
ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted
Execution Environments

Michael Rosenberg

University of Maryland

College Park, MD, USA

micro@umd.edu

Maurice Shih

University of Maryland

College Park, MD, USA

maurices@umd.edu

Zhenyu Zhao
∗

Tsinghua University

Beijing, China

jasonzhao404@gmail.com

Rui Wang
∗

Purdue University

West Lafayette, IN, USA

rui.wang.rw683@yale.edu

Ian Miers

University of Maryland

College Park, MD, USA

imiers@umd.edu

Fan Zhang

Yale University

New Haven, CT, USA

f.zhang@yale.edu

ABSTRACT
Anonymous Broadcast Channels (ABCs) allow a group of clients

to announce messages without revealing the exact author. Modern

ABCs operate in a client-server model, where anonymity depends

on some threshold (e.g, 1 of 2) of servers being honest. ABCs are

an important application in their own right, e.g., for activism and

whistleblowing. Recent work on ABCs (Riposte, Blinder) has fo-

cused on minimizing the bandwidth cost to clients and servers

when supporting large broadcast channels for such applications.

But, particularly for low bandwidth settings, they impose large

costs on servers, make cover traffic costly, and make volunteer

operators unlikely.

In this paper, we describe the design, implementation, and eval-

uation of ZIPNet, an anonymous broadcast channel that 1) scales

to hundreds of anytrust servers by minimizing the computational

costs of each server, 2) substantially reduces the servers’ band-

width costs by outsourcing the aggregation of client messages to

untrusted (for privacy) infrastructure, and 3) supports cover traffic

that is both cheap for clients to produce and for servers to handle.

1 INTRODUCTION
Anonymous communication is increasingly important for dissent,

activism, and even finance. The simplest form of anonymous com-

munication, anonymous broadcast, is commonly envisioned as a

Twitter-like platform for free speech. But anonymous broadcast also

forms a critical component of larger cryptographic systems such as

e-cash [15], differentially private telemetry [17], and even single se-

cret leader election [10]. These systems require comparatively low

bandwidth, especially compared to increasingly high-bandwidth

residential Internet.
1
Without the former constraints on client-side

bandwidth, we observe that there is a missing dimension in the

design of anonymous broadcast systems that can now be tackled:

trust diversity.
Anonymity loves company, but modern anonymous broadcast

systems make that company prohibitively expensive on two fronts:

To boost anonymity set size, we need cover traffic — empty mes-

sages that are indistinguishable from “real” traffic. Luckily, cover

traffic is in theory cheap, since cover users do not contend for space

to send messages, we need not increase the size of the broadcast

channel. However, state-of-the-art designs often impose high costs

∗
Part of work done while at Yale

1
The median US fixed-connection upload bandwidth in 2019 was 10Mbps [25].

for cover traffic, require trusted parties to handle bandwidth costs

for cover traffic and pay concretely high computational costs for

extra traffic even if it is from cover users. They also impose con-

cretely high computational costs on users who submit cover traffic

messages.

Second, “anonymity loves company” extends not just to the com-

pany of other honest users, but to the company of honest servers:

modern anonymous broadcast systems rely on some number 𝑁𝑆 of

servers to run the broadcast system, where some number 𝑡 ≤ 𝑁𝑆

must be honest to provide anonymity. But if we are limited (by

theory or practice) to, e.g., 𝑁𝑆 ≤ 2, the scheme is not much better

than a simple trusted third party: compromising the two operators

breaks anonymity for every user of the system.

To ensure trust diversity, we want 𝑁𝑆 to be as large as possible

to decrease the marginal trust put in each server operator. This

is not just a question of developing cryptography that supports

𝑁𝑆 > 2 servers. In practice, we need servers to be cheap enough

to instantiate that the operators of the servers can be selected from

a diverse set of entities, e.g., volunteers (as in Tor) or non-profit

organizations. Many anonymous broadcast schemes, however, in-

cur very high computational costs that make such trust diversity

unlikely if not impossible.

In light of these observations, we revisit the design choices for

anonymous broadcast systems through the lens of the anonymity
trilemma: strong anonymity, low latency, and low bandwidth, pick

at most two [21].

Strong anonymity is essential. The lack of strong network layer

anonymity can defeat the privacy provided at other layers of a sys-

tem. Take the case of Zerocash [8], a protocol for privacy-preserving

payments whose deployed derivatives include Zcash [27], Tornado

Cash [36], and other cryptocurrencies. Zero-knowledge proofs hide

the source of spent funds (and hence the payer’s identity) in the set

of all past transactions. But payment privacy also requires we hide

network metadata, e.g., the payer’s IP address, when broadcasting

an anonymous transaction to the blockchain. Here we hit a snag:

common network anonymity schemes, e.g., Tor [22], can only hide

client IP addresses amongst a small number of concurrent network

users and are subject to traffic analysis attacks [6]. The net result is

that network anonymity becomes the limiting factor in the privacy

of a Zerocash-like system. Similarly, the statistical guarantees of

differentially private schemes in the shuffle model [9]
2
are only as

2
The shuffle can be, as in Prio [17], instantiated with an anonymous broadcast channel

1

Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, and Fan Zhang

Table 1: Notational legend for common DC net parameters

Notation Description

𝑀 # users (talking and non-talking)

𝑁 # talking users (≪ 𝑀)

𝑁𝑆 # servers

|𝑚 | bit length of a single message slot

𝐵 bit length of the entire broadcast message

strong as the quality of the shuffle, i.e., the anonymity of the sub-

mitted results and the trust diversity of the servers. Strong network

anonymity reduces these cross-layer privacy mismatches.

Security vs latency should not be a tradeoff. In many anony-

mous messaging systems, adding additional servers comes at a

latency penalty. Consider mixnet and mixnet-like schemes such as

Mixminion [31], Loopix [35], or Vuvuzela [38], where each addi-

tional server increases the latency of the broadcast functionality.

This raises two problems. First, for latency-sensitive applications,

there’s some maximum amount of trustworthy anonymity achiev-

able — systems may support perhaps 3 parties. But more subtly,

even latency-tolerant applications face tradeoffs: does the cost of

additional latency justify the addition of an additional party? While

latency is a concretely measurable cost, the additional privacy pro-

vided by a volunteer server is hard to quantify. Worse, anonymous

messaging systems need to maximize user participation over groups

with disparate utility (e.g., latency) vs privacy tradeoffs. Ideally, ad-

ditional trusted parties should come at no cost.
3

(Client-side) bandwidth is not a concern. The size of the

broadcast channel for many applications (such as anonymizing

cryptocurrency transactions) is small, especially relative to increas-

ing residential broadband capacity. For Ethereum concretely, this is

about 6-7 kilobytes a second.
4

The missing dimension: server bandwidth and resource us-
age. As mentioned above, a key component to trust diversity

is lowering the cost of participating in an anonymous broadcast

system both as a user providing cover traffic and, more crucially, as

a server. Existing modern anonymous broadcast systems substan-

tially increase the costs of adding additional anytrust servers and

increase the cost of cover traffic to those servers.

1.1 DC nets revisited
In this work, we focus on dining-cryptographer networks, or DC nets,
and related schemes that we broadly refer to as anonymous vector
schemes . These systems classically offer the strongest anonymity

and lowest latency of the anonymous broadcast systems. The mod-

ern construction of these systems, first introduced in Dissent [19],

operates in a client-server model, with a number of anytrust servers
performing cryptographic operations on a vector of messages sub-

mitted by clients, to produce an anonymous broadcast message.

3
This is, of course, a tunable trade-off between trust and availability. Secret sharing

can be used to trade off trust in a given party for availability if they go offline.

4
Block size is a limit on the capacity of the network to accept transactions, but strictly

speaking, more transactions can be submitted. Some amount of buffer for anonymous

broadcast would be necessary.

As long as at least one server is honest, anonymity is guaranteed

(hence, any trust).

The core of anonymous vector schemes is, effectively, a one-

time pad. Suppose a system with 𝑀 users permits 𝑁 ≪ 𝑀 users

to send |𝑚 |-bit messages concurrently (a broadcast channel of size

|𝑚 |𝑁) in a single round. Each client generates a vector of the same

size, comprised of the XORs of multiple
5
of random pads, each

of which is derived from a shared key with an anytrust server. If

transmitting, clients XOR their message into a slot in the vector. If

not transmitting, the client message is effectively 0s. Each server

XORs of all received messages and further XORs in all of its shared

one-time pads. Finally, the servers XOR their partial results to derive

the broadcast message. As far as communication costs, each client

submits a message of |𝑚 |𝑁 and each server receives |𝑚 |𝑁𝑀 bits

each round.

Compression schemes. Recent work on anonymous vector

schemes , such as Blinder [2], Riposte [18], and Express [24], which

we refer to broadly as compression schemes, use cryptography to re-

duce clientmessages from𝑂 (|𝑚 |𝑁) down to𝑂 (|𝑚 |
√
𝑁) or𝑂 (|𝑚 | log𝑁)

in the two server case. When client bandwidth is limited relative to

the size of the broadcast channel, compression schemes are invalu-

able.

Compression schemes, however, come at a cost: by drastically

increasing the cost of operating an anytrust server and of handling

cover traffic. Schemes such as Riposte and Express do not practically

(or at all for Express) support more than 2 servers. Even for schemes

that do support more servers, such as Blinder, the cost of running a

server is likely prohibitive to volunteer server operators, requiring

𝑂 (|𝑚 |𝑁) asymmetric cryptographic operations per client message.

Worse, the cost of each additional server
6
imposes considerable

costs on every client in terms of additional computational overhead

when preparing message shares for each server.

