
Towards ML-KEM & ML-DSA on OpenTitan

Amin Abdulrahman∗, Felix Oberhansl†, Hoang Nguyen Hien Pham‡§, Jade Philipoom¶,
Peter Schwabe∗∥, Tobias Stelzer† and Andreas Zankl†∗∗

∗Max Planck Institute for Security and Privacy (MPI-SP), Bochum, Germany
amin@abdulrahman.de, peter@cryptojedi.org

†Fraunhofer Institute for Applied and Integrated Security (AISEC), Garching, Germany
firstname.lastname@aisec.fraunhofer.de

‡BULL SAS, Les Clayes-sous-Bois, France
§Université Grenoble Alpes, CNRS, IF, Grenoble, France

hoang-nguyen-hien.pham@{eviden.com, univ-grenoble-alpes.fr}, nguyenhien.phamhoang@gmail.com
¶zeroRISC, Boston, USA

jadep@{zerorisc.com, opentitan.org}
∥Radboud University, Nijmegen, The Netherlands

∗∗Technical University of Munich (TUM), Munich, Germany

Abstract—This paper presents extensions to the OpenTitan
hardware root of trust that aim at enabling high-performance
lattice-based cryptography. We start by carefully optimizing
ML-KEM and ML-DSA—the two algorithms primarily rec-
ommended and standardized by NIST—in software targeting
the OpenTitan Big Number (OTBN) accelerator. Based on
profiling results of these implementations, we propose tightly
integrated extensions to OTBN, specifically an interface from
OTBN to OpenTitan’s Keccak accelerator (KMAC core) and
extensions to the OTBN ISA to support operations on 256-bit
vectors. We implement these extensions in hardware and show
that we achieve a speedup by a factor between 6 and 9 for
different operations and parameter sets of ML-KEM and ML-
DSA compared to our baseline implementation on unmodified
OTBN. This speedup is achieved with an increase in cell count
of less than 17% in OTBN, which corresponds to an increase
of less than 3% for the full Earl Grey OpenTitan core.

1. Introduction

In August 2024, NIST published final standards for three
post-quantum cryptography (PQC) schemes: the signature
schemes ML-DSA and SLH-DSA, and the key encapsula-
tion mechanism ML-KEM. The publication of these stan-
dards marks an inflection point: large production systems
are now beginning to migrate so that they can support PQC.
As with classical cryptography, hardware specialization is a
vital tool for increasing performance, and will have a large
impact on the timeline and success rate of PQC migrations.
The questions of how to optimize PQC on general purpose
hardware and how to design PQC-specific accelerators are
already very active research topics (e.g., [1], [2], [3]), so we
choose to focus on a slightly different question: how efficient
can we make PQC on an existing pre-quantum platform with
minor hardware changes?

This question targets hardware/software co-designs for
a secure microcontroller which cares about efficiently ex-
ecuting PQC. We focus on adding multipurpose processor
instructions to accelerate small, generalizable mathematical
operations that are useful across PQC schemes – even
beyond the standardized ones – and also for pre-quantum
cryptography. This preserves much more flexibility than
a dedicated hardware accelerator because software using
these instructions is updatable. If a scheme changes slightly
or a new scheme is standardized, it will be possible to
roll out those changes in software to run on the same
hardware, whereas a pure-hardware solution would require a
new silicon manufacturing run. Migration efforts that value
support for hybrid cryptographic schemes or the possibility
of adopting future changes of the PQC landscape will benefit
from this flexibility in particular.

Further, we expect that any hardware deployed in the
next decade will still require support for pre-quantum asym-
metric cryptography, i.e., ECC and RSA. One reason is
to support legacy applications, but a much more impor-
tant reason is that sensible deployment of post-quantum
cryptography today uses hybrid schemes that combine the
novel algorithms with established pre-quantum algorithms.
Applications that have already started integrating PQC, such
as KYBER-enabled TLS by Google [4], Cloudflare [5], and
Mozilla [6], the Signal secure messenger [7], and Apple’s
iMessage protocol [8], all use (pure-software) hybrid solu-
tions. This is because PQC schemes are still relatively young
and not recommended as a replacement for established
classical schemes, by, e.g., ANSSI [9] and BSI [10]. This
motivates us to implement NIST PQC standards on a target
that also accelerates ECC and RSA.

We chose OpenTitan [11] as the target platform because
of its accessibility and relevance. OpenTitan is a fully
open-source silicon root of trust (RoT) that comprises a
main 32-bit Ibex RISC-V core and a coprocessor called

OpenTitan Big Number (OTBN) with its own RISC-V-based
instructions. It is set to soon replace the security chip of
Chromebooks1, highlighting the growing trend of deploy-
ing open-source security chips in real-world commercial
products. OpenTitan today computes classical cryptography
on the OTBN coprocessor, which is equipped with wide
registers and various countermeasures against side-channel
attacks. Therefore, we chose to explore the design space
of modifying OTBN to efficiently support a wider range of
cryptographic schemes, with the lattice-based ML-DSA and
ML-KEM as a case-study.

Contribution. We ready the OpenTitan hardware RoT
for ML-DSA and ML-KEM, and show that small modifica-
tions and extensions to the hardware design and instruction
set architecture (ISA) of existing cryptographic hardware,
designed to accelerate ECC and RSA, yields highly efficient
accelerators for both traditional asymmetric and novel post-
quantum cryptography. While ensuring this, we consider
the generality of the proposed extensions as an additional
goal to provide a flexible solution for cryptographic schemes
beyond the two studied in this work. Our approach lever-
ages multiple features of the OpenTitan platform in general
and the OTBN unit in particular: First and foremost our
research is made possible by the fact that OpenTitan is an
open platform with the hardware implementation, software,
and build system being publicly available under permissive
licenses. Furthermore, OpenTitan already features a high-
performance hardware implementation of Keccak, a central
building block of both ML-DSA and ML-KEM. Also, the
hardware/software co-design for ECC and RSA on OpenTi-
tan uses a rather low-level ISA accelerating only (modular)
big-integer arithmetic in hardware; higher-level routines like
ECC point operations or exponentiation are implemented in
software.

Outline. Section 2 recalls the necessary background
on ML-DSA and ML-KEM, as well as the OpenTitan
platform and its OTBN coprocessor.

Section 3 presents software-only implementations of
ML-DSA and ML-KEM on OTBN with only an increase
in OTBN’s data memory (DMEM) and instruction memory
(IMEM). It serves as a baseline for our performance evalu-
ation and a starting point for profiling.

Section 4 tackles Keccak as it is the major bottleneck
identified in our baseline. We resolve this by adding an
interface from OTBN to the Keccak accelerator.

Section 5 addresses polynomial arithmetic as the remain-
ing bottleneck, which we take on by proposing extensions
to the OTBN ISA, allowing to operate on the 256-bit-wide
registers as vectors of small integers. The extensions are
designed as a generic vector instruction set rather than being
specific to only ML-{KEM,DSA}, aiming to benefit other
cryptographic schemes as well. This approach follows the
design philosophy of the big-integer arithmetic instructions.

Section 6 presents the actual hardware implementation
of our proposals introduced in the previous sections. For

1. https://www.design-reuse.com/news/56335/nuvoton-lowrisc-opentitan
-security-chip-chromebooks.html

accelerating the polynomial arithmetic, we take two different
approaches: one that maximizes resource sharing between
big-number and vector arithmetic and one that investigates
possible gains in performance of ML-{KEM,DSA} at the
expense of larger investment in circuitry.

Our final evaluation shows that with an increase of
OTBN’s circuit area of 15.22%, we achieve a speedup of
up to a factor of 9.14 in ML-DSA and 8.82 in ML-KEM.
This increase corresponds to an increase of only 2.25% of
the full OpenTitan Earl Grey top-level design. Details of
these results and comparisons with related work is shown
in Section 7 followed by a discussion in Section 8.

Artifact. All software and hardware described in this
paper are publicly available under permissive licenses com-
patible to the OpenTitan license at https://github.com/PQC
-OpenTitan/towards-ml-kem-and-ml-dsa-on-opentitan.

Related Work. Research in PQC implementations
spans from pure software to pure hardware designs, across
multiple platforms. Extensive studies have focused on
software implementations of KYBER and DILITHIUM on
Arm Cortex-M4 [12], [13], [14], [15], [16], [17], [18].
Highly optimized single-instruction-multiple-data (SIMD)
implementations have been presented for, e.g., the In-
tel AVX2 [19], [20], Arm Neon [21], and RISC-V [22]
platforms. Hardware/software co-design approaches offload
compute-intensive operations to hardware, balancing be-
tween high performance and flexibility. An approach some-
what similar to ours on OTBN was explored in independent
concurrent work [23]. The authors focus on accelerating
the number-theoretic transform (NTT) of KYBER only and
present results that are about 4× slower while likely slightly
better in terms of hardware cost when compared to ours.
We provide a more detailed analysis in Section 7. Another
notable work is a configurable post-quantum arithmetic
logic unit (ALU) for OTBN [24], accelerating polynomial
arithmetic of DILITHIUM, KYBER, and FALCON. An imple-
mentation of DILITHIUM’s polynomial arithmetic on OTBN
using the Kronecker+ method [25] is provided in [26].

Further tightly coupled accelerators for PQC, targeting
different performance/resource trade-offs, have been pre-
sented in [27], [28], [29], [30], [31]. Among which, [27],
[29], [30] provide hardware acceleration for polynomial
generation using Keccak, while the others solely focus on
speeding up the NTT-based polynomial multiplication and
modular arithmetic. A less lightweight work [32] proposes
a domain-specific processor optimized for module lattices.
All of these designs extend the RISC-V ISA with scheme-
specific instructions. A more generic approach involving
masked accelerators is introduced in [33]. We will provide
a detailed comparison to the most relevant literature, high-
lighting the differences to our work in Section 7.

2. Preliminaries

For notation, we mainly follow the conventions of NIST
FIPS 203 [34] and 204 [35]. In addition, we define [r]d
to be the unique element r′ in the range [0, 2d) such that
r′ ≡ r mod 2d and denote ⌊ rd⌋ as [r]d, with d ∈ N.

https://www.design-reuse.com/news/56335/nuvoton-lowrisc-opentitan-security-chip-chromebooks.html
https://www.design-reuse.com/news/56335/nuvoton-lowrisc-opentitan-security-chip-chromebooks.html
https://github.com/PQC-OpenTitan/towards-ml-kem-and-ml-dsa-on-opentitan
https://github.com/PQC-OpenTitan/towards-ml-kem-and-ml-dsa-on-opentitan

2.1. NIST PQC Standards

2.1.1. ML-DSA. FIPS 204 [35], specifies the digital signa-
ture scheme DILITHIUM [36], [37] under the name module-
lattice-based digital signature algorithm (ML-DSA). It is
believed to fulfill the strong existential unforgeability under
chosen-message attack (SUF-CMA) security property, even
in the presence of powerful quantum computers [35]. Its
security is based on the hardness of finding short vectors in
a lattice [35]. More specifically, the problems it relies on
are the module learning with errors (MLWE) and a variant
of the module short integer solution (MSIS) problems. ML-
DSA is constructed following the Fiat-Shamir with aborts
pattern [38]. ML-DSA operates over the polynomial ring
Rq = Fq[X]/⟨Xn + 1⟩ with n = 256 and q = 8380417.
The scheme offers three security levels called ML-DSA-
44, ML-DSA-65, ML-DSA-87, which vary in, e.g., their
lattice dimension, as shown in Table A.1. The scheme makes
heavy use of symmetric cryptographic primitives in the
form of SHAKE128 and SHAKE256 as extendable output
functions (XOFs) [39]. For a detailed description of the
algorithms, we refer to Section B and [35]. For this work, we
only consider the “internal” functions of ML-DSA, as they
make up for the vast majority of the runtime and contain all
relevant primitives.

2.1.2. ML-KEM. Similar to ML-DSA, the module-lattice-
based key-encapsulation mechanism (ML-KEM), coined in
FIPS 203 [34], is based on KYBER [40]. It is an in-
distinguishability under adaptive chosen ciphertext attack
(IND-CCA2)-secure key encapsulation mechanism (KEM)
obtained by applying a slightly tweaked Fujisaki-Okamoto
transform [41] to the underlying indistinguishability under
chosen plaintext attack (IND-CPA)-secure public-key en-
cryption (PKE) scheme, denoted as K-PKE. Its security is
based on the MLWE problem scaled for different parameter
sets through the rank k of the module. For more details on
K-PKE and ML-KEM we refer to [40]. The polynomial ring
used in ML-KEM is also of the form Rq = Fq/⟨Xn + 1⟩
with n = 256 but uses q = 3329. Table A.2 lists other
relevant parameters of ML-KEM with different security
levels. Next to SHAKE128 and SHAKE256, the symmet-
ric primitives at use in ML-KEM also include SHA3-
{256, 512} [39]. Just as with ML-DSA, we only consider
the internal functions of ML-KEM in the following. A de-
scription of the algorithms can be obtained from Section B.

2.2. Number Theoretic Transform

The NTT is the discrete Fourier transform (DFT) on
finite fields. Using algorithms by Cooley–Tukey (CT) [42]
and Gentleman–Sande (GS) [43], also referred to as fast
Fourier transform (FFT) algorithms, polynomial multipli-
cation using the NTT can be implemented efficiently in
O(n log n) instead of O(n2) using the general schoolbook
method for Rq = Fq[X]/⟨Xn + 1⟩.

Assume that a primitive 2n-th root of unity ζ
exists. Then we have the ring isomorphism Rq

∼=

Algorithm 2.1: Montgomery Multiplication [45].

Input : a, b ∈ [0, q), q ∈
(
0, 2d

)
, R =

[
−q−1

]
d

Output: r = ab(2−d) mod q and r ∈ [0, q)
1 c = ab

2 r =
[
c+ [[c]d R]

d
q
]d

3 if r ≥ q then return r − q
4 return r

Algorithm 2.2: Plantard Multiplication [44].

Input : a, b ∈ [0, q], q < 2d+1

1+
√
5

, R =
[
q−1

]
2d

Output: r = ab(−2−2d) mod q and r ∈ [0, q]

1 return r =
[(

[[abR]2d]
d
+ 1

)
q
]d

∏n−1
i=0 Fq[X]/⟨X−ζ2i+1⟩. The forward and backward map-

ping are denoted as NTT and INTT respectively, where the
latter stands for inverse number-theoretic transform (INTT).
The roots of unity are called “twiddle factors”. Multipli-
cation of two polynomials a, b ∈ Rq can be computed as
“pointwise” multiplication of their “NTT representations”:

a · b = INTT(â ◦ b̂) = INTT(NTT(a) ◦ NTT(b))

This approach can straightforwardly be applied to ML-
DSA, computing log n = 8 layers of NTT which amounts
to a full splitting of the ring. For ML-KEM, we can only
compute seven layers of NTT due to the absence of a 2n-
th root of unity. This implies that the multiplication inside
NTT-domain is not pointwise, but on linear polynomials –
thus also referred to as “pair-pointwise”.

2.3. Modular Multiplications

The previously discussed polynomial arithmetic is based
on modular arithmetic as the lowest-level building block.
Algorithm 2.2 shows the Plantard multiplication [44] but
omitting a final correction step, resulting in the output
range [0, q]. Plantard’s approach is usually faster than Mont-
gomery’s (cf. Algorithm 2.1) because the former requires
one multiplication less in case b ·R in Algorithm 2.2 is pre-
computed. In exchange, this doubles the size of the second
input to 2d-bit instead of d-bit as in Algorithm 2.1. The
work from [12] improves the algorithm by extending the
input range of the Plantard multiplication while introducing
signed arithmetic.

2.4. OpenTitan

OpenTitan is a project building a RISC-V-based open-
source silicon RoT stewarded by lowRISC, with collabo-
rative engineering from ETH Zürich, Google, G+D Mo-
bile Security, Nuvoton Technology, Western Digital, and
zeroRISC to develop and maintain the open-source silicon
design [11]. It consists of several hardware intellectual
property (IP) blocks, together with a main 32-bit Ibex

RISC-V core and a big-number coprocessor, called OTBN,
accelerating classical asymmetric cryptography, making up
the Earl Grey microcontroller [46]. The majority of IP
blocks are dedicated to cryptographic operations, includ-
ing Keccak message authentication code (KMAC), HMAC-
SHA2, AES [47], and a cryptographically secure random
number generator (CSRNG) together with an entropy source
IP block enabling the generation of deterministic or true
random numbers compliant to, e.g., NIST standards.

2.4.1. OTBN. OTBN [11] is designed to securely accel-
erate classical asymmetric cryptography such as RSA [48]
and elliptic-curve cryptography [49], [50]. It is equipped
with enhanced countermeasures against Spectre BHB [51]
vulnerabilities [11, Section 8.2.2], cache-timing attacks [11,
Section 8.2.2], side-channel leakage [11, Section 7.2.2] and
fault injection [11, Section 8.2.2]. These countermeasures
include data-path blanking, Hsiao integrity-protection code,
and secure wiping of OTBN’s internal states and memories
[52]. Data-path blanking forces unused data paths to zero,
preventing sensitive data from producing power leakage over
those paths. To protect data from modifications through
physical attacks, Hsiao protection code [53] adds seven
parity bits to each 32-bit data chunk, allowing detection of
at least three errors. Upon detecting an integrity violation,
OTBN halts all processing immediately. The secure wipe
mechanism clears all stored state from register files, instruc-
tion and data memory, to prevent leftover data leakage.

