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ABSTRACT
Multi-scalarmultiplication (MSM) is themost computation-intensive
part in proof generation of Zero-knowledge proof (ZKP). In this pa-
per, we propose MSMAC, an FPGA accelerator for large-scale MSM.
MSMAC adopts a specially designed Instruction Set Architecture
(ISA) for MSM and optimizes pipelined Point Addition Unit (PAU)
with hybrid Karatsuba multiplier. Moreover, a runtime system is
proposed to split MSM tasks with the optimal sub-task size and
orchestrate execution of Processing Elements (PEs). Experimental
results show that MSMAC achieves up to 328× and 1.96× speedups
compared to the state-of-the-art implementation on CPU (one core)
and GPU, respectively, outperforming the state-of-the-art ASIC
accelerator by 1.79×. On 4 FPGAs, MSMAC performs 1,261× faster
than a single CPU core.

1 INTRODUCTION
Zero-knowledge proof (ZKP) is a cryptographic protocol that allows
the prover to convince the verifier that a computation𝑦 = 𝑓 (𝑥, 𝜔) is
correctly executed, where 𝑥 is the public input and𝜔 is a secret that
only the prover knows. The protocol also guarantees that the secret
𝜔 will not be disclosed. ZKP has broad applications such as verifiable
outsourcing [10], electronic voting [12], verifiable machine learning
[9] and ZK-rollups [1].

ZkSNARK (Zero Knowledge Succinct Non Interactive Argument
of Knowledge) is considered one of themost practical ZKP protocols.
Its proof is compact and its verification is fast. However, the slow
proof generation speed of zkSNARK is a major obstacle to practical
application. During the proof generation, some complex operations
are required, such as Multi Scalar Multiplication (MSM). The time
consumption of MSM can be as high as 70% [11] in proof generation.

MSM is a type of inner product operation defined on elliptic
curve, which requires a large amount of point multiplication and
point addition on elliptic curve. To reduce proof generation time,
accelerators are used to accelerateMSM. SpecializedMSMhardware
accelerators based on ASIC [11], FPGA [2, 7] and GPU [4, 5] are
proposed.
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In this article, we propose MSMAC, an FPGA accelerator for
large-scale MSM. We apply the Pippenger algorithm to convert
the main operations of MSM to point addition, and design a high
performance pipelined Point Addition Unit (PAU) for MSMAC. A
novel domain-specific Instruction Set Architecture (ISA) is proposed
to control the whole MSM process on MSMAC. MSMAC is scalable
and can be deployed on multiple FPGAs. Our contributions are
summarized as follows:

• We propose a novel MSM accelerator, called MSMAC, which
is based on a domain-specific ISA for accelerating MSM. The
ISA is designed to simplify hardware implementation, while
enabling scalable and high efficient MSMAC architecture.

• We propose a runtime system to efficiently schedule MS-
MAC’s Processing Elements (PEs). Large-sized MSM tasks
are split into multiple sub-tasks with optimal sub-task sizes
which are searched and kept in advance. Then sub-tasks are
dispatched to PEs in a producer-consumer model.

• We propose a pipelined PAU with efficient Montgomery
modular multiplier exploiting hybrid multi-way Karatsuba
split, which effectively utilizes the most of bits of DSPs in
the target FPGA and reduces the DSP resource consumption.

• On a single FPGA, MSMAC achieves a speedup of up to
328× compared to a single CPU core, and a speedup of up to
1.79× and 1.96× compared to state-of-the-art ASIC and GPU
implementations, respectively; On 4 FPGAs, the speedup of
up to 1,261× can be obtained compared to a single CPU core.

2 BACKGROUND
2.1 The zkSNARK Protocol
The workflow of zkSNARK is shown in Figure 1. Pre-processing
randomly generates proving keys and verifying keys for the prover
and verifier, respectively. The pre-processing stage also compiles
the computation 𝑓 to be proven as vector sets.

Prover generates a proof based on the vector sets and proving
key. The proving keys are elliptic curve (EC) point vectors. The
prover computes scalar vector ℎ through polynomial computation,
and then performs MSMs. MSM is the inner product between a
scalar vector and a point vector, where multiplication is expensive
point multiplication on the elliptic curve. The MSM results are
essential components of the proof. The verifier can quickly verify
its validity by performing a simple calculation.

The size of MSM is related to the computation 𝑓 to be proven,
which may reach billions or even larger. MSM is time-consuming
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and takes up most of the proof generation time. It is important to
accelerate MSM for zkSNARK.

Application
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Figure 1: zkSNARK protocol

2.2 MSM
MSM is defined as 𝑄 =

∑𝑁−1
𝑖=0 𝑘𝑖 ∗ 𝑃𝑖 , where 𝑘𝑖 is a scalar and 𝑃𝑖

is a point on the elliptic curve. MSM requires 𝑁 expensive point
multiplications, with each point multiplication involving multiple
point addition and point doubling operations. The Pippenger al-
gorithm is an efficient algorithm that reduces the complexity of
MSM. The bit length of the scalar 𝑘𝑖 is defined as 𝜆. The Pippenger
algorithm splits the scalar 𝑘𝑖 into 𝜆/𝑠 windows each with the size
𝑠 , i.e., 𝑘𝑖 =

∑𝜆/𝑠−1
𝑗=0 2𝑗𝑠𝑚𝑖 𝑗 . For window 𝑗 , the points 𝑃𝑖 according

to the same𝑚𝑖 𝑗 (= 𝑙) are accumulated into a bucket (𝐵𝑙 ). Then the
final result is calculated by summing up the weighted bucket 𝐵𝑙 in
each window.

The Pippenger algorithm is decomposed into three steps:

• Step 1 (bucket accumulation): For each window, the point
𝑃𝑖 is accumulated into a bucket according to the 𝑠-bit word
𝑚𝑖 𝑗 .

𝐵𝑙 =

𝑁−1∑︁
𝑖=0

[𝑚𝑖 𝑗 == 𝑙] ∗ 𝑃𝑖 , (𝑙 = 1, 2, ....2𝑠 − 1) (1)

• Step 2 (bucket aggregation) : For each window, accumulate
all the buckets to obtain 𝐺 𝑗

𝐺 𝑗 =

2𝑠−1∑︁
𝑙=1

𝑙 ∗ 𝐵𝑙 (2)

• Step 3 (inter-bucket aggregation) : Accumulate 𝐺 𝑗 to obtain
the final result 𝑄

𝑄 =

𝜆/𝑠−1∑︁
𝑗=0

2𝑗𝑠 ∗𝐺 𝑗 (3)

An example is shown in Figure 2, where 𝜆 = 12 and 𝑠 = 4. In Step
2, the 2𝑠 − 1 point multiplications can be converted to 2 ∗ (2𝑠 − 1)
point additions [4]. Thus, all the operations in Steps 1 and 2 become
point additions. Step 3 requires much fewer computations. The aim
of our accelerator is to accelerate both Steps 1 and 2.

1
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!#$

𝑄0 = 	1101		1001	1001		 ∗ 𝑃$
𝑄1 = 	1101		1001	0010		 ∗ 𝑃%
𝑄2 = 	1101		0011	0010		 ∗ 𝑃&

𝐵% = Ο

𝑄3 = 	1101		0011	0100		 ∗ 𝑃"

2 𝐵& = 𝑃% +	𝑃&

15 𝐵%' = Ο

…

𝐺$𝐺%𝐺&

= 256𝐺& + 16𝐺%+ 𝐺$ 𝐺$ = 𝐵% + 2𝐵&+ … + 15𝐵%'

Step1

Step2Step3

Figure 2: An example of Pippenger algorithm

2.3 Point Addition
In this paper, we focus on the BN128 curve [3]. The equation for
the BN128 curve is 𝑦2 = 𝑥3 + 3, where (𝑥,𝑦) is a point in the form
of affine coordinates. The point addition operation calculates the
sum of two EC points, namely

𝑃3 (𝑥3, 𝑦3) = 𝑃1 (𝑥1, 𝑦1) + 𝑃2 (𝑥2, 𝑦2) (4)

EC points can be represented as various coordinates, such as
projective coordinates, to simplify point addition operation. The
mapping from affine coordinates to projective coordinates can be
represented as (𝑥,𝑦) → (𝑋,𝑌, 𝑍 ), where 𝑥 = 𝑋/𝑍 and 𝑦 = 𝑌/𝑍 .

Common point addition algorithms cannot handle special cases,
e.g., when 𝑃1 = 𝑃2 or 𝑃1/𝑃2 is the zero point on elliptic curve.
A complete point addition algorithm [5] can support the point
addition on any two EC points. It can avoid point checking and
simplify hardware design. We design a pipelined PAU based on the
complete point addition algorithm using projective coordinates.