Our Contribution. In this paper, we propose ZIPNet, a DC

net-like anonymous vector scheme that alleviates these trust di-

versity problems and offers a 4.2x-7.6x reduction in server runtime

compared to the state of the art [3]. ZIPNet accomplishes this by

relying on trust for everything but anonymity. In particular, ZIPNet

outsources handling almost all of the server inbound traffic and

roughly 80 percent of computation cost, to third-party servers not

trusted for privacy. While this approach is fully compatible with

traditional DC nets, ZIPNet greatly simplifies the design and client

computational costs by relying on client-side trusted execution

environments for DoS prevention but, crucially, not for privacy.

ZIPNet separates a DCnet into three distinct components: 1) clients

that author messages, 2) aggregators, who compress messages as

they traverse a network of untrusted (for anonymity) servers, and

3) servers, who provide anonymity via the same any-trust mecha-

nism as Dissent. By separating the DC-net into distinct components

with differing security requirements, we can narrowly define each

component’s security needs and optimize.

For clients, the key to our approach is the observation that client

DC nets can rely on trusted hardware for DoS prevention without
harming anonymity. As observed in [37], TEEs, when used as a

5
Some schemes use addition in fields of larger characteristics.

6
In the two-server case, DPF schemes are cheap, using a tree-based PRF constructed

from e.g., hashes. These techniques do not generalize.

2

ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments

form of zero-knowledge proof, no longer need to maintain the

confidentiality of data (from the prover/TEE operator). Rather, they

must merely ensure correctness. We go one step further, using TEEs

as a falsifiable trust assumption: an attacker who breaks the TEE

can DoS the system by submitting malformed messages, but this

will be observable. Moreover, because an attacker who breaks our

TEE assumption only extracts their own secrets, TEE failures do

not harm privacy. TEEs give us an extremely lightweight means to

ensure message integrity and correct behavior. We avoid expensive

traitor tracing protocols or verifiable shuffles.

Second, by separating the roles of handling messages from the

role of servers providing anonymity, we can substantially reduce

the bandwidth costs for operating anytrust servers compared to

Blinder, Express, or even Dissent. Aggregators can compress mes-

sages multiple client messages together by XORing them. These

work as a type of reverse content distribution network (CDN). In-

stead of processing all client messages, each of size 𝐵, anytrust

servers take only a single aggregate message of size 𝐵, plus the list

of user IDs in the anonymity set.

Better yet, because these aggregator servers are untrusted for

privacy, they can be run as infrastructure by a single party without

undermining security or trust diversity.
7

Third, ZIPNet specifically minimizes the cost of cover traffic to

anytrust servers, a point typically neglected in other systems, but

essential for anonymity. The size of the broadcast vector is deter-

mined by the number of active users, but the number of messages

each server must process is the sum of the active users and the cover

users. In Dissent and standard DC nets, anytrust server bandwidth

is thus 𝑂 (𝐵𝑀). Compression schemes can reduce this by a factor

of 𝑂 (|𝑚 | log𝑁) or 𝑂 (|𝑚 |
√
𝑁), but they substantially increase the

computational cost of processing any message: for every message,

each anytrust server must do asymmetric cryptographic work that

is proportional to 𝐵, the size of the broadcast vector.8

In ZIPNet, we get both the low computational costs of DC-net

style anytrust servers, requiring only symmetric operations per

client message plus a signature check on a constant size hash, and

reduced anytrust server bandwidth that is even smaller than with

compression schemes. By outsourcing the aggregation step to com-

pletely untrusted (for privacy) infrastructure, volunteer anytrust

servers pay almost no additional bandwidth cost for each additional

cover traffic message and very low computational costs.

Finally, for the concrete instantiation of ZIPNet, we target the

setting where client bandwidth substantially exceeds the size of the

broadcast bandwidth but clients do not necessarily knowwhen they

will transmit (e.g. to make a payment). As such, the use of TEEs

allows us to implement an incredibly simple reservation mechanism

that gives low latency for unscheduled messages (in contrast, in

schemes like Dissent, clients must schedule in advance, and the

scheduling process typically has high latency).We develop a scheme

that is reminiscent of the basic collision avoidance mechanisms in,

e.g., Ethernet, and inspired by footprint scheduling [29].

7
In contrast, one cannot simply pay for servers that are trusted for anonymity to get

trust diversity. Many naïve approaches leave nodes controlled by a single coordinated

party, and decentralized approaches can rapidly lead to all infrastructure being hosted

on the cheapest or simplest cloud computing providers, leading to an increasingly

central point of compromise.

8
Either directly to evaluate the DPF or, in the case of Blinder, in the setup for the MPC

that checks the secret-shared DPF.

Table 2: Communication complexity of different anonymous
broadcast protocols, where 𝜆 is the security parameter, andwe
assume the broadcast channel size 𝐵 = 𝑁 |𝑚 |, up to a constant
factor.

User Anytrust Cost to add

server non-talker

DC Net [16] 𝑂 (𝑁𝑀 |𝑚 |) - -

Anytrust [19] 𝑂 (𝑁 |𝑚 |) 𝑂 (𝑁 |𝑚 | (𝑀 + 𝑁𝑆))) 𝑂 (𝑁 |𝑚 |)
Blinder [2] 𝑂 (

√
𝑁 |𝑚 |) 𝑂 (|𝑚 | (𝑀

√
𝑁 + 𝑁𝑁𝑆)) 𝑂 (

√
𝑁 |𝑚 |)

Riposte [18] 𝑂 (|𝑚 |) 𝑂 (𝑁𝑀 |𝑚 |) -

ZIPNet (this paper) 𝑂 (𝑁 |𝑚 |) 𝑂 (𝑀𝜆 + 𝑁𝑁𝑆 |𝑚 |) 𝑂 (𝜆)

In summary, we introduce ZIPNet which offers:

• Lightweight DoS prevention from falsifiable trust assump-

tions with TEEs.

• anonymous message aggregation: using untrusted (for pri-

vacy) aggregators, we can aggregate all client messages into

a single message to reduce bandwidth overhead of anytrust

servers.

• high performance: Concretely, ZIPNet is 4.2x-7.6x faster

than the state-of-the-art schemes. The bandwidth overhead

incurred by each server for each additional cover traffic

message is only 84 bytes.

• Low-cost trust diversity: each additional anytrust server is

cheaper to operate than the state-of-the-art schemes and

imposes far smaller costs on clients sending messages.

2 ARCHITECTURE
In this section we present the architecture of ZIPNet.

2.1 Overview of DC net architecture
Before diving into how ZIPNet works, we review common DC net

constructions. A DC net is typically run by a set of 𝑀 users and

optionally some servers. The ideal anonymity a DC net can offer

is𝑀-anonymity, meaning from the adversary’s point of view, the

probability that a given broadcast message is sent by any particular

user is 1/𝑀 . In the original definition [16], only one user talks (we

use speak, talk, and send interchangeably), and the remaining𝑀 − 1

users help increase the anonymity set by sending cover traffic (all-

zero messages). A DC net protocol can also allow 𝑁 ≪ 𝑀 users

to talk simultaneously using a scheduling mechanism to share the

bandwidth. We denote the bit length of a single user message slot

as |𝑚 |, and the bit length of the entire broadcast channel as 𝐵. We

provide the notation as a stand-alone figure in Table 1.

Chaum’s DC net [16]. The dining cryptographers’ problem

and its first solution (a DC net) are presented in Chaum’s seminal

paper [16]. To realize a broadcast channel of bandwidth 𝐵, the to-

tal communication complexity is 𝑂 (𝐵𝑀2) as it involves all-to-all
communication among𝑀 users. Note that the communication com-

plexity is independent of 𝑁 , the number of users that are actually

speaking.

Specifically, users first establish pair-wise keys so that user 𝑖

and 𝑗 will share a key 𝑘𝑖, 𝑗 . To send, an active user 𝑖 first computes

a 𝐵-bit one-time pad (OTP) 𝑘𝑖 = ⊕𝑗≠𝑖𝑘𝑖, 𝑗 . Then she composes

3

Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, and Fan Zhang

[]1 []2 []3[]1 []2 []3

threshold-trusted server

A Bcompress compress

msg =
client msgs

& decompress & decompress & decompress
unblind unblind unblind

(a) An anonymous broadcast round in a scheme similar
to Blinder [2]. A user compresses their message into the
outer product of two

√
𝑁 -sized vectors, which are then

split into secret shares and sent to the majority-trust
servers.

{A, B, C, D}

{A, B} {C, D}

untrusted aggregator

threshold-trusted server

unblind unblind unblind

msg =

A B C D

reservations

client msgs

(b) An anonymous broadcast round inZIPNet. Ciphertexts
are XORed through multiple aggregation layers, until the
root aggregator broadcasts the aggregate and user list to
all servers. The servers then unblind and combine the
aggregates into the final broadcast message.

Figure 1: Diagrams representing the structures of two anonymous broadcast systems

a 𝐵-bit message msg by embedding her message (of size |𝑚 |) at
proper locations according to the schedule and putting zeroes in all

other positions. User 𝑖 then broadcastsmsg ⊕ 𝑘𝑖 . Users who are not
scheduled to send will still broadcast a zero message (encrypted

with their respective OTPs) to provide cover traffic. In total, for a

single message, each server sends 𝐵 bits to𝑀 − 1 other server, thus,

the global communication cost is 𝑂 (𝐵𝑀2) bits.

DC net with servers. Dissent [19] uses a group of servers to

avoid expensive all-to-all broadcasts among users. In the setup,

users establish shared keys with 𝑁𝑆 servers, of which, the server

needs only trust one for privacy. To broadcast in a system with just

one talking user, each user sends an |𝑚 |-bit message (properly con-

structed according to the schedule) to an anytrust server encrypted

with an OTP derived from shared keys with all servers. The servers

XOR all received messages with their keys to decrypt and deliver

the round message. The same generalization applies, wherein the

broadcast channel can be of any size 𝐵 that can accommodate the

scheduling and talking of 𝑁 users.