OTBN offers a 32-bit RISC-V-based ISA with 32
general-purpose registers (GPRs) x0 to x31 used by the
“base instruction subset” for the control flow of an OTBN
application, and a custom big-number (“bn”) ISA providing
32 256-bit wide data registers (WDRs) w0 to w31 used
by the “big number instruction subset” for data process-
ing. By convention, we refer to a WDR zero as bn0. In
addition, there are control and status registers (CSRs) and
wide special-purpose registers (WSRs) that give access to
randomness sources, arithmetic flags, key material, a spe-
cial “modulus register” MOD, and an “accumulate register”
ACC [11, Section 8.2]. Note that even though the GPRs and
their relating instructions are inspired by the RISC-V integer
extension RV32I, compilers and toolchains for RISC-V are
not compatible with OTBN and no dedicated toolchains for
higher-level languages are available. Consequently, all code
for OTBN in this work is written in assembly and run with
its cycle-accurate Python simulator.

2.4.2. KMAC Block. The KMAC core supports Keccak-
based message authentication codes (MACs), unauthenti-
cated SHA-3 and (c)SHAKE [11, Section 9.13]. The hard-
ware design offers a synthesis-time option for enabling or
disabling first-order masking [11, Section 9.13.1], including
Domain-Oriented Masking [54] and masking data before
loading into Keccak. The masked Keccak-f[1600] takes four
cycles per round for a number of 24 rounds, resulting in 96
cycles in total [11, Section 9.13], while the unmasked one
takes just one cycle per round. However, in this work, we
will assume that the version with first-order masking has

been chosen, as it is likely to be more popular in practice
and provides a more conservative performance estimate.

3. Implementation on Plain OTBN

This section describes an implementation of ML-
{KEM,DSA} on an essentially unmodified OTBN, serving
as a performance baseline and a starting point for profiling.
The only change required is to increase the DMEM size to
128 kB and the IMEM size to 32 kB, from their original
sizes of 4 kB each. We describe optimization techniques
for the most important parts of ML-{KEM,DSA}: modular
arithmetic, NTT/INTT, and multiplication in NTT domain.
We also provide a pure software implementation of Keccak-f
for OTBN.

The reasons we chose to implement Keccak in software
are twofold: (1) For leveraging the KMAC core, we need
to transfer data out of OTBN to the Ibex core, to KMAC,
and back, which exposes secrets over the less protected
transit bus twice. We believe this setup increases the attack
surface unnecessarily, making it more vulnerable compared
to executing the schemes entirely within OTBN, providing
robust protection mechanisms. (2) OTBN is not designed for
interrupting the operation, yielding to Ibex, and continuing
later. For example, neither the register state, nor the call
stack is retained upon exit of OTBN.

We provide more in-depth explanation for many of our
optimization strategies in Section C. This includes more
details on the descriptions here, as well as on the sampling
and bit-packing aspects which we omit here.

3.1. NTT and Multiplication in NTT Domain

3.1.1. Modular Multiplication. For modular multiplica-
tions, we choose the original Plantard multiplication without
the final correction step (cf. Algorithm 2.2) for our baseline
implementations of ML-{KEM,DSA} on OTBN over the
improved version from [12]. This is because computation
with unsigned integers on OTBN is less complex compared
to signed numbers, which require more effort for a correct
sign extension. In addition, since none of the improvements
in [12] are relevant to our implementation on OTBN, we
opt for the original.

Let d be 32 for ML-DSA and 16 for ML-KEM. A
polynomial in either scheme is represented by a vector
of n coefficients with d bits each and polynomial arith-
metic breaks down to modular arithmetic on d-bit unsigned
integers. To multiply two elements a and b in Fq using
Plantard multiplication [44] we require three multiplication
instructions, one right shift, and one addition in the case
of ML-DSA, while for ML-KEM an additional logical
AND is required. This amounts to 5 cycles per modular
multiplication in the case of ML-DSA, and 6 cycles for
ML-KEM. In case the second factor b is pre-multiplied
by R, which normally happens in the NTT, we need one
instruction less for both schemes (cf. Listing A.1, Line 6
to 9).

3.1.2. NTT. For the NTT, we apply common optimiza-
tions, e.g., merging the multiplication with n−1 into the
last twiddle factor in the INTT [55, Sec. 3], making up
for the omitted transformation into Plantard representation
during the multiplication with n−1 [56, Sec. 5.3] as well
as transforming the twiddle factors into the proper domain
for the deployed modular multiplication strategy ahead of
time [57, Sec. 7.2].

CT and GS Butterfly. We follow the original ap-
proach from [19], [20] to use the CT butterfly for the NTT
and the GS butterfly for the INTT. A butterfly consists of
a Plantard multiplication (cf. Section 3.1.1) between a co-
efficient and a twiddle factor, a modular addition bn.addm,
and a modular subtraction bn.subm. As inputs and outputs
of these two instructions are in [0, q], which is due to the
Plantard multiplication (cf. Algorithm 2.2), the outputs of
each layer are certain to be in [0, q] as well, inhibiting
growth throughout the computation. Therefore, we do not
require lazy reductions. The twiddle factors are already
stored in Plantard representation, saving one multiplication
(cf. Algorithm 2.2). Subsequently, a CT butterfly takes six
and seven cycles for ML-DSA and ML-KEM, respectively.
Listing A.1 shows how to extract data for a CT butterfly
in ML-DSA and store the results back to the registers –
incurring a large overhead for data movement.

Layer Merge. In this work, we also adopt a 4–4 layer
merge for ML-DSA and 4–3 for ML-KEM, making use of
OTBN’s WDRs for reducing the memory accesses.

3.1.3. Multiplication in NTT Domain. The pointwise mul-
tiplication in ML-DSA consists of n modular multiplica-
tions in Fq (q = 8380417), which is equivalent to n Plantard
multiplications as described in Section 3.1.1. For ML-KEM,
a pair-pointwise multiplication consists of multiplications of
128 pairs of linear polynomials, each of which requires five
Plantard multiplications.

Pseudo Vectorization. Pointwise addition of any two
vectors requires extracting individual coefficients into two
separate WDRs for performing addition, which causes a dis-
proportionately high overhead for data movement. “Pseudo
vectorization” means adding two vectors of n/d coefficients
using the non-vectorized addition instruction bn.add and
obtain the result of a vectorized one which is possible since
the sum of two log(q)-bit integers will not exceed d bits.
This is used in the accumulation of the matrix-vector prod-
uct in ML-{KEM,DSA}. While the accumulated outputs
must be manually reduced to [0, q], this technique greatly
improves performance.

3.2. Keccak on OTBN

For our software implementation of Keccak on OTBN,
we aimed to make use of the available resources as effi-
ciently as possible. The fact that Keccak-f relies on logical
AND, XOR, and NOT operations allows for pseudo vector-
ization, leveraging the wide registers of OTBN for improved
efficiency. To achieve this, we carefully arrange 25 lanes

within seven WDRs. An exception to this is the ρ− π step,
where we need to compute on individual lanes.

3.3. Profiling

Figure 1a and Figure 1b present a heatmap table illus-
trating the cycle count percentages for ML-{KEM,DSA}.
Hashing emerges as the most time-consuming operation in
both schemes, aligning with the profiling results in previous
works [12, Table 6] [58]. This observation prompts us to
leverage OpenTitan’s KMAC core for potential optimization.

Percent Poly. Samp. Hash Pack Round Red.
K 8 12 77 1 1 1
S 29 8 55 1 3 3
V 12 10 74 1 2 1

(a) ML-DSA-65
Percent Poly. Samp. Hash Pack

K 18 11 70 1
E 21 11 66 2
D 27 10 60 3

(b) ML-KEM-768

Figure 1: Cycle count profiling on OTBN, median values
over 10 000 iterations. Groups with less than 1% not dis-
played. May not add up to 100% due to rounding.

3.4. Reflection

In this section, we reflect on the implementation process
of ML-{KEM,DSA} on OTBN from an ISA-perspective.

A clear benefit of the big-integer arithmetic capabilities
is the ability to load large amounts of data, i.e., 256 bits,
within just two clock cycles. Further, many “bitwise” oper-
ations can profit from the wide registers as it is possible to
compute on lots of data in parallel. Even simple arithmetic
operations can profit from this in certain instances, as we
have shown with the application of pseudo-vectorization in
Section 3.1.3.

However, more complex operations like multiplications
are not amenable to this strategy. As mentioned in Sec-
tion 3.1.1, at least four instructions are required for a modu-
lar multiplication of two coefficients – not counting the four
instructions required to extract the individual coefficients
from the WDRs they had been initially loaded to. This im-
plies two things: (1) The same number of cycles required for
the modular multiplication itself is additionally spent on data
movement, and (2) for many of the operations, the WDRs
are barely utilized, only using the first 16 or 32 bits out
of 256. In contrast, common microcontroller architectures
are equipped with digital signal processor (DSP) extensions
that allow parallelism over the data inside a register and
simply more flexible ISAs which oftentimes help to express
a desired computation in a shorter instruction sequence. For
example, the Arm Cortex-M4 can compute one Plantard
multiplication with just two instructions, taking only two
cycles [12]. As we will see in Section 7, this also leads to
our plain implementation presented in this section remaining
behind the Cortex-M4’s performance.

Summing up, OTBN does generally offer powerful hard-
ware components, but the ISA is not well suited for the kind
of operations that are required for ML-{KEM,DSA}.

4. Implementation on OTBN With Keccak Ac-
celeration

Based on the profiling results from Section 3.3, we de-
cided to explore the hardware/software co-design approach
by interfacing between OTBN and OpenTitan’s KMAC core,
referred to as OTBNKMAC in the following.

KMAC Interface. The KMAC core in OpenTitan is
accessible via the main TL-UL bus and application inter-
faces for the key manager, life-cycle controller, and ROM
controller hardware blocks. The simplicity and high through-
put of the application interface make it an ideal choice for
connecting KMAC with OTBN. Therefore, we introduce an
additional one to enable this direct connection. All interfaces
use a 64-bit data path with simple control logic and status
signals. The KMAC core outputs the digest as two boolean
shares on a parallel data path.

On the KMAC side, only minor modifications are re-
quired, such as enabling dynamic configuration of the hash
algorithms to support SHA3-{256,512}, SHAKE{128,256}.
We did not implement side-channel protections on top of
the already existing ones mentioned in Section 2.4.2 as our
changes to KMAC do not require them. On OTBN side,
special-purpose registers for KMAC configuration, message,
status, and digest are added. The status register, controlled
by KMAC signals, allows OTBN to determine if KMAC is
ready for operation. The configuration register contains the
hash function and the length of the data to be processed.
These registers can be written and read with already present
instructions (bn.wsrr, bn.wsrw, csrrw). Data is sent to
KMAC by writing to the 256-bit message register, which
is connected to a small FIFO that outputs 64-bit words
to KMAC’s application interface. If the FIFO has not yet
consumed all contents of the message register while a new
instruction is being fetched and decoded, the pipeline stalls.
The input width and depth of the FIFO can be optimized
for transfer efficiency. For our case study, we selected a
small FIFO which is capable of holding four 64-bit words
but can consume a complete 256-bit word within a single
cycle. Since these modifications are related to OTBN, we
implemented them in accordance with the standard OTBN
countermeasures mentioned in Section 2.4.1. These include
blanking of unused data paths, as well as a secure wipe
mechanism and integrity-protection codes for the additional
special-purpose registers. Figure 5 illustrates that the KMAC
interface connects OTBN’s BN-ALU module, which handles
special registers, to the application interface of the KMAC
core.

Python Simulator of KMAC Interface. We extend
the OTBN Python simulator to implement said interface
and to match the performance characteristics of the actual
hardware, integrating the special purpose registers for con-
figuration, status, message and digest introduced above.

4.1. Profiling

We now examine the profiling results assuming that
OTBN interfaces directly with KMAC. As shown in Fig-
ures 2a and 2b, the time spent on hashing is drastically
reduced thanks to the powerful KMAC core. In ML-DSA,
most of the runtime is now spent on polynomial arithmetic.
For ML-KEM, polynomial arithmetic constitutes an even
larger portion. This indicates that we could achieve a further
substantial reduction in runtime by accelerating polynomial
arithmetic on OTBNKMAC.

Percent Poly. Samp. Hash Pack Round Red. Other
K 41 42 5 6 3 3 0
S 68 13 2 3 7 8 0
V 51 26 4 3 10 4 1

(a) ML-DSA-65
Percent Poly. Samp. Hash Pack

K 64 30 3 2
E 67 25 3 5
D 70 19 2 8

(b) ML-KEM-768

Figure 2: Cycle count profiling on OTBNKMAC, median
values over 10 000 iterations. Groups with less than 1% not
displayed. May not add up to 100% due to rounding.

5. Extending the OTBN ISA

This section introduces the changes to the OTBN ISA
that we propose based on our observations from Section 3.
We will refer to OTBN including the KMAC interface and
our proposed instructions as OTBNKMAC

Ext. .
Goal of the ISA Extensions. The main goal of the

ISA extensions is to broaden the range of cryptographic
primitives that can be accelerated using OTBN, with a focus
on the lattice-based ML-{KEM,DSA} in this work. More
specifically, we aim to reduce the time spent on polynomial
arithmetic identified as the predominant remaining bottle-
neck in Section 3 after hashing was addressed. We work
towards that goal by providing instructions that speed up
common, elementary arithmetic and bit manipulation oper-
ations. For a discussion of further, possible applications see
Section 8. This is in contrast to hash functions, which require
parallel processing of large bit vectors which make dedicated
coprocessors more suitable as long as transfer latency does
not become an issue [59]. An additional goal we set is
to keep the number of new instructions to a minimum as
OTBN is a RISC-based architecture and the 32-bit instruc-
tion encoding makes opcodes scarce. The primary metric
for evaluating the extensions is the performance in terms of
cycle count – while we also comment on the memory usage
and code size, we did not specifically optimize for them.
For a discussion on the impact of memory optimizations,
we refer to Section 8.

5.1. Proposed Instructions

In the following, we argue why we deem the addition of
SIMD instructions as a promising approach to circumvent
some of the previously identified bottlenecks and to improve
the performance of the polynomial arithmetic. First, we
have noticed in Section 3 how much time is spent on data
movement and also how much performance gain could be
achieved through the pseudo-vectorization strategy (cf. Sec-
tion 3.1.3). Second, the NTT and INTT naturally lend
themselves to parallelization because of the independence
of the individual butterfly operations on each layer. Lastly,
prior work has shown that the performance of polynomial
multiplication can be greatly improved with SIMD instruc-
tions, e.g., using Intel AVX2 [37], Arm Neon [21], or the
RISC-V vector extension [22].

We propose five new instructions, each with multi-
ple subvariants. Following the reasoning above, the first
three are bn.addv, bn.subv, and bn.mulv, offering SIMD
(modular) addition, subtraction, and multiplication, respec-
tively. Note that although bn.mulv is highly similar to the
one in [60], it was developed independently. The fourth
instruction interleaves data inside two WDRs when inter-
preting them as vectors of multiple elements. While it is a
staple in SIMD instruction sets, it is especially useful for
NTT and INTT in our case (see Section 5.2). Lastly, we
propose a bit-shifting instruction, a core operation in most
(SIMD) instruction sets, beneficial for various functions of
ML-{KEM,DSA}. For example, it allows fully vectorizing
decomposition in ML-DSA and facilitates sampling coef-
ficients in [−η, η]. In the more detailed description below,
<type> defines the subvariants of the instruction, including
the operation on vector elements of different sizes, e.g., .8S
for a 32-bit or .16H for a 16-bit element view. Furthermore,
the m suffix indicates a variant that includes (pseudo) mod-
ular reduction.

• bn.addv<type> <wrd>, <wrs1>, <wrs2>:
Vectorized addition with optional conditional
subtraction. <type> can be (m){.8S,.16H}.
Each pair of d-bit elements in the source registers
<wrs1> and <wrs2> is added together and stored
to the respective element in <wrd>. The result
is truncated in case of an overflow. If m is set
in <type>, value defined in the MOD register is
subtracted from the result in case it is greater than
or equal to MOD.

• bn.subv<type> <wrd>, <wrs1>, <wrs2>:
Vectorized subtraction with optional conditional
addition. <type> can be (m){.8S,.16H}. This
instruction functions similarly to bn.addv, but with
subtraction. MOD is added to the subtraction result
in case it is negative.

• bn.mulv<type> <wrd>, <wrs1>,
<wrs2>[, <lane>]: Vectorized multiplication
with optional modular reduction. <type> can be
(m)(.l){.8S,.16H}. l specifies a lane-wise mode
of operation, meaning that instead of the element-
wise multiplication, all elements of <wrs1> are

multiplied with a fixed element of <wrs2> at index
<lane> in

[
0, n

d − 1
]
. Next, the result is either

truncated or reduced mod+ MOD in case m is set in
<type>.

• bn.trn1/bn.trn2<type> <wrd>, <wrs1>,
<wrs2>: Interleaving of even/odd indexed vector
elements. For this instruction, <type> can also
be .4D (for 64-bit elements) and .2Q (for 128-bit
elements), alongside with .8S and .16H.

• bn.shv<type> <wrd>, <wrs>
<shift type> <shift bits>: Bitwise
logical shift operation of individual vector elements.
<type> can be .8S or .16H. <shift type>
defines whether to perform a left (<<) or right
(>>) shift. <shift bits> is the number of bits
to shift each element.

5.2. Impact on ML-{KEM,DSA} Implementations

This section discusses how our proposed extensions
influence the implementation of ML-{KEM,DSA} and il-
lustrates the most important subroutines.

