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Abstract. We study the linear code equivalence problem (LEP) for lin-
ear [n, k]-codes over finite fields Fq. Recently, Chou, Persichetti and San-
tini gave an elegant algorithm that solves LEP over large finite fields
(with q = Ω(n)) in time 2

1
2
H( k

n )n, where H(·) denotes the binary en-
tropy function. However, for small finite fields, their algorithm can be
significantly slower. In particular, for fields of constant size q = O(1), its
runtime increases by an exponential factor in n.
We present an improved version of their algorithm, which achieves the
desired runtime of 2

1
2
H( k

n )n for all finite fields of size q ≥ 7. For a wide
range of parameters, this improves over the runtime of all previously
known algorithms by an exponential factor.
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1 Introduction

Digital signatures schemes based on equivalence problems have recently emerged
as promising candidates for post-quantum security. Examples of such schemes
include LESS [BMPS20], HAWK [DPPv22] and MEDS [CNP+23], which are
based on the linear code equivalence problem, the lattice isomorphism problem,
and the matrix code equivalence problem, respectively. In this work, we focus on
the linear code equivalence problem (LEP).

LEP is an important problem in coding theory. With the recent introduction
of LESS, LEP has gained significant interest in cryptography [Beu20, BBN+22,
PS23, BBPS23, CPS23]. In a nutshell, the problem is defined as follows: Given
generator matrices G1,G2 ∈ Fk×n

q of two linear [n, k]-codes C1, C2 ⊆ Fn
q , one is

asked to compute a linear, Hamming weight preserving map Q that bijectively
maps C1 to C2 (provided such a map exists). Such maps Q are precisely those
linear maps, that permute the coordinates of the codewords c ∈ C1, and addi-
tionally multiply them by units from the underlying field Fq. These maps are
called monomials.

1.1 Previous Work

Support Splitting. The permutation equivalence problem (PEP) is a variant
of LEP, in which one is asked to find a permutation, mapping C1 to C2 (again,
provided it exists). Curiously, PEP is easy on average, but seems to be hard in the



worst case. Indeed, Sendrier’s famous support splitting algorithm (SSA) [Sen00]
solves random PEP instances with high probability in polynomial time. However,
there are worst-case instances (in which C1 and C2 are weakly self-dual codes),
for which SSA requires exponential time.

Since there is a reduction from LEP to PEP [SS13], one can try solving LEP
by first reducing it to PEP and then using SSA. For fields of size q ≤ 4 this
approach works just fine. Hence, random LEP instances over F2 F3 and F4 are
easy. However, for fields of size q ≥ 5, the reduction results in weakly self-dual
codes, and thus in an exponential runtime for SSA. It is conjectured that this
state-of-the-art of SSA cannot be improved, and that random LEP instances
over fields of size q ≥ 5 are hard.

Finding Low-weight Codewords. An alternative approach for solving LEP is
based on computing low-weight codewords. It was first suggested by Leon [Leo82],
and is based on the following simple observation: Let us fix some parameter w,
and let L1(w) ⊂ C1 and L2(w) ⊂ C2 denote the sets of all codewords in C1 and C2
of weight at most w. Since monomials preserve Hamming weight, any monomial
that maps C1 to C2 has to map L1(w) to L2(w). Conversely, if w is only slightly
larger than the weight of a minimal-weight codeword in C1, then any monomial
that maps L1(w) to L2(w) will – with decent probability – map C1 to C2. To solve
LEP, Leon thus suggests the following simple two step approach: First compute
the sets L1(w) and L2(w). Then compute a monomial Q, mapping L1(w) to
L2(w). Computing L1(w) and L2(w) takes time exponential in n, computing Q
can be done in time polynomial in |L1(w)| = |L2(w)|.

Recently, first Beullens [Beu20], and afterwards Barenghi, Biasse, Persichetti
and Santini (BBPS) [BBPS23] have introduced significantly improved variants
of Leon’s algorithm, following a similar two-step, low-weight codeword finding
based approach. In many parameter regimes, Beullens and BBPS improve over
Leon’s runtime by an exponential factor. As a result, up until very recently,
BBPS was in most parameter regimes the fastest algorithm for solving LEP.

Canonical Form Functions. A very recent work by Chou, Persichetti and San-
tini (CPS) [CPS23] introduced a completely different approach for solving LEP,
based on canonical form functions. In their work, CPS define a novel equivalence
relation for linear codes, which we denote by LRL∼ . Suppose we have two linear
codes C1 and C2 with generator matrices G1 = [Ik | A1], G2 = [Ik | A2] ∈ Fk×n

q ,
where Ik denotes the k-dimensional identity matrix. We call C1 and C2 equivalent
with respect to LRL∼ , if there exist monomials Qr, Qc such that A2 = Qr ·A1 ·Qc.1

In a nutshell, a canonical form function for LRL∼ is an efficient algorithm that takes
a generator matrix G = [Ik | A] of some code C as input, and outputs a gener-
ator matrix G∗ = [Ik | A∗] of a canonical representative C∗ of the equivalence
class of C (with respect to LRL∼ ). Importantly, CPS allow canonical form func-
tions to fail. That is, instead of always outputting a canonical representative, a
1 Here, we identify the monomials with their corresponding transformation matrices.
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canonical form function may (with some failure probability) also output an error
symbol ⊥.

Initially, CPS introduced canonical form functions to improve signature size
in the LESS signature scheme: Suppose we have a canonical form function CF

for LRL∼ with success probability γ. That is, γ denotes the probability that, on
input G = [Ik | A] ∈ Fk×n

q with uniformly random A ∈ Fk×(n−k)
q , CF does not

output ⊥. CPS showed that, at the expense of increasing signing time in LESS
by a factor roughly γ−1, the canonical form function CF can be used to obtain
signatures of essentially optimal size.

However, CPS not only showed that canonical form functions can be used
constructively to improve the LESS signature scheme, but also destructively to
attack the underlying linear code equivalence problem: CPS give a transforma-
tion, that turns any canonical form function CF into an LEP algorithm with
runtime γ−1/2 · 2 1

2 H( k
n )n, where H(·) denotes the binary entropy function. In

particular, for canonical form functions with (at least) constant success proba-
bility γ = Ω(1), the CPS transformation yields a LEP algorithm with runtime
2

1
2 H( k

n )n.

As Figure 1 shows, if such a canonical form function with (at least) constant
success probability exists, then the resulting LEP algorithm would – for suffi-
ciently large q – improve over the previously best algorithms by an exponential
factor.2
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Fig. 1. Comparison between runtime TlowWeight of low-weight codeword finding based
algorithms and the canonical form function based algorithm – assuming the underlying
canonical form function has (at least) constant success probability. Results are for codes
of rate k

n
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2
over various finite fields Fq.

2 We computed the runtime TlowWeight in Figure 1 using the estimator from https://
github.com/paolo-santini/LESS_project/blob/main/attacks/LEP/cost.sage.
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Unfortunately, finding canonical form functions with (at least) constant suc-
cess probability is challenging: CPS give a canonical form function that achieves
constant success probability only for large q = Ω(n). However, for constant
q = O(1), its success probability γ is exponentially small in n: For all inputs
G = [Ik | A] ∈ Fk×n

q , in which every row of A ∈ Fk×(n−k)
q contains at least one

zero entry, the canonical form function of CPS fails. Hence, its success probability
is at most

γ ≤ min

{
k ·
(
1− 1

q

)n−k

, 1

}
=: pCPS.

For constant q = O(1), this is exponentially small in n.
As a consequence, the runtime of the resulting LEP algorithm is

γ−1/2 · 2 1
2 H( k

n )n ≥ 2
1
2 H( k

n )n− 1
2 log2(pCPS).

As Figure 2 illustrates, for constant q = O(1), this is exponentially higher than
2

1
2 H( k

n )n. (Of course, for large q, this only becomes visible when also n is large.)
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2
over various finite fields Fq.

1.2 Our Contributions

New Canonical Form Function, Improved LEP Algorithm. We intro-
duce a novel canonical form function that – for all finite fields of size q ≥ 7 and
codes of constant rate3 – has success probability 1−O(n−1). Together with the
3 An [n, k]-code C has constant rate, if the code dimension k grows as k = R ·n, where
n is the code length and R is a constant with 0 < R < 1. In other words, C has
constant rate if k

n
̸= o(1), and k

n
̸= 1 − o(1). This is the most important setting in

practice.
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seminal results of CPS, this immediately results in a 2
1
2 H( k

n )n-time algorithm for
LEP. As shown in Figures 1 and 2, we thus improve over the previously fastest
known LEP algorithms by an exponential factor.

On the technical side, our novel canonical form function re-uses many of
ideas of the original canonical form function by CPS. However, we enhance their
ideas via novel techniques, which allow us to circumvent the failure conditions
of CPS’ algorithm. Thereby, we significantly increase its success probability to
1−O(n−1).

Impact for LESS. The suggested LESS parameters use q = Ω(n). Hence,
for these parameters, the original canonical form function by CPS already has
constant success probability. Thus, for the LESS parameters, our novel algo-
rithm does not improve substantially over the LEP algorithm introduced by
CPS in [CPS23]. In particular, our novel results do not invalidate the security
analysis of LESS.

On a more constructive note, our novel canonical form function might nev-
ertheless impact the LESS signature scheme, and LEP-based cryptography in
general: By combining our new results and CPS’s ideas for improving LESS via
canonical form functions, one might be able to obtain highly efficient LEP-based
crypto systems over fields Fq with q as small as q = 7. (In contrast, the pro-
posed LESS parameter sets use rather large q = 127.) However, since the focus
of our work is cryptanalysis of LEP, and not constructive cryptography, we leave
exploring such ideas to future work.