In this architecture, all-to-all communication among users is

avoided—users just send 𝐵 bits to the server. On the other hand,

anytrust servers still need to consume 𝐵𝑀 bytes, plus the commu-

nication overhead among them. Other works, such as Riposte [18]

and Blinder [2] perform message compression on the client side, en-

abling quadratic or even exponential improvements in per-message

communication cost.

The DC net with servers paradigm also has a choice of trust

assumptions.While Dissent has an anytrust model, Blinder operates

in a majority-trust model, i.e., at least 𝑁𝑆/2 servers must be honest

in order to maintain privacy.

We include a graphical representation of schemes like Blinder

in Figure 1a, using quadratic compression and a majority trust

assumption.

2.2 ZIPNet overview
ZIPNet extends the anytrust model with several key modifications.

First, we introduce aggregator nodes to reduce the bandwidth over-

head of anytrust servers. Second, we use trusted execution envi-

ronments (TEEs) to prevent denial of service (DoS) attacks that are

otherwise expensive to prevent.

There are three types of participants in ZIPNet: clients, aggre-
gators, and anytrust servers. We call clients who send (nonzero)

messages talking clients, and those who send cover traffic (zero

messages) non-talking clients.
Every client is assigned a single aggregator, and clients operate

from inside a TEE. The clients, aggregators, and anytrust servers

all check the attestation signatures of network parties they are

peered with to ensure that all relevant parties are acting fromwithin

TEEs. This ensures that all parties in the network are running the

same “acceptable” code base, which prevents malicious clients and

aggregators from causing a denial of service, by, e.g., writing in

other clients’ slots. As we will see, ZIPNet’s privacy guarantees do

not rely on the security of the TEE, but rather on the honesty of at

least 1 server.

The protocol proceeds in rounds. In each round, clients, aggrega-

tors and anytrust servers interact to produce a broadcast message
as follows:

Clients A talking client produces a ciphertext of their message

(formatted according a scheduled write slot) and sends it to

their designated aggregator. A non-talking client provides

cover traffic by choosing a message of all-zeros.

Aggregators Upon receiving ciphertexts from clients, aggrega-

tors temporarily store them, aggregate them by XORing

them together, and then forward the aggregate message

to the next upstream aggregator. The top-level root aggre-
gator will produce a single 𝐵-bit vector and send it to the

anytrust servers. Aggregators can significantly reduce the

4

ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments

traffic that anytrust servers must ingest: messages from𝑀

users can be aggregated to a single message of size 𝑂 (𝐵).
Upon first glance, this does not seem to really change the

nature of the problem, as the aggregators may become the

new bottleneck. However, in ZIPNet, we make aggregators

untrusted, so there can be many of them to distribute the

workload.

Anytrust servers Upon receiving an aggregate ciphertext, anytrust

servers partially decrypt the ciphertext with the keys they

have. To conclude the round, they combine the partial de-

cryptions to obtain the broadcast message and publish it.

3 DESIGN AND SECURITY ANALYSIS
The core procedures are given in Algorithms 1 to 3. These algo-

rithms are executed by clients, aggregators, and any trust servers,

respectively, in the configuration shown in Fig. 1b. We operate in

the any trust model introduced by [19] and used in subsequent

works[2, 18], where servers (in our case aggregators and any trust

servers) are picked statically in advance at setup and we assume at

least one of the any trust servers is honest for anonymity and all of

the servers are honest for availability. Algorithm 1, which runs in-

side a TEE, is executed by clients to produce messages. The trusted

execution environment ensures that clients follow the protocol and

prevents DoS attacks. Messages are passed to aggregators and then

to any-trust servers as shown in Fig. 1b. These later two algorithms

are run outside of TEEs with security coming from the any-trust

model. Belowwe detail design decisions and some details for system

setup and rate limiting elided from the figures exposition.

Falsifiable TEE assumption. A TEE is a hardware-based isolated

execution environment that aims to provide confidentiality and

integrity guarantees to enclosed code and data.While TEEs can help

simplify and speed up protocols, practical TEE implementations

may fail to provide any security guarantees [11–13]. As a result,

applications of TEEs are faced with a binary choice—they either

fully trust TEEs and swallow the considerable risk of side-channel

attacks, or reject TEEs altogether and forgo their benefits.

With ZIPNet, we propose a new way to use TEEs where trust

assumptions are falsifiable and breaks are recoverable. A key design

consideration is that ZIPNet only relies on TEEs for liveness and that

TEE failures are conspicuous in ZIPNet. An attacker who breaks a TEE
does not compromise confidentiality, rather they merely gain the

ability to DoS the system by spamming malformed messages. This

is detectable by all parties. Further, since each client ’s TEE contains

no sensitive information, recovery from a TEE break consists of

patching the TEE and re-registering clients.

Realizing a falsification protocol for disruptive malicious behav-

ior is surprisingly simple: clients (running in TEEs) are required

to append a falsification tag to their messages. This tag consists of

hash of their message. Any malicious client who, after breaking

their own TEE, submits a malformed message will either a) write

to an unused slot or b) collide with an honest client’s message in a

used slot. In the latter case, some bits of the honest client’s message

and/or hash will be flipped. If we assume the hash behaves as a

random oracle, then with overwhelming probability, these flips

will not result in a valid (message, tag) pair. As tag generation is

required by the enclave, a “false” alarm where a malicious client

intentionally submits a bad tag for their own message would also

require an enclave break.

Setup. We assume a PKI where all parties have registered. In

the case of clients, registration includes an attestation proving that

their secret key (a Curve25519 scalar in our implementation) is con-

trolled by the enclave. Naïvely, every party in ZIPNet could perform

TEE attestation for every protocol message. However, Intel SGX’s

attestation mechanism includes extra overhead: every verification

performs a network request to Intel to check for revocation. To

avoid this repeated cost, we require parties to generate a signing

key upon setup precisely once and provide an attestation for its

correct generation and sealedness. Thus, following setup, parties

can simply sign their communications with that key rather than

performing a full attestation.

A client’s secret key (kept private in the enclave) is used for

key agreement and signing. A user obtains the server’s public keys

from the PKI and provides them to the enclave to derive shared

secrets using the standard Diffie Hellman key exchange. As shown

in Algorithm 1, the enclave will derive one sharedKeyWithServer
for each server and store them sealed in ssDB. For each round,

a fresh OPT is derived as line 19-20 in Algorithm 1 using a KDF

(HKDF in our implementation). Shared keys are symmetrically

ratcheted [4] (i.e., new keys are obtained by applying KDF to old

keys) for forward secrecy, as line 23 of Algorithm 1. Severs also

perform the same ratcheting operation so the shared keys remain

consistent.

Sealed data. To store a value persistently, the TEE seals it, i.e.,
encrypts it with a key that’s locked inside the TEE, and makes the

ciphertext available to the operating system. To recover the value,

the TEE caller provides the sealed ciphertext and a reference to

the key that decrypted it. Care is required to ensure that a stateful

protocol using a TEE model is not susceptible to tampering around

the boundaries: while the TEE state cannot be modified due to

cryptographic guarantees on the sealing process, which state (of

all previous states) is presented at a given protocol step is up to

the (possibly malicious) caller. Careful consideration must be given

to rollback attacks. In particular, in ZIPNet, all behavior within a

TEE is deterministic, with randomness derived from fixed keys and

unique inputs tied to the round.

3.1 Weak TEEs, rate limiting and fair resource
usage without trusted state

ZIPNet is designed to support very large amounts of cover traffic in

a setting where a small number of users dynamically send messages.

As such, we cannot rely on some fixed transmission schedules as

in, e.g., Dissent. At the same time, precisely because the broadcast

channel is relatively small, we need to ensure malicious clients

cannot monopolize it. In other words, we want quick transmission

and free cover traffic.

If the client’s TEE is trusted to maintain state, enforcing a rate

limit is trivial: a counter that resets at the end of each round is

incremented every time the client sends a real (non-cover) mes-

sage and the client attests ctr < limit. But many TEEs, including

Intel SGX for servers, cannot prevent rewinding of ctr or another
state. Moreover, fault injection attacks have plagued many secure

hardware implementations that do offer state-keeping.

5

Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, and Fan Zhang

To avoid the state-keeping problem, ZIPNet uses a simplifica-

tion of rate-limiting tags from [14]. For each message, the client

outputs PRF𝑘 (ctr∥epoch) and attests that ctr < limit. Any attempt

to rewind the counter will result in a duplicate tag detected by the

Aggregators. For cover messages, the client generates a completely

random tag independent of the counter, thus avoiding the rate limit.

We elide the details from our pseudocode for readability, but the

implementation is straightforward and included in our prototype

of ZIPNet.

3.2 Scheduling
As with any DC net system, ZIPNet users can only talk in a reserved

message slot. ZIPNet uses footprint scheduling [29] and piggybacks

on the broadcast channel to include a scheduling message at the

very beginning (i.e., round 𝑟 of the protocol also schedules the slots

for round 𝑟 + 1). To prevent a malicious user from depleting the

channel by spamming reservations, ZIPNet runs the scheduling in

the TEE. Again, even if a TEE is breached, the adversary can only

disrupt the scheduling (liveness failure), not privacy.

Suppose a user 𝑈 wishes to speak in round 𝑟 + 1, she reserves

a slot in round 𝑟 as follows. First, she computes a slot using a

pseudorandom function 𝑠 = PRF(𝑘, 0, 𝑟) mod numSchedSlots and
an 𝑓 -bit footprint 𝐹 = PRF𝑓 (𝑘, 1, 𝑟) where 𝑘 is 𝑈 ’s secret key. She

speaks in round 𝑟 , and writes 𝐹 in slot 𝑠 . Now, at the conclusion

of round 𝑟 , she detects collision by comparing the 𝑠-th slot in the

broadcast message with 𝐹 . If they are different, then someone else

tried to schedule the same slot, and she simply tries again the next

round. Setting 𝑓 to be sufficiently long can ensure that collisions

are detected with overwhelming probability. If 𝐹 does match the

broadcast message at slot 𝑠 , then she uses the (signed) broadcast

message of round 𝑟 as a ticket to her TEE that will allow her to

speak in round 𝑟 + 1.

Offline clients. Clients need to transmit a reservation request

and empty message first. Once they have a reservation, they can

transmit a message (and additional requests as needed). Clients

who go offline restart this process.

Integrity. ZIPNet runs two anonymous broadcast channels in

parallel. One for messages and one to reserve slots in the next

round. However, an attacker who can equivocate the schedules

and feed each client a distinct one can deanonymize users. While

the schedule is signed in ZIPNet, this is part of the anti-client-DoS

machinery and is done by a single server that is not trusted for

privacy.

One possible solution to address this concern would involve

having all servers sign the scheduling vector for each round. This

approach would result in additional network overhead due to the

necessity of coordinating signatures. Instead, in ZIPNet, both clients

and servers rely on the schedule as a shared context during the

derivation per round key material. If a client and server disagree

on the output of the preceding round, the result will be a random

message vector.

Scheduling vector size. Naively, we could set the scheduling

vector to have a one-to-one mapping to the scheduling of the mes-

sage vector. However since slots are selected at random, this would

needlessly reject clients. Based on the calculations made by Ri-

poste [18], when𝑚 users write randomly to a single slot, in order to

have 95% non-collision rate, there need to be 2.7𝑚 slots. We set our

scheduling vector to contain 4𝑚 slots while maintaining a message

vector of𝑚 slots. This gives us an approximate 97% non-collision

rate for the message vector.

Support users with high network latency. The current sched-

uling algorithm works under the assumption that a user’s network

latency to ZIPNet is lower than the round time. For users with high

network latency variance, we can extend the algorithm to allow

reservations valid for more than one round. This would accommo-

date users who need multiple rounds to schedule. The rate limit

tokens can be adapted accordingly (e.g., by including 𝑖 | |𝑖+1| | · · · ∥𝑖+𝑡
in the PRF computation where 𝑡 is the number of rounds in which

a user is scheduled to speak).

3.3 Security analysis
ZIPNet relies on TEEs for integrity protection from clients and

trusts both the anytrust servers and aggregators for availability

and integrity. We discuss deployment settings and how to improve

availability in Section 6. Here we consider the anonymity of ZIPNet.

Adversary and network model. We adopt the standard adver-

sary and network model of anytrust DC nets (e.g., as in Blinder [2]),

assuming there are at least 𝜌𝑁 honest clients, for some 𝜌 ∈ (0, 1),
submitting their messages, granting the network adversary the

power to spawn (1 − 𝜌)𝑁 clients. The adversary can inspect, but

cannot block, all network channels, as no protocol can guarantee

meaningful privacy if the global network adversary can drop all

honest messages.

ZIPNet is a round-based protocol and assumes synchrony. Anonymity

will not be breached when this assumption is violated (liveness

will). Synchrony assumption has proven practical in real-world

distributed systems such as blockchains.

We consider a modified version of the definition proposed in

Riposte [18] for anonymity. In addition to syntactic changes to

support our scheme and simplifying the definition to consider a

single honest server, we make one important modification: we

remove the direct requirement in the game that there are two honest

clients. Instead, we limit the number of accounts the attacker can

control. As a result, the definition requires the honest server to

enforce a minimum participation threshold in a round and abort if

the attacker drops. If it fails to do so, the game is trivially winnable.

This is a key requirement for practical security in many schemes

and one that many definitions fail to enforce.

A (𝑡, 𝑛)-anonymous broadcast system is defined by a security

game between a challenger who operates 𝑡 − 𝑛 honest clients and

one honest server, and an adversary who operates the remaining

parties including an aggregator, the remaining servers, and at most

𝑛 dishonest clients. For each honest client, the adversary specifies

both their message𝑚 and the slot 𝑠 they should write to. The chal-

lenger picks a bit 𝑏 and based on it either computes client messages

as specified or permutes which client writes which message. Given

the computed client messages, the adversary provides a claimed

aggregation and the challenger responds with the honest server’s

round output given the aggregate. The full definition is given in

Appendix A

6

ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments

Security argument. Wenow sketch the argument for the anonymity

of a stand-alone DC net with aggregation, and then our DC net

with scheduling. We make no security assumptions about TEEs.

We note that, without aggregation or scheduling, the protocol is

a standard DC net in the exact anytrust model of Dissent. Security

stems from the fact that each client message is indistinguishable

from random given a single honest server. As a result, the adversary

cannot learn which client wrote which message or the bit 𝑏. While

client messages are malleable, there is a one-to-one correspondence

between bits in any client message and the corresponding bit in

the broadcast vector, so flipping a bit merely flips the same bit in

the broadcast.

At first glance, aggregation gives the adversary another attack

vector not present in classic DC nets: it can drop or alter messages.

However, this is not new: an attacker who controls the network

can already both drop and modify messages in standard DC nets.

As in Dissent, honest servers in ZIPNet must abort a round if they

receive less than a critical number of client messages.

ZIPNet, however, is not a single DC net. Its two DC nets, specifi-

cally (𝑡, 𝑛)-anonymous broadcast systems, run in parallel. In round

𝑖 the client sends a message in the scheduling network. In round

𝑖 + 1 the client sends in the transmission network if they see their

reservation in the broadcast schedule. First, we note that reveal-

ing the schedule or even letting the attacker control it does not

impact privacy: our definition of anonymous broadcast anonymity

assumes the attacker can control which slots are written to. Sec-

ond, not sending the schedule to a particular client is equivalent to

dropping the client’s messages, which is already guarded against

by the minimum participation threshold. However, per the above

discussion on scheduling integrity, an attacker could equivocate on

the schedule. Using the schedule as a shared KDF input for both

clients and servers prevents this attack.

4 IMPLEMENTATION AND EVALUATION
In this section, we evaluate ZIPNet in multiple scenarios and ap-

plications. ZIPNet targets a regime with low message size, a small

number of broadcasters per round, and a high degree of required

anonymity (i.e., having a large number of non-talking clients to

provide cover traffic). Similar to Riposte [18] and Blinder [2], anony-

mous microblogging is a practical application for ZIPNet. These

are also the network properties needed by privacy-preserving cryp-

tocurrencies: anonymity is important, block sizes (proportional to

the number of participants per round) are small, and message (trans-

action) sizes are in the hundreds of bytes; high anonymity calls for

increased trust diversity both to better match the strong privacy

offered by cryptography on-chain and to meet users’ expectations

for decentralization.

ZIPNet is designed to reduce the computational overhead of

clients and servers as we increase trust diversity both by adding

anytrust servers and cover traffic. We find that, in our motivating

regime, ZIPNet significantly outperforms Blinder on server runtime

regardless of the number of servers. This is likely due to cheaper

cryptographic protocols, and the concretely small bandwidth and

computation necessary for an anytrust server to operate.

4.1 Implementation details
Client. We instantiate ZIPNet client with Intel SGX as the under-

lying TEEs in ∼2.2k lines of Rust using the Teaclave SGX SDK [26].

We ported third-party crates x25519-dalek and ed25519-dalek to the

SGX environment for Diffie-Hellman key exchange and digital sig-

nature respectively. For key derivation and pseudorandom number

generation, we ported hkdf and aes-ctr from the RustCrypto [1].

Aggregator. We implement the ZIPNet aggregator in ∼2k lines

of Rust, with 16-thread multithreading.

Server. We implement the any-trust server in ∼2.2k lines of Rust

code. It uses the same cryptography libraries as the client, but runs

outside TEEs. The majority of server computation time is spent

on unblinding the message share. To accelerate the PRNG used

to expand server keys to round-specific OTPs, we use hardware

acceleration (AES-NI) with multithreading.

4.2 Experiment setup and design
Setup. We target a deployment model where servers will be run

by community volunteers. Therefore in our experiment, we deploy

any trust servers on affordable AWS EC2 instances (in particular,

AWS t2.2xlarge with 8 vCPUs and 32GB of RAM, costing $0.3712

per hour on demand). The aggregator will be run by well-funded

organization, thus we use powerful servers (in particular, AWS

c6a.8xlarge with 32 vCPUs and 64GB of RAM, costing $1.224 per

hour on demand) to run aggregators. We run the client on an OVH

server (Infra-1-LE) with Intel SGX hardware support.

We evaluate the performance of ZIPNet in both LAN and WAN

settings. In the LAN setting, all servers and aggregators are in

the same AWS availability zone. In the WAN setting, servers are

distributed across the globe (in US East (Ohio, N. Virginia), US West

(N. California, Oregon), Canada (Central), Europe (Paris, Frankfurt,

London), Asia Pacific (Tokyo), South America (São Paulo)), with

the aggregator in Ohio. We use iperf to measure the bandwidth

and latency between the aggregator and servers and the results are

in Tables 4 and 5. The bandwidth ranges from 69.6Mbps to 985Mbps

and latency ranges from below 1ms to 130ms. To simulate large

numbers of client requests, we first pre-generate client requests

on a dedicated server with Intel SGX enabled, then replay them at

the aggregator. The cost of generating client requests is measured

separately. In our experiments, we vary the message size, and the

number of clients and servers to illustrate the characteristics of our

system. Unless specified, all experiments used a single aggregator.

Design. DCnet protocols, including ZIPNet, run in fixed rounds

where the round time is set statically so that the system can handle

some parameterized number of talking clients (which determines

the size of the broadcast channel 𝐵), non-talking (cover traffic)

clients and a fixed number of any trust servers.

The goal of our experiments is to determine the minimal round

time our implementation can sustain across these parameters. To

do this, we modify ZIPNet aggregators and servers to instead of

operating on fixed round times, immediately complete their step

in a round when they receive a fixed number 𝑁 (recall notations

from Table 1) of messages. We then run the system end-to-end

with mostly simulated client traffic (except for evaluating client

performance). This gives us the latency each component of ZIPNet

7

Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, and Fan Zhang

Algorithm 1 Client-side procedures,includes sending a message in the current round, sending cover traffic in the current round, and

reserving a slot for the next round. These procedures run inside a TEE.

1: Public Input
2: (round,msg, requestSlot, publishedSchedule, 𝜎PubSched)
3: Sealed State
4: usk User signing key

5: lpk Leader signing public key

6: 𝑘 User symmetric key

7: ssDB Shared secrets with server (key exchange done at user registration)

8: Let nextSchedVec,msgVec, := [0, 0, . . . , 0]
9: assert Verifylpk (publishedSchedule, 𝜎PubSched)
10: if requestSlot then ⊲ try to reserve a slot for talking in the next round if requested

11: Let (nextSchedSlot, nextFootprint) := compSchedFootprint(𝑘, round + 1)
12: Set nextSchedVec[nextSchedSlot] ⊕= nextFootprint

⊲ Recompute the request from the last round and see if it made undisturbed into the published scheduled. If it is, we completed a reservation and can

write the message to the reserved slot.

13: Let (curFPSlot, curFootprint) := compSchedFootprint(𝑘, round)
14: if publishedSchedule[curFPSlot] = curFootprint then
15: Let falsificationTag = ROMHash(msg)

16: Set msgVec[compMsgSlot(curFPSlot, publishedSchedule)] ⊕= msg | |falsificationTag
17: else ⊲ If reservation failed, nothing is XOR’d, i.e., this is cover traffic

18: Set msgVec[compMsgSlot(curFPSlot, publishedSchedule)] ⊕= 0

⊲ In all cases, we blind the broadcast vectors either to send or provide cover traffic

19: for sharedKeyWithServer ∈ ssDB do
20: Let pad1∥pad2 := KDF(sharedKeyWithServer, round, publishedSchedule)
21: Set nextSchedVec ⊕= pad1 and msgVec ⊕= pad2

22: Let payload := (round, nextSchedVec,msgVec)
23: Let 𝜎 := Signusk (payload)
24: Set ssDB = ssDB.rachet()
25: Output (payload, 𝜎)

26: procedure compSchedFootprint(𝑘, round)
27: Let slot := PRF𝑘 (round) mod numSchedSlots
28: Let footprint := PRF𝑓

𝑘
(round)

29: return (slot, footprint)

30: procedure compMsgSlot(curFPSlot, publishedSchedule)
31: Let msgSlot := 0

32: for 𝑖 ∈ 0..curFPSlot do
33: if publishedSchedule[𝑖] ≠ 0 then
34: Set msgSlot+ = 1

35: return msgSlot

Procedures in this figure run inside a TEE

incurs to handle that many messages for a given number of talking

clients, non-talking (cover) clients, and a set number of anytrust

servers. From this, we can compute the total round time of ZIPNet

as a whole.

4.3 Experimental results
Below we present three sets of results. As an overview, Figures 2

and 3 give latency numbers for anytrust servers and aggregators as

a function of either the amount of non-talking (cover traffic) clients

or the number of talking clients. In the former case, the size of the

broadcast channel remains constant. In the latter, the size of the

broadcast channel increases to handle the increased demand for

broadcast space. Separately, Fig. 4 reports client runtime also as a

function of increasing load. Since client runtime is not affected by

other clients, we measure instead the cost of increased broadcast

channel size (indirectly caused by more talking clients) and, sepa-

rately, the cost of increasing the number of anytrust servers. I.e.,

the cost of increased trust diversity.

4.3.1 Anytrust server runtime. In our experiment, we fix a leader

server to combine the outputs of follower servers to get the final

broadcast message. Figure 2 plots the runtime of server processing,

starting from when all servers receive the final aggregate, to the

time when the leader outputs.

8

ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments

Algorithm 2 Aggregator receiving user message

1: Public Input
2: upk User Public Key

3: 𝜎 Payload signature

4: payload Payload from user

5: State
6: ask Aggregator signing key

7: aUserPKs Aggregated user public keys

8: aMsgVec Aggregate of msg vector

9: aSchedVecAggregate of next schedule vector
10: regUsers Set of registered users

11: curRound current round number

12: Let (round, nextSchedVec,msgVec) := payload
13: assert upk ∈ regUsers
14: assert Verifyupk (payload, 𝜎)
15: assert upk ∉ aUserPKs
16: assert round = curRound

⊲ XOR the payload into the aggregate vectors

17: Set aSchedVec ⊕= nextSchedVec
18: Set aMsgVec ⊕= msgVec
19: Set aUserPKs = aUserPKs ∪ {upk}
20: Let payload
21: := (round, aUserPKs, aSchedVec, aMsgVec)
22: Let 𝜎 ′

:= Signask (payload)
23: Output (payload, 𝜎 ′)

Algorithm 3 Server receiving data from aggregator

1: Public Input
2: publishedSchedule
3: payload Payload from aggregator

4: 𝜎 Payload signature

5: State
6: apk Aggregator public key

7: ssk Server signing key

8: regUsers Set of registered users

9: ssDB Shared secrets with clients

10: minClientsMin. allowed clients per round

11: assert Verifyapk (payload, 𝜎)
12: Let (round, userPKs, aSchedVec, aMsgVec)
13: = payload
14: assert userPKs ⊆ regUsers
15: assert |userPKs | ≥ minClients

⊲ Unblind broadcast vectors with per user keys

16: for userPK ∈ userPKs do
17: Let pad1∥pad2
18: := KDF(ssDB[userPK], round, publishedSchedule)
19: Set aSchedVec ⊕= pad1
20: Set aMsgVec ⊕= pad2

21: Let payload := (round, aSchedVec, aMsgVec)
22: Let 𝜎 := Signssk (payload)
23: Set ssDB := ssDB.rachet()
24: Output (payload, 𝜎)

0 2,000 4,000 6,000 8,000
0

5

10

Number of Clients

S
e
r
v
e
r
s
R
u
n
t
i
m
e
(
s
)

All talking, 𝑁𝑆 = 5 (WAN)

All talking, 𝑁𝑆 = 10 (WAN)

1024 talking clients, 𝑁𝑆 = 5 (WAN)

(a) Server Runtime asNumber of Clients Increase. “All talking”means
all of the clients are talking, while “1024 talking” means the other
clients send cover traffic. Message size is 160B.

0 500 1,000 1,500 2,000
0

5

10

Message Size (Bytes)

S
e
r
v
e
r
R
u
n
t
i
m
e
(
s
) 1024 Talking Clients, 𝑁𝑆 = 5 (LAN)

(b) Server Runtime As Message Size Increases.

Figure 2: Server runtime

In the left figure, we give latency as the number of clients in-

creases in two scenarios. The line labeled “1024 Talking Client”

plots an increase in cover traffic for a constant number of talk-

ing clients and therefore a constant broadcast channel. The other

lines plot an increase in the number of talking clients (and there-

fore an increase in the broadcast channel size), for 5 servers and

10 servers respectively. Two conclusions can be drawn. First, the

performance difference between 5 and 10 servers is insignificant,

especially with many clients, as the overhead is dominated by de-

crypting of messages and the traffic between servers is low (a single

broadcast message). Second, the numbers confirm that server run-

time increases quadratically with the number of talking clients, but

only linearly with cover traffic. This highlights one of ZIPNet’s

advantages that adding a non-talking client is cheap.

In the right figure, we measure latency as the size of messages

in the broadcast channel increases but the number of clients is kept

constant. This gives us a baseline for systems effectiveness when

used for e.g, anonymous Twitter (message size is 280 bytes) versus

an anonymous cryptocurrency (400 bytes for Bitcoin, 108 bytes for

Ethereum, 2KB for Zcash, 2.38KB for Monero).

4.3.2 Aggregator runtime. An aggregator’s work is to XOR𝑀 mes-

sages of size 𝐵 = 𝑏𝑁 , so its runtime is a function of the number of

talking and non-talking clients. Figure 3 plots the concrete runtimes

under varying parameters.

Figure 3a plots the same experiments as Fig. 2a but measures

aggregator performance. For clarity, we do not plot measurements

for both 5 and 10 anytrust servers as aggregator performance is

9

Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, and Fan Zhang

0 2,000 4,000 6,000 8,000
0

2

4

6

8

Number of Clients

A
g
g
r
e
g
a
t
o
r
R
u
n
t
i
m
e
(
s
)

All Talking

1024 Talking Clients

(a) Aggregator Computational Runtime as Number of Talking Clients
Increase (and Broadcast Channel Increases) or as Cover Traffic In-
creases. Messages size is 160B.

0 500 1,000 1,500 2,000
0

2

4

6

Message Size (Bytes)

A
g
g
r
e
g
a
t
o
r
R
u
n
t
i
m
e
(
s
)

1024 Talking Clients

(b) Aggregator Computational Runtime As Message Size Increases.