Just as for OTBN, we provide additional descriptions on
our implementation in Section D.

5.2.1. Polynomial Addition & Subtraction. A significant
impact of our proposed instructions can be observed in
functions related to polynomial arithmetic. The cumbersome
extraction of individual coefficients from the WDRs can be
replaced by a simple sequence of a load, the SIMD addition,
and a store. This reduces both arithmetic costs and data
movement overhead.

5.2.2. NTT & INTT. For the NTT, the code drastically
simplifies as well. As we provide a dedicated instruction
for modular multiplication, the need for applying Plantard’s
algorithm is eliminated.

ML-DSA. Assuming the computation of the forward
NTT in ML-DSA, the code for the CT-butterfly can be
reduced down to three instructions for computing eight
butterfly operations in parallel. The implementation of the
GS-butterfly in the INTT is similar. Regarding the layer
merge, we proceed with the same 4–4 merge as in the plain
implementation of ML-DSA. The approach to vectorization
we take is closely related to the one taken in [21]. To apply
the data transposition in order to adjust for the coefficient’s
stride-requirement on later layers, we use a sequence of
bn.trn1 and bn.trn2 instructions, following the strategy
from [21].

ML-KEM. For ML-KEM, the butterfly simplifies
as for ML-DSA, except that the .16H variants are used.
Thanks to the availability of 32 256-bit WDRs, all seven
layers of the ML-KEM NTT can be merged, reducing
the memory operations to a minimum. However, a simi-
lar “transposition” with .8S variant as with ML-DSA is
required in order to compute the last three layers.

5.2.3. Multiplication in NTT Domain. Thanks
to bn.mulv(m), the base multiplication for ML-
{KEM,DSA} becomes directly vectorizable.

ML-DSA. As the base multiplication in ML-DSA is
a pointwise multiplication, its computation using bn.mulvm
is trivial: we load one WDR of each input polynomial,
multiply them via bn.mulvm, and store the result into the
result polynomial.

ML-KEM. In ML-KEM, the pair-pointwise multi-
plication adds slight complexity due to multiplying even/odd
indexed coefficients of the linear polynomials, which do
not “align” inside the vectors. To handle this, we make
use of our bn.trn instructions to re-order the coefficients
accordingly. See Listing D.3 for a concrete implementation
of this strategy.

5.2.4. Profiling. The profiling data on OTBNKMAC
Ext. , as

shown in Figures 3a and 3b, demonstrates that our ISA
extensions fulfill their task by reducing the cycle count for
polynomial arithmetic by up to 46 percentage points.

5.2.5. Suitability for Masking of ML-{KEM,DSA}.
Recognizing the importance of protections against side-
channel attacks, we briefly touch on the applicability of our
ISA extensions for a possible masked implementation of
ML-KEM and ML-DSA. Naturally, our vectorized instruc-
tions are advantageous for masking linear operations, such
as the NTT. While additional instructions may be useful to
further accelerate non-linear parts, it is beyond the scope of
this work and left as future research. Regarding a sensible
masking strategy for ML-{KEM,DSA} on OTBNKMAC

Ext. , we
believe that shares of the same value should not be combined
within a single WDR, but rather shares of different values
as recommended in [61]. Since these shares have no data
dependency, this approach does not increase the leakage
and may even introduce something similar to additional
switching noise.

6. Hardware Implementation

This section describes our hardware implementations
and the modifications we applied to the OTBN architec-
ture and its components. All our modifications were im-

Percent Poly. Samp. Hash Pack Round Red. Other
K 19 66 8 6 1 0 0
S 52 27 5 6 7 2 1
V 27 48 8 5 11 0 1

(a) ML-DSA-65
Percent Poly. Samp. Hash Pack Other

K 19 67 8 5 1
E 21 60 7 12 0
D 24 50 6 19 1

(b) ML-KEM-768

Figure 3: Cycle count profiling on OTBNKMAC
Ext. , median

values over 10 000 iterations. Groups with less than 1% not
displayed. May not add up to 100% due to rounding.

a0b0a1b0a2b0a3b0

a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

Figure 4: Configurable vectorized multiplication.

plemented with consideration for the countermeasures men-
tioned in Section 2.4.1, namely data-path blanking, secure
wipe of registers and Hsiao integrity-protection codes.

6.1. Basic Building Blocks

To enable vectorized 32-bit and 16-bit operations with
minimal resource usage, we design basic building blocks
capable of performing both.

6.1.1. Configurable Vectorized Adder. We adapt the ex-
isting 256-bit adders in the big number arithmetic logic unit
(BN-ALU) for OTBN to enable 32-bit and 16-bit vector-
ized (modular) addition and subtraction, along with 256-bit
(modular) addition/subtraction. We split a 256-bit addition
into 16 × 16-bit additions, adding multiplexers for carry
inputs. This allows for variable adder sizes based on carry
propagation. For the 256-bit addition (used in bn.add),
each 16-bit adder’s carry input connects to the previous
adder’s output carry. For 16-bit vectorized addition, the carry
inputs are set to the input carry of the 256-bit adder. For
32-bit vectorized addition, two 16-bit adders are linked,
connecting the first adder’s output carry to the second’s
input carry. Depending on the size of the operations, input
carries to either one 256-bit adder, one 32-bit adder (.i.e,
two connected 16-bit adders) or one 16-bit adder are used
to differentiate between addition and subtraction.

6.1.2. Configurable Vectorized Multiplier. While our mul-
tiplier accepts two 64-bit operands as inputs and outputs a
128-bit result, it can compute either one 64-bit, two 32-
bit or four 16-bit multiplications. Our approach can be
generalized for arbitrary-width multiplications. We achieve
this by splitting one 64×64-bit product into several partial
products, where each is the product of two 16-bit chunks.
When adding all partial products together, the result of
the 64-bit multiplication is obtained. By only consider-
ing certain partial products and zeroing irrelevant ones,
we achieve vectorized {16,32}-bit multiplications. Figure 4
shows that each 64-bit operand is split into 16-bit chunks:
a = (a3||a2||a1||a0) and b = (b3||b2||b1||b0). For 64-bit
multiplication, each 16-bit chunk of a is multiplied by that of
b, and the resulting partial products are summed to produce
the final 128-bit result c. For vectorized 32-bit multiplica-
tion, two adjacent 16-bit chunks form the 32-bit operands,
i.e., a = a′1||a′0, where a′1 = (a3||a2) and a′0 = (a1||a0).
The result is then calculated as c = (a′1 × b′1||a′0 × b′0),
ignoring products from a′1× b′0 and a′0× b′1 as shown in the
blue frames. Similarly, c = (a3×b3||a2×b2||a1×b1||a0×b0),

IMEM
32KB

DMEM
128KB

IF Stage

Prefetch
Buffer

ID Stage

Controller

Decoder

WDRs

GPRs

EX Block

BN-ALU

BN-MAC

Base
ALU

LSU

Key Sideloader Key Manager

RND EDN

BN-MULV

KMAC

Figure 5: Simplified diagram of the modified OTBN
pipeline. Light gray blocks represent the pipeline stages
and their components. Lilac and green blocks correspond
to GPR- and WDR-related components, respectively. Our
modifications are highlighted in blue, while the dashed
border indicates the newly added optional module.

for vectorized 16-bit multiplication, considering only the
partial products within the pink frames.

6.2. Integration Into OTBN Architecture

This section outlines the modifications necessary for
integrating our proposed modules, aiming at maximizing
resource sharing while maintaining architectural simplicity
for effective decoding and control. Figure 5 provides a
high-level overview of where our changes are added within
OTBN.

Our new configurable vectorized adder (cf. Sec-
tion 6.1.1) will replace the current 256-bit adders in
BN-ALU, enabling the bn.addv, bn.addvm, bn.subv,
bn.subvm instructions. Similarly, we integrate the function-
alities for bn.shv and bn.trn1/bn.trn2 instructions also
into the existing BN-ALU as it already contains functional
units for shifting.

For integrating the bn.mulv(m) instruction, two options
exist: reusing existing resources in the big number multiply
accumulate unit (BN-MAC) at the cost of latency versus
integrating a new module into OTBN’s pipeline leading to
increased resource consumption but also enhanced perfor-
mance. We refer to implementations of ML-{KEM,DSA}
using the modified BN-MAC as OTBNKMAC

Ext. , and the latter
high-end approach as OTBNKMAC

Ext.++ .
For the first option, we replace BN-MAC’s 64-bit mul-

tiplier and 256-bit adder with our basic building blocks
(see Sections 6.1.1 and 6.1.2) to enable vectorized multi-
plications and additions while maintaining support for the
original bn.mulqacc instruction. To minimize the resource
overhead, we split bn.mulv(m) into several cycles and
reuse existing computational resources, requiring additional

control logic within the BN-MAC, decoder, and controller
to manage the pipeline stalls and keep all redundancy
checks throughout the pipeline in sync. This approach keeps
the control path relatively simple and integrates well with
OTBN’s architecture. While according to the OTBN design
rationale, all instructions should complete within a single
cycle, some mechanisms stall the pipeline for loads or if
the internal randomness register does not contain fresh ran-
domness. The KMAC interface may also stall the pipeline
(see Section 4). Although one could add an instruction for
each execution stage of bn.mulv(m) (see Section 6.2.2), we
do not explore this further since this is a trade-off between
code and hardware complexity. Modifications to the BN-
MAC and details on the multi-cycle approach are outlined
in Section 6.2.2.

For the second option, we outsource this operation into
a new separate module capable of executing bn.mulv(m)
in a single cycle, ensuring clean and straightforward inte-
gration, particularly regarding decoding and control logic.
The big number vector multiplier (BN-MULV) module and
its integration is described in Section 6.2.3.

6.2.1. Modified Big Number ALU. We replace the two
256-bit adders in BN-ALU, namely Adder X and Adder
Y, with two configurable vectorized adders from Sec-
tion 6.1.1, allowing 16-bit, 32-bit, and the original 256-
bit operations with minimal overhead. For bn.addv and
bn.subv, only Adder X computes either x = a + b or
x = a− b. For bn.addvm, Adder X computes x = a+ b
and Adder Y performs y = x − q. Depending on x < q,
either output from Adder X or Adder Y is selected based
on carry propagation. Modular subtraction with bn.subvm
is handled similarly, selecting outputs based on x < 0. Carry
propagation varies, depending on whether 256-bit, 32-bit,
or 16-bit operations are desired. Note that basically every
carry bit which is not propagated to the next 16-bit adder
is effectively an output carry and, therefore, responsible to
select the results from either Adder X or Adder Y.

We also integrate transpose functionality for
bn.trn1/bn.trn2 and vectorized shifts for bn.shv
into BN-ALU. Both operations require minimal additional
hardware. Lastly, four special-purpose registers for Keccak
integration are added as detailed in Section 4.

6.2.2. Modified Big Number MAC. We replace the 64-bit
multiplier within the BN-MAC with our configurable vec-
torized multiplier (cf. Section 6.1.2). Similarly, we replace
the original adder with our configurable vectorized adder
(cf. Section 6.1.1). As explained above, one bn.mulv(m) is
split into several clock cycles. In the following, we describe
the different execution stages for the different bn.mulv(m)
variants. For .8S variants, d = 32 and for .16H vari-
ants, d = 16. The resulting architecture of our modified
BN-MAC unit is depicted in Figure 6. As for bn.mulvm
specifically, Montgomery multiplication (cf. Algorithm 2.1)
is implemented, instead of Plantard, because it does not
expand the input size, which fits the context of the vectorized
multiplication instruction perfectly. To configure q and R,

[·]32

[·]16
[·]16

[·]32×

+

−

ACC

TMP

C

a

q
R
b

q
r

Figure 6: Architecture of our modified BN-MAC module.

[·]32

[·]16
[·]16

[·]32

[·]16

[·]32

×

×

×

+

−

a

b

R

q

q

r

c

Figure 7: Architecture of our proposed BN-MULV module.

respectively, we added a dedicated connection from the MOD
register within the BN-ALU to the BN-MAC module and
use sub-words of this register.

Execution Stages for bn.mulvm. This instruction
takes two 256-bit WDRs as operands, and the multiplier
operates on them quarter-word-wise (64-bit-wise). For each
quarter word, the first cycle computes c = ab and [c]d.
In the second cycle, m = [cR]d is calculated. The TMP
register is then added to store the intermediate results from
the first two clock cycles. Lastly, r = [m × q + c]d and a
conditional subtraction of r (if r ≥ q) are done in one clock
cycle. To achieve this, we integrate an additional subtractor
into the BN-MAC, saving one clock cycle per quarter word
with minimal area overhead. The partial results from each
quarter word operation are stored and concatenated in the
accumulator register ACC. Additionally, c = a × b from
the first cycle must be stored for reuse in the third cycle.
Therefore, we integrated the register C into the BN-MAC
unit. This design requires 12 clock cycles per bn.mulvm
instruction.

Execution Stages for bn.mulv. Similarly to
bn.mulvm, the modified BN-MAC also takes 256-bit
operands and processes them quarter-word-wise for the
bn.mulv instruction. However, it requires only one clock
cycle per quarter word, computing c = a× b and [c]d, with
partial results concatenated in the accumulator register. This
results in 4 clock cycles per bn.mulv instruction.

6.2.3. Big Number MULV Module. For the single-cycle
bn.mulv(m) approach, we integrate the new BN-MULV
module into the OTBN pipeline. This design aims for high
performance and minimizes changes to OTBN’s control
logic. The architecture of the BN-MULV module is illus-
trated in Figure 7.

For the bn.mulv instruction (vectorized multiplication
without modular reduction), c is selected as the output.
For bn.mulvm, the BN-MULV module handles vectorized
modular multiplication using the Montgomery algorithm

(Algorithm 2.1), supporting either 16-bit (.16H) or 32-bit
(.8S) input vectors. It executes 16 16-bit or 8 32-bit op-
erations concurrently, sharing the same multiplier for both,
as outlined in Section 6.1.2. The adder and subtractor are
also shared, following the configurable adder approach from
Section 6.1.1. The vectorized addition on line 2 followed by
the vectorized conditional subtraction on lines 3-5 of Algo-
rithm 2.1, is implemented similarly to the pseudo-modulo
reduction within the BN-ALU for the bn.addv instruction.
Additional routing is required to efficiently implement the
selection of the lower or upper d bits ([.]d or [.]d respec-
tively) with additional multiplexers distinguishing between
.8S and .16H variants. The values of q and R are configured
analogously to our BN-MAC extension through a dedicated
connection from the BN-ALU’s MOD register to the BN-
MULV module.

TABLE 1: Resource Utilization on Xilinx 7-Series FPGAs.

Design LUT FF DSP BRAM
BN-MAC 2,141 312 16 0
BN-MACExt. 4,450 508 16 0
BN-MULVExt.++ 10,472 0 96 0

BN-ALU 6,321 320 0 0
BN-ALUKMAC 8,982 1,286 0 0
BN-ALUExt. 8,604 320 0 0
BN-ALUKMAC

Ext. 11,649 1,286 0 0

Butterfly (KYBER, DILITHIUM) [24] 3,887 951 33 0
Butterfly (KYBER, NewHope) [29] 2,908 170 9 0
Mod. arith. (NewHope) [62] 1,907 1,658 7 34
Mod. arith. (KYBER) [28] 178 0 5 0.5
Mod. arith. (DILITHIUM) [28] 377 0 10 0.5
Mod. arith. (KYBER) [31] 93 0 1 0
Mod. arith. (DILITHIUM) [30] 312 0 4 0
Keccak [24] 1,312 0 0 0
Keccak [30] 3,622 1,605 0 0
Keccak [29] 3,847 0 0 0

TABLE 2: Resource Utilization for 7nm ASIC. Area in
µm2.

Design Cell Count Cell Area Net Area Total Area
BN-MAC 13,376 1,623 822 2,446
BN-MACExt. 22,637 2,510 1,307 3,817
BN-MULVExt.++ 100,090 10,280 5,419 15,699

BN-ALU 20,377 2,150 1,264 3,414
BN-ALUKMAC 29,317 3,344 1,710 5,054
BN-ALUExt. 22,313 2,269 1,434 3,702
BN-ALUKMAC

Ext. 32,271 3,592 1,965 5,557

6.2.4. Synthesis Results for Single Extensions. Table 1
and Table 2 present synthesis results for Xilinx 7-Series
devices and ASIC results for the ASAP7 PDK [63] respec-
tively. The tables include four variants: BN-ALU, the ref-
erence design without extensions; BN-ALUKMAC, with the
KMAC interface (see Section 4); BN-ALUExt., with vector
extensions only; and BN-ALUKMAC

Ext. , which includes both the
KMAC interface and vector extensions. Our results show
that BN-ALUExt. does not introduce a significant overhead,

with most resources reused. However, the KMAC interface
induces additional overhead due to the need for additional
flip-flops, extended read/write ports for new special-purpose
registers, and countermeasures including blanking, wiping,
and integrity protection (cf. Section 2.4.1). Moreover, the
KMAC interface also includes a small FIFO.

