
EagleSignV3 : A new secure variant of EagleSign
signature over lattices

Abiodoun Clement Hounkpevi(1), abiodounkpevi@gmail.com
Sidoine Djimnaibeye(1), dthekplus@gmail.com

Michel Seck(2), michelseck2@gmail.com
Djiby Sow(1), sowdjibab@yahoo.fr, djiby.sow@ucad.edu.sn

1 Cheikh Anta Diop University Dakar Senegal
2 Ecole Polytechnique Thies Senegal

Table of Contents

1 Introduction . 3
1.1 Short description of Falcon/Modfalcon and Christal Dilithium . . 4
1.2 Summary of EagleSignV3 . 5
1.3 Comparison with existing lattices based signatures 6

2 Preliminaries . 7
2.1 Notations and basic operations . 7
2.2 Signature and its security model . 8
2.3 Hard problems over lattices . 9

3 EagleSignV3; Design, security and parameters . 10
3.1 Basic functions . 11
3.2 Description of EagleSign (General case) . 11
3.3 Description of EagleSignV3 . 12
3.4 Comparison of the design EagleSignV3 and the two old EagleSign 14
3.5 Security analysis of EagleSignV3 . 16

3.5.1 Choosing the modulus and the number of repetitions 16
3.5.2 Zeroknowledge proof for EagleSignV3 16
3.5.3 Security proof in ROM for EagleSignV3 16

3.6 Sizes and security levels for EagleSignV3 . 18
4 Security proof in QROM for EagleSignV3 . 20
5 Advantages and Limitations for EagleSignV3 . 21
A Implementation of EagleSignV3 . 26

A.1 Constant time implementation for EagleSignV3 26
A.2 Bit/Byte Packing for EagleSignV3 . 26
A.3 NTT transformation for EagleSignV3 . 27
A.4 Hashing and Sampling techniques, special functions for

EagleSignV3 . 27
B Conversion . 29

Abstract. With the potential arrival of quantum computers, it is es-
sential to build cryptosystems resistant to attackers with the computing
power of a quantum computer. With Shor’s algorithm, cryptosystems
based on discrete logarithms and factorization become obsolete. Reason
why NIST has launching two competitions in 2016 and 2023 to standard-
ize post-quantum cryptosystems (such as KEM and signature) based on
problems supposed to resist attacks using quantum computers. EagleSign
was prosed to NIT competition in Jun 2023 as an additional signature.
An improvement called EagleSign-V2 was proposed in December 2023 but
Tibouchi and Pells prove that these two variants don’t hold the zero knowl-
edge property. In this document we present the family of lattices based
post-quantum signatures called EagleSignV3. They are secure and efficient
successors of both EagleSign-V1 (NIST, June 2023) and EagleSign-V2
(NIST forum, December 2023). The public key of EagleSignV3 is based

on a mix of MLE (Module Learning with Error) and MNTRU (module
variant of the famous NTRU problem). The instantiations EagleSignV3
are new variants of the EagleSign signatures family posted to NIST
competition in June 2023 as additional signatures. EagleSignV3 uses the
rejection of Lyubashevsky-2012 to achieve the zero-knowledge property.
The main difference between EagleSign and Dilithium is the public key.
We have two instantiations based either on ring or on module. The sizes
of the ring based variant of EagleSignV3 are close to those of Dilithium
but the sizes of its module based instantiation is bigger than those of
Dilithium.
NB: The implementation of EagleSign-V1 is available on NIST website
and those of EagleSign-V2 can be found on Github at
https://github.com/EagleSignteam/EagleSign_v2 and in NIST forum as
a comment on improvements on EagleSign in December 2023. The imple-
mentation of EagleSign-V3 can be deduced from those of EagleSignV2.
Keywords: Public key cryptography, Signature, Lattice, NTRU,
MNTRU, LWE, MLWE, Dilithium, Falcon, EagleSign

1 Introduction

Given the recent advancements in quantum computing and the fact that the
classical Integer Factorization Problem and the Discrete Logarithm Problem are
not secure against quantum computers [77], the scientific community want to
design cryptosystems and protocols that resist to attacks by quantum technologies.

For this reason, the National Institute of Standards and Technology (NIST),
by a call for submissions [59], propose the transition to quantum-resistant cryptog-
raphy. Many algorithms for public-key encryption, key encapsulation mechanism,
and digital signature were proposed throughout 3 rounds. Many authors have
worked on the categorization (according to the family of underlying problem) and
the performance analysis of the schemes proposed to NIST [24,37,57,60]. There
were 3 evaluation criteria for the case of digital signature schemes: (1) security
(Zero knowledge property, security proof in ROM/QROM, Side Channel Attacks
mitigation, hardness of the underlying problem), (2) cost and performance, and
(3) algorithm and implementation characteristics on software and hardware.
In July 2022, at the end of the 3rd round, regarding the post-quantum digital
signatures, there were 3 candidates proposed for NIST standardization: one
MLWE-based signature (CRYSTALS-Dilithium), one NTRU-based signature
(FALCON) and one hash-based signature (Sphincs+).

At the end of the 3rd round, NIST began a new process by a call for additional
signatures and the first submissions where done in June 2023 with 40 proposals
including EagleSign which is a lattices based signature using a public key that
is a mix of MLWE and MNTRU. Tibouchi in the PQC Forum of NIST have
proposed an attack on June on the first variant called here EagleSign-V1 and in
December on the second variant called EagleSign-V2. These two attacks target
the zero knowledge property of EagleSign. In this work, we propose a new variant

3

of eagleSign called eagleSignV3 that use correctly the rejection sampling of
Lyubashevsky 2012 to obtain the zero-knowledge property .

1.1 Short description of Falcon/Modfalcon and Christal Dilithium

Summary of Falcon (Ring) and ModFalcon (Module) : Falcon and its
generalization ModFalcon are based on the framework for lattice-based signa-
ture schemes proposed by Gentry, Peikert and Vaikuntanathan : hash-and-sign
paradigm upon collision-resistant preimage sampleable function [39]. The un-
derlying hard problem in Falcon is NTRU-SIS (Short Integer Solution problem
over NTRU public key) together with the ”Fast Fourier sampling (FFT)” as a

trapdoor sampler. In the ring Rq = Zq(X)
(Xn + 1) , the NTRU public key of Falcon is

h = f−1g mod q, q = 12289, n = 512, 1024 where f, g are small and sparse poly-
nomials in Rq. The NTRU-SIS hardness is based on the difficulty of recovering
the polynomials f and g given the polynomial ring element h. In quantum or
classical world, no efficient attack is currently known to break the computational
NTRU-SIS or the Decisional Small Polynomial Ratio (DSPR) assumption of
NTRU whenever f and g are suitably chosen. In Falcon, after computing f and
g from an appropriate distribution, the key generation algorithm computes F
and G such that fG − gF = q mod Xn + 1. The polynomials f , g, F , and G
are stored in the private key sk.
To sign a message m, Falcon uses a hash function H, a private key sk, a salt
r, |r| = 64 and a FFT sampler to compute short vectors s1, s2 that satisfy the
equation: s1 + s2h = H(r, m). Falcon is the most compact (most small size)
signature among those proposed to NIST competition but it is based directly on
cyclotomic ring and does not allow various security levels.
ModFalcon is introduced by Chuengsatiansup, Prest, Stehlé, Wallet and Xagawa
(ASIACCS ’20) and it generalizes Falcon to modules where the public key is
H = F−1G mod q where F,(resp: G) is m × m (resp: m × k) matrix with short
entries in Rq. In [29], they instantiated a particular case where k = 1, q = 12289,
and n = 256. Moreover, in the IBE scheme (IACR ePrint 2019/1468) the authors
Cheon, Kim, Kim and Son chose m = 1. ModFalcon allows an intermediate
security level that is missing in Falcon signature.

Fiat-Shamir Transformation: The Fiat-Shamir transformation was pro-
posed by Fiat and Shamir [36] as a framework that allows to derivative a signature
from an Identification Protocol (ID) by removing the interaction in ID throughout
a hash function. Many studies for the security of Fiat-Shamir signatures in the
Quantum random oracle Model (QROM) were done (see [17,17,34]). Recently
two important works of Barbosa et al. [17] and of Devevey et al. [26], were done
to improve the security of the Fiat-Shamir signature and fix flaws in existing
proofs such as in Dilithium.

Summary of Dilithium (hight level description): Crystals Dilithium is a
Fiat-Shamir signature with aborts over lattices based on MLWE and MSIS hard
problems which is based on Vadim Lyubashesky previous works in 2009 and
2012 [53,54]. In Dilithium, the security of the public keys is based on MLWE and

4

the security of the signature against forgery is based on MSIS and SelfTargetMSIS
problems. The public key with MLWE over Rq = Zq(X)

(Xn + 1) , q = 223 −213 +1, n =

256 is t = As1 + s2 where A ∈ Rk×l
q is a public matrix generated uniformly

at random and the secrets sk = (s1, s2) ∈ Rl
q× ∈ Rk

q are generated uniformly
at random such that |s1|∞, |s2|∞ ≤ η (a short integer). To sign a message m,
Dilithium uses a hash function H, the private key sk to compute an ephemeral
public key d = Ay (together with an ephemeral secret key y), a sparse challenge
c = H(d, m) and sets σ = (z, c, h) as signature where z = cs1 + y ∈ Rl

q and h
is a hint vector. To protect z, a ”while loop” for rejection sampling containing
few steps is included in the process before a valid signature with zero knowledge
property is obtained. For this, a counter is incremented in every loop to generate
a different ephemeral secret key y in each iteration. To reduce the size of the
signature a special technique based on rounding and hight bits is used. Dilithium
has two variants according to the way the ephemeral secret key y is generated
(deterministic or probabilistic).
Recently many other signatures based on NTRU/MNTRU and RLWE/MLWE
were proposed [20,62].

1.2 Summary of EagleSignV3

EagleSignV3 is a Fiat-Shamir signature with aborts over lattices. Our variant is
implemented over Rq = Zq(X)

(Xn + 1) with n = 512, 1024, 2048 and q = 1 mod 2n

in order to make NTT easy to use.
Denote Sη = {u ∈ Rq/|u|∞ ≤ η} the polynomials in Rq whose l∞ norm is tightly
upper-bounded by η.
The public key over Rq (where q is a prime) is T ∈ Rk×l

q where T = (AF−1 +
D)G−1, A ∈ Rk×l

q is a public matrix generated uniformly at random and the
secrets F ∈ Sl×l

ηF
, G ∈ Sl×l

ηG
(resp: D ∈ Sk×l

ηD
) are invertible matrices of small

polynomials generated uniformly at random (resp: matrix of small polynomials
generated uniformly at random). Note that F or G can be a constant or a
polynomial suitably chosen. The secret key is then sk = (F, G, D) ∈ Sl×l

ηF
×

Sl×l
ηG

× Sk×l
ηG

. Note that, to sign a message M , EagleSignV3:

– uses two hash functions H, G (H is modelled as a random oracle in ROM
security proof) and a private key sk to compute an ephemeral public key
p = TY1 + Y2 ∈ Rk×m

q (together with an ephemeral secret key (Y1, Y2) ∈
Sl×m

ηY1
×Sk×m

ηy2
), a challenge C ∈ Sl×m

ηc
derived from H(M, r) where r =: G(P)

– and sets σ = (r, Z, W) where Z = Y1 + GFC mod q ∈ Rl×m
q and W =

Y2 − DFC mod q ∈ Rk×m
q . A suitable rejection sampling condition need

to be applyed before the output of the signature σ = (r, Z, W).