Figure 3: Aggregator runtime

independent of the number of servers. Again, we can observe that

the additional runtime overhead of adding a non-talking client is

much cheaper than adding a talking one. Figure 3b confirms that

the runtime of the aggregator is linear in the message size when

the number of clients is fixed.

4.3.3 Client runtime. The performance profile of clients is different

from aggregators and servers. To send, the client computes 𝑁𝑆 pair-

wise OTPs of length 𝐵 and XOR them with the message to be sent.

The runtime is thus a function of 𝑁𝑆 and the message size.

Overall, the client runtime is very efficient. The right figure

of Fig. 4 measures the runtime as a function of increased broadcast

vector size. In the left figure, since client performance is not affected

by the number of non-talking clients (because they do not increase

the broadcast vector size), we instead report on the cost of increased

trust diversity: how does client runtime change as the number of

anytrust servers (and therefor the trust diversity of the system)

increase. We find that the costs are indeed far lower than those of

Blinder and Riposte

4.3.4 End to end experiments. We evaluate the end-to-end perfor-

mance of ZIPNet in WAN settings with five and ten servers respec-

tively. The location of servers and the network parameters (latency

and bandwidth) between them are shown in Tables 4 and 5. Figure 5

measures the total runtime of a round—from when the aggregator

starts processing user submission to the leader server outputs the

final broadcast message. Comparing Fig. 5 and Figs. 2 and 3, the

total runtime is slightly higher than the sum of the aggregator’s

and server’s processing time obtained from microbenchmarks. This

is because the end-to-end runtime includes the time taken for the

aggregator to send the final aggregate to all servers.

4.4 Discussion
We now discuss the results of our experiments.

4.4.1 Lower cost of cover traffic. A salient feature of ZIPNet is

that cover traffic is cheap. Each additional client message incurs

added work by every anytrust server. We cannot do less work for

cover traffic messages specifically (this would break anonymity).

However, as the number of cover trafficmessages increases, we need

not increase the size of the broadcast vector. In contrast, for a system

that expects more talking clients, we need to use a larger broadcast

vector. ZIPNet offers markedly lower costs as the number of clients

increases but the broadcast vector size stays the same. As such, cover

traffic is cheaper than, e.g., Blinder (see Fig. 6). Moreover, because

of message aggregation, servers do not pay 𝑂 (𝐵) bandwidth per

cover message, just a small constant increment due to the client ID

(in our implementation a client ID is 32 bytes; with encoding the

concrete increment is 84 bytes; see Table 3.).

Table 3: Server’s bandwidth consumption (bytes) in a round
with 1024 talking clients and varying numbers of non-talking
clients.

Num of clients Bandwidth Overhead per non-talking clients

1024 535,607 n/a

2048 622,283 84.64

4000 786,923 84.34

8000 1,123,952 84.26

4.4.2 Comparison with other systems. Below we compare ZIPNet

with other multi-server anonymous vector schemes. In Section 5,

we compare to a wider range of protocols.

Blinder [2]. We empirically compare the server runtime of ZIPNet

and CPU Blinder by running them on the same hardware. We

obtained Blinder source code from https://github.com/cryptobiu/

MPCAnonymousBloging and evaluated its server runtime as the

number of clients increased, with 5 and 10 servers respectively. We

fixed the message size to 160B and used default parameters in their

testing scripts. Figure 6 plots the results with ZIPNet in comparison.

We note that we do not compare against GPU Blinder despite it

being considerably faster. It is prohibitively costly: Although the

minimum resource requirements are unknown, Blinder only reports

benchmarks on servers with three server-grade CUDA cards each

which cost $24.48 per hour in 2020. This is a >5x cost increase

relative to their CPU system for 160-byte messages and 10,000

clients. It is also 65 times the cost of our benchmarked anytrust

server, even for 2023 hardware and prices.

With 8000 clients, ZIPNet server is 6.3x and 7.6x faster than CPU

Blinder for 5 and 10 servers respectively; with 4000 clients, ZIPNet

server is 5.6x and 6.0x faster than CPU Blinder for 5 and 10 servers

10

https://github.com/cryptobiu/MPCAnonymousBloging
https://github.com/cryptobiu/MPCAnonymousBloging

ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments

0 200 400 600 800 1,000
0

0.2

0.4

0.6

Number of Servers

C
l
i
e
n
t
R
u
n
t
i
m
e
(
s
) 160B Messages

(a) Client runtime as the number of servers increases with message
size fixed to 160B and 1024 talking users.

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

Message Size (Bytes)

C
l
i
e
n
t
R
u
n
t
i
m
e
(
s
) 1024 Talking Clients

(b) Client Runtime as a Function of Message Size.

Figure 4: Client runtime

0 2,000 4,000 6,000 8,000
0

5

10

15

Number of Users

T
o
t
a
l
R
u
n
t
i
m
e
(
s
) 160B, 5 Servers (WAN)

160B, 10 Servers (WAN)

Figure 5: End-to-end round time, from when the aggre-
gator starts processing user requests to the leader server
outputs the broadcast message.

0 2,000 4,000 6,000 8,000
0

20

40

60

80

Number of Clients

S
e
r
v
e
r
R
u
n
t
i
m
e
(
s
) Blinder 𝑁𝑆 = 5

Blinder 𝑁𝑆 = 10

ZIPNet 𝑁𝑆 = 5

ZIPNet 𝑁𝑆 = 10

Figure 6: Runtime comparison of ZIPNet’s server with CPU
Blinder’s server running on the same machine (t2.2xlarge)
in WAN.

respectively. The principal performance improvement in ZIPNet

comes from using almost exclusively symmetric cryptography on

the server (namely hardware-accelerated AES-NI as a PRF and XOR)

in comparison to the asymmetric operations needed by Blinder for

its MPC protocols supportingmessage compression. By outsourcing

aggregation to untrusted servers, ZIPNet avoids these costs while

achieving lower (near constant) anytrust server bandwidth.

In terms of client runtime, ZIPNet scales much better with the

number of servers and message sizes. E.g., with 20 servers, ZIPNet

client runtime is far below 0.1s while Blinder takes 40s-75s; even

with 5 servers and 1KB message, ZIPNet client runtime is less than

0.2s while Blinder needs 1.4s [2, Fig. 1].

Riposte [18]. ZIPNet’s latency is significantly lower than Riposte

in the 160B message setting, comparing the 5- and 10-server ver-

sions of ZIPNet and the 3-server version of Riposte. CPU Blinder is

almost always faster than 3-server Riposte with 5 and 10 servers [2,

Fig. 4].

OrgAn [20]. OrgAn presents a novel anonymous broadcast proto-

col in the client/relay/server setting using almost key-homomorphic

PRFs. While anytrust servers are needed for setup, the decryption

of messages is done by an untrusted relay, reducing latency.

We compared the end-to-end runtime between ZIPNet and Or-

gAn under identical hardware configurations. The results show

that ZIPNet is orders of magnitude faster: 57x-59x faster with 768

clients, and the advantage increases as the number of clients. In the

interest of space, we refer readers to Appendix C for details.

5 RELATEDWORK
The dining cryptographer net was introduced by Chaum [16] as a

solution to the dining cryptographer’s problem, wherein a group of

cryptographers wishes to establish an anonymous 1-bit broadcast

channel for anyone to claim that they paid for dinner (concluding,

if 0, that the NSA paid). Chaum’s solution, while unconditionally

secure, requires every user to communicate with every other user,

resulting in a total round communication complexity of 𝑂 (𝐵𝑀2),
where 𝐵 is the message size and 𝑀 is the number of users (recall

notation from Table 1).

Many DC nets, including ZIPNet, exist in the anytrust model,
which trades Chaum’s unconditional security for lower communi-

cation cost by switching to a client-server communication model.

To achieve privacy in the anytrust model, a user need only trust that

one of 𝑁𝑆 servers is honest. Dissent [19] builds Chaum’s system in

this model and adds a traitor-tracing protocol to identify users who

clobber the output. The servers’ bandwidth consumption is linear

in the number of users, which limits the scalability to many users.

Riposte [18] improves on Dissent by having stronger trust as-

sumptions and faster disrupter tracing techniques. Riposte’s three-

server model has two servers that process client requests and a third

that audits clients’ messages, allowing live detection of disrupters.

Since Riposte’s topology is the same as that of Dissent other than

the addition of a third audit server, it suffers from similar bandwidth

limitations. It does improve on this front by using distributed point

11

Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, and Fan Zhang

functions (DPF), reducing the size of client messages from 𝑂 (𝐵) to
𝑂 (

√
𝐵 + |𝑚 |).

Blinder [2] in another broadcasting scheme in the anytrust model.

It departs from previous works in that it shifts traitor-sensitive be-

havior to a setup phase of its protocol, whereby each user engages

in a secret sharing protocol with the anytrust servers. Assuming

the proportion of malicious servers is less than 1/4, malicious users

are caught in this phase. After setup, traitor tracing is unnecessary:

Blinder relies on secure multiparty computation (MPC) primitives

to ensure that malicious users cannot maul round messages. In par-

ticular, the anytrust servers engage in a (batched) format verification
MPC protocol for the secret-shared messages they receive. Blinder

uses a similar matrix decomposition trick as Riposte, yielding a

user-server bandwidth cost of just 𝑂 (
√
𝐵 + |𝑚 |) per round. The

tradeoff for this communication complexity is that the overwhelm-

ing majority of server computation time in the CPU version of

Blinder is spent on decompressing the plaintext (an MPC operation

requiring 𝐵 multiplications per client message).

Spectrum [32] is an anonymous broadcast system tailored specif-

ically for the case of few, large-payload broadcasters. Its primary

improvements lie in its broadcast channel setup and a lightweight

traitor tracing protocol. To set up a broadcast in a particular slot, a

Spectrum client bootstraps using a less efficient broadcast channel

and sends a short broadcast key to all servers. After this setup, a

client uses knowledge of this broadcast key in order to compute

a MAC, permitting it to send in that channel (or send the 0 mes-

sages, for cover traffic). Rather than traitor tracing after a round

has been mauled, Spectrum does it before: a verifiably encrypted

message that fails the audit step (a MAC check), is forcibly opened

by the servers to determine fault. Using DPFs, Spectrum achieves

the user-server bandwidth of𝑂 (log𝐵 + |𝑚 |) in the case 𝑁𝑆 = 2, and

𝑂 (
√
𝐵 + |𝑚 |), otherwise.

Express [24] provides enhancements and a change of model.

Unlike previous schemes where clients have the potential to miss

messages if they do not pay attention to each round, client read and

writes are asynchronous. Each message request includes a virtual

mailbox, which the owner can read at any point in time. Express

improves Riposte’s idea of the third audit server by incorporating

its functions into the existing two servers, eliminating the need for

an additional server. Communication sizes are also reduced from

𝑂 (
√
𝐵) to𝑂 (1) (independent of the number of clients in the system).

The limiting constraint of Express is bound by the DPF calculations

done on the server.

Clarion [23] provides an elegant MPC shuffling protocol for

anonymity approach. The system requires considerable pre-processing

overhead for the MPC and this scales with the number of servers

and is omitted from their evaluation. They wrote “our evaluation

corresponds well to the setting where low latency anonymous

broadcast is needed for a short period, e.g., during a live event, that

can be planned ahead of time.” Clarion outperforms MCMix, [34]

an older MPC shuffle system with similar limitations.

OrgAn [20] presents a novel extension to the organizational

anonymity setting of PriFi [7], which itself is a version of Dissent

tailored to small user bases, such as a campus WiFi network. In

PriFi, scheduling blocks on completing an online verifiable shuffle

with the any trust servers. To achieve very low latency, this shuffle

is not run every round, resulting in somewhat linkable messages.

OrgAn replaces the scheduling mechanism with an Almost Key-

homomorphic Pseudorandom Function and then employs a classic

any-trust DC net for bulk data transmission. While PRF still incurs

setup costs with the any-trust servers, the decryption of message

can be done by a powerful untrusted party, reducing latency. How-

ever, Almost key-homomorphic PRFs have an error term that limits

the number of users who can participate in the scheduling round,

either as cover traffic or to communicate. Specifically, OrgAn re-

ports benchmarks for at most 200 clients. In contrast, by relying on

trusted hardware for scheduling but not privacy, ZIPNet avoids the

downsides of both OrgAn and PriFi.

6 CONCLUSION, DEPLOYMENT
CONSIDERATIONS, AND ALTERNATIVES TO
TEES

ZIPNet is an anonymous broadcast protocol which is 8.7x-17.6x

faster than state of the art. By outsourcing message aggregation

to untrusted servers, ZIPNet drastically reduces the workload of

anytrust servers by removing the need for the server to compute,

for every client message, asymmetric cryptographic operations

proportional to the size of the broadcast channel. As a result, the

cost of additional cover traffic is also minimized. Deploying ZIPNet

raises a few considerations.

Churn. ZIPNet is designed to scale to a large number of any trust

providers and aggregators. Because aggregators are untrusted for

privacy, we envision them being run as infrastructure by a single

reputable and competent entity (e.g., like Signal or Tor’s directory

services). Such a party can split clients over multiple aggregators,

preventing a single point of failure.
9

Failure of a single any-trust server aborts the round, setting a

practical limit on how many any-trust servers any scheme can

accommodate. We believe ZIPNet gets substantially closer to that

limit by reducing operating costs and there are some interesting

extensions to decrease the costs of churn are worth further investi-

gation. For instance, a client can participate in a round while only

relying on a subset of any-trust servers. Additionally, we can down-

grade from any-trust to threshold trust by threshold secret sharing

each server‘s key with the any trust set and operating a consensus

mechanism for recovery and failover.

TEEs, SGX, and alternatives. Our prototype uses SGX which

Intel recently withdrew from consumer equipment. ZIPNet can be

instantiated with any TEE implementation such as keystone [30],

Nvidia H100GPU [33] or ArmTrust Zone.Many of these systems are

not yet broadly available or, e.g, for the Secure Elements in iPhones

and many Android phones, not yet accessible to developers.

A more interesting question is if we can avoid TEEs completely

and rely on software-based methods since we need only correctness,

not confidentially. Mobile operating systems provide forms of app

attestation (e.g., the DeviceCheck framework in iOS [5]), which

may be sufficient. Originally designed to combat ad fraud, these

schemes are designed to ensure that requests to a server come only

from a genuine instance of an application on a phone.

9
This would require failover for a root aggregator of aggregators.

12

ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments

Another interesting possibility is whitebox cryptography [39],

where it may be possible to deploy multiple different obfuscated

versions per client. Because our trust assumptions are falsifiable,

the failure of any obfuscated client could be detected and, with an

appropriate traitor-tracing scheme, identified and replaced with a

fresh obfuscation.

REFERENCES
[1] Rust Crypto. https://github.com/RustCrypto.

[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder - scalable, robust

anonymous committed broadcast. In Jay Ligatti, Xinming Ou, Jonathan Katz,

and Giovanni Vigna, editors, ACM CCS 2020, pages 1233–1252. ACM Press,

November 2020.

[3] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blinder: MPC based scalable

and robust anonymous committed broadcast. Cryptology ePrint Archive, Report

2020/248, 2020. https://eprint.iacr.org/2020/248.

[4] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security

notions, proofs, and modularization for the Signal protocol. In Yuval Ishai and

Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
129–158. Springer, Heidelberg, May 2019.

[5] Apple Developer Documentation. DeviceCheck. https://developer.apple.com/

documentation/devicecheck.

[6] John Barker, Peter Hannay, and Patryk Szewczyk. Using traffic analysis to identify

the second generation onion router. In 2011 IFIP 9th International Conference on
Embedded and Ubiquitous Computing, pages 72–78, 2011.

[7] Ludovic Barman, Italo Dacosta, Mahdi Zamani, Ennan Zhai, Apostolos Pyrgelis,

Bryan Ford, Joan Feigenbaum, and Jean-Pierre Hubaux. PriFi: Low-latency

anonymity for organizational networks. PoPETs, 2020(4):24–47, October 2020.
[8] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments

from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474.
IEEE Computer Society Press, May 2014.

[9] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, , and Bern-

hard Seefeld. Prochlo: Strong privacy for analytics in the crowd. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP ’17, page 441–459,

New York, NY, USA, 2017. Association for Computing Machinery.

[10] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret

leader election. In Proceedings of the 2nd ACMConference on Advances in Financial
Technologies, pages 12–24, 2020.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: Sgx cache at-

tacks are practical. In Proceedings of the 11th USENIX Conference on Offensive
Technologies, WOOT’17, page 11, USA, 2017. USENIX Association.

[12] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

Foreshadow: Extracting the keys to the intel sgx kingdom with transient out-of-

order execution. In USENIX Security Symposium, 2018.

[13] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul

Strackx. Telling your secrets without page faults: Stealthy page table-based

attacks on enclaved execution. In USENIX Security Symposium, 2017.

[14] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and

Mira Meyerovich. How to win the clone wars:

efficient periodic n-times anonymous authentication. Cryptology ePrint Archive,

Report 2006/454, 2006. https://eprint.iacr.org/2006/454.

[15] David Chaum. Blind signatures for untraceable payments. In David Chaum,

Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 199–203.
Plenum Press, New York, USA, 1982.

[16] David Chaum. The dining cryptographers problem: Unconditional sender and

recipient untraceability. Journal of Cryptology, 1(1):65–75, January 1988.

[17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable com-

putation of aggregate statistics. In 14th USENIX symposium on networked systems
design and implementation (NSDI 17), pages 259–282, 2017.

[18] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous

messaging system handling millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321–338. IEEE Computer Society Press, May 2015.

[19] Henry Corrigan-Gibbs and Bryan Ford. Dissent: accountable anonymous group

messaging. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,

editors, ACM CCS 2010, pages 340–350. ACM Press, October 2010.

[20] Debajyoti Das, Easwar Vivek Mangipudi, and Aniket Kate. OrgAn: Organiza-

tional Anonymity with Low Latency. 2022(3):582–605.

[21] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. Com-

prehensive anonymity trilemma: User coordination is not enough. PoPETs,
2020(3):356–383, July 2020.

[22] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In Proceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, page 21, USA, 2004. USENIX Association.

[23] Saba Eskandarian and Dan Boneh. Clarion: Anonymous communication from

multiparty shuffling protocols. Cryptology ePrint Archive, Report 2021/1514,

2021. https://eprint.iacr.org/2021/1514.

[24] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Ex-

press: Lowering the cost of metadata-hiding communication with cryptographic

privacy. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021,
pages 1775–1792. USENIX Association, August 2021.

[25] FCC. Internet Access Services: Status as of June 30, 2019. https://docs.fcc.gov/

public/attachments/DOC-381125A1.pdf, 2022.

[26] The Apache Software Foundation. Teaclave SGX SDK, October 2022. https:

//github.com/apache/incubator-teaclave-sgx-sdk.

[27] Daira Hopwood, Sean Bowe, Taylor Hornby, and NathanWilcox. ZCash protocol

specification version 2022.3.8. Technical report, The ZCash Foundation, 2021.

[28] Engin Kirda and Thomas Ristenpart, editors. USENIX Security 2017. USENIX
Association, August 2017.

[29] Anna Krasnova, Moritz Neikes, and Peter Schwabe. Footprint scheduling for

dining-cryptographer networks. In International Conference on Financial Cryp-
tography and Data Security, pages 385–402. Springer, 2016.

[30] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn Song.

Keystone: An open framework for architecting trusted execution environments.

In Proceedings of the Fifteenth European Conference on Computer Systems, EuroSys
’20, 2020.

[31] Mixminion. Type III (Mixminion) mix protocol specifications.

http://mixminion.net/minion-spec.txt.

[32] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum:

High-bandwidth anonymous broadcast. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 229–248, 2022.

[33] Nvidia. Confidential computing | NVIDIA. https://www.nvidia.com/en-us/data-

center/solutions/confidential-computing/.

[34] Anh Pham, Italo Dacosta, Guillaume Endignoux, Juan Ramón Troncoso-Pastoriza,

Kévin Huguenin, and Jean-Pierre Hubaux. ORide: A privacy-preserving yet

accountable ride-hailing service. In Kirda and Ristenpart [28], pages 1235–1252.

[35] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George

Danezis. The loopix anonymity system. In Kirda and Ristenpart [28], pages

1199–1216.

[36] Tornado Cash. Core deposit circuit. https://docs.tornado.cash/tornado-cash-

classic/circuits/core-deposit-circuit.

[37] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine

Shi. Sealed-glass proofs: Using transparent enclaves to prove and sell knowledge.

Cryptology ePrint Archive, Report 2016/635, 2016. https://eprint.iacr.org/2016/

635.

[38] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vu-

vuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15, page 137–152,

New York, NY, USA, 2015. Association for Computing Machinery.

[39] Brecht Wyseur. White-box cryptography.

A DEFINITION OF BROADCAST ANONYMITY
Here we consider a modified version of the definition proposed in

Riposte [18].

A (𝑡, 𝑛)-anonymous broadcast system is defined by the following

security game between a challenger who operates 𝑡 − 𝑛 honest

clients and one honest server, and an adversary who operates the

remaining parties including an aggregator, the remaining 𝑁𝑆 − 1

servers, and at most 𝑛 dishonest clients.

(1) The challenger initializes 𝑡 − 𝑛 honest clients, with public

keys 𝑃𝐾
H1

𝑐 . . . 𝑃𝐾
H𝑡−𝑛
𝑐 , and one honest server with public

key 𝑃𝐾
H1

𝑠 . The honest server’s participation threshold is

set at 𝑡−𝑛. The challenger sends these keys to the adversary
A.

(2) The adversary picks a static set of corrupt servers and client

messages:

• A generates𝑁𝑆 corrupt server public keys 𝑃𝐾
A1

𝑠 . . . 𝑃𝐾
A𝑛
𝑠

and a corrupt aggregator 𝑃𝐾
A1

𝑎 public key.

13

https://github.com/RustCrypto
https://eprint.iacr.org/2020/248
https://developer.apple.com/documentation/devicecheck
https://developer.apple.com/documentation/devicecheck
https://eprint.iacr.org/2006/454
https://eprint.iacr.org/2021/1514
https://docs.fcc.gov/public/attachments/DOC-381125A1.pdf
https://docs.fcc.gov/public/attachments/DOC-381125A1.pdf
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/apache/incubator-teaclave-sgx-sdk
http://mixminion.net/minion-spec.txt
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://docs.tornado.cash/tornado-cash-classic/circuits/core-deposit-circuit
https://docs.tornado.cash/tornado-cash-classic/circuits/core-deposit-circuit
https://eprint.iacr.org/2016/635
https://eprint.iacr.org/2016/635

Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, and Fan Zhang

• The adversary specifies the clear text message and

the slot for each honest client as 𝑀 = {𝑖, 𝑠𝑖 ,𝑚𝑖 |𝑖 ∈
[1, 𝑡 − 𝑛]}

A sends 𝑃𝐾
A1

𝑎 , 𝑃𝐾
A1

𝑠 . . . 𝑃𝐾
A𝑛
𝑠 and 𝑀 to the challenger

C.
(3) The challenger plays the role of honest clients and the

honest server, and allows the adversary to play the role of

the aggregator and a malicious network:

• The challenger registers each honest client with the

corrupted servers, the corrupted clients with the hon-

est servers, and the aggregator.

• The challenger samples a bit 𝑏. Let 𝜋0 be the identity

permutation and 𝜋1 be a randomly selected permuta-

tion over [1, 𝑡 − 𝑛].
• For each (𝑖,𝑚, 𝑠𝑖) the challenger computes the client‘s

DCnetmessage 𝑐𝑖 forwriting𝑚𝑖 to slot 𝑠𝑖 under 𝑃𝐾
H𝜋𝑏 (𝑖)
𝑐 .

That is, depending on 𝑏, it either sends the clients mes-

sages as specified by the adversary or it swaps which

client writes which message according to the permu-

tation.

• The challenger sends 𝜋1 and 𝑐1, . . . , 𝑐 (𝑡−𝑛) to the ad-

versary.

(4) The adversary computes a claimed aggregation 𝑎 of all mes-

sages (possibly containing corrupt client messages) which

is sent to the challenger.

(5) The challenger computes the output of the honest server𝑜H
given the claimed aggregate 𝑎 and sends it to the adversary.

(6) The adversary makes a guess 𝑏′ for the value of 𝑏.

The adversary wins the game if 𝑏′ = 𝑏.

B ADDITIONAL DETAILS FOR EXPERIMENT
SETUP

Table 4: Network bandwidth and latency (RRT inmillisecond)
of the connections between the aggregator (in us-east-2c)
and servers.

Server Avail. Zone Bandwidth (Mbps) RTT avg

1 us-east-2b 985 0.84

2 eu-west-3b 127 92.06

3 us-west-1a 246 49.97

4 ap-northeast-1a 84.4 130.96

5 us-west-2c 198 48.48

6 ca-central-1b 522 24.19

7 eu-central-1b 69.6 100.6

8 eu-west-2c 138 85.42

9 sa-east-1c 91.4 124.76

10 us-east-1d 819 11.16

Table 5: Network bandwidth and latency (RRT inmillisecond)
of the connections between the leader (server #1) and other
servers.

Server Avail. Zone Bandwidth (Mbps) RTT avg

2 eu-west-3b 119 91.05

3 us-west-1a 107 51.12

4 ap-northeast-1a 83.7 130.96

5 us-west-2c 84.2 48.3

6 ca-central-1b 66.7 23.49

7 eu-central-1b 234 100.43

8 eu-west-2c 91.1 85.15

9 sa-east-1c 110 124.14

10 us-east-1d 455 10.46

C COMPARISONWITH ORGAN
We acquired the OrgAn source code from https://github.com/zhtluo/

organ and assessed its end-to-end runtime as the number of simu-

lated clients increased. Same with above evaluation, we run ZIP-

Net with aggregator on c6a.8xlarge instance and 5 servers on

t2.2xlarge instances. To ensure similar environment in OrgAn.

We used 5 server running on t2.2xlarge instance, to generate

message representing numerous clients, and a c6a.8xlarge func-
tioning as relay. For a consistent comparison, we fixed the message

size at 1KB and adhered to the default parameters specified in their

testing scripts. Figure 7 illustrates the results of ZIPNet in relation

to Organ.

In OrgAn, each round comprises a base phase and a bulk phase.

The base phase includes preliminary setups, while the bulk phase

involves the majority of data processing, communication, and com-

putation. Our performance comparison between ZIPNet and OrgAn

focuses on OrgAn’s bulk runtime. OrgAn provides numerous set-

tings including adding blame protocol, unzip protocol and doing

delay before sending message. We selected two of the simplest set-

tings, which represent OrgAn’s best performance: one without any

additional procedures (denoted as rprf) and the other incorporating

an unzip operation (denoted as rnoprf).

With 128 clients, ZIPNet demonstrates significant performance

enhancements, being 2.2x and 2.4x faster than OrgAn’s bulk run-

time in settings rprf and rnoprf, respectively. With 768 clients, the

efficiency of ZIPNet improves further, exhibiting performance that

is 59.1x and 57.6x faster than OrgAn’s bulk runtime for the set-

tings rprf and rnoprf, respectively. These results clearly indicate

that ZIPNet offers relatively superior performance and scalability

compared to OrgAn.

14

https://github.com/zhtluo/organ
https://github.com/zhtluo/organ

ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments

0 200 400 600 800

0

2

4

6

8

10

Number of Clients

E
n
d
-
t
o
-
e
n
d
R
u
n
t
i
m
e
(
s
)

OrgAn rnoprf bulk

OrgAn rprf bulk

ZIPNet

Figure 7: Runtime comparison of ZIPNet and OrgAn on iden-
tical hardware in a LAN setting: a c6a.8xlarge instance as the
aggregator/relay and five t2.2xlarge instances as anytrust
servers. Both systems were configured with 37 slots, each
with 28B per slot.

15

	Abstract
	1 Introduction
	1.1 DC nets revisited

	2 Architecture
	2.1 Overview of DC net architecture
	2.2 ZIPNet overview

	3 Design and Security Analysis
	3.1 Weak TEEs, rate limiting and fair resource usage without trusted state
	3.2 Scheduling
	3.3 Security analysis

	4 Implementation and evaluation
	4.1 Implementation details
	4.2 Experiment setup and design
	4.3 Experimental results
	4.4 Discussion

	5 Related work
	6 Conclusion, deployment considerations, and alternatives to TEEs
	References
	A Definition of broadcast anonymity
	B Additional Details for Experiment Setup
	C Comparison with OrgAn