For our vectorized multiplication approach, Table 1 and
Table 2 show synthesis results for the original BN-MAC, its
extended version BN-MACExt. (cf. Section 6.2.2), and the
proposed BN-MULVExt.++ module (cf. Section 6.2.3). Our
results show that BN-MACExt. leads to a moderate increase
in resources, while BN-MULVExt.++ is several times larger
than BN-MAC, which aligns with the resource requirements
for parallel Montgomery multiplication discussed in Sec-
tion 6.2.3. BN-MACExt. includes additional registers with
integrity protections, and a new subtractor (cf. Section 6.2.2)
with corresponding blanking mechanism, all of which con-
tribute to the increase in resource consumption. Table 1 com-
pares our extensions to other tightly coupled accelerators
revealing that the others are more compact, as they only
focus on specific extensions and do not incorporate generic
big number arithmetic for contemporary cryptography. Most
of the works cited in Table 1 use 32-bit architectures,
while ours operate on 64-bit or 256-bit. The Keccak designs
require similar or fewer resources than the KMAC interface;
however, as we will show later, the external KMAC offers
massive performance improvements. Furthermore, none of
the cited works account for side-channel compliance with
OTBN design requirements, A more detailed comparison
considering processor specifications can be found in Sec-
tion 7.3.

7. Results

This section presents the results of our work, including
cycle counts, memory usage, code size, and FPGA/ASIC
synthesis outcomes. We separately report cycle counts for
polynomial multiplication functions and full schemes, along
with comparisons to related work and other common imple-
mentation targets.

Testing & Benchmarking Setup. We test our
ML-{KEM,DSA} implementations using the OpenTitan
Python simulator for OTBN, OTBNKMAC, OTBNKMAC

Ext. , and
OTBNKMAC

Ext.++ with the added KMAC interface and new in-
structions. The simulator incorporates cycle count estimates
for KMAC along with the communication overhead from
OTBN to KMAC. For correctness verification, we compared
our implementations to Pope’s Python versions of ML-
KEM and ML-DSA [64], [65], which have been evaluated
using known answer test (KAT) vectors derived from the
schemes’ official C reference implementations [19], [20].
We evaluated our code on over 10 000 random inputs.

We compare our software implementations to com-
monly known platforms that share some characteristics with
OTBN/OTBNKMAC

Ext. . For Intel AVX2, we reference draft-
standard compliant implementations from the pq-crystals

team2, and run benchmarks on an Intel Core i7-6700K
Skylake processor with hyperthreading and Turbo Boost
disabled. We compile using gcc version 12.2.0 on Debian
11. For RISC-V vector (RVV) extension, we compare to the
numbers for RV64IMBV from [22], which use a XuanTie
C908 64-bit CPU (CanMV-K230 dev. board). For Cortex-
M4, we employ the pqm4 framework [58] using code for
KYBER from [12] and for DILITHIUM from [13], adapted
to NIST draft standards by Kannwischer and compiled with
arm-none-eabi-gcc version 13.2.1.

Although OTBN serves as a co-processor to the main
Ibex processor, we find it fair to compare cycle counts of
the cryptographic scheme directly on OTBN. While Ibex
may need to configure OTBN by loading firmware in some
cases, this step can typically be prepared at boot-up. Data
transfers between the two processors are as fast as normal
memory accesses since they share certain memory sections.
In fact, the OpenTitan architecture even allows shielding
secrets from Ibex via its key manager, potentially reducing
the need for some data transfers. For this paper, however,
we only consider plain cycle counts on OTBN.

7.1. Software Benchmarks

7.1.1. Polynomial Multiplication. Table 3 shows the cycle
counts for the polynomial multiplication related functions
of ML-{KEM,DSA}. Our OTBNKMAC

Ext. implementation out-
performs the implementations on plain OTBN with speedups
up to a factor of eight. Additionally, the OTBNKMAC

Ext.++ im-
plementation is two to three times faster than that of
OTBNKMAC

Ext. .
Comparing our OTBNKMAC

Ext. results with the closely re-
lated work from [23], we can see that our implementa-
tion is more than 4× faster, while making use of similar
vectorization techniques. A key difference here is that we
provide vectorized and modular addition, subtraction, and
multiplication instructions, while [23] replicates these oper-
ations in software. We believe that our approach aligns better
with OTBN’s design philosophy, as it is geared towards
cryptographic operations – where modular operations are
a staple – while still remaining rather general. Compared
to [24], we see an 18% slowdown in the transformations
but a 30% speedup in pointwise multiplication in the case
of ML-DSA. In contrast, our implementation is up to twice
as fast for ML-KEM, attributed to vectorization enabling
greater parallelization on OTBNKMAC

Ext. , while [24] does not
consider a SIMD approach. Results from [26] suggest that
applying the Kronecker+ technique from [25] may not be
suitable for OTBN, as our baseline implementation per-
forms better. The AVX2 implementation on Intel Skylake,
offering equally-sized registers, outperforms our work on
OTBNKMAC

Ext. due to its super-scalar architecture and out-
of-order (OoO) execution capabilities. Our implementation
on OTBNKMAC

Ext. outperforms the one on the C908 due to

2. https://github.com/pq-crystals/kyber/tree/11d00ff1f20cfca1f72d819e
5a45165c1e0a2816, https://github.com/pq-crystals/dilithium/tree/e7bed62
58b9a3703ce78d4ec38021c86382ce31c

https://github.com/pq-crystals/kyber/tree/11d00ff1f20cfca1f72d819e5a45165c1e0a2816
https://github.com/pq-crystals/kyber/tree/11d00ff1f20cfca1f72d819e5a45165c1e0a2816
https://github.com/pq-crystals/dilithium/tree/e7bed6258b9a3703ce78d4ec38021c86382ce31c
https://github.com/pq-crystals/dilithium/tree/e7bed6258b9a3703ce78d4ec38021c86382ce31c

OTBN’s WDRs being 2× as wide as the C908’s registers.
In addition to that, our ISA extensions being tailored for
modular arithmetic contributes to our speedup: bn.mulvm
takes only 12 cycles on OTBNKMAC

Ext. , whereas the RVV
implementation requires explicit Montgomery multiplica-
tion using four instructions with a latency of 4–5 cycles
each [22]. However, our gains remain below a factor of 2
due to the C908’s superscalar nature. Compared to the work
from [28], we achieve speedups up to a factor of 18 on
OTBNKMAC

Ext. , mainly attributed to our vectorized approach.
Despite the less general approach in [29], we still manage
to obtain a speedup of nearly 2×.

TABLE 3: Cycle Counts for Polynomial Multiplication Re-
lated Functions of ML-{KEM,DSA}.

Platform NTT INTT Base Mul.

M
L

-D
S

A

OTBNKMAC
Ext.++ 996 1003 230

OTBNKMAC
Ext. 2404 2587 582

OTBN(KMAC) 8206 8701 2552

OTBN [24]a 1972 2244 768
OTBN [26] 10 763 13 943 9714
Skylake [37] 840 800 150
C908 [22] 3395 3540 759
Cortex-M4 [15] 8066 8388 1931
[28] 18 554 21 375 —

M
L

-K
E

M

OTBNKMAC
Ext.++ 384 392 284

OTBNKMAC
Ext. 1000 1096 724

OTBN(KMAC) 8133 8771 4604

OTBN [23]a 4356 — —
OTBN [24]a 1454 1726 1448
Skylake [40] 208 228 86
C908 [22] 1575 1840 753
Cortex-M4 [12] 4474 4684b 2422
[28] 18 488 18 488 —
[29] 1935 1930 —
[31] 4189 3481 3257

a Modified variant of OTBN. b For ML-KEM-512.

7.1.2. Full-Scheme Benchmarks. We present the bench-
mark results for all three parameter sets and all three oper-
ations of ML-DSA and ML-KEM in Tables 4 and 5.

As shown in Table 4, our OTBNKMAC
Ext. implementation

achieves performance gains of six to nine times compared
to plain OTBN, largely due to the KMAC interface, as
evident from the numbers for OTBNKMAC. The OTBNKMAC

Ext.++
implementation is again up to 32% faster than OTBNKMAC

Ext. .
Comparing our work for OTBNKMAC

Ext. to the implemen-
tations for the verification from [24], we are around five
to six times faster, which shows that the faster Keccak
acceleration and pointwise multiplication makes up for the
slightly slower (inverse) NTT. The KMAC core just taking
96 cycles per Keccak permutation compared to the 1770
the C908 needs is an important reason for the speedup
we achieve over the implementation from [22] – in addi-
tion to the factors mentioned in Section 7.1.1. However,
our performance on OTBNKMAC

Ext. remains behind the AVX2
optimized implementation on Intel Skylake. In terms of
hardware/software co-designs, our cycle counts are lower
than all compared works. The compact implementation

from [30] is the closest to our work on OTBNKMAC
Ext. , although

it relies on specifically tailored extensions for DILITHIUM.
A comparison of respective hardware overheads will follow
in Section 7.3.

The performance of ML-KEM on OTBNKMAC
Ext. mirrors

that of ML-DSA, with significant speedups attributed to
the KMAC interface. Our ISA extensions yield an even
greater performance gain for ML-KEM, tracing back to
the higher parallelism for 16-bit elements. We outperform
the plain OTBN implementation by nearly a factor of nine.
Again, OTBNKMAC

Ext. outperforms the C908 implementation,
but cannot keep up with AVX2. The hardware/software co-
design with the most comparable performance is that of [29],
which also uses a vectorized approach to modular arithmetic
and a Keccak accelerator. However, it differs in specificity
and accelerator capabilities, resulting in speedups of up to
a factor of 4 for our work. As the work from [31] picks
a highly resource-constrained approach without making use
of any form of Keccak acceleration, it is no surprise that
the speedups on OTBNKMAC

Ext. are as high as a factor of 17.
As mentioned in Section 2.4.2, we only provide masked

KMAC numbers as it is a more conservative choice and
likely to be manufactured in practice. However, if unmasked
KMAC is used, ML-{KEM,DSA} performance can be
derived from the profiling tables in Sections 3 to 5 and
Tables 4 and 5. For instance, we estimate cycle savings of
4–7% for ML-DSA-65 based on Figure 3a and Table 4 with
unmasked Keccak.

Memory & Code Size. Memory usage and code size
were not optimized in our work but remain comparable to
those of other microcontroller architectures. For example on
OTBNKMAC

Ext. , our stack usage is very close to that of Arm
Cortex-M4, being 24.9–39.9% below the results on M4 for
ML-KEM and 1.1–3.6% for ML-DSA key generation and
verification. For signing, ours is 2.4–13.6% larger than that
of M4. We follow state-of-the-art (SotA) implementation
patterns and refrain from applying optimization techniques
that trade memory or code size for performance. More de-
tailed data on these metrics can be obtained from Section E.

7.2. PQC on OpenTitan: System Impact

Previously, we only compare the performance of ML-
{KEM,DSA} with and without our extensions isolated on
OTBN. Thus, in the following, we discuss the practicality of
them with respect to OpenTitan as a whole. The two main
questions arising from this are: (1) How does running PQC
in addition to classical cryptography on OTBN affect the
system-performance? (2) Will locking KMAC with OTBN
slow down common applications relying on KMAC and how
will it impact OpenTitan in general?

With respect to (1), it is true that an application requir-
ing, e.g., an ECDSA-P256 signature would have to wait
in case, e.g., an ML-DSA-44 signature is being computed
on OTBN. First, it has to be said that the impact of such
effects is highly dependent on the use-case of OpenTitan and
the applications running on it. To approach this question,
we compare the performance of PQC using our extensions

TABLE 4: ML-DSA Full-Scheme Cycle Counts. Median
Result Was Selected, if Given. 10 000 Iterations.

Platform Key Gen. Sign Verify

M
L

-D
S

A
-4

4

OTBN 1 242 491 2 578 069 1 231 623
OTBNKMAC 270 910 1 116 688 318 933
OTBNKMAC

Ext. 149 889 409 892 158 382
OTBNKMAC

Ext.++ 130 753 286 544 131 179

OpenTitan [24]b,c — — 997 722
Skylake [37]a 92 062 210 670 96 102
C908 [22]b — — —
Cortex-M4 [13]a 1 353 035 2 887 554 1 351 519
[27]b 593 403 1 905 872 651 217
[28]b 1 592 325 5 884 266 1 700 679
[30]b 541 869 845 005 563 385

M
L

-D
S

A
-6

5

OTBN 2 190 308 4 499 356 2 113 136
OTBNKMAC 438 173 1 926 881 493 458
OTBNKMAC

Ext. 261 003 699 303 256 486
OTBNKMAC

Ext.++ 233 910 476 280 215 778

OpenTitan [24]b,c — — 1 488 526
Skylake [37]a 154 764 348 512 155 208
C908 [22]b 645 000 2 139 000 646 000
Cortex-M4 [13]a 2 390 147 4 871 469 2 294 454
[27]b 1 067 824 3 253 378 1 126 938
[28]b 2 974 897 10 211 677 2 963 936
[30]b 902 273 1 329 844 918 863

M
L

-D
S

A
-8

7

OTBN 3 752 752 6 191 376 3 682 307
OTBNKMAC 691 143 2 354 620 769 669
OTBNKMAC

Ext. 410 615 915 838 421 653
OTBNKMAC

Ext.++ 365 501 657 262 361 715

OpenTitan [24]b,c — — 2 223 143
Skylake [37]a 242 186 430 212 241 930
C908 [22]b — — —
Cortex-M4 [13]a 4 071 682 6 672 924 4 000 721
[27]b 1 784 767 4 357 249 1 848 324
[28]b 5 001 302 13 339 255 5 132 776
[30]b 1 533 230 2 065 456 1 561 021

a Own benchmarks. b Round 3 DILITHIUM.
c Including modified variant of OTBN, parts of the execution on Ibex Core.

from Table 4 to the performance of ECC and RSA as it is
currently provided for OTBN by the OpenTitan team from
Table 6. We can observe that at the same security level, ML-
DSA-44 signing is 41% faster than ECDSA-P256, and even
150× faster than RSA-3072. We deem this as an indicator
for the acceptability of the additional strain on the overall
system.

Regarding (2), locking KMAC with OTBN will po-
tentially stall non-OTBN applications that require KMAC.
However, in scenarios where both KMAC and OTBN are
needed alongside other IPs, this approach reduces the overall
runtime. Indeed, by comparing the results for OTBN and
OTBNKMAC from Tables 4 and 5, we can see that the cycle
savings from using the KMAC interface are always signif-
icantly larger than the time KMAC is locked for OTBN.
Thus, we found it compelling from a design perspective to
lock two blocks for short time rather than one for several
times as long, leading to the overall time-saving. Another
way to avoid locking KMAC is to access it through Ibex.
Yet, this is not desirable for the reasons given in Section 3.

Note that due to the asynchronous nature of OpenTitan’s

TABLE 5: ML-KEM Full-Scheme Cycle Counts. Median
Result Was Selected, if Given. 10 000 Iterations.

Platform Key Gen. Encaps Decaps

M
L

-K
E

M
-5

12

OTBN 322 911 351 037 396 188
OTBNKMAC 87 072 117 890 162 124
OTBNKMAC

Ext. 36 599 46 199 57 717
OTBNKMAC

Ext.++ 32 375 40 119 48 485

Skylake [40]a 29 450 30 998 30 518
C908 [22]b — — —
Cortex-M4 [12]a 369 449 373 051 408 633
[28]b 419 597 438 280 100 796
[29]c 150 106 193 076 204 843
[31]b 622 000 785 000 713 000

M
L

-K
E

M
-7

68

OTBN 562 392 609 781 668 548
OTBNKMAC 156 969 194 602 253 998
OTBNKMAC

Ext. 69 625 81 615 97 048
OTBNKMAC

Ext.++ 61 967 71 585 82 698

Skylake [40]a 47 598 46 730 47 420
C908 [22]b 165 000 197 000 207 000
Cortex-M4 [12]a 603 262 626 531 673 369
[28]b 694 504 731 597 130 348
[29]c 273 370 325 888 340 418
[31]b 988 000 1 237 000 1 133 000

M
L

-K
E

M
-1

02
4

OTBN 910 496 964 913 1 041 230
OTBNKMAC 245 747 290 406 365 049
OTBNKMAC

Ext. 113 777 127 924 148 035
OTBNKMAC

Ext.++ 101 807 113 044 127 656

Skylake [40]a 64 606 65 326 67 776
C908 [22]b — — —
Cortex-M4 [12]a 959 632 981 334 1 041 133
[28]b 1 090 458 1 126 462 159 639
[29]c 349 673 405 477 424 682
[31]b 1 543 000 1 851 000 1 719 000

a Own benchmarks. b Round 3 KYBER. c Round 2 KYBER.

cryptolib, it is still possible for Ibex to issue cryptographic
operations to other IP blocks, i.e., AES, HMAC, etc., while
OTBN and KMAC are busy with a PQC operation.

As this work strives for a low-overhead solution for ac-
celerating classical cryptography and PQC simultaneously,
we do not consider the alternative approach of adding a
second KMAC core and PQC accelerator. This solution
would come at a significant hardware cost which we aim
to avoid – although mitigating any potential performance
degradation.

TABLE 6: ECC/RSA Benchmarks [66].

Operation Cycles

ECDSA-P256 Sign 704 126
ECDSA-P384 Sign 1 697 985
RSA-2048 Sign 18 889 021
RSA-3072 Sign 61 303 537

7.3. Hardware Utilization

As demonstrated in previous sections, we outperform
most existing RISC-V-based ISA extensions [27], [28], [29],
[30], [31] in terms of cycle counts and latency. This can be

attributed to three main factors. First, our approach utilizes
the 256-bit WDRs of OTBN for SIMD operations, providing
a significant advantage over {32,64}-bit architectures. While
[24] also leverages OTBN’s WDRs, they only compute one
32-bit butterfly operation per cycle and does not fully exploit
WDRs for SIMD. Second, thanks to the availability of
OTBN’s WDRs, the cost of memory accesses is minimized.
Third, we implemented a dedicated interface to KMAC,
which computes a Keccak round in just 4 cycles, compared
to 40 cycles with the Keccak ISA extensions in [24]. Al-
though the Keccak accelerator in [27], [29] can compute one
round per cycle, it requires additional floating-point registers
and accesses multiple registers at once. We found that not
integrating such a powerful accelerator into the processor
pipeline itself, but providing a dedicated interface offers
similar performance and even allows a cleaner integration.

