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Abstract

This paper is a report on how we tackled constructing a digital signature scheme whose multi-user

security with corruption can be tightly reduced to search assumptions. We fail to (dis)prove the statement
but obtain the following new results:

• We reveal two new properties of signature schemes whose security cannot be tightly reduced to
standard assumptions.

• We construct a new signature scheme. Its multi-user security with corruption is reduced to the
CDH assumption (in the ROM), and its reduction loss is independent of the number of users but
depends on the number of RO queries.

1 Introduction

This paper is a report on how we tackled constructing a digital signature scheme whose multi-user secu-

rity with corruption can be tightly reduced to search assumptions. As summarized in Table 1, all known
tightly-secure signatures in multi-user security with corruption are based on interactive search assump-
tions [WLG+19] or decision assumptions [GJ18, Bad14, BHJ+15, ABP19, DGJL21]. Thus, such a signature
based on (non-interactive) search problems remains open. We tackle this problem and obtain the following
results. First, we reveal two new properties of signature schemes whose security cannot be tightly reduced to
standard assumptions. More precisely, we generalize the negative result of Pan and Wagner [PW22], which
shows that the reduction loss of the concrete signature scheme, called the Parallel-OR signature scheme,
is lower bounded by the number of users. From this negative result, we have precious knowledge about
designing a signature scheme that is tightly secure in multi-user settings with corruption. Next, we show a
concrete construction of signature schemes based on the first result. Our scheme’s multi-user security can
be reduced to the CDH assumption, and the reduction loss does not depend on the number of users, but,
unfortunately, the loss linearly depends on the number of random oracle queries issued by the adversary. So,
it remains open whether we can construct a signature scheme whose multi-user security with corruption can
be tightly reduced to search assumptions.

2 Preliminaries

Notations. Let λ ∈ N be a security parameter. For natural number N , let [N ] := {1, 2, . . . , N}. For an
algorithm X and its input x, let X(x) be the set of all output. For random variables X and Y , SD(X ;Y )
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Table 1: Existing tightly secure signatures.
Scheme Security model Computational assumption

[GJ03, Che05, KLP17] Single-user CDH
[PR20] Multi-user w/o Corruption CDH

[WLG+19] Multi-user w/ Corruption One-more CDH
[Bad14] Multi-user w/ Corruption SXDH

[BHJ+15, ABP19] Multi-user w/ Corruption DLIN
[GJ18] Multi-user w/ Corruption CDH+DDH

[DGJL21, PW22] Multi-user w/ Corruption DDH

denotes the statistical distance between them.

Computational assumption. Let G be a multiplicative group with prime order p and g ∈ G be its
generator. We say that the computational Diffie-Hellman (CDH) assumption holds in G if for any ppt
adversary, the advantage defined by the following is negligibly small.

AdvCDH
A (λ) := Pr[Z = gxy : x, y ←$ Zp;Z ← A(g, g

x, gy)].

Digital signature. A digital signature scheme SIG = (Setup,Gen, Sig,Ver) is defined as follows.

• Setup(1λ), taking the security parameter λ as an input, generates a system parameter par, which
describes spaces of public keys Kp , secret keys Ks , messages M and signatures S . We may omit par as
input in the following algorithms.

• Gen(par) generates a pair of a public key and a secret key (pk, sk) ∈ Kp ×Ks .

• Sig(sk,m), taking a secret key sk and message m ∈ M , computes a signature σ ∈ S .

• Ver(pk,m, σ), taking a public key pk, message m, and a signature σ, outputs a bit b ∈ {0, 1}.

A signature scheme is said to be correct1 if for any λ ∈ N, par ∈ Setup(1λ), (pk, sk) ∈ Gen(par), m ∈ M ,
and σ ∈ Sig(sk,m), Ver(pk,m, σ) always outputs 1.

For a public key pk, we define the following set:

SK (pk) := {sk | (pk, sk) ∈ Gen(par)}.

Multi-user security with adaptive corruption of signature schemes is defined as follows.