2.4 Related Work
Recently published MSM accelerators include ASIC accelerator [11]
and GPU [4, 5]. PipeZK [11] is, to the best of our knowledge, the
first ASIC MSM accelerator. It can alleviate load imbalance and be
scalable in a coarse-grained manner. However, it only implements
Step 1 on hardware and adopts a minor window size which can lead
to increased computational overhead when the MSM size is large.
GZKP [5] adopts a new parallelization strategy for GPUs, which
aggressively combines elliptic curve point operations and exploits
fine-grained task parallelism with load balancing for sparse integer
distribution. cuZK [4] proposes a new parallel MSM algorithm
which is well adapted to the high parallelism provided by GPUs and
presents an efficient GPU implementation. Some FPGA based MSM
accelerators [7] [2] focus on the BLS12-381 curve. MSMAC targets
the BL128 curve, which offers higher performance compared to
BLS12-381 curve.

Compared with PipeZK, MSMAC implements both Steps 1 and
2 on FPGA, which results in better end-to-end performance. Ad-
ditionally, MSMAC supports a larger window size which reduces
the computational overhead when dealing with large-sized MSM
and achieves a balance between performance and resource utiliza-
tion. Furthermore, the domain-specific ISA and hardware-software
co-design enhances the flexibility and scalability of MSMAC.

3 MSMAC
3.1 Architecture Overview
The overall architecture of MSMAC is shown in Figure 3. MSMAC
consists of multiple FPGA cards, eachwith one Xilinx VP1502 FPGA,
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one of the Xilinx’s newest Versal Premium series FPGAs [8]. Multi-
ple Processing Elements (PEs) can be integrated into one VP1502
FPGA. Each MSMAC PE has one four-stage pipeline, especially
designed for accelerating the Pippenger algorithm. This pipeline
is similar to a standard processor, but has customized functions
defined by our proposed custom ISA.

On the VP1502 FPGA, all PEs, PCIe Controller and DDR4 Con-
troller are connected through the built-in programmable NoC (Net-
work on Chip), which is a high-speed AXI-interconnecting network
used for sharing data between all user and built-in IP endpoints.
The NoC provides a cross-sectional bandwidth of up to 2.2 Tb/s.
Compared to the NoC implemented by the user, the built-in NoC
can alleviate routing congestion, and provide system level commu-
nication between the various components.

In MSMAC, each PE can handle an independent MSM task. A
large-scale MSM task also can be divided into several smaller sub-
tasks, each assigned to one PE. Our runtime system supports a high-
efficient task scheduling schemes using automatic task partitioning
and a producer-consumer model, detailed in Section 4.

PE PE

PEPE

DDR4
Controller

NoC

Host

DDR4

FPGA Card

PCIe

…

PE PE

PEPE

DDR4
Controller

NoC
DDR4

FPGA Card

PCIe

Instr.
Fetch

Instr. Decode
&

Address 
Generation

Execute
(Point

Addition

Unit)

Write Back
(Point Write

Conflict Detect)

Figure 3: Overall architecture of MSMAC

3.2 Processing Element (PE)
3.2.1 Microarchitecture. Themicroarchitecture of each PE is shown
in Figure 4. The PE is a domain-specific processor which consists
of four stages: fetch, decode, execute and write back. Instead of
register files, temporary data is stored in RAMs or FIFOs. Buckets
for each window are kept in the Bucket RAM, and intermediate
results of Step 2 are stored in the Temp RAM. Each input scalar
is encoded into a signed-digit representation by the Scalar Con-
vert module. The signed-digit representation reduces the size of
the Bucket RAM by about half [7]. Input and output streams are
buffered by the Input and Output FIFOs, respectively. Additionally,
there is a Conflict FIFO for buffering conflicting data. The execute
unit is a pipelined Point Addition Unit (PAU), which receives points
𝑃1 and 𝑃2 every cycle, and outputs the result 𝑃3.

The instructions are stored in the Instruction RAM and will be
fetched to the decoder. The padd instruction is proposed to perform
point addition, and is executed as follows:

(1) The decoder parses the padd instruction and generates con-
trol signals for RAMs, FIFOs, and multiplexers.

(2) Points 𝑃1 and 𝑃2 are read out from RAMs or FIFOs and sent
to PAU.

(3) PAU performs point addition on 𝑃1 and 𝑃2.
(4) The result 𝑃3 is stored into one of the three destinations

(Bucket RAM, Temp RAM or Output FIFO) according to the
corresponding write address.

Input FIFO

Point Addition

Unit

Temp RAM

MUX

Fetch Decoder

Conflict FIFO

Bucket RAM

Output FIFO

Instr.

RAM

Scalar ConvertInput

addr

P1 P2

P3

data
control&addrFetch Decode Execute Write Back

Conflict
Detector

Address
Generator Wr/Rd

Controller

Output

Figure 4: PE microarchitecture

The point addition result is obtained after 𝐿𝑃𝐴𝑈 cycles, where
𝐿𝑃𝐴𝑈 is the stage number of the PAU pipeline. During Step 1, if
the bucket 𝐵𝑙 is in process and a new point to be accumulated to
𝐵𝑙 arrives, a conflict occurs. To address this conflict, we design
a conflict detector. After a conflict is detected, the result of PAU
is discarded, and the point and corresponding 𝑠-bit scalar word
is written to the Conflict FIFO. The data in Conflict FIFO will be
processed when the MSM input stream ends or the number of
data in Conflict FIFO exceeds a pre-defined threshold. However,
the impact of conflicts on PE performance is insignificant as the
probability of conflicts is much low.

To make full use of the pipelined PAU, PE processes 𝜆/𝑠 windows
in a batch, i.e., point 𝑃𝑖 is accumulated to 𝜆/𝑠 buckets according to
the scalar 𝑘𝑖 under one padd instruction. Since each window has
its own buckets, batch processing can reduce the probability of
conflicts by 𝜆/𝑠 times further. Batch processing can also reduce the
memory bandwidth requirement as input points and scalars only
need to be read once for all the calculations they are involved in.

3.2.2 ISA. We design a specialized ISA for MSM with four instruc-
tions as shown in Table 1. padd is the only arithmetic instruction.
The jmp and set instructions are used to control MSM workflow.
nop will be inserted to resolve data dependency when necessary.
The format of the padd instruction is shown in Figure 5. One padd
instruction can perform a batch of point additions, and the batch
size is decided by the 𝑠𝑖𝑧𝑒 field of the instruction. In batch pro-
cessing, the control information such as the 𝑠𝑟𝑐_𝑠𝑒𝑙 is reused, but
the address is automatically updated according to the base address
and step fields. The step field means the stride length for address
increase.

Normally, a jmp instruction may come with overhead even with
complicated branch prediction techniques. We adopt a trick to
eliminate the effect of conditional jump, ensuring the efficiency of
our ISA. A batched padd instruction takes several cycles. The jmp
after padd can be fetched and executed during the padd is running.
The next instruction can also be fetched before the padd is done. In
this way, conditional jump comes with no overhead.

In Step 1, performing a conditional jump in advance does not
affect the final outcome. Let’s take a partial workflow of Step 1
as an example, which is illustrated in Figure 6. After executing
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Table 1: Our proposed ISA

Instruction Description

padd Point addition
jmp Conditional jump
set Loop counter setting
nop No operation

jmp0, MSMAC may jump to padd0 (or padd1) to process data in the
Input FIFO (or the Conflict FIFO). Performing jmp0 in advance may
change the execution order of padd0 and padd1 since the status of
Conflict FIFO may be changed at the last cycle of batch processing.
Nevertheless, the Conflict FIFO has sufficient buffer space to accom-
modate the data after almost-full warning. Delaying the execution
of padd1 slightly does not lead to Conflict FIFO overflow and result
errors.

OP size addr_b addr_t src_sel dest_sel

Instruction type

Batch size

Base address for Bucket RAM

Base address for Temp RAM

Destination selector(Bucket
RAM/Temp RAM/Output FIFO)

Source selector(Bucket
RAM/Input FIFO/Conflict FIFO)

step_b step_t

Step

Figure 5: padd instruction

padd0

jmp0

jmp1

If (B)
Jump to end

Else if ~(A | C)
Jump to padd0

Else
Go to padd1

If (A | C)
Jump to padd1

Else
Jump to padd0

End

Start

A: Input FIFO is empty
B: MSM input is over
C: Conflict FIFO is almost full

P1 Input FIFO

P1 Conflict FIFO

padd1

Figure 6: Partial workflow of Step 1

3.2.3 PAU. We design a pipelined PAU based on a complete point
addition algorithm [6], and its data flow diagram is shown in Fig-
ure 7. The kernel of PAU is a modular multiplier. Our modular
multiplier utilizes Montgomery multiplication which requires three
large integer multiplication, as shown in Algorithm 1. For our target
BN128 curve, the three 256-bit multiplications in Montgomery mul-
tiplication have been optimized and tailored for the target FPGA.

Suppose 𝑎 and 𝑏 are 𝑛-bit integers, where 𝑎 = 𝑎1 ∗ 2𝑛/2 + 𝑎0,
𝑏 = 𝑏1 ∗ 2𝑛/2 + 𝑏0. The schoolbook method requires four 𝑛/2-bit
multipliers. The 2-way Karatsuba split only requires three 𝑛/2-bit
multipliers, as shown below:

𝑎 ∗ 𝑏 = 22𝑛𝑎1𝑏1 + 2𝑛 ((𝑎0 + 𝑎1) (𝑏0 + 𝑏1) − 𝑎0𝑏0 − 𝑎1𝑏1) + 𝑎0𝑏0 (5)

If the 2-way Karatsuba split is applied recursively, a 256-bit
multiplier can be implemented with 81 multipliers (DSPs) with
widths ranging from 16 to 18. However, the DSPs of the VP1502

Algorithm 1:Montgomery Modular Multiplication
Input :𝑋,𝑌, 𝑅,𝑀 ; 𝑋,𝑌 ∈ [0, 𝑀 − 1];𝑔𝑐𝑑 (𝑅,𝑀 ) = 1
Output :𝑍 = 𝑋𝑌𝑅−1𝑚𝑜𝑑𝑀

1 𝑡 = 𝑋𝑌 ;𝑚 = 𝑡 (−𝑀−1 )𝑚𝑜𝑑𝑅; 𝑍 = (𝑡 +𝑚𝑀 )/𝑅
2 if 𝑍 ≥ 𝑀 then 𝑍 = 𝑍 − 𝑀

FPGA are 27 × 24 multipliers, meaning that the most significant
bits in DSPs is wasted if this method is used. To fully utilize DSP
resources, we propose a hybrid Karatsubasua split scheme, as shown
in Figure 8. Through this scheme, only 54 DSPs are required in total.

In Algorithm 1, the second 256-bit multiplier only requires the
lower half of the result, and can be divided into 5 L1 multipliers.
2 of the 5 L1 multipliers can be further optimized. As a result, 43
DSPs are required in total. Similar optimization can be applied to
the third 256-bit multiplier. Moreover, we can replace some DSPs
with LUTs to balance resource utilization.

P1(x1, y1, z1) P2(x2, y2, z2)

+x + +x x + + +

P3(x3, y3, z3)

+ + + x x x

x9 - - -

+ - x9
x3

xx x xx x

- + +

x

+

-

x3

x9

Modular multiply

Modular add

Modular sub

Modular multiply by 3

Modular multiply by 9

Figure 7: Point Addition Unit

a x b

a0 x b0

a1 x b1

a2 x b2

(a0+a1) x (b0+b1)

(a0+a2) x (b0+b2)

(a1+a2) x (b1+b2)

c0 x d0

c1 x d1

c2 x d2

c3 x d3

(c0 +c1) x (d0 +d1)
(c0 +c2) x (d0 +d2)
(c0 +c3) x (d0 +d3)
(c1 +c3) x (d1 +d3)
(c2 +c3) x (d2 +d3)

a->{a2,a1,a0}
b->{b2,b1,b0}

a0 ->{c3,c2,c1,c0}
b0 ->{d3,d2,d1,d0}

L2:4-way split
L1:3-way split

Figure 8: Hybrid Karatsuba split

3.3 Performance Model
The Pippenger algorithm has an important parameter 𝑠 (i.e., win-
dow size). When designing MSMAC, 𝑠 is constrained by memory
resources required by Bucket RAM. The number of PE is also lim-
ited by available FPGA resources, especially the DSP resources. One
VP1502 FPGA can accommodate four PEs with 𝑠 ≤ 13.
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The total computation of Steps 1 and 2 is

𝐶𝑜𝑚𝑡𝑜𝑡𝑎𝑙 ≈ (𝜆/𝑠) ∗ 𝑁 + 2 ∗ (𝜆/𝑠) (2𝑠 − 1) . (6)

The optimal 𝑠 to minimize𝐶𝑜𝑚𝑡𝑜𝑡𝑎𝑙 under different 𝑁 are shown
in Figure 9. When 𝑁 ≥ 217, the optimal 𝑠 is 13. As 𝑁 gradually de-
creases from 217, the optimal 𝑠 decreases accordingly. On MSMAC,
𝑠 can be adjusted for smaller 𝑁 to achieve optimal performance.

14 16 18 20 22 24 26
logN

10

11

12

13

op
tim

al
 w

in
do

w
 si
ze
: s

Figure 9: Optimal window size under different 𝑁

4 RUNTIME SYSTEM
MSMAC runtime system is proposed to monitor and orchestrate PE
execution for MSMAC. Our MSMAC runtime system can efficiently
schedule tasks onto the PEs through applying a producer-consumer
model.

The runtime system is shown in Figure 10. It consists of runtime
user space and kernel space, acting as producer and consumer,
respectively. The producer is responsible for dividing large-scale
MSM tasks from multiple processes/threads into sub-tasks. Each
sub-task is assigned an ID based on the corresponding MSM task it
belongs to. These sub-tasks are created and sent to the sequencer of
the consumer. The producer and consumer execute asynchronously
to release the capacity of all PEs on FPGAs.

In the consumer, the sequencer receives sub-tasks from the pro-
ducer and dispatches them to worker queues with available slots
using a round-robin strategy. A worker dispatcher and a worker
queue are created for each PE. The worker dispatcher is responsible
for dispatching sub-tasks in the worker queue to PE. The next sub-
task can be dispatched while current sub-task is running since there
is a ping-pong buffer in on-board DDR for each PE, overlapping
the data transfer with computation.

5 EXPERIMENTAL RESULTS
5.1 Implementation
Our experiments are conducted on a server with two 2.60 GHz Intel
Xeon Platinum 8385P CPUs (each with 64 logical cores) and 376 GB
DRAM. It is equipped with four FPGA cards, each with one VP1502
FPGA. We compare MSMAC with CPU implementation and the
state-of-the-art solutions. We ran Halo2 [1], a well-known library
for zero-knowledge proof, on the same CPU.

Our MSMAC with four PEs on one FPGA can run at 250MHz,
and its resource utilization is shown in Table 2. The DSP utilization
has reached 87% which becomes the bottleneck to implement more
PEs.

PE 1PE 0

FPGA Card

PE 1PE 0

FPGA Card

Sequencer

Worker
Dispatcher 0

Worker
Dispatcher 2

Worker
Dispatcher n-1

Process/Thread 1

MSM sub-task

Runtime User space

MSM sub-task
MSM sub-task

MSM task

Consumer

Worker Queue 0 Worker Queue 1 Worker Queue 2 Worker Queue n-1

Producer

Runtime Kernel space

Worker
Dispatcher 1

Process/Thread m-1

MSM sub-task

Runtime User space

MSM sub-task
MSM sub-task

MSM task

Process/Thread 0

MSM sub-task

Runtime User space

MSM sub-task
MSM sub-task

MSM task

MSM sub-task
MSM sub-task

MSM sub-task

MSM sub-task
MSM sub-task

MSM sub-task

MSM sub-task
MSM sub-task

MSM sub-task

MSM sub-task
MSM sub-task

MSM sub-task

Figure 10: Runtime system

Table 2: Resource utilization

DSP LUT BRAM URAM

MSMAC 6,480 1,290k 330 768
Available 7,440 1,720k 2,541 1,301
Utilization 87% 75% 13% 59%

5.2 Performance
Wemeasured the performance of MSMAC on 1, 2 and 4 FPGAs. The
latency includes the data transfer time between the host and FPGAs
and the running time of both FPGAs and host. As mentioned in
Section 4, an MSM task is split into smaller sub-tasks which are
sent to available PEs on FPGAs. The results of PEs are collected
and processed by the host to obtain the final result.

The performance of MSMAC for different sub-task sizes on var-
ious amounts of FPGAs when 𝑁 = 220 and 𝑁 = 225 is shown in
Figure 11. The sub-task size is denoted as 𝑘 . It can be seen that the
optimal sub-task size increases as 𝑁 increases, and decreases as the
number of FPGAs increases. A smaller sub-task size results in more
sub-tasks, which is beneficial to overlap data transfer with com-
putation. However, if there are too many sub-tasks, the increased
scheduling and aggregation overhead may outweigh the benefit of
overlapping. Therefore, there is an optimal sub-task size to balance
data transfer, scheduling and computation. When the number of
FPGAs increases, optimal sub-task size decreases since more PEs
are available and more sub-tasks are needed.

Thus, we performed an exhaustive search to find the optimal
sub-task sizes for different 𝑁 and various amounts of FPGAs in
advance. The optimal sizes are then kept in the runtime system and
used to split actual MSM tasks according to 𝑁 and available FPGAs.

5.3 Performance Comparison
The performance comparison between MSMAC and CPU is shown
in Table 3. Compared to a single core, one FPGA achieves a max-
imum speedup of 328×, while four FPGAs achieve a maximum
speedup of 1,261×.
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Table 3: Performance comparison between MSMAC and CPU

Size CPU MSMAC Speedup (1 FPGA) Speedup (4 FPGAs)
1 core 64 cores 1 FPGA 4 FPGAs v.s. CPU (1 core) v.s. CPU (64 cores) v.s. CPU 1 core) v.s. CPU (64 cores)

218 2.45s 122.47ms 10.65ms 6.30ms 230× 11× 389× 19×
219 4.63s 218.28ms 19.45ms 9.79ms 238× 11× 473× 22×
220 9.09s 399.61ms 34.15ms 14.39ms 266× 12× 632× 28×
221 16.72s 681.36ms 58.87ms 22.56ms 284× 12× 738× 30×
222 31.25s 1.13s 114.48ms 31.43ms 273× 10× 994× 36×
223 62.44s 1.39s 200.65ms 54.49ms 311× 7× 1,146× 26×
224 117.01s 2.60s 373.77ms 101.02ms 313× 7× 1,158× 26×
225 230.58s 5.04s 736.68ms 192.34ms 313× 7× 1,199× 26×
226 465.71s 10.16s 1.42s 369.30ms 328× 7× 1,261× 28×
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Figure 11: MSMAC performance for different sub-task sizes
when 𝑁 = 220 and 𝑁 = 225

Table 4: Performance comparison betweenMSMAC and other
accelerators

Size PipeZK [11] GZKP [5] MSMAC MSMAC MSMAC
(1 FPGA) v.s. PipeZK v.s. GZKP

218 16ms 15ms 10.65ms 1.50× 1.41×
219 32ms - 19.45ms 1.65× -
220 61ms 45ms 34.15ms 1.79× 1.32×
222 - 0.17s 114.48ms - 1.48×
224 - 0.72s 373.77ms - 1.93×
226 - 2.79s 1.42s - 1.96×

We also compare MSMAC with other MSM accelerators in the
literature, as shown in Table 4. MSMAC can achieve a maximum
speedup of 1.79× compared to PipeZK (a state-of-the-art ASIC
accelerator). Compared to GZKP (a state-of-the-art GPU imple-
mentation), MSMAC can achieve a maximum speedup of 1.96×.
GZKP requires additional preprocessing before GPU processing.
The reported time does not include the time of preprocessing. Fur-
thermore, the time of data transfers is not included.

PipeZK is an ASIC accelerator and has four PEs for BN128 curve.
MSMAC adopts more optimized parameters and proposes a flex-
ible ISA. MSMAC can choose optimal window size and sub-task
size according to MSM size and available FPGAs. While PipeZK
accelerates only Step 1, MSMAC accelerates both Steps 1 and 2.
Furthermore, MSMAC processes the 𝜆/𝑠 windows in a batch to
improve the utilization of pipelined PAU. These advantages of our
FPGA implementation result in higher performance than PipeZK.

6 CONCLUSION
The time-consuming proof generation is a major challenge for
ZKP applications. This paper proposes MSMAC, an FPGA-based
accelerator to accelerate MSM, a kernel in ZKP. MSMAC adopts
a specially designed ISA and can be deployed on multiple FPGAs.
It is efficiently scheduled by the runtime system. Compared to a
single core, MSMAC on one FPGA achieves a speedup of up to 328×.
MSMAC is up to 1.96× faster than the state-of-the-art accelerators.
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