Table 8 presents the ASIC synthesis results using the
ASAP7 PDK [63]. We synthesized the Top-Earlgrey design
rather than the Chip-Earlgrey-ASIC design (which is built
on top of Top-Earlgrey with some additional modules) due
to missing standard cells in the PDK. The table also shows
synthesis results for OTBN with different extension variants.
For both designs, we treated memory as a black box and
only targeted logic overhead as memory requirements are
similar for all variants. These numbers highlight that the
performance improvement of our OTBNKMAC

Ext. implementa-
tion comes at a low cost. In contrast, the significant per-
formance gains of our OTBNKMAC

Ext.++ are relatively expensive,
nearly doubling the size of OTBN. However, considering
OpenTitan’s overall area, this remains a reasonable approach
in case highest performance is desired.

We analyzed the impact of our extensions on the critical
path by evaluating out-of-context ASIC synthesis results for
OTBN and the ASAP7 PDK. In the original OTBN and
OTBNKMAC

Ext. , the critical path is within the BN-MAC. For
OTBNKMAC

Ext.++ , the critical path moves to our new BN-MULV
module. These shifts are expected due to the complexity of
the implemented operations. The maximum clock frequency
decreases from 819 MHz for the original OTBN to 490 MHz
for OTBNKMAC

Ext. and 350 MHz for OTBNKMAC
Ext.++ . The drop

in maximum frequency for OTBNKMAC
Ext. can be explained

by the fact that our extension adds hardware to the most
critical path within the original OTBN. Considering the
complexity of our BN-MULV module, it appears evident
that the most critical path is within the BN-MULV mod-
ule for OTBNKMAC

Ext.++ . Considering the drop in maximum
clock frequency, our OTBNKMAC

Ext.++ still achieves a 3.5× –
4.4× net speedup, while OTBNKMAC

Ext. reaches 3.8× – 5.5×,
meaning the more resource-efficient OTBNKMAC

Ext. can out-
perform OTBNKMAC

Ext.++ in some cases at maximum frequency.
This highlights the potential for design space exploration.
However, the OpenTitan Earl Grey ASIC implementation
aims for a moderate frequency of 100 MHz which is easily
achieved for both, OTBNKMAC

Ext. and OTBNKMAC
Ext.++ .

Table 7 provides more insights into the hardware uti-
lization of related work. Our FPGA results target Xilinx
7-Series devices, including those for OTBN and the Chip-
Earlgrey-CW310 design. In [28], the authors choose the

TABLE 7: Comparison With SotA HW/SW Co-designs.

Design
ASIC FPGA

Cell Count LUT FF DSP

Top-EarlgreyKMAC
Ext. 757 640 246 616 121 722 22

Top-EarlgreyKMAC
Ext.++ 841 418 254 625 121 516 118

OTBNKMAC 141 052 35 061 16 585 16
OTBNKMAC

Ext. 156 354 40 150 16 806 16
OTBNKMAC

Ext.++ 254 655 48 158 16 641 112

[24] — 55 409 16 575 49
[29] 57 413 24 306 10 837 18
[27] 65 968 22 356 13 181 13
[28] — 64 855 60 349 29
[31] 13 573 9614 6669 5
[30] 22 936 15 258 12 934 7

more powerful application-level processor CVA6. The works
in [27], [29] utilize PULPino, a microcontroller with slightly
more features than Ibex. Meanwhile, [30], [31] employs the
very compact Hummingbird E203 core. In general, compar-
isons with other studies except [24] are not straightforward,
as OTBN is a very specific target. While it includes big-
number arithmetic modules and countermeasures, it lacks
features present in other platforms. Furthermore, OTBN’s
fault injection and side-channel countermeasures imply that
all extensions must consider the same protections. The
extensions in [24], [28], [30], [31] are considerably more
compact yet reduce performance. For [27], [29], [30], the
relative overhead is larger, but both the base and extended
platform are more compact than our extended OTBN. The
OTBN extension proposed in [23] is not included in Table 7
as they do not provide an actual hardware implementation.
A resource-efficient integration of their vectorized shift/ad-
dition/subtraction could involve reconfiguring the BN-ALU,
similar to our method. While both approaches to vector-
ized multiplication reconfigures the BN-MAC, they focus
on 32-bit multiplications, as opposed to our design which
supports both 16-bit and 32-bit multiplications, offering
greater flexibility at the cost of more multiplexing logic. A
further difference is that our implementation incorporates
an additional subtractor to speed up the modular multi-
plication as discussed in Section 6.2.2. The hardware cost
for their concatenate-and-left-shift-immediate and broadcast
instruction is minimal due to simple signal rewiring and
multiplexing. As a result, their approach trades a slightly
lower hardware overhead for less flexibility and significantly
reduced performance (cf. Section 7.1.1).

In summary, while existing designs may better suit spe-
cific use cases requiring compact platforms, our extensions
for OpenTitan – being the first industry-grade open-source
secure element – offer seamless micro-architectural integra-
tion, flexibility, and high performance with minimal hard-
ware overhead. Our comparison with SotA designs indicates
that the hardware costs of our extensions are acceptable,
relative to both related work and the overall OpenTitan.

TABLE 8: ASIC Synthesis – Area Consumption for 7 nm
Process Without Memories. Area Is Given in µm2.

Design Cell Count Cell Area Net Area Total Area

Top-Earlgrey 740 101 106 885 41 763 148 647
Top-EarlgreyKMAC

Ext. 757 640 109 004 42 991 151 995
Top-EarlgreyKMAC

Ext.++ 841 418 117 325 47 564 164 889

OTBN 134 258 16 264 7471 23 735
OTBNKMAC 141 052 17 202 7863 25 064
OTBNKMAC

Ext. 156 354 18 741 8608 27 349
OTBNKMAC

Ext.++ 254 655 28 788 13 872 42 660

8. Discussion and Future Work

As noted in Section 5, we take a different approach
from most related work by offering a more generic ISA
extension for vector arithmetic, rather than scheme-specific
instructions. Our extensions accelerate schemes requiring
modular arithmetic with moduli fitting in a 32-bit word,
including many lattice-based schemes such as Falcon [67],
FrodoKEM [68], or NTRU Prime [69]. Also the MQ-
based scheme MQOM [70] and the hybrid homomorphic
encryption “Pasta” [71] rely on such arithmetic. Almost
all aforementioned schemes also benefit from the KMAC
interface. For symmetric cryptography, our instructions can
optimize ARX-ciphers ChaCha20/Salsa20 [72], [73] and
SHA256 [74] hashing with vectorized additions modulo 232

and shifts(/rotations).
A potential follow-up could involve applying memory

reduction techniques from [14], [16] and exploring how
trade-offs on OTBN change with access to the fast KMAC
block for hashing. In this regard, extending the ISA with
a bit-mask-based permutation instruction for vectorized re-
jection sampling, as in [75], could be considered, given
that most stack optimizations shift runtime towards sam-
pling. Since OpenTitan already offers a masked KMAC
core, extending our work to masked implementations of
ML-{KEM,DSA} whilst re-evaluating the adequacy of our
proposed extensions could be worthwhile. Additionally, the
applicability of our ISA extension to, e.g., the Falcon ver-
ification, signature schemes from NIST’s on-ramp process,
or fully homomorphic encryption could also be studied.
As OpenTitan targets high security standards, a formally
verified re-implementation of ML-{KEM,DSA} on OTBN
would be a logical next step. OTBN support for the Jas-
min language [76] is a current work-in-progress by Arranz
Olmos3.

Another possibility for future work is to explore design
optimizations. For instance, our multiplier in Section 6.1.2
currently uses only four of its sixteen 16-bit multipliers
for ML-KEM. Since ML-KEM’s 16-bit multiplications do
not require carry-save-adders for partial product combina-
tion, increasing the number of parallel 16-bit multiplications
could be a cost-effective improvement.

3. https://github.com/sarranz/jasmin/tree/demo1

Acknowledgements
This research was supported by Deutsche Forschungs-

gemeinschaft (DFG, German research Foundation) as part
of the Excellence Strategy of the German Federal and State
Governments – EXC 2092 CASA - 390781972; by the Eu-
ropean Commission through the ERC Starting Grant 805031
(EPOQUE); by the German Federal Ministry of Education
and Research (BMBF) in the framework of the 6GEM re-
search hub under grant number 16KISK038; by the Bavarian
Ministry of Economic Affairs, Regional Development and
Energy in the context of the project Trusted Electronics
Bavaria (TrEB); by the SALTO strategic exchange program
between the Centre National de la Recherche Scientifique
(CNRS) and the Max-Planck-Gesellschaft (MPG); and by
the French National Research Agency in the course of
the “Investissements d’avenir” program (ANR-15-IDEX-
02). We thank Andrew “bunnie” Huang for providing insight
on the performance characteristics of our hardware design.

References

[1] M. R. Albrecht, C. Hanser, A. Hoeller, T. Pöppelmann, F. Virdia,
and A. Wallner, “Implementing RLWE-based schemes using an RSA
co-processor,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2019, no. 1, pp. 169–208, 2018. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/7338
1

[2] A. Greuet, S. Montoya, and G. Renault, “On using RSA/ECC
coprocessor for ideal lattice-based key exchange,” in COSADE
2021: 12th International Workshop on Constructive Side-Channel
Analysis and Secure Design, ser. Lecture Notes in Computer
Science, S. Bhasin and F. De Santis, Eds., vol. 12910. Springer,
Cham, Oct. 2021, pp. 205–227. [Online]. Available: https:
//doi.org/10.1007/978-3-030-89915-8 10 1

[3] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire:
A configurable crypto-processor for post-quantum lattice-based
protocols,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2019, no. 4, pp. 17–61, 2019. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8344
1

[4] D. Adrian, B. Beck, D. Benjamin, and D. O’Brien, “Advancing our
amazing bet on asymmetric cryptography,” Post on the Chromium
Blog, 2024. [Online]. Available: https://blog.chromium.org/2024/05/
advancing-our-amazing-bet-on-asymmetric.html 1

[5] W. Evans, B. Westerbaan, C. Patton, P. Wu, and V. Gonçalves,
“Post-quantum cryptography goes GA,” Post on the Cloudflare Blog,
2023. [Online]. Available: https://blog.cloudflare.com/post-quantum
-cryptography-ga/ 1

[6] Mozilla, “Mozilla Firefox Mercurial,” 2023. [Online]. Available:
https://hg.mozilla.org/releases/mozilla-release/file/d3c71a6fc9a1aecf
1fe04f8de2fc0b816588e677/security/manager/ssl/nsNSSIOLayer.cpp
#l1439 1

[7] E. Kret and R. Schmidt, “The PQXDH key agreement protocol,”
Signal, Tech. Rep., 2024. [Online]. Available: https://signal.org/doc
s/specifications/pqxdh/pqxdh.pdf 1

[8] Apple Security Engineering and Architecture (SEAR), “iMessage
with PQ3: The new state of the art in quantum-secure messaging at
scale,” 2024. [Online]. Available: https://security.apple.com/blog/im
essage-pq3/ 1

[9] “ANSSI views on the post-quantum cryptography transition (2023
follow up),” French Cybersecurity Agency (ANSSI), Paris, France,
Position Paper, 2023. [Online]. Available: https://cyber.gouv.fr/sites/
default/files/document/follow up position paper on post quantum
cryptography.pdf 1

https://github.com/sarranz/jasmin/tree/demo1
https://tches.iacr.org/index.php/TCHES/article/view/7338
https://doi.org/10.1007/978-3-030-89915-8_10
https://doi.org/10.1007/978-3-030-89915-8_10
https://tches.iacr.org/index.php/TCHES/article/view/8344
https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html
https://blog.cloudflare.com/post-quantum-cryptography-ga/
https://blog.cloudflare.com/post-quantum-cryptography-ga/
https://hg.mozilla.org/releases/mozilla-release/file/d3c71a6fc9a1aecf1fe04f8de2fc0b816588e677/security/manager/ssl/nsNSSIOLayer.cpp#l1439
https://hg.mozilla.org/releases/mozilla-release/file/d3c71a6fc9a1aecf1fe04f8de2fc0b816588e677/security/manager/ssl/nsNSSIOLayer.cpp#l1439
https://hg.mozilla.org/releases/mozilla-release/file/d3c71a6fc9a1aecf1fe04f8de2fc0b816588e677/security/manager/ssl/nsNSSIOLayer.cpp#l1439
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://security.apple.com/blog/imessage-pq3/
https://security.apple.com/blog/imessage-pq3/
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf

[10] “BSI TR-02102-1: Cryptographic mechanisms: Recommendations
and key lengths, version: 2024-1,” Federal Office for Information
Security (BSI), Bonn, Germany, Technical Guideline, 2024. [Online].
Available: https://www.bsi.bund.de/EN/Themen/Unternehmen-und-O
rganisationen/Standards-und-Zertifizierung/Technische-Richtlinien/T
R-nach-Thema-sortiert/tr02102/tr02102 node.html 1

[11] OpenTitan Team, “Datasheet - OpenTitan documentation,” 2023.
[Online]. Available: https://opentitan.org/book/doc/introduction.html
1, 3, 4

[12] J. Huang, J. Zhang, H. Zhao, Z. Liu, R. C. C. Cheung, Ç. K.
Koç, and D. Chen, “Improved Plantard arithmetic for lattice-based
cryptography,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2022, no. 4, pp. 614–636, 2022. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/9833
2, 3, 4, 5, 11, 12, 13, 25

[13] J. Huang, A. Adomnicai, J. Zhang, W. Dai, Y. Liu, R. C. C.
Cheung, Ç. K. Koç, and D. Chen, “Revisiting Keccak and
Dilithium implementations on ARMv7-M,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2024, no. 2,
pp. 1–24, 2024. [Online]. Available: https://tches.iacr.org/index.php
/TCHES/article/view/11419 2, 11, 13

[14] J. W. Bos, J. Renes, and A. Sprenkels, “Dilithium for memory
constrained devices,” in AFRICACRYPT 22: 13th International
Conference on Cryptology in Africa, ser. Lecture Notes in
Computer Science, L. Batina and J. Daemen, Eds., vol. 2022.
Springer, Cham, Jul. 2022, pp. 217–235. [Online]. Available:
https://eprint.iacr.org/2022/323 2, 15

[15] A. Abdulrahman, V. Hwang, M. J. Kannwischer, and A. Sprenkels,
“Faster Kyber and Dilithium on the Cortex-M4,” in ACNS 22: 20th
International Conference on Applied Cryptography and Network
Security, ser. Lecture Notes in Computer Science, G. Ateniese and
D. Venturi, Eds., vol. 13269. Springer, Cham, Jun. 2022, pp.
853–871. [Online]. Available: https://eprint.iacr.org/2022/112 2, 12

[16] D. O. C. Greconici, M. J. Kannwischer, and A. Sprenkels,
“Compact Dilithium implementations on Cortex-M3 and Cortex-
M4,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2021, no. 1, pp. 1–24, 2021. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8725 2, 15

[17] E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-M4
optimizations for {R,M}LWE schemes,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, no. 3,
pp. 336–357, 2020. [Online]. Available: https://tches.iacr.org/index.p
hp/TCHES/article/view/8593 2

[18] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-
efficient high-speed implementation of Kyber on Cortex-M4,” in
AFRICACRYPT 19: 11th International Conference on Cryptology
in Africa, ser. Lecture Notes in Computer Science, J. Buchmann,
A. Nitaj, and T. eddine Rachidi, Eds., vol. 11627. Springer,
Cham, Jul. 2019, pp. 209–228. [Online]. Available: https:
//doi.org/10.1007/978-3-030-23696-0 11 2

[19] pq-crystals, “Dilithium reference implementation,” GitHub, Nov.
2023. [Online]. Available: https://github.com/pq-crystals/dilithium/
2, 5, 11, 22, 23

[20] ——, “Kyber reference implementation,” GitHub, Dec. 2023.
[Online]. Available: https://github.com/pq-crystals/kyber 2, 5, 11,
22, 23

[21] H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang,
“Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and
Apple M1,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2022, no. 1, pp. 221–244, 2022. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/9295
2, 7

[22] J. Zhang, Y. Yan, J. Huang, and Ç. K. Koç, “Optimized
software implementation of Keccak, Kyber, and Dilithium on
RV{32,64}IM{B}{V},” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2025, no. 1, pp. 632–
655, Dec. 2024. [Online]. Available: https://eprint.iacr.org/2024/1515
2, 7, 11, 12, 13

[23] E. Urquhart and F. Stajano, “Acceleration of core post-quantum
cryptography primitive on open-source silicon platform through
hardware/software co-design,” in Cryptology and Network Security.
Singapore: Springer Nature Singapore, 2025, pp. 144–161. [Online].
Available: https://www.cl.cam.ac.uk/∼fms27/papers/2024-UrquhartS
tajano-acceleration.pdf 2, 11, 12, 14

