenging, and we have not reached consensus on rigorous def-

initions of security properties such as vote secrecy, verifiability,
receipt-freeness, coercion-resistance and dispute resolution.

A good voting system should not only deliver the correct result

w.r.t. the legitimately cast votes, but also provide sufficient evidence

to convince all observers of the announced result. Ensuring both

vote secrecy and verifiability is complex, and indeed, many tech-

nologies sacrifice the latter, forcing the stakeholders to place total,

blind trust in the correct behaviour of the machines. An example is

the direct-recording electronic (DRE) machines which fail to pro-

vide any evidence as to how votes are recorded or counted. Such

observations motivated the development of end-to-end verifiable

(E2E V) schemes [30] and the notion of software independence [37].

E2E V schemes usually involve the creation of an encryption

or encoding of the vote at the time of casting, a copy of which

is retained by the voter. Later the voter can check that her “pro-

tected ballot" – to use Rivest’s terminology – appears correctly on

an append-only public ledger called the Bulletin Board (BB). After

this, a universally verifiable, anonymising tally is performed on

the posted, encrypted ballots to reveal the result. Voters can also

perform some form of ballot auditing before casting to gain assur-

ance that their vote is correctly represented in their ballot. Putting

these steps together ensures that the corruption of any vote during

recording and tallying is detectable. Along with mechanisms to

prevent ballot stuffing and clash attacks (ballot collisions) etc. we

can detect any inaccuracy in the announced outcome.

Such schemes, while technically appealing, have at least two

drawbacks. First, the fact that errors can be detected does not guar-

antee that they will be: it is essential that sufficient numbers of

voters and observers actually perform the checks diligently and

report anomalies. Second, a voting scheme must be easily under-

standable and usable by voters and voting officials. The assurance

argument outlined above is rather subtle, and not easy for many

voters or stakeholders to digest. Many find the idea of voters having

to perform checks on encrypted ballots unreasonable.

These observations prompted the exploration of more direct

and transparent forms of verification, in particular based on the

idea of private tracker numbers to identify votes in cleartext in

the tally. Examples of such schemes include the CNRS scheme [4],

Selene [39] and sElect [34]. Of these, Selene is of particular interest
as it provides mitigation of the coercion threats that tracker based

schemes otherwise exhibit: the coercer demands the voter to reveal

her tracker.

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

1.1 Contribution
We present a novel, end-to-end verifiable scheme, inspired by the

Selene scheme [39], that not only provides a highly transparent ver-

ification, but also affords voters a greater sense of privacy than with

Selene. The main Hyperion variant is significantly more efficient as

it greatly simplifies the setup (section 3.1) of Selene, eliminating all

the encryption, mixing, decryption and ZK proofs computations im-

plied by the use of tracker numbers. Furthermore, this construction

enables us to neatly sidestep the tracker collision attack alluded

to above, where a coerced voter equivocates to the tracker of the

coercer.

Hyperion, in contrast to Selene, does not publicly reveal trackers,

indeed, we can do away entirely with trackers. Instead, the voter

identifies her vote in the tally by identifying the row in the tally

containing the commitment that opens, with her trapdoor secret

key and dual key, to a constant, e.g. 1. This is rather like identifying

your house by finding the door that opens to your key. This is

still deniable, but the mechanism is now different: a coerced voter

identifies a commitment paired with the coercer’s required vote

and, if necessary computes, using her trapdoor key, the fake dual

key that opens the chosen commitment to 1.

Doing away with the trackers also improves the situation, es-

pecially for coerced voters, since they do not need to equivocate

and lie about trackers that they have seen and which could have

easy-to-remember or characteristic features. As an example, a voter

might accidentally reveal having a tracker with all consecutive

numbers.

At first glance Hyperion seems to counter the tracker collision

threat
1
, but a problem still exists: the coercer claiming instead own-

ership of the commitment term that the voter proffers. To address

this we propose a further innovation: each voter gets an individual

view of the BB. Each view is verifiably derived from the BB with

its own, independent re-randomisation and shuffling. Thus the

rows, and hence vote/commitment pairs, appear in a different form

and order for each voter. So even a shoulder-surfing coercer cannot

identify his commitment in the voter’s view, and if he claims to,

the voter can be sure that this is a bluff. This construction might

be used
2
in smaller elections as this higher coercion-resistance

advantage comes with an efficiency loss (more work is required to

re-randomise BB, produce and verify ZK proofs).

The Hyperion construction has further advantages over Selene.
In particular, we demonstrate variants that exploit the fact that

the cryptographic commitments are perfectly randomly distributed

to an observer only seeing the bulletin board, and we use this to

sketch versions which are quantum-safe against future attackers

or even satisfying everlasting privacy.

Further, we demonstrate that the construction can be generalised:

the commitments identifying the vote can be viewed as a secret key

derived from a key exchange, and this gives a transformation from

implicitly authenticated key exchange protocols to Hyperion-like
constructions.

1
Collision threats do not break receipt-freeness but violates coercion-resistance: none

provide a way for the voter to prove how she voted, however the voter might be

detected evading the coercer’s instructions. Or, more subtly, the voter may be put in a

situation in which she fears she has been detected.

2
The idea of verifiable individual views of a public ledger may well have applications

beyond voting.

Our construction gives rise naturally to a number of variants,

notably one in which trackers are retained but each tracker is only

revealed to the associated voter by opening a commitment to the

voter. This has the feature that a coerced voter does not need to

choose an alternative tracker but can just compute a dual key that

will open an alternative commitment to the voter’s own tracker.

This has the surprising consequence that voters can learn their

tracker in advance, indeed such knowledge could even be made

public. The existence of such variants demonstrates the richness of

the construction.

We also contribute with definitional work, firstly by providing

a ballot privacy definition allowing maliciously generated public

keys by corrupted voters, and considering stronger adversaries with

access to information about whether voters verify successfully or

not. Secondly, we give a definition of verifiability against amalicious

voting board and consider malware on the user side, and we prove

verifiability when either the vote-casting or the vote-verification

device is uncorrupted. We also provide proofs of security against

established definitions in the literature, especially we prove privacy

against a malicious board as in [17, 23].

Finally we provide a prototype implementation along with per-

formance data.

1.2 Structure of the Paper
We first discuss related work, and then introduce the notation that

then helps exhibit the new scheme in its main version. We describe

the voter experience: casting and verifying a vote and, where nec-

essary, evading the coercer. The basic version of the scheme does

not include the voter individual views and so is still vulnerable

to the tracker/commitment collision threat. We then sketch the

construction with individual views, and further describe the alter-

native constructions mentioned above, including the possibility

of introducing voting codes to make it more robust and dispute

resistant.

The remainder of the paper presents the security definitions

followed by game-based proofs. These definitions are also novel

and represent a contribution to the state of the art in the field.

For the ballot privacy definition, we consider adversaries who get

information on whether the verification of voters failed or not. Such

information can lead to privacy attacks, as demonstrated in other

protocols, and are important to counter inHyperion. For verifiability,
we craft a definition considering that each voter has two devices –

one for vote casting and one for verification, and we demonstrate

that both need to be corrupted for successful verifiability attacks

against Hyperion.
Finally, we include some performance statistics for a prototype

implementation that demonstrate that the scheme is practical for

large scale elections, e.g of the order of a million voters.

1.3 Related Work
Most of the end-to-end verifiable schemes proposed to date involve

a rather indirect verification by the voter: checking that an encryp-

tion of their vote appears on the BB in the input to a (universally

verifiable) tally process. This check is only really meaningful if

voters are convinced that their vote is correctly encrypted and sub-

sequently correctly processed and decrypted. Unsurprisingly, many

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

people find this rather unconvincing and uncompelling. In the light

of this, some recent schemes seek a more direct and more com-

pelling voter verification process: identifying the vote in plaintext

in the final tally. Here we focus on this class of scheme.

Schneier [43], proposes the idea of voters attaching a password

to their vote which is then posted alongside the vote on the BB.

Later, [4] elaborate on this in a boardroom context. sElect [34],

is also tracker-based but with the additional feature of having an

accountable tally process. All of these systems are vulnerable to

the obvious threat of the coercer demanding the voter reveal her

tracker. Selene [39] introduced the idea of delayed notification of the
trackers to mitigate the coercion threat, along with constructions

to guarantee uniqueness of the trackers.

Some adaptations of Selene have been presented in an in-person

variant [38, 49] and in a JCJ-like variant [31] which offers greater

coercion-resistance. Selene has been analysed symbolically in [8]

and implemented (using a distributed ledger) in [42].

Hyperion, like Selene, provides a direct and intuitive way for

voters to verify their votes, however, it does away with the need

for trackers. This modification greatly simplifies the setup and,

more importantly, voters should feel much more comfortable about

the privacy of their vote. Studies, [2, 22, 48] suggest that some

voters are troubled by having their vote appear publicly beside

their tracker. We hypothesise that voters will be more comfortable

with the Hyperion verification, but this needs to be investigated by

a complementary user study.

Selene has the problem that the coercer might claim ownership

of a faked tracker offered by a coerced voter, or that it coincides

with one offered by another victim. Several enhancements to Selene
to counter this have been suggested including adding extra dummy

trackers [39] and shrouding parts of the trackers or votes [32].

The Hyperion construction presented here, combined with a fur-

ther innovation: individual bulletin boards, enables a more elegant

solution.

Regarding the definitions, our verifiability definition builds on [15],

which following [16] is the best choice for our case. Our definition

benefits from a detailed model that allows corruption of vote casting

and usage of verification devices.

For the ballot privacy definition, the state of the art was sum-

marised in the SoK paper [6] which also presented a game-based

definition BPRIV that implies an ideal functionality under certain

conditions and which covers all types of tally functions. This defi-

nition was further extended to considering more general attacks

during vote casting and malicious boards in [17]. Unfortunately,

that definition does not capture schemes where the verification hap-

pens after the tally as in Hyperion. Recently, a new definition was

presented in [23] allowing late verification and which also included

a machine-checked proof of ballot privacy for Selene. Whereas the

last definition would be applicable to Hyperion, it does not capture
attacks where the attacker has access to whether the voter’s veri-

fication is successful or not. Since Hyperion allows a direct check

of the tallied plaintext vote, this would immediately cause privacy

problems if the adversary manages to cast a vote on behalf of the

voter. However, the BPRIV type of definitions, especially [23], does

not capture these types of attack, and are not well-suited to do

this due to being based on a simulated view. Instead, we here go

back to a very early definition by Benaloh [5], but update this with

inspiration from [23], also taking into account that the adversary

can register maliciously generated keys.

2 PRELIMINARIES
In this section, we introduce the notation that will be used through-

out the paper, as well as the parties involved in the protocol.

2.1 Notation
This paper includes writing program code. In such code, the assign-

ment operator ‘← ’ assigns to the left-hand side elements the value

on the right-hand side. The symbol ‘ ↞ ’ assigns to its left-hand

side, a value sampled randomly from a finite set on the right-hand

side. All the variables are represented in binary strings and could

be appended to each others by using the ‘ q ’ operator. If 𝑚 is a

variable, then ‘ |𝑚 | ’ denotes its length. Variables written in capital

letters denote either arrays or sets depending on the context, and

elements in arrays are designated by an index number between

square brackets. We use the notation B← []⊥ to initialise all

the elements in the array B with ⊥. If X and Y are two sets, then

we denote X
∪← Y shorthand for X← X ∪ Y. Similarly, we write

𝑚
q← 𝑛 shorthand for𝑚 ←𝑚 q𝑛 when𝑚 and 𝑛 are two variables.

We formalise security properties with games written in pseudo-

code in which, for simplicity, we omit the security parameter. These

games invoke an efficient adversary A with access to some ora-

cles. The games terminate when executing Stop with · command.

Each game is associated to a certain winning probability. We write

Pr[𝐺 (A)] for the probability that game 𝐺 invoked with adver-

sary A stops with ⊤. Game codes will be compacted by introduc-

ing the instructions Require · which stands for ‘ if not · then
Stop with⊥ ’ and Promise · which stands for ‘ if not · then
Stop with⊤ ’.

2.2 Parties Involved
Election Authority (EA). Performs the general election setup, i.e.

defines the election parameters, the ballot styles etc. and sets up

the initial Bulletin Board.

Bulletin Board (BB). We consider an append-only board with a

consistent view for all participants.

Voters. Each voter 𝑖 is identified uniquely with an id𝑖 and holds

two secret keys: A signing key used to authenticate the ballot and

a verification trapdoor key used to verify the plaintext vote. These

keys can be stored on two different devices/apps that assist the

voters in casting and verifying their votes.

Registration Authority. Identifies the eligible voters and posts

their public keys on BB.

Tally Tellers (TT). Are responsible for setting up a shared (thresh-

old) public election key pkEA which will be used for encryption.

They also perform a verifiable decryption during the tally phase.

Mix-Net. Is a set of mix tellers that perform a verifiable parallel

mix in order to anonymise the votes.

3 DETAILS OF THE SCHEME
In this section, we describe the main variant of Hyperion. We note

that the Hyperion verification mechanism is versatile and could

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

be incorporated in an existing voting scheme. For concreteness,

we present it as a self contained scheme. We depict the protocol

in Fig. 7 of appendix C.

3.1 The Setup
The election authority publishes the relevant details of the election

including a cryptographic setup of a secure group on the BB. A set

of tally tellers create a threshold public key pair for the election

(skEA, pkEA) and publishes pkEA. We assume here that each eligible

voter holds a valid private signing key with corresponding certifica-

tion key pk𝑖 published along with unique voter identifiers id𝑖 on BB.
The unique identifiers enable universal eligibility verifiability. We

trust the registration authority to set this up correctly
3
. Note that

the setup here is much simpler than that of Selene which requires

additional verified generation, encryption and mixing of tracking

numbers.

3.2 Voting
Each voter generates an ephemeral trapdoor key 𝑥𝑖 using her device.

The public component ℎ𝑖 := 𝑔𝑥𝑖 will be registered during vote

casting, along with a Zero Knowledge Proof of Knowledge (ZKPoK)

of 𝑥𝑖 . For all proofs that follow, we assume that these proofs are non-

malleable and include binding to a unique election identifier and the

public election key pkEA. The proofs here should also be bound to

the identity id𝑖 of the voters to prevent the public keys from being

copied. In our case a simple Schnorr proof [44] is sufficient, made

non-interactive via the (strong) Fiat-Shamir transformation [7, 25]

and including all the necessary information in the hash for non-

malleability.

Voting proceeds as follows: voter 𝑖 sends her trapdoor key ℎ𝑖
along with a ZKPoK of 𝑥𝑖 , an encryption {𝑣𝑖 }pkEA of her vote 𝑣𝑖 (e.g.

ElGamal [24]) and the well-formedness ZK proofs of encryption, i.e.

a proof of the vote be in the correct space and a proof of plaintext-

knowledge
4
. Recall that these proofs are non-malleable and bound

to the voter id to prevent vote copy attacks
5
[18]. The encryption

scheme should support verifiable mixing and together with the

ZKPs be IND-1-CCA (see appendix A).We denote the concatenation

of the ZK proofs by Π𝑖 . Registering the (ephemeral) trapdoor keys

at the same time as casting the vote avoids the need for an extra

registration phase. All of this is signed, sent to the EA and appended

next to the appropriate pk𝑖 on the BB:

id𝑖 , pk𝑖 , sign𝑖 ({𝑣𝑖 }pkEA , ℎ𝑖 , Π𝑖)

3.3 Tallying
Once the voting phase has closed, ballots posted to the BBwith valid

signatures and proofs are identified. For these, the Tally Tellers now

take each trapdoor keyℎ𝑖 and privately raise this to a fresh, random,

secret 𝑟𝑖 , encrypt it and post the output on BB together with ΠTT
𝑖

,

a ZKPoK of honest construction with knowledge of 𝑟𝑖 and the

encryption random coins.
6
For ElGamal this proof can be efficiently

3
In Estonia, each voter has her keys integrated in her identity card.

4
A simple choice is Chaum-Pedersen proofs of discrete log equality using OR Sigma

protocols for the different vote choices.

5
Vote copy attacks would undermine coercion resistance with plaintext verification.

6
This can easily be distributed over the Tally Tellers for ElGamal. For instance, each

TT𝑗 posts {ℎ
𝑟𝑖,𝑗

𝑖
}pkEA together with the appropriate ZKPoK, then these ciphertexts

implemented, see e.g. [9]. The Tellers keep the corresponding 𝑔𝑟𝑖

terms secret, they will be needed in the verification phase. The BB

now contains, for the rows with valid ballots, the following:

id𝑖 , pk𝑖 , sign𝑖 ({𝑣𝑖 }pkEA , ℎ𝑖 , Π𝑖), {ℎ𝑟𝑖𝑖 }pkEA , Π
TT
𝑖

The pairs ({𝑣𝑖 }pkEA , {ℎ
𝑟𝑖
𝑖
}pkEA) are shuffled in parallel by a verifiable

mix-net and verifiably decrypted to obtain the final Tally Board

𝑣𝑖 , ℎ
𝑟𝑖
𝑖

together with the ZKP of correct parallel mixing and decryption,

e.g. using Verificatum [46]. If an element ℎ
𝑟𝑖
𝑖
= 1 an error is output

which only happens with negligible probability if at least one Tally

Teller is honest.

3.4 Notification and Verification
After a suitable delay we can move to the notification phase: 𝑔𝑟𝑖

is sent
7
to voter 𝑖 over a private channel at a randomly chosen

time during the notification period. The voter raises this to her

secret trapdoor key 𝑥𝑖 and finds the match among the ℎ
𝑟 𝑗
𝑗
terms, so

identifying her vote in the tally column.

3.5 Coercion Mitigation
Suppose a coercer instructed voter 𝑖 to submit the vote 𝑣∗.8 Voter
𝑖 identifies a row in the tally that contains the pair (𝑣𝑘 , ℎ

𝑟𝑘
𝑘
) s.t.

𝑣𝑘 = 𝑣∗. Using her trapdoor key 𝑥𝑖 , she computes the fake dual key
that will match this row (ℎ𝑟𝑘

𝑘
)−𝑥𝑖 .

As with Selene, care has to be taken in designing the notification

channel to avoid a coercer being able to observe the notification

of the real dual key. In contexts in which we anticipate extreme

coercion, where for example the coercer demands access to the

channel, we suggest that coerced voters can notify a suitable au-

thority, before the notification phase, to request a particular fake

dual key be sent over the channel. In this case it is unwise to also

notify the voter of her real dual key as this might be detected by the

coercer. This gives rise to a modified flavour of coercion resistance

since the coerced voter benefits from coercion resistance at the cost

of losing verifiability.

We note that the vote casting method presented here is not fully

coercion-resistant, but is software-dependent receipt-free, i.e. like

Helios [1] would rely on the vote-casting device or app not leaking

the randomness used in the vote encryption. However,Hyperion can
be combined with different forms of vote-casting to achieve better

receipt-freeness e.g. using the BeleniosRF construction, [10]. Also

better coercion-resistance can be achieved providing protection

against a coercer even trying to vote on behalf of the coerced voter,

e.g. using JCJ style credentials [33], see [31] but at the cost of an

interactive vote verification.

are multiplied together to obtain {ℎ𝑟𝑖
𝑖
}pkEA where

∑
𝑗 𝑟𝑖,𝑗 = 𝑟𝑖 . Each Teller then keeps

𝑔
𝑟𝑖,𝑗

.

7
With multiple Tally Tellers, TT𝑗 can send 𝑔

𝑟𝑖,𝑗
to the voter or they can be collected

and sent to the voter under encryption of ℎ𝑖 .
8
This presumes that some votes 𝑣∗ are cast by other voters otherwise it will, in any

case, be evident that voter 𝑖 did not cast 𝑣∗ . For techniques to deal with the situation

of unpopular candidates, see [32, 40].

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

3.6 Dispute Resolution
It is possible when verifying that a voter either fails to find the

matching term or finds it but the associated vote does not match

the vote they cast. The voter should notify this to the appropriate

authority for the matter to be investigated.

Possible causes:

(1) The voter’s ballot was not correctly posted to the BB.

(2) The voter’s device did not encrypt the correct vote.

(3) The voter’s ballot was not correctly processed during the

mixing and tallying.

(4) The 𝑔𝑟𝑖 term was corrupted.

Regarding the first, we should remark that voters should be en-

couraged to check the presence of their ballot on the BB before

tallying starts, as with other E2E V schemes. Early detection of such

problems makes them easier to resolve, but Hyperion (and indeed

Selene) is less reliant than conventional E2E verifiable schemes on

such checks being performed diligently.

It is of course possible that a voter claims falsely to have found a

problem in which case we hit dispute resolution problems: it is not

clear whether the problem is with the system, the voter’s device

or the voter, either lying or mis-remembering. We will discuss

mechanisms to resolve disputes in Section 7.4.

4 HYPERION INSTANTIATION
We will here present the algorithms, EASetup, Setup, ValidCred,
Vote, ValidBallot, Tally, GetSecret, Publish, Verify, VerifyVote and
VerifyBallot, which we will use in the games for privacy and verifi-

ability, and how they are instantiated for Hyperion.

EASetup sets up the secure cyclic DH group (of prime order)

(𝐺, 𝑔) and creates the threshold public and secret keys (pkEA, skEA).
Setup uses the EA keys to generate for each id a “unique” sign-

ing key pair (sk, pk) along with the proof of well-formedness; it

also picks a random exponent 𝑥𝑖 and computes ℎ𝑖 := 𝑔𝑥𝑖 along

with Π𝑥𝑖 the proof of knowledge of 𝑥𝑖 bound non-malleably to

the voter id. The previous algorithms should be randomized when

generating the keys. ValidCred outputs ⊤ if Π𝑥𝑖 is valid, and ⊥
otherwise. Vote extracts ℎ𝑖 from pk and Π𝑥𝑖 , encrypts the vote 𝑣

with ElGamal encryption scheme using pkEA, generates the proof
of well-formedness and plaintext knowledge Π𝑣 which is bound to

the voter id, and signs these elements using sk . It finally outputs

the signed elements along with the signature as a ballot blt and an

empty state st. ValidBallot verifies the correctness of the signature
using pk and the validity of Π𝑣 and Π𝑥 : if both verifications pass,

then the function outputs ⊤, otherwise, it outputs ⊥.
The Tally function has twomain jobs, first computing themix-net

inputs while updating the BB, and second inserting some computed

values to the decryption mix-nets and outputting the result along

with the vote count. In its first functionality, Tally extracts ℎ𝑖 from

BB, picks a random exponent 𝑟𝑖 for each row 𝑖 , computes ℎ
𝑟𝑖
𝑖
, 𝑔𝑟𝑖 ,

internally stores 𝑔𝑟𝑖 , then, it computes the encryption {ℎ𝑟𝑖
𝑖
}pkEA

with the proof of knowledge of 𝑟𝑖 and correct encryption ΠTT
𝑖

and

sends ({ℎ𝑟𝑖
𝑖
}pkEA ,Π

TT
𝑖
) to BB. In the second functionality, the pair

({ℎ𝑟𝑖
𝑖
}pkEA , {𝑣𝑖 }pkEA) are put through the mix-net and decryption

to output (ℎ𝑟𝜎𝑖𝜎𝑖 , 𝑣𝜎𝑖 ,Πmix,Πdec
) as the final tally.

Further, GetSecret outputs 𝑔𝑟𝑖 . VerifyVote extracts ℎ𝑟𝑖
𝑖
from the

bulletin board, raises the input 𝑔𝑟𝑖 to the secret key input 𝑥𝑖 and

outputs the equality check. Publish outputs the verifiable mix and

the decryption of (𝑣𝑖 , ℎ𝑟𝑖𝑖) along with the BB.

Finally, Verify will verify all public evidence on BB, VerifyBallot
will generally verify that a ballot appears correctly on BB for a

given voter, however in Hyperion this can often be relaxed to check

that some valid ballot has appeared for the given voter id which

we denote VerifyVoted. In the privacy game we ignore this and it

will always output ⊤. By 𝜌 we denote the election result function.

In our privacy games we choose 𝜌 to compute the array of votes

created by extracting, from each element in the input array, the last

submitted vote in the concatenated sequence.

5 BALLOT PRIVACY
In this section, we introduce the game-based definition of ballot

privacy Ballot-Priv. In this definition, we take into account voters

having secret credentials sk and capture privacy leaks from verifi-

cation, especially plaintext verification (as in Hyperion, Selene and
the Estonian e-voting system).

Even though ballot privacy is a fundamental property in secure

voting, it has been perplexingly hard to come up with a generic

definition which, at the same time, supports standard proof tech-

niques and encompasses large classes of voting systems and tally

functions. A good overview of game-based definitions can be found

in [6], which also concludes with a privacy definition (BPRIV) for

general tally functions. BPRIV is however not directly applicable

to the current context of post-tally verification. Instead we take

advantage of Hyperion having a simple tally function, namely re-

vealing all plaintext votes. This means we can use a much earlier

definition as starting point, namely Benaloh’s definition [5], which

was rewritten in modern game-based notation in [6].

Figure 1 is a rework of Benaloh’s definition, with inspiration

from [17] and especially [23], allowing voters to hold secret key

material and adding a verification phase. This verification phase

has the potential to introduce privacy attacks, if the adversary has

access to whether the verification was successful or not. This is

a realistic real-world scenario even without compromised parties

since voters might share a failed verification with others, perhaps

even on social media.

For transparency and to detect wide-spread attacks such be-

haviour should even be endorsed, and hence better not invalidate

privacy.

We also want to model robust voting systems in which the vot-

ing process proceeds even if individual verification fails (as would

probably happen in larger elections). In the case of covert attackers

against privacy, the definition can easily be updated to punish an ad-

versary for failed verification attempts. In the Ballot-Priv definition,

Figure 1, we assume a trusted BB and secure channels between the

voters and BB, meaning that an honest ballot will arrive unchanged

to BB. We also assume an initial setup giving each voter a unique

identity id.
First, in line 02, the EA prepares the master keys that are used

to generate the voters credentials (lines 06-09), to verify a voter’s

credentials (lines 07, 11), to allow the voting process (line 16), to

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

Game Ballot-Priv𝑏 (A)
00 SK, PK, ST,V0,V1 ← []⊥
01 HV,DV← {}
02 (pkEA, skEA) ← EASetup()
03 stA ← A1 (pkEA, PK)
04 𝑏′ ← A2 (stA)
05 Stop with 𝑏 = 𝑏′

Oracle1 HonestSetup(id)
06 (sk, pk) ← Setup(id, skEA, pkEA)
07 Promise ValidCred(id, pk, pkEA)
08 SK[id] ← sk ; PK[id] ← pk

09 HV
∪← {id}; DV \← {id}

Oracle1 DishonestSetup(id, pk)
10 Require id ∉ HV

11 Require ValidCred(id, pk, pkEA)
12 PK[id] ← pk
13 DV

∪← {id}

Oracle2 LoR(id, 𝑣0, 𝑣1)
14 Require id ∈ HV

15 sk ← SK[id]; pk ← PK[id]
16 (blt, st) ← Vote(pkEA, id, sk, pk, 𝑣𝑏)
17 Promise ValidBallot(BB, blt)
18 V

0 [id] q← 𝑣0; V
1 [id] q← 𝑣1

19 ST[id] q← st; BB[id] q← blt

Oracle2 Tally()
20 Require 𝜌 (V0) = 𝜌 (V1)
21 Return Tally(BB, skEA, pkEA, PK)
Oracle2 VerifyVote(id)
22 Require id ∈ HV ∪ DV
23 pk ← PK[id]
24 𝑠 ← GetSecret(id, pk, skEA, pkEA, BB)
25 if id ∈ DV then Return 𝑠

26 (𝑟, 𝜋) ← Tally() � scheme dependent

27 sk ← SK[id]; st ← ST[id]
28 Return VerifyVote(id, sk, st, 𝑠, BB, 𝑟 , 𝜋)

Oracle2 Board()
29 BB

′ ← Publish(BB)
30 Return BB

′

Oracle2 Cast(id, blt)
31 Require id ∈ HV ∪ DV
32 Require ValidBallot(BB, blt)
33 BB[id] q← blt

Oracle2 VerifyBlt(id)
34 Require id ∈ HV

35 sk ← SK[id]; pk ← PK[id]
36 st ← ST[id]
37 Return VerifyBallot(id, st, sk, pk, BB)

Figure 1: The game-based security definition of Ballot Privacy. The adversary wins if it distinguishes the left world from the
right one, i.e. if it guesses the bit 𝑏. In line 16, the Left-or-Right (LoR) oracle either inputs the left vote 𝑣0 or the right one 𝑣1

based on the bit 𝑏. To simplify the notation, we divide our adversary intoA1 andA2 in 03, 04 and assume that they respectively
have access to the oracles sub-indexed by 1 and 2.

tally the BB (line 21) and to allow the generation of the voters’

verification secrets (line 24).

Lines 10-13 give the adversary the possibility to dynamically reg-

ister dishonest credentials for some voters: lines 09 and 10 prevent

the adversary from registering a set of credentials as both honest

and dishonest at the the same time e.g. by calling HonestSetup on

a specific id and then DishonestSetup on the same id, causing the
voter to be honest and dishonest at the same time. Notice that, for

a voter id ∈ ID, checks of honesty occur in lines 14, 25, 34.

Line 17 ensures that the ballots created in the left or right voting

oracle are well-formed. Notice that in lines 18-19, the elements are

concatenated to the history: this provides more generality then just

overwriting the previous value using the← operator to accommo-

date elections that take into consideration the whole history of vote

submissions.

In line 20, the 𝜌 function guarantees that both V
0
and V

1
have

the same count: this preventsA from trivially winning by querying

LoR(𝑣0, 𝑣1), LoR(𝑣0, 𝑣0) and then querying Tally(). Additionally,A
is capable of querying the ballot casting oracle (31-33), the board

publishing oracle (29-30), the ballot verification oracle (34-37) and

the vote verification oracle (22-28). The ballot verification oracle and

the vote verification oracle, both, can provide the adversary with

extra information about the honest and dishonest voters (secret 𝑠

and/or verification output).

We define the advantage of the adversary

AdvBallot-PrivA :=

����Pr[Ballot-Priv0 (A)] − Pr[Ballot-Priv1 (A)]����
The generality of this type of Benaloh definition is limited to certain

types of result functions, see [16], which however is fulfilled for

Hyperion where we output all votes after mixing. Especially, we

notice that, a necessary condition on 𝜌 is that it should fulfill the

following relation 𝜌 (V0) = 𝜌 (V1) =⇒ 𝜌 (V0 q V′) = 𝜌 (V1 q V′).

Probably the definition could be extended to general cases, with an

assumption of extraction properties of the ballots.

Theorem 5.1. For all A playing Ballot-Priv (Fig. 1 instantiated
with Hyperion, there exists adversaries B, C, D, E, F such that the
following relation holds:

AdvBallot-PrivA ≤ AdvZKB + Adv
EUF−CMA

C + AdvMix

D +

AdvZK
′

E + Advpoly-IND-1-CCAF

Further, in App. B we will also prove that our scheme satisfies

du-mb-BPRIV against a malicious board from [17, 23]

Theorem 5.2. For allA playing du-mb-BPRIV (Fig. 6 instantiated
with Hyperion, there exists adversaries B, D, D′, E, F such that the
following relation holds:

Advdu-mb-BPRIV
A ≤ AdvZKB + Adv

Mix

D + AdvMix

D′ +

AdvZK
′

E + Advpoly-IND-1-CCAF

The main difference for the bounding is that du-mb-BPRIV does

not capture attacks for the verification success seen as a side-

channel to the adversary, and hence the ballot signatures are not

necessary.

5.1 Proof of Ballot Privacy
We now prove that our scheme meets Ballot-Priv property. In order

to do so, we instantiate the algorithms as described in section 4.

We use game hopping technique to bound the adversary advantage.

Since oracles can be called multiple times by the adversary, we will

suppress pre-factors in the advantage bounds. We note by 𝐺0 the

instantiated Ballot-Priv game: AdvBallot-PrivA = Adv𝐺0

A .

In the first game hop, we remove line 07 in 𝐺1. In fact under the

assumption stated in 3.1 we have that line 07 will always pass, and

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

thus Adv𝐺0

A = Adv𝐺1

A .

In 𝐺2, by the zero knowledge property, the proofs Π𝑥 and Π𝑟𝑖 are

simulated for honest voters. This is possible since these proofs are

created by the challenger. Now, the adversary cannot extract any

information from the simulated proofs andAdv𝐺1

A ≤ Adv𝐺2

A +Adv
ZK

B
(AdvZKB is the advantage of B to distinguish simulation from real

proofs).

In game 𝐺3, we modify line 31 to require id ∈ DV only. In this

case, because of the requirement in 32, when casting a ballot for

an honest voter, adversary has to be capable of forging a valid sig-

nature for the honest voter. If the signature scheme is existentially

unforgeable, we have Adv𝐺2

A ≤ Adv𝐺3

A + Adv
EUF−CMA

C .

In the fourth game𝐺4, we replace the verification step on line 28 to

always output success. Because our scheme is correct, and since the

adversary is not capable of submitting ballots on behalf of honest

voters, then we have Adv𝐺3

A = Adv𝐺4

A .

In game 𝐺5, we modify line 21 in the tally oracle: rather than pick-

ing 𝑟𝑖 at random for each voter and computing ℎ
𝑟𝑖
𝑖
then encrypting

the computed value, we sample a uniformly random group element

𝑔𝑖 and then encrypt it. Since we are working in a cyclic group of

prime order, then the distributions of 𝑔𝑖 and ℎ
𝑟𝑖
𝑖

are exactly the

same for all registered voters 𝑖 , thus Adv𝐺4

A = Adv𝐺5

A .
9

In the next game 𝐺6, we modify again line 21, by replace the se-

cure mix-net by its ideal functionality. We thus have Adv𝐺5

A ≤
Adv𝐺6

A + Adv
Mix

D .
10

In 𝐺7, analogously to 𝐺2, we simulate the decryption proofs Π
dec

for all the ciphertexts output by the mix-net. Further, for the honest

voters, the decryption values for the plaintext votes are taken from

the calls to the LoR oracle. Due to the correctness of the encryption

scheme, the adversary’s advantage is Adv𝐺6

A ≤ Adv𝐺7

A + Adv
ZK
′

E .

In the final game hop, we require that the mix-nets in 𝐺8 output

the honest votes (taken from the LoR oracle) concatenated with the

decryption of the dishonest votes. The views in the left world and

the right world should be the same, thus we require the decryption

mix to output 𝜌 (V𝑏) concatenated with the dishonest votes. We

have that Adv𝐺8

F = Adv𝐺7

A .

Finally, we argue that the advantage of the final game is exactly

Advpoly-IND-1-CCAF in Fig. 4 since we can remove all simulated proofs.

The label is the id of the voters. We assume that the the encryption

scheme with the non-malleable proofs of plaintext knowledge in-

cluding the id satisfy poly-IND-1-CCA security.

We conclude the following:

AdvBallot-PrivA ≤ AdvZKB + Adv
EUF−CMA

C + AdvMix

D +

AdvZK
′

E + Advpoly-IND-1-CCAF

6 INTEGRITY
6.1 Correctness
We first note that the scheme satisfies correctness in the sense that

if the voting protocol is run honestly, the tally will give the correct

9
We can allow the adversary to have the dual key 𝑔𝑟𝑖 for all voters in line 28 and still

prove security of the scheme under the DDH assumptions: ℎ𝑖 := 𝑔𝑥𝑖 adversary cannot

distinguish (𝑔𝑥𝑖 , 𝑔𝑟𝑖 , 𝑔𝑥𝑖 ·𝑟𝑖) and (𝑔𝑥𝑖 , 𝑔𝑟𝑖 , 𝑔𝑖) .
10
Alternatively, we could model the mix-net as a re-encryption mix with a NIZKP, and

use IND-CPA of the encryptions of 𝑔𝑖 to ignore these ciphertexts.

result on the intended votes and all voters will verify correctly.

This assumes correctness of the underlying zero-knowledge proofs,

signatures, mix-net and correctness of the encryption scheme. This

could be relaxed to non-perfect correctness if needed.

6.2 Verifiability
For an overview of verifiability definitions see [16], especially we

will use the definition in [15]. This is because the specific voting-

casting construction that we instantiate Hyperion with here is close

to Helios-C (i.e. Helios with signatures) presented and proven veri-

fiable in [15].

The election schemes in [15] are defined via algorithms Setup =

EASetup, Credential = Setup, Vote, VerifyVoteCGGI, Validate =

ValidBallot, Tally, Verify, where we have indicated by which algo-

rithms they correspond to in our scheme, see Sec. 4. Verify will

simply check all proofs on BB. The main difference is in VerifyVote:
In Helios-like constructions this corresponds to checking that your

actual ballot blt has appeared on BB. Here, it corresponds to per-

forming the Hyperion verification and will involve getting the dual

key from the EA. Since we will define security against a malicious

BB, we further need that the voters check that a valid vote was

registered under their id, but without having to check which spe-

cific cryptographic ballot is recorded (for improved usability). We

denote this VerifyVoted. As in [15] we consider schemes without

vote updates for simplicity.

In [15] combined individual and universal verifiability is defined

against a malicious BB. This means the board is completely mali-

cious up until the Tally, where it will be output by the adversary,

and there will be a unified view of BB. This also models that vote

casting channels might not be secure. The definition is via a game

Exp
𝑣𝑒𝑟𝑏
A for which the adversary has negligible chance in creating

a valid BB and tally where it is not true that 1) the vote count will

contain the honest verifying voters’ votes, 2) for the non-verifying

honest voters their votes can maximally be deleted, and 3) there

is maximally one vote per corrupted voter in the tally. To count

this it is assumed that the result function 𝜌 allows partial tally. The

main assumption is that the Registration Authority is honest i.e.

signing keys are setup honestly and not leaked and are existentially

unforgeable, EUF-CMA. This will also hold for Hyperion.

Theorem 6.1. Hyperion will satisfy Verifiability against a dishon-
est bulletin board [15] if the signing keys are not leaked, the signature
scheme is EUF-CMA and the ballot verification is via VerifyVoted, i.e.
the voter only checks if a valid vote was cast.

The proof follows as for Helios-C, however, we use mix-nets

instead of homomorphic tally, which still ensures one-vote per

voter due to the soundness of the mixes. Also, we can replace

VerifyVoteCGGI with VerifyVoted since the adversary cannot forge

a signature.
11

However, this did not take into account the actual Hyperion ver-

ification check which also allows a voter to verify if the vote intent

was captured directly in the tally. We now extend the verifiability

definition to fully incorporate this. The main point will be that an

honest checking voter can rely on her vote being counted correctly

11
Since we are in a single pass setting this is particularly simple. With vote updates

more care needs to be taken. Either we need to assume an append only board or that a

vote update number is included in the signature and remembered by the voter.

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

if either her signing key or Hyperion secret key is not compromised.

In particular, we get a resistance against malware if we have sepa-

rate devices for vote casting (containing the signing key) and vote

verification (containing the Hyperion key), and not both devices are

corrupted.

We now introduce a verifiability definition against a malicious

voting bulletin board in the presence of malware with separate

vote casting and vote verification devices. We stress that in the

definition it is only the vote casting part of the bulletin board which

is determined by the adversary, the registered public keys cannot

be altered for honest devices.
12

The security is defined via the experiment Verif-MBM in Fig. 2,

where the advantage of the adversary is

AdvVerif-MBM

A = Pr[Verif-MBM(A) = 1]

The malicious bulletin board and corrupted authorities are modeled

by the adversary outputting the bulletin board as well as the tally

result and proofs in line 05.H𝑐 andD𝑐 respectively denote the voter

IDs with honest and corrupted vote casting devices which have

registered public verification keys and hence constitute the eligible

voters. Correspondingly,H𝑣 and D𝑣 are the voter IDs with honest

and corrupted vote verification devices. We split the algorithm

Setup into a part for the signing key and for the verification key

denoted respectively Setup𝑐 and Setup𝑣 , and we do the same split

for the ValidCred algorithm.

V𝑖 denotes the set of voters intending to vote and V𝑖 captures

their intended vote, with V the allowed vote space.V
Chkd

denotes

the voters who make successful verification checks. Failing checks

would lead to complaints and the adversary loses the game. As

in [15], the set of voters who are going to check can be input to

the game to capture that not all voters verify. For simplicity we

assume only voters with a vote intention will try to verify. Those

who check will try to do both VerifyVote and VerifyBallot which
we here simplify to VerifyVoted.13

We assume VerifyVoted is unaffected by malware since it just

requires access to BB (and could be delegated). For VerifyVote, if the
voter’s verification device is corrupted, or the voter is not registered

for verification, the check will be assumed successful.

For uncorrupted devices, since EA is corrupted, the adversary

can choose which dual key the voter receives. We do not need

a corrupted category since if both devices are corrupted and the

voter does not perform verifications then the voter is completely

controlled by the adversary. A stronger version can let the adversary

choose the election setup, but here it is honestly created.

Note that this definition does not capture the probability of

detecting the presence of malware, but the guarantee given to

a successfully verifying voter and what votes the adversary can

choose for the rest. In particular, the adversary will win if he can

output a valid BB and tally and manages to either 1) change the vote

of a voter who has at least one honest device and who verified (line

14), or 2) for voters with honest vote casting devices, he manages

to stuff votes or change a cast vote in another way than simply

12
In practice this can be secured in a full malicious board setting by forwarding the

public keys to proxies at registration time, who will check later that these appear

correctly.

13
The definition can use VerifyBallot by defining which part of the voter state the

adversary can control.

deleting it (line 20), or 3) for the remaining eligible voters can cast

more than one vote per voter (line 18). The lower bound on votes

in the last category comes from the voters with both devices being

corrupted, and who are successfully verifying, will know that some

vote arrived on their behalf, but not which plaintext vote it contains.

Finally, in line 21 the ★ denotes the combination of partial tallies in

the result function 𝜌 .

The verifiability of Hyperion relies on the computational 1-Diffie-

Hellman Inversion Problem (1-DHI) [36] for a cyclic prime order

group of order 𝑞 and generator (𝐺,𝑔).

Definition 6.2 (Computational 1-DHI). Given𝑔𝑥 ∈ 𝐺 with𝑥 ↞ Z𝑞
compute𝑔1/𝑥 . Under the 1-DHI assumption the advantageAdv1−𝐷𝐻𝐼

A
= Pr[𝑥 ↞ Z𝑞 : 𝑔1/𝑥 = A(𝑔𝑥)] is negligible for all PPT algorithms.

If we use ballot verification VerifyBallot via VerifyVoted, i.e. the
voter only checks if a valid vote was cast, thenwe have the following

theorem

Theorem 6.3. With EUF-CMA signatures, sound mix-nets, en-
cryption correctness, simulation-sound extractability [7, 27] for the
proofs of knowledge and under the 1-DHI assumption, the advantage
in verifiability against a malicious BB and malware, AdvVerif-MBM

A is
negligible.

6.3 Proof of Verifiability, Theorem 6.3
We here give a short proof, the finite advantage bound can easily be

inferred. The proof is done without reference to whether a CRS or

RO setup is used. By line 06 and 13 in Fig. 2 we can assume that the

adversary outputs a valid BB with a result and valid proof. Since

the mix-net proofs validate, by the soundness of the mix-net proofs,

decryption proofs and correctness of the encryption scheme, we

have that the resulting multiset of votes are equal to the plaintext

inputs. For honestly cast ballots we have correctness and they will

validate if added to BB. Also, honestly generated key will validate.

All votes will be in the correct vote space, this can either be directly

checked after decryption or derived from the soundness of the

ballot proof of well-formedness.

For all voters inH𝑐 we have valid signatures if they cast votes

and by EUF-CMA the adversary cannot forge any signature. Hence

forH𝑐 no votes can be stuffed and cast votes can never be altered,

only deleted. Thus for successfully checking voters with honest

vote casting device,V
Chkd

∩H𝑐 , all votes has to appear unaltered

(remember V
Chkd

⊆ V𝑖 i.e. the checking voters are part of the

voters intending to vote), this proves theV
Chkd

∩H𝑐 part of line

14. For the remaining cast votes from voters in (V𝑖 \ VChkd
) ∩ H𝑐

the adversary can choose which to delete, ensuring line 20.

We can now consider the voters with a malicious vote-casting

device D𝑐 . If these voters are not checking, we have no guarantees.

If they check and have a corrupted verification device, then there

has to be a ballot for their id due to VerifyVoted, however there is
no guarantee which vote it contains. This explains the lower bound

on the number of maliciously created ballots in line 18.

Finally, we need to consider voters successfully verifying with

an uncorrupted verification device. We want to show that they will

be able to verify their plaintext vote, hence proving theV
Chkd
∩H𝑣

part of line 14 and the upper bound in line 18. We first simulate the

ZKPoKs of 𝑥𝑖 for the honestly registered Hyperion keys ℎ𝑖 = 𝑔𝑥𝑖 .

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

Game Verif-MBM(A)
00 SK𝑐 , PK𝑐 ← []⊥
01 SK𝑣, PK𝑣, ST,V← []⊥
02 H𝑐 ,D𝑐 ,H𝑣,D𝑣,V𝑖 ← {}
03 (pkEA, skEA) ← EASetup()
04 stA ← A1 (pkEA, PK)
05 (BB, 𝑟 , 𝜋, stA) ← A2 (stA)
06 Require Verify(BB, 𝑟 , 𝜋)
07 for id ∈ V

Chkd
∩V𝑖

08 Require VerifyVoted(id, BB)
09 if id ∈ H𝑣 then:

10 sk ← SK𝑣 [id], 𝑠 ← A3 (stA)
11 𝑣 ← V[id]
12 Require VerifyVote(id, sk, 𝑣, 𝑠, BB, 𝑟 , 𝜋)
13 Require 𝑟 = ⊤
14 M ←V

Chkd
∩ (H𝑐 ∪H𝑣)

15 𝑎 ← |V
Chkd

∩ D𝑣 |
16 𝑏 ← |D𝑐 \ (VChkd

∩H𝑣) |
17 Require
18 ∃𝑛 ∈ {𝑎, . . . , 𝑏}
19 ∃𝑣1, . . . , 𝑣𝑛 ∈ V � vote set

20 ∃S ⊆ (V𝑖 \ VChkd
) ∩ H𝑐

21 s.t. r= 𝜌 ([V[𝑗]] 𝑗∈S) ★ 𝜌 ([𝑣 𝑗]𝑛𝑗=1) ★ 𝜌 ([V[𝑗]] 𝑗∈M)
22 Stop with ⊤

Oracle1 HonestCastSetup(id)
23 Require id ∉ D𝑐

24 (sk, pk) ← Setup𝑐 (id, pkEA)
25 Promise ValidCred𝑐 (id, pk, pkEA)
26 SK𝑐 [id] ← sk ; PK𝑐 [id] ← pk
27 H𝑐

∪← {id}
Oracle1 DishonestCastSetup(id, pk)
28 Require id ∉ H𝑐

29 Require ValidCred𝑐 (id, pk, pkEA)
30 PK𝑐 [id] ← pk
31 D𝑐

∪← {id}

Oracle1 HonestVerSetup(id)
32 Require id ∉ D𝑣

33 (sk, pk) ← Setup𝑣 (id, pkEA)
34 Promise ValidCred𝑣 (id, pk, pkEA)
35 SK𝑣 [id] ← sk ; PK𝑣 [id] ← pk
36 H𝑣

∪← {id}
Oracle1 DishonestVerSetup(id, pk)
37 Require id ∉ H𝑣

38 Require ValidCred𝑣 (id, pk, pkEA)
39 PK𝑣 [id] ← pk
40 D𝑣

∪← {id}
Oracle2 Vote(id, 𝑣)
41 Require id ∈ H𝑐 ∪ D𝑐

42 V𝑖
∪← {id}; V[id] ← 𝑣

43 if id ∈ H𝑐 then

44 sk ← SK[id]; pk ← PK[id]
45 (blt, st) ← Vote(pkEA, id, sk, pk, 𝑣)
46 ST[id] ← st
47 Return blt

Figure 2: The game-based definition of verifiability against a malicious voting board and malware. The indices on the oracles
denote which adversary can use them. We use sub-index 𝑣 to denote verify, 𝑐 for cast and 𝑖 for intended.

We will give a proof by contradiction, i.e. we assume that a

voter inV
Chkd

∩H𝑣 will get pointed to another vote than her in-

tended vote by the Hyperion verification with some non-negligible

advantage AdvA . We will use this to create an adversary against

computations 1-DHI. To this end, we take a 1-DHI challenge 𝑔𝑥

and use this as the key for a random voter inV
Chkd

∩H𝑣 with a

simulated proof. Since the key 𝑔𝑥 is indistinguishable from random

this voter will be targeted by the attack with probability at least

1/|V
Chkd

∩H𝑣 |.
For all the voters with corrupted casting devices, we now extract

their secret keys 𝑥𝑖 from the ZKPoKs using the simulation sound

extractability (for the honest verification devices, we know their

secret keys). Let 𝛼 denote the dual key term sent by the adversary

to the voter. By the soundness of the ZKPoK for the encryption of

the elements ℎ
𝑟𝑖
𝑖
, the soundness of the mix-net and the correctness

of the encryption, the output commitments are all of the form ℎ
𝑟𝑖
𝑖
.

We further extract all 𝑟𝑖s from the ZKPoKs. If the voter gets

pointed to another vote we have that 𝛼𝑥 = ℎ
𝑟𝑖
𝑖

= 𝑔𝑥𝑖𝑟𝑖 for some 𝑖

with 𝑥𝑖 ≠ 𝑥 . We don’t know which 𝑖 this is, but we guess at random

between the 𝑘 choices. Hence we can compute 𝛼1/(𝑥𝑖𝑟𝑖) which will

be equal 𝑔1/𝑥 with a non-negligible probability AdvA/(|VChkd
∩

H𝑣 | · 𝑘) breaking the computational 1-DHI assumption and con-

cluding the proof.

7 VARIATIONS ON AN ORIGINAL THEME
In this section we sketch variants and extensions of the Hyperion
scheme. Some of these variants may be better suited to certain

contexts and threat environments. Full details of and analysis of

these variants will appear elsewhere, but we include the outlines

here to illustrate the potential of the Hyperion construction.

7.1 Lightweight Variant, PQ Privacy and
Everlasting Privacy

The main version of Hyperion is based on encrypting the voter’s

trapdoor key ℎ𝑖 , then blinding it with an extractable exponent 𝑟𝑖
under the encryption to reach {ℎ𝑟𝑖

𝑖
}pkEA . These terms are mixed in

parallel with {𝑣𝑖 }pkEA to reveal the mixed pairs 𝑣𝑖 , ℎ
𝑟𝑖
𝑖
. The reason

for using this construction is two-fold: first, we can use standard

mix-net constructions already implemented and readily available,

e.g. Verificatum [46], second, the collection and transmission of

the 𝑔𝑟𝑖 terms is straight-forward, also in the distributed case with

several parties involved in the tally, since they are created for known

voters before mixing.

In principle, it would be sufficient to have a verifiable mix-net

that takes the pairs ({𝑣𝑖 }pkEA , ℎ𝑖) as input and outputs the mixed

pairs (𝑣𝑖 , ℎ𝑟𝑖𝑖) together with a proof of correct mixing including a

proof of knowledge of 𝑟𝑖 . Furthermore, the mix-net protocol needs

to be able to output 𝑔𝑟𝑖 , however, it is sufficient that this is done

privately and without proof.

There are two main advantages of this latter construction. First,

the group elementsℎ𝑖 andℎ
𝑟𝑖
𝑖
do not have to be protected by encryp-

tion. Second, the terms ℎ
𝑟𝑖
𝑖
are information-theoretically indistin-

guishable from randomwhen no side-channel information is leaked,

i.e. the adversary solely knows the information published on the BB

(e.g. no information about the voter’s privately received value 𝑔𝑟𝑖).

This variant constitutes a lightweight version of Hyperion since we

do not need to encrypt the ElGamal terms and the mixing proof

can be made more efficient.

The efficiency gain stays decent when using ElGamal encryp-

tion, nevertheless, considering a future quantum adversary (harvest

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

now, decrypt later), the lightweight version is expected to be signif-

icantly more efficient than the original one. In this case, one must

replace the classical encryption of the (possibly single bit) vote,

with a quantum-resilient encryption scheme. In this version, one

does not have to accommodate large message spaces holding ElGa-

mal terms. Additionally, by using a quantum-resilient encryption

scheme, the lightweight variant ensures privacy against a future

quantum attacker, who only has access to the data on the BB. In fact,

it is believed that such attacker can neither break the encryption,

nor the zero-knowledge nature of the proofs (which is the case for

standard simulatable NIZK proofs).

Going further, we predict that we can achieve Everlasting Privacy,
i.e. information theoretical protection against a computationally

unbounded future attacker seeing BB using the PPAT construc-

tion [19], see also [26] for everlastingmixes), since the exponentially

randomised trapdoor keys are information-theoretically-hiding the

voter’s keys.

Let us now return to the point of how to have several nodes for

exponential mix-nets which, at each mixnode, takes group elements

𝑔𝑖 as inputs and outputs 𝑔
𝑟𝑖
𝜋 (𝑖) , for a permutation 𝜋 . The problem

is that the later nodes do not know which voter their 𝑔𝑟𝑖 belongs

to. However, after the mixing has been done in public on BB, the

mixnodes can run a mix-net in the reverse order (using the inverse

permutation) internally starting from encryptions of 𝑔 to obtain

{𝑔𝑟1 · · ·𝑟𝑘 }pkEA for each voter, where 𝑘 is the number of mix-nodes.

These terms can be internally decrypted and sent privately to the

voters. It is important that the internal mix-net cannot give rise to

privacy attacks. This can be insured if the internal mixers prove

knowledge of the exponents and that these are non-zero, and that

each mix node checks the proofs of the previous mix nodes.

A final consideration for less critical elections to achieve more

lightweight constructions is to replace the parallel verifiablemix-net

with the marked mix-net construction [35], see also [29] which also

discusses a post-quantum version, and [3] for a recent lattice-based

mix-net. This will not be universally verifiable, but still preserves

privacy. However, the individual verification via theHyperionmech-

anism is still possible, and if the mix-net outputs a proof of knowl-

edge of the 𝑟𝑖s, then individual verifiability still holds, as in the

proof of Sec. 6.3, in the sense that the checks of honest voters are

injective, i.e. two honest voters cannot be pointed to the same vote.

To be more precise, mix server 𝑗 outputs 𝑦
(𝑗)
𝑖

= 𝑔
𝑟 𝑗𝑟 𝑗−1 · · ·𝑟1𝑥𝜋𝑗 · · ·𝜋1 (𝑖)

and a proof of knowledge of 𝑟 𝑗 being the exponent of one of the

𝑦
(𝑗−1)
𝑖

s output bymix server 𝑗−1 for 𝑖 = 1, . . . , 𝑛, with𝑛 the number

of voters.

7.2 Individual Views
As mentioned in the introduction, Hyperion does not immediately

solve the tracker collision threats present in Selene, but combined

with a further innovation, that of individual voter views, it does.
For each voter the final column of the Hyperion tally is subjected

to a further, independent, verifiable shuffle. These will actually be

exponentiation mixes: for voter 𝑖 , the ℎ
𝑟 𝑗
𝑗
terms are all raised to a

single secret exponent 𝑠𝑖 and shuffled. This should of course come

with a ZKPoK of 𝑠𝑖 proving that this exponent is the same for all

terms in a single view as is standard for exponential mixes, e.g.

via proofs of equal discrete logs. For each voter (view) a different

𝑠𝑖 exponent will be used. Only one dual key per individual board

is released, namely 𝑔𝑟𝑖 ·𝑠𝑖 , which is sent to voter 𝑖 for which the

individual board was created. On receipt of the 𝑔𝑟𝑖 ·𝑠𝑖 term, voter 𝑖

can again identify her row in the tally by raising this to 𝑥𝑖 . However,

the coercer’s 𝑔𝑟𝑐 ·𝑠𝑐 will be completely independent of the randomi-

sation of the voter’s view, and so will not match any terms in this

view.

A coerced voter 𝑉𝑖 can identify a row in the master 𝐵𝐵 with the

coercer’s required vote and compute the corresponding fake dual

key and pass this to the tracker notification authority over a private

channel. The authority will then raise this fake dual key to 𝑠𝑖 and

send this to 𝑉𝑖 in due course. In the event that the coercer shoulder

surfs when the voter performs the verification, this will point to

the coercer’s vote in the individual view.

7.3 Version Retaining Trackers
We here observe that we could in fact retain trackers in our con-

struction. This may inspire a greater sense of assurance in the

verification, but maybe at the cost of undermining the voter’s sense

of privacy. Such a trade-off may be appropriate in some contexts.

In this case, we assign trackers, tr𝑖 for voter 𝑖 , in the setup phase, as

in Selene. Under encryption they can be combined with the public

key term ℎ
𝑟𝑖
𝑖
to obtain a trapdoor commitment to the tracker:

id𝑖 , pk𝑖 , sign𝑖 ({𝑣𝑖 }pkEA , ℎ𝑖 , Π𝑖), {ℎ𝑟𝑖𝑖 · tr𝑖 }pkEA , Π
TT
𝑖

As above, after a parallel mix we reveal the pairs (𝑣𝑖 , ℎ𝑟𝑖𝑖 · tr𝑖) as the
Tally board. Now, when voter 𝑖 receives 𝑔𝑟𝑖 , she raises this to her

trapdoor key 𝑥𝑖 and divides this into all the trapdoor commitments.

For exactly one, a valid tracker is revealed, her tracker; and all

others will yield random elements of the group.

An appealing feature of this is that a coerced voter chooses a

row containing the coercer’s vote and computes a fake dual key

that opens the trapdoor commitment to her own tracker. Thus,

there is no need for a coerced voter to identify a fake tracker, and

thus no possibility that it will collide with the coercer’s. This means

that voters can actually be notified of their tracker value ahead of

time, but of course the dual key still needs to be withheld until after

posting of the tally. Indeed, even more surprisingly, the association

of trackers with voters could be made public! This is not necessary

and would probably be psychologically a bit disconcerting for the

voters, but it does have the advantage of demonstrating that all the

trackers are distinct. Note that in this construction each voter sees

only their own tracker in their own view, and it will not appear

in any other voter’s view. Nowhere are all the trackers displayed

alongside the votes, as was the case with Selene, so the privacy

concerns of Selene should be lessened.

Finally we note that we could incorporate both trackers and

individual views into the Hyperion construction. Which of these

variants would be appropriate in what context will depend on

voters’ sense of security and assumed threat model and will require

further investigation. For example, in contexts in which coercion

threats are deemed low, it should be sufficient to use Hyperion with

just the single bulletin board, without the individual views. In large

elections the likelihood of a coerced voter hitting the coercer’s

commitment is lower. Of course this does not stop the coercer from

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

maliciously claiming that the voter has identified his commitment,

but with individual views the voter can be sure that this is a bluff.

7.4 Hyperion with Codes for Dispute Resolution
Hyperion, and tracker based schemes in general, is weak in terms

of the resolution of disputes arising from the cast-as-intended veri-

fication mechanism. A voter may falsely or mistakenly claim that

the vote she finds against her tracker is not the vote she cast. As the

scheme stands, it is difficult the establish whether such a challenge

is true or false, i.e. whether it is the system or the voter at fault.

A barrage of false challenges could serve to undermine credibility

of the system and election even if the announced result is in fact

correct. Thus, although it is a second order property in some sense,

dispute resolvability is nonetheless an important one.

An approach to addressing this is to incorporate codes into

Hyperion. Code Voting was first proposed by Chaum [11] and in-

volves generating and sending over an assumed secure channel,

such as the post, individual code sheets with random codes against

each candidate/option to each voter. The voter now enters the ap-

propriate code into her device and this is sent to the vote server.

This helps protect both the integrity and privacy of votes over the

internet channels.

In addition to voting codes, some systems incorporate return
codes: once the system has registered the vote it should look up the

corresponding return code and send this back to the voter, who can

then check that it matches the code shown on their code sheet. In

the Swiss system the voter should then, assuming that the return

codes match, send in a confirmation code, read off their code sheet,

to finalise the casting of the vote. Note that it suffices to have a

single confirmation code per code sheet. In Remotegrity [47] the

finalisation code is under a scratch field to ensure dispute resolution

by being able to capture a collusion in the election system using

the codes to vote on behalf of the voter. Such a scratch code could

also be used with Hyperion.

Pretty Good Democracy (PGD) [41], proposes spreading the trust

in the server by threshold secret sharing the codes amongst a set of

trustees. Here the return code will only be revealed if a threshold set

of the tellers cooperate to register the vote on the BB. Thus, receipt

of the correct return code should assure the voter that the vote is

correctly posted to the BB and so correctly entered into the tally.

PGD suggests, in order to lessen coercion threats, the possibility of

using a single return code per code sheet, but for dispute resolution

it is better to use different return codes for each choice.

Here we propose to use a construction similar to the Swiss Post,

using return codes and a single confirmation code but using tech-

niques from PGD [41]. Furthermore, rather than the server simply

sending the voter a return code that matches the code on the code

sheet, it will additionally send a dispute resolution code (DRC) that

does not appear on the code sheet and which is unique per candi-

date. The DRC will act much like the codes revealed to voters in

Scantegrity II, [12], and knowledge of this code will further support

the voter’s challenge in the event of a dispute.

As with PGD and Scantegrity, the consistency of the codes com-

mitted to the BB and those printed on the code sheets will have to

be enforced by independent entities performing random audits of

the setup phase.

In the event of a dispute, the voter is asked to reveal the DRC

and, in camera the code for the voter’s claimed vote committed to

the BB is revealed. If these match this provides strong support for

the voter’s claim.

For dispute resolution we have proposed above the use of return

codes, 𝐷𝑅𝐶 codes and a confirmation code, but avoiding voting

codes. The latter seem less effective against disputes and they pose

usability problems. However, voting codes are still useful in pro-

tecting the privacy and integrity against corrupted voter devices,

so there may be merit in retaining them.

A further argument for incorporating voting codes inHyperion is
to provide an additional layer of defence against ballot copying and

injection attacks. Countermeasures against such attacks are already

incorporated in Hyperion, including ensuring that the voter’s id is

cryptographically bound to the Zero-Knowledge plaintext aware-

ness proof. However, if we consider other vote casting methods,

e.g. that of BeleniosRF [10], the vote codes can also help to make a

more efficient solution by already preventing ballot copy attacks

without extra zero-knowledge proofs.

7.5 Deniable Verifiable Tracking from
Implicitly Authenticated Key Exchange

We note that the term ℎ
𝑟𝑖
𝑖
, allowing to track the vote, essentially is

a Diffie-Hellman key term. We now use this to show that Hyperion-

type systems for deniable tracking of votes, or messages in general,

can be obtained from implicitly authenticated key exchange proto-

cols fulfilling a certain condition.

Consider a two-move Key Exchange between two parties Al-

ice (A) and Bob (B). This consists of the algorithms gen𝐴, gen𝐵 to

derive the messages sent between the parties and two algorithms

derive𝐴, derive𝐵 to derive the secret key.

Alice Bob

𝑘𝐴 ↞ 𝑆

𝑀𝐴 ← gen𝐴 (𝑘𝐴) 𝑀𝐴 Check𝑀𝐴

𝑘𝐵 ↞ 𝑆

Check𝑀𝐵
𝑀𝐵 𝑀𝐵 ← gen𝐵 (𝑀𝐴, 𝑘𝐵)

sk𝐴 ← derive𝐴 (𝑘𝐴, 𝑀𝐵) sk𝐵 ← derive𝐵 (𝑘𝐵, 𝑀𝐴)

Figure 3: Two-move key exchange

We can now use this to create a Hyperion-type voting protocol.

In order to cast a vote, each voter generates 𝑘𝑖 ↞ 𝑆 then computes

and publishes𝑀𝑖 ← gen𝐴 (𝑘𝑖) together with their encrypted vote

and proofs (of knowledge) for the correctness of𝑀𝑖 and 𝑣𝑖

id𝑖 , 𝑀𝑖 , {𝑣𝑖 }pkEA ,Π𝑖

The voting authority generates for each voter 𝑘𝑖
𝐵

↞ 𝑆 and

computes {derive𝐵 (𝑘𝐵, 𝑀𝑖)}pkEA from 𝑀𝑖 together with a zero-

knowledge proof of knowledge, ΠTT
𝑖

, that this was done correctly.

We then obtain

id𝑖 , {derive𝐵 (𝑘𝑖𝐵, 𝑀𝑖)}pkEA , {𝑣𝑖 }pkEA ,Π
TT
𝑖

We then do a verifiable parallel mix of the last two ciphertexts to

achieve

sk𝑖𝐵, 𝑣𝑖

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

We could also arrive at this step using themethod outlined in Sec. 7.1

without encryption of the secret key. In the real-or-random model

the key derived from the key exchange will be indistinguishable

from random and hence ballot privacy is preserved.

The authorities then internally computes 𝑀𝑖
𝐵
← gen𝐵 (𝑀𝑖 , 𝑘

𝑖
𝐵
)

and sends this privately to the voter 𝑖 . The voter can now compute

sk𝑖 ← derive𝐴 (𝑘𝑖 , 𝑀𝑖
𝐵
). By the key exchange functionality this

should be equal to sk𝑖
𝐵
and the voter can find her vote.

We need two further non-trivial properties from the Key Ex-

change scheme: (1) For Coercion-mitigation: derive𝐴 (𝑘𝑖 , ·) needs
to be invertible, allowing the voter to point to another vote. (2) For

Individual Verifiability: It should not be possible to get the same

key in two different fresh sessions (even if one party is the same

in both sessions), i.e. that two different honest voters will not be

pointed to the same vote. This corresponds to demanding that the

key exchange satisfies implicit authentication, see [21]. Note that

the this assumption only has to hold for honest generation of𝑀𝐴

and sk𝐵 with extraction of both random coins used in the protocol

since this is ensured by the public zero-knowledge proofs.

A three-move key exchange protocols could also be used with-

out more interaction on the voter side. Here, we let the election

authorities take the role of the party sending two messages, and

the election authority posts the first message under encryption

and with proper zero-knowledge proofs on the BB before the voter

registration step. For key-exchange protocols with more than three

moves, the election authority could be online during the registra-

tion phase to ensure that the voter can register without having to

connect several times.

In order to distribute the creation of the secret key 𝑘𝐵 on the elec-

tion side one could run several key exchanges in parallel and use the

XOR of these keys as the final key (e.g. added under homomorphic

encryption.) However, in many cases the key exchange will contain

homomorphic properties that allows a natural distributed form as

in the DH case.

Note that if we base the protocol on a PQ key exchange together

with quantum safe encryption schemes, we will be able to achieve

verifiability and privacy against present quantum attackers, and

not just future adversaries as in section 7.1 above.

8 IMPLEMENTATION
We implement and instantiate Hyperion 14

in Python, using the

GNU Multiple Precision Arithmetic library, and evaluate its per-

formance on a server equipped with a 32 core AMD EPYC 7302P

CPU clocked at 3 GHz and 256 gigabytes of RAM. The implemen-

tation is parameterized by the P-256 curve. An implementation

of a Terelius-Wikström mixnet [28, 45] was employed for parallel

shuffling in the tallying phase. Analogously, we also implement

and instantiate 𝑆𝑒𝑙𝑒𝑛𝑒15 in order to compare the performance of

both schemes; these measurements are provided in appendix E.

Table 1 presents measurements collected during the course of 3

trial runs of the 𝐻𝑦𝑝𝑒𝑟𝑖𝑜𝑛 scheme for 1000 voters, 10000 voters,

and 100000 voters. We comment that though this is a prototype

implementation, the mixnet code has been parallelised to run faster

14
https://github.com/hyperion-voting/hyperion

15
https://github.com/hyperion-voting/selene

Phase 𝑁 = 1000 𝑁 = 10000 𝑁 = 100000

Setup 0.0004s 0.0005s 0.0005s

Voting 0.0085s 0.0090s 0.0160s

Tallying (Mix) 42.205s 1541.62s 6886.90s

Tallying (Decrypt) 5.4640s 33.889s 1092.32s

Coercion-Mitigation 0.0008s 0.0008s 0.0007s

Individual Views 14.091s 256.72s 3498.16s

Table 1: Execution times of each phase of the Hyperion
scheme in seconds.

on multi-core systems. The last row of Table 2 lists the computa-

tion costs for generating an individual view for a single voter as

described in section 7.2. Though this cost scales with N , individual

views are generated on demand and the protocol may benefit from

the pre-computation of these views. We also provide descriptions

of the zero knowledge proofs employed in our implementation, in

appendix D.

9 CONCLUSION
We present a new end-to-end verifiable scheme, inspired by the

Selene tracker based scheme, that provides a similar, highly trans-

parent, intuitive way for voters to verify their vote: by identifying

their vote in cleartext in the tally. Our new construction however

allows us to achieve this without the need for trackers and allows

us to neatly avoid the tracker collision problem that undermined

the Selene scheme. The collision threat however could re-emerge as

collision of commitments rather than trackers. This prompts a fur-

ther innovation: the idea of individual voter views, that avoids the

collisions threat of Selene and should afford voters a greater sense

of privacy. Voters should feel more comfortable with Hyperion as

it does not involve the public posting of all the tracker numbers

paired with the votes.

While we do not advocate the use of Hyperion for high-stakes

elections, we do believe that it is well suited to many less critical

contexts. The transparency of the verification and the underlying

simplicity of the constructions should be appealing to many stake-

holders: the voters, the election officials, the candidates etc. The

individual views version introduces some additional computation

and complexity, but is efficient for small elections, and in any case

could be done on demand when a voters seeks to verify their vote.

We have proven that the system satisfies ballot privacy and

verifiability, the latter even under partial malware corruption of

the voters’ vote casting and verification devices. Finally, we have

sketched how the Hyperion scheme can be made everlasting private

or post-quantum secure. We also outline some possible variants of

the core scheme, including the re-introduction of trackers and the

use of return or confirmation codes to address dispute resolution.

Future work includes detailing the variants and formally proving

them. We will also perform focus groups and user trials to gauge

user response and preferences amongst the variants and w.r.t. to

Selene.

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

10 ACKNOWLEDGEMENTS
This paper acknowledges the Luxembourg National Research Fund

(FNR) CORE project EquiVox (C19/IS/13643617/EquiVox/Ryan) and

the CORE project (C21/IS/16221219/ ImPAKT).

REFERENCES
[1] Ben Adida, Olivier De Marneffe, Olivier Pereira, Jean-Jacques Quisquater, et al.

Electing a university president using open-audit voting: Analysis of real-world

use of helios. EVT/WOTE, 9(10), 2009.
[2] Mohammed Alsadi and Steve Schneider. Verify my vote: voter experience. E-

Vote-ID 2020, page 280, 2020.
[3] Diego F Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde. Verifiable

mix-nets and distributed decryption for voting from lattice-based assumptions.

Cryptology ePrint Archive, 2022.
[4] Mathilde Arnaud, Véronique Cortier, and Cyrille Wiedling. Analysis of an

electronic boardroom voting system. In International Conference on E-Voting and
Identity, pages 109–126. Springer, 2013.

[5] Josh Daniel Cohen Benaloh. Verifiable secret-ballot elections. PhD thesis, Yale

University, 1987.

[6] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan

Warinschi. Sok: A comprehensive analysis of game-based ballot privacy defi-

nitions. In 2015 IEEE Symposium on Security and Privacy, pages 499–516. IEEE,
2015.

[7] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove

yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, pages 626–643. Springer, 2012.

[8] Alessandro Bruni, Eva Drewsen, and Carsten Schürmann. Towards a mecha-

nized proof of selene receipt-freeness and vote-privacy. In International Joint
Conference on Electronic Voting, pages 110–126. Springer, 2017.

[9] Jan Camenisch. Group signature schemes and payment systems based on the
discrete logarithm problem. PhD thesis, ETH Zurich, 1998.

[10] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. Bele-

niosrf: A non-interactive receipt-free electronic voting scheme. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 1614–1625, 2016.

[11] David Chaum. Surevote: technical overview. In Proceedings of the Workshop on
Trustworthy Elections, WOTE, 2001.

[12] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-

niuc, Ronald L Rivest, Peter YA Ryan, Emily Shen, Alan T Sherman, et al. Scant-

egrity ii: End-to-end verifiability for optical scan election systems using invisible

ink confirmation codes. EVT, 8(1):13, 2008.
[13] David Chaum and Torben P. Pedersen. Wallet databases with observers. In

Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 16-
20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages
89–105. Springer, 1992.

[14] Véronique Cortier, Constantin Cătălin Drăgan, François Dupressoir, Benedikt

Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. Machine-checked proofs of

privacy for electronic voting protocols. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 993–1008. IEEE, 2017.

[15] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene.

Election verifiability for helios under weaker trust assumptions. In European
Symposium on Research in Computer Security, pages 327–344. Springer, 2014.

[16] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz

Truderung. Sok: Verifiability notions for e-voting protocols. In 2016 IEEE Sym-
posium on Security and Privacy (SP), pages 779–798. IEEE, 2016.

[17] Véronique Cortier, Joseph Lallemand, and Bogdan Warinschi. Fifty shades of

ballot privacy: Privacy against a malicious board. In 2020 IEEE 33rd Computer
Security Foundations Symposium (CSF), pages 17–32. IEEE, 2020.

[18] Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of

ballot secrecy. Journal of Computer Security, 21(1):89–148, 2013.
[19] Edouard Cuvelier, Olivier Pereira, and Thomas Peters. Election verifiability or

ballot privacy: Do we need to choose? In European Symposium on Research in
Computer Security, pages 481–498. Springer, 2013.

[20] Ivan Damgård. On 𝜎-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science, page 84, 2002.

[21] Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi. Au-

thentication in key-exchange: Definitions, relations and composition. In 2020
IEEE 33rd Computer Security Foundations Symposium (CSF), pages 288–303. IEEE,
2020.

[22] Verena Distler, Marie-Laure Zollinger, Carine Lallemand, Peter B Roenne, Pe-

ter YA Ryan, and Vincent Koenig. Security-visible, yet unseen? In Proceedings of
the 2019 CHI conference on human factors in computing systems, pages 1–13, 2019.

[23] Constantin Catalin Dragan, François Dupressoir, Ehsan Estaji, Kristian Gjøsteen,

Thomas Haines, Peter Y. A. Ryan, Peter B. Rønne, and Morten Rotvold Solberg.

Machine-checked proofs of privacy against malicious boards for Selene & co.

In 35th IEEE Computer Security Foundations Symposium, CSF 2022, Haifa, Israel,
August 7-10, 2022, pages 335–347. IEEE, 2022.

[24] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.
[25] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-

fication and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186–194. Springer, 1986.

[26] Kristian Gjøsteen, Thomas Haines, and Morten Rotvold Solberg. Efficient mixing

of arbitrary ballots with everlasting privacy: How to verifiably mix the ppatc

scheme. In Nordic Conference on Secure IT Systems, pages 92–107. Springer, 2020.
[27] Jens Groth. Simulation-sound nizk proofs for a practical language and constant

size group signatures. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 444–459. Springer, 2006.

[28] Rolf Haenni, Philipp Locher, Reto Koenig, and Eric Dubuis. Pseudo-code algo-

rithms for verifiable re-encryption mix-nets. In Financial Cryptography and Data
Security, pages 370–384. Springer, 2017.

[29] Thomas Haines, Olivier Pereira, and Peter B Rønne. Short paper: An update on

marked mix-nets: An attack, a fix and pq possibilities. In International Conference
on Financial Cryptography and Data Security, pages 360–368. Springer, 2020.

[30] Feng Hao and Peter YA Ryan. Real-world electronic voting: Design, analysis and
deployment. CRC Press, 2016.

[31] Vincenzo Iovino, Alfredo Rial, Peter B Rønne, and Peter YA Ryan. Using selene

to verify your vote in jcj. In International Conference on Financial Cryptography
and Data Security, pages 385–403. Springer, 2017.

[32] Wojciech Jamroga, Peter B Roenne, Peter YA Ryan, and Philip B Stark. Risk-

limiting tallies. In International Joint Conference on Electronic Voting, pages
183–199. Springer, 2019.

[33] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic

elections. In Towards Trustworthy Elections, pages 37–63. Springer, 2010.
[34] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung. select: a

lightweight verifiable remote voting system. In Computer Security Foundations
Symposium (CSF), 2016 IEEE 29th, pages 341–354. IEEE, 2016.

[35] Olivier Pereira and Ronald L Rivest. Marked mix-nets. In International Conference
on Financial Cryptography and Data Security, pages 353–369. Springer, 2017.

[36] Birgit P Pfitzmann and Ahmad-Reza Sadeghi. Anonymous fingerprinting with

direct non-repudiation. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 401–414. Springer, 2000.

[37] Ronald L Rivest. On the notion of ‘software independence’in voting systems.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881):3759–3767, 2008.

[38] Peter B Rønne, Peter YA Ryan, and Marie-Laure Zollinger. Electryo, in-person

voting with transparent voter verifiability and eligibility verifiability. arXiv
preprint arXiv:2105.14783, 2021.

[39] Peter Y A Ryan, Peter B Rønne, and Vincenzo Iovino. Selene: Voting with

transparent verifiability and coercion-mitigation. In International Conference on
Financial Cryptography and Data Security, pages 176–192. Springer, 2016.

[40] Peter YA Ryan, Peter B Roenne, Dimiter Ostrev, Fatima-Ezzahra El Orche, Najmeh

Soroush, and Philip B Stark. Who was that masked voter? the tally won’t tell!

In International Joint Conference on Electronic Voting, pages 106–123. Springer,
2021.

[41] Peter YA Ryan and Vanessa Teague. Pretty good democracy. In International
Workshop on Security Protocols, pages 111–130. Springer, 2009.

[42] Muntadher Sallal, Steve Schneider, Matthew Casey, François Dupressoir, Helen

Treharne, Catalin Dragan, Luke Riley, and Phil Wright. Augmenting an internet

voting system with selene verifiability using permissioned distributed ledger.

In 2020 IEEE 40th International Conference on Distributed Computing Systems
(ICDCS), pages 1167–1168. IEEE, 2020.

[43] Bruce Schneier. Applied cryptography: protocols, algorithms, and source code in C.
john wiley & sons, 2007.

[44] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161–174, 1991.

[45] Björn Terelius and Douglas Wikström. Proofs of restricted shuffles. In Progress
in Cryptology – AFRICACRYPT 2010, pages 100–113. Springer, 2010.

[46] Douglas Wikström. User manual for the verificatum mix-net version 1.4. 0.

Verificatum AB, Stockholm, Sweden, 2013.
[47] Filip Zagórski, Richard T Carback, David Chaum, JeremyClark, Aleksander Essex,

and Poorvi L Vora. Remotegrity: Design and use of an end-to-end verifiable

remote voting system. In International Conference on Applied Cryptography and
Network Security, pages 441–457. Springer, 2013.

[48] Marie-Laure Zollinger, Verena Distler, Peter B Roenne, Peter YA Ryan, Carine

Lallemand, and Vincent Koenig. User experience design for e-voting: How

mental models align with security mechanisms. arXiv preprint arXiv:2105.14901,
2021.

[49] Marie-Laure Zollinger, Peter B Rønne, and Peter YA Ryan. Short paper: mecha-

nized proofs of verifiability and privacy in a paper-based e-voting scheme. In

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

International Conference on Financial Cryptography and Data Security, pages
310–318. Springer, 2020.

A IND-1-CCA
Figure 4 introduces the definition of poly-IND-1-CCA game. This

notion is necessary for the ballot privacy proof. We define the

adversarial advantage as

Advpoly-IND-1-CCAA :=����Pr[poly-IND-1-CCA0 (A)] − Pr[poly-IND-1-CCA1 (A)]����
Game poly-IND-1-CCA𝑏 (A)
00 𝐿 ← []⊥
01 (pk, sk) ← gen()
02 𝑏′ ← A(pk)
03 Stop with 𝑏 = 𝑏′

Oracle Enc(𝑚0,𝑚1, 𝑙)
04 Require |𝑚0 | = |𝑚1 |
05 𝑐 ← enc(pk,𝑚𝑏 , 𝑙)
06 𝐿

+← [(𝑐, 𝑙)]
07 Return 𝑐

Oracle Dec(𝑐, 𝑙)
08 Require (𝑐, 𝑙) ∉ 𝐿

09 𝑚 ← dec(sk, 𝑐, 𝑙)
10 Return𝑚

Figure 4: Labelled poly-IND-1-CCA game-based definition.
The label here could be thought of as a voter’s identity.

B PRIVACY AGAINST A MALICIOUS BOARD
In section 5.1, we present the proof and background for Thm. 5.2.

In order to be self-contained, we need to recall the definition of

du-mb-BPRIV ballot-privacy against a malicious board in the case

where verification happens after the tally has been published, as

defined in [23], generalising the definition of [17]. In this definition,

the adversary controls the bulletin board BB completely, i.e. what to

put on it, but BB has a consistent static view to all voters from the

tally time allowing for verification. This leads to obvious privacy

attacks e.g. deleting all ballots except for one voter and tally this.

Thus, the definition is parameterised with a recovery algorithm

which defines the behaviour, we explicitly allow the adversary to

do, but ensures privacy besides these allowed manipulations. The

manipulations, and corresponding privacy-loss, which we explicitly

accept are deletions and reordering of votes, as in the privacy proof

of Selene in [23], but du-mb-BPRIVwill only be fulfilled if no further

attacks are possible, e.g. ballot copying attacks. The definition from

[23] is as follows

Definition B.1. LetV be a voting system, and let Recover be a
recovery algorithm. We say that V satisfies du-mb-BPRIV with

respect to Recover if there exists an efficient simulator Sim, such

that for any efficient adversary A, the following advantage:

Advdu-mb-BPRIV

A,Sim =����Pr[du-mb-BPRIV
0

Sim (A) = 1] − Pr[du-mb-BPRIV
1

Sim (A) = 1]
����

is negligible, where du-mb-BPRIV is defined in Fig. 6 and instanti-

ated withV .

We have here written the experiment in Fig. 6 in terms of our

notation and algorithms already used for privacy in Sec. 5. Com-

paring Fig. 1 with Fig. 6, the latter always outputs the recovered

result which will be related to the left-hand side (LHS), but uses a

simulator for the proofs of the result on the right-hand side (RHS).

What leverage the possibility to simulate the decryption proofs

after mixing. These are standard discrete logarithm equality proofs,

which can be simulated also outside the relation.

The recovery function Recover(BB, BB0, BB1) in Line 32, will in

our case replace unaltered ballots from the RHS vote oracle with

the LHS oracle outputs, and keep the rest of the ballots unaltered.

Hence deletion and ballot re-ordering will not lead to attacks. More

formally, we define a selection function as in [17]:

Definition B.2 (Selection function [17]). For integers𝑚,𝑛 ≥ 1, a

selection function for𝑚 and 𝑛 is a mapping

𝜋 : {1, . . . , 𝑛} → {1, . . . ,𝑚} ∪
(
{0, 1}∗ × {0, 1}∗

)
.

The selection function 𝜋 represents how the adversary constructs

a bulletin board BB with 𝑛 ballots, given a bulletin board BB
1
with

𝑚 ballots. For 𝑖 ∈ {1, . . . , 𝑛},
• 𝜋 (𝑖) = 𝑗 , with 𝑗 ∈ {1, . . . ,𝑚} means that this is the 𝑗th

element in BB
1
,

• 𝜋 (𝑖) = (pk, 𝑐) means that this element is (pk, 𝑐).
The function 𝜋 associated to 𝜋 , maps a bulletin board BB

0
of length

𝑚 to a board 𝜋 (BB0) of length 𝑛 such that

𝜋 (BB0) [𝑗] =
{
(pk, 𝑐) if 𝜋 (𝑗) = 𝑖 and BB

0 [𝑖] = (id, (pk, 𝑐))
(pk, 𝑐) if 𝜋 (𝑗) = (pk, 𝑐)

for any 𝑗 ∈ {1, . . . , 𝑛}.

We can now define the recovery algorithm as

Definition B.3 (Recovery algorithm [17]). A recovery algorithm

is any algorithm Recover that takes as input two bulletin boards

BB and BB
1
and returns a selection function 𝜋 for |BB1 | and 𝑛 for

some integer 𝑛.

Proc. Recoverdel,reorder’U (BB1, BB)
00 L← []⊥
01 for (pk, 𝑐) ∈ BB :

02 if ∃ 𝑗, id s.t. BB
1 [𝑗] = (id, (pk, 𝑐)):

03 L
q← 𝑗 � Pick the first 𝑗 found

04 else: L
q← (pk, 𝑐)

05 Return (𝜆𝑖.L[𝑖])

Figure 5: The Recoverdel,reorder’U algorithm.

As in [23] we will write BB
′ ← Recover(BB, BB0, BB1) to denote

the process of determining the transformation from BB
1
to BB, and

applying this transformation to BB
0
, in order to get the board BB

′
.

The recovery function that we will use is defined in Fig. 5.
16

16
The reader might ask why we do not consider the other recovery functions from [17]

here. The reason is that it implies attacks when verifying voters do not detect changes

to the ballots even if the plaintext remains the same. However, for the Hyperion

verification mechanism only the plaintext is verified.

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

In the security experiment, the private data needed for verifi-

cation has been included into the secret key given to the voters

before election by an abuse of the notation for the setup algorithm

in line 12, which is possible since it does not depend on the actual

cast ballot.

B.1 Proof-Sketch of du-mb-BPRIV Privacy
First, denote the experiments du-mb-BPRIV

0

Sim (A) by 𝐺0𝐿 and

du-mb-BPRIV
1

Sim (A) by 𝐺0𝑅 . Starting from the 𝐺0𝐿 we simulate

the zero-knowledge proofs Π𝑥 , Π𝑟𝑖 and Π
dec

. This is possible since

these proofs are created by the challenger. We thus reach game𝐺1𝐿 .

The difference is bounded by AdvZKB , where B is a reduction to an

attacker distinguishing real and simulated proofs .

Without any advantage difference, we can move to a game 𝐺2𝐿

where the plaintexts corresponding to honestly cast votes from BB
0

are taken from Oracle2 LoR(id, 𝑣0, 𝑣1). Since the ElGamal encryp-

tion scheme is perfectly correct this will always with probability

1 give the same result. The ciphertexts which the adversary has

added himself to BB are decrypted as usual.

We then move to game𝐺3𝐿 where we replace the mixnet with its

ideal functionality including simulating its zero-knowledge proof.

We bound the difference by AdvMix

D .

We note that𝐺3𝐿 essentially corresponds to the left-hand side of

the poly-IND-1-CCA game in Fig. 4. This is because the Hyperion

terms ℎ
𝑟𝑖
𝑖
= 𝑔𝑥𝑖𝑟𝑖 are perfectly random for the honest voters after

the simulation of the proof, and hence provide no further informa-

tion. Also, the mix provides no information about its input after

being replaced by its ideal functionality. For the dishonest voters,

the adversary can find his corresponding plaintexts via the Hyper-

ion verification, which corresponds to the decryption oracle in the

poly-IND-1-CCA game. The adversary can also submit ciphertext

on behalf of honest voters which will get decrypted (the only dif-

ference compared to poly-IND-1-CCA is that those decryptions are

mixed). Further, the adversary gets to know if these decryptions

are the same as the intended vote, but this provides no further

information, since the adversary has chosen the intended vote and

could have checked this himself against the decryption. The ver-

ification checks for the honest voters which have their honestly

generated ballots will always verify successfully. We thus replace

the ballots submitted by honest voters that appear in BB
0
with

the corresponding ones from BB
1
. The difference is bounded by

Advpoly-IND-1-CCAF .

This brings us to game 𝐺3𝑅 . The main idea is that the verifica-

tion checks for the honest voters do not change even though we

change the ciphertexts. The reason is that the voter always verifies

according to the LHS plaintext vote, see the state in line 26 in Fig. 6,

and the recovery function changes the ballots from BB
1
to those

from BB
0
. Put differently, the side-channel from verifications do

not help the adversary in du-mb-BPRIV contrary to our definition

in Sec. 5, where the ballot signatures were necessary for privacy.

The advantage difference is bounded by Advpoly-IND-1-CCAF
We now deal with the real mix and its non-simulated zero-

knowledge proof from 𝐺2𝑅 . Again this is bounded by AdvMix

D′ .
Again, we let the ciphertexts come from the decryption rather

than the vote oracle. The corresponding game𝐺1𝑅 is indistinguish-

able from 𝐺2𝑅 due to the perfect correctness of ElGamal scheme.

Finally, we stop simulating the zero-knowledge proofs for Π𝑥 ,

Π𝑟𝑖 but not Πdec
, which has to be simulated by definition, in order

to reach 𝐺0𝑅 . This is bounded by AdvZK
′

E .

C PROTOCOL DIAGRAM
In this section, we depict Hyperion in Fig. 7. In this figure, we

omit from representing the election authority in this figure and

assume that the cryptographic schemes and parameters are already

known by all the four parties in the figure. The algorithms should be

instantiated following the specifications in sect. 4; A good candidate

of such instantiation can be found in our Hyperion implementation.

We denote with ZK the computation of the zero-knowledge proofs

based on the protocol specification. More details about how to

construct the zero-knowledge proofs can be found in sect. D. In this

representation, we assume that a public warning will be broadcast

when a certain ZK proof, test or a certain signature does not verify

properly, or data is ill-formed.

D ZERO-KNOWLEDGE PROOFS USED IN
IMPLEMENTATION

We here specify the the non-interactive zero-knowledge proofs that

we use in our implementation, see also the protocol diagram in Fig.

7. The proofs are all in the form of Sigma protocol proofs that have

been made non-interactive using the Fiat-Shamir transformation

[25]. We use the strong Fiat-Shamir transformation as is generally

necessary in voting [7]. This means that the three-move Sigma

protocol (𝑎, 𝑒, 𝑧) for a statement 𝑥 , where 𝑎 is the commitment from

the prover, 𝑒 the challenge from the verifier and 𝑧 the final response

from the verifier is made non-interactive using a hash function 𝐻

by letting 𝑒 = 𝐻 (𝑥, 𝑎). We further strengthen the non-malleability

by also including the group generator and the public election key.

Even further, when the proofs are for specific voters we also include

the voters public Hyperion key to bind the proof to the voter.

The proofs used in the implementation are

• Π𝑥𝑖 : For this proof we use the standard Schnorr proof [44].

Since we use the strong Fiat-Shamir this implies that the

proofs are simulation-sound extractable (using Theorem 1

of [7] since the challenge space is exponential in our secu-

rity parameter). This is needed for verifiability in Theorem

6.3.

• Π𝑣 is a OR proof that the vote is zero or one (yes or no). This

proof is based on a Chaum-Pedersen proof for discrete log

equivalence [13]. The OR part is done using the standard

Sigma protocol method [20]. This constitutes a proof of

knowledge of the vote due to the special soundness and

hence following Theorem 2 of [7] when we combine it

with ElGamal which has IND-CPA security under the DDH

assumption, we get an encryption scheme which is IND-1-

CCA (NM-CPA in the notation of [7]). The encryption is

labelled by the identity of the voter since we include the

voter’s public key in the hash function. Finally Lemma 1

in [14] gives us that the combined encryption scheme is

poly-IND-1-CCA, which we use in the theorems of ballot

privacy Theorem 5.1 and 5.2.

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

Game du-mb-BPRIV
𝑏
Sim (A)

00 ST, PK, SK,HV,DV← []⊥
01 Checked,Valid,HV,DV← {}
02 (pkEA, skEA) ← EASetup()
03 stA ← A1 (pkEA, PK)
04 (BB, 𝑏′

2
, stA) ← A2 (stA)

05 Require ValidBoard(BB, pk)
06 (𝑟∗, 𝜋∗, stA) ← A3 (stA)
07 Require VerifyTally(pkEA, BB, 𝑟∗, 𝜋∗)
08 𝑏′

4
← A4 (stA)

09 if Checked ≠ Valid then

10 Stop with 𝑏′
2
= 𝑏

11 Stop with 𝑏′
4
= 𝑏

Oracle1 HonestSetup(id)
12 (sk, pk) ← Setup(id, skEA, pkEA)
13 Promise ValidCred(id, pk, pkEA)
14 SK[id] ← sk ; PK[id] ← pk

15 HV
∪← {id}; DV \← {id}

Oracle1 Corrupt(id)
16 Require id ∈ HV

17 sk ← SK[id]; pk ← PK[id]
18 DV

∪← {id}; HV

\← {id}
19 Return (sk, pk)

Oracle2 LoR(id, 𝑣0, 𝑣1)
20 Require id ∈ HV

21 sk ← SK[id]; pk ← PK[id]
22 (blt0, st0

pre
, st0

post
) ← Vote(pkEA, id, sk, pk, 𝑣0)

23 (blt1, st1
pre

, st1
post
) ← Vote(pkEA, id, sk, pk, 𝑣1)

24 Promise ValidBallot(BB, blt0)
25 Promise ValidBallot(BB, blt1)
26 ST[id] q← (st𝑏

pre
, st0

post
)

27 BB
0 [id] q← blt0; BB

1 [id] q← blt1

Oracle3 Tally()
28 Require 𝜌 (V0) = 𝜌 (V1)
29 if 𝑏 = 0 then

30 (𝑟, 𝜋) ← Tally(BB, skEA, pkEA, PK)
31 else

32 BB
′ ← Recover(BB, BB0, BB1)

33 (𝑟, 𝜋) ← Tally(BB′, skEA, pkEA, PK)
34 𝜋 ← Sim(pkEA, Publish(BB), 𝑟)
35 Return (𝑟, 𝜋)

Oracle2,4 Board()
36 BB

′ ← Publish(BB)
37 Return BB

′

Oracle4 VerifyVote(id)
38 Require id ∈ HV ∪ DV
39 pk ← PK[id]
40 𝑠 ← GetSecret(id, pk, skEA, pkEA, BB)
41 if id ∈ DV then Return 𝑠

42 Checked ∪← {id}
43 (𝑟, 𝜋) ← Tally() � scheme dependent

44 sk ← SK[id]; st ← ST[id]
45 if VerifyVote(id, sk, st, 𝑠, BB, 𝑟 , 𝜋) then
46 Valid ∪← {id}
47 Return Valid

Figure 6: The du-mb-BPRIV notion for ballot privacy against a dishonest ballot box.

• Π𝑇𝑇
𝑖

: For this proof we use a proof from [9]. Sincewe use the

strong Fiat-Shamir transformation this is again simulation-

sound extractable as we need for verifiability.

• Π𝑚𝑖𝑥 : This is the most advanced proof and the only one

which does not follow the Sigma protocol and Fiat-Shamir

heurestic. It is an implementation of the proof in the Terelius-

Wikström mixnet, see [28, 45].

• Π𝑑𝑒𝑐 is again a Chaum-Pedersen proof of discete log equiv-

alence.

E ADDITIONAL BENCHMARKS
Table 2 lists the mean execution times (obtained from 100 trial runs)

of each phase of the Hyperion scheme in seconds, and compares

them to the corresponding phases of Selene, for 3 tellers and voter

counts (N) of 50, 100, and 150. The Setup phase in Selene constitutes
more than half of the execution time of the entire protocol, and

this cost scales linearly with the number of voters, whilst Hyperion

benefits from the removal of trackers and exhibits a significantly

more efficient Setup phase. This is also evident from Figure 8, which

depicts the mean execution times for both protocols for varying

voter counts, from the Setup phase through to theNotification phase.

The Voting phase produces similar execution times in both schemes.

Tallying phase execution times scale linearly in both schemes as

the number of voters increase.

F OVERVIEW TRUST ASSUMPTIONS
This Section summarizes the trust assumptions for the privacy

and verifiability properties. In Table 9, we list the minimal trust

assumptions on the different participants and the allowed leaks.

Each voter is assumed to hold a Vote Casting Device (VCD) holding

the individual voter signing key sk𝑖 and a Vote Verification Device

(VVD) holding the secretHyperion key 𝑥𝑖 and receiving the term𝑔𝑥𝑖

used for verification. The Tally Tellers (TT) hold the secret election

key skEA. Trusted parties are marked with ‘T’ whereas untrusted

parties are marked with ‘U’. Allowed leaks are marked ‘✓’ and not

allowed with ‘✕’.

Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation

0 50 100 150

10

20

30

40

N

M
e
a
n
o
v
e
r
a
l
l
e
x
e
c
u
t
i
o
n
t
i
m
e
(
s
)

Hyperion

Selene

Figure 8: Voter counts plotted against mean overall execution
times of the Hyperion and the Selene schemes in seconds.

Security Trust Assumption Allowed Leaks

Property VCD VVD TT sk𝑖 𝑥𝑖 𝑔𝑥𝑖 skEA

Verif-MBM

U T U ✓ ✕ ✓ ✓

T U U ✕ ✓ ✓ ✓

Ballot-Priv T T T ✕ ✕ ✓ ✕

T T T ✕ ✓ ✕ ✕

du-mb-BPRIV T T T ✓ ✕ ✓ ✕

T T T ✓ ✓ ✕ ✕

Figure 9: Minimal trust and leakage assumptions for the indi-
vidual verifiability Verif-MBM and the two privacy properties
Ballot-Priv and du-mb-BPRIV.

TT Voter 𝑖 BB Mix-Net

(skEA, pkEA) ← gen

pkEA
id𝑖 , pk𝑖

𝑥𝑖 ↞ Z𝑝
ℎ𝑖 ← 𝑔𝑥𝑖

Π𝑥𝑖 ← ZK(id𝑖 , 𝑔, 𝑥𝑖 , ℎ𝑖)

Pick Vote 𝑣𝑖
Π𝑣 ← ZK(id𝑖 , 𝑣𝑖 , {𝑣𝑖 }pkEA)

Π𝑖 ← Π𝑥𝑖 q Π𝑣

𝑚𝑖 ← ({𝑣𝑖 }pkEA , ℎ𝑖 ,Π𝑖)
𝜎𝑖 ← sign𝑖 (𝑚𝑖)

id𝑖 , 𝜎𝑖 ,𝑚𝑖

ℎ𝑖

𝑟𝑖 ↞ Z𝑝
Π𝑇𝑇
𝑖
←

ZK(𝑟𝑖 , ℎ𝑖 , {ℎ𝑟𝑖𝑖 }pkEA)

{ℎ𝑟𝑖
𝑖
}pkEA ,Π

𝑇𝑇
𝑖

{𝑣𝑖 }pkEA , {ℎ
𝑟𝑖
𝑖
}pkEA

Verifiable Parallel Mix
mix← {𝑣𝜎𝑖 }pkEA , {ℎ

𝑟𝜎𝑖
𝜎𝑖
}pkEA

Πmix ← ZK(mix)

mix,Πmix

mix

Verifiable Decryption
Πdec ← ZK(𝑣𝜎𝑖 , {𝑣𝜎𝑖 }pkEA)

Π′dec ← ZK(ℎ𝑟𝜎𝑖
𝑖

, {ℎ𝑟𝜎𝑖
𝑖
}pkEA)

𝑣𝜎𝑖 , ℎ
𝑟𝜎𝑖
𝜎𝑖 ,Πdec,Π

′
dec

𝑣𝜎𝑖 , ℎ
𝑟𝜎𝑖
𝑖𝑔𝑟𝑖

ℎ
𝑟𝜎𝑖
𝜎𝑖 =? (𝑔𝑟𝑖)sk𝑖
𝑣𝜎𝑖 =? 𝑣𝑖

Figure 7: Flow diagram ofHyperion protocol. In this represen-
tation, we assume the EA already defined and broadcast the
cryptographic schemes to be used along with the correspond-
ing parameters. The dashed lines separate the protocol into
four phases: setup, voting, tallying, verification. We assume
that the order of the group generated by 𝑔 is a prime 𝑝, thus
the exponents 𝑥𝑖 and 𝑟𝑖 are picked uniformly at random from
Z𝑃 .

Aditya Damodaran, Simon Rastikian, Peter B. Rønne, and Peter Y. A. Ryan

Phase Selene Hyperion

N = 50 𝜎 N = 100 𝜎 N = 150 𝜎 N = 50 𝜎 N = 100 𝜎 N = 150 𝜎

Setup 7.7970s 1.3 15.171s 1.6 21.83s 4.0 0.0004s 7.7 × 10−5 0.0005s 0.0002 0.0005s 8.3 × 10−5
Voting 0.0089s 0.002 0.0089s 0.001 0.0084s 0.001 0.009s 0.001 0.0093s 0.0008 0.009s 0.0002

Tallying (Mix) 1.4822s 0.3 3.085s 0.5 4.693s 0.5 1.362s 0.2 2.9689s 0.4 4.2675s 0.1

Tallying (Decrypt) 0.6712s 0.2 1.2209s 0.3 1.5269s 0.3 0.5552s 0.03 1.1356s 0.2 1.4728 0.07

Coercion-Mitigation 0.003s 0.001 0.003s 0.0006 0.003s 0.0006 0.0008s 0.0001 0.0009s 0.0002 0.0008s 7 × 10−5
Individual Views - - - - - - 0.4194s 0.01 0.8881s 0.08 1.3154s 0.1

Table 2: Execution times of each phase of the Hyperion and the Selene schemes in seconds.

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Structure of the Paper
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Parties Involved

	3 Details of the Scheme
	3.1 The Setup
	3.2 Voting
	3.3 Tallying
	3.4 Notification and Verification
	3.5 Coercion Mitigation
	3.6 Dispute Resolution

	4 Hyperion Instantiation
	5 Ballot Privacy
	5.1 Proof of Ballot Privacy

	6 Integrity
	6.1 Correctness
	6.2 Verifiability
	6.3 Proof of Verifiability, Theorem 6.3

	7 Variations on an Original Theme
	7.1 Lightweight Variant, PQ Privacy and Everlasting Privacy
	7.2 Individual Views
	7.3 Version Retaining Trackers
	7.4 Hyperion with Codes for Dispute Resolution
	7.5 Deniable Verifiable Tracking from Implicitly Authenticated Key Exchange

	8 Implementation
	9 Conclusion
	10 Acknowledgements
	References
	A IND-1-CCA
	B Privacy Against a Malicious Board
	B.1 Proof-Sketch of du-mb-BPRIV Privacy

	C Protocol Diagram
	D Zero-Knowledge Proofs Used in Implementation
	E Additional Benchmarks
	F Overview Trust Assumptions