Definition 1 (Multi-user security [PW22]). For a signature scheme SIG, consider a game N -MU-UF-CMA-C
shown in Algorithm 1. We say SIG has N -MU-UF-CMA-C security if for any ppt adversary A, the advantage

AdvN-MU-UF-CMA-C
A,SIG (λ) := Pr[N -MU-UF-CMA-CA

SIG(λ)⇒ 1]

in negligibly small.

As in [PW22], we introduce the following weaker security notion, multi-user security with static corruption
without signing oracle. We note that impossibility results in the weaker security notion imply that in the
stronger notion.

Definition 2 (Static security [PW22]). For signature scheme SIG, consider a game N -MU-UF-S shown in

Algorithm 2. If for any ppt adversary A = (A1,A2) the advantage

AdvN-MU-UF-S
A,SIG (λ) := Pr[N -MU-UF-SA

SIG(λ)⇒ 1]

in negligibly small, we say SIG has N -MU-UF-S security.
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Algorithm 1 N -MU-UF-CMA-CA
SIG(λ)

1: par← Setup(1λ)
2: for i ∈ [N ] do (pki, ski)← Gen(par)

3: (i∗,m∗, σ∗)← ACorr,Sig(par, (pki)i∈[N ])
4: if i∗ ∈ Lid then return 0

5: if ∃σ : (i∗,m∗, σ) ∈ Lm then return 0

6: return Ver(pki∗ ,m
∗, σ∗)

Oracle Corr(i)
7: Lid := Lid ∪ {i}
8: return ski

Oracle Sig(i,m)
9: σ ← Sig(ski,m)

10: Lm := Lm ∪ {(i,m, σ)}
11: return σ

Algorithm 2 N -MU-UF-SA
SIG(λ)

1: par← Setup(1λ)
2: for i ∈ [N ] do (pki, ski)← Gen(par)

3: (j,StA)← A1(par, (pki)i∈[N ])
4: if j /∈ [N ] then return 0

5: (m∗, σ∗)← A2(StA, (ski)i∈[N ]\{j})
6: return Ver(pkj ,m

∗, σ∗)

Definition 3 (Key-pair Verifiability). If there exists a ppt algorithm VerK such that the next equation holds

for any λ ∈ N, par ∈ Setup(1λ), pk ∈ Kp , and sk ∈ Ks , then SIG is said to be key-pair verifiable.

VerK(par, pk, sk) = 1⇐⇒ (pk, sk) ∈ Gen(par)

If VerK(par, pk, sk) = 1, sk is a valid secret key of pk.

Hereafter, we assume any signature scheme has key-pair verifiability, since we can verify the validity of
a given pair (pk, sk) by repeating the procedure of computing a signature of a random message using sk and
verifying it using pk enough number of times.

Non-interactive problems (NIP) and simple reductions. Existing impossibility results [AGO11,
PW22] are for simple reductions that reduce the security of signature schemes to non-interactive problems.
Non-interactive problems (NIP) is a wide class of mathematical problems such that, given an instance of
the problem, the solver needs to output an answer without accessing any oracles. This class includes both
decision problems such as DDH and search problems such as DLP and CDH.2

Definition 4 (Non-interactive problem [AGO11, PW22]). Non-interactive problem is formalized as a tuple

of algorithms NIP = (T,U,V).

• T(1λ), taking the security parameter λ as an input, outputs an instance c and its witness w.

• U(c) takes an instance c as input, and outputs a candidate of solutions s.

• V(c,w , s) takes c,w , s as input, and outputs a bit.

1In this paper, we only consider the perfect correctness.
2NIP includes both decision problems and search problems, but not one-more type problems, since the solver is given an

oracle.
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Algorithm 3 NIPX
NIP(λ) (X ∈ {A,U})

1: (c,w)← T(1λ)
2: s ← X(c)
3: return V(c,w , s)

Algorithm 4 RA(c)

1: (StR, par, (pki)i∈[N ])← R1(c)

2: (j,StA)← A
H
1 (par, (pki)i∈[N ])

3: (StR, (ski)i∈[N ]\{j})← R2(StR, j)

4: (m∗, σ∗)← AH
2 (StA, (ski)i∈[N ]\{j})

5: return R3(StR, j,m∗, σ∗)
Oracle H(query)
6: (StR, h)← RRO(StR, query)
7: return h

Consider the game NIP depicted in Algorithm 3. For an algorithm A, its advantage is defined as

AdvNIPA (λ) :=
∣

∣

∣
Pr[NIPA

NIP(λ)⇒ 1]− Pr[NIPU
NIP(λ)⇒ 1]

∣

∣

∣
.