[24] T. Stelzer, F. Oberhansl, J. Schupp, and P. Karl, “Enabling Lattice-
Based Post-Quantum Cryptography on the OpenTitan Platform,”
in Proceedings of the 2023 Workshop on Attacks and Solutions
in Hardware Security, ser. ASHES ’23. New York, NY, USA:
Association for Computing Machinery, Nov. 2023, pp. 51–60.
[Online]. Available: https://doi.org/10.1145/3605769.3623993 2, 10,
11, 12, 13, 14, 25

[25] J. W. Bos, J. Renes, and C. van Vredendaal, “Post-quantum
cryptography with contemporary co-processors: Beyond Kronecker,
Schönhage-Strassen & Nussbaumer,” in USENIX Security 2022:
31st USENIX Security Symposium, K. R. B. Butler and K. Thomas,
Eds. USENIX Association, Aug. 2022, pp. 3683–3697. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/prese
ntation/bos 2, 11

[26] H. Turcuman, “Speeding-up post-quantum cryptography on an RSA
co-processor,” Master’s thesis, Technical University of Munich,
Munich, Sep. 2023. [Online]. Available: https://github.com/horiaio
nut/kroneker-plus-on-otbn/blob/5576d7b035f5fe55a7199987ea05613
d4aa913e7/paper.pdf 2, 11, 12

[27] P. Karl, J. Schupp, T. Fritzmann, and G. Sigl, “Post-quantum signa-
tures on RISC-V with hardware acceleration,” ACM Transactions on
Embedded Computing Systems, vol. 23, no. 2, pp. 30:1–30:23, 2024.
[Online]. Available: https://eprint.iacr.org/2022/538 2, 13, 14, 25

[28] P. Nannipieri, S. Di Matteo, L. Zulberti, F. Albicocchi, S. Saponara,
and L. Fanucci, “A RISC-V post quantum cryptography instruction set
extension for number theoretic transform to speed-up CRYSTALS
algorithms,” IEEE Access, vol. 9, pp. 150 798–150 808, 2021.
[Online]. Available: https://arpi.unipi.it/retrieve/e0d6c931-5a0c-fcf
8-e053-d805fe0aa794/A RISC-V Post Quantum Cryptography Ins
truction Set Extension for Number Theoretic Transform to Spe
ed-Up CRYSTALS Algorithms.pdf 2, 10, 12, 13, 14

[29] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly coupled
accelerators for post-quantum cryptography,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, no. 4,
pp. 239–280, 2020. [Online]. Available: https://tches.iacr.org/index.p
hp/TCHES/article/view/8683 2, 10, 12, 13, 14, 25

[30] L. Li, Q. Tian, G. Qin, S. Chen, and W. Wang, “Compact instruction
set extensions for Dilithium,” ACM Transactions on Embedded
Computing Systems, vol. 23, no. 2, pp. 23:1–23:21, 2024. [Online].
Available: https://doi.org/10.1145/3643826 2, 10, 12, 13, 14

[31] L. Li, G. Qin, Y. Yu, and W. Wang, “Compact instruction set
extensions for Kyber,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 43, no. 3, pp. 756–760, 2024.
[Online]. Available: https://doi.org/10.1109/TCAD.2023.3327104 2,
10, 12, 13, 14

[32] Y. Zhao, R. Xie, G. Xin, and J. Han, “A high-performance
domain-specific processor with matrix extension of RISC-V for
module-LWE applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 69, no. 7, pp. 2871–2884, Jul. 2022.
[Online]. Available: https://doi.org/10.1109/TCSI.2022.3162593 2

[33] T. Fritzmann, M. Van Beirendonck, D. B. Roy, P. Karl,
T. Schamberger, I. Verbauwhede, and G. Sigl, “Masked accelerators
and instruction set extensions for post-quantum cryptography,”
IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2022, no. 1, pp. 414–460, 2022. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/9303 2

[34] National Institute of Standards and Technology, “FIPS 203:
Module-Lattice-Based Key-Encapsulation Mechanism Standard,”
2024. [Online]. Available: https://doi.org/10.6028/NIST.FIPS.203 2,
3, 18, 20

https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr02102/tr02102_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr02102/tr02102_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr02102/tr02102_node.html
https://opentitan.org/book/doc/introduction.html
https://tches.iacr.org/index.php/TCHES/article/view/9833
https://tches.iacr.org/index.php/TCHES/article/view/11419
https://tches.iacr.org/index.php/TCHES/article/view/11419
https://eprint.iacr.org/2022/323
https://eprint.iacr.org/2022/112
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8593
https://tches.iacr.org/index.php/TCHES/article/view/8593
https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/978-3-030-23696-0_11
https://github.com/pq-crystals/dilithium/
https://github.com/pq-crystals/kyber
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://eprint.iacr.org/2024/1515
https://www.cl.cam.ac.uk/~fms27/papers/2024-UrquhartStajano-acceleration.pdf
https://www.cl.cam.ac.uk/~fms27/papers/2024-UrquhartStajano-acceleration.pdf
https://doi.org/10.1145/3605769.3623993
https://www.usenix.org/conference/usenixsecurity22/presentation/bos
https://www.usenix.org/conference/usenixsecurity22/presentation/bos
https://github.com/horiaionut/kroneker-plus-on-otbn/blob/5576d7b035f5fe55a7199987ea05613d4aa913e7/paper.pdf
https://github.com/horiaionut/kroneker-plus-on-otbn/blob/5576d7b035f5fe55a7199987ea05613d4aa913e7/paper.pdf
https://github.com/horiaionut/kroneker-plus-on-otbn/blob/5576d7b035f5fe55a7199987ea05613d4aa913e7/paper.pdf
https://eprint.iacr.org/2022/538
https://arpi.unipi.it/retrieve/e0d6c931-5a0c-fcf8-e053-d805fe0aa794/A_RISC-V_Post_Quantum_Cryptography_Instruction_Set_Extension_for_Number_Theoretic_Transform_to_Speed-Up_CRYSTALS_Algorithms.pdf
https://arpi.unipi.it/retrieve/e0d6c931-5a0c-fcf8-e053-d805fe0aa794/A_RISC-V_Post_Quantum_Cryptography_Instruction_Set_Extension_for_Number_Theoretic_Transform_to_Speed-Up_CRYSTALS_Algorithms.pdf
https://arpi.unipi.it/retrieve/e0d6c931-5a0c-fcf8-e053-d805fe0aa794/A_RISC-V_Post_Quantum_Cryptography_Instruction_Set_Extension_for_Number_Theoretic_Transform_to_Speed-Up_CRYSTALS_Algorithms.pdf
https://arpi.unipi.it/retrieve/e0d6c931-5a0c-fcf8-e053-d805fe0aa794/A_RISC-V_Post_Quantum_Cryptography_Instruction_Set_Extension_for_Number_Theoretic_Transform_to_Speed-Up_CRYSTALS_Algorithms.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://doi.org/10.1145/3643826
https://doi.org/10.1109/TCAD.2023.3327104
https://doi.org/10.1109/TCSI.2022.3162593
https://tches.iacr.org/index.php/TCHES/article/view/9303
https://doi.org/10.6028/NIST.FIPS.203

[35] ——, “FIPS 204: Module-Lattice-Based Digital Signature Standard,”
2024. [Online]. Available: https://doi.org/10.6028/NIST.FIPS.204 2,
3, 18, 19, 20

[36] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS-Dilithium: A lattice-based
digital signature scheme,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2018, no. 1, pp. 238–268,
2018. [Online]. Available: https://tches.iacr.org/index.php/TCHES/a
rticle/view/839 3

[37] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe,
G. Seiler, D. Stehlé, and S. Bai, “CRYSTALS-DILITHIUM,”
National Institute of Standards and Technology, Tech. Rep., 2022.
[Online]. Available: https://csrc.nist.gov/Projects/post-quantum-crypt
ography/selected-algorithms-2022 3, 7, 12, 13, 25

[38] V. Lyubashevsky, “Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures,” in Advances in Cryptology –
ASIACRYPT 2009, ser. Lecture Notes in Computer Science,
M. Matsui, Ed., vol. 5912. Springer, Berlin, Heidelberg, Dec. 2009,
pp. 598–616. [Online]. Available: https://www.iacr.org/archive/asiac
rypt2009/59120596/59120596.pdf 3

[39] “Secure Hash Algorithm-3,” National Institute of Standards and
Technology, NIST FIPS PUB 202, U.S. Department of Commerce,
Aug. 2015. [Online]. Available: https://doi.org/10.6028/NIST.FIPS.
202 3

[40] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint,
V. Lyubashevsky, J. M. Schanck, G. Seiler, D. Stehlé, and
J. Ding, “CRYSTALS-KYBER,” National Institute of Standards and
Technology, Tech. Rep., 2022. [Online]. Available: https://csrc.nis
t.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
3, 12, 13

[41] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric
and symmetric encryption schemes,” in Advances in Cryptology –
CRYPTO’99, ser. Lecture Notes in Computer Science, M. J. Wiener,
Ed., vol. 1666. Springer, Berlin, Heidelberg, Aug. 1999, pp. 537–
554. [Online]. Available: https://doi.org/10.1007/3-540-48405-1 34
3

[42] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Mathematics of computation,
vol. 19, no. 90, pp. 297–301, 1965. [Online]. Available: https:
//www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-017
8586-1/S0025-5718-1965-0178586-1.pdf 3

[43] W. M. Gentleman and G. Sande, “Fast Fourier transforms: for
fun and profit,” in Proceedings of the November 7-10, 1966, fall
joint computer conference, 1966, pp. 563–578. [Online]. Available:
https://doi.org/10.1145/1464291.1464352 3

[44] T. Plantard, “Efficient word size modular arithmetic,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 3, pp.
1506–1518, Jul. 2021. [Online]. Available: https://thomas-plantard.
github.io/pdf/Plantard21.pdf 3, 4, 21

[45] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.
[Online]. Available: https://www.ams.org/journals/mcom/1985-44-1
70/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
3

[46] OpenTitan Team, “OpenTitan’s RTL freeze - leveraging transparency
to create trustworthy computing · lowRISC: Collaborative open
silicon engineering,” Jun. 2023. [Online]. Available: https://lowrisc.
org/news/opentitans-rtl-freeze-leveraging-transparency-to-create-tru
stworthy-computing/ 4

[47] “Advanced Encryption Standard (AES),” National Institute of
Standards and Technology, NIST FIPS PUB 197, U.S. Department
of Commerce, Nov. 2001. [Online]. Available: https://doi.org/10.602
8/NIST.FIPS.197-upd1 4

[48] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method
for obtaining digital signatures and public-key cryptosystems,”
Communications of the Association for Computing Machinery,
vol. 21, no. 2, pp. 120–126, Feb. 1978. [Online]. Available:
https://doi.org/10.1145/359340.359342 4

[49] V. S. Miller, “Use of elliptic curves in cryptography,” in
Advances in Cryptology – CRYPTO’85, ser. Lecture Notes in
Computer Science, H. C. Williams, Ed., vol. 218. Springer,
Berlin, Heidelberg, Aug. 1986, pp. 417–426. [Online]. Available:
https://doi.org/10.1007/3-540-39799-X 31 4

[50] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, no. 177, pp. 203–209, 1987. [Online].
Available: https://www.ams.org/journals/mcom/1987-48-177/S0025
-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf 4

[51] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative execution,”
in 2019 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2019, pp. 1–19. [Online]. Available:
https://www.spectreattack.com/spectre.pdf 4

[52] OpenTitan, “Opentitan big number accelerator (OTBN) technical
specification,” Jan. 2024. [Online]. Available: https://opentitan.org/
book/hw/ip/otbn/index.html#security-features 4

[53] L. Chen, “Hsiao-code check matrices and recursively balanced
matrices,” CoRR, vol. abs/0803.1217, 2008. [Online]. Available:
http://arxiv.org/abs/0803.1217 4

[54] H. Gross, D. Schaffenrath, and S. Mangard, “Higher-order
side-channel protected implementations of Keccak,” Cryptology
ePrint Archive, Report 2017/395, 2017. [Online]. Available:
https://eprint.iacr.org/2017/395 4

[55] P. Longa and M. Naehrig, “Speeding up the number theoretic
transform for faster ideal lattice-based cryptography,” in CANS 16:
15th International Conference on Cryptology and Network Security,
ser. Lecture Notes in Computer Science, S. Foresti and G. Persiano,
Eds., vol. 10052. Springer, Cham, Nov. 2016, pp. 124–139.
[Online]. Available: https://eprint.iacr.org/2016/504 5

[56] V. Lyubashevsky and G. Seiler, “NTTRU: Truly fast NTRU
using NTT,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2019, no. 3, pp. 180–201, 2019. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8293
5

[57] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-
quantum key exchange - A new hope,” in USENIX Security 2016:
25th USENIX Security Symposium, T. Holz and S. Savage, Eds.
USENIX Association, Aug. 2016, pp. 327–343. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity16/technical-sessi
ons/presentation/alkim 5

[58] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“pqm4: Testing and benchmarking NIST PQC on ARM Cortex-
M4,” Cryptology ePrint Archive, Report 2019/844, 2019. [Online].
Available: https://eprint.iacr.org/2019/844 5, 11

[59] P. Karl, J. Schupp, and G. Sigl, “The impact of hash
primitives and communication overhead for hardware-accelerated
SPHINCS+,” in Constructive Side-Channel Analysis and Secure
Design, R. Wacquez and N. Homma, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 221–239. [Online]. Available:
https://eprint.iacr.org/2023/1767 6

[60] M.-J. O. Saarinen, “Benchmarking RISC-V post-quantum crypto,”
Nov. 2023. [Online]. Available: https://mjos.fi/doc/20231108-rvsum
mit-pqc.pdf 7

[61] S. Gao, B. Marshall, D. Page, and E. Oswald, “Share-slicing:
Friend or foe?” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2020, no. 1, pp. 152–174, 2019. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/8396
8

[62] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri,
“ISA extensions for finite field arithmetic,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, no. 3,
pp. 219–242, 2020. [Online]. Available: https://tches.iacr.org/index.p
hp/TCHES/article/view/8589 10

https://doi.org/10.6028/NIST.FIPS.204
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/3-540-48405-1_34
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://www.ams.org/journals/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf
https://doi.org/10.1145/1464291.1464352
https://thomas-plantard.github.io/pdf/Plantard21.pdf
https://thomas-plantard.github.io/pdf/Plantard21.pdf
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
https://lowrisc.org/news/opentitans-rtl-freeze-leveraging-transparency-to-create-trustworthy-computing/
https://lowrisc.org/news/opentitans-rtl-freeze-leveraging-transparency-to-create-trustworthy-computing/
https://lowrisc.org/news/opentitans-rtl-freeze-leveraging-transparency-to-create-trustworthy-computing/
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/3-540-39799-X_31
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://www.spectreattack.com/spectre.pdf
https://opentitan.org/book/hw/ip/otbn/index.html#security-features
https://opentitan.org/book/hw/ip/otbn/index.html#security-features
http://arxiv.org/abs/0803.1217
https://eprint.iacr.org/2017/395
https://eprint.iacr.org/2016/504
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2023/1767
https://mjos.fi/doc/20231108-rvsummit-pqc.pdf
https://mjos.fi/doc/20231108-rvsummit-pqc.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8396
https://tches.iacr.org/index.php/TCHES/article/view/8589
https://tches.iacr.org/index.php/TCHES/article/view/8589

[63] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finfet predictive
process design kit,” Microelectronics Journal, vol. 53, pp. 105–115,
2016. [Online]. Available: https://doi.org/10.1016/j.mejo.2016.04.006
10, 14

[64] G. Pope, “kyber-py,” GitHub, Aug. 2024. [Online]. Available:
https://github.com/GiacomoPope/kyber-py 11

[65] ——, “dilithium-py,” GitHub, Aug. 2024. [Online]. Available:
https://github.com/GiacomoPope/dilithium-py 11

[66] OpenTitan, “Introduction to OTBN,” Jan. 2024. [Online]. Available:
https://opentitan.org/book/hw/ip/otbn/doc/otbn intro.html#performa
nce 13

[67] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang,
“FALCON,” National Institute of Standards and Technology, Tech.
Rep., 2022. [Online]. Available: https://csrc.nist.gov/Projects/post-q
uantum-cryptography/selected-algorithms-2022 15

[68] M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook,
B. LaMacchia, P. Longa, I. Mironov, V. Nikolaenko, C. Peikert,
A. Raghunathan, and D. Stebila, “FrodoKEM,” National Institute of
Standards and Technology, Tech. Rep., 2020. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quant
um-cryptography-standardization/round-3-submissions 15

[69] D. J. Bernstein, B. B. Brumley, M.-S. Chen, C. Chuengsatiansup,
T. Lange, A. Marotzke, B.-Y. Peng, N. Tuveri, C. van Vredendaal,
and B.-Y. Yang, “NTRU Prime,” National Institute of Standards
and Technology, Tech. Rep., 2020. [Online]. Available: https:
//csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-c
ryptography-standardization/round-3-submissions 15

[70] T. Feneuil and M. Rivain, “MQOM — MQ on my Mind,” National
Institute of Standards and Technology, Tech. Rep., 2023. [Online].
Available: https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additio
nal-signatures 15

[71] C. Dobraunig, L. Grassi, L. Helminger, C. Rechberger, M. Schofneg-
ger, and R. Walch, “Pasta: A case for hybrid homomorphic
encryption,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2023, no. 3, pp. 30–73, 2023. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/10956
15

[72] D. J. Bernstein et al., “Chacha, a variant of Salsa20,” in Workshop
record of SASC, vol. 8, no. 1, 2008, pp. 3–5. [Online]. Available:
https://cr.yp.to/chacha/chacha-20080120.pdf 15

[73] D. J. Bernstein, The Salsa20 Family of Stream Ciphers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 84–97. [Online].
Available: https://cr.yp.to/snuffle/salsafamily-20071225.pdf 15

[74] “Secure hash standard,” National Institute of Standards and Tech-
nology, NIST FIPS PUB 180, U.S. Department of Commerce, May
1993. 15

[75] S. Gueron and F. Schlieker, “Speeding up R-LWE post-quantum key
exchange,” in Secure IT Systems, ser. Lecture Notes in Computer
Science, B. B. Brumley and J. Röning, Eds. Cham: Springer
International Publishing, 2016, pp. 187–198. [Online]. Available:
https://eprint.iacr.org/2016/467 15, 23

[76] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire,
V. Laporte, T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y. Strub,
“Jasmin: High-assurance and high-speed cryptography,” in ACM
CCS 2017: 24th Conference on Computer and Communications
Security, B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu,
Eds. ACM Press, Oct. / Nov. 2017, pp. 1807–1823. [Online].
Available: https://acmccs.github.io/papers/p1807-almeidaA.pdf 15

Appendix A.
Auxiliary Material

TABLE A.1: Overview of ML-DSA’s Parameter Sets [35].