In a signature, the zero-knowledge property ensures that the signing process does
not reveal any information about the secret key associated to the public key used
in the verification process. The variant of EagleSign-V1 does not have the zero

5

knowledge property as pointed out by Tibouchi and Pulles in the PQC Forum of
NIST (June 2023). Note that an attack similar to those of Tibouchi can be found
in [1]. Our team have proposed EagleSign-V2 in December 2023 but Tibouchi
(in pqc forum) remarks that "the deal GRq can be easily recovered as the sum of
the ideals ZRq for the values Z in a handful of signature" and therefore G can
be recovered. The attacks of Pells and Tibouchi are summarized in the IACR
paper [81].
We propose in this work a third particular case where we avoid the above property
of the ideal GRq and the flaw in the old subsection 3.2 for zero knowledge property
in EagleSign-V1 (NIST, June 2023). Therefore, the new scheme EagleSignV3 holds
the zero knowledge property by using correctly the rejection sampling method of
Lyubashevsky 2012 for secure signature over lattices. Notice that EagleSignV3
simplify the above longterm [resp: ephemeral] public key to T = (A + D)G−1

[resp: p := Ty mod q] and uses z := y + Gc as a signature on a message M
where p′ = HighBitsq(p, 2γ2), r := G(p′) and c ∈ Bl

τ := H(M, r) (G and H are
hash functions and H is a random oracle). A correct rejection sampling condition
is applied before the output of the signature (r, z).

1.3 Comparison with existing lattices based signatures

Since our signatures are lattices based signatures, we made only comparison with
Dilithium that is standardized by NIST.

6

Table 1. Sizes and security levels for EagleSignV3, Dilithium

Dilithium :
NIST security level 2 3 5 5+
Module=M, M M M M
(Secret key recovery,Strong Unforgeable)
BKZ block-size (b, b) to break (LWE,MSIS) (423, 423) (624, 638) (863, 909) (1020, 1055)
Best Known Classical bit-cost (LWE,MSIS) (123, 123) (182, 186) (265, 252) (308, 298)
Public key |pk| in bytes 1312 1952 2592 2912
Signature |Sig| in bytes 2420 3293 4595 5446
|Sig|+ |pk| in bytes 3732 5245 7187 8158
EagleSignV3:
NIST security level 2 5 2 5
Module=M, Ring=R M M R R
(Secret key recovery,Strong Unforgeable)
BKZ block-size (b, b) to break (LWE,MSIS) (589, 402) (1208, 883) (589, 402) (1208, 883)
Best Known Classical bit-cost (LWE,MSIS) (172, 117) (353, 258) (172, 117) (353, 258)
Public key |pk| in bytes 4128 9248 2080 4640
Signature |Sig| in bytes 1824 4128 1824 4128
|Sig|+ |pk| in bytes 5952 13376 3904 8768
Notice that we can reduce the size of EagleSignV3 by working on the cyclotomic ring
Rq = Zq(X)

(Xn −Xn/2 + 1) (of Lyubashevsky et al [31]) with n = 972, 1296, 1536 and q = 1
mod 3 where NTT can also be used. It is possible also to implement EagleSignV3 over
the field of NTRU-Prime Rq = Zq(X)

(Xn −X − 1) with Xn −X − 1 irreducible, in order to
avoid attacks targeting cyclotomic ring, but we loose NTT.

Organization of the paper: This paper is organized as follows.

– In Section 2, we recall some useful notions and we define basic operations
and maps.

– In Section 3, we propose the specification of EagleSignV3.
– In Section 4, we adapt well known Fiat-Shamir techniques for security in

QROM to EagleSignV3, EagleSignC and EagleSignD.
– And finally, in Section 5, we summarize the limitations and advantages of

EagleSignV3.
– In appendix A, we explain at high level how the reference and optimized

implementations were done for EagleSignV3.

2 Preliminaries

2.1 Notations and basic operations

In this subsection we use the same notations than Falcon, Bliss and Dilithium.

– The underlying rings of our signatures are R = Z(X)
(Xn + 1) and Rq = Zq(X)

(Xn + 1) .

7

– Regular font letters denote polynomials in R or Rq or elements in Z and Zq,
bold lower-case letters represent column vectors of length l in in Rl or Rl

q

and bold upper-case letters are matrices in Rk×l or Rk×l
q thus for v, v, V the

notation says that v is a scalar or a polynomial, v is a vector, and V is a
matrix. For a vector v (resp: matrix V).

– For an odd positive integer p , we define r = z mod ±p, the centred reduction
modulo p, to be the unique element r in the range p−1

2 ≤ r ≤ p−1
2 such that

r ∼= z mod ±p. We consider that Zp = {− p−1
2 , . . . , −1, 0, 1, . . . , p−1

2 }.
– For an even positive integer p , we define r = z mod ±p, the centred reduction

modulo p, to be the unique element r in the range p
2 < r ≤ p

2 such that r ∼= z
mod ±p. We consider that Zp = {− p

2 + 1, . . . , −1, 0, 1, . . . , p
2 }.

– We denote r = z mod ±p = z mod ±p to simplify the notation throughout
equations.

– For f =
∑i=n−1

i=0 fiX
i ∈ Rq, fi ∈ Zp, we denote |f |∞ = maxi |fi| and

|f |1 =
∑i=n−1

i=0 |fi|.

– We have |fg|∞ ≤ |f |1|g|∞ in Rq = Zq(X)
(Xn + 1) .

– Sη is the set of small polynomials which means that the element of Sη are poly-
nomials with coefficients are in the interval [−η, +η] and Bp,τ =

{
f ∈ Rq/f =

i=n−1∑
i=0

fiX
i, fi ∈ {−p − 1

2 , −1, 0, 1,
p − 1

2 } for i = 0, . . . , n−1 with hwt(f) =

τ
}

is the ball p-ary sparse polynomials. The entropy of Bp,τ is log #Bp,τ

where #Bp,τ = (p − 1)τ
(n/2

τ

)
. Notice that here p is odd.

Notice that the elements of Bp,τ and Bp,τ have disjoint supports.

The value of τ will be chosen such that the entropy of Bτ , Bp,τ , Bp,τ is greater
than the security level.

– For v = (v0, . . . , vk−1)T ∈ Rk
q , we denote |v|∞ = maxi |vi|∞ .

– The coefficients of the polynomials in Rq are in Zp.

2.2 Signature and its security model

A Randomized (deterministic) signature scheme consists of a triplet of polynomial-
time algorithms (Genkey, Sig, Ver).

1. Key Generation (Genkey): with input a security parameter K the key
generation algorithm outputs a keypair (PK, SK) where PK, SK are related
to each other throughout a hard mathematical problem (HMP).

2. Signature algorithm (Sig):
– Sig takes the security parameter K as input and produces a random r

(skip in case of deterministic signature);
– With input (SK, m, r) the signing algorithm Sig produces a signature σ.

3. Verification (Ver): With input (m, σ, PK) the verification algorithm returns
1 if the signature is valid and 0 otherwise.

8

Security : When designing a signature scheme, we need to have in mind
the following 4 fundamentals properties:

– (1) the signer should be able to make the verifier accept the proof if he really
knows the secret key corresponding to the public key.

– (2) if the protocol succeeds (Ver outputs 1), then the verifier is convinced
that the signer knows the secret key corresponding to the public key.

– (3) the verifier does not learn any information about the secret itself even if
he sees many signatures (Zero-knowledge property).

– (4) nobody can forge a signature (which means that nobody is able to produce
a valid signature without knowing the secret key)

Goldwasser, Micali and Rivest (in 1988) in [40], introduce the basic security
notion for signatures called "existential unforgeability with respect to adaptive
chosen- message attacks".

sEUF-CMA: Strong Unforgeability against Adaptive Chosen Message At-
tacks

For this, a reduction algorithm R and an attacker A, simulate a the following
game.

1. Key generation: R runs the algorithm Genkey with a security parameter
K as input, to obtain the public key PK and the secret key SK, and gives
PK to the attacker A.

2. The Queries of the adversary: A may request a signature on any message
m ∈ M (multiple adaptive requests of the message are allowed) and R will
respond with (m, σ), without using the secret key but where V er(PK, m, σ) =
1 . The signatures already outputted by the oracle signature to the queries of
the A are stored in a list List(S).

3. Strong forgery: Eventually, A will output a pair (m, σ) and is said to win
the game if V er(PK, m, σ) = 1 and if (m, σ) /∈ List(S) (this last condition
force the attacker A to output his own forgery (note that in this case of
strong unforgeable it is allowed to the adversary to output (m′′, σ′′) /∈ List(S)
assuming that List(S) contains already signatures of the form (m′′, σ′′′) with
σ′′′ ̸= σ′′ .

The probability that A wins in the above game is denoted AdvA.

A signature scheme (Genkey; Sig;Ver) is strongly existentially unforgeable
with respect to adaptive chosen message attacks if for all probabilistic polynomial
time attacker A, AdvA is negligible in the security parameter K.

2.3 Hard problems over lattices
Definition 1 (LWE). The learning with errors problem
Consider the following equations bi = aist + ei mod q for 1 ≤ i ≤ k where the
ai, s ∈ Zn

q are chosen uniformly at random and the ei (called the errors) are
drawn from error distribution χ.

9

– Computational LWE: Given samples (ai, bi)i compute s
– Decisional LWE: Given samples (ai, bi)i, distinguish them from random

samples in Zn
q × Zq

The decisional and the computational LWE problems are equivalent see Regev [68].
Moreover, if the secret key is selected from the distribution χ, then the LWE
problem remains hard, see Applebaum et al [3].

The generalization of NTRU problem to matrix is the following.

Definition 2 MNTRU: Module NTRU problem

Consider T := DG−1 mod q where (D, G) are drawn independently from a
distribution χ) (with G invertible).

– Computational MNTRU : Given samples T, compute a valid sk = (D, G)).
– Decisional MNTRU: Given samples T, distinguish them from random samples

in Rk×l
q × Rk×l

q .

In 2011, Damien Stehle and Ron Steinfeld [78] prove that the public key h of
NTRU (h = f−1g for small f, g in Rq) is uniformly distributed when the secret
f and the error g are chosen from a Gaussian distribution with large standard
deviation. This result was generalized to MNTRU by Chuengsatiansup, Prest,
Stehlé, Wallet and Xagawa in ModFalcon (ASIACCS 2020 [29]

Definition 3 Module learning with errors problem: MLWE
Let χs and χe be two distributions over Rq.
Consider t = As + e ∈ Rk

q where A is generted uniformly at random in Rk×l
q ,

and s, e are drawn independently from a distribution χ

– Computational MLWE problem: Given samples (A, t) compute s
– Decisional MLWE problem: Given samples (A, t), distinguish them from

random samples in Rk×l
q × Rk

q

The case k = l = 1 is called RLWEq,n,χs,χe
. We obtain the LEW problem

when the above formula are viewed over Zq rather than Rq.

Definition 4 (l∞-SIS). The short integer solution (Homogenus/Inhomogenus)
problem
Consider the following equation t = sB mod q where B ∈ Zn×m

q , m ≥ n + 1 is
chosen uniformly at random and s ∈ Zn

q (called short vector) verify the upper
bound |s|∞ ≤ β ≤ q − 1 for some β ∈ R.

Computational l∞-SISq,n,m,β: Given (t, B), compute an appropriate s.

3 EagleSignV3; Design, security and parameters

In this section, we give the description of the two variants of our signature.

10

3.1 Basic functions

In this paper, we used the following functions of Dilithium for EagleSignV3:

Algorithm 1 Decompose
Require: r ∈ Zq

1: r0 = r mod ±2γ2

2: r1 = r − r0

2γ2
3: return (r0, r1)

Algorithm 2 HighBitsq

Require: r ∈ Zq

1: (r0, r1) = Decompose(r, 2γ2)
2: return r1

Algorithm 3 LowBitsq

Require: r ∈ Zq

1: (r0, r1) = Decompose(r, 2γ2)
2: return r0

Lemma 1. Let r, s be vectors of elements in Rq. If |s|∞ ≤ β and |LowBits(r, 2γ2)|∞ <
γ2 − β, then HighBits(r, 2γ2) = HighBits(r + s, 2γ2)

3.2 Description of EagleSign (General case)

The general case presented here is a slight modification of EagleSign and can be
summarized at high level as follows.

1. Public and private keys:
Keygen : it takes the security level and a system of parameters as inputs

– A ∈ Rk×l
q is a public matrix generated uniformly at random

– (F, G) ∈ Sl×l
ηF

× Sl×l
ηG

are secret invertible matrices of small polynomials
(generated uniformly at random).

– D ∈ Sk×l
ηD

is a secret matrix of small polynomials (generated uniformly
at random).

– T := (AF−1 + D)G−1 ∈ Rk×l
q

– pk := (A, T) is the (longterm) public key.
– sk := (F, G, D) is the (longterm) private key (note that F, G can be

polynomial).
– Output (pk, sk)

2. Signature
Sig(M, sk = (F, G, D))

– (Y1, Y2) ∈ Sl×m
ηy1

× Sk×m
ηy2

) is the ephemeral secret key;
– P := TY1 +Y2 ∈ Rk×m

q is ephemeral public key (this formula is modified
and the old formula of the signature EagleSign was P := TY1 + Y2
mod q);

– r := G(P);
– C ∈ Sl×m

ηc
:= H(M, r);

– Z := Y1 + GFC mod q ∈ Rl×m
q (this formula is modified and the old

formula of the signature EagleSign was Z := G − Y1 + FC) mod q);

11

– W := Y2 − DFC mod q ∈ Rk×m
q ;

– Reject if some appropriate upper-bounds of the norms of Z, W are not
verified (suitable rejection sampling)

– Output the signature σ = (r, Z, W)
3. Verification

Ver(σ = (r, Z, W), pk = (A, t))
– C ∈ Sl×m

ηc
=: H(M, r)

– V = TZ − AC + W mod q
– Reject if some appropriate upper-bounds (provided by the designer) of

the norms of Z, W are not verified
– Reject if C ̸= H(M, G(V))
– Otherwise accept

Tibouchi and Pulles in the PQC Forum of NIST (June 2023) have propose an
attack that proves that EagleSign-V1 does not have the zero knowledge property
and similarly Tibouchi have propose an attack on EagleSign-V2 in December
2023. A similar attack to those of can be found in [1] at page 24.

We have propose the following countermeasures:

– we choose a new particular case of the public key (F = 1) and and we change
the formula of the signature for this particular instantiation

– we introduce rejection sampling of the Lyubashevsky for secure signature
over lattices

– we change the simulation of the signature in security proof in ROM.

In the following, we propose the new variant EagleSignV3 that holds the zero
knowledge property.

3.3 Description of EagleSignV3

In this subsection, we propose the three following detailed algorithms for our
signature in case m = 1, k, l ∈ {1, 2, . . .}. We use the following functions and
notations:

1. The transformation MatrixUnifEtaPolyn maps a uniform seed ρ ∈ {0, 1}512

to a matrix A ∈ Rk×l
q (for k, l = 1, 2, . . .) in NTT domain representation;

2. The function GenUnifEtaPolyn, with input a seed, generates uniformly at
random a polynomial in the set Sη.
The functions MatrixUnifEtaPolyn and VectorUnifEtaPolyn call
GenUnifEtaPolyn with different seed as input to generate each element of
the matrix D in Sk×l

η , the matrix G in Sl×l
η (invertible) and the vector y in

Sl
γ1

.
3. The function CRH (resp. CRH1) is a collision resistant hash used in our

signature scheme and mapping to {0, 1}768 (resp. {0, 1}512).
4. The function G is a multi-collision resistant hash used in our signature scheme

and mapping to {0, 1}512.
5. H : {0, 1}⋆ → Bl

τ is a cryptographic hash function used to generate c ∈ Bl
τ

which calls the function GenSparseSmallPolyn.

12

6. The function GenRandoms is interpreted as SHAKE-256 in our implementa-
tion.

7. We consider the following bounds to make sure that each output of the
signature is short enough :
β = l × η × τ, δB = γ1 − β, δ′

B = γ2 and α = max (2δB , 2δ′
B) < (q − 1)/2.

Note that the description of these previous functions is given is the section A.4.

Algorithm 4 : EagleSignV3 Key generation algorithm
Require: the security parameter 1256

1: β ← {0, 1}256;
2: (β1, β2, ρ, key) := GenRandoms(β) ▷ (β1, β2, ρ, key) ∈ ({0, 1}256)3+1

3: (β1) = Hash(β1), ▷ we use SHAKE-256 for Hash to renew β1
4: G := MatrixUnifEtaPolyn(β1, η, l, l) ▷ G ∈ Sl×l

η

5: if G is not invertible in Rl×l
q then

6: Go to step (3);
7: end if
8: D := MatrixUnifEtaPolyn(β2, η, k, l); ▷ D ∈ Sk×l

η ,
9: A := MatrixUnifEtaPolyn(ρ); ▷ A ∈ Rk×l

q

10: T := (A + D)G−1 mod q;
11: tr := CRH1(ρ, T); ▷ tr ∈ {0, 1}512

12: sk := (ρ, tr, (D, G), key); ▷ the longterm private key
13: pk := (ρ, T); ▷ the longterm public key
14: return (pk, sk)

Remark: The parameter ′key′ is only used in case of deterministic signature.

13

EagleSignV3
Signature algorithm

EagleSignV3
Verification algorithm

1. a message M , a secret key
sk = (ρ, tr, (D, G, key)
2. µ ∈ {0, 1}384 := CRH(tr, M)
3. λ← {0, 1}256

4. z :=⊥
5. K := 0
6. While z :=⊥
6.1 y← Sl

γ1 := VectorUnifEtaPoly(λ,K)
6.2 p := Ty mod q ∈ Rk

q

6.3 p′ = HighBitsq(p, 2γ2)
6.4 r := G(p′)
6.5 c ∈ Bl

τ := H(µ, r)
6.6 z := y + Gc mod q
6.7 r0 := LowBitsq(p + Dc, 2γ2)
6.8 If |z|∞ ≥ γ1 − β
or |r0|∞ ≥ γ2 − β then z :=⊥
6.9 K := K+ l
7. End While
8. Return σ := (r, z) as signature

1. signature σ = (r, z), public key
(ρ, T) and parameters β, γ1, γ2
2. tr ∈ {0, 1}384 := CRH1(ρ, t)
3. µ ∈ {0, 1}384 := CRH(tr, M)
4. c′ ∈ Bl

τ := H(µ, r)
5. A←Rk×l

q := MatrixUnifEtaPoly(ρ)
6. v := Tz−Ac′ mod q
7. v′ := HighBitsq(v, 2γ2)
8. r′ = G(v′)
9. If |z|∞ ≥ γ1 − β or c′ ̸= H(µ, r′))
10.1 return 0
11. Else
11. Return 1

Remark:
– Notice that G (bold case) and G are different since G is a matrix and G is a hash
function.
– In case of probabilistic signature λ is a random and in case of deterministic signature
λ = (µ,′ key′)
– We introduce in the previous algorithm a rejection sampling to make sure that z has
the zero knowledge property which means that the collection of many signature z don’t
leak any information about the secret key.
– Validity of the signature (optional): to defeat fault signature attacks, we can compute
r0 as r0 := LowBitsq(Tz−Ac, 2γ2) instead of r0 := LowBitsq(p + Dc, 2γ2).

Correctness of the signature: Easy to verify.

3.4 Comparison of the design EagleSignV3 and the two old EagleSign

Tibouchi et al have propose an attack on EagleSign in the NIST forum for pq-signqtures.
This attack shows that EagleSign-V1 (and its successor EagleSign-V2 in December
2023) don’t have the zero knowledge property which means that the signature can leak
the private key.
We propose the following countermeasures to this attack (and hence reach the zero
knowledge property):

– we choose a new variant the signature;
– we apply the Lyubashevsky rejection sampling method for secure signature over

lattices;
– consequently, we adapt the simulation of the signature in security proof in ROM,
– and we choose new parameters for q, n,

14

For a comparison between the two old EagleSign (from EagleSign submitted to NIST
competition in June 2023 and to NIST pqc forum in Decembre 2023) and EagleSignV3,
we have made the following changes summarized in the following table.

