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Abstract. In our paper, we explore the consequences of replacing the
commutative group operation used in Lai-Massey structures with a quasi-
group operation. We introduce four quasigroup versions of the Lai-Massey
structure, and prove that for quasigroups isotopic with a group G, the
complexity of launching a differential attack against these variants of the
Lai-Massey structure is equivalent to attacking an alternative structure
based on G. Then we provide the conditions needed for correct decryp-
tion, and further refine the resulting structure. The emerging structure is
both intriguing and novel, and we hope that it will form the basis for fu-
ture secure block ciphers based on non-commutative groups. In the case
of commutative groups, we show that the resulting structure reduces to
the classical Lai-Massey structure.

1 Introduction

When developing a block cipher, a key challenge is to design a set of permuta-
tions that is both easily implementable and exhibits behavior akin to random
permutations. In tackling this challenge, the literature presents three primary
approaches [40]. The first approach involves substitution-permutation networks
(SPNs), which create a large block random looking permutation by employing
a series of substitution layers3 and permutation layers iterated over multiple
rounds. On the other hand, Feistel and Lai-Massey structures adopt a differ-
ent strategy. Instead of relying on invertible building blocks, these structures
construct permutations using non-invertible components.

Differential cryptanalysis, introduced by Biham and Shamir [3], stands out
as one of the most efficient tools for attacking block ciphers [21]. This method
exploits how changes in certain plaintext bits propagate to the corresponding
ciphertext, aiming to uncover vulnerabilities in the encryption process. In an
ideal scenario with truly random permutations, the probability of predicting
these changes is precisely 1/2n, where n denotes the number of input bits. For
instance, if n is set to 128 bits, this probability would be negligible, rendering

3 composed of several substitution boxes (s-boxes) with a small block length

https://orcid.org/0000-0003-3953-2744


2

predictions practically infeasible. However, the challenge lies in the need for
practical block ciphers where permutations can be easily described, a criterion
not satisfied by ideal permutations.

To overcome this hurdle, designers often resort to theoretical estimates based
on assumptions that might not always align with real-world conditions. Conse-
quently, practical block ciphers deviate from the ideal, rendering them suscep-
tible to differential cryptanalysis. Hence, guarding against this type of attack
becomes a fundamental design criterion for ensuring the security of symmetric
primitives [28].

Latin squares, defined as ℓ × ℓ matrices containing only ℓ symbols, possess
the distinctive property that each symbol appears exactly once in every row and
column [11]. When a set is equipped with a multiplication table that forms a
Latin square, it establishes a quasigroup, a structure akin to a group but without
the requirements of associativity and the presence of an identity element.

Despite quasigroups not being a prevalent choice in constructing crypto-
graphic primitives, the literature showcases various designs based on these struc-
tures [1,2, 8, 9, 12,16,17,22,23]. These cryptosystems highlight the versatility of
quasigroups as group-like structures, offering an alternative perspective for cer-
tain cryptographic applications.

A recent approach, as highlighted in [4–6,10], employs commutative regular
subgroups within the symmetric group to design SPN structures that exhibit
resilience against classical differential cryptanalysis. However, these structures
have a vulnerability to a differential attack utilizing a different group operation.
Specifically, the security level of such structures against differential attacks is
operation-dependent, indicating a variation in susceptibility based on the chosen
operation. This approach is similar to the methodology employed in our paper,
where we also explore different operations for constructing differential attacks
against the proposed Lai-Massey structures. It is worth noting that the focus
of [4–6,10] is to illustrate how a designer can embed a trapdoor into a symmetric
structure, defined by knowledge of the weakening group operation. In contrast,
our investigation aims to explore the potential strengthening of an Lai-Massey
structure against differential cryptanalysis by changing the group operation to
a quasigroup one.

In [36–38], the author proposes a direct extension of the three fundamen-
tal symmetric structures4 by using quasigroup operations instead of traditional
group operations between keys and (intermediary) plaintexts. The study focuses
on quasigroup operations isotopic with a group operation, a popular method for
constructing quasigroups. We further discuss only the results concerning Lai-
Massey structures, since this is the focus of our paper. In [38], the author begins
by establishing the necessary conditions for correct decryption when employing
a quasigroup operation. Unfortunately, the previous conditions limit the gener-
alization of the Lai-Massey structure solely to non-commutative groups. Then
two structure categories are presented, one symmetric and one asymmetric. Sub-

4 SPNs, Feistel, and Lai-Massey
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sequently, the author employs several arguments to prove the equivalence of the
two categories in terms of differential cryptanalysis.

In this paper, we study the quasigroup Lai-Massey structure from a differ-
ent perspective. We commence by generalizing the structures outlined in [38],
subsequently delving into the security analysis of the derived structures, and
ultimately focusing on the necessary conditions needed for correct decryption.
We managed to prove that the symmetric and asymmetric structures are differ-
entially equivalent, and thus we only need to focus only on one of them. In the
non-commutative group case, we obtain a novel symmetric structure that gener-
alizes the symmetric structure from [38]. To the best of the authors’ knowledge,
this particular design has not been previously documented in the existing liter-
ature. Consequently, we believe that this structure warrants attention for future
research, offering valuable insights from both theoretical and design perspectives.

In the case of commutative groups, the structure coincides with the classical
Lai-Massey symmetric structure. Therefore, in this case we obtain a negative
result. Nevertheless, we believe its significance is twofold.

1. In the majority of scientific reports and papers, authors often depict their
results as if they were achieved seamlessly, without acknowledging the in-
tricacies and challenges encountered during the process. This tendency con-
tributes to a skewed perception of scientific research [19,27,34,42] and fosters
the misconception that failure, serendipity, and unexpected outcomes are not
integral aspects of scientific endeavors [19,32]. Consequently, our report aims
to provide readers with insight into the authentic processes involved in the
design phase of a cryptographic primitive.

2. Negative results and misguided directions are frequently underreported in
the scientific literature [19, 39], leading to the risk of repeated errors. By
sharing our findings, we aspire to prevent others from traversing similar
unproductive paths, thereby contributing to a collective learning process.
This approach aligns with the recommendation in [35], where the author
advises documenting mistakes to avoid their recurrence in the future.

Structure of the paper. We introduce notations and definitions in Section 2.
A generic Lai-Massey structure in introduced in Section 3 and its security is
analyzed. We conclude in Section 4.

2 Preliminaries

Notations. Throughout the paper |G| will denote the cardinality of set G and ⊕
the bitwise xor operation. Also, by x∥y we understand the concatenation of the
strings x and y and by G2 the set {x∥y | x, y ∈ G}. When defining a permutation
π we further use the shorthand π = {a0, a1, . . . , aℓ} which translates into π(i) =
ai for all i values. We also define the identity permutation Id = {0, . . . , ℓ}. Let
• and ◁ be binary operators. We define the binary operators ∆•(X,Y ) = X •Y
and ∆•,◁(X0∥X1, Y0∥Y1) = (X0 • Y0, X1 ◁ Y1). Let X ∈ G2. By Xl and Xr we
understand the left and, respectively, right half of X.
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2.1 Quasigroups

In this section we introduce a few basic notions about quasigroups. We base our
exposition on [33].

Definition 1. A quasigroup (G,⊗) is a set G equipped with a binary operation
of multiplication ⊗ : G×G → G, in which specification of any two of the values
x, y, z in the equation x⊗ y = z determines the third uniquely.