Name (NIST level) | pk | | sig | (k, ℓ) η τ γ1 γ2 #reps

ML-DSA-44 (2) 1312B 2420B (4, 4) 2 39 217 (q − 1)/88 4.25
ML-DSA-65 (3) 1952B 3293B (6, 5) 4 49 219 (q − 1)/32 5.1
ML-DSA-87 (5) 2592B 4595B (8, 7) 2 60 219 (q − 1)/32 3.85

TABLE A.2: Overview of ML-KEM’s Parameter Sets [34].

Name (NIST level) | ek | | dk | | c | | K | k (η1, η2) (du, dv)

ML-KEM-512 (1) 800B 1632B 768B 32B 2 (3, 2) (10, 4)
ML-KEM-768 (3) 1184B 2400B 1088B 32B 3 (2, 2) (10, 4)
ML-KEM-1024 (5) 1568B 3168B 1088B 32B 4 (2, 2) (11, 5)

1 /* Mask out coefficients from buffer*/
2 bn.and coeffa, coeffsa, consts >> 192
3 bn.and coeffb, coeffsb, consts >> 192
4

5 /* Plantard multiplication: Twiddle * coeffb */
6 bn.mulqacc.wo.z coeffb, coeffb.0, twiddle.0, 192 /*

(coeffb*R) mod 2ˆ2d */
7 bn.add coeffb, consts, coeffb >> 160 /* +1 */
8 bn.mulqacc.wo.z coeffb, coeffb.1, consts.2, 0 /* *q */
9 bn.rshi wtmp, consts, coeffb >> 32 /* >> d

*/
10 /* Butterfly */
11 bn.subm coeffb, coeffa, wtmp
12 bn.addm coeffa, coeffa, wtmp
13

14 /* Shift results back to buffer and shift out used
coefficients */

15 bn.rshi coeffsa, coeffa, coeffsa >> 32
16 bn.rshi coeffsb, coeffb, coeffsb >> 32

Listing A.1: CT butterfly on OTBN.

https://doi.org/10.1016/j.mejo.2016.04.006
https://github.com/GiacomoPope/kyber-py
https://github.com/GiacomoPope/dilithium-py
https://opentitan.org/book/hw/ip/otbn/doc/otbn_intro.html#performance
https://opentitan.org/book/hw/ip/otbn/doc/otbn_intro.html#performance
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://tches.iacr.org/index.php/TCHES/article/view/10956
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/snuffle/salsafamily-20071225.pdf
https://eprint.iacr.org/2016/467
https://acmccs.github.io/papers/p1807-almeidaA.pdf

Appendix B.
ML-KEM and ML-DSA Algorithms

Algorithm B.1: ML-DSA: Key Generation, Fol-
lowing [35].

Output: Public key pk ∈ B32+32k(bitlen(q−1)−13)

Output: Secret key
sk ∈ B128+32((ℓ+k)·bitlen(2η)+13k)

1 ξ ←$ {0, 1}n
2 (ρ, ρ′,K) ∈ {0, 1}n × {0, 1}2n × {0, 1}n ← H(ξ |

k | ℓ, 4n)
3 (s1, s2) ∈ Sℓ

η × Sk
η ← ExpandS(ρ′)

4 Â ∈ Rk×ℓ
q ← ExpandA(ρ)

5 t← INTT(Â ◦ NTT(s1)) + s2
6 (t1, t0)← Power2Round(t, 13)
7 pk ← pkEncode(ρ, t1)
8 tr ∈ {0, 1}2n ← H(BytesToBits(pk), 2n)
9 sk ← skEncode(ρ,K, tr, s1, s2, t0)

10 return (pk, sk)

Algorithm B.2: ML-DSA: Signing, Follow-
ing [35].

Input : Secret key
sk ∈ B128+32((ℓ+k)·bitlen(2η)+13k)

Input : Formatted message M ′ ∈ {0, 1}∗
Input : Random or dummy variable rnd ∈ {0, 1}n
Output: Signature σ ∈ B32+ℓ·32(1+bitlen(γ1−1))+ω+k

1 (ρ,K, tr, s1, s2, t0)← skDecode(sk)
2 ŝ1 ← NTT(s1)
3 ŝ2 ← NTT(s2)
4 t̂0 ← NTT(t0)

5 Â ∈ Rk×ℓ
q ← ExpandA(ρ)

6 µ← H(tr∥M ′, 2n)
7 ρ′′ ← H(K∥rnd∥µ, 2n)
8 κ← 0
9 (z,h)← ⊥

10 while (z,h) = ⊥ do
11 y ← ExpandMask(ρ′′, κ)

12 w ← INTT(Â ◦ NTT(y))
13 w1 ← HighBits(w)
14 c̃ ∈ {0, 1}2λ ← H(µ∥w1Encode(w1), 2λ)
15 (c̃1, c̃2) ∈ {0, 1}n × {0, 1}2λ−n ← c̃
16 c← SampleInBall(c̃1)
17 ĉ← NTT(c)
18 ⟨⟨cs1⟩⟩ ← INTT(ĉ ◦ ŝ1)
19 ⟨⟨cs2⟩⟩ ← INTT(ĉ ◦ ŝ2)
20 z ← y + ⟨⟨cs1⟩⟩
21 r0 ← LowBits(w − ⟨⟨cs2⟩⟩)
22 if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
23 (z,h)←⊥
24 else
25 ⟨⟨ct0⟩⟩ ← INTT(ĉ ◦ t̂0)
26 h← MakeHint(−⟨⟨ct0⟩⟩, ⟨⟨cs2⟩⟩+ ⟨⟨ct0⟩⟩
27 if ∥⟨⟨ct0⟩⟩∥∞ ≥ γ2 or # of 1’s in h > ω

then
28 (z,h)←⊥
29 κ← κ+ ℓ
30 σ ← sigEncode(c̃, z mod ±q,h)
31 return σ

Algorithm B.3: ML-DSA: Verification, Follow-
ing [35].

Input : Public key pk ∈ B32+32k(bitlen(q−1)−13)

Input : Message M ′ ∈ {0, 1}∗
Input : Signature σ ∈ B32+ℓ·32(1+bitlen(γ1−1))+ω+k

Output: Boolean
1 (ρ, t1)← pkDecode(pk)
2 (c̃, z,h)← sigDecode(σ)
3 if h = ⊥ then
4 return false
5 Â ∈ Rk×ℓ

q ← ExpandA(ρ)
6 tr ← H(BytesToBits(pk), 2n)
7 µ ∈ {0, 1}2n ← H(tr∥M ′, 2n)
8 (c̃1, c̃2) ∈ {0, 1}n × {0, 1}2λ−n ← c̃
9 c← SampleInBall(c̃1)

10 w′
Approx ←
INTT(Â ◦ NTT(z)− NTT(c) ◦ NTT(213 · t1))

11 w′
1 ← UseHint(h,w′

Approx)
12 c̃′ ← H(µ∥w1Encode(w′

1), 2λ)
13 return [[∥z∥∞ < γ1]] ∧ [[c̃ =

c̃′]] ∧ [[number of 1’s in h ≤ ω]]

Algorithm B.4: K-PKE.KeyGen(d), Following
[34].

Input : Randomness d ∈ B
Output: Encryption key ekPKE ∈ B384k+32

Output: Decryption key dkPKE ∈ B384k

1 (ρ, σ)← G(d||k)
2 N ← 0
3 for (i← 0; i < k; i++) do
4 for (j ← 0; j < k; j ++) do
5 Â[i, j]← SampleNTT(XOF(ρ, j, i))
6 for (i← 0; i < k; i++) do
7 s[i]← SamplePolyCBDη1

(PRFη1
(σ,N))

8 N ← N + 1
9 for (i← 0; i < k; i++) do

10 e[i]← SamplePolyCBDη1
(PRFη1

(σ,N))
11 N ← N + 1
12 ŝ← NTT(s)
13 ê← NTT(e)

14 t̂← Â ◦ ŝ+ ê
15 ekPKE ← ByteEncode12(t̂)||ρ
16 dkPKE ← ByteEncode12(ŝ)
17 return (ekPKE, dkPKE)

Algorithm B.5: K-PKE.Encrypt(ekPKE,m, r), Fol-
lowing [34].

Input : Encryption key ekPKE ∈ B384k+32

Input : Message m ∈ B32

Input : Random r ∈ B32

Output: Ciphertext c ∈ B32(duk+dv)

1 N ← 0
2 t̂← ByteDecode12(ekPKE[0 : 384k])
3 ρ← ekPKE[384k : 384k + 32]
4 for (i← 0; i < k; i++) do
5 for (j ← 0; j < k; j ++) do
6 Â[i, j]← SampleNTT(XOF(ρ, i, j))
7 for (i← 0; i < k; i++) do
8 r[i]← SamplePolyCBDη1

(PRFη1(r,N))
9 N ← N + 1

10 for (i← 0; i < k; i++) do
11 e1[i]← SamplePolyCBDη2

(PRFη2
(r,N))

12 N ← N + 1
13 e2 ← SamplePolyCBDη2

(PRFη2
(r,N))

14 r̂ ← NTT(r)

15 u← INTT(Â⊺ ◦ r̂) + ê1
16 µ← Decompress1(ByteDecode1(m))
17 v ← INTT(t̂⊺ ◦ r̂) + e2 + µ
18 c1 ← ByteEncodedu

(Compressdu
(u))

19 c2 ← ByteEncodedv
(Compressdv

(v))
20 return c← (c1||c2)

Algorithm B.6: K-PKE.Decrypt(dkPKE, c), Fol-
lowing [34].

Input : Decryption key dkPKE ∈ B384k

Input : Ciphertext c ∈ B32(duk+dv)

Output: Message m ∈ B32

1 c1 ← c[0 : 32duk]
2 c2 ← c[32duk : 32(duk + dv)]
3 u← Decompressdu

(ByteDecodedu
(c1))

4 v ← Decompressdv
(ByteDecodedv

(c2))
5 ŝ← ByteDecode12(dkPKE)
6 w ← v − INTT(ŝ⊺ ◦ NTT(u))
7 m← ByteEncode1(Compress1(w))
8 return m

Appendix C.
Details of OTBN Implementations

This section gives additional details on the implementa-
tions on plain OTBN that go beyond the ones provided in
Section 3.

C.1. NTT and Multiplication in NTT Domain

C.1.1. Plantard Multiplication. In addition to the descrip-
tion in Section 3.1.1, the exact sequence of operations for
multiplying two elements a and b in Fq using Plantard
multiplication [44] is given in the following:

1) Load constants into WDR consts = (m||q||1||R),
where m = 2d − 1 and R = q−1 mod 22d. Load
a and b into WDRs coeffa and coeffb.

2) Multiply a and b as 64-bit integers:
bn.mulqacc.wo.z wtmp, coeffa.0,
coeffb.0, 0. WDR wtmp now has ab mod 22d

at its first quad word.
3) Compute (ab mod 22d)R, and keep the result mod-

ulo 22d: bn.mulqacc.wo.z wtmp, wtmp.0,
consts.0, 192. 192 is the amount of bits the
result is shifted left, meaning, by dropping some
top-bits, the final result mod 22d will be in the
fourth quad word of wtmp for ML-DSA. However,
for ML-KEM, 2d is only 32 and since the shift
amount can only be multiples of 64, wtmp must be
masked with m: bn.and wtmp, wtmp, consts.

4) Shift right by t bits and add 1: bn.add wtmp,
consts, wtmp >> t, where t = 144 for ML-
KEM and t = 160 for ML-DSA. The result will
be in the second quad word of wtmp.

5) Multiply by q: bn.mulqacc.wo.z wtmp,
wtmp.1, consts.2, 0.

6) Shift right by d bits: bn.rshi wtmp, bn0,
wtmp >> d.

C.1.2. Reduction. Next to modular multiplications, there
are two places throughout our implementations where we
require some form of explicit modular reductions:

1) Before checking the norm bound in ML-DSA:
the centralized representative in

q−q−1
2 , q−1

2

y
of

coefficients is required in this step as ∥w∥∞ is
defined as |w mod ±q|. We use (variants) of the
reduce32 function as also used in the reference im-
plementation, as well as constant-time conditional
subtractions to achieve this goal.

2) After the application of (pair-)pointwise multipli-
cation with pseudo-vector accumulation, where the
values can grow beyond q before the INTT. Inputs
to the INTT must be in J0, qK to avoid getting
negative results that cannot be reduced back into
the positive domain implicitly using bn.subm. We
perform this reduction using a variant of reduce32
for ML-DSA and using the Plantard multiplication
with the constant ((−22d) mod q)R mod 22d for
ML-KEM.

C.1.3. NTT. As the implementation of a 4-layer merge is
not straight forward, we outline some more details on our
approach here.

Layer merge. In our implementation, 13(n/d) input
coefficients are loaded on 13 WDRs, called “buffer regis-
ters”. The rest is loaded directly from the memory during
the transformation with help of the GPRs as we do not
have enough WDRs for storing all input data and doing
the computation simultaneously. Since coefficients indexed
(16i|i ∈ J0, 15K) are needed for the first 4-layer merge, the
required coefficients are masked out and moved to another
set of 16 WDRs, called the “working state”; while the
unused ones are still kept in the buffer registers. In addi-
tion, we need one register for storing constants in Plantard
multiplication as explained in Section 3.1.1, one for holding
intermediate values, and another one for holding twiddle
factors (cf. Listing A.1), summing up to 32 registers for
an NTT or INTT invocation. As OTBN only has a 64×64-
bit multiplier, it does not make sense to load more than
four twiddle factors into a WDR – regardless of whether
they are 32 or 64-bit in size – as it would incur additional
overhead for data movement. This fits perfectly for ML-
DSA, because the size of the twiddle factors are doubled to
64-bit due to Plantard representation, but not for ML-KEM.
Due to our register allocation strategy, for each iteration of a
4-layer merge, two loads of twiddle factors are needed, and
they are reloaded in every iteration to enable the buffering
strategy mentioned above.

C.2. Sampling

Rejection Sampling in J0, qJ. Listing C.1 shows how
we implement the rejection sampling on the output bytes of
SHAKE256. We check if one coefficient candidate in the
case of ML-DSA or two in the case of ML-KEM c (i.e.,
cand), made up of three bytes of SHAKE256 output read
from shake reg, is less than q. If this is the case, the
candidate is shifted into the result register accumulator.
In case the candidate is rejected, the corresponding three
bytes (for ML-DSA) or 12 bits (for ML-KEM) are shifted
out of shake reg and we sample the next candidate(s).
By bundling the accepted candidates into a WDR before
storing, we can reduce the memory-access cost. Also note
that even though we cannot early-exit from the hardware
loop loopi, it is still used in our implementation because
it costs only a single cycle and does not require either
additional instructions or registers to handle the loop logic
in comparison to a traditional while-loop, which would be
less efficient overall.

Sampling in J−η, ηK. Both the binomial sampling in
ML-KEM and the rejection sampling in ML-DSA yield
integers that fall within a signed range. For efficiency and
compatibility with unsigned integer calculations in subse-
quent routines, we employ modular subtraction bn.subm
in both sampling methods of ML-KEM and ML-DSA,
replacing standard subtraction bn.sub. Pseudo vectorization
is also applied to enhance bitwise addition in binomial
sampling of ML-KEM.

1 poly uniform base inner loop:
2 loopi 10, 12
3 /* n coefficients are sampled?*/
4 beq outp, t0, skip store1
5 /* Extract 3−byte candidate c from shake output */
6 bn.and cand, coeff mask, shake reg
7 /* c−q */
8 bn.cmp cand, mod
9 /* Read flags Z, L, M, C*/

10 csrrs a4, 0x7C0, zero
11 /* Extract M, C */
12 andi a4, a4, 3
13 /* Reject if M!=1 & C!=1 i.e. (q <= c) */
14 bne a4, const 3, skip store1
15 bn.rshi accumulator, cand, accumulator >> 32
16 addi accumulator count, accumulator count, 1
17 /* Accumulator is full of 8 coeffs? */
18 bne accumulator count, const 8, skip store1
19 /* Store full accumulator to memory */
20 bn.sid accumulator idx, 0(outp++)
21 li accumulator count, 0
22 skip store1:
23 /* Shift out used 3 bytes */
24 bn.or shake reg, bn0, shake reg >> 24
25 ret

Listing C.1: Inner loop of uniform sampling in ML-DSA
on OTBN.