If the advantage is negligibly small for any ppt algorithms A, we say NIP is hard.

Roughly speaking, a simple reduction is a reduction that has black-box access to the adversary algorithm
A only once and without rewinding. In this paper, we only deal with simple reductions that reduce the
N -MU-UF-S security of signature schemes to an NIP.

Definition 5 (Simple reduction [PW22]). A simple (NIP, SIG)-reduction R = (R1,R2,R3,RRO) is a tuple

of algorithms to solve NIP, having a black-box access to A only once, where A = (A1,A2) is an adversary

against SIG’s N -MU-UF-S security. Without loss of generality, we assume that only R1 is a probabilistic

algorithm, and R2, R3, RRO are deterministic.

• R1(c) receives an instance c of NIP, and outputs own state information StR, parameters par of the

signature scheme, and a list of public keys (pki)i∈[N ].

• R2(StR, j) receives an index j ∈ [N ] from A addition to the current state StR, and outputs a new state

StR and a list of secret keys (ski)i∈[N ]\{j}.

• R3(StR, j,m∗, σ∗) receives j ∈ [N ], m∗, σ∗ from A as well as the current state. It outputs a solution

s of the instance c of NIP.

• RRO(StR, query) receives query and the current state. It outputs a new state StR and a hash value h.

Algorithm 4 shows the interaction between R and A. Let VR and Vreal be random variables representing A’s
view interacting with R and that interacting with the challenger in N -MU-UF-S game, respectively. For a

function L, we say that R is (N , δR,L)-simple if

SD(VR;Vreal) ≤ δR,

AdvNIPRA(λ) ≥ L(λ,N ,AdvN-MU-UF-S
A,SIG (λ))

holds for any ppt adversary A.
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3 New Impossibility Results

3.1 Preparation

First, we introduce two new properties of digital signature schemes SIG.

Definition 6 (Signature statistically close). Let SIG(sk,m) be a random variable representing the output of

Sig(sk,m). SIG is said to be εSig-signature statistically close if for any m ∈ M, pk ∈ Kp and two valid secret

keys sk, sk′ ∈ SK (pk), it holds that

SD(SIG(sk,m);SIG(sk′,m)) ≤ εSig.

Definition 7 (RO statistically close). Let Q(sk,m) be a random variable representing the random oracle

queries issued in the run of SigH(sk,m). SIG is said to be εRO-RO statistically close if for any m ∈ M,

pk ∈ Kp and two valid secret keys sk, sk′ ∈ SK (pk), it holds that

SD(Q(sk,m);Q(sk′,m)) ≤ εRO.

3.2 Our Impossibility Results

By using the above properties, we obtain the following impossibility result.

Theorem 1. Let SIG be a εSig-signature statistically close and εRO-RO statistically close signature scheme.

For any (N , δR,L)-simple (NIP, SIG)-reduction R, there exists an algorithmM that solves NIP such that

AdvNIPM (λ) ≥ L(λ,N , 1)− (4δR + εSig + εRO)− 1/N ,

T(M) ≤ N ·T(R) + N (N − 1)T(VerK) +T(Sig),

where T(X) denotes the running time of X.

Proof. The proof proceeds in almost the same way as the impossibility proof of [BJLS16, PW22], that
is, we first construct a computationally-unbounded adversary A∞ who wins the N -MU-UF-S game with
probability 1 and then construct a meta-reductionM that solves NIP by efficiently simulating the adversary
A∞ against the reduction R. The difference from the existing proofs is how to efficiently simulate A∞:
[BJLS16] uses key-rerandomizability and [PW22] uses properties of Parallel-OR signatures to show that
M’s simulation of A∞ does not significantly change the output of R. In this work, we prove the same
statement using RO statistically close and signature statistically close of SIG.
A∞ = (A∞,1,A∞,2) is described in Algorithm 5. A∞ finds a secret key for pkj∗ with brute-forces search.