Experimental Results. As discussed above, LEP over F2, F3 and F4 is easy
due to support splitting. Our novel algorithm, that provably works for all field
sizes q ≥ 7, thus covers all cryptographically interesting settings, except q = 5.

Interestingly, the constraint q ≥ 7, however, seems to be a mere artifact of our
proof technique: We implemented our novel canonical form function in SageMath
and ran a series of experiments. Our results suggests that our canonical form
function has decent success probability, even for q = 5. Hence, in practice, our
algorithm applies to all cryptographically interesting settings.

Our implementation is publicly available at

https://github.com/juliannowakowski/lep-cf

1.3 Organization of the Paper

In Section 2, we introduce notations and provide some background on coding the-
ory and LEP. After that, we formally define canonical form functions in Section 3,
and revisit the CPS transformation for turning any canonical form function into
a LEP algorithm. Building upon Section 3, we introduce our novel canonical
form function in Section 4, which then directly leads to our main result: the
improved LEP algorithm. Finally, we end in Section 5 with some experimental
results, which show that our algorithm performs well in practice.
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2 Preliminaries

2.1 Notations

We frequently use soft-O and soft-Θ notations, i.e., Õ(·) and Θ̃(·), which suppress
polynomial factors. For a (finite) set A, we denote by a ← A that a is sampled
uniformly at random from A. The finite field with q elements is denoted by Fq.
Its unit group is F∗q := Fq \ {0}. The group of invertible (k × k)-dimensional
matrices over Fq is denoted by GL(Fk

q ). We denote the set of positive integers
by N and define N0 := N ∪ {0}. For n ∈ N, we define [n] := {1, 2, . . . , n}. For a
subset J ⊆ [n], we denote its complement by J := [n] \ J .

All vectors v ∈ Fn
q are row vectors. The i-th unit vector is denoted by ei, e.g.,

e1 = (1, 0, . . . , 0). The n-dimensional all-zero and all-one vectors are denoted 0n

and 1n, respectively. Let G ∈ Fk×n
q be a matrix. The transpose of G is denoted

by GT . For J ⊆ [n], we denote by GJ the submatrix of G formed by the columns
indexed by J . We call J with |J | = k an information set of G, if the matrix
GJ ∈ Fk×k

q is invertible. We denote by RREF(G) the row-reduced echelon form
of G. If G is of the form G = [Ik | A], then we say that G is in systematic form.
A linear [n, k]-code C over Fq is a k-dimensional subspace of Fn

q , i.e.,

C = {xG | x ∈ Fk
q},

for some full-rank generator matrix G ∈ Fk×n
q . The corresponding dual code C⊥

of C is (the transpose of) the right-kernel of G. By elementary linear algebra,
the dual code C⊥ is a linear [n, n− k]-code. The rate of an [n, k]-code is k

n . For
x ∈ (0, 1), the binary entropy function is defined as

H(x) := −x log2(x)− (1− x) log2(1− x).

We frequently make use of the approximation
(
n
k

)
= Θ̃(2H(

k
n )n), which is a direct

consequence of Stirling’s formula.

2.2 Permutations, Diagonal Matrices and Monomials

Permutations. We denote by Σn the group of permutations on n letters. For
P ∈ Σn, the image of j ∈ [n] under P is denoted by P[j]. More generally, for a set
J ⊆ [n], we define P[J ] := {P[j] | j ∈ J}. We identify permutations P ∈ Σn with
(n×n)-matrices with columns eTP−1[1], . . . , e

T
P−1[n]. As a consequence, multiplying

a vector v = (v1, . . . , vn) ∈ Fn
q by P gives

v ·P = (vP−1[1], . . . , vP−1[n]).
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In other words, multiplying v by P permutes the entries of v according to P.
It is easy to see that the inverse of P is given by the transpose PT . Hence, if

we have a column vector wT = (w1, . . . , wn)
T , then P ·wT is equal to the vector

obtained by permuting the entries of wT according to P−1, i.e.,

P ·wT = (wP[1], . . . , wP[n])
T .

For J ⊆ [n] with |J | = k, we denote by PJ ∈ Σn a permutation that, for all
matrices G ∈ Fk×n

q , satisfies G·PJ = [GJ | GJ ]. Stated differently, PJ permutes
the columns indexed by J to the left, and the columns indexed by J to the right.

Diagonal Matrices. The group of (n×n) diagonal matrices over F∗q is denoted
by Dn,q. For a diagonal matrix D ∈ Dn,q with diagonal entries d1, . . . , dn ∈ F∗q
and a permutation P ∈ Σn, the matrix P−1 ·D · P is a diagonal matrix with
diagonal entries dP−1[1], . . . , dP−1[n].

Monomials. The group of n-dimensional monomials over Fq is defined as

Mn,q := {P ·D | P ∈ Σn,D ∈ Dn,q} = {D ·P | P ∈ Σn,D ∈ Dn,q}. (1)

The fact that we can swap the order P and D in Equation (1) follows from the
facts that D ·P = P · (P−1 ·D ·P), and that P−1 ·D ·P is a diagonal matrix.
Let Q ∈ Mn,q be a monomial, and let k ∈ [n]. As first noted in [PS23], we can
factor Q as

Q = PJ ·
[
Qr

Qc

]
,

where J ⊆ [n] with |J | = k, Qr ∈Mk,q and Qc ∈Mn−k,q. Considering such fac-
torizations of monomials can be helpful when studying the action of monomials
on matrices. Indeed, for every matrix G ∈ Fk×n

q , it holds that

G ·Q = [GJ ·Qr | GJ ·Qc].

Moreover, if J is an information set of G, then GJ ·Qr is invertible, and it holds
that

RREF(G ·Q) = [Ik | Q−1r · (GJ)−1 ·GJ ·Qc].

2.3 Linear Code Equivalence Problem

Two linear [n, k]-codes C1, C2 ⊆ Fn
q are called linearly equivalent, if there exists

a monomial Q ∈ Mn,q such that C2 = C1 · Q, i.e., C2 = {c1 ·Q | c1 ∈ C1} .
Equivalently, C1 and C2 are linearly equivalent, if generator matrices G1,G2 of
C1, C2 satisfy the following equivalence relation:

Definition 2.1 (Linear Equivalence). Generator matrices G1,G2 ∈ Fk×n
q

are called linearly equivalent, if there exist U ∈ GL(Fk
q ) and Q ∈ Mn,q, such

that G2 = U ·G1 ·Q. In that case, we write G1 ∼ G2.
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It is straight-forward to verify that ∼ indeed defines an equivalence relation on
the set of all (k× n) matrices over Fq. Definition 2.1 now suggests the following
computational problem:

Definition 2.2 (LEP). The linear code equivalence problem (LEP) with pa-
rameters (n, k, q) is defined as follows:

– Given: Linearly equivalent generator matrices G1,G2 ∈ Fk×n
q .

– Find: Matrices U ∈ GL(Fk
q ) and Q ∈Mn,q such that G2 = U ·G1 ·Q.

In cryptography, one usually considers an average case variant of LEP, where
the matrices G1 and G2 are sampled from the following distribution.

Definition 2.3 (Average Case LEP Distribution). For parameters n, k, q,
the average case LEP distribution DLEP

n,k,q is defined as follows: Sample a uni-
formly random matrix G1 ∈ Fk×n

q , and a uniformly random monomial Q ∈
Mn,q. Compute G2 := RREF(G1 ·Q), and output the tuple (G1,G2).

Formally, the average case variant of LEP ($-LEP) is defined as follows.

Definition 2.4 ($-LEP). The average case linear code equivalence problem
($-LEP) with parameters (n, k, q) is defined as follows:

– Given: Linearly equivalent generator matrices G1, G2 sampled from DLEP
n,k,q.

– Find: Matrices U ∈ GL(Fk
q ) and Q ∈Mn,q such that G2 = U ·G1 ·Q.

Parameters. As discussed in the introduction, support splitting [Sen00] solves
$-LEP instances over F2, F3 and F4 with high probability in polynomial time.
However, $-LEP over Fq with q ≥ 5 is conjectured to be hard.

In cryptographic applications, the field size q and the rate R := k
n are typ-

ically constant, and only n grows with the security level. The most important
setting in practice is R = 1

2 . Without loss of generality, we may assume R ≤ 1
2 .

(Via dual codes, one can easily show that ($-)LEP with parameters (n, k, q) is
polynomial time equivalent to ($-)LEP with parameters (n, n− k, q).)

2.4 Probabilities

We need the following concentration bound for the sum of (possibly depen-
dent) {0, 1}-valued random variables X1, . . . , Xn, which can easily be proved via
Markov’s inequality.

Lemma 2.5. Let X1, . . . , Xn ∈ {0, 1} denote (possibly dependent) random vari-
ables. Let p ∈ [0, 1], such that Pr[Xi = 1] ≥ p for every i ∈ [n]. Then for
X :=

∑n
i=1 Xi it holds that

Pr
[
X >

p

2
· n
]
≥ p

2
.
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A proof for Lemma 2.5 is given in Appendix A.1. We note that for indepen-
dent random variables X1, . . . , Xn, Lemma 2.5 is significantly inferior to more
standard concentration bounds, such as the Chernoff bound (which states that
Pr
[
X > p

2 · n
]
> 1 − e−Ω(p·n)). However, a major advantage of Lemma 2.5 is

that it also applies to dependent random variables.

Lemma 2.6. Let q be a prime power and let k ∈ N. A uniformly random matrix
A← Fk×k

q is invertible with probability greater than 1
4 .

Lemma 2.6 is well-known, and frequently used in code-based cryptography. For
completeness, we give a proof in Appendix A.2.

3 CPS Revisited

In this section, we revisit the original work of Chou, Persichetti and Santini
(CPS) [CPS23]. We start by recalling the definition of canonical form functions
in Section 3.1. As discussed in the introduction, CPS initially introduced these
functions to improve signature size in the LESS signature scheme. However, they
come with a surprising destructive application: CPS showed that any canonical
form function can be transformed into a LEP algorithm. We revisit the trans-
formation and its analysis in Sections 3.2 and 3.3.

3.1 Canonical Form Functions

LRL Equivalence. CPS introduce a novel framework for studying equivalence
relations for linear codes. While CPS use their framework to study five different
equivalence relations, we need only one out of these five. CPS call this equivalence
relation Case 5. However, we choose the more descriptive name left-right linear
equivalence, or LRL equivalence, for short.

Definition 3.1 (LRL Equivalence). Two generator matrices in systematic
form G1 = [Ik | A1],G2 = [Ik | A2] ∈ Fk×n

q are called left-right linearly
equivalent or LRL equivalent, if and only if there exist Qr ∈ Mk,q and Qc ∈
Mn−k,q such that A2 = Qr · A1 · Qc. In that case, we write G1

LRL∼ G2. The
equivalence class of a generator matrix in systematic form G = [Ik | A] is
denoted by [G]LRL∼

.

Notice that LRL∼ indeed defines an equivalence relation on the set of (k × n)-
matrices over Fq in systematic form. We point out that the original definition
by CPS is slightly more general than ours, as it also considers generator matri-
ces that are not in systematic form. However, for our purposes, the simplified
definition above suffices.

Additionally, we like to point out that LRL equivalence is a special case of
linear equivalence: If G1 = [Ik | A1] and G2 = [Ik | A2] are LRL equivalent,
i.e., A2 = Qr ·A1 ·Qc for some monomials Qr, Qc, then for

Q :=

[
Q−1r

Qc

]
∈Mn,q, and U := Qr ∈Mk,q ⊆ GL(Fk

q ),
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it holds that G2 = U ·G1 ·Q. Hence, the codes generated by G1 and G2 are
linearly equivalent.

Some Background. Definition 3.1 stems from the following scenario arising
in the LESS signature scheme: Suppose Alice and Bob know generator matrices
G1, G2 of linearly equivalent [n, k]-codes C1 and C2. Additionally, suppose Alice
knows a monomial Q ∈Mn,q such that C2 = C1 ·Q. In the identification protocol,
that underlies the LESS signature scheme, Alice wants to prove to Bob that C1
and C2 are indeed linearly equivalent. A simple way to do this, would be for
Alice to simply send Q to Bob. However, in the LESS setting, Alice would like
to make the proof as memory-efficient as possible. To this end, CPS suggest the
following approach:

Let us factor Q as

Q = PJ ·
[
Qr

Qc

]
,

for some J ⊆ [n] with |J | = k, Qr ∈Mk,q and Qc ∈Mn−k,q. Let us define

G′1 := RREF(G1 ·PJ),

G′2 := RREF(G2).

For simplicity, let us assume that J is an information set of G1. Then it holds
that

G′1 = [Ik | (GJ
1 )
−1 ·GJ

1 ]. (2)

Since C2 = C1 · Q, we have G2 = U ·G1 · Q for some U ∈ GL(Fk
q ). Together

with the fact that RREF is invariant under invertible transformations from the
left, this implies

G′2 = RREF(U ·G1 ·Q) = RREF(G1 ·Q) = [Ik | Q−1r · (GJ
1 )
−1 ·GJ

1 ·Qc]. (3)

The crucial observation is now that by Equations (2) and (3), the matrices G′1
and G′2 are LRL equivalent.

Assume for a moment that Bob has an efficient algorithm for deciding whether
two matrices are LRL equivalent. In such a scenario, CPS suggest instead of Al-
ice sending Q to Bob, to send only J . To verify that C1 and C2 are linearly
equivalent, Bob can then proceed as follows: Bob computes G′2, and uses J to
compute G′1. After that, he tests whether G′1 and G′2 are LRL equivalent. If so,
he accepts that C1 and C2 are linearly equivalent.

As shown by CPS, this approach is sound, i.e., Bob accepts only if C1 and C2
are indeed linearly equivalent. Since storing J requires significantly less memory
than storing Q, this approach greatly improves the memory-complexity of the
proof. However, it requires access to an efficient algorithm for deciding, whether
to matrices are LRL equivalent. For certain parameters of n, k and q, CPS can
indeed give such an algorithm. It is based on canonical form functions, which
we formally define below.
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Canonical Form Functions. In a nutshell, a canonical form function for LRL∼ is
an efficient algorithm CF that takes a generator matrix G = [Ik | A] as input, and
outputs a canonical representative G∗ = [Ik | A∗] of the equivalence class [G]LRL∼

.
Additionally, CF outputs monomials Qr and Qc, such that A∗ = Qr ·A · Qc.
More precisely, a canonical form function is defined as follows:

Definition 3.2 (Canonical Form Function). A canonical form function (for
LRL equivalence) is a polynomial time algorithm CF, that on input of a generator
matrix in systematic form G = [Ik | A] ∈ Fk×n

q either outputs

– a tuple (G∗,Qr,Qc) ∈ [G]LRL∼
×Mk,q ×Mn−k,q, where G∗ = [Ik | A∗] is a

representative of the equivalence class [G]LRL∼
, such that A∗ = Qr ·A ·Qc,

– or an error symbol ⊥.

Furthermore, we require the representative G∗ to be canonical. That is, for all
G1

LRL∼ G2 with CF(G1) ̸= ⊥, we require CF(G1) and CF(G2) to output the
same representative of the equivalence class [G1]LRL∼

= [G2]LRL∼
. For a canonical

form function CF, we define its success probability as

γCF(n, k, q) := Pr
A←Fk×(n−k)

q

[
CF
(
[Ik | A]

)
̸= ⊥

]
.

As with our definition of LRL equivalence (Definition 3.1), we point out that the
original CPS definition for canonical form functions is more general than ours,
as it also considers inputs that are not in systematic form. However, again our
simplified definition suffices.

The Dark Side of CF. While CPS introduced canonical form functions with
a constructive application in mind (improving signature size in LESS), they
have a surprising destructive application: CPS give an elegant transformation
that turns any canonical form function CF into a algorithm for solving LEP in
time Õ

(
γCF(n, k, q)

−1/2 · 2 1
2 H( k

n )n
)
. In particular, for canonical form functions

with (at least) constant success probability, the transformation results in an
LEP algorithm with runtime Õ

(
2

1
2 H( k

n )n
)
. Unfortunately, as discussed in the

introduction, finding canonical form functions with constant success probability
is challenging: CPS give a canonical form function that achieves constant success
probability only for large q = Ω(n). However, for constant q = O(1), its success
probability is exponentially small – leading to an LEP algorithm that requires
time exponentially higher than 2

1
2 H( k

n )n.
In Section 4, we will introduce our novel canonical form function, that has

success probability probability 1−O(n−1) for all q ≥ 7. By combining our canon-
ical function with the CPS transformation, this immediately implies our novel
Õ
(
2

1
2 H( k

n )n
)
-time LEP algorithm. Before we introduce our novel canonical form

function, let us revisit the analysis of the CPS transformation.

11



3.2 LEP as a Collision Finding Problem

The main idea behind the CPS transformation for turning a canonical form
function into an LEP algorithm is to view LEP as a collision finding problem:
The transformation turns any canonical form function into a meet-in-the-middle
algorithm, that on input of a LEP instance G1 ∼ G2 tries to find CF-colliding
information sets J1, J2, as defined below.

Definition 3.3 (CF-colliding). Let G1 ∼ G2 be an LEP instance, and let CF
be a canonical form function. We call two information sets J1, J2 of G1 and G2

CF-colliding for (G1,G2), if

RREF(G1 ·PJ1)
LRL∼ RREF(G2 ·PJ2),

and additionally

CF(RREF(G1 ·PJ1)) ̸= ⊥, CF(RREF(G2 ·PJ2)) ̸= ⊥.

As the following lemma shows, once CF-colliding information sets J1 and J2 are
found, solving LEP becomes easy:

Lemma 3.4 (Adapted from Proposition 11 in [CPS23]). Let G1 ∼ G2

be an LEP instance, and let CF be a canonical form function. Let J1, J2 be
CF-colliding information sets for (G1,G2). On input G1,G2, J1, J2, algorithm
RecoverMonCF(·) (Algorithm 1) computes a solution U ∈ GL(Fk

q ), Q ∈ Mn,q to
the LEP instance defined by G1 and G2 in polynomial time.

For completeness, we recall the proof of Lemma 3.4 in Appendix A.3.

Algorithm 1: RecoverMonCF(·)

Input: LEP instance G1 ∼ G2 ∈ Fk×n
q ,

CF-colliding information sets J1, J2 for (G1,G2).
Output: Solution U ∈ GL(Fk

q ),Q ∈ Mn,q with G2 = U ·G1 ·Q.

1 Compute G′
i := RREF(Gi ·PJi) for i ∈ {1, 2}.

2 Compute CF(G′
i) = (G∗

i ,Qr,i,Qc,i) for i ∈ {1, 2}.
3 Compute U := GJ2

2 ·Q−1
r,2 ·Qr,1 · (GJ1

1 )−1.
4 Compute

Q := PJ1 ·

[
Q−1

r,1 ·Qr,2

Qc,1 ·Q−1
c,2

]
· (PJ2)−1.

5 return U,Q

12



To see that CF-colliding information sets actually exist, we need Lemma 3.5
below. In the original CPS paper, Lemma 3.5 is not stated explicitly, but only
hinted at.4 For completeness, we give a formal proof in Appendix A.4.

Lemma 3.5. Let G1 ∼ G2 ∈ Fk×n
q be linearly equivalent matrices, where

G2 = U ·G1 ·P ·D,

for some U ∈ GL(Fk
q ), P ∈ Σn and D ∈ Dn,q. Let J1 be an information set of

G1. Then J2 := P[J1] is an information set of G2, and it holds that

RREF(G1 ·PJ1)
LRL∼ RREF(G2 ·PJ2).

3.3 A Provably Correct Variant of the CPS Transformation

We are now ready to describe the CPS transformation for converting a canon-
ical form function CF into a LEP algorithm. It is depicted in Algorithm 2.
For simplicity, we give a variant of CPS’ transformation that only works well
for canonical form functions CF with (at least) constant success probability
γCF(n, k, q) = Ω(1). An advantage of this variant is that it can be shown to
be provably correct, whereas the original analysis of CPS for arbitrary success
probabilities γCF(n, k, q) relied on a heuristic argument.

The Algorithm. In a nutshell, Algorithm 2 samples on input of a LEP instance
G1 ∼ G2 sufficiently many random information sets J1, J2 of G1 and G2, with
the hope of sampling at least one CF-colliding pair (see Definition 3.3). If it finds
such a pair, it uses RecoverMonCF(·) (Algorithm 1) as a subroutine to easily solve
the LEP instance. More precisely, it works as follows:

On input G1 ∼ G2, Algorithm 2 picks
⌊√

1
2

(
n
k

)⌋
random size-k subsets J1

of [n], and computes G′1 := RREF(G1 ·PJ1), for every J1. If G′1 is in systematic
form (or equivalently, if J1 is an information set of G1), the algorithm runs
CF on G′1. If CF does not return ⊥, CF returns a canonical representative G∗1
of the equivalence class [G′1]LRL∼

. Algorithm 2 then stores G∗1 along with J1 in
some list L. Next, the algorithm tries to find an information set J2 of G2,
that together with some previously sampled information set J1 of G1 is CF-
colliding for (G1,G2). The algorithm can easily detect such a J2 by simply
testing if G′2 := RREF(G2 ·PJ2) is in systematic form, and, additionally, if the
computation of CF(G′2) yields a canonical representative identical to one of the
G∗1’s, that it has stored in L before (see Definitions 3.2 and 3.3). Once it finds
such a J2, it can easily solve the LEP instance via algorithm RecoverMonCF(·)

(see Lemma 3.4).

4 Lemma 3.5 is essentially the main idea behind the identification protocol introduced
in [CPS23, Section 5.2].
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Algorithm 2: LEP-Coll-SearchCF(·)

Input: LEP instance G1 ∼ G2 ∈ Fk×n
q .

Output: Solution U ∈ GL(Fk
q ),Q ∈ Mn,q with G2 = U ·G1 ·Q,

or error symbol ⊥.

1 Initialize empty list L.

2 repeat
⌊√

1
2

(
n
k

)⌋
times

3 Sample uniformly random size-k subset J1 of [n].
4 G′

1 := RREF(G1 ·PJ1).
5 if G′

1 is in systematic form then ▷ Is J1 information set?

6 if CF(G′
1) ̸= ⊥ then

7 Parse the first component of CF(G′
1)’s output as G∗

1 ∈ [G′
1]LRL∼

.

8 Store (G∗
1, J1) in L.

9 Sort L by the second component.

10 repeat
⌊√

1
2

(
n
k

)⌋
times

11 Sample uniformly random size-k subset J2 of [n].
12 G′

2 := RREF(G2 ·PJ2).
13 if G′

2 is in systematic form then ▷ Is J2 information set?

14 if CF(G′
2) ̸= ⊥ then

15 Parse the first component of CF(G′
2)’s output as G∗

2 ∈ [G′
2]LRL∼

.

16 if (G∗
2, J1) ∈ L for some J1 then ▷ Are J1, J2 CF-colliding?

17 return RecoverMonCF(·)(G1,G2, J1, J2)

18 return ⊥

Runtime and Success Probability. The first repeat-loop in Algorithm 2
clearly runs in time T := Θ̃

(√(
n
k

))
. Sorting L in Line 9 can be done in time T

as well. After sorting L, testing for membership in L can be done in time Θ̃(1).
Thus, also the second repeat-loop runs in time T . Hence, we obtain an overall
runtime of T = Θ̃

(√(
n
k

))
= Θ̃

(
2

1
2 H( k

n )n
)

for Algorithm 2.

As we show below, for canonical form functions with (at least) constant
success probability, the algorithm solves the average case variant of LEP ($-
LEP, see Definition 2.4) with constant success probability:

Theorem 3.6 (Correctness CPS Transformation). Let G1 ∼ G2 ∈ Fk×n
q

be a $-LEP instance, and let CF be a canonical form function with (at least)
constant success probability. On input G1,G2, Algorithm LEP-Coll-SearchCF(·)

(Algorithm 2) outputs a solution to the $-LEP instance defined by G1 and G2

in time Θ̃
(
2

1
2 H( k

n )n
)
, and with constant success probability.
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The proof of Theorem 3.6 is based on the following technical lemma.

Lemma 3.7. Let G1 ∼ G2 ∈ Fk×n
q be a $-LEP instance, and let CF be a

canonical form function with (at least) constant success probability. If we run
LEP-Coll-SearchCF(·) (Algorithm 2) on input G1,G2, then with constant proba-
bility, the list L computed by LEP-Coll-SearchCF(·) contains more than

γCF(n, k, q)

8
·

⌊√
1

2
·
(
n

k

)⌋
distinct elements.

Proof. Let T :=
⌊√

1
2 ·
(
n
k

)⌋
, and γ := γCF(n, k, q). We denote by J1,1, . . . , J1,T

the T sets J1, that algorithm Algorithm 2 samples in its first repeat-loop. For
every i, we define an indicator variable Xi ∈ {0, 1}, that is equal to 1, if and
only if J1,i gets stored in L. Let Ei denote the event that J1,i is an information
set of G1. Looking at Lines 5 and 6 of Algorithm 2, it follows that

Pr[Xi = 1] = Pr[Ei] · Pr[CF(RREF(G1 ·PJ1,i)) ̸= ⊥ | Ei].

The set J1,i is an information set of G1, if and only if GJ1,i

1 ∈ Fk×k
q is invert-

ible. Since in $-LEP, the matrix G1 is uniformly random, also G
J1,i

1 uniformly
random. Hence, by Lemma 2.6, we have Pr[Ei] >

1
4 , and thus

Pr[Xi = 1] >
1

4
· Pr[CF(RREF(G1 ·PJ1,i)) ̸= ⊥ | Ei]

=
1

4
· Pr[CF([Ik | (G

J1,i

1 )−1 ·GJ1,i

1 ]) ̸= ⊥ | Ei] =
γ

4
,

where the last equality follows from Definition 3.2 and the fact that in $-LEP,
the matrix G

J1,i

1 is uniformly random.
Applying Lemma 2.5 to the random variable |L| =

∑T
i=1 XJ1,i

, we obtain

Pr
[
|L| > γ

8
· T
]
≥ γ

8
= Ω(1).

This already shows that, with constant probability, the list L contains more than

γCF(n, k, q)

8
·

⌊√
1

2
·
(
n

k

)⌋
elements. To finish the proof, we have to show that with constant probability
these elements are distinct. To this end, we simply note that the probability that
the i-th sampled set J1,i is equal to a previously sampled set J1,1, . . . , J1,i−1 is
(i− 1)/

(
n
k

)
. Thus, the probability that all sets J1,i are distinct is

T∏
i=1

(
1− i− 1(

n
k

) ) ≥ (1− T(
n
k

))T

≥ 1− T 2(
n
k

) ≥ 1−
1
2

(
n
k

)(
n
k

) =
1

2
= Ω(1).
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This shows that with constant probability all elements in L are distinct, and
thus concludes the proof. ⊓⊔

Using Lemma 3.7, we now prove Theorem 3.6.

Proof (Theorem 3.6). We have to show that Algorithm 2 samples in its second
repeat-loop with constant probability an information set J2 of G2, that, together
with some information set J1 stored in the list L, is CF-colliding for (G1,G2).

Since G1 ∼ G2, we can write G2 = U ·G1 · P ·D, for some U ∈ GL(Fk
q ),

P ∈ Σn and D ∈ Dn,q. Let I1 denote the set of all information sets J1 that
Algorithm 2 stores in the list L, and let I2 := {P[J1] | J1 ∈ I1} . By Lemma 3.5,
every pair (J1,P[J1]) ∈ I1 × I2 is CF-colliding for (G1,G2). Thus, it suffices to
show that Algorithm 2 samples at least one set J2 with J2 ∈ I2.

Let γ := γCF(n, k, q) and T :=
⌊√

1
2

(
n
k

)⌋
. By Lemma 3.7, we have with

constant probability that |I2| = |I1| = |L| > γ
8 · T. If indeed |I2| > γ

8 · T , then
Algorithm 2 samples J2 ∈ I2 with probability at least

1−

(
1−

γ
8 · T(
n
k

) )T

≥ 1− exp

(
−

γ
8 · T

2(
n
k

) ) ≥ 1− e−γ/16 ≥ γ

32
.

Hence, the overall success probability of Algorithm 2 is lower bounded by

Ω(1) · γ
32

= Ω(1),

as desired. ⊓⊔

A Memoryless Variant. We note that the memory consumption of Algo-
rithm 2 is quite excessive, as (by Lemma 3.7) it requires storing a list of size

roughly
√(

n
k

)
. However, this issue can easily be avoided via a standard Van-

Oorschot-Wiener-like collision-finding algorithm [vW99].

A Quantum Variant. For canonical form functions with (at least) constant
success probability, Algorithm 2 naturally gives rise to quantum variant with
time and memory Θ̃

(
2

1
3 H( k

n )n
)
: Instead of sampling roughly

√(
n
k

)
sets J1 in

the algorithms first repeat-loop, we sample only
(
n
k

)1/3 such sets. By slightly
adapting the proofs of Lemma 3.7 and Theorem 3.6, one can easily show that the
probability that a single iteration of the second repeat-loop finds a CF-colliding
pair J1, J2 then drops from roughly

(
n
k

)−1/2 to roughly
(
n
k

)−2/3. Hence, by re-
placing the second repeat-loop by Grover search / amplitude amplification, we
immediately obtain a quantum algorithm with the desired runtime and memory
consumption.
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Comparison with Original CPS Analysis. The only difference between
Algorithm 2 and the original CPS algorithm is that instead of sampling

⌊√
1
2

(
n
k

)⌋
random index sets J1, J2, CPS suggest to sample roughly

√
1

ζ·γCF(n,k,q)

(
n
k

)
such

sets, where ζ > 1
4 denotes the probability that a uniformly random matrix

A ∈ Fk×k
q is invertible (see Lemma 2.6). For this variant, CPS claim runtime

roughly
√

1
γCF(n,k,q)

(
n
k

)
, and "constant success probability which is approximately

1/2". Their argument goes as follows: Since each pair J1, J2 is CF-colliding with
probability at least ζ · γCF(n, k, q) ·

(
n
k

)−1, CPS sample on expectation at least
one CF-colliding pair. Since Algorithm 2 is successful, if and only if it samples
at least one such pair, it follows that on expectation, CPS indeed solve LEP.

Unfortunately, sampling one such pair on expectation does not necessarily im-
ply that one actually samples one such pair with decent probability.5 To overcome
this issue, CPS heuristically assume that, for any pair of index sets J1, J

′
1, the

events [CF(RREF(G1 ·PJ1)) ̸= ⊥] and [CF(RREF(G1 ·PJ′
1)) ̸= ⊥] can be treated

as independent.6 Under this assumption, standard concentration bounds (e.g.,
the Chernoff bound) indeed imply that that the original CPS algorithm solves
LEP with constant probability. However, in reality, these events are of course not
perfectly independent, and it is unclear how much of an issue this is in practice.
In fact, properly measuring the exact impact of these dependencies in practice is
challenging, as it might become visible only for cryptographically-sized parame-
ters. (Similar effects have been observed in the context of dual attacks on codes
and lattices, where the analysis also heuristically assumed independence of some
events [DP23, MT23].)

To circumvent these issues, we resort in the proof of Lemma 3.7 to the concen-
tration bound from Lemma 2.5. We use Lemma 2.5 to show that when sampling
T ∈ N random index sets J1, then with probability at least γCF(n, k, q)/8 more
than γCF(n, k, q)/8 · T of these sets satisfy CF(RREF(G1 · PJ1)) ̸= ⊥. For our
setting of canonical form functions with (at least) constant success probability
γCF(n, k, q) = Ω(1), this is good enough to conclude constant success probability
for Algorithm 2. However, for canonical form functions with exponentially small
success probability, Lemma 2.5 is too weak to make any meaningful conclusion
about the success probability of the original CPS algorithm.

4 A Novel Canonical Form Function

Now that we have formally defined canonical form functions in the previous
Section 3, we are ready to introduce our novel canonical form function, which
we denote by CFNew. As we will show below, CFNew has over all fields of size q ≥ 7

5 Consider a random variable X with Pr[X = 2n] = 2−n and Pr[X = 0] = 1 − 2−n.
Then E[X] = 1, but Pr[X ≥ 1] = 2−n is negligible.

6 More precisely, CPS assume that for any given matrix G with information set J ,
the matrix (GJ)−1 · GJ obtained from RREF(G · PJ) = [Ik | (GJ)−1 · GJ ] can be
treated as a freshly sampled uniformly random matrix, see [CPS23, Heuristic 1].
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success probability 1 − O(n−1). Together with Theorem 3.6 from the previous
section, this immediately yields our novel Õ

(
2

1
2 H( k

n )n
)
-time LEP algorithm.

Road Map. For ease of exposition, we break CFNew into four steps. While
describing these steps, we prove the correctness of CFNew along the way. Let
us briefly outline our road map for our proof of correctness. To this end, let
G1 = [Ik | A1]

LRL∼ G2 = [Ik | A2] ∈ Fk×n
q be any pair of LRL equivalent

matrices. To prove that our novel canonical form function CFNew is correct, we
have to show that running CFNew on inputs G1 and G2, respectively, returns the
same representative of the equivalence class [G1]LRL∼

= [G2]LRL∼
. To this end, we

proceed as follows:
On input G1, CFNew computes in the i-th of its four steps a matrix G

(i)
1 =

[Ik | A(i)
1 ] ∈ [G1]LRL∼

. Analogously, on input G2, CFNew computes in its i-th step a

matrix G
(i)
2 = [Ik | A(i)

2 ] ∈ [G2]LRL∼
= [G1]LRL∼

. We show that as the steps progress,

the matrices A(i)
1 , A(i)

2 become increasingly similar. Ultimately, after the fourth
step, we end up with A

(4)
1 = A

(4)
2 . The final matrices G

(4)
1 = G

(4)
2 then serve as

our canonical representative of the equivalence class [G1]LRL∼
= [G2]LRL∼

.

Comparison with CPS. Before we begin, we would like to give credit and note
that our novel canonical form function CFNew re-uses many of the original ideas
by CPS: In Steps 1 to 3, we run essentially an improved variant of the original
CPS canonical form function [CPS23] on well-chosen submatrices of our inputs
A1 and A2. By restricting ourselves to these submatrices, we can circumvent
some of the abort conditions of CPS. The process of choosing these submatrices,
as well as the fourth step of CFNew are, however, completely different from the
original CPS canonical form function.

4.1 Step 1

Let G1 = [Ik | A1]
LRL∼ G2 = [Ik | A2] ∈ Fk×n

q be the inputs to our canonical
form function CFNew. By definition of LRL equivalence, we can write

A2 = Pr ·Dr ·A1 ·Pc ·Dc, (4)

for some permutations Pr ∈ Σk, Pc ∈ Σn−k and diagonal matrices Dr ∈ Dk,q,
Dc ∈ Dn−k,q.

The first step of CFNew is given in Algorithm CF
(1)
New (Algorithm 3). On in-

puts G1 and G2, respectively, our canonical form function starts by computing
(A

(1)
1 , w1) := CF

(1)
New(A1, i1) and (A

(1)
2 , w2) := CF

(1)
New(A2, i2), respectively, where

i1, i2 ∈ [k] are some well-chosen parameters. For ease of exposition, we defer
the exact description of the selection process for i1 and i2 to later. For the mo-
ment, it suffices to know that i1 and i2 will satisfy i2 = PT

r [i1], where Pr is the
permutation from Equation (4).
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Algorithm 3: CF(1)
New

Input: A ∈ Fk×(n−k)
q , index i ∈ [k].

Output: A(1) ∈ Fk×(n−k)
q , parameter w ∈ [n− k].

1 A(1) := A
2 J := ∅
3 Parse the i-th row of A(1) as (ai,1, . . . , ai,n−k).
4 for j = 1, . . . , n− k do
5 if ai,j ̸= 0 then
6 Divide all entries in the j-th column of A(1) by ai,j .
7 else
8 J := J ∪ {j}.
9 w := n− k − |J | ▷ Number of non-zero entries in the i-th row of A.

10 Move all columns of A(1) indexed by J to the right of the matrix.
11 Swap the first row of A(1) with the i-th row.
12 return (A(1), w)

Relating A
(1)
1 and A

(1)
2 . Let us define w := w1. It is straight-forward to verify

that the matrix A
(1)
1 is of the shape

A
(1)
1 =


w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷

1

{
1, 1, . . . , 1 0, 0, . . . , 0

k−1
{

A
(1)
1,1 A

(1)
1,2

,
where A

(1)
1,1 and A

(1)
1,2 are some matrices. Furthermore, for our choice of i2 =

PT
r [i1], it is straight-forward to verify that w1 = w2, and that

A
(1)
2 =


w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷

1

{
1, 1, . . . , 1 0, 0, . . . , 0

k−1
{

Q
(1)
r ·A(1)

1,1 ·P
(1)
c Q

(1)
r ·A(1)

1,2 ·Q
(1)
c

, (5)

for some monomials Q
(1)
r , Q(1)

c and a permutation P
(1)
c : Indeed, for our choice

of i2 = PT
r [i1], Lines 6, 10 and 11 ensure that the first rows a(1)1,1 and a

(1)
2,1 of A(1)

1

and A
(1)
2 , respectively, are equal to

a
(1)
1,1 = a

(1)
2,1 = (1w,0n−k−w) ∈ Fn−k

q . (6)

Additionally, for our choice of i2 = PT
r [i1], Lines 10 and 11 ensure that

A
(1)
2 =

[ 1︷ ︸︸ ︷ k−1︷ ︸︸ ︷
1

Q̃r

]
·A(1)

1 ·

[ w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
Q̃c,L

Q̃c,R

]
, (7)

19



for some monomials Q̃r, Q̃c,L and Q̃c,R.
Let us write Q̃c,L = D̃c,L · P̃c,L for some diagonal matrix D̃c,L and a permu-

tation P̃c,L. Combining Equations (6) and (7), we obtain

1w = 1w · D̃c,L · P̃c,L.

This shows that D̃c,L = Iw, and thus

Q̃c,L = D̃c,L · P̃c,L = P̃c,L ∈ Σw.

Now setting Q
(1)
r := Q̃r, P

(1)
c := Q̃c,L = P̃c,L and Q

(1)
c := Q̃c,R it immediately

follows from Equation (7) that A
(1)
2 indeed has the shape as in Equation (5).

Staying in the Equivalence Class. Since the output matrices A(1)
i , i ∈ {1, 2},

are obtained by simply permuting and scaling rows and columns of the input
matrices Ai, it is clear that the corresponding matrices G(1)

i := [Ik | A(1)
i ] belong

to the equivalence class [G1]LRL∼
= [G2]LRL∼

, as required.
As we will see below, the remaining three steps of CFNew also work by sim-

ply permuting and scaling rows and columns of the corresponding input matri-
ces. Thus, throughout the execution of CFNew, we will only compute matrices
G

(1)
i , . . . ,G

(4)
i from the equivalence class [G1]LRL∼

= [G2]LRL∼
.

The Value of w. As noted in Line 9 of Algorithm 3, the parameter w = w1 =
w2 is equal to the number of non-zero entries in the i-th row of our input matrix
A1. For uniformly random A1 we thus have E[w] = (1 − 1

q )(n − k). By the
Chernoff bound, w meets its expected value up to a small (1 ± δ)-factor with
overwhelming probability 1 − e−Ω(n−k). In particular, for all q > 2 (and large
enough n− k), we can safely assume that w ≥ n−k

2 .

4.2 Step 2

Step 2 of CFNew is described in Algorithm CF
(2)
New (Algorithm 4). After computing

in Step 1 the matrix A
(1)
i and the parameter wi, where i ∈ {1, 2}, our canonical

form function CFNew proceeds to compute (A
(2)
i , hi) := CF

(2)
New(A

(1)
i , wi).

Relating A
(1)
1 and A

(1)
2 . Let us introduce some notation: Let s2, . . . , sk denote

the values computed in Line 5 of Algorithm 4, when running the algorithm on
input (A

(1)
1 , w1). Analogously, let s̃2, . . . , s̃k denote these values, when running

the algorithm on input (A
(1)
2 , w2). Let us write the monomial Q(1)

r from Equa-
tion (5) as Q

(1)
r = P

(1)
r ·D(1)

r for some permutation P
(1)
r and a diagonal matrix

D
(1)
r . Let d1, . . . , dk−1 denote the diagonal entries of D(1)

r . For i ∈ {2, . . . , k}, let
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Algorithm 4: CF(2)
New

Input: A(1) ∈ Fk×(n−k)
q , parameter w ∈ [n− k].

Output: A(2) ∈ Fk×(n−k)
q , parameter h ∈ [k − 1].

1 A(2) := A(1)

2 I := ∅
3 for i = 2, . . . , k do
4 Parse the i-th row of A(2) as (ai,1, . . . , ai,n−k).
5 si :=

∑w
j=1 ai,j

6 if si ̸= 0 then
7 Divide all entries in the i-th row of A(2) by si.
8 else
9 I := I ∪ {i}

10 h := k − |I| − 1 ▷ Number of rows of A(1), for which si ̸= 0.
11 Move all rows of A(2) indexed by I to the bottom of the matrix.
12 return (A(2), h)

ai := (ai,1, . . . , ai,n−k) denote the i-th row A
(1)
1 . Let ãi denote the i-th row of

A
(1)
2 . Let π[i] := (P

(1)
r )T [i].

From Equation (5) it follows that

ãπ[i] = di−1 · ai ·

[ w︷︸︸︷ n−k−w︷︸︸︷
P

(1)
c

Q
(1)
c

]
. (8)

Thus,

s̃π[i] =

w∑
j=1

di−1 · ai,(P(1)
c )T [j]

= di−1 ·
w∑

j=1

ai,j = di−1 · si. (9)

Hence, if si = 0, then Line 11 of CF(2)
New moves both the i-th row of A(1)

1 and the
π[i]-th row of A(1)

2 to the bottom of A(2)
1 and A

(2)
2 , respectively. On the other

hand, if si ̸= 0, then from Equations (8) and (9) it follows that Line 7 of CF(2)
New

replaces the π[i]-th row of A(1)
2 by

1

s̃π[i]
· ãπ[i] =

1

si
· ai ·

[ w︷︸︸︷ n−k−w︷︸︸︷
P

(1)
c

Q
(1)
c

]
,

whereas the i-th row of A(1)
1 gets replaced by

1

si
· ai.
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This shows that for all i with si ̸= 0 in the resulting matrices A
(2)
1 and A

(2)
2 ,

the first w entries of the rows obtained from ai and ãπ[i] are identical up to
permutation.

Let us define h := h1. Since h1 is the number of rows of A(1), for which si ̸= 0
(see Line 5 of Algorithm 4), we have by Equation (9) that h = h1 = h2. Let us
write A

(2)
2 as

A
(2)
1 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1

{
1, 1, . . . , 1 0, 0, . . . , 0

h

{
A

(2)
1,1 A

(2)
1,2

k−h−1
{

A
(2)
1,3 A

(2)
1,4

, (10)

for some matrices A
(2)
1,1, . . . ,A

(2)
1,4. By the discussion above, we have

A
(2)
2 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1

{
1, 1, . . . , 1 0, 0, . . . , 0

h

{
P

(2)
r ·A(2)

1,1 ·P
(2)
c P

(2)
r ·A(2)

1,2 ·Q
(2)
c

k−h−1
{

Q
(2)
r ·A(2)

1,3 ·P
(2)
c Q

(2)
r ·A(2)

1,4 ·Q
(2)
c

, (11)

for some monomials Q(2)
r , Q(2)

c and permutations P(2)
r , P(2)

c . In other words, the
upper left ((h + 1) × w)-blocks of A

(2)
1 and A

(2)
2 are identical up to row and

column permutation.

The Value of h. As noted in Line 5 of Algorithm 4, the parameter h = h1 = h2

is equal to the number of rows of A(1), for which si ̸= 0. It is easy to see that for
uniformly random inputs A1 to CF

(1)
New, the second to k-th rows of the outputs

A
(1)
1 are still uniformly random. Hence, the si’s computed by CF

(2)
New are uniformly

random over Fq, and we have E[h] = (1− 1
q )(k − 1). Arguing exactly as for the

parameter w in the previous section, it follows that for all q > 2 (and large
enough k), we can safely assume that h ≥ k−1

2 .

4.3 Step 3

As shown in the previous section, the upper left ((h + 1) × w)-blocks of the
matrices A(2)

1 and A
(2)
2 obtained from CF

(2)
New are identical up to row and column

permutation. This observation lets us now easily transform A
(2)
1 and A

(2)
2 via a

simple sorting procedure into matrices A
(3)
1 and A

(3)
2 , in which the upper left

((h+1)×w)-blocks are identical. More precisely, we can easily compute matrices
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of the forms

A
(3)
1 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1

{
1, 1, . . . , 1 0, 0, . . . , 0

h

{
A

(3)
1,1 A

(3)
1,2

k−h−1
{

A
(3)
1,3 A

(3)
1,4

, (12)

A
(3)
2 =



w︷ ︸︸ ︷ n−k−w︷ ︸︸ ︷
1

{
1, 1, . . . , 1 0, 0, . . . , 0

h

{
A

(3)
1,1 A

(3)
1,2 ·Q

(3)
c

k−h−1
{

Q
(3)
r ·A(3)

1,3 Q
(3)
r ·A(3)

1,4 ·Q
(3)
c

, (13)

Our sorting procedure is described in Algorithm CF
(3)
New (Algorithm 5). From

Equations (10) and (11), and the fact that multisets are invariant under permu-
tations, it immediately follows that for A

(3)
i := CF

(3)
New(A

(2)
i , wi, hi), i ∈ {1, 2}

the outputs A
(3)
i indeed have the desired shape as in Equations (12) and (13) –

provided, of course, that CF(3)
New does not return ⊥ in Line 9 . Fortunately, as we

show below, for all fields of size of q ≥ 7, the probability of CF(3)
New not returning

⊥ is close to 1.

Algorithm 5: CF(3)
New

Input: A(2) ∈ Fk×(n−k)
q , parameters w ∈ [n− k], h ∈ [k − 1].

Output: A(3) ∈ Fk×(n−k)
q , or error symbol ⊥.

1 A(3) := A(2)

2 for i = 2, . . . , h+ 1 do
3 Parse the i-th row of A(3) as (ai,1, . . . , ai,n−k).
4 Let Ri denote the multiset (ai,1, . . . , ai,w).
5 for j = 1, . . . , w do
6 Parse the j-th column of A(3) as (a1,j , . . . , ak,j)

T .
7 Let Cj denote the multiset (a2,j , . . . , ah+1,j).
8 if the Ri’s or the Cj ’s are not pairwise distinct then
9 return ⊥

10 Sort the 2nd to (h+ 1)-th rows of A(3) according to an lexicographic ordering
of the multisets R2, . . . , Rh+1.

11 Sort the 1st to w-th columns of A(3) according to an lexicographic ordering of
the multisets C1, . . . , Cw.

12 return A(3)
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Success Probability. Let us call a matrix is permutation-free, if it does not
contain a pair of two rows or columns that are identical up to permutation. Then
the probability that CF

(3)
New does not return ⊥ on input A

(2)
i is the probability

that the matrix A
(2)
1,1 from Equation (10) is permutation free. To compute this

probability, we need the following technical lemma, which is a direct consequence
of [RS09, Theorem 4].

Lemma 4.1. Let S ⊆ Fn
q with |S| = Θ(qn). Let P denote the probability that

two independent, uniformly random vectors v1,v2 ← S are identical up to per-
mutation. If q ≥ 7, then P = O(n−3).

Proof. Clearly, the larger q, the smaller P . Thus, to prove the upper bound of
P = O(n−3) for all q ≥ 7, it suffices to prove it for the special case of q = 7.

Let A7(n) denote the set of abelian squares over Fn
7 × Fn

7 , i.e., let A7(n)
denote the set of all tuples (w1,w2) ∈ Fn

7 × Fn
7 , where w1 is a permutation of

w2. Then

P = Pr[(v1,v2) ∈ A7(n)] =
|A7(n) ∩ (S × S)|

|S × S|
≤ |A7(n)|
|S × S|

=
|A7(n)|
|S|2

.

As shown in [RS09, Theorem 4],

|A7(n)| ∼ 72n+7/2 · (4πn)(1−7)/2 = O(72n · n−3).

Hence P = O
(
72n · |S|−2 · n−3

)
= O(n−3), as required. ⊓⊔

By Lines 5 and 7 of Algorithm 4, the rows of our matrix A
(2)
1,1 ∈ Fh×w

q are
sampled independently and uniformly random from

S(1)q (w) :=
{
(v1, . . . , vw) ∈ Fw

q | v1 + . . .+ vw = 1
}
.

Using Lemma 4.1, we now show that such a matrix is permutation-free with
probability at least 1−O

(
h2w−3 + w2h−3

)
.

Lemma 4.2. Let B ∈ Fh×w
q be matrix whose rows sampled independently and

uniformly random from S(1)q (w). If q ≥ 7, then B is permutation-free with prob-
ability at least 1−O

(
h2w−3 + w2h−3

)
.

Proof. Let r1, . . . , rh ∈ Fw
q be the rows of B, and let c1 . . . , cw ∈ Fh

q be (the
transposes of) the columns of B. Using Lemma 4.1, we show below that for any
pair i ̸= j, it holds that

Pr [ri, rj are identical up to permutation] = O(w−3), (14)

and

Pr [ci, cj are identical up to permutation] = O(h−3). (15)

By a union bound over the O(h2) pairs of rows and O(w2) pairs of columns, the
lemma then immediately follows.
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Proof for Equation (14): Since |S(1)q (w)| = qw−1 = Θ(qw), we can apply
Lemma 4.1 to any pair of rows ri, rj , and Equation (14) immediately follows.

Proof for Equation (15): We show that the columns are pairwise independent
and uniformly random over Fh

q . This allows us to apply Lemma 4.1 to any pair
of columns ci, cj , and Equation (14) immediately follows. Since the rows of B
are drawn independently and uniformly random from S(1)q (w), the distribution
of the columns is as follows:

1. Sample c1, . . . , cw−1 independently and uniformly at random from Fh
q .

2. Set cw := 1h −
∑w−1

i=1 ci.

Hence, even though the columns are obviously dependent when viewed together,
any subset of at most w − 1 columns consists of mutually independent and uni-
formly distributed random vectors from Fh

q . In particular, if w > 2, the columns
are pairwise independent and uniformly random over Fh

q , as required. ⊓⊔

From Lemma 4.2, we now can easily derive the success probability of CF(3)
New.

Lemma 4.3. Let (A(1), w) be obtained by running CF
(1)
New on a uniformly ran-

dom matrix A ← Fk×(n−k)
q , and let (A(2), h) := CF

(2)
New(A

(1), w). For all q ≥ 7
and constant rate k

n , we have

Pr
[
CF

(3)
New(A

(2), w, h) ̸= ⊥
]
= 1−O(n−1).

Proof. By construction, we can upper bound w and h by w ≤ n − k and h ≤
k−1. As discussed in the previous two sections, with overwhelming probabilities
1 − e−Ω(n−k) and 1 − e−Ω(k), we can lower bound w and h by w ≥ n−k

2 and
h ≥ k−1

2 . Thus, for constant rate, where k = Θ(n) and n − k = Θ(n), we have
w = Θ(n) and h = Θ(n) with probability 1− e−Ω(n). Together with Lemma 4.2,
this concludes the proof. ⊓⊔

4.4 Step 4

By Equations (12) and (13), the upper left ((h + 1) × w)-blocks of the matri-
ces A

(3)
1 and A

(3)
2 obtained from CF

(3)
New are identical. Additionally, the upper

right ((h+ 1)× (n− k −w))-blocks are identical up to a monomial transforma-
tion from the right. The lower left ((k − h − 1) × w)-blocks are identical up to
a monomial transformation from the left. Dealing with monomials that act only
on one side of the matrix is much easier, than dealing with monomials that act
on both sides (as we had to in the previous three sections). Indeed, if we now
appropriately divide the (w + 1)-th to (n − k)-th columns, and the (h + 2)-th
to k-th rows of our matrices, we can easily turn them into matrices that are
identical up to row and column permutation. After that, we simply invoke our
algorithm from Step 3 once more to sort our matrices. Thereby, we finally obtain
identical matrices A

(4)
2 = A

(1)
1 .
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Our approach is formally described in Algorithm CF
(4)
New (Algorithm 6). It is

easy to see that its output has the desired shape, i.e., for A(4)
i := CF

(4)
New(A

(3)
i , wi, hi)

we have A
(4)
2 = A

(1)
1 – provided that the algorithm does not return ⊥.

Algorithm 6: CF(4)
New

Input: A(3) ∈ Fk×(n−k)
q , parameters w ∈ [n− k], h ∈ [k − 1].

Output: A(4) ∈ Fk×(n−k)
q , or error symbol ⊥.

1 A(4) := A(3)

2 J := {w + 1, w + 2, . . . , n− k}
3 I := {h+ 2, h+ 3, . . . , k}
4 for i = 2, . . . , h+ 1 do
5 Parse the i-th row of A(4) as (ai,1, . . . , ai,n−k).
6 for j ∈ J do
7 if ai,j ̸= 0 then
8 Divide the j-th column of A(4) by ai,j .
9 Remove j from J .

10 for j = 1, . . . , w do
11 Parse the j-th column of A(4) as (a1,j , . . . , ak,j)

T .
12 for i ∈ I do
13 if ai,j ̸= 0 then
14 Divide the i-th row of A(4) by ai,j .
15 Remove i from I.
16 if J ≠ ∅ or I ≠ ∅ then
17 return ⊥
18 A(3) := CF

(3)
New(A

(3), n− k, k)

19 return A(3)

Success Probability. The probability that Algorithm 6 aborts in Line 17 is
exponentially small. (The algorithm aborts here only if one of the uniformly
random matrices A

(3)
1,2, A

(3)
1,3 from Equation (12) contains an all-zero row or

column.) Furthermore, using arguments analogous to the proofs of Lemmas 4.2
and 4.3, one can easily show that the probability that Algorithm 6 aborts in
Line 18 is upper bounded by O(n−1). Hence, with probability 1 − O(n−1) the
output of CF(4)

New indeed has the desired shape.

4.5 Putting Everything Together

We are now almost ready to fully describe our novel canonical form function.
The only thing left to do, is describing how to pick the inputs i1 and i2, in
Step 1. (Recall that in Step 1, we want compute (A

(1)
1 , w1) := CF

(1)
New(A1, i1)

and (A
(1)
2 , w2) := CF

(1)
New(A2, i2), where i2 = PT

r [i1], and Pr is the permutation
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from Equation (4).) To this end, we re-use an idea by CPS: On input G1 =
[Ik | A1], we iterate over all values i1 = 1, 2, . . . , k. For each i1, we run Steps
1 to 4, such that in the end we obtain a list L1 of (up to) k matrices from
the equivalence class [G1]LRL∼

. We sort L1 lexicographically and then output the
first entry. Analogously, on input G2 = [Ik | A2], we iterate over all values
i2 = 1, 2, . . . , k to obtain a list of matrices L2. For any i1, the i1-th entry in
L1 is then identical to the PT

r [i1]-th entry in L2. Hence, by lexicographically
sorting L1 and L2, we output the same representative from the equivalence
class [G1]LRL∼

= [G2]LRL∼
. The full description of CFNew is given in Algorithm 7.

Algorithm 7: CFNew

Input: G = [Ik | A] ∈ Fk×n
q

Output: Canonical representative G∗ = [Ik | A∗] of [G]LRL∼
, or error symbol ⊥.

1 Initialize empty list L.
2 for i = 1, . . . , k do
3 (A(1), w) := CF

(1)
New(A, i)

4 (A(2), h) := CF
(2)
New(A

(1), w)

5 A(3) := CF
(3)
New(A

(2), w, h)

6 if A(3) ̸= ⊥ then
7 A(4) := CF

(4)
New(A

(3), w, h)

8 if A(4) ̸= ⊥ then
9 Add [Ik | A(4)] to L.

10 if L is not empty then
11 return the lexicographically first entry in L.
12 else
13 return ⊥

We remark that Definition 3.2 technically requires a canonical form function
not only to output both a canonoical representative G∗ = [Ik | A∗] ∈ [G]LRL∼

,
but also to output monomials Qr,Qc, satisfying A∗ = Qr · A · Qc. For ease
of notation, we omit these monomials in the description of Algorithm 7. In
practice, the monomials can easily be computed. To this end, one simply has
to keep track of the monomial transformations made by CF

(1)
New, . . . ,CF

(4)
New. (See

also our SageMath implementation, available on GitHub.)
Summarizing the above four sections, we finally obtain the following theorem:

Theorem 4.4 (Correctness CFNew). For all q ≥ 7 and constant rate k
n , the

canonical form function CFNew has success probability

γCFNew
(n, k, q) = Pr

A←Fk×(n−k)
q

[
CFNew

(
[Ik | A]

)
̸= ⊥

]
≥ 1−O(n−1).

Combining Theorems 3.6 and 4.4, our main result follows:
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Theorem 4.5 (Main Result). For all q ≥ 7 and constant rate k
n , there is an

algorithm that solves $-LEP with parameters (n, k, q) in time Θ̃
(
2

1
2 H( k

n )n
)
, and

with constant success probability.

5 Experiments

In addition to the asymptotic results from Theorem 4.4, we now want to conclude
the paper by determining the concrete success probability of our new canonical
form function CFNew (Algorithm 7). To this end, we implemented our canonical
form function in SageMath and ran it on various inputs G = [Ik | A] ∈ Fk×n

q

with uniformly random A. Our implementation is publicly available at

https://github.com/juliannowakowski/lep-cf

In our experiments, we used the following parameters:

– q ∈ {5, 7, 8, 9},
– n ∈ {50, 60, 70, 80, 90, 100},
– k ∈ {0.1n, 0.2n, 0.3n, 0.4n, 0.5n}.

Results. We ran our implementation for each combination of (q, n, k) on 50
random instances. The results are in shown in Figure 3. As Figure 3 shows, our
asymptotic success probability 1−O(n−1) from Theorem 4.4 converges quickly
to 1. In particular, for the most important setting of code rate k

n = 1
2 , CFNew

even has success probability 1 – showing that our novel canonical form function
CFNew performs very well in practice.

Choice of Parameters. We did not consider field sizes q ≤ 4, as LEP over such
small fields is easy (due to support splitting). Furthermore, we did not include
experiments for larger q > 9, as the success probability of CFNew gets better the
larger q, and we already achieved high success probabilities for our small q’s with
q ≤ 9. As discussed in Section 2, restricting ourselves to rates k

n ≤
1
2 is without

loss of generality.

The Case of q = 5. In our theoretical analysis, we could prove the asymptotic
success probability 1 − O(n−1) of CFNew for all q ≥ 7. However, as Figure 3
shows, CFNew has even for q = 5 a decent success probability (provided the code
rate is not extremely small). This phenomenon is due to the fact that we had to
resort to a somewhat coarse union bound in the proof of Lemma 4.2, which lead
to a slight underestimate in success probability.
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Fig. 3. Performance of CFNew on 50 random inputs for each combination of (n, k, q).

Convergence Speed. For the extremely small code rate of k
n = 0.1, Figure 3

shows a slightly slower converge speed, than for larger code rates k
n ≥ 0.2. This

phenomenon can be explained as follows: In Section 4, we used Lemma 4.2 to
show that CFNew has success probability at least

1−
(
O
(

k2

(n− k)3

)
+O

(
(n− k)2

k3

))
= 1−O(n−1),

For k = 0.1n, we have (n−k)2
k3 = 810·n−1. Hence, for small code rates, theO(n−1)-

term hides a rather large constant, thereby leading to slower convergence.

Nevertheless, we like to stress that even for very small n = 50 and q = 7, we
already obtain a non-zero success probability. In particular, it follows that for
cryptographically-sized parameters (which use n in the order of a few hundreds),
CFNew works very well in practice.
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A Appendix: Additional Proofs

A.1 Lemma 2.5

Lemma 2.5. Let X1, . . . , Xn ∈ {0, 1} denote (possibly dependent) random vari-
ables. Let p ∈ [0, 1], such that Pr[Xi = 1] ≥ p for every i ∈ [n]. Then for
X :=

∑n
i=1 Xi it holds that

Pr
[
X >

p

2
· n
]
≥ p

2
.

Proof. For p = 1, the statement is trivial. Thus, without loss of generality, we
may assume that p < 1. Let us define Y := n − X. Using E[Y ] = n − E[X] ≤
(1−p) ·n, and applying Markov’s inequality to the non-negative random variable
Y , we obtain

Pr
[
Y ≥

(
1− p

2

)
· n
]
≤ Pr

[
Y ≥

1− p
2

1− p
· E[Y ]

]
≤ 1− p

1− p
2

= 1− p

2− p
≤ 1− p

2
,

and conversely

Pr
[
X >

p

2
· n
]
= Pr

[
Y <

(
1− p

2

)
· n
]
≥ p

2
,

as required. ⊓⊔

A.2 Lemma 2.6

Lemma 2.6. Let q be a prime power and let k ∈ N. A uniformly random matrix
A← Fk×k

q is invertible with probability greater than 1
4 .

Proof. Suppose we sample m ≤ k vectors v1, . . . ,vm ∈ Fk
q independently and

uniformly at random. Using induction over m, one can easily show that the linear
subspace generated by the vectors v1, . . . ,vm has dimension m with probability
exactly

∏m−1
i=0 (1 − qi−k). It follows that a uniformly random matrix A ∈ Fk×k

q

is invertible with probability

k−1∏
i=0

(1− qi−k) =

k∏
i=1

(1− q−i) >

∞∏
i=1

(1− q−i) ≥
∞∏
i=1

(1− 2−i).
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By Euler’s pentagonal number theorem, the product
∏∞

i=1(1− 2−i) is equal to
∞∏
i=1

(1− 2−i) =

∞∑
i=−∞

(−1)i

2(3i2−i)/2
= 1− 1

2
− 1

22
+

1

25
+

1

27
− . . . ,

which lets us lower bound it as
∞∏
i=1

(1− 2−i) ≥ 1− 1

2
− 1

22
+

1

25
+

1

27
−
∞∑

n=8

1

2n
=

9

32
>

1

4
,

and thus proves the lemma. ⊓⊔

A.3 Lemma 3.4

Lemma 3.4 (Adapted from Proposition 11 in [CPS23]). Let G1 ∼ G2

be an LEP instance, and let CF be a canonical form function. Let J1, J2 be
CF-colliding information sets for (G1,G2). On input G1,G2, J1, J2, algorithm
RecoverMonCF(·) (Algorithm 1) computes a solution U ∈ GL(Fk

q ), Q ∈ Mn,q to
the LEP instance defined by G1 and G2 in polynomial time.

Proof. Algorithm 1 starts by computing G′i := RREF(Gi ·PJi) ∈ Fk×(n−k)
q . Since

the Ji’s are information sets, we have G′i = [Ik | Ai], where

Ai = (GJi
i )−1 ·GJi

i ∈ Fk×(n−k)
q . (16)

In particular, since the Gi’s are in systematic form, they are valid inputs for
CF. (Recall that CF is only defined for inputs in systematic form, see Defini-
tion 3.2.) Since the Ji’s are CF-colliding, we have CF(G′i) ̸= ⊥. Hence, in Line 2,
Algorithm 1 indeed obtains a tuple (G∗i ,Qr,i,Qc,i) from the ouptput of CF. By
Definition 3.2, we have

G∗i = [Ik | A∗i ], for A∗i = Qr,i ·Ai ·Qc,i,

Moreover, we have by Definition 3.2 that A∗1 = A∗2, and thus

A2 = Q−1r,2 ·Qr,1 ·A1 ·Qc,1 ·Q−1c,2. (17)

Let U ∈ GL(Fk
q ) and Q ∈Mn,q denote the matrices computed by Algorithm 1.

(We have U ∈ GL(Fk
q ), since the Ji’s are information sets. Furthermore, we

have Q ∈ Mn,q, since the PJi ∈ Σn ⊆ Mn,q’s are monomials.) A tedious but
straight-forward computation shows that

U ·G1 ·Q = GJ2
2 · [Ik | Q

−1
r,2 ·Qr,1 · (GJ1

1 )−1 ·GJ1
1 ·Qc,1 ·Q−1c,2] · (PJ2)−1.

Using Equations (16) and (17), one can simplify the above equation as

U ·G1 ·Q = G2,

which shows that U and Q form a solution to the LEP instance defined by
G1 and G2. Since Algorithm 1 clearly runs in polynomial time, this proves the
lemma.

⊓⊔
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A.4 Lemma 3.5

Lemma 3.5. Let G1 ∼ G2 ∈ Fk×n
q be linearly equivalent matrices, where

G2 = U ·G1 ·P ·D,

for some U ∈ GL(Fk
q ), P ∈ Σn and D ∈ Dn,q. Let J1 be an information set of

G1. Then J2 := P[J1] is an information set of G2, and it holds that

RREF(G1 ·PJ1)
LRL∼ RREF(G2 ·PJ2).

Proof. By definition of J2, we have

G1 ·P ·Q ·PJ2 =
[
GJ1 ·Qr | GJ1 ·Qc

]
for some Qr ∈Mk,q and Qc ∈Mn−k,q. Since RREF is invariant under invertible
transformations from the left, this shows that

RREF(G2 ·PJ2) = RREF(U ·G1 ·P ·D ·PJ2)

= RREF(G1 ·P ·D ·PJ2)

= RREF
([

GJ1
1 ·Qr | GJ1 ·Qc

])
=
[
Ik | Q−1r · (G

J1
1 )−1 ·GJ1 ·Qc

]
.

This shows that the matrix RREF(G2·PJ2) = RREF([GJ2
2 | G

J2
2 ]) is in systematic

form. Hence, J2 is an information set of G2. Additionally, this shows that

RREF(G2 ·PJ2)
LRL∼
[
Ik | (GJ1

1 )−1 ·GJ1

]
= RREF(G1 ·PJ1),

and thus proves the lemma.
⊓⊔
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