Table 2. Summary the two old variant of EagleSign
Public Key=pk, secret key =sk, Ephemeral public key=Epk, Ephemeral secret key=Esk,
Signature=Sig, Boubs=Bs, Rejection sampling of Lyubashevsky=RS

Old EagleSign EagleSign-V1 EagleSign-V2
pk pk := (A, T := (AF−1 + D)G−1) T := (A + D)G−1 T := (AF−1 + D)g−1

sk sk := (F, G, D) (G, D) (F, g, D)
Epk P := AF−1Y1 + Y2 p := Ay1 + y2 ; p := (AF−1 + D)y
Esk (Y1, Y2) (y1, y2) ; y
Sig Z := GU mod q and Z := Gu mod q Z := gu mod q

W := Y2 −DU mod q, w := y2 −Du mod q None
U := Y1 + FC mod q; u := y1 + c mod q u := y + Fc mod q

Bs None None r0 := LowBitsq(X, 2γ2);
X = p + DFc;
|z|∞ ≥ tg(γ1 − β)
|r0|∞ ≥ γ2 − ltDβ
|X|∞ ≥ q−1

2 − ltDβ

RS None None Yes

Table 3. Summary the new EagleSign
Public Key=pk, secret key =sk, Ephemeral public key=Epk, Ephemeral secret key=Esk,
Signature=Sig, Boubs=Bs, Rejection sampling of Lyubashevsky=RS

New variant of EagleSign EagleSignV3: new instantiation
pk pk := (A, T := (AF−1 + D)G−1) T := (A + D)G−1

sk sk := (F, G, D) (G, D)
Epk P := TY1 + Y2 p := Ty
Esk (Y1, Y2) y ;
Sig and

W := Y2 −DFC mod q,
Z := Y1 + GFC mod q; z := y + Gc mod q

Bs yes β = |Gc|∞ = lη(τ1 + τ2)
X = Tz−Ac;
|z|∞ < γ1 − β
r0 := LowBitsq(X, 2γ2)
|r0|∞ < γ2 − β

RS yes yes

15

3.5 Security analysis of EagleSignV3

3.5.1 Choosing the modulus and the number of repetitions In our
signature EagleSignV3, we need to satisfy the following conditions (otherwise we
repeat):
and p := Ty mod q;
(1): |r0|∞ < γ2 − β with r0 := LowBitsq(p + Dc, 2γ2);
(2): |z|∞ < γ1 − βG with z := y + Gc .
As in Dilithium, the probability for (1) is

(2(γ2 − βD)− 1
2γ2 − 1

)nk ∼ e−nkβ/γ2 and those of

(2) is
(2(γ1 − β)− 1

2γ1 − 1
)nl.

Assuming that γ1 and γ1 are big enough and that the two relations are inde-
pendent, we see that the the probability of both (1) and (2) is e−nkβ/γ2 .e−nlβ/γ1 ∼
e−n(lβ/γ1+kβ/γ2), thus the number of repetitions is the inverse which is N = en(lβ/γ1+kβ/γ2)

. We choose γ1 ≥ 2⌈log2(nlβ)⌉ and γ2 ≥ 2⌈log2(nkβ)⌉ such that the number of repetitions
verify 1 ≤ N ≤ 9.

We choose q such that q is prime and q > 4 max(γ1, γ2) with additional conditions
depending on the Rq and the kind of NTT.

3.5.2 Zeroknowledge proof for EagleSignV3 We obtain the zero knowledge
property for EagleSignV3 by using the rejection sampling of Lyubashevsky [54].
Tibouchi have pointed out a flaw in the previous proof in EagleSign-V1 qnd EagleSign-
V2. We solve the problem with the new formula introduced for the signature z = y+Gc
(and F = 1) instead of z = G(y1+c) for EagleSign-V1 or z = g(y+Fc) for EagleSign-V2.

Let us compute the probability of (r, z) outputted by our signature taken over the
randomness of y and the random oracle H which is modelled as a random function
with c = H(µ, r), z = y + Gc) and |Gc|∞ < β = lη(τ1 + τ2). Similarly to Dilithium,
we have the following.

P(r, z) = P(r)× P(y = z−GH(µ, r)|r)
Whenever |z|∞ < γ1 − β, then the above probability is exactly the same for every such
tuple (r, z). This is because |Gc|∞ ≤ β, and thus |y| = |z−Gc|∞ < γ1, which is a valid
value of y. Therefore, by rejection sampling, if we only output z where |z|∞ < γ1 − β
(by the rejection sampling of Lyubashevsky 2012), then the resulting distribution of
(r, z) will be uniformly random over {0, 1}|r| × Sl

γ1−β−1. Consequently, we can use the
previous result to simulate the signature in the security proof (see next subsubsection).

3.5.3 Security proof in ROM for EagleSignV3 In this subsection, we
adapt to lattices, the tools, techniques and frameworks for security proof developed by
Pointcheval et al. [67] for Elgamal-like signatures (DSA, KCDSA, Schnorr,. . .) where
the underlying hard problem was the discrete logarithm problem. To design a security
proof in ROM for EagleSignV3, we use the following steps.

1. Protection against secret key recovery: we need to prove that recovering the private
key from the public key is equivalent to solving hard instance in a specified lattice
problem namely the MLWE problem in our case.

16

2. Simulation of the random oracle H: the cryptographic hash function H of the
signature is considered to be an ideal random function that the attacker can query
as an oracle. For each new query of the attacker, the simulator chooses uniformly at
random a value in the output set of the real hash function and sends it as response.
This answer needs to be independent from previous query/response pairs stored
in a data base LH by the simulator. If a query is replayed by the attacker, the
simulator finds the correct answer in LH .

3. Simulation of the signature: without the private key and by controlling the ideal
hash function H, the simulator design a signature algorithm able to produce valid
signatures in polynomial time with a hight probability.

In our simulation, as proved by Pointcheval et al [67] for classical DSA, it is not
necessary to consider the second hash function G as a random oracle thus the use
of random oracles is minimizing. G will be just considered as a multi-collision-
resistance function: G is said j-collision-resistant, if it is hard to find (u1, . . . , uj)
pairwise distinct elements such that G(u1) = . . . = G(uj).

4. Signature forgery: Using an adaptively chosen-message attack against the legiti-
mated signer, the attacker produces a valid signature forgery with QH queries to
the ideal hash function H and QS queries to the oracle signature. For each new
query to H, LH is updated with the corresponding query/response pair. To be a
real attack, it is assumed the valid signature of the attacker has not been sent as a
call to the signature oracle.

5. Solving a MSIS problem using signature forgery (with he following steps):
– Since the attacker don’t control the ideal random function H, from a signature

forgery of the attacker, the ”forking lemma” is used to show that, she can
construct two signatures with the same fixed values (M/µ, r) but H produce
different responses c and c′ (which really means that different ideal random
functions are used; this scenario is possible since the attacker don’t control H
in ROM).

– The previous scenario produces collusions throughout G from the positive
answer of the verification process.

– Two valid forged signatures (with collusion) are used to show how to compute
a short non-zero vector as a solution of a MSIS problem with l∞ norm.

Theorem 1. Assume that an attacker A produce an existential forgery of the Eagl Sign
after QH calls to H and QS calls to the simulator for signature, under an adaptively
chosen message attack with probability ϵ, then by forking lemma, the MSIS-l∞ problem
(T|A|Ik)xT = 0 can be solved in polynomial time for ||x||∞ ≤ α = max(2δB , 2δ′

B) < q−1
2

where T is the public key of EagleSignV3, δB = γ1 − β and δ′
B = γ2. Note that the

probabilities are taken over random tapes, random oracles, messages and public/private
keys (longterm and ephemeral).

Proof. A) Protection against secret key forgery:
The longterm public key T = (A + D)G−1 mod q can be converted in LWE instances
where D is the error and G is the secret . Therefore the public key is indistinguishable
from random whenever the corresponding instance of LWE is indistinguishable from
random, reason why we choose the coefficients of the polynomial in A uniformly at
random in Rq and the security level concerning the public key is estimated via the
classic LWE estimator.

17

B) Simulation of the signature:
We need to simulate the signature without the private key with the ideal hash function
under control. From the result of the zero knowledge property, we know that the
distribution of the signature (r, z) is uniformly random over {0, 1}|r| × Sl

γ1−β−1. We
will then use this fact in the following to simulate the signature.

1. input a message M ;
2. generate randomly z such that |z|∞ < γ1 − β;
3. tr = CRH1(ρ, T);
4. µ = CRH(tr, M) ;
5. generate randomly c ∈ Bl

τ ;
6. v = Tz−Ac mod q
7. r0 := LowBitsq(v, 2γ2);
8. If |r0|∞ ≥ γ2 − β

then Go To (2)
9. compute v′ = HighBitsq(v, 2γ2)

10. compute r = G(v′);
11. define c = H(µ, r) ∈ Bl

τ and update the data base LH of the oracle hash function
with the query/response (M/µ, r)/c;

12. Output the signature (M, r, z).

The simulation of the signature is indistinguishable.

D) Forking for solving the MSIS problem :
If the attacker A output a valid signature ((M/µ, r, c), z) where c can be found

in LH with the prefix (M/µ, r) with probability ϵ for a new message M with less
than QH calls to the hash function H, then by forking technique we obtain two
valid signatures of the same message M and fixed values namely (M/µ, r, c), z and
(M/µ, r′, c′), z′ with r = r′ and c ̸= c′. From r = r′, we deduce v = v′ with a high
probability, therefore HighBitsq(Tz − Ac mod q, 2γ2) = HighBitsq(Tz′ − Ac′, 2γ2).
Thus (T(z−z′)−A(c−c′)) mod q = r′

0−r0 mod q where r0 := LowBitsq(Tz−Ac, 2γ2)
and r′

0 := LowBitsq(Tz′−Ac′, 2γ2). Hence, we have (T|A|Ik))(z−z′, c′−c, r0−r′
0)T = 0.

Now, put x = (z− z′, c− c′, r′
0 − r0), since c′ − c ̸= 0 and ||x||∞ ≤ α = max(2δB , 2δ′

B)
then we see that x is a nonzero short solution of the MSIS problem.

NB: Note that we don’t need to use the SelfTargetMSIS problem and the Hint
vector of Dilithium in our security proof.

3.6 Sizes and security levels for EagleSignV3

Sizes for EagleSignV3
The sizes of the Public key and the Signature are the following. The signature and
the public key of EagleSignV3 are respectively σ = (r, z) and pk = (ρ, T) where
z = y + Gc mod q, c ∈ Bl

τ , D ∈ Sk×l
ηD

, G ∈ Sl×l
ηG

with |z|∞ ≤ γ1 − β < γ1, and
T = (A + D)G−1 mod q ∈ Rq, then |σ| = ⌈32 + n× (l × log2(2× γ1))/8⌉ bytes and
|pk| = ⌈32 + n× (k × l × log2(q))/8⌉ bytes.

Security levels for EagleSignV3
For a complete study of the estimation of the security level of LWE and NTRU -like
schemes proposed at NIST, one can see the recent work of Albrecht, Curtis, Deo,

18

Davidson, Player, Postlethwaite, Virdia, Wunderer in [4] : Estimate all the LWE and
NTRU schemes (PQC-Forum January 2018). In their paper [4], the authors point out
the sources of divergence (instantiation of the SVP oracle in BKZ by sieving method or
enumeration method, treatment of polynomial factor) in estimated security level of the
ideal lattice-based schemes proposed to NIST.
Many techniques for improving lattice-based cryptanalysis where proposed recently
[2,8,10,28,30,46,47,56,63,73–75,82,86]. Moreover, vulnerabilities in ideal lattice-based
schemes where pointed out by many authors [10, 16, 24, 30]. Based on these results,
some authors claim that the security of lattice-based cryptography over the rings is not
well understood (see Bernstein et al. in NTRU LPRime [59]). Nevertheless, currently,
as far as we know, these algebraic structure does not figure into the cost of the best
known attacks on NTRU-RLWE-like schemes and in general, no algorithm is known
that can exploit enough the ring structure and that is thus working more efficiently on
ideal-lattices than classical lattices [2, 9, 16, 59]. Therefore, we can analyse the hardness
of our signature over standard lattices.
For recent advances on the security analysis of lattices, we have the interesting work of
E. Wenger, E. Saxena, M. Malhou, E. Thieu and K. Lauter in Benchmarking Attacks
on Learning with Errors 2024 [84].
For advances and background for solving uSVP and similar problems, we refer to
[2, 4, 5, 7, 8, 12,84]. Recall that BKZ lattice reduction algorithm (which is a blockwise
variant of the LLL algorithm) proceeds by sublattice reduction using a SVP oracle in
a smaller dimension b. With BKZ, the best known classical algorithm (respectively:
quantum sieving algorithm) [2, 12, 28, 46] for the primal/dual attack [2, 8, 19] with block
size b of MLWE or MNTRU-like schemes, have costs of 20.292b (respectively: 20.265b

with Grover speedups [41]). Therefore, currently (June in 2023, as far as we know),
we must at least use 20.265b (or the "paranoid" lower bound 20.2075b given in [2,4]) to
compute the security level.

To estimate the security level, we use the lattice estimator of Albrecht et al. [4–6]
(lattice-estimator-main with Sagemath and python) to estimate the security of the
longterm public key and the ephemeral public key. We use the tool of Crystal Dilithium
to estimate the security of MSIS for unforgeability.
The following algorithms 3 are covered by the estimator that we have used in EagleSignV3
security: meet-in-the-middle exhaustive search, coded-BKW, dual-lattice attack and
small/sparse secret variant, lattice-reduction and enumeration, primal attack via uSVP
[19], Arora-Ge algorithm [16] using Gröbner bases.
To estimate the security level we consider that our public key T := (A + D)G−1

mod q follows the LEW model were G is the secret and D is the error) and we use
the LWE estimator. To evaluate the security of MSIS, we use the tool of Dilithium
for the unforgeability security analysis based on MSIS problem upper bounded by
α = max(2δB , 2δ′

B) with l∞ norm.
Parameters Selection, Size and NIST Security Levels
We summarize in the following table the results of the LWE estimator and the tool of
Dilithium for MSIS. The table contains also, the size of the public key and the signature
for each security level.

19

Table 4. Parameters Selection, Size and NIST Security Levels

NIST security level 2 5 2 5
Variant Module Module Ring Ring
(k, l) (2, 2) (2, 2) (1, 1) (1, 1)
n = 2s 512 1024 1024 2048
(q = 1 mod 2n) q = 59393 249857 59393 249857
c ∈ Bl

τ , τ 8 16 16 32
Entropy of c = l(log2(

(n

τ

)
) + τ) 128 262 131 265

(G, D) ∈ Sl×l
η × Sl×l

η : η = 1 1 1 1
β = l.η.τ, 16 32 16 32
(γ1, γ2) (214, 214) (216, 216) (214, 214) (216, 216)
Number of Repetitions 7.38 7.38 7.38 7.38
Strong Unforgeable
α = max{2.(γ1 − β), 2γ2}
BKZ block-size b to break LWE 402 883 402 883
Best Known Classical bit-cost 117 258 117 258
Best Known Quantum bit-cost 107 234 107 234
Longterm Secret key recovery (G, D)
BKZ block-size b to break LWE 589 1208 589 1208
Best Known Classical bit-cost 172 353 172 353
Best Known Quantum bit-cost 156 272 156 272
Sizes in bytes
Public key |pk| 4128 9248 2080 4640
Signature |Sig| 1824 4128 1824 4128
|Sig|+ |pk| 5952 13376 3904 8768

As remarked above, over the the cyclotomic ring Rq = Zq(X)
(Xn −Xn/2 + 1) of

Lyubashevsky et al [31], we can reduce the size of ring based variant of EagleSignV3 by
working with n = 972, 1296, 1536 and q = 1 mod 3 and using an appropriate NTT .
To avoid attacks targeting cyclotomic rings, we can instantiate EagleSignV3 over the
field of NTRU-Prime Rq = Zq(X)

(Xn −X − 1) with Xn −X − 1 irreducible. Nevertheless,
in this later case, the size of the modulus will probably increase by 1 to 3 bits.

4 Security proof in QROM for EagleSignV3

Our signature is secure in ROM and is a Fiat-Shamir signature scheme with aborts, thus
we can obtain the security in QROM (see [17,17,34]), and for the shake of completeness,
a complete proof in QROM will be designed later.
Recently Barbosa et al. [17] and Devevey et al. [26], independently have detected some
flaws in existing security proof for Fiat-Shamir signatures (such as Dilithium) and have
proposed important improvements.
Note that the authors of Dilithium say the following: ”In our opinion, evidence is
certainly mounting that the distinction between signatures secure in the ROM and
QROM will soon become treated in the same way as the distinction between schemes
secure in the standard model and ROM – there will be some theoretical differences, but
security in practice will be the same”.

20

5 Advantages and Limitations for EagleSignV3

Advantages: The public key is a mix of MNTRU (Module NTRU) and MLWE
(Module learning With Error). Many other variants can be investigated in the future.
For recommended parameters, the signature size and public key size of ring variant of
EagleSignV3 is similar to those of Dilithium but its public key is based on a different
problem.
Limitations: It has the same limitations as any lattices based digital signature regarding
the long term security.

.

References

1. Agrawal, S., Stehlé, D., & Yadav, A. Round-optimal lattice-based
threshold signatures, revisited. Cryptology ePrint Archive 2022
https://eprint.iacr.org/2022/634.

2. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key ex-
change - A new hope. In T. Holz and S. Savage, editors, Proceedings of the 25th
USENIX Security Symposium, pages 327-343. USENIX Association, 2016.
URL: https://www.usenix.org/conference/usenixsecurity16/techniqueal-
sessions/presentation/alkim.

3. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In CRYPTO, pages 595-618, 2009

4. M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. Postleth-
waite, F. Virdia, T. Wunderer, Estimate all the LWE and NTRU schemes!
https://estimate-all-the-lwe- ntru-schemes.github.io/paper. pdf. NIST Call
for transision to quantum-resistant cryptography (November 2017)

5. Martin Albrecht. Security estimates for the learning with errors problem,
2017. Version 2017-09-27, https://bitbucket.org/malb/lwe-estimator. 21

6. Martin R. Albrecht, Rachel Player and Sam Scott. On the concrete hardness
of Learning with Errors. Journal of Mathematical Cryptology. Volume 9,
Issue 3, Pages 169–203, ISSN (Online) 1862-2984, ISSN (Print) 1862-2976
DOI: 10.1515/jmc-2015-0016, October 2015

7. Martin Albrecht and Amit Deo. Large modulus Ring-LWE ≥ Module-LWE,
2017.To appear. https: //eprint.iacr.org/2017/612. 22

8. Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer.
Revisiting the expected cost of solving uSVP and applications to LWE. In
Advances in Cryptology -ASIACRYPT 2017 -23rd International Conference
on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I, pages 297 322,
2017

9. M. R. Albrecht, C. Cid, J.C. Faugere, and L. Perret. Algebraic algo-
rithms for LWE. Cryptology ePrint Archive, Report 2014/1018, 2014.
http://eprint.iacr.org/2014/1018

10. Albrecht M., Bai S., Ducas L. A Subfield Lattice Attack on Overstretched
NTRU Assumptions. In: Robshaw M., Katz J. (eds) Advances in Cryptology
- CRYPTO 2016. Lecture Notes in Computer Science, vol 9814. Springer,
Berlin, Heidelberg, pp 153-178.

21

11. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of
learning with errors. J. Mathematical Cryptology, 9(3):169-203, 2015. URL:
http://www.degruyter.com/view/j/jmc.2015. 9.issue-3/jmc-2015-0016/jmc-
2015-0016.xml.

12. Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Im-
proved progressive BKZ algorithms and their precise cost estimation by sharp
simulator. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology-EUROCRYPT 2016, volume 9665 of LNCS, pages 789-819.
Springer, 2016. https://eprint.iacr.org/2016/146. 20

13. Aharonov, D., Regev, O.: A lattice problem in quantum NP. In: FOCS, pp.
210-219 (2003).

14. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized
reductions. In: STOC, pp. 10-19 (1998).

15. Ambainis, A.: Quantum walk algorithm for element distinctness. In: FOCS,
pp. 22-31 (2003).

16. S. Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I,
volume 6755 of LNCS, pages 403-415. Springer, Heidelberg, July 2011.

17. Barbosa, M. et al. (2023). Fixing and Mechanizing the Security Proof of Fiat-
Shamir with Aborts and Dilithium. In: Handschuh, H., Lysyanskaya, A. (eds)
Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in
Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-
3-031-38554-4_ 12

18. S. Bai, D. Stehlé and W. Wen. Improved Reduction from the Bounded Distance
Decoding Problem to the Unique Shortest Vector Problem in Lattices. In
Springer Proc. of ICALP’2016, pp. 76:1-76:12.

19. S. Bai and S. D. Galbraith. Lattice decoding attacks on binary LWE In Willy
Susilo and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages 322-337.
Springer, Heidelberg, July 2014

20. Shi Bai, Austin Beard, Floyd Johnson, Sulani K. B. Vidhanalage, Tran
Ngo. Fiat-Shamir Signatures Based on Module-NTRU. In Khoa Nguyen,
Guomin Yang, Fuchun Guo, Willy Susilo, editors, Information Security and
Privacy - 27th Australasian Conference, ACISP 2022, Wollongong, NSW,
Australia, November 28-30, 2022, Proceedings. Volume 13494 of Lecture
Notes in Computer Science, pages 289-308, Springer, 2022. [doi]

21. A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. Robert Krauthgamer,
editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, DIOP 2016, Arlington, VA, USA, January 10-12,
2016. SIAM, 2016, pages 10-24. https://eprint.iacr.org/2015/1128.

22. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
Notions of Security for Public-Key Encryption Schemes. In Proc. of CRYPTO
’98, LNCS 1462, pages 26-45. Springer-Verlag, Berlin, 1998

23. M. Bellare and P. Rogaway. Random Oracles Are Practical : a Paradigm for
Designing Efficient Protocols. In Proc. of the 1st CCS, pages 62-73. ACM
Press, New York, 1993

24. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal. NTRU Prime. In Jan Camenisch and Carlisle Adams,
editors, Selected Areas in Cryptography - SAC 2017, LNCS, to appear.
Springer, 2017. http://ntruprime.cr.yp.to/papers.html

22

25. R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology,
revisited, STOC’98, ACM, 1998.

26. Devevey, J., Fallahpour, P., Passelègue, A., Stehlé, D. (2023). A Detailed
Analysis of Fiat-Shamir with Aborts. In: Handschuh, H., Lysyanskaya, A. (eds)
Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in
Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-
3-031-38554-4_ 11

27. Hao Chen, Kristin Lauter, and Katherine E. Stange. Vulnerable Galois
RLWE families and improved attacks. IACR Cryptology ePrint Archive, 2016.
https://eprint.iacr.org/2016/193.

28. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security esti-
mates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings, volume 7073 of LNCS, pp. 1-20. Springer.T 97, volume
1233 of Lecture Notes in Comput. Sci., pp 52-61. Springer, Berlin, 1997.