Note that this process makes A∞ inefficient. Then, it generates a forged signature by signing a randomly
chosen message with the founded secret key. By the definition of A∞, the following holds.

Lemma 1. AdvN-MU-UF-S
A∞,SIG (λ) = 1.

Next, we consider a series of meta-reductionsM1,M2,M3(=M) that try to solve NIP using R shown in
Algorithms 7 to 9. As shown below, the behavior of the meta-reduction is modified in the order to efficiently
simulate the behavior of the adversary A∞ in the end.

• M1 interacts with R in the same way as A∞, except for Rewind step. The subroutine Rewind shown
in Algorithm 6 executes R1 and receives its output (StR,1, par, (pki)i∈[N ]). Then it executes R2 inde-
pendently for all j ∈ [N ] and sets the succ[j] flag if all secret keys returned by R2 are valid. If succ[j]
is set, the obtained secret keys are stored (but they are not used by M1). After Rewind step, M1

randomly selects j∗ as in A∞, executes R3 using state StR,2,j∗ (i.e., as a continuation of the j∗-th R2

execution), and returns the output of R3 as its output.
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Algorithm 5 AH
∞ = (AH

∞,1,A
H
∞,2)

AH
∞,1(par, (pki)i∈[N ])

1: j∗
$
←− [N ]

2: St := (par, (pki)i∈[N ], j
∗)

3: return (j∗,St)
AH

∞,2(St , (ski)i∈[N ]\{j∗})
4: if ∃i ∈ [N ] \ {j∗} : VerK(par, pki, ski) = 0 then
5: return ⊥
6: sk

$
←− SK (pkj∗) ⊲ Brute-force search

7: m∗ $
←− M

8: σ∗ ← Sig(sk,m∗)
9: return (m∗, σ∗)

Algorithm 6 RewindR(c)

1: ρR
$
←− {0, 1}z

2: (StR,1, par, (pki)i∈[N ])← R1(c; ρR)
3: for j ∈ [N ] do
4: (StR,2,j , (ski)i∈[N ]\{j})← R2(StR,1, j)
5: succ[j] := 1
6: for i ∈ [N ] \ {j} do
7: if VerK(par, pki, ski) = 0 then succ[j] := 0

8: if succ[j] = 1 then
9: for i ∈ [N ] \ {j} do sk[i] := ski

10: return (par, succ[·], sk[·], (StR,2,j)j∈[N ])

• M2 is the same asM1 except it additionally checks whether bad event occurs, and halts if the event
occurs. bad event occurs if succ[j∗] = 1 and for all j 6= j∗, succ[j] = 0. That is, this event means R
succeeds in simulating the corruption oracle only for the j∗-th run of R2 but fails for all of the other
runs. Therefore, if the bad event does not occur, a valid secret key of j∗-th user is obtained in the
Rewind step for j( 6= j∗).

• M2 is the same asM2 except that it uses the secret key obtained in the Rewind step to forge a signature
instead of searching it brute-force. Here, M3 is efficient because it no longer finds a secret key with
an inefficient brute-force search.

We can show that the above modifications of meta-reductions do not significantly change R’s advantage.

Algorithm 7M1(c)

1: (par, succ[·], sk[·], (StR,2,j)j∈[N ])← RewindR(c)

2: j∗
$
←− [N ]

3: if succ[j∗] 6= 1 then return 0

4: sk
$
←− SK (pkj∗) ⊲ Brute-force search

5: m∗ $
←− M

6: σ∗ ← Sig(sk,m∗)
7: return R3(StR,2,j∗ , j

∗,m∗, σ∗)
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Algorithm 8M2(c)

1: (par, succ[·], sk[·], (StR,2,j)j∈[N ])← RewindR(c)

2: j∗
$
←− [N ]

3: if succ[j∗] 6= 1 then return 0

4: if ∀j ∈ [N ]\{j∗} : succ[j] = 0 then
5: bad := 1
6: return ⊥
7: sk

$
←− SK (pkj∗) ⊲ Brute-force search

8: m∗ $
←− M

9: σ∗ ← Sig(sk,m∗)
10: return R3(StR,2,j∗ , j

∗,m∗, σ∗)

Algorithm 9M3(c)

1: (par, succ[·], sk[·], (StR,2,j)j∈[N ])← RewindR(c)

2: j∗
$
←− [N ]

3: if succ[j∗] 6= 1 then return 0

4: if ∀j ∈ [N ]\{j∗} : succ[j] = 0 then
5: bad := 1
6: return ⊥
7: skR := sk[j∗]

8: m∗ $
←− M

9: σ∗ ← Sig(skR,m∗)
10: return R3(StR,2,j∗ , j

∗,m∗, σ∗)
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Lemma 2. AdvNIPRA∞ (λ) = AdvNIPM1
(λ).

Proof. As observed, the output ofM1 is independent of the execution of R2(StR,1, j) against j 6= j∗ in the
Rewind step. Therefore, the execution of R2(StR,1, j) against j 6= j∗ in the Rewind step never affects the
output of R3 and thus the output ofM1. With this in mind, and given that the conditions for the line 4 of
the algorithm 5 and the line 3 of the algorithm 7 are identical, the output of RA∞ and the outputs ofM1

are equivalent.

Lemma 3.
∣

∣

∣
AdvNIPM1

(λ)− AdvNIPM2
(λ)

∣

∣

∣
≤ 1/N .

Proof. The difference betweenM1 andM2 is the behavior when the bad event occurs. This event occurs
when R2 succeeds in simulating the corruption oracle for exactly one index, and the index is j∗. Since j∗ is
chosen uniformly at random from [N ], the lemma holds.

Lemma 4.
∣

∣

∣
AdvNIPM2

(λ)− AdvNIPM3
(λ)

∣

∣

∣
≤ 4δR + εSig + εRO.

Proof. The difference betweenM2 andM3 is the secret key used to generate the forged signature;M2 uses
the secret key sk sampled uniformly at random from SK (pkj∗), but M3 uses the secret key skR received
from R2 during the Rewind step. Recall that if bad does not occur, sk[j∗] = skR is a valid secret key
corresponding to pkj∗ .

The information R can see in the interaction withM2 is m∗ ← M , σ∗ ← Sig(sk,m∗) and the RO query
sequence Q(sk,m∗), observed by RRO, which is generated in the consequence of Sig(sk,m∗). On the other
hand, the information R can see in the interaction withM3 is m∗ ← M , σ∗ ← Sig(skR,m∗), and Q(skR,m∗).

First, let us consider the case R perfectly simulates the N -MU-UF-S game (i.e., the case δR = 0).
Observe that the distribution of the forged signature created by M2 is identical to the distribution of
signatures generated by Sig(sk, ·), and the distribution of the forged signature created by M3 is identical
to the distribution of signatures generated by Sig(skR, ·). Since SIG is εSig-signature statistically close, the
statistical distance between the forged signature created by M2 and the one created by M3 is less than
εSig. Moreover, the RO query sequences Q(sk,m∗) and Q(skR,m∗) have a statistical distance of at most εRO

due to εRO-RO statistically close of SIG. Therefore, the statistical distance between the final output of R3

interacting withM2 and interacting withM3 is at most εSig + εRO.
Now, let us consider the general case where δR > 0. In this case, the distribution of the forged signature

created by M2 may differ from the distribution of signatures generated by Sig(sk, ·) (due to e.g., “biased”
RO simulation). However, the statistical distance between R’s simulation and the real game is at most δR
due to Definition 5. Thus, the statistical distance between the distribution of the forged signature created by
M2 and the distribution of signatures generated by Sig(sk, ·) is at most δR. Similarly, the statistical distance
between the distribution of the forged signature created byM3 and the distribution of signatures generated
by Sig(skR, ·) is at most δR. Therefore, the statistical distance between the forged signatures created by
M2 and the one created by M3 is at most 2δR + εSig. Similarly, the statistical distance of the RO query
sequences is at most 2δR+ εRO. Therefore, the total statistical distance betweenM2’s andM3’s simulation
is at most 4δR + εSig + εRO.

From Definition 5 and Lemma 1–4, we obtain

AdvNIPM3
(λ) ≥ AdvNIPRA∞ (λ)− (4δR + εSig + εRO)−

1

N

≥ L(λ,N ,AdvN-MU-UF-S
A∞,SIG (λ))− (4δR + εSig + εRO)−

1

N

= L(λ,N , 1)− (4δR + εSig + εRO)−
1

N
.

The running time ofM3 can be evaluated as

T(M3) ≤ N ·T(R) + N (N − 1)T(VerK) +T(Sig).
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This concludes the proof.

From Theorem 1, the reduction loss from the multi-user security to an NIP is lower bounded by the
number of users N , if εSig, εRO, δR are negligibly small.

3.3 Generalization

Similarly to [BJLS16, Theorem 4], Theorem 1 can be generalized for r-simple reduction that is allowed to
rewind A r times sequentially. The lower bound is preserved for generalized reductions.

Theorem 2. Let SIG be a εSig-signature statistically close and εRO-RO statistically close signature scheme.

For any (N , δR,L, r)-simple (NIP, SIG)-reduction r-R, there exists an algorithmM that solves NIP such that

AdvNIPM (λ) ≥ L(λ,N , 1)− r · (4δR + εSig + εRO)− r/N ,

T(M) ≤ r · (N ·T(R) + N (N − 1)T(VerK) +T(Sig)),

where T(X) denotes the running time of X.

The proof of Theorem 2 is almost identical to the proof of Theorem 1, and we can use the same proof
technique as [BJLS16, Theorem 4]. Therefore it is omitted. Also, the interpretation of Theorem 2 is almost
identical to the interpretation of Theorem 1. Since both the advantage and the running time are multiplied
by r, r is canceled when the reduction loss is calculated. As a result, the reduction loss from the multi-user
security to an NIP is lower bounded by the number of users N if εSig, εRO, δR are negligibly small, similarly
to the interpretation of Theorem 1.

3.4 Discussion

Theorem 1 implies that to achieve tight security, at least one of the following conditions should be held.

(C1) SIG’s security is based on interactive problems,

(C2) SIG is not signature statistically close, (εSig 6= negl)

(C3) SIG is not RO statistically close, (εRO 6= negl)

(C4) The adversary’s view given by a reduction R is statistically distinguishable from that in the real
N -MU-UF-S (δR 6= negl).

Table 2 summarizes which conditions existing tightly-secure signature schemes satisfy. Further,

• we do not want to rely on the hardness of interactive problems (unlike [WLG+19]),

• signatures signed by different (valid) secret keys should be indistinguishable. We note that, to reduce
a forgery to solving a NIP without guessing corruption users, the reduction R must know (at least)
one of valid secret keys in case of the corruption query, and R can use a forged signature to solve
the NIP only if the forged one was generated by another valid secret key. If signatures signed by
different keys were distinguishable, the adversary would learn information about what secret key R
has from the signing query responses, and would always be able to output a forgery associated with
that key, meaning that R would fail to solve the NIP. Therefore, if signatures signed by different keys
are not statistically close, they should be computationally indistinguishable, meaning that a decisional
assumption is needed (as in [GJ18]), and

• the adversary’s view given by a reduction should be distinguishable from that in the real game. If they
are not statistically close, they should be computationally indistinguishable, meaning that a decisional
assumption is needed (as in [Bad14, BHJ+15, ABP19, DGJL21, PW22]).

From the above considerations, the only approach left to construct a tightly N -MU-UF-CMA-C secure sig-
nature from search assumptions is making Q(sk,m) and Q(sk′,m) distinguishable, shown in the last row in
Table 2.
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Table 2: Conditions existing tightly secure schemes satisfy to avoid the impossibility results.
Scheme (C1) (C2) (C3) (C4)

not NIP εSig 6= negl εRO 6= negl δR 6= negl

[WLG+19] X - - -
[GJ18] - X - -

[DGJL21, PW22] - - X X

[Bad14, BHJ+15, ABP19] - - - X

Ours - - X -

4 New Construction

We provