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Abstract. Verifiable Timed Signatures (VTS) are cryptographic con-
structs that enable obtaining a signature at a specific time in the fu-
ture and provide evidence that the signature is legitimate. This frame-
work particularly finds utility in applications such as payment chan-
nel networks, multiparty signing operations, or multiparty computation,
especially within blockchain architectures. Currently, VTS schemes are
based on signature algorithms such as BLS signature, Schnorr signature,
and ECDSA. These signature algorithms are considered insecure against
quantum attacks due to the effect of Shor’s Algorithm on the discrete
logarithm problem. We present a new VTS scheme called VT-Dilithium
based on CRYSTALS-Dilithium Digital Signature Algorithm that has
been selected as NIST’s quantum-resistant digital signature standard
and is considered secure against both classical and quantum attacks. In-
tegrating Dilithium into the VTS scheme is more challenging problem
due to its complex mathematical operations (i.e. polynomial multiplica-
tions, rounding operations) and large module parameters such as poly-
nomials, polynomial vectors, and matrices. This work aims to provide a
comprehensive exposition of the VT-Dilithium scheme.

Keywords: Verifiable Timed Signatures · CRYSTALS-Dilithium · Thresh-
old Secret Sharing · Post-Quantum Cryptography.

1 Introduction

Verifiable Timed Signatures (VTS) [16] represent a cryptographic protocol ap-
plied to digital signature algorithms. Essentially, a committer may wish for a
digital signature to become obtainable after a specific period of time. By embed-
ding this signature into a time-lock puzzle, she ensures that the signature can
only be acquired after a pre-determined duration time has elapsed. Regarding
verifiability, a prover seeking to obtain the signature can verify whether it is
valid before solving the time-lock puzzle [12]. This prevents irreversible efforts
to reveal an invalid signature.

Current VTS schemes are based on BLS Signature [4], Schnorr Signature [13]
and Elliptic Curve Digital Signature Algorithm (ECDSA) [7] relying on discrete
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logarithm problem named as VT-BLS, VT-Schnorr, and VT-ECDSA respec-
tively. It is assumed that with the emergence of quantum computers possessing
sufficient computational power, the discrete logarithm problem could be solved
by Shor’s Algorithm [15]. Consequently, digital signature algorithms based on
the discrete logarithm problem will become insecure.

CRYSTALS-Dilithium [10] is a quantum-resistant digital signature algorithm
relying on the lattice-based (module) learning with errors problem. The algo-
rithm is resilient to both classical and quantum attacks. It is built upon the
Fiat-Shamir with Aborts [9] method. Due to its parametric structure, perfor-
mance, parameter sizes and comprehensibility, it was selected as the standard
algorithm for quantum-resistant signature in July 2022 by National Institute
of Standards and Technology (NIST). CRYSTALS-Dilithium is referred as ML-
DSA (Module Lattice - Digital Signature Algorithm) in [1].

The main components of a VTS system are Non-Interactive Zero-Knowledge
(NIZK) proofs, Time-Lock Puzzles, Range Proofs, Threshold Secret Sharing
(TSS) algorithm, and Digital Signature algorithms. Different signature schemes
can be integrated into a VTS scheme while adhering to these structures. In or-
der to integrate these signature algorithms into a VTS system, their secret keys,
public keys, and signatures need to be split into a certain number of shares using
the Threshold Secret Sharing (TSS) algorithm, and should be reconstructable
from these shares. The process for dividing them as follows:

1. The secret key of the main signature is divided into shares according to
the TSS method. These shares are generated according to the secret key
constraints of the respective signature algorithm. The term ’shared’ in shared
secret keys comes from the concept of shares in the TSS algorithm. In VTS
schemes, shared secret keys always remain secret.

2. Shared public keys are produced from the shared secret keys. This process
follows the same logic as generating public keys from secret keys in the algo-
rithm’s key generation procedures. The main public key should be obtainable
from a threshold number of shared public keys.

3. Similarly, shared signatures are produced from the shared secret keys accord-
ing to the signing operation of the algorithm. The main signature should be
obtainable from a threshold number of shared signatures.

4. The obtained shared signatures should be verifiable against the shared public
keys at the same index.

This approach ensures that the VTS system maintains security claims while
incorporating various digital signature schemes.

In this work, we introduce the VT-Dilithium scheme, a verifiable timed sig-
nature mechanism based on the CRYSTALS-Dilithium Digital Signature Algo-
rithm. Dilithium algorithm involves significantly more complex operations for
key generation, signing, and signature verification compared to BLS, Schnorr
and ECDSA signature schemes. In particular, operations within the Dilithium
involve computations such as the multiplication of vectors and matrices contain-
ing polynomials of degree 255. These parameters are uniformly generated using
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SHAKE functions [5]. Operations aimed at reducing the size of the public key
[2] necessitate the definition of specific rounding or hint functions within the
algorithm, rendering it more complex. Additionally, ensuring the rejection con-
ditions in the signing operation requires certain parameters to fall within specific
ranges, leading to the possibility of repeating the signing process if these con-
ditions are not met. When compared to signature algorithms based on discrete
logarithms or integer factorization, the complex structures of Dilithium make its
integration into signing protocols more challenging.

The outline of the work is as follows. In Section 2, we provide the preliminar-
ies. Here, we presented the necessary cryptographic structures and definitions
for defining VT-Dilithium. In Section 3, we define the Dilithium - Based Verifi-
able Timed Signature scheme and its sub-algorithms required for its operation.
In Section 4, we extensively detailed the correctness of the sub-algorithms de-
fined for VT-Dilithium. Finally, in Section 5, we conclude our work and discuss
potential future research directions.

2 Preliminaries

Ring operations in Dilithium are over R = Z[X]/(XN+1) and Rq = Zq[X]/(XN+
1) where q = 8380417 and N = 256. Regular letters represent only a polyno-
mial in R and Rq, bold lower-case letters correspond to column vectors and bold
upper-case letters are matrices. JconditionK returns 1 if the condition is true,
otherwise returns 0. For modular reduction x′ := x mod±a implies x′ ∈ (−a

2 , a
2 ]

(if a is odd then x′ ∈ [−a−1
2 , a−1

2 ]). In addition, x′ := x mod+a implies x′ ∈ [0, a).
Lastly, ∥w∥∞ implies the maximum coefficient of all of polynomials in w. We rep-
resent the set containing integers {1, . . . , n} as [n]. The other parameters used
in our work are provided in Table 1. In this paper, we utilize the supportive
algorithms of Dilithium, namely Power2Roundq, SampleInBall(ρ), Decomposeq,
HighBitsq, LowBitsq, MakeHintq and UseHintq, in the same manner as described
in [10, Figure 3]

2.1 Cryptographic Primitives

VTS schemes incorporate multiple cryptographic primitives, and we give the
main ones in this section.

Digital Signatures Digital signatures [8] are mathematical methods employed
to authenticate and validate the integrity of messages or documents. They en-
compass the generation of a distinct signature that is attached to the message by
the sender. A digital signature is produced using the secret key and can solely be
validated using the corresponding public key. Digital signatures serve to confirm
that the message remains unaltered during transmission and indeed originates
from the purported sender.
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Table 1: List of Parameters
R Polynomial Ring over Z[X]/(XN + 1)

N Degree of Polynomials
q Prime Modulus of Dilithium
c Challenge Polynomial of Dilithium
ω max # of 1’s in hi vectors
wi i’th polynomial of w
w[i] i’th integer coefficient of w
w(i) i’th vector share of w
w

(i)
j i’th polynomial share of wj ∈ w

w
(i)
j [k] i’th integer coefficient share of wj [k] ∈ wj

pp Public Parameter
T A Specific Time For Time-Lock Puzzles
λ Security Parameter
y Final mask value that used for obtaining the σ

pk Public Key of Main Signature
sk Secret Key of Main Signature
σ Main Signature
pki Shared Public Key of σi

ski Shared Secret Key of σi

σi i’th Shared Signature of σ
crs Common Reference String
ℓi(·) i’th Lagrange interpolation basis

Time-lock Puzzles (TLP) TLP [12] are cryptographic technique that involves
securing data or messages in a way that they cannot be accessed until a certain
period of time has passed. These puzzles utilize computational challenges, such
as factoring large numbers or solving complex mathematical problems, to cre-
ate a delay mechanism. Once the specified time has elapsed, the puzzle can be
efficiently solved, granting access to the hidden information. Time-lock puzzles
have diverse applications ranging from secure communications to digital asset
management, where delaying access to sensitive information is crucial for secu-
rity and privacy. In VT-BLS, VT-Schnorr, and VT-ECDSA schemes, a linearly
homomorphic time-lock puzzle method [11] is used. This is because the homo-
morphic properties of the time-lock puzzle can be leveraged for performance
improvements in the system. When defining VT-Dilithium, we will provide a
general definition of TLP.

Definition 1. The following functions of Time-Lock Puzzles are used in our
VT-Dilithium construction:

– pp := TLP.PuzzleSetup(1λ,T) Takes security parameter λ and desired time
T as inputs and generate the public parameters pp.

– Zi := TLP.PuzzleGen(pp, σi; ri) Takes public parameters pp, shared signatures
σi and random coins ri and outputs corresponding puzzles Zi.
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– σi := TLP.PuzzleSolve(pp, Zi) This sub-algorithm is to solve puzzle Zi and
obtain corresponding shared signature σ.

Verifiable Timed Signatures (VTS) VTS [16] are concept where a sender
creates a commitment to a signature that remains hidden until a specified time T
elapses. This commitment is accompanied by proof that confirms the validity of
the enclosed signature relative to the correct public key. Any person can verify
this proof to ensure the commitment’s validity. Neither the commitment nor
the proof must not reveal any information about the signature to any potential
adversary with limited computational capacity, as denoted by T. This property
is called as privacy. Furthermore, the algorithm should satisfy the soundness
property so that the adversaries should be unable to generate valid proof for a
commitment lacking a valid signature corresponding to a public key.

More formally, let σ is a digital signature. In VTS schemes, σ is committed to
in commitment C. ForceOp algorithm in VTS, is to obtain σ after time T if Vrfy
algorithm outputs 1. To be more clear, we give a formal definition of Verifiable
Timed Signatures.

Definition 2. The concept of Verifiable Timed Signatures (VTS) consists of the
following functions.

– (C, π) := Commit(σ,T) : The commitment algorithm takes a digital signature
σ and time T and outputs the commitment C and proof π.

– 0/1 := Vrfy(pk,M,C, π) : Verify checks whether C has a legitimate signature
in terms of public key of digital signature algorithm - pk, message - M and
proof - π and then, algorithm outputs 1 otherwise 0.

– (σ, r) := Open(C) : This sub-algorithm outputs signature and randomness -
r, when the committee wants to open signature without any kind of effort.

– σ := ForceOp(C) : Force open phase takes the commitment C and outputs σ
after time T.

Non-interactive Zero-Knowledge Proofs (NIZKPs). NIZKPs [3] repre-
sent a powerful cryptographic tool with wide-ranging applications in ensuring
data privacy and security. This protocol enables a prover to convince a verifier
of the validity of a statement without any direct interaction. This property is
particularly valuable in scenarios where direct communication between parties is
impractical or impossible. NIZKP’s are employed in VTS protocols to generate
legitimate evidence of the validity of signatures embedded within puzzles.

Definition 3. A NIZKP is composed of the following functions.

– crs := ZKsetup(1λ) : Takes security parameter as an input, outputs common
reference string crs.

– π := ZKprove(crs, x, w) : Takes crs, statement x and witness w, outputs the
proof π.

– 0/1 := ZKverify(crs, x, π) : Outputs 1 if the statement x is verified with the
proof π, otherwise 0.
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Threshold Secret Sharing (TSS) TSS [14] is a cryptographic technique de-
signed to distribute a secret among multiple parties in such a way that it can be
only reconstructed when a predetermined threshold of participants collaborate.
This method ensures that no single entity holds complete access to the secret,
enhancing security against potential breaches or unauthorized access. In thresh-
old secret sharing, the secret is divided into shares, each distributed to different
participants. The original secret can be recovered only when a sufficient number
of shares are combined.

Definition 4. Threshold secret sharing consists of share and reconstruct algo-
rithms for threshold t out of n shares defined as:

– (s(1), . . . , s(n)) := TSS.IntShare(s) : Takes integer s as an input and outputs
integer shares of s.

– s := TSS.IntReconstruct(s(1), . . . , s(t)) : Takes any t out of n integer shares
as an input and outputs secret integer s.

A secret can be embedded into a polynomial in constant term. Let f(x) =
a0 + a1X + · · · + anX

n−1. In this construction a0 is secret. After that, for all
i ∈ [n] shared points can be calculated as (i, f(i)) = (xi, yi). The secret a0 can
be obtained from any threshold t points using Lagrange interpolation

a0 = f(0) =

k−1∑
j=0

yjℓj(0) where ℓj(x) =
∏

0≤m≤k,m ̸=j

x− xm

xj − xm
.

In the VT-Dilithium scheme, we will use n-out-of-n TSS. This means that in
our scheme, all n shares are required to reconstruct the secret. The reasons for
using n-out-of-n in VT-Dilithium will be explained in detail in Section 3.2.

Range Proofs Range Proofs are a method introduced in [16] to efficiently
demonstrate that the solution to a TLP falls within a specified range. Unlike
previous methods, this protocol can verify multiple TLPs at once, and the size of
the proof remains consistent regardless of the size of the interval. This protocol is
broadly applicable to all time-lock puzzles or ciphertexts that exhibit properties
of plaintext and randomness homomorphism. It may be of interest independently
for various applications.

2.2 CRYSTALS-Dilithium

CRYSTALS-Dilithium [10] is a digital signature algorithm selected as a stan-
dard in NIST Post-Quantum Standardization process. It relies on lattice based
- module learning with errors problem and utilizes the Fiat-Shamir with Aborts
method. Dilithium is believed to be safe from opponents who has large-scale
quantum computers. Specifically, it is thought that Dilithium is highly unforge-
able, meaning that the system can be used to identify unauthorized changes to
data and verify the identity of the signatory.
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In this work, we use the notations of the CRYSTALS-Dilithium proposal [10].
Therefore, we specify the algorithms and notations related to Dilithium in this
paper in the same manner.

Three different parameter sets are defined for the Dilithium. These param-
eter sets are determined according to the security levels defined by NIST. The
parameter sets and the security levels they provide are given in [10].

3 Dilithium - Based Verifiable Timed Signature Scheme

In this section, we define our VTS scheme, VT-Dilithium, based on Dilithium.
The general structure of VT-Dilithium is outlined in Figure 1. To define VT-
Dilithium, our first step is to demonstrate that the polynomials and vectors used
in the key generation, signing, and signature verification algorithms in Dilithium
can also be defined in TSS. Once this is established, the next step is to split the
secret key parts (i.e. s1 and s2) of the main signature (i.e. σ) for VT-Dilithium
into shares, and generate corresponding public keys and signatures for these
parts. We explain how these steps are carried out in the subsequent parts of this
section.

3.1 Threshold Secret Sharing for Dilithium’s Parameters

In BLS, Schnorr, and ECDSA-based VTS schemes, the secret keys of the algo-
rithms are integer values in Zp. It is quite straightforward to divide these values
into shares using the TSS algorithm and ensure that these shares also lie in Zp.
However, in Dilithium, most of parameters including parts of secret key, public
key or signature are polynomials and vectors rather than integers. Therefore, to
divide the parameters of Dilithium into shares using the TSS algorithm, we first
need to demonstrate how a polynomial and a vector can be divided into shares
and subsequently reconstructed. Throughout the entire paper, we consistently
use an n-out-of-n TSS scheme. This means that all n shares generated must be
used in the reconstruction process.

In our scheme, we define Algorithm 1, which takes a polynomial that is used
in Dilithium as an input and outputs shares of this polynomial, and Algorithm
2, which is used to obtain the secret polynomial from its secret shares.

Algorithm 1 TSS.PolyShare(z)
INPUT: Polynomial z where,
z := (z(i)[0], . . . , z(i)[255]) = z[0] + z[1]X + · · ·+ z[255]X255

OUTPUT: Polynomial shares (z(1), . . . , z(n)) of z
i.e. ∀i ∈ [n], z(i) = z(i)[0] + z(i)[1]X + · · ·+ z(i)[255]X255

1: for i = 0 to 255 do ▷ Obtain shares of coef’s of z
2: (z(1)[i], . . . , z(n)[i]) := TSS.IntShare(z[i]) ▷ Shares and coef’s are in same set
3: for i = 1 to n do ▷ Construct polynomial shares
4: z(i) := (z(i)[0], . . . , z(i)[255]) ▷ z(i) = z(i)[0] + z(i)[1]X + · · ·+ z(i)[255]X255

5: return (z(1), . . . , z(n))
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Algorithm 2 TSS.PolyReconstruct((z(1), . . . , z(n)))
INPUT: Polynomial shares (z(1), . . . , z(n))
OUTPUT: Polynomial z = z[0] + z[1]X + · · ·+ z[255]X255

1: for i = 0 to 255 do
2: z[i] := TSS.IntReconstruct((z(1)[i], . . . , z(n)[i]))

3: return z

Furthermore, we define Algorithm 3 and Algorithm 4 to generate secret shares
of a vector that is used in Dilithium operations and to reverse the process,
respectively.

Algorithm 3 TSS.VectorShare(z)
INPUT: Polynomial vector z = (z1, . . . , zℓ)
OUTPUT: Vector Shares (z(1), . . . , z(n)) of z
where z =

∑
i∈[n] z

(i) · ℓi(0)
1: for i = 1 to ℓ do ▷ Obtain shares of polynomials of z
2: (z

(1)
i , . . . , z

(n)
i ) := TSS.PolyShare(zi)

3: for i = 1 to n do
4: z(i) := (z

(i)
1 , . . . , z

(i)
ℓ ) ▷ Construct vector shares

5: return (z(1), . . . , z(n))

Algorithm 4 TSS.VectorReconstruct((z(1), . . . , z(n)))
INPUT: Vector Shares (z(1), . . . , z(n)) of z
where z =

∑
i∈[n] z

(i) · ℓi(0)
OUTPUT: Polynomial Vector z = (z1, . . . , zℓ)

1: for i = 1 to ℓ do
2: zi := TSS.PolyReconstruct((z(1)i , . . . , z

(n)
i ))

3: return z = (z1, . . . , zℓ)

3.2 Supportive Algorithms for VT-Dilithium

In this section, we define auxiliary algorithms for VT-Dilithium. We also show
how to construct n-out-of-n Threshold Secret Sharing on Dilithium and produce
VT-Dilithium’s keys and signatures. We also give an algorithm for verification
of VT-Dilithium scheme which can verify each shared signature.

Secret Key. While generating the main Dilithium signature σ for the message
M , the main secret key sk = (ρ,K, tr, s1, s2, t0) is used. In VT-Dilithium al-
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gorithm, it is sufficient to use only s1 and s2 vectors of the main secret key to
obtain shared secret keys in a TSS method.

Algorithm 5 VT-Dilithium.SkShares(s1, s2)
INPUT: Secret Key Vectors (s1, s2) ∈ Sℓ

η × Sk
η

OUTPUT: sk.Shares = ((s(1)1 , s(1)2 ), . . . , (s(n)
1 , s(n)

2 )) where s1, s2 can be reconstructed
by sk.Shares and for i ∈ [n] (s(i)1 , s(i)2 ) ∈ Sℓ

η × Sk
η

1: (s(1)1 , . . . , s(n)
1 ) ∈ Sℓ

η := TSS.VectorShare(s1)
2: (s(1)2 , . . . , s(n)

2 ) ∈ Sk
η := TSS.VectorShare(s2)

3: return sk.Shares = ((s(1)1 , s(1)2 ), . . . , (s(n)
1 , s(n)

2 ))

The main reason for using an n-out-of-n Shamir secret sharing scheme is
that valid signatures also have to be produced by the sk.Shares. Thus, all of the
coefficients of polynomials in sk.Shares have to be in the range [−η, η], which
causes interpolating secret polynomials to yield results within this interval. We
can address this situation by employing n-out-of-n Threshold Secret Sharing. If
we had attempted to handle it with a specific t-out-of-n threshold, it would have
been quite challenging for some points in the Shamir secret polynomial to fall
within the interval. Therefore, the entire system utilizes an n-out-of-n Threshold
Secret Sharing scheme.

Public Key. Let pk = (ρ, t1) be the public key of Dilithium. Algorithm 6
returns the shares of pk, and Algorithm 7 reconstructs pk from pk.Shares.

Algorithm 6 VT-Dilithium.PkShares(ρ, sk.Shares)
INPUT: First tuple of pk, ρ
INPUT: sk.Shares = ((s(1)1 , s(1)2 ), . . . , (s(n)

1 , s(n)
2 ))

OUTPUT: pk.Shares = (pk1 = (ρ, t(1)), ..., pkn = (ρ, t(n))) where t =
∑

i∈[n] t
(i) · ℓi(0)

1: A ∈ Rk×ℓ
q := ExpandA(ρ)

2: (t(1), . . . , t(n)) := (As(1)1 + s(1)2 , . . . ,As(n)
1 + s(n)

2 )
3: return pk.Shares = ((ρ, t(1)), . . . , (ρ, t(n)))

As noted in Algorithm 6, after obtaining the shared t values, we did not
run the Power2Roundq function for each of them. We could assume that the
shared t(i) values would yield the shared t(i)1 values after passing through the
Power2Roundq function. However, the TSS relation between the shared t(i) val-
ues is disrupted after the rounding operation performed by the Power2Roundq
function. Therefore, it is not possible to reconstruct the main public key com-
ponent t1 from the t(i)1 values. Instead, we placed all the shared t values into
the shared public keys and performed the rounding during the reconstruction
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Algorithm 7 VT-Dilithium.PkReconstruct(pk.Shares)
INPUT: pk.Shares = ((ρ, t(1)), . . . , (ρ, t(n)))
OUTPUT: pk = (ρ, t1)
1: t := TSS.VectorReconstruct(t(1), . . . , t(n))
2: (t1, t0) := Power2Roundq(t, d)
3: return pk = (ρ, t1)

process. The drawback of this approach is that the size of each shared public
key increased compared to main public key.

When the shared t(i) values are included in the shared public keys, the other
output of the Power2Roundq function, t(i)0 values, are also naturally obtained.
Although the main secret key in Dilithium includes the t0 parameter, the de-
signers have indicated that t0 is not actually a secret parameter and can be
considered a public parameter [10]. The only reason for its inclusion in the se-
cret key is to speed up the signing process. Therefore, there is no security issue
with having the shared t(i)0 (in t(i)) values included in the shared public keys in
VT-Dilithium.

Signature. Let σ be the Dilithium signature where σ = (c̃, z,h). Algorithm 8
outputs the shares of σ in order to obtain verification and force open phase of
VT-Dilithium algorithm. Algorithm 9 reconstructs σ from sign.Shares.

Algorithm 8 VT-Dilithium.SignShares(σ = (c̃, z,h), pk.Shares,y, sk.Shares,M)

INPUT: Main Signature σ = (c̃, z,h)
INPUT: pk.Shares = ((ρ, t(1)), . . . , (ρ, t(n)))
INPUT: Final Mask Value y ∈ S̃ℓ

γ1
of σ.

INPUT: sk.Shares = ((s(1)1 , s(1)2 ), . . . , (s(n)
1 , s(n)

2 ))
INPUT: Message M
OUTPUT: sign.Shares = (σ1 = (c̃, c̃1, z(1),h1), . . . , σn = (c̃, c̃n, z(n),hn))

1: A ∈ Rk×ℓ
q := ExpandA(ρ)

2: ∀i ∈ [n], (t(i)1 , t(i)0 ) := Power2Roundq(t(i), d)
3: ∀i ∈ [n], µi ∈ {0, 1}512 := H(H(ρ∥t(i)1 )∥M)
4: while bool =⊥ do
5: (y(1), . . . ,y(n)) ∈ S̃ℓ

γ1
:= TSS.VectorShare(y)

6: c ∈ Bτ := SampleInBall(c̃)
7: (w(1), . . . ,w(n)) := (Ay(1), . . . ,Ay(n))
8: ∀i ∈ [n], c̃i := H(µi∥HighBitsq(w

(i), 2γ2))

9: (z(1), . . . , z(n)) := (y(1) + cs(1)1 , . . . ,y(n) + cs(n)
1 )

10: ∀i ∈ [n],hi := MakeHintq(−ct(i)0 ,w(i) − cs(i)2 + ct(i)0 , 2γ2)

11: if ∥z(i)∥∞ ≥ γ1 − β or ∥w(i) − cs(i)2 ∥∞ ≥ γ2 − β or
∥ct(i)0 ∥∞ ≥ γ2 or # of 1’s in hi is greater than ω then bool :=⊥

12: return sign.Shares = (σ1, . . . , σn)
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Algorithm 9 VT-Dilithium.SignReconstruct(sign.Shares,h)
INPUT: sign.Shares = (σ1 = (c̃, c̃1, z(1),h1), . . . , σn = (c̃, c̃n, z(n),hn))
OUTPUT: σ = (c̃, z,h)
1: z := TSS.VectorReconstruct(z(1), . . . , z(n))
2: return σ = (c̃, z,h)

The VT-Dilithium.SignShares algorithm takes as input the mask value y used
in the signature operation of the main Dilithium signature (produced at the end
of the while loop). The reason for usage of this parameter is that the y is the only
one that can be used to bind all shared signatures to the main signature according
to the TSS manner. The operations performed on y allow for the derivation of
the shared signature parameters z(i), and with the VT-Dilithium.SignReconstruct
algorithm, the z vector of the main signature can be obtained.

In the VT-Dilithium.SignShares algorithm, similar to the Dilithium, there is
an abort operation derived from the Fiat-Shamir with Aborts method. For the
shared signatures to be obtained as a result of the while condition, the condi-
tions in the if statement must be satisfied. If these conditions are not met, the
while loop restarts. Since the TSS.VectorShare(y) operation generates fresh ran-
dom y(i) values, other parameters also change. This process continues until the
while condition is satisfied. This process continues until the while condition is
satisfied. The completion of the while condition depends on the number of it-
erations determined by the parameters defined in Dilithium’s signature process
and the n threshold in TSS. Therefore, the signing time should be considered
when selecting the value of n.

Verification In the verification step of VT-Dilithium, some of the chosen shared
signatures i.e. σi where i ∈ I should be verified by their corresponding shared
public keys i.e. pki. Algorithm 10 shows how we construct the verification process
for VT-Dilithium. It differs slightly from the original Dilithium’s verification
method.

The main difference of VT-Dilithium.VerifySign from verification function of
Dilithium is that it takes the entire t as the part of public key input instead
of just t1. Therefore, the algorithm requires running the Power2Roundq function
once. Another difference is that the shared signature includes the c̃ from the
main signature and the c̃i parameters associated with the shared signature are
taken as input. However, using these parameters together does not require an
additional function call.

3.3 VT-Dilithium Scheme

In this section, we present the construction of the VT-Dilithium in Figure 1.
The VT-Dilithium is assumed to be secure if the privacy and soundness

properties are satisfied. We propose the following theorems to show that privacy
and soundness properties of VT-Dilithium is satisfied. We utilize the definitions
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Algorithm 10 VT-Dilithium.VerifySign(pki = (ρ, t(i)),M, σi = (c̃, c̃i, z(i),hi))

INPUT: i’th shared public key pki = (ρ, t(i))
INPUT: Message M
INPUT: i’th shared signature σi = (c̃, c̃i, z(i),hi)
OUTPUT: Accept or Reject
1: A ∈ Rk×ℓ

q := ExpandA(ρ)
2: (t(i)1 , t(i)0 ) := Power2Roundq(t(i), d)
3: µi ∈ {0, 1}512 := H(H(ρ∥t(i)1 )∥M)
4: c ∈ Bτ := SampleInBall(c̃)
5: HighBitsq(w

(i)′ , 2γ2) := UseHintq(hi,Az(i) − ct(i)1 · 2d, 2γ2)
6: return J∥z(i)∥∞ < γ1 − βK and Jc̃i = H(µi∥HighBitsq(w

(i)′ , 2γ2))K
and J# of 1’s in hi is ≤ ωK

and assumptions for Theorem 1 from [16, Definition 3], and for Theorem 2 from
[16, Definition 2]. See Appendix A for their proofs.

Theorem 1 (Privacy). Assuming that our NIZK and TLP systems rely on the
assumptions provided in [16]. VT-Dilithium satisfies privacy as described in [16,
Definition 3] in the random oracle model.

Theorem 2 (Soundness). Assuming that our NIZK and TLP systems rely on
the assumptions provided in [16]. VT-Dilithium satisfies soundness as described
in [16, Definition 2] in the random oracle model.

4 Proof of Concept

In this section, we will outline the correctness of the algorithms necessary for
defining the VT-Dilithium scheme.

4.1 Correctness of VT-Dilithium

Correctness of Algorithm 5. Let (s1, s2) is the part of secret key of Dilithium
where (s1, s2) ∈ Sℓ

η × Sk
η . Sample for all i ∈ [n], (s(i)1 , s(i)2 ) ∈ Sℓ

η × Sk
η where,

(s1, s2) = (s(1)1 · ℓ1(0), s(1)2 · ℓ1(0)) + · · ·+ (s(n)1 · ℓn(0), s(n)2 · ℓn(0))

= (
∑

∀i∈[n]

s(i)1 · ℓi(0),
∑

∀i∈[n]

s(i)2 · ℓi(0))

and ℓi(·) is the i-th Lagrange interpolation basis.
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Algorithm 11 VT-Dilithium.Setup(λ,T)

INPUT: Time T
INPUT: Security Parameter λ
OUTPUT: Common Reference String
1: crsrange := ZKsetup(1λ)
2: pp := TLP.PSetup(1λ,T)
3: return crs := (crsrange, pp)

Algorithm 12 VT-Dilithium.CommitAndProof(crs, σ)
INPUT: crs := (crsrange, pp)
INPUT: Main Signature σ
OUTPUT: Commitment C and Range Proof π
1: sk.Shares := VT-Dilithium.SkShares(s1, s2)
2: pk.Shares := VT-Dilithium.PkShares(pk, sk.Shares)
3: sign.Shares := VT-Dilithium.SignShares(σ = (c̃, z,h), pk.Shares,y, sk.Shares,M)
4: ∀i ∈ [n], ri ← {0, 1}λ ▷ Random Sampling
5: ∀i ∈ [n], Zi := TLP.PGen(pp, σi; ri)
6: ∀i ∈ [n], πrange,i := ZKprove(crsrange, (Zi, 0, 2

λ,T), (σi, ri))
7: I := H ′(pk, (pk1, Z1, πrange,1), ..., (pkn, Zn, πrange,n))
8: return C := (Z1, ..., Zn,T) and π := ({pki, πrange,i}i∈[n], I, {σi, ri}i∈I)

Algorithm 13 VT-Dilithium.Vrfy(crs, pk,M,C, π)

INPUT: Commitment C := (Z1, ..., Zn,T)
INPUT: π := ({pki, πrange,i}i∈[n], I, {σi, ri}i∈I)
INPUT: Common Reference String crs := (crsrange, pp)
INPUT: Message M , Main Public Key pk
OUTPUT: Accept or Reject
1: if VT-Dilithium.PkReconstruct(pk.Shares) ̸= pk where ∃j /∈ I such that pkj /∈

pk.Shares then return Reject
2: else if ZKverify(crsrange, (Zi, 0, 2

λ,T), πrange,i) ̸= 1 such that ∃i ∈ [n] then
return Reject

3: else if ∃i ∈ I such that Zi ̸= TLP.PGen(pp, σi; ri) or VT-
Dilithium.VerifySign(pki,M, σi) ̸= 1 then return Reject

4: else if I ̸= H ′(pk, (pk1, Z1, πrange,1), ..., (pkn, Zn, πrange,n)) then return Reject
5: else return Accept

Algorithm 14 VT-Dilithium.ForceOpen(C)

INPUT: Commitment C := (Z1, ..., Zn,T)
OUTPUT: Main Signature σ

1: ∀i ∈ [n], σi ∈ sign.Shares := TLP.PSolve(pp, Zi)
2: return σ := VT-Dilithium.SignReconstruct(sign.Shares, c̃,h)

Fig. 1: VT-Dilithium Scheme
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Correctness of Algorithm 6 and 7. Algorithm 6 and Algorithm 7 show
that pk can be separated and obtained in terms of Threshold Secret Sharing
manner respectively. Correctness of these algorithms is given below. Let public
Key pk = (ρ, t1), t can be defined as

t = As1 + s2 = A
∑

∀i∈[n]

s(i)1 · ℓi(0) +
∑

∀i∈[n]

s(i)2 · ℓi(0)

= (As(1)1 + s(1)2 ) · ℓ1(0) + · · ·+ (As(n)1 + s(n)2 ) · ℓn(0),

where A is the matrix of the Dilithium. Then t can be written as

t = t(1) · ℓ1(0) + · · ·+ t(n) · ℓn(0) =
∑

∀i∈[n]

t(i) · ℓi(0).

After this calculation, t1 can be reconstructed by

Power2Roundq(
∑

∀i∈[n]

t(i) · ℓi(0), d) = (t1, t0).

For the verification part of VT-Dilithium, there is no need to separate the pa-
rameter ρ in pk.

Correctness of Algorithm 8 and 9. Algorithm 8 and Algorithm 9 shows that
σ can be separated and obtained in terms of Threshold Secret Sharing manner
respectively. Correctness of these algorithms as follows: Let σ = (c̃, z,h) is the
Dilithium signature. σ can be seperated to shares as follows. Let y ∈ S̃ℓ

γ1
is the

mask of σ. y can be defined as follows:

y =
∑
i∈[n]

y(i) · ℓi(0)

When we multiply both sides of the equation by the matrix A, we obtain the
vector w as shown below:

w = Ay = A
∑

∀i∈[n]

y(i) · ℓi(0) =
∑

∀i∈[n]

Ay(i) · ℓi(0)

=
∑

∀i∈[n]

w(i) · ℓi(0),where A ∈ Rk×ℓ.

Shares of z can be defined as follows:

z = y + cs1 =
∑

∀i∈[n]

y(i) · ℓi(0) + c
∑

∀i∈[n]

s(i)1 · ℓi(0) =
∑

∀i∈[n]

z(i) · ℓi(0).

The shares of the hint vector hi for all i ∈ [n] can be determined as follows:

hi := MakeHintq(−ct(i)0 ,w(i) − cs(i)2 + ct(i)0 , 2γ2).
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Consequently, the signature σ = (c̃, z,h) can be verifiable and extractable from
shares for all i ∈ [n]

σi = (c̃, c̃i, z(i),hi),

where ∥z(i)∥∞ < γ1 − β and ∥LowBitsq(w(i) − cs(i)2 , 2γ2)∥∞ < γ2 − β and
∥ct(i)0 ∥∞ < γ2 and # of 1’s in h is less than or equals to ω.

Since signature verification will fail without z, it is sufficient to only share z
for reconstructing the signature. Thus, verifier can’t obtain σ only from c̃ and
h. In addition, for all i ∈ [n] parameters c̃i,hi will be used for verification of
shared signatures σi.

Correctness of Algorithm 10. In order to show correctness of Algorithm 10,
we utilize Lemma 1 and Lemma 2 which are given in [10].

For the proof of verification, we have to show that

JHighBitsq(w
(i)′ , 2γ2) = HighBitsq(w

(i), 2γ2)K

in order to obtain c̃i both VT-Dilithium.SignShares and VT-Dilithium.VerifySign.
By using UseHintq(hi,Az(i)− ct(i)1 · 2d, 2γ2) from Algorithm 10, we can show

following equality:

HighBitsq(w
(i)′ , 2γ2) = UseHintq(hi,Az(i) − ct(i)1 · 2d, 2γ2)

= UseHintq(hi,A · (y(i) + cs(i)1 )− c · (t(i) − t(i)0 ), 2γ2)

where z(i) = y(i) + cs(i)1 and t(i)1 · 2d = t(i) − t(i)0

= UseHintq(hi,Ay(i) + Acs(i)1 − ct(i) + ct(i)0 , 2γ2)

= UseHintq(hi,w(i) + Acs(i)1 − ct(i) + ct(i)0 , 2γ2) where Ay(i) = w(i)

= UseHintq(hi,w(i) + Acs(i)1 − c · (As(i)1 + s(i)2 ) + ct(i)0 , 2γ2)

where t(i) = As(i)1 + s(i)2

= UseHintq(hi,w(i) + Acs(i)1 − cAs(i)1 − cs(i)2 + ct(i)0 , 2γ2)

= UseHintq(hi,w(i) − cs(i)2 + ct(i)0 , 2γ2)

A valid signature satisfies these inequalities, ∥ct(i)0 ∥∞ < γ2 and ∥z(i)∥∞ <
γ1 − β. Thus, from Lemma 1 and Lemma 2 in [10], we have

UseHintq(hi,w(i) − cs(i)2 + ct(i)0 , 2γ2) = HighBitsq(w
(i), 2γ2).

4.2 Threshold Secret Sharing over Dilithium Parameters

We are utilizing Threshold Secret Sharing over Dilithium’s column vectors in VT-
Dilithium scheme. For instance, secret column vectors s1 and s2 in Algorithm 5,
public key parameter t in Algorithm 6 and parameters of signature process y,w
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and z in Algorithm 8 can be separated to their shares. We introduce supporting
algorithms, Algorithm 1, 2, 3 and 4, for splitting Dilithium vectors or polynomials
into their shares and reconstructing them again. We demonstrate how this can
be achieved through an example.

Let z ∈ Rl
q be a Dilithium column vector. Following equation is satisfied with

finding appropriate shares

z =
∑
i∈[n]

z(i) · ℓi(0).

Let z1, . . . , zℓ are polynomials in z ∈ Rℓ
q. We can obtain the shares of vectors

with Algorithm 3 ,i.e., (z(1), . . . , z(n)) := TSS.VectorShare(z).

z =


z1
z2
...
zℓ

 =


z
(1)
1 · ℓ1(0) + · · ·+ z

(n)
1 · ℓn(0)

z
(1)
2 · ℓ1(0) + · · ·+ z

(n)
2 · ℓn(0)

...
z
(1)
ℓ · ℓ1(0) + · · ·+ z

(n)
ℓ · ℓn(0)

 =


z
(1)
1

z
(1)
2
...

z
(1)
ℓ

 · ℓ1(0) + · · ·+


z
(n)
1

z
(n)
2
...

z
(n)
ℓ

 · ℓn(0)

= z(1) · ℓ1(0) + · · ·+ z(n) · ℓn(0)

Contrary, the equality in the reverse direction, i.e.,
z := TSS.VectorReconstruct((z(1), . . . , z(n)), is also valid. To illustrate that the
equality holds, it is necessary to show that the polynomials in z can also be
separated to sharing polynomials, i.e., Algorithm 1 is also correct.

Let (z
(1)
i , . . . , z

(n)
i ) := TSS.PolyShare(zi) where ∀i ∈ [ℓ], zi ∈ z i.e. zi =

z
(1)
i · ℓ1(0) + · · ·+ z

(n)
i · ℓn(0).

zi[0] + · · ·+ zi[255]X
255 = (z

(1)
i [0] + · · ·+ z

(1)
i [255]X255)

· ℓ1(0) + · · ·+ (z
(n)
i [0] + · · ·+ z

(n)
i [255]X255) · ℓn(0)

This implies, all of polynomials can be divided into their shares coefficient-
wise only.
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X0 → zi[0] = z
(1)
i [0] · ℓ1(0) + · · ·+ z

(n)
i [0] · ℓn(0)

where (z
(1)
i [0], . . . , z

(n)
i [0]) = TSS.share(zi[0])

X1 → zi[1] = z
(1)
i [1] · ℓ1(0) + · · ·+ z

(n)
i [1] · ℓn(0)

where (z
(1)
i [1], . . . , z

(n)
i [1]) = TSS.share(zi[1])

...

X255 → zi[255] = z
(1)
i [255] · ℓ1(0) + · · ·+ z

(n)
i [255] · ℓn(0)

where (z
(1)
i [255], . . . , z

(n)
i [255]) = TSS.IntShare(zi[255])

5 Conclusion And Future Work

In this work, we introduced VT-Dilithium which is a Verifiable Timed Signa-
ture scheme based on CRYSTALS-Dilithium Digital Signature Algorithm. We
successfully integrated the Dilithium into a VTS scheme by ensuring that each
parameter, including the secret key, public key, and signature, can be divided into
shared components and reconstructed using Shamir’s Threshold Secret Sharing
algorithm. Furthermore, we demonstrated that for any given index, the shared
secret key can generate the corresponding shared public key and shared signa-
ture at the same index. Despite the complexities posed by Dilithium’s intricate
mathematical operations, we were able to overcome these challenges and achieve
the desired functionality. In future work, we aim to make VT-Dilithium more
efficient by optimizing the system’s performance. Moreover, we plan to increase
the flexibility of our system by transitioning from the current n-out-of-n TSS
method to a more versatile t-out-of-n scheme, where t can be less than n. This
will allow for more adaptable and versatile implementations. Additionally, we
aim to provide quantum secure NIZK and TLP on VT-Dilithium to obtain fully
quantum secure VTS scheme.
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A Proof of Theorems

We give the formal proofs of VT-Dilithium Scheme.

A.1 Proof of Theorem 1

Proof. Let A is an adversary with a depth bounded by T ϵ, where 0 ≤ ϵ < 1,
and T is the pre-defined time for the time-lock puzzles. We utilize the hybrid
argument approach [6] to create a sequence of hybrids akin to the privacy proof
in VTS Schemes [16].

Hybrid H0: This is the original execution.

Hybrid H1: This hybrid is essentially the same as the previous one, except that
the random oracle is emulated using lazy sampling. Additionally, a random set
I, where |I| = n − 1, is pre-sampled, and the output of the random oracle for
the cut-and-choose instance is set to I∗.

Hybrid H2: A simulated crsrange is sampled and it is computationally indistin-
guishable because of the property of by ZKsetup function.

Hybrid H3 . . .H3+n: ∀i ∈ [n], πrange,i is calculated by underlying NIZK proof.
In the Zero-Knowledge setup, the difference between all hybrids is negligible.

Hybrid H3+n+1 . . .H3+2n−1: ∀i ∈ [n − 1], i’th puzzle in the complement of set
I∗ is calculated by TLP.PGen(pp, 0λ; ri) function. Because the distinguisher is
limited in depth, the inability to distinguish follows from invoking the security
of TLP.

Hybrid H3+2n: In this hybrid, let prover samples uniform shared secret keys

sk.Shares := VT-Dilithium.SkShares(s1, s2)

and obtain shared public keys via

pk.Shares := VT-Dilithium.PkShares(pk, sk.Shares).

We can observe that for all i ∈ I∗ pk can be obtained only we know the rest
public key part where i /∈ I∗ via

pk := VT-Dilithium.PkReconstruct(pk.Shares).

Simulator S: The simulator is defined to match the characteristics of the previous
hybrid. It’s important to note that the proof computation by the simulator does
not rely on any information regarding the witness. With this, we conclude our
proof. ⊓⊔
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A.2 Proof of Theorem 2

Proof. We examine the protocol in its interactive form, and the integrity of the
non-interactive protocol is derived from the Fiat-Shamir transformation for pro-
tocols with constant rounds. Suppose A is an adversary capable of efficiently com-
promising the integrity of the protocol. This implies that, an adversary produces
the puzzles (Z1, . . . , Zn) where for every Zi /∈ I and TLP.PSolve(pp, Zi) = σ̃i.
These signatures σ̃i should not be verified i.e.

VT-Dilithium.Verify(pki,M, σ̃i) ̸= 1.

Suppose the opposite were true, then we could obtain a legitimate signature
on message m by interpolating σ̃i with {σi}i∈I , which satisfy the given rela-
tion as defined by the verification algorithm. Additionally, note that all puzzles
(Z1, . . . , Zn) are properly structured, meaning the solving algorithm consistently
produces a well-defined value, except for negligible probabilities, as guaranteed
by the soundness of the range NIZK. This implies that, given (Z1, . . . , Zn), we
can efficiently recover some set I ′ by solving the puzzles and verifying which
signatures satisfy the specified relation. For the verifier to approve I ′ = I in-
dicating that the prover accurately guesses a random n-bit string uniformly
selected from the set of strings with precisely n

2 -many 0’s where this probability
is ((n/2)!)2

n! . In the non-interactive version of our protocol, this assertion holds
valid regardless of the quantity of simulated proofs, provided that the NIZK
exhibits simulation-soundness. Thus, initiating with a simulation-sound NIZK
ensures the simulation-soundness of our scheme too. ⊓⊔
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