C.3. Bit Packing

The general idea of bit packing in ML-KEM and ML-
DSA is to arrange coefficients tightly next to each other such
that there are no free bits between any two of them to save
space for data transfer. This mostly boils down to shifting
coefficients with bn.rshi and an extensive use of WDRs
for caching data on OTBN. The unpacking is implemented
using the same principal. While the packing is similar for
all functions in both ML-KEM and ML-DSA, the data
processing step before or after it varies.

(Un)packing Coefficients in Negative Input Range
in ML-DSA. As an example, we consider the function
for packing coefficients that are in J−η, ηK in the case of
ML-DSA-44, where η = 2. In the C reference imple-
mentation [19], the coefficient to be packed is a signed
integer, and thus, it is subtracted from η in order to retrieve
an unsigned result in J0, 2ηK. As we made the choice to
operate on unsigned integers, we cannot simply perform
this subtraction, as, e.g., −1 maps to q − 1 in our case,
and η − (q − 1) is certainly not in the desired range. All
we need to do is to apply bn.subm instead of the regular
bn.sub, which will move the result of the subtraction back
into the positive domain, yielding values in J0, 2ηK.

Encoding and Decoding of Hint Vector in ML-
DSA. The encoding and decoding in the C reference
implementation [19] uses a lot of control logic based on
the signature data, as well as unaligned memory accesses,
both of which are weaknesses of OTBN. Thus, we decided
to implement both using the base instruction set operating
on 32-bit GPRs, which is more useful for managing the
control flow and less restricted regarding memory access.
The reason why this operation still costs many cycles is the
manual 4-byte alignment of addresses and the subsequent
extraction of the desired byte, based on the lower two bits

of the unaligned address, to simulate byte-aligned memory
access.

Compression and Decompression of Ciphertext in
ML-KEM. In the current C reference implementa-
tion [20], the compression of an element x ∈ Fq to d{u,v}
bits replaces the division by q by an addition followed by
a multiplication and a right shift for it to be constant-time.
Without question, multiplication must be done individually.
For dv = 4 in ML-KEM-512, addition and shifting can be
pseudo-vectorized, but not for other cases of d{u,v} because
after the left shift of d{u,v} bits (cf. Table A.2), the size
of integers is at least 17-bit, exceeding a 16-bit vector
element. We certainly can arrange the coefficients into 32-
bit vector elements and still perform a pseudo shift/addition.
Nevertheless, after this costly arrangement, coefficients must
be extracted again for the multiplication, neutralizing the
saving from the pseudo vectorization.

Appendix D.
Details of OTBNKMAC

Ext. Implementations

In the following, we provide supplementary details to
the explanations given in Section 5.

D.1. Polynomial Addition and Subtraction

To demonstrate the simplicity of the code using our new
extensions, we present two simple examples for polynomial
addition and subtraction in Listings D.1 and D.2.

D.2. NTT & INTT

A visualization for the transposition operation mentioned
in Section 5.2.2 is given in Figure 8: We transpose an 8×
8 matrix of elements that is obtained by considering the
wide registers as rows of a matrix in order to achieve an
appropriate stride for the following computation.

1 loopi 32, 4
2 bn.lid vec 1 idx, 0(src1++)
3 bn.lid vec 2 idx, 0(src2++)
4

5 bn.addvm.8S vec 1, vec 1, vec 2
6

7 bn.sid vec 1 idx, 0(dst++)

Listing D.1: Vectorized addition on OTBNKMAC
Ext. .

1 loopi 32, 4
2 bn.lid vec 1 idx, 0(src1++)
3 bn.lid vec 2 idx, 0(src2++)
4

5 bn.subvm.8S vec 1, vec 1, vec 2
6

7 bn.sid vec 1 idx, 0(dst++)

Listing D.2: Vectorized subtraction on OTBNKMAC
Ext. .

a0 a1 a2 a3 a4 a5 a6 a7

a8 a9 a10 a11 a12 a13 a14 a15

a16 a17 a18 a19 a20 a21 a22 a23

a24 a25 a26 a27 a28 a29 a30 a31

a32 a33 a34 a35 a36 a37 a38 a39

a40 a41 a42 a43 a44 a45 a46 a47

a48 a49 a50 a51 a52 a53 a54 a55

a56 a57 a58 a59 a60 a61 a62 a63

a0 a8 a16 a24 a32 a40 a48 a56

a1 a9 a17 a25 a33 a41 a49 a57

a2 a10 a18 a26 a34 a42 a50 a58

a3 a11 a19 a27 a35 a43 a51 a59

a4 a12 a20 a28 a36 a44 a52 a60

a5 a13 a21 a29 a37 a45 a53 a61

a6 a14 a22 a30 a38 a46 a54 a62

a7 a15 a23 a31 a39 a47 a55 a63

Transpose

w0 w8

w1 w9

w2 w10

w3 w11

w4 w12

w5 w13

w6 w14

w7 w15

Figure 8: Visualization of the transposition.

D.3. Base Multiplication in NTT Domain in ML-
KEM

ML-KEM. In ML-KEM, the need for a 2 × 2
schoolbook multiplication makes the implementation
slightly more involved while still remaining elegant
compared to the plain implementation. For computing
the product ĉ = ĉ2i + ĉ2i+1X between two linear
polynomials â = â2i + â2i+1X , b̂ = b̂2i + b̂2i+1X ,
we compute â2i = â2ib̂2i + â2i+1b̂2i+1ζ

2br7(i)+1 and
ĉ2i+1 = â2ib̂2i+1 + b̂2iâ2i+1. For this, we need to multiply
two coefficients of each polynomial that are not located
at the same index in their respective WDRs. Listing D.3
shows how the pair-pointwise multiplication is done in ML-
KEM thanks to the transpose instructions bn.trn1 and
bn.trn2. Specifically, coeffsa = (an−1, an−2, . . . , a1, a0)
and coeffsb = (bn−1, bn−2, . . . , b1, b0) are loaded from
the memory. The multiplication aibi is obvious with
bn.mulvm (Line 2). Directly vectorizing the multiplication
with roots of unity requires an additional n/2 = 128
multiplications of a2ib2i with 1. However, to save
128 × 16 = 2048 multiplications per pair-pointwise
operation, we compute a second input vector coeffsd,
pack all coefficients to be multiplied from coeffsb
and coeffsd in wtmp and perform the vectorized
multiplication. The result is then unpacked with one
bn.rshi and two bn.trn1 (Line 17, 19). To compute
the multiplication â2ib̂2i+1 and b̂2iâ2i+1, we right-shift
coeffsb by 16 bits (Line 6) and use bn.trn1 to
reorder coeffsb to be (bn−2, bn−1, . . . , b2, b3, b0, b1)
(Line 7). In the end, we have the result vectors
wtmp0 = (an−1bn−1, . . . , a1b1, a0b0) and coeffsb
= (an−1bn−2, an−2bn−1, . . . , a3b2, a2b3, a1b0, a0b1).
For the additions, we only need to use one
bn.trn1 on wtmp0 and coeffsb to make
(an−2bn−1, an−2bn−2, . . . , a0b1, a0b0) (Line 22) and one
bn.trn2 to make (an−1bn−2, an−1bn−1, . . . , a1b0, a1b1)
(Line 23). The final result is obtained by adding the two
vectors coeffsa and coeffsb together.

1 /* a1b1, a0b0 */
2 bn.mulvm.16H wtmp0, coeffsa, coeffsb
3 bn.mulvm.16H wtmp1, coeffsc, coeffsd
4

5 /* a0b1, a1b0 */
6 bn.rshi wtmp, bn0, coeffsb >> 16
7 bn.trn1.16H coeffsb, wtmp, coeffsb
8 bn.mulvm.16H coeffsb, coeffsa, coeffsb
9

10 bn.rshi wtmp, bn0, coeffsd >> 16
11 bn.trn1.16H coeffsd, wtmp, coeffsd
12 bn.mulvm.16H coeffsd, coeffsc, coeffsd
13

14 /* Multiply with Twiddle factors */
15 bn.trn2.16H wtmp, wtmp0, wtmp1
16 bn.mulvm.16H wtmp, wtmp, twiddles
17 bn.trn1.16H wtmp0, wtmp0, wtmp
18 bn.rshi wtmp, bn0, wtmp >> 16
19 bn.trn1.16H wtmp1, wtmp1, wtmp
20

21 /* a1b1+a0b0; a1b0+a0b1 */
22 bn.trn1.16H coeffsa, wtmp0, coeffsb
23 bn.trn2.16H coeffsb, wtmp0, coeffsb
24 bn.addvm.16H res0, coeffsa, coeffsb
25

26 bn.trn1.16H coeffsc, wtmp1, coeffsd
27 bn.trn2.16H coeffsd, wtmp1, coeffsd
28 bn.addvm.16H res1, coeffsc, coeffsd

Listing D.3: ML-KEM pair-pointwise multiplication on
OTBNKMAC

Ext. .

D.4. Sampling

Rejection Sampling. Although it is possible to vec-
torize the rejection sampling routines in ML-DSA and ML-
KEM as introduced in [75] and applied in [19], [20], our
ISA extensions are not tailored to apply this optimization.
The lack of a bit-mask-based permutation instruction in-
hibits the application of the technique in our case.

Sampling in J−η, ηK & Binomial Sampling. As
opposed to the general uniform sampling, the sampling of
coefficients in J−η, ηK for ML-DSA clearly benefits from
our proposed instructions. This is due to a sequence of arith-
metic operations that are applied on each sampled coefficient
after it passes the rejection step. Instead of applying these
operations on each coefficient individually, we “collect” the
coefficients in a WDR until it is filled up and then compute
in a vectorized fashion. In the binomial sampling routine of
ML-KEM, we apply a similar trick. This saves one of seven

instructions inside the innermost loop which amounts to
about 15% of the overall runtime of the binomial sampling
for the case of η = 2.

D.5. Further Applications

Bit Packing. The bit-packing functions profit from
the availability of the WDRs in the baseline implementation
already. However, in instances where the coefficients need
to be subtracted from a constant value for transforming be-
tween the representation on the wire and the representation
as a coefficient, the bn.subvm instruction can be leveraged,
instead of performing individual subtractions. Especially,
bn.subvm can be used to implicitly unpack the coefficients
into their representation mod+.

Reductions. Throughout the implementation of ML-
KEM, no explicit reductions are required as all operations
implicitly reduce the processed data and therefore inhibit
growth of the coefficients. In ML-DSA, also all arithmetic
operations provide implicit reductions, however, since we
decided to operate mod+, we need to transform the coef-
ficients into their centralized representatives mod± before
performing the norm bound check. This transformation can
be done using the reduce32 function, which we can imple-
ment efficiently using our extensions.

Rounding. While the rounding in ML-DSA only
accounts for a small fraction of the runtime, we still note
that we have been able to fully vectorize the implementa-
tions of the Decompose and Power2Round functions, which
highlights the universality of our extensions.

Appendix E.
Additional Results

TABLE E.1: ML-KEM and ML-DSA memory usage. All numbers refer to bytes.

NIST
Level Platform

ML-KEM ML-DSA

K E D K S V

M
L

-K
E

M
-5

12
M

L
-D

S
A

-4
4

OTBN 3232 3712 3840 37 740 50 108 36 156
OTBNKMAC 3232 3712 3840 37 328 48 880 34 928
OTBNKMAC

Ext.++ 2784 3264 3392 37 248 48 800 34 848

OpenTitan [24]a,b — — — — — ≤ 32 000
Skylake [37] — — — — — —
Cortex-M4 [12] 4364 5436 5412 38 296 49 416 36 184
[27] — — — 61 216c

M
L

-K
E

M
-7

68
M

L
-D

S
A

-6
5

OTBN 4256 4736 4864 60 268 77 628 57 692
OTBNKMAC 4256 4736 4864 59 856 76 400 56 464
OTBNKMAC

Ext.++ 3808 4288 4416 59 776 76 320 56 384

OpenTitan [24]a,b — — — — — ≤ 32 000
Skylake [37] — — — — — —
Cortex-M4 [12] 5396 6468 6452 60 824 68 864 57 720
[27] — — — 92 720c

M
L

-K
E

M
-1

02
4

M
L

-D
S

A
-8

7

OTBN 5280 5760 5888 97 132 119 900 92 764
OTBNKMAC 5280 5760 5888 96 720 118 672 91 536
OTBNKMAC

Ext.++ 4832 5312 5440 96 640 118 592 91 456

OpenTitan [24]a,b — — — — — ≤ 32 000
Skylake [37] — — — — — —
Cortex-M4 [12] 6436 7500 7484 97 688 115 968 92 824
[27] — — — 139 840c

a Including modified variant of OTBN, parts of the execution on Ibex Core.
b Round 3 KYBER.
c Full-scheme result.

TABLE E.2: ML-KEM and ML-DSA code size. All numbers refer to bytes.

NIST
Level Platform

ML-KEM ML-DSA

Text Const I/O Totala Text Const I/O Totala

M
L

-K
E

M
-5

12
M

L
-D

S
A

-4
4

OTBN 18 412 3744 3360 22 156 25 484 5664 9696 31 148
OTBNKMAC 15 348 2688 3360 18 036 20 792 4832 9696 25 624
OTBNKMAC

Ext.++ 9740 1568 3360 11 308 18 496 2624 9696 21 120

[29]b — — — 12 532 — — — —
[27] — — — — 20 624 — — —

Cortex-M4 [12] — — — 15 824 — — — 18 596

M
L

-K
E

M
-7

68
M

L
-D

S
A

-6
5

OTBN 18 952 3744 4832 22 696 25 748 5664 12 704 31 412
OTBNKMAC 15 888 2688 4832 18 576 20 780 4832 12 704 25 612
OTBNKMAC

Ext.++ 10 232 1568 4832 11 800 18 384 2624 12 704 21 008

[29]b — — — 11 658 — — — —
[27] — — — — 20 052 — — —

Cortex-M4 [12] — — — 15 992 — — — 18 588

M
L

-K
E

M
-1

02
4

M
L

-D
S

A
-8

7 OTBN 22 056 3744 6464 25 800 26 568 5664 15 520 32 232
OTBNKMAC 18 992 2688 6464 21 680 21 596 4832 15 520 26 428
OTBNKMAC

Ext.++ 13 732 1568 6464 15 300 19 348 2624 15 520 21 972

[29]b — — — 12 874 — — — —
[27] — — — — 20 324 — — —

Cortex-M4 [12] — — — 16 912 — — — 18 468

a Sum of Text and Const.
b Round 2 KYBER.

Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

This paper addresses the problem of accelerating lattice-
based cryptography in hardware without loosing general-
ity and flexibility. It extends the OpenTitan root of trust,
achieving significant speedups for ML-KEM and ML-DSA,
at the price of a slight increase in hardware complexity. The
first extension accelerates the communication between the
OBTN and KMAC core, the other introduces new instruc-
tions to the OBTN’s ISA to speedup polynomial arithmetic.

F.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

F.3. Reasons for Acceptance

1) The paper creates a new tool to enable future
science. The paper brings valuable extensions to
the OpenTitan silicon root of trust, an open-source
project with real-world applications. The engineer-
ing effort is significant. All artifacts will be made
publicly available with permissive licenses. Hence,
the contributions of this paper have the potential
to make positive practical impact and enable future
research.

2) Provides a Valuable Step Forward in an Established
Field. The paper identifies the bottlenecks for the
execution of PQ cryptography on a relevant root-
of-trust design (OpenTitan), extends the design to
avoid these bottlenecks, and thoroughly evaluates
it. A specific contribution of the design proposed
in the paper is that it focuses on modular expan-
sions rather than dedicated accelerators, providing
benefits for both traditional and PQ cryptography.

	Introduction
	Preliminaries
	NIST PQC Standards
	ML-DSA
	ML-KEM

	Number Theoretic Transform
	Modular Multiplications
	OpenTitan
	otbn
	kmac Block

	Implementation on Plain otbn
	NTT and Multiplication in NTT Domain
	Modular Multiplication
	NTT
	Multiplication in NTT Domain

	Keccak on otbn
	Profiling
	Reflection

	Implementation on OTBN With Keccak Acceleration
	Profiling

	Extending the OTBN ISA
	Proposed Instructions
	Impact on ML-{KEM,DSA} Implementations
	Polynomial Addition & Subtraction
	NTT & INTT
	Multiplication in NTT Domain
	Profiling
	Suitability for Masking of ML-{KEM,DSA}

	Hardware Implementation
	Basic Building Blocks
	Configurable Vectorized Adder
	Configurable Vectorized Multiplier

	Integration Into OTBN Architecture
	Modified Big Number ALU
	Modified Big Number MAC
	Big Number MULV Module
	Synthesis Results for Single Extensions

	Results
	Software Benchmarks
	Polynomial Multiplication
	Full-Scheme Benchmarks

	PQC on OpenTitan: System Impact
	Hardware Utilization

	Discussion and Future Work
	References
	Appendix A: Auxiliary Material
	Appendix B: ML-KEM and ML-DSA Algorithms
	Appendix C: Details of OTBN Implementations
	NTT and Multiplication in NTT Domain
	Plantard Multiplication
	Reduction
	NTT

	Sampling
	Bit Packing

	Appendix D: Details of OTBNKMACExt. Implementations
	Polynomial Addition and Subtraction
	NTT & INTT
	Base Multiplication in NTT Domain in ML-KEM
	Sampling
	Further Applications

	Appendix E: Additional Results
	Appendix F: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