29. Chuengsatiansup, Chitchanok et al. “ModFalcon: Compact Signatures Based
On Module-NTRU Lattices.” Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security (2020): n. pag.

30. Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering
Short Generators of Principal Ideals in Cyclotomic Rings Marc Fischlin and
Jean-Sébastien Coron (Eds.). In Advances in Cryptology Eurocrypt May
2016, Lecture Notes in Computer Science, Springer-Verlag,Proceedings, Part
II, pp. pp 559-585.

31. Duman, J., Hövelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh,
D. (2023). A Thorough Treatment of Highly-Efficient NTRU Instantiations.
In: Boldyreva, A., Kolesnikov, V. (eds) Public-Key Cryptography – PKC
2023. PKC 2023. Lecture Notes in Computer Science, vol 13940. Springer,
Cham. https://doi.org/10.1007/978-3-031-31368-4_ 3

32. D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector
problem with a distance guarantee. In Proc. of CCC, pages 98-109. IEEE
Computer Society Press, 2014.

33. T. El Gamal. A public key cryptosystem and signature scheme based on
discrete logarithms. IEEE Trans. Inform. Theory, 31:469-472, 1985

34. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treat-
ment of fiat-shamir signatures in the quantum random-oracle model. In
EUROCRYPT, pages 552–586, 2018.

35. Fouque, P.A., Kirchner, P., Pornin, T., Yu, Y.: BAT: Small and fast kem
over NTRU lattices. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2022(2), 240-265 (Feb 2022)

36. A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification
and signature problems, Advances in Cryptology—Proceedings of Crypto ’86,
LNCS, vol. 263, Springer, 1987, pp. 186–194.

37. R. Fujita. Table of underlying problems of the NIST candidate algo-
rithms. Available at https://groups.google.com/a/list.nist.gov/d/ msg/pqc-
forum/1lDNio0sKq4/7zXvtfdZBQAJ, 2017

38. Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie Struc-
tural Lattice Reduction: Generalized Worst-Case to Average-Case Reductions
and Homomorphic Cryptosystems. Marc Fischlin and Jean-Sébastien Coron
(Eds.), In Advances in cryptology Eurocrypt May 2016, Lecture Notes in
Computer Science, Springer-Verlag Proceedings, Part II, pp. 528-558.

23

39. Craig Gentry,Chris Peikert,Vinod Vaikuntanathan, STOC ’08: Proceedings of
the fortieth annual ACM symposium on Theory of computingMay 2008Pages
197–206https://doi.org/10.1145/1374376.1374407

40. Goldwasser S., Micali S. and Rivest R. , A digital signature scheme secure
against adaptive chosen- message attacks, SIAM Journal of computing, 17(2),
pp. 281-308, April 1988.

41. Grover, L. K.: A fast quantum mechanical algorithm for database search. In:
STOC, pp. 212-219 (1996)39.

42. Grover, L. K., Rudolph, T.: How significant are the known collision and
element distinctness quantum algorithms? Quantum Info. Comput.4 (3), pp.
201-206 (2004).

43. Jung Hee Cheon, Jinhyuck Jeong, Changmin Lee An Algorithm for
NTRU Problems and Cryptanalysis of the GGH Multilinear Map with-
out a Low Level Encoding of Zero. IACR Cryptology ePrint Archive,
https://eprint.iacr.org/2016/139.pdf.

44. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Terminat-
ing BKZ. IACR Cryptology ePrint Archive report 2011/198, 2011.
https://eprint.iacr.org/2011/198.

45. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring Based Public Key
Cryptosystem in Algorithmic Number Theory, Lecture Notes in Computer
Science 1423, Springer-Verlag, pp. 267-288, 1998.

46. Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Rosario Gennaro and Matthew Robshaw, editors, Ad-
vances in Cryptology CRYPTO 2015 -35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume
9215 of Lecture Notes in Computer Science, pages 3-22. Springer, 2015.
https://eprint.iacr.org/2014/744.pdf.

47. Thijs Laarhoven, Michele Mosca, and Joop van de Pol.Finding shortest lattice
vectors faster using quantum search. Des. Codes Cryptography, 77(2-3):375-
400, 2015.

48. M. Liu, X. Wang, G. Xu, and X. Zheng. A note on BDD problems with
λ2-gap. Inf. Process. Lett., 114(1-2):9-12, January 2014.

49. Y. K. Liu, V. Lyubashevsky, and D. Micciancio. On bounded distance decoding
for general lattices. In Proc. of RANDOM, volume 4110 of LNCS, pages
450-461. Springer, 2006.

50. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT 2010, pages 1-23. Springer, 2010.

51. V. Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE
cryptography. In EUROCRYPT 2013, pp. 35-54.

52. V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In Proc. of CRYPTO
2009, pp. 577-594.

53. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598–616, 2009.

54. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
pages 738–755, 2012.

55. Qipeng Liu and Mark Zhandry. Revisiting post-quantum fiat-shamir. Cryptol-
ogy ePrint Archive, Report 2019/262, 2019. https://eprint.iacr.org/ 2019/262.

56. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In DIOP(2010), pp. 1468-1480.

24

57. D. Moody. The NIST post quantum cryptography competition. Avail-
able at https://csrc.nist.gov/CSRC/media/Projects/ Post-Quantum-
Cryptography/documents/asiacrypt-2017-moody-pqc.pdf, 2017.

58. M. Naor and M. Yung. Public Key Cryptosystems Provably Secure against
Chosen Ciphertext Attacks. In Proc. of the 22nd ACM STOC, pages 427-437.
ACM Press, New York, 1990.

59. NIST Post-Quantum Cryptography- Call for Proposals. Available
at https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-
Quantum-Cryptography-Standardization
/Call-for-Proposals. List of First Round candidates available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

60. National Institute of Standards and Technology. Performance testing of the
NIST candidate algorithms. Available at https://drive.google.com/ file/d/1g-
l0bPa-tReBD0Frgnz9aZXpO06PunUa/view, 2017

61. NIST. Call for Additional Digital Signature Schemes for the
Post-Quantum Cryptography Standardization Process, jun 2022
https://csrc.nist.gov/Projects/pqc-dig-sig

62. Hiroki OKADA, Atsushi TAKAYASU, Kazuhide FUKUSHIMA, Shinsaku
KIYOMOTO and Tsuyoshi TAKAGI A Compact Digital Signature Scheme
Based on the Module-LWR Problem Journal: IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sciences, 2021,
Volume E104 A, Number 9, Page 1219 DOI: 10.1587/transfun 2020DMP0012

63. Xavier Pujol and Damien Stehlé. Solving the shortest lattice vec-
tor problem in time 22,465.n. IACR Cryptology ePrint Archive, 2009.
https://eprint.iacr.org/2009/605.

64. C. Peikert. A useful fact about Ring-LWE that should be known better: it is
at least as hard to break as NTRU, and likely strictly harder. Available at
http://archive.is/B9KEW.

65. C. Peikert. Public-key cryptosystems from the worst-case shortest vector
problem. In STOC 2009, pp. 333-342. ACM.

66. C. Peikert and B. Waters. Lossy trapdoor functions and their applications.
In STOC 2008, pages 187-196, 2008.

67. Pointcheval, D., Stern, J. (1996). Security Proofs for Signature Schemes. In:
Maurer, U. (eds) Advances in Cryptology — EUROCRYPT ’96. EURO-
CRYPT 1996. Lecture Notes in Computer Science, vol 1070. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-68339-9_33

68. Regev, O. On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC, pp. 84-93 (2005).

69. O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM, 56(6), 2009.

70. Regev, O.:Lattices in computer science. Lecture notes for a course at the Tel
Aviv University (2004)78.

71. Regev, O.:Quantum computation and lattice problems. SIAM J. Comput. 33
(3), pp. 738-760 (2004).

72. MATZOV:Report on the Security of LWE: Improved Dual Lattice
Attack. The Center of Encryption and Information Security (2023)
https://zenodo.org/record/6412487.

73. Santha, M.: Quantum walk based search algorithms. In: TAMC (2008), pp.
31-46 .

74. Schneider, M.: Analysis of Gauss-Sieve for solving the shortest vector problem
in lattices. In: WALCOM (2011), pp. 89-97.

25

75. Schneider, M.: Sieving for short vectors in ideal lattices. In: AFRICACRYPT
(2013), pp. 375-391.

76. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical Programming,
66(1):181-199, 1994

77. Shor, P.W.:Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput. 26 (5), pp. 1484-1509
(1997).

78. D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. Draft of full extended version of Eurocrypt 2011 paper,
ver. 10, Oct. 2011. Available at http://web.science.mq.edu.au.

79. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key en-
cryption based on ideal lattices. In ASIACRYPT 2009, pp. 617-635. Springer.

80. D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. In EUROCRYPT 2011, pp. 27-47. Springer.

81. Ludo N. Pulles, Mehdi Tibouch Cryptanalysis of EagleSign 2024
https://eprint.iacr.org/2024/1137

82. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve
algorithm for shortest vector problem. In: ASIACCS (2011), pp. 1-9.

83. T. Wunderer. Revisiting the hybrid attack: Improved analysis and re-
fined security estimates. Cryptology ePrint Archive, Report 2016/733,2016.
http://eprint.iacr.org/2016/733

84. E. Wenger, E. Saxena, M. Malhou, E. Thieu and K. Lauter Benchmarking
Attacks on Learning with Errors 2024 https://eprint.iacr.org/2024/1229

85. Zhang, J., Feng, D., Yan, D. (2023). NEV: Faster and Smaller NTRU En-
cryption Using Vector Decoding. In: Guo, J., Steinfeld, R. (eds) Advances in
Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Com-
puter Science, vol 14444. Springer, Singapore. https://doi.org/10.1007/978-
981-99-8739-9_6

86. Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest
vector problem. In: SAC (2013), pp. 29-47.

A Implementation of EagleSignV3

A.1 Constant time implementation for EagleSignV3

As Dilithium, we do not use branch depending on secret data and also we do not use
access memory locations that depend on secret data. Moreover, for modular reductions
mod q, we do not use the ’%’ operator of the C programming language, instead we use
Montgomery reductions. We do not use also rejection sampling in the signature and
verification algorithm.

A.2 Bit/Byte Packing for EagleSignV3

In this section, we will explain the process of converting vectors and matrices into
byte strings and vis-versa. The procedure used in our implementation is similar to the
one used in Dilithium round 3. For completeness purpose, we will describe it in this
section. The general rule that we will follow is that if the range of an element x consists
exclusively of non-negative integers, then we simply pack the integer x. If x is from a

26

range [−a, b] that may contain some negative integers, then we pack the positive integer
b− x.

Let’s start with a single polynomial of N coefficients N ∈ {256, 512, 1024, 2048}
where each coefficient is an integer which can be encoded on b bits. Then each set of 8
coefficients can be encoded on 8 ∗ b/8 = b bytes.

In the case of EagleSignV3 signature (r, z) or (r, z, f), r is a byte array and don’t
need any conversion. z in EagleSignV3 is a vector of l elements l ∈ {1, 2, 3, 4} where
each polynomial’s coefficient can be encoded on log2(2× γ1) [resp: log2(2× δC + 1) ,
log2(2× δD + 1)] bits. This means that each set of 8 coefficients of z polynomials can
be encoded on log2(2× γ1) bytes string.

The previous described procedure has also been used to pack and unpack different
other parameters including the matrix T [resp: vector t] in the public key of EagleSignV3
as well as D, G in the corresponding private key. In appendix B, we have provided a
python code that we wrote in order to generate the set of instructions in C language to
convert a list of 8 different b-bits coefficients into a bytes string for any integer b > 1.

A.3 NTT transformation for EagleSignV3

It is known that we can perform multiplication and division efficiently over Rq = Zq(X)
m(X)

whenever the polynomial m(x) factors into a product of s polynomials m(X) =
πs

i=1mi(X) having small degree assuming that mi(X) is coprime with mj(X) for
all i, j, ̸= j. In this case, by Chinese Remainder Theorem we have an isomorphism
ϕ : Zq(X)

m(X)
∼=

Zq(X)
m1(X) × . . .× Zq(X)

ms(X) wit an efficient algorithm for both ϕ and ϕ−1 and

thus multiplication and division in Rq = Zq(X)
m(X) can be transferred in Zq(X)

mi(X) .

For EagleSignV3, with q = 59393, 249857 and n = 512, 1024, 2048, we use the
classical common friendly NTT ring is Rq = Zq(X)

m(X) where m(X) = Xn + 1, n = 2u, q

is prime and q = 1 mod 2n.

A.4 Hashing and Sampling techniques, special functions for
EagleSignV3

Sampling y : The function VectorUnifEtaPoly(λ,K) maps (λ,K) to y ∈ Sl
γ1 . We com-

pute independently the l components of y. Note that these components are polynomials
in Sγ1 . For the i-th polynomial, 0 ≤ i < l, it absorbs the 48 bytes of λ concatenated
with the 2 bytes representing K+ i in little endian byte order into SHAKE-256.

Sampling invertible G : For EagleSignV3, the function MatrixUnifEtaPolyn(β1, η, l, l)
maps (β1, η, l, l) to G ∈ Sl×l

ηG
. We compute independently the l × l components of G.

For each polynomial G(i,j) , 0 ≤ i, j < l, it absorbs the 96 bytes of β1 concatenated
with the 2 bytes representing i× l + j in little endian byte order into SHAKE-256. If
G is not invertible in Rl×l

q , we renew the seed β1 by computing β1 = SHAKE-256(β1)
until G is invertible. Remark that this algorithm terminates quickly since the ring Rq

contains enough invertible polynomials

27

Sampling D : For EagleSignV3 , the function MatrixUnifEtaPolyn(β2, ηD, k, l)
maps (β2, ηD, k, l) to D ∈ Sk×l

ηD
. We compute independently the k × l components of

D. For each polynomial D(i,j) , 0 ≤ i < l, 0 ≤ j < k, it absorbs the 96 bytes of β2
concatenated with the 2 bytes representing i × l + j in little endian byte order into
SHAKE-256.

Computing c:

The cryptographic Hash function H maps (µ, r) to c ∈ Bl
τ . For this purpose we first

extract 640 bits of the output of SHAKE-256 onto the input µ, r in this order as a seed
seedc. We then compute independently the l components of c. For each polynomial ci ,
0 ≤ i < l, we absorb the 80 bytes of seedc concatenated with the 2 bytes representing
i in little endian byte order into XOF interpreted as SHAKE/STREAM-128 of the
FIPS202 standard. The output of the XOF is used to generate ci = d in a Ball as
follows:

– Initialize d = d0d1 . . . dN−1 = 0 . . . 0
– for i = N − τ to N

• b
$← {0, 1, . . . , i} with XOF

• di := db

• s
$← {0, 1} with XOF

• db := 1− 2s
– return d

Note that in the expression ci = d, d is used to simplify the notation in the previous
algorithm.

Sampling the Matrix A : For EagleSignV3, the function MatrixUnifEtaPolyn
maps a uniform seed ρ ∈ {0, 1}256 to a matrix A ∈ Rk×l

q , q, N such that q ∼= 1 mod 2n
in NTT domain representation. A is generated and stored in NTT representation as
Â. We computes independently the components âi,j ∈ Rq of Â. We use SHAKE-128
to compute the coefficient âi,j by absorbing the 32 bytes of ρ followed by 2 bytes
representing 0 ≤ 28 × i + j < 216 in little-endian byte order. The output stream of
SHAKE-128 is interpreted as a sequence of integers between 0 and 2|q| − 1, where |q| is
the bit-size of prime q which is used. To obtain such result for EagleSignV3, we do the
following.

– For q = 59393, |q| = 16, we interpreting blocks of 2 consecutive bytes in little endian
byte order. In practice, the two consecutive bytes b0 , b1 are used to get the integer
0 ≤ t′ = b1×28 + b0 ≤ 216−1 and compute t as the logical AND of t′ = b1×28 + b0
and 216 − 1.

– For q = 249857, |q| = 18, we set the six highest bits of every third byte to
zero and interpreting blocks of 3 consecutive bytes in little endian byte order.
In practice, the three consecutive bytes b0 , b1 , b2, are used to get the integer
0 ≤ t = b′

2×216 +b1×28 +b0 ≤ 218−1 where b′
2 is the logical AND of b2 and 26−1.

Another method is to compute t as the logical AND of t′ = b2 × 216 + b1 × 28 + b0
and 218 − 1.

Finally, MatrixUnifEtaPolyn performs rejection sampling on these |q|-bit integers t to
sample the N coefficients between 0 and q − 1.

28

Collision resistant hash (CRH1, CRH) For EagleSignV3, the function CRH1
and CRH are collision resistant hash functions. For this purpose 256 and 384 bits of
the output of SHAKE-256 are used respectively for CRH1 and CRH. Note that we can
easily choose and integrate other hash functions.
CRH1 is called on the public key (ρ, T) and (ρ, t)to compute tr. For this reason, it
takes as input the byte string obtained from packing ρ and T (resp: t) in this order
and the result is absorbed into SHAKE-256 and the first 32 output bytes are used as
the resulting hash.

CRH on the other hand is called on the input tr||M to compute µ. Here the con-
catenation of the hash tr and the message string M are absorbed into SHAKE-256 and
the first 48 output bytes are used as the resulting hash.

Collision resistant hash For EagleSignV3, the functions G, G1, G2 are collision resis-
tant hash functions. For this purpose 256 bits of the output of SHAKE-256 is used.
G, G1 or G2 is called the input p to compute r in v to compute r′ in the verification
algorithm. Note that, we can easily choose and integrate other hash functions.

B Conversion

In this appendix B, we have provided a python code that we wrote in order to generate
the set of instructions in C language to convert a list of 8 different b-bits coefficients
into a bytes string for any integer b > 1.

Bit-Packing for EagleSignV3.
Python Code for generating Bit-Packing instructions in C

1 import numpy as np
2 import pandas as pd
3

4 de f pack (D, Dp, dtype=" int32_t " , dterm=" l o g e t a " , n=8) :
5 i f Dp%2 == 0 and n>1:
6 re turn pack (D, Dp//2 , dtype , dterm , n//2)
7

8

9 X = [[i] ∗D f o r i in range (8)]
10 Y = [[−1]∗8 f o r i in range (D)]
11 Z= [−1]∗(8∗D)
12

13 l = 0
14 f o r i in range (8) :
15 f o r j in range (D) :
16 Z [l] = X[i] [j]
17 l += 1
18

19 l = 0
20 f o r i in range (D) :
21 f o r j in range (8) :

29

22 Y[i] [j] = Z [l]
23 l += 1
24

25 ta = []
26 tb = []
27 f o r y in Y:
28 y = pd . S e r i e s (y)
29 c = d i c t (y . value_counts ())
30 ta . append (c)
31 f o r key in c . keys () :
32 tb . append ({ key : c [key] })
33

34 p r i n t (" \ nunsigned i n t i ; \ n{} t [{ }] ; \ n fo r (i =0; i<N/{};++ i) \n
{{\n" . format (dtype , n , n))

35

36 f o r i in range (n) :
37 p r i n t (" t [{ 0 }] = (1 << ({1} − 1)) − a−>c o e f f s [{2} ∗

i + { 0 }] ; " . format (i , dterm , n))
38 p r i n t ()
39

40 cp = 0
41 cp_key = 0
42 i t = 0
43 f o r y in Y:
44 y = pd . S e r i e s (y)
45 c = d i c t (y . value_counts ())
46 i n i t = 0
47 sorted_ = l i s t (c . keys ())
48 sorted_ . s o r t ()
49 f o r key in sorted_ :
50 i f key >= n :
51 break
52 cp = cp%D
53 i f i n i t == 0 :
54 p r i n t (" r [{} ∗ i + {}] = t [{ }] { } ; " . format (Dp, i t ,

key , " >> {} " . format (cp) i f cp e l s e " "))
55 i n i t += c [key]
56 e l s e :
57 p r i n t (" r [{} ∗ i + {}] {}= t [{ }] { } ; " . format (Dp,

i t , " | " i f i n i t e l s e " " , key , " << {} " . format (i n i t) i f
i n i t e l s e " "))

58 i n i t += c [key]
59

60

61 i f (cp_key == key) :
62 cp += c [key]
63 e l s e :
64 cp = c [key]
65

66 cp_key = key

30

67

68 i t += 1
69 p r i n t (" \n} ")
70

71 i f __name__ == "__main__" :
72 D = 21 # Change t h i s va lue accord ing to your need
73 dterm = "COEFF_BIT_SIZE"
74 pack (D, D, dterm)

The out of the previous code is presented in the next code. Note that the output
generated depends on four (04) parameters : N , r, a and COEF F _BIT _SIZE. r is
the output byte array, a is the input polynomial, N is the number of components in
polynomial a, N ∈ {256, 512, 1024, 2048} and COEF F _BIT _SIZE is the coefficients’
bits size.

1 unsigned i n t i ;
2 Q_SIZE t [8] ;
3 f o r (i =0; i<N/8;++ i)
4 {
5

6 t [0] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 0] ;
7 t [1] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 1] ;
8 t [2] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 2] ;
9 t [3] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 3] ;

10 t [4] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 4] ;
11 t [5] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 5] ;
12 t [6] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 6] ;
13 t [7] = (1 << (COEFF_BIT_SIZE − 1)) − a−>c o e f f s [8 ∗ i + 7] ;
14

15 r [21 ∗ i + 0] = t [0] ;
16 r [21 ∗ i + 1] = t [0] >> 8 ;
17 r [21 ∗ i + 2] = t [0] >> 16 ;
18 r [21 ∗ i + 2] |= t [1] << 5 ;
19 r [21 ∗ i + 3] = t [1] >> 3 ;
20 r [21 ∗ i + 4] = t [1] >> 11 ;
21 r [21 ∗ i + 5] = t [1] >> 19 ;
22 r [21 ∗ i + 5] |= t [2] << 2 ;
23 r [21 ∗ i + 6] = t [2] >> 6 ;
24 r [21 ∗ i + 7] = t [2] >> 14 ;
25 r [21 ∗ i + 7] |= t [3] << 7 ;
26 r [21 ∗ i + 8] = t [3] >> 1 ;
27 r [21 ∗ i + 9] = t [3] >> 9 ;
28 r [21 ∗ i + 10] = t [3] >> 17 ;
29 r [21 ∗ i + 10] |= t [4] << 4 ;
30 r [21 ∗ i + 11] = t [4] >> 4 ;
31 r [21 ∗ i + 12] = t [4] >> 12 ;
32 r [21 ∗ i + 13] = t [4] >> 20 ;
33 r [21 ∗ i + 13] |= t [5] << 1 ;
34 r [21 ∗ i + 14] = t [5] >> 7 ;
35 r [21 ∗ i + 15] = t [5] >> 15 ;
36 r [21 ∗ i + 15] |= t [6] << 6 ;

31

37 r [21 ∗ i + 16] = t [6] >> 2 ;
38 r [21 ∗ i + 17] = t [6] >> 10 ;
39 r [21 ∗ i + 18] = t [6] >> 18 ;
40 r [21 ∗ i + 18] |= t [7] << 3 ;
41 r [21 ∗ i + 19] = t [7] >> 5 ;
42 r [21 ∗ i + 20] = t [7] >> 13 ;
43

44 }

Bit-Unpacking for EagleSignV3.
Python Code for generating Bit-Unpacking instructions in C

1 import numpy as np
2 import pandas as pd
3

4 de f unpack (D, Dp, Ty=" int32_t " , dterm=" l o g e t a " , n=8) :
5 i f Dp%2 == 0 and n>1:
6 re turn unpack (D, Dp//2 , Ty , dterm , n//2)
7

8 X = [[i] ∗D f o r i in range (8)]
9 Y = [[−1]∗8 f o r i in range (D)]

10 Z= [−1]∗(8∗D)
11 l = 0
12 f o r i in range (8) :
13 f o r j in range (D) :
14 Z [l] = X[i] [j]
15 l += 1
16

17 l = 0
18 f o r i in range (D) :
19 f o r j in range (8) :
20 Y[i] [j] = Z [l]
21 l += 1
22

23 ta = []
24 tb = []
25 f o r y in Y:
26 y = pd . S e r i e s (y)
27 c = d i c t (y . value_counts ())
28 ta . append (c)
29 f o r key in c . keys () :
30 tb . append ({ key : c [key] })
31

32 p r i n t (" \ nunsigned i n t i ; \ n fo r (i =0; i<N/{};++ i) \n{{\n" .
format (n))

33

34 cp = 0
35 cp_key = 0
36 i t = 0
37 f o r y in Y:
38 y = pd . S e r i e s (y)

32

39 c = d i c t (y . value_counts ())
40 i n i t = 0
41 sorted_ = l i s t (c . keys ())
42 sorted_ . s o r t ()
43 f o r key in sorted_ :
44 i f key >= n :
45 break
46 cp = cp%D
47 i f i n i t == 0 :
48 p r i n t (" r−>c o e f f s [{} ∗ i + {}] {}= {}a [{} ∗

i + { }] { } ; " . format (n , key , " | " i f cp e l s e " " , "(%s) "%(Ty)
i f cp e l s e " " , Dp, i t , " << {} " . format (cp) i f cp e l s e " ")

)
49 i n i t += c [key]
50 e l s e :
51 p r i n t (" r−>c o e f f s [{} ∗ i + {}] &= {} ;\ n " .

format (n , cp_key , hex((2<<(D−1)) −1)))
52 p r i n t (" r−>c o e f f s [{} ∗ i + {}] = a [{} ∗ i +

{ }] { } ; " . format (n , key , Dp, i t , " >> {} " . format (i n i t) i f
i n i t e l s e " "))

53 i n i t += c [key]
54

55

56 i f (cp_key == key) :
57 cp += c [key]
58 e l s e :
59 cp = c [key]
60

61 cp_key = key
62

63 i t += 1
64 p r i n t (" r−>c o e f f s [{} ∗ i + {}] &= {} ;\ n " . format (n ,

cp_key , hex((2<<(D−1)) −1)))
65

66

67 f o r i in range (n) :
68 p r i n t (" r−>c o e f f s [{2} ∗ i + {0}] = (1 << ({1} − 1))

− r−>c o e f f s [{2} ∗ i + { 0 }] ; " . format (i , dterm , n))
69

70 p r i n t (" \n} ")
71

72 i f __name__=="__main__" :
73 D = 21 # Change t h i s va lue accord ing to your need
74 dataType = " int32_t "
75 dterm = "COEFF_BIT_SIZE"
76 unpack (D, D, dataType , dterm)

The out of the previous code is presented in the next code. Note that the output
generated depends on three (04) parameters : N , r, a and COEF F _BIT _SIZE. a is
the input byte array, r is the output polynomial, N is the number of components in

33

polynomial r, N ∈ {256, 512, 1024, 2048} and COEF F _BIT _SIZE is the coefficients’
bits size.

1 unsigned i n t i ;
2 f o r (i =0; i<N/8;++ i)
3 {
4

5 r−>c o e f f s [8 ∗ i + 0] = a [21 ∗ i + 0] ;
6 r−>c o e f f s [8 ∗ i + 0] |= (int32_t) a [21 ∗ i + 1] << 8 ;
7 r−>c o e f f s [8 ∗ i + 0] |= (int32_t) a [21 ∗ i + 2] << 16 ;
8 r−>c o e f f s [8 ∗ i + 0] &= 0 x 1 f f f f f ;
9

10 r−>c o e f f s [8 ∗ i + 1] = a [21 ∗ i + 2] >> 5 ;
11 r−>c o e f f s [8 ∗ i + 1] |= (int32_t) a [21 ∗ i + 3] << 3 ;
12 r−>c o e f f s [8 ∗ i + 1] |= (int32_t) a [21 ∗ i + 4] << 11 ;
13 r−>c o e f f s [8 ∗ i + 1] |= (int32_t) a [21 ∗ i + 5] << 19 ;
14 r−>c o e f f s [8 ∗ i + 1] &= 0 x 1 f f f f f ;
15

16 r−>c o e f f s [8 ∗ i + 2] = a [21 ∗ i + 5] >> 2 ;
17 r−>c o e f f s [8 ∗ i + 2] |= (int32_t) a [21 ∗ i + 6] << 6 ;
18 r−>c o e f f s [8 ∗ i + 2] |= (int32_t) a [21 ∗ i + 7] << 14 ;
19 r−>c o e f f s [8 ∗ i + 2] &= 0 x 1 f f f f f ;
20

21 r−>c o e f f s [8 ∗ i + 3] = a [21 ∗ i + 7] >> 7 ;
22 r−>c o e f f s [8 ∗ i + 3] |= (int32_t) a [21 ∗ i + 8] << 1 ;
23 r−>c o e f f s [8 ∗ i + 3] |= (int32_t) a [21 ∗ i + 9] << 9 ;
24 r−>c o e f f s [8 ∗ i + 3] |= (int32_t) a [21 ∗ i + 10] << 17 ;
25 r−>c o e f f s [8 ∗ i + 3] &= 0 x 1 f f f f f ;
26

27 r−>c o e f f s [8 ∗ i + 4] = a [21 ∗ i + 10] >> 4 ;
28 r−>c o e f f s [8 ∗ i + 4] |= (int32_t) a [21 ∗ i + 11] << 4 ;
29 r−>c o e f f s [8 ∗ i + 4] |= (int32_t) a [21 ∗ i + 12] << 12 ;
30 r−>c o e f f s [8 ∗ i + 4] |= (int32_t) a [21 ∗ i + 13] << 20 ;
31 r−>c o e f f s [8 ∗ i + 4] &= 0 x 1 f f f f f ;
32

33 r−>c o e f f s [8 ∗ i + 5] = a [21 ∗ i + 13] >> 1 ;
34 r−>c o e f f s [8 ∗ i + 5] |= (int32_t) a [21 ∗ i + 14] << 7 ;
35 r−>c o e f f s [8 ∗ i + 5] |= (int32_t) a [21 ∗ i + 15] << 15 ;
36 r−>c o e f f s [8 ∗ i + 5] &= 0 x 1 f f f f f ;
37

38 r−>c o e f f s [8 ∗ i + 6] = a [21 ∗ i + 15] >> 6 ;
39 r−>c o e f f s [8 ∗ i + 6] |= (int32_t) a [21 ∗ i + 16] << 2 ;
40 r−>c o e f f s [8 ∗ i + 6] |= (int32_t) a [21 ∗ i + 17] << 10 ;
41 r−>c o e f f s [8 ∗ i + 6] |= (int32_t) a [21 ∗ i + 18] << 18 ;
42 r−>c o e f f s [8 ∗ i + 6] &= 0 x 1 f f f f f ;
43

44 r−>c o e f f s [8 ∗ i + 7] = a [21 ∗ i + 18] >> 3 ;
45 r−>c o e f f s [8 ∗ i + 7] |= (int32_t) a [21 ∗ i + 19] << 5 ;
46 r−>c o e f f s [8 ∗ i + 7] |= (int32_t) a [21 ∗ i + 20] << 13 ;
47 r−>c o e f f s [8 ∗ i + 7] &= 0 x 1 f f f f f ;

34

48

49 r−>c o e f f s [8 ∗ i + 0] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 0] ;

50 r−>c o e f f s [8 ∗ i + 1] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 1] ;

51 r−>c o e f f s [8 ∗ i + 2] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 2] ;

52 r−>c o e f f s [8 ∗ i + 3] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 3] ;

53 r−>c o e f f s [8 ∗ i + 4] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 4] ;

54 r−>c o e f f s [8 ∗ i + 5] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 5] ;

55 r−>c o e f f s [8 ∗ i + 6] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 6] ;

56 r−>c o e f f s [8 ∗ i + 7] = (1 << (COEFF_BIT_SIZE − 1)) − r−>
c o e f f s [8 ∗ i + 7] ;

57

58 }

35

	Introduction
	Short description of Falcon/Modfalcon and Christal Dilithium
	Summary of EagleSignV3
	Comparison with existing lattices based signatures

	Preliminaries
	Notations and basic operations
	Signature and its security model
	Hard problems over lattices

	EagleSignV3; Design, security and parameters
	Basic functions
	Description of EagleSign (General case)
	Description of EagleSignV3
	Comparison of the design EagleSignV3 and the two old EagleSign
	Security analysis of EagleSignV3
	Choosing the modulus and the number of repetitions
	Zeroknowledge proof for EagleSignV3
	Security proof in ROM for EagleSignV3

	Sizes and security levels for EagleSignV3

	Security proof in QROM for EagleSignV3
	Advantages and Limitations for EagleSignV3
	Implementation of EagleSignV3
	Constant time implementation for EagleSignV3
	Bit/Byte Packing for EagleSignV3
	NTT transformation for EagleSignV3
	Hashing and Sampling techniques, special functions for EagleSignV3

	Conversion