Definition 2. For a quasigroup (G,⊗) we define the left division x ⊘z = y
as the unique solution y to x ⊗ y = z. Similarly, we define the right division
z ⊘ y = x as the unique solution x to x⊗ y = z.

Lemma 1. The following identities hold

y ⊘(y ⊗ x) = x, (x⊗ y)⊘ y = x,

y ⊗ (y ⊘x) = x, (x⊘ y)⊗ y = x.

Lemma 2. If (G,⊗) is a group then x ⊘z = x−1 ⊗ z and z ⊘ y = z ⊗ y−1.

One common approach for constructing quasigroups [16, 17, 22, 41] involves
the following procedure. A group (G, ⋆), such as (Z2n ,⊕) or (Z2n ,+), and three
random permutations π, ρ, ω : G → G are chosen. Subsequently, we define the
quasigroup operation as x⊗ y = ω−1(π(x) ⋆ ρ(y)). To understand why this leads
to a quasigroup, observe that the mappings of x, y, and z to π(x), ρ(y), and
ω(z) are unique. Consequently, any equation of the form π(x) ⋆ ρ(y) = ω(z) is
uniquely resolved in the base group G when provided with any of π(x), ρ(y), or
ω(z).

Definition 3. Let (G,⊗), (H, ⋆) be two quasigroups. An ordered triple of bijec-
tions π, ρ, ω of a set G onto the set H is called an isotopy of (G,⊗) to (H, ⋆) if
for any x, y ∈ G π(x)⋆ρ(y) = ω(x⊗y). If such an isotopism exists, then (G,⊗),
(H, ⋆) are called isotopic.

Example 1. Let (G, ⋆) = (Z4,⊕), ω−1 = {2, 1, 0, 3}, π = {2, 1, 3, 0} and ρ =
{2, 0, 3, 1}. The corresponding quasigroup operations for (Z4,⊗) can be found in
Table 1. [36]

⊗ 0 1 2 3

0 2 0 1 3

1 3 1 0 2

2 1 3 2 0

3 0 2 3 1

⊘0 1 2 3

0 1 2 0 3

1 2 1 3 0

2 3 0 2 1

3 0 3 1 2

⊘ 0 1 2 3

0 3 0 1 2

1 2 1 0 3

2 0 3 2 1

3 1 2 3 0

Table 1: Quasigroup operations.



5

Example 2. Let (G, ⋆) = (Zn,−). Then G is isotopic with (Zn,+), where ω, π =
Id and ρ(i) = n− i mod n. [41]

To gain a deeper understanding of the concept of isotopy, it is helpful to note
that its three permutations correspond to the permutation of rows, columns,
and symbols within a Latin square. These permutations naturally lead to the
creation of another Latin square. Notably, being isotopic establishes an equiva-
lence relation among quasigroups but not among groups, as isotopisms do not
generally preserve associativity. It is important to recall that every group is an
associative quasigroup.

Note that counting the number of distinct Latin squares is challenging. More
precisely, the exact number, together with that of their isotopism classes, is
known only for Latin squares of order smaller or equal to 11 [20,25,26].

2.2 Group Differential Cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir in [3] for analysing
the Data Encryption Standard, and as such, it was formulated exclusively for
the group (Z2n ,⊕). Subsequently, the concept was generalized to commutative
groups [24], non-commutative groups [36] and quasigroups [36–38]. Let (G, ⋆) be
a group. We further present the notions of left and right differential probabilities
for a permutation. Remark that these notions can also be defined for functions.

Definition 4. Let ∆⋆(X,X ′) = X ⋆ X ′, where X,X ′ ∈ (G, ⋆). We define the
group differential probabilities

LDP⋆(σ, α, β) =
1

|G|
∑

X,X′∈G
∆⋆(X−1,X′)=α

[∆⋆(σ(X)−1, σ(X ′)) = β]

RDP⋆(σ, α, β) =
1

|G|
∑

X,X′∈G
∆⋆(X,X′−1)=α

[∆⋆(σ(X), σ(X ′)−1) = β].

where σ : G → G is a permutation and α, β ∈ G. When (G, ⋆) is commutative,
we simply refer to LDP and RDP as DP .

Remark 1. Let σ be randomly chosen. When (G, ⋆) = (Z2n , ⋆), the distribution
of DP values is studied in [30, 31] and when (G, ⋆) is a generic abelian group
in [18]. When σ is static5, the distribution of DP s for (Z2n ,⊕) is studied for
example in [7, 13,29].

3 Lai-Massey Structure

3.1 Description

We further present two non-commutative versions of the Lai-Massey structure: a
symmetric construction Figure 1a and an asymmetric one Figure 1b. Note that,
as mentioned in Section 1, we currently do not focus on their invertibility.

5 i.e fixed and public for all symmetric structure’s implementations
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F1

L0 R0

⊗r⊗l

⊘t

⊗k k1

F2 ⊗r⊗l

⊘t

⊗k k2

L2 R2

(a) Symmetric version

F1

L0 R0

⊘r⊗l

⊗t

⊗k k1

F2 ⊘r⊗l

⊗t

⊗k k2

L2 R2

(b) Asymmetric version

Fig. 1: Quasigroup Lai-Massey structures

In both constructions the first step is to parse the plaintext into two halves
L0 and R0. Note that for all versions, we make use of four quasigroup operation
defined on G indexed by t - top, l - left, r - right and k - key, which are not
necessary distinct. In the symmetric case, for r rounds we compute

Li = Li−1 ⊗l Fi(ki, Li−1 ⊘t Ri−1) and Ri = Ri−1 ⊗r Fi(ki, Li−1 ⊘t Ri−1),

where Fi(ki, x) is defined as Fi(ki ⊗k x) or Fi(x ⊗k ki). We further call these
versions the left symmetric Lai-Massey structures. We can also define the right
symmetric Lai-Massey structures as follows

Li = Fi(ki, Li−1 ⊘tRi−1)⊗l Li−1 and Ri = Fi(ki, Li−1 ⊘tRi−1)⊗r Ri−1.

In the asymmetric case we define the outer versions as

Li = Li−1 ⊗l Fi(ki, Li−1 ⊗t Ri−1) and Ri = Fi(ki, Li−1 ⊗t Ri−1) ⊘rRi−1

and the inner versions as

Li = Fi(ki, Li−1 ⊗t Ri−1)⊗l Li−1 and Ri = Ri−1 ⊘r Fi(ki, Li−1 ⊗t Ri−1).
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Remark 2. When ⊗ = ⋆, and we define ⊗t = ⊘, ⊗k = ⊗r = ⊗, and ⊗l = ρ(x⊗
y), the result is the symmetric non-commutative group Lai-Massey structure as
detailed in [37]. For the asymmetric version, as outlined in [37], we need to set
⊗r = ⊘, ⊗k = ⊗t = ⊗ in our asymmetric structure.

3.2 Symmetric Structure Analysis

In this subsection, we extend the differential probabilities introduced in [37]
for non-commutative group symmetric Lai-Massey structures to our quasigroup
version.

Definition 5. Let K be a key, Xi, Y i ∈ G2 for i ∈ {0, 1} and j ∈ {l, r}. We
define the symmetric Lai-Massey quasigroup differential probabilities

1. Let Zi = Xi
l ⊘t X

i
r and Y i

j = Xi
j ⊗j F (K ⊗k Zi). Then

LLM ⊘, ⊘k(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘l, ⊘r (X0,X1)=α

∆ ⊘k (Z
0,Z1)=γ

[∆ ⊘l, ⊘r (Y
0, Y 1) = β];

2. Let Zi = Xi
l ⊘t X

i
r and Y i

j = Xi
j ⊗j F (Zi ⊗k K). Then

LLM ⊘,⊘k
(F, α, β, γ,K) =

1

|G|2
∑

X0,X1∈G2

∆ ⊘l, ⊘r (X0,X1)=α

∆⊘k
(Z0,Z1)=γ

[∆ ⊘l, ⊘r (Y
0, Y 1) = β];

3. Let Zi = Xi
r ⊘t Xi

l and Y i
j = F (K ⊗k Zi)⊗j X

i
j. Then

RLM⊘, ⊘k(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘l,⊘r
(X0,X1)=α

∆ ⊘k (Z
0,Z1)=γ

[∆⊘l,⊘r (Y
0, Y 1) = β];

4. Let Zi = Xi
r ⊘t Xi

l and Y i
j = F (Zi ⊗k K)⊗j X

i
j. Then

RLM⊘,⊘k
(F, α, β, γ,K) =

1

|G|2
∑

X0,X1∈G2

∆⊘l,⊘r
(X0,X1)=α

∆⊘k
(Z0,Z1)=γ

[∆⊘l,⊘r (Y
0, Y 1) = β];

where F : G → G is a function, α, β ∈ G2 and γ ∈ G.

Remark 3. Let Fl, Fr : G → G be two functions. When Y i
j = Xi

j ⊗j Fj(K⊗k Z
i)

we denote the differential probability with LLM ⊘, ⊘k(Fl, Fr, α, β, γ,K). We also,
use the same convention for the rest of the Lai-Massey differential probabilities.
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Let x ⊗i y = ω−1
i (πi(x) ⋆ ρi(y)), where i ∈ {k, l, r, t}. We further study the

impact of the ωis, πis and ρis on the symmetric Lai-Massey structures.

Lemma 3. Let i ∈ {l, r}, π′
i = πi◦ω−1

i , ρ′i = ρi◦ω−1
i , Fi = ωi◦F ◦π−1

t . Also, let
ρ′t = ρt◦ω−1

r , ω′
t = ωt◦ω−1

l , π′
k = πk ◦π−1

t , ρ′k = ρk ◦π−1
t and ω′

k = ωk ◦π−1
t . We

define x∗i y = π′
i(x)⋆ρ

′
i(y), x∗t y = ω′

t
−1

(x⋆ρ′t(y)), x∗k y = ω′
k
−1

(π′
k(x)⋆ρ

′
k(y))

and \j, /j the associated left and right divisions, where j ∈ {l, r, t, k}. Then the
following identities hold

LLM ⊘, ⊘k(F, α, β, γ,K) = LLM\,\k
(Fl, Fr, A,B, πt(γ), πt(K)),

LLM ⊘,⊘k
(F, α, β, γ,K) = LLM\,/k

(Fl, Fr, A,B, πt(γ), πt(K)),

where A = ωl(αl)∥ωr(αr) and B = ωl(βl)∥ωr(βr).

Proof. Let i ∈ {0, 1} and j ∈ {l, r}. First we rewrite LLM ⊘, ⊘k as

LLM ⊘, ⊘k(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊗l,⊗r
(X0,α)=X1

∆⊗k
(Z0,γ)=Z1

[∆⊗l,⊗r (Y
0, β) = Y 1].

Let ωj(X
i
j) = Si

j . Then

X0
j ⊗j αj = X1

j ⇐⇒ πj(X
0
j ) ⋆ ρj(αj) = ωj(X

1
j )

⇐⇒ π′
j(ωj(X

0
j )) ⋆ ρ

′
j(ωj(αj)) = ωj(X

1
j )

⇐⇒ π′
j(S

0
j ) ⋆ ρ

′
j(Aj) = S1

j

⇐⇒ S0
j ∗j Aj = S1

j (1)

and

Zj = Xj
l ⊘t X

j
r ⇐⇒ Zj ⊗t X

j
r = Xj

l

⇐⇒ πt(Z
j) ⋆ ρt(X

j
r ) = ωt(X

j
l )

⇐⇒ πt(Z
j) = ωt(X

j
l ) ⋆ ρt(X

j
r )

−1

⇐⇒ πt(Z
j) = ω′

t(ωl(X
j
l )) ⋆ ρ

′
t(ωr(X

j
r ))

−1

⇐⇒ Zj = π−1
t (ω′

t(S
j
l ) ⋆ ρ

′
t(S

j
r)

−1)

⇐⇒ Zj = π−1
t (Sj

l /tS
j
r). (2)

Let T j = Sj
l /tS

j
r , πt(γ) = Γ and πt(K) = K ′. Then using Equation (2) we

obtain

Z0 ⊘kZ1 = γ ⇐⇒ πk(π
−1
t (T 0)) ⋆ ρk(γ) = ωk(π

−1
t (T 1))

⇐⇒ π′
k(T

0) ⋆ ρ′k(πt(γ)) = ω′
k(T

1)

⇐⇒ T 0 ∗k Γ = T 1

⇐⇒ T 0\kT 1 = Γ (3)
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and

F (K ⊗k Zj) = F (ω−1
k (πk(K) ⋆ ρk(Z

j)))

= F (π−1
t (ω′

k
−1

(π′
k(πt(K)) ⋆ ρ′k(πt(Z

j))))

= F (π−1
t (K ′ ∗k T j)). (4)

Let W i
j = Si

j ∗j Fj(K
′ ∗k T i). From Equation (4) we derive

Y i
j = Xi

j ⊗j F (K ⊗k Zi) ⇐⇒ ωj(Y
i
j ) = πj(X

i
j) ⋆ ρj(F (K ⊗k Zi))

⇐⇒ ωj(Y
i
j ) = π′

j(ωj(X
i
j)) ⋆ ρ

′
j(ωj(F (π−1

t (K ′ ∗k T i))))

⇐⇒ ωj(Y
i
j ) = π′

j(S
i
j) ⋆ ρ

′
j(Fj(K

′ ∗k T i))

⇐⇒ ωj(Y
i
j ) = Si

j ∗j Fj(K
′ ∗k T i)

⇐⇒ ωj(Y
i
j ) = W i

j ,

which leads to

Y 0
j ⊗j βj = Y 1

j ⇐⇒ πj(Y
0
j ) ⋆ ρj(βj) = ωj(Y

1
j )

⇐⇒ π′
j(W

0
j ) ⋆ ρ

′
j(ωj(βj)) = W 1

j

⇐⇒ W 0
j ∗j Bj = W 1

j . (5)

Using Equations (1), (3) and (5) we obtain

LLM ⊘, ⊘k(F, α, β, γ,K) =
1

|G|2
∑

S0,S1∈G2

∆∗l,∗r (S0,A)=S1

∆∗k (T
0,Γ )=T 1

[∆∗l,∗r
(W 0, B) = W 1]

= LLM\,\k
(Fl, Fr, A,B, Γ,K ′).

The remaining equality is proven using similar techniques. ⊓⊔

The proof of Lemma 4 follows a similar rationale to the proof of Lemma 3,
and thus, it is omitted.

Lemma 4. Let i ∈ {l, r}, π′
i = πi◦ω−1

i , ρ′i = ρi◦ω−1
i , Fi = ωi◦F ◦π−1

t . Also, let
π′
t = πt ◦ω−1

r , ω′
t = ωt ◦ω−1

l , π′
k = πk ◦ρ−1

t , ρ′k = ρk ◦ρ−1
t and ω′

k = ωk ◦ρ−1
t . We

define x∗i y = π′
i(x)⋆ρ

′
i(y), x∗t y = ω′

t
−1

(π′
t(x)⋆y), x∗k y = ω′

k
−1

(π′
k(x)⋆ρ

′
k(y))

and \j, /j the associated left and right divisions, where j ∈ {l, r, t, k}. Then the
following identities hold

RLM⊘, ⊘k(F, α, β, γ,K) = RLM/,\k
(Fl, Fr, A,B, ρt(γ), ρt(K)),

RLM⊘,⊘k
(F, α, β, γ,K) = RLM/,/k

(Fl, Fr, A,B, ρt(γ), ρt(K)),

where A = ωl(αl)∥ωr(αr) and B = ωl(βl)∥ωr(βr).
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Lemmas 3 and 4 tell us that it is irrelevant from a differential point of view6

if we define the quasigroup operation with ωi ̸= Id or ωi = Id, where i ∈ {l, r}.
The same is true for πt (left case) or ρt (right case). Thus, we further restrict
our study7 to the quasigroup operations x ⊗i y = πi(x) ⋆ ρi(y) and x ⊗tl y =
ω−1
t (x⋆ρt(y)) (left case) or x⊗try = ω−1

t (πt(x)⋆y) (right side). Now, considering
the non-linear layer F , we observe, according to Lemmas 3 and 4, that it would
be simpler to study Fl and Fr instead of F .

Lemma 5. Let π′
l = πl ◦ ω−1

t , π′
r = πr ◦ ρ−1

t , F ′
i = ρi ◦ Fi, where i ∈ {l, r}. We

define x ∗l y = ωt(π
′
l(x) ⋆ y), x ∗r y = ρt(π

′
r(x) ⋆ y) and \i, /i the associated left

and right divisions, where i ∈ {l, r}. Then the following identities hold

LLM ⊘, ⊘k(Fl, Fr, α, β, γ,K) = LLM\, ⊘k(F
′
l , F

′
r, A,B, γ,K),

LLM ⊘,⊘k
(Fl, Fr, α, β, γ,K) = LLM\,⊘k

((F ′
l , F

′
r, A,B, γ,K),

where A = ρl(αl)∥ρr(αr) and B = ρl(βl)∥ρr(βr).

Proof. As before, let i ∈ {0, 1} and j ∈ {l, r}. Also, let ωt(X
i
l ) = Si

l and ρt(X
i
r) =

Si
r. Then

X0
l ⊗l αl = X1

l ⇐⇒ πl(X
0
l ) ⋆ ρl(αl) = X1

l

⇐⇒ ωt(π
′
l(ωt(X

0
l )) ⋆ Al) = ωt(X

1
l )

⇐⇒ ωt(π
′
l(S

0
l ) ⋆ Al) = S1

l

⇐⇒ S0
l ∗l Al = S1

l . (6)

X0
r ⊗r αr = X1

r ⇐⇒ ρt(π
′
r(S

0
r ) ⋆ Ar) = S1

r

⇐⇒ S0
r ∗r Ar = S1

r . (7)

and

Zj = Xj
l ⊘tl X

j
r ⇐⇒ Zj = ωt(X

j
l ) ⋆ ρt(X

j
r )

−1

⇐⇒ Zj = Sj
l ⋆ (S

j
r)

−1. (8)

Let W i
l = Si

l ∗l F ′
l (K ⊗k Zi) and W i

r = Si
r ∗r F ′

r(K ⊗k Zi). Then we derive

Y i
l = Xi

l ⊗l Fl(K ⊗k Zi) = πl(X
i
l ) ⋆ ρl(Fl(K ⊗k Zi))

= π′
l(ωt(X

i
l )) ⋆ F

′
l (K ⊗k Zi) = ω−1

t (Si
l ∗l F ′

l (K ⊗k Zi))

Y i
r = π′

r(S
i
r) ⋆ F

′
r(K ⊗k Zi) = ρ−1

t (Si
r ∗r F ′

r(K ⊗k Zi))

6 e.g. we obtain the same differential probabilities LLM and RLM
7 without loss of generality
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which leads to

Y 0
l ⊗l βl = Y 1

l ⇐⇒ πl(Y
0
l ) ⋆ ρl(βl) = Y 1

l

⇐⇒ π′
l(W

0
l ) ⋆ Bl = ω−1

t (W 1
l )

⇐⇒ W 0
l ∗l Bl = W 1

l (9)

Y 0
r ⊗r βr = Y 1

r ⇐⇒ π′
r(W

0
r ) ⋆ Br = ω−1

t (W 1
r )

⇐⇒ W 0
r ∗r Br = W 1

r . (10)

Using Equations (6) to (10) we obtain

LLM ⊘, ⊘k(Fl, Fr, α, β, γ,K) =
1

|G|2
∑

S0,S1∈G2

∆∗l,∗r (S0,A)=S1

∆⊗k
(Z0,γ)=Z1

[∆∗l,∗r (W
0, B) = W 1]

= LLM\, ⊘k(F
′
l , F

′
r, A,B, γ,K).

The second equality is proven using similar techniques. ⊓⊔

The proof of Lemma 6 follows a similar rationale to the proof of Lemma 5,
and thus, it is omitted.

Lemma 6. Let ρ′l = ρl ◦ π−1
t , ρ′r = ρr ◦ ω−1

t , F ′
i = πi ◦ Fi, where i ∈ {l, r}. We

define x ∗l y = πt(x ⋆ ρ′l(y)), x ∗r y = ωt(x ⋆ ρ′r(y)) and \i, /i the associated left
and right divisions, where i ∈ {l, r}. Then the following identities hold

RLM⊘, ⊘k(Fl, Fr, α, β, γ,K) = RLM/, ⊘k(F
′
l , F

′
r, A,B, γ,K),

RLM⊘,⊘k
(Fl, Fr, α, β, γ,K) = RLM/,⊘k

((F ′
l , F

′
r, A,B, γ,K),

where A = πl(αl)∥πr(αr) and B = πl(βl)∥πr(βr).

Lemmas 5 and 6 indicate that the choice of ρi (in the left case) and πi

(in the right case) is irrelevant from a differential perspective. As illustrated in
Equation (8), we can restrict our study to ⊗t = ⋆. Therefore, we further consider
ρi = Id (in the left case) and πi = Id (in the right case) and that ⊗ = ⊗t = ⋆.
Moreover, these lemmas indicate that we can consider F ′

l and F ′
r instead of Fl

and Fr. A closer examination of the non-linear layers reveals that they can be
expressed as F ′′

i = F ′
i ◦ ω

−1
k . Consequently, it is more convenient to investigate

F ′′
i rather than F ′

i .
Since K and, for example, πk are generated as a pair, it suffices from a

differential point of view to simply consider K ′ = πk(K) as being the key that we
want to recover. This is possible, since our final scope is to recover the plaintexts
and not the initial key used by the symmetric structure. As a consequence, it
suffices to restrict our study to x⊗kl y = πk(x) ⋆ y (left version) and x⊗kr y =
x ⋆ ρk(y) (right version).
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F1 F2

L0 R0

⊗⊗

⊘

⊗

ρl ρr

πl πrπk

k1

F3 F4 ⊗⊗

⊘

⊗

ρl ρr

πl πrπk

k2

L2 R2

Fig. 2: Symmetric non-commutative group Lai-Massey structure (version 1)

Taking into account the previous arguments, we obtain the Lai-Massey struc-
ture depicted in Figure 2.

A different point of view of studying the version 1 structure is to redefine the
differential probabilities as follows

1. Let Zi = Xi
l ⊘Xi

r and Y i
j = ρj(πj(X

i
j)⊗ Fj(K ⊗ πk(Z

i))). Then

LLM ⊘, ⊘(Fl, Fr, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y
0, Y 1) = β];

2. Let Zi = Xi
l ⊘Xi

r and Y i
j = ρj(πj(X

i
j)⊗ Fj(πk(Z

i)⊗K)). Then

LLM ⊘,⊘(Fl, Fr, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y
0, Y 1) = β];
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3. Let Zi = Xi
r ⊘Xi

l and Y i
j = ρj(Fj(K ⊗ πk(Z

i))⊗ πj(X
i
j)). Then

RLM⊘, ⊘(Fl, Fr, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆⊘,⊘(Y
0, Y 1) = β];

4. Let Zi = Xi
r ⊘Xi

l and Y i
j = ρj(Fj(πk(Z

i)⊗K)⊗ πj(X
i
j)). Then

RLM⊘,⊘(Fl, Fr, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘,⊘(Y
0, Y 1) = β].

We further provide the reader with some condition that guarantee key inde-
pendence for the differential probabilities associated with the Lai-Massey round
functions.

Lemma 7. If πk, πl and ρl are morphisms then LLM ⊘, ⊘(Fl, Fr, α, β, γ,K) and
RLM⊘,⊘(Fl, Fr, α, β, γ,K) are key independent.

Proof. We begin by rewriting Xi
l = π−1

k (K−1)⊗ Si
l and Xi

r = Si
r. Then

αl = (X0
l )

−1 ⊗X1
l = (S0

l )
−1 ⊗ π−1

k (K ⊗K−1)⊗ S1
l = (S0

l )
−1 ⊗ S1

l (11)

and

Zi = Xi
l ⊗ (Xi

r)
−1 = π−1

k (K−1)⊗ Si
l ⊗ (Si

r)
−1. (12)

Let T i = Si
l ⊘ Si

r and F ′
j = π−1

l ◦ Fj ◦ πk. Using Equations (11) and (12) we
obtain

γ = (Z0)−1 ⊗ Z1 = (π−1
k (K−1)⊗ S0

l ⊗ (S0
r )

−1)−1 ⊗ (π−1
k (K−1)⊗ S1

l ⊗ (S1
r )

−1)

= S0
r ⊗ (S0

l )
−1 ⊗ π−1

k (K ⊗K−1)⊗ S1
l ⊗ (S1

r )
−1

= S0
r ⊗ (S0

l )
−1 ⊗ S1

l ⊗ (S1
r )

−1

= (T 0)−1 ⊗ T 1 (13)

and

Fj(K ⊗ πk(Z
i)) = Fj(K ⊗K−1 ⊗ πk(S

i
l ⊗ (Si

r)
−1))

= πl(F
′
j(S

i
l ⊗ (Si

r)
−1)) = πl(F

′
j(T

i)). (14)

Let π′
r = π−1

l ◦ πr, ρ
′
l = ρl ◦ πl and ρ′r = ρr ◦ πl. From Equation (14) we derive

Y i
r = ρr(πr(X

i
r)⊗ Fr(K ⊗ πk(Z

i)))

= ρr(πr(X
i
r)⊗ πl(F

′
r(T

i)))

= ρr(πl(π
′
r(X

i
r)⊗ F ′

r(T
i)))

= ρ′r(π
′
r(S

i
r)⊗ F ′

r(T
i))
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and

Y i
l = ρl(πl(X

i
l )⊗ Fl(K ⊗ πk(Z

i)))

= ρl(πl(X
i
l )⊗ πl(F

′
l (T

i)))

= ρl(πl(X
i
l ⊗ F ′

l (T
i)))

= ρ′l(X
i
l ⊗ F ′

l (T
i))

= ρ′l(π
−1
k (K))−1 ⊗ ρ′l(S

i
l ⊗ F ′

l (T
i)).

Hence, we have

Y 0
l ⊘Y 1

l = (ρ′l(S
0
l ⊗ F ′

l (T
0)))−1 ⊗ ρ′l(S

1
l ⊗ F ′

l (T
1)) (15)

Y 0
r ⊘Y 1

r = (ρ′r(π
′
r(S

0
r )⊗ F ′

r(T
0)))−1 ⊗ (ρ′r(π

′
r(S

1
r )⊗ F ′

r(T
1))). (16)

Note that Equation (15) is equivalent with

ρ′l
−1

(βl) = (S0
l ⊗ F ′

l (T
0))−1 ⊗ S1

l ⊗ F ′
l (T

1).

Using Equations (11), (13), (15) and (16) we obtain the desired equality. The
remaining relations are proven similarly. ⊓⊔

Upon closer examination of Lemma 7’s proof, it becomes evident that we can
derive the equivalent structure depicted in Figure 3. Its corresponding differential
probabilities are

LLM ⊘, ⊘(Fl, Fr, α, β, γ) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y
0, Y 1) = β],

where Y i
l = Xi

l ⊗ Fl(Z
i) and Y i

r = ρr(πr(X
i
r)⊗ Fr(Z

i)), and

RLM⊘,⊘(Fl, Fr, α, β, γ) =
1

|G|2
∑

X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘,⊘(Y
0, Y 1) = β],

where Y i
l = Fl(Z

i)⊗Xi
l and Y i

r = ρr(Fr(Z
i)⊗πr(X

i
r)). When LLM and RLM

are independent of the key the security analysis simplifies and we can offers
higher security guarantees8. Hence, we restrict our study to ρl = πl = πk = Id
for LLM ⊘, ⊘and RLM⊘,⊘.

We further state without proof the conditions required for key independence
for the remaining differential probabilities.

Lemma 8. If πk, πr and ρr are morphisms then LLM ⊘,⊘(Fl, Fr, α, β, γ,K) and
RLM⊘, ⊘(Fl, Fr, α, β, γ,K) are key independent.

8 In practice we can not check the differential probabilities for all the keys.
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F1 F2

L0 R0

⊗⊗

⊘

⊗

ρ

πk1

F3 F4 ⊗⊗

⊘

⊗

ρ

πk2

L2 R2

Fig. 3: Symmetric non-commutative group Lai-Massey structure (version 2)

Similarly to the previous case, we can derive an equivalent structure using
Lemma 8’s proof. We provide only its corresponding differential probabilities

LLM ⊘,⊘(Fl, Fr, α, β, γ) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y
0, Y 1) = β],

where Y i
l = ρl(πl(X

i
l )⊗ Fl(Z

i) and Y i
r = Xi

r ⊗ Fr(Z
i), and

RLM⊘, ⊘(Fl, Fr, α, β, γ) =
1

|G|2
∑

X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆⊘,⊘(Y
0, Y 1) = β],

where Y i
l = ρl(Fl(Z

i)⊗ πl(X
i
l )) and Y i

r = Fr(Z
i)⊗Xi

r.
The following corollaries indicate that it is sufficient to focus solely on a

version 2 structure from a differential perspective if ρr is a morphism.

Corollary 1. Let ᾱ = αr∥αl and β̄ = βr∥βl. Then

LLM ⊘, ⊘(Fl, Fr, α, β, γ) = LLM ⊘,⊘(Fr, Fl, ᾱ, β̄, γ
−1)

RLM⊘,⊘(Fl, Fr, α, β, γ) = RLM⊘, ⊘(Fl, Fr, ᾱ, β̄, γ
−1).
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Proof. We first observe that

γ = Z0 ⊘Z1 = Z−1
0 ⊗ Z1 = (Z−1

1 ⊗ Z0)
−1 = (Z1 ⊘ Z0)

−1.

So, ∆⊘(Z
1, Z0) = γ−1. Also,

∆ ⊘, ⊘(X
0
r ∥X0

l , X
1
r ∥X1

l ) = ᾱ and ∆ ⊘, ⊘(Y
0
r ∥Y 0

l , Y
1
r ∥Y 1

l ) = β̄.

Thus, we obtain the desired result. ⊓⊔

Corollary 2. We define Gl(x) = Fl(x)
−1, Gr(x) = Fr(x)

−1 and εr(x) =
πr(x

−1)−1. If ρr is a morphisms then

LLM ⊘, ⊘(Fl, Fr, α, β, γ) = RLM⊘,⊘(Fl, Fr, α, β, γ).

Proof. Let j ∈ {l, r} and Si
j = (Xi

j)
−1. We observe that

αj = X0
j ⊘X1

j = (X0
j )

−1 ⊗X1
j = S0

j ⊗ (S1
j )

−1 = S0
j ⊘ S1

j

Zi = Xi
l ⊘Xi

r = Xi
l ⊗ (Xi

r)
−1 = (Si

l )
−1 ⊗ Si

r = Si
l ⊘Si

r

and

Y 0
l ⊘Y 1

l = Fl(Z
0)−1 ⊗ (X0

l )
−1 ⊗X1

l ⊗ Fl(Z
1)

= Gl(Z
0)⊗ S0

j ⊗ (S1
j )

−1 ⊗Gl(Z
1)−1

= ∆⊘(Gl(Z
0)⊗ S0

l , Gl(Z
1)⊗ S1

l )

Y 0
r ⊘Y 1

r = ρr(πr(X
0
r )⊗ Fr(Z

0))−1 ⊗ ρr(πr(X
1
r )⊗ Fr(Z

1))

= ρr(Fr(Z
0)−1 ⊗ πr(X

0
r )

−1 ⊗ πr(X
1
r )⊗ Fr(Z

1)

= ρr(Gr(Z
0)⊗ εr(S

0
r )

−1 ⊗ εr(S
1
r )

−1 ⊗Gr(Z
1)−1

= ρr(Gr(Z
0)⊗ εr(S

0
r )

−1)⊗ ρr(Gr(Z
1)⊗ εr(S

1
r ))

−1

= ∆⊘(ρr(Gr(Z
0)⊗ εr(S

0
r )

−1), ρr(Gr(Z
1)⊗ εr(S

1
r ))).

Thus, we obtain the desired equality. ⊓⊔

We further delve into the conditions required for correct decryption. We can
observe that this requirement translates into

Xl ⊘Xr = (Xl ⊗ Fl(Z))⊘ (πr(Xr)⊗ Fr(Z)), (17)

where Z = Xl ⊘Xr. We remark that Equation (17) is equivalent to

Xl ⊗X−1
r = (Xl ⊗ Fl(Z))⊗ (πr(Xr)⊗ Fr(Z))−1

= Xl ⊗ Fl(Z)⊗ Fr(Z)−1 ⊗ πr(Xr)
−1,

which leads to

πr(Xr)⊗X−1
r = Fl(Z)⊗ Fr(Z)−1. (18)
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Lemma 9. Let η ∈ G. We can decrypt if and only if πr(x) = η⊗x and Fl(x) =
η ⊗ Fr(x).

Proof. First note that Equation (18) holds for any Xr and Xl. Therefore, we
can fix an arbitrary Xr and denote by η = πr(Xr) ⊗ X−1

r . Thus, we obtain
that Fl(Z) = η ⊗ Fr(Z) for any Xl. This leads to Fl(x) = η ⊗ Fr(x) for any x,
since Z is simply a translation of any Xl with a fixed point. Consequently, from
Equation (18) we obtain that πr(x) = η⊗ x for any x. We leave the converse as
an exercise. ⊓⊔

Taking into account the previous arguments, we obtain the Lai-Massey struc-
ture depicted in Figure 4.

F1

L0 R0

η ⊗ · ⊗⊗

⊘

⊗

ρ

η ⊗ ·k1

F2η ⊗ · ⊗⊗

⊘

⊗ η ⊗ ·k2

L2 R2

Fig. 4: Symmetric non-commutative group Lai-Massey structure (version 3)

The following corollary tells us that in the case of commutative groups, the
only meaningful9 structure is the one with πr = Id and Fl = Fr.

10

Corollary 3. If (G,⊗) is Abelian and ρr is a morphisms then

LLM ⊘, ⊘(Fl, Fr, α, β, γ) = LLM ⊘, ⊘(Fr, Fr, α,β, γ).

Proof. Let j ∈ {l, r} and Si
j = Xi

j ⊗ η. We observe that

αj = X0
j ⊘X1

j = (X0
j )

−1 ⊗X1
j = (X0

j )
−1 ⊗ η−1 ⊗ η ⊗X1

j = S0
j ⊘S1

j

Zi = Xi
l ⊘Xi

r = Xi
l ⊗ (Xi

r)
−1 = Xi

l ⊗ η ⊗ η−1 ⊗ (Xi
r)

−1 = Si
l ⊘ Si

r.

9 from a differential perspective
10 Equivalently, the one with η = 1G, where 1G is the identity element of G.
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and

Y 0
l ⊘Y 1

l = Fl(Z
0)−1 ⊗ (X0

l )
−1 ⊗X1

l ⊗ Fl(Z
1)

= Fr(Z
0)−1 ⊗ η−1 ⊗ (X0

l )
−1 ⊗X1

l ⊗ η ⊗ Fr(Z
1)

= Fr(Z
0)−1 ⊗ (S0

l )
−1 ⊗ S1

l ⊗ Fr(Z
1)

= ∆ ⊘(S
0
l ⊗ Fr(Z

0), S1
l ⊗ Fr(Z

1))

Y 0
r ⊘Y 1

r = ρr(πr(X
0
r )⊗ Fr(Z

0))−1 ⊗ ρr(πr(X
1
r )⊗ Fr(Z

1))

= ρr(η ⊗X0
r ⊗ Fr(Z

0))−1 ⊗ ρr(η ⊗X1
r ⊗ Fr(Z

1))

= ρr(S
0
r ⊗ Fr(Z

0))−1 ⊗ ρr(S
1
r ⊗ Fr(Z

1))

= ∆ ⊘(ρr(S
0
r ⊗ Fr(Z

0)), ρr(S
1
r ⊗ Fr(Z

1))).

Thus, we obtain the desired equality. ⊓⊔

When ρ = Id, the version 3 structure can be easily distinguished from a
random permutation by simply checking if, for example, L2 ⊘ R2 = L0 ⊘ R0.
We further introduce a definition from [38], which will prove useful for removing
this vulnerability.

Definition 6. A permutation φ is a right orthomorphism if φ′(x) = φ(x) ⊘ x
is a permutation. If φ′(x) = x ⊘φ(x) is a permutation, then φ is called a left
orthomorphism.

Lemma 10. Let Z = K ⊗ (Xl ⊘Xr) and t = Fr(K,Z). The following property
holds

Yl ⊘ Yr = (Xl ⊗ η)⊘ (η ⊗Xr)⊗ (η ⊗Xr ⊗ t)⊘ ρr(η ⊗Xr ⊗ t).

Proof. We observe that

Yl ⊘ Yr = Xl ⊗ Fl(Z)⊗ ρr(πr(Xr)⊗ Fr(Z))−1

= Xl ⊗ η ⊗ t⊗ ρr(η ⊗Xr ⊗ t)−1.

If we denote by A = η ⊗Xr ⊗ t, we obtain that

Yl ⊘ Yr = Xl ⊗ η ⊗ t⊗ ρr(A)−1

= Xl ⊗ η ⊗ (η ⊗Xr)
−1 ⊗ η ⊗Xr ⊗ t⊗ ρr(A)−1

= (Xl ⊗ η)⊘ (η ⊗Xr)⊗A⊘ ρr(A),

and thus, we obtain the desired property. ⊓⊔

Corollary 4. If ρr is a right orthomorphism, then Yl⊘Yr is a random element.

Proof. Let ρ′r(x) = ρr(x)⊘ x. According to Lemma 10, we have that

Yl ⊘ Yr = (Xl ⊗ η)⊘ (η ⊗Xr)⊗ ρ′r(A)−1.

Since F (K, ·) is random function, then A is randomly distributed. Since ρr is
a right orthomorphism, then ρ′r(A) is also random. Therefore, we obtain that
Yl ⊘ Yr is uniformly distributed. ⊓⊔
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To summarise all the lemmas and observations we provide the reader with
Proposition 1.

Proposition 1. A symmetric quasigroup Lai-Massey structure derived from a
symmetric non-commutative group Lai-Massey structure using an isotopy has
the same differential security as version 3 (see Figure 4) if ρ is a morphism
and we require correct decryption. If the group is commutative we obtain that
symmetric group Lai-Massey structure and version 3 are equivalent.

3.3 Asymmetric Structure Analysis

In this section we extend the notion of differential cryptanalysis to asymmet-
ric Lai-Massey structures. Then, as in the symmetric case, we show that the
structure can be defined using only group operations. Finally, we show that the
resulting structure is equivalent to the version 1 symmetric structure.

Definition 7. Let K be a key and Xi, Y i ∈ G2 for i ∈ {0, 1}. We define the
asymmetric Lai-Massey quasigroup differential probabilities

1. Let Zi = Xi
l ⊗t X

i
r, Y

i
l = Xi

l ⊗l F (K ⊗ Zi)) and Y i
r = F (K ⊗ Zi) ⊘r Xi

r.
Then

OLM ⊘, ⊘k(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘l,⊘r (X
0,X1)=α

∆ ⊘k (Z
0,Z1)=γ

[∆ ⊘l,⊘r
(Y 0, Y 1) = β];

2. Let Zi = Xi
l ⊗t X

i
r, Y

i
l = Xi

l ⊗l F (Zi ⊗ K) and Y i
r = F (Zi ⊗ K) ⊘r Xi

r.
Then

OLM ⊘,⊘k
(F, α, β, γ,K) =

1

|G|2
∑

X0,X1∈G2

∆ ⊘l,⊘r (X
0,X1)=α

∆⊘k
(Z0,Z1)=γ

[∆ ⊘l,⊘r
(Y 0, Y 1) = β];

3. Let Zi = Xi
r ⊗t X

i
l , Y

i
l = F (K ⊗ Zi) ⊗l X

i
l and Y i

r = Xi
r ⊘r F (K ⊗ Zi).

Then

ILM⊘, ⊘k(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘l, ⊘r (X
0,X1)=α

∆ ⊘k (Z
0,Z1)=γ

[∆⊘l, ⊘r (Y
0, Y 1) = β];

4. Let Zi = Xi
r ⊗t X

i
l , Y

i
l = F (Zi ⊗ K) ⊗l X

i
l and Y i

r = Xi
r ⊘r F (Zi ⊗ K).

Then

ILM⊘,⊘k
(F, α, β, γ,K) =

1

|G|2
∑

X0,X1∈G2

∆⊘l, ⊘r (X
0,X1)=α

∆⊘k
(Z0,Z1)=γ

[∆⊘l, ⊘r (Y
0, Y 1) = β];

where F : G → G is a function, α, β ∈ G2 and γ ∈ G.
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The next lemmas enable us to restrict our study to the case where ωl = ωr =
ωt = Id, due to the differential equivalency. Note that the Lemmas 11 and 12
are proven similarly to Lemma 3, and hence, we omit their proof.

Lemma 11. Let i ∈ {l, r}, π′
i = πi ◦ω−1

i , ρ′i = ρi ◦ω−1
i , Fi = ωi ◦F ◦ω−1

t . Also,
let ρ′t = ρt ◦ω−1

r , π′
t = πt ◦ω−1

l , π′
k = πk ◦ω−1

t , ρ′k = ρk ◦ω−1
t and ω′

k = ωk ◦ω−1
t .

We define x∗iy = π′
i(x)⋆ρ

′
i(y), x∗ty = π′

t(x)⋆ρ
′
t(y), x∗ky = ω′

k
−1

(π′
k(x)⋆ρ

′
k(y))

and \j, /j the associated left and right divisions, where j ∈ {l, r, t, k}. Then the
following identities hold

OLM ⊘, ⊘k(F, α, β, γ,K) = OLM\,\k
(Fl, Fr, A,B, ωt(γ), ωt(K)),

OLM ⊘,⊘k
(F, α, β, γ,K) = OLM\,/k

(Fl, Fr, A,B, ωt(γ), ωt(K)),

where A = ωl(αl)∥ωl(αl) and B = ωl(βl)∥ωl(βl).

Lemma 12. Let i ∈ {l, r}, π′
i = πi ◦ω−1

i , ρ′i = ρi ◦ω−1
i , Fi = ωi ◦F ◦ω−1

t . Also,
let ρ′t = ρt ◦ω−1

l , π′
t = πt ◦ω−1

r , π′
k = πk ◦ω−1

t , ρ′k = ρk ◦ω−1
t and ω′

k = ωk ◦ω−1
t .

We define x∗iy = π′
i(x)⋆ρ

′
i(y), x∗ty = π′

t(x)⋆ρ
′
t(y), x∗ky = ω′

k
−1

(π′
k(x)⋆ρ

′
k(y))

and \j, /j the associated left and right divisions, where j ∈ {l, r, t, k}. Then the
following identities hold

ILM⊘, ⊘k(F, α, β, γ,K) = ILM/,\k
(Fl, Fr, A,B, ωt(γ), ωt(K)),

ILM⊘,⊘k
(F, α, β, γ,K) = ILM/,/k

(Fl, Fr, A,B, ωt(γ), ωt(K)),

where A = ωl(αl)∥ωl(αl) and B = ωl(βl)∥ωl(βl).

The following lemmas are the asymmetric equivalent of Lemmas 5 and 6, and
thus, we state them without proof.

Lemma 13. Let π′
l = πl ◦ π−1

t , ρ′r = ρr ◦ ρ−1
t , F ′

l = ρl ◦ Fl, F
′
r = πr ◦ Fr. We

define x ∗l y = πt(π
′
l(x) ⋆ y), x ∗r y = ρt(x ⋆ ρ′r(y)) and \i, /i the associated left

and right divisions, where i ∈ {l, r}. Then the following identities hold

OLM ⊘, ⊘k(Fl, Fr, α, β, γ,K) = OLM\, ⊘k(F
′
l , F

′
r, A,B, γ,K),

OLM ⊘,⊘k
(Fl, Fr, α, β, γ,K) = OLM\,⊘k

(F ′
l , F

′
r, A,B, γ,K),

where A = ρl(αl)∥πr(αl) and B = ρl(βl)∥πr(βl).

Lemma 14. Let ρ′l = ρl ◦ ρ−1
t , π′

r = πr ◦ π−1
t , F ′

l = πl ◦ Fl, F
′
r = ρr ◦ Fr. We

define x ∗l y = ρt(x ⋆ ρ′l(y)), x ∗r y = πt(π
′
r(x) ⋆ y) and \i, /i the associated left

and right divisions, where i ∈ {l, r}. Then the following identities hold

ILM⊘, ⊘k(Fl, Fr, α, β, γ,K) = ILM/, ⊘k(F
′
l , F

′
r, A,B, γ,K),

ILM⊘,⊘k
(Fl, Fr, α, β, γ,K) = ILM/,⊘k

(F ′
l , F

′
r, A,B, γ,K),

where A = πl(αl)∥ρr(αl) and B = πl(βl)∥ρr(βl).
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Let ⊗ = ⋆. Before presenting the resulting asymmetric structure, we would
like to point out that

Y i
r = F (t) ⊘r Xi

r ⇔ F (t)⊗r Y
i
r = Xi

r ⇔ ρt(F (t) ⋆ ρ′r(Y
i
r )) = Xi

r

⇔ Y i
r = ρ′−1

r (F (t)−1 ⋆ ρ−1
t (Xi

r))

⇔ Y i
r = ρ′−1

r (F (t) ⊘ρ−1
t (Xi

r))

Y i
r = Xi

r ⊘r F (t) ⇔ Y i
r ⊗r F (t) = Xi

r ⇔ πt(π
′
r(Y

i
r ) ⋆ F (t)) = Xi

r

⇔ Y i
r = π′−1

r (π−1
t (Xi

r) ⋆ F (t)−1)

⇔ Y i
r = π′−1

r (π−1
t (Xi

r)⊘ F (t)),

where for the last equalities we used Lemma 2.
Considering the aforementioned remark and employing arguments akin to

the symmetric counterpart, we obtain a Lai-Massey structure similar11 to the
one depicted in Figure 2. The associated differential properties are

1. Let Zi = Xi
l ⊗Xi

r, Y
i
l = ρl(πl(X

i
l ) ⊗ F (K ⊗ πk(Z

i))) and Y i
r = ρr(F (K ⊗

πk(Z
i)) ⊘πr(X

i
r)). Then

OLM ⊘, ⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘,⊘(X0,X1)=α

∆ ⊘(Z
0,Z1)=γ

[∆ ⊘,⊘(Y
0, Y 1) = β];

2. Let Zi = Xi
l⊗Xi

r, Y
i
l = ρl(πl(X

i
l )⊗F (πk(Z

i)⊗K)) and Y i
r = ρr(F (πk(Z

i)⊗
K) ⊘πr(X

i
r)). Then

OLM ⊘,⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆ ⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘,⊘(Y
0, Y 1) = β];

3. Let Zi = Xi
r ⊗Xi

l , Y
i
l = ρl(F (K ⊗πk(Z

i))⊗πl(X
i
l )) and Y i

r = ρr(πr(X
i
r)⊘

F (K ⊗ πk(Z
i))). Then

ILM⊘, ⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘, ⊘(X
0,X1)=α

∆ ⊘(Z
0,Z1)=γ

[∆⊘, ⊘(Y
0, Y 1) = β];

4. Let Zi = Xi
r ⊗Xi

l , Y
i
l = ρl(F (πk(Z

i)⊗K)⊗πl(X
i
l )) and Y i

r = ρr(πr(X
i
r)⊘

F (πk(Z
i)⊗K)). Then

ILM⊘,⊘(F, α, β, γ,K) =
1

|G|2
∑

X0,X1∈G2

∆⊘, ⊘(X
0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘, ⊘(Y
0, Y 1) = β].

11 the top and right operations are changed to ⊗ and ⊘(OLM) or ⊘ (ILM)
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The following lemma shows that the asymmetric and the symmetric struc-
tures are differentially equivalent. Therefore, we can directly apply the results
from Section 3.2.

Lemma 15. Let π′
r(x) = πr(x

−1)−1, ρ′r(x) = ρr(x
−1). Then the following iden-

tities hold

OLM ⊘, ⊘(Fl, Fr, α, β, γ,K) = LLM ⊘, ⊘(Fl, Fr, A,B, γ,K),

OLM ⊘,⊘(Fl, Fr, α, β, γ,K) = LLM ⊘,⊘(Fl, Fr, A,B, γ,K),

ILM ⊘, ⊘(Fl, Fr, α, β, γ,K) = RLM ⊘, ⊘(Fl, Fr, A,B, γ,K),

ILM ⊘,⊘(Fl, Fr, α, β, γ,K) = RLM ⊘,⊘(Fl, Fr, A,B, γ,K).

Proof. Let Si
l = Xi

l and Si
r = (Xi

r)
−1. We observe that

αr = X0
r ⊘X1

r = X0
r ⊗ (X1

r )
−1 = (S0

r )
−1 ⊗ S1

r = S0
r ⊘S1

r

Zi = Xi
l ⊗Xi

r = Si
l ⊗ (Si

r)
−1 = Si

l ⊘ Si
r

and

Y i
r = ρr(F (K ⊗ πk(Z

i)) ⊘πr(X
i
r))

= ρr(F (K ⊗ πk(Z
i))−1 ⊗ πr(X

i
r))

= ρr(F (K ⊗ πk(Z
i))−1 ⊗ π′

r(S
i
r)

−1)

= ρr((π
′
r(S

i
r)⊗ F (K ⊗ πk(Z

i)))−1)

= ρ′r(π
′
r(S

i
r)⊗ F (K ⊗ πk(Z

i))).

The remaining equalities are proven similarly. ⊓⊔

To summarise all the lemmas and observations we provide the reader with
Proposition 2.

Proposition 2. An asymmetric quasigroup Lai-Massey structure has the same
differential security a symmetric quasigroup Lai-Massey structure.

4 Conclusions

In this paper we studied the effect of quasigroups isotopic to groups in the
design of cryptographic symmetric structures. More precisely, for quasigroup
extensions of the Lai-Massey structure, we investigated the security implications
and unveiled interesting equivalencies with other symmetric structures based
on the underlying group. Furthermore, we highlighted the necessary conditions
for having correct decryption and we established that mounting a differential
attack against the symmetric version is equivalent to attacking an alternative
asymmetric structure.
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Future work. It would be intriguing to investigate the effect of using quasigroups
that do not exhibit isotopy to groups. Additionally, exploring the influence of
other symmetries, such as parastrophisms [14] or paratopisms [15], could provide
valuable insights. Another interesting area of research is to compare the perfor-
mance and security of the proposed non-commutative structure with other block
cipher architectures, such as SPNs or Feistel networks.
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11. Dénes, J., Keedwell, A.D.: Latin Squares: New Developments in the Theory and
Applications, Annals of Discrete Mathematics, vol. 46. Elsevier (1991)
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20. Hulpke, A., Kaski, P., Österg̊ard, P.: The Number of Latin Squares of Order 11.
Mathematics of Computation 80(274), 1197–1219 (2011)

21. Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Springer Science &
Business Media (2011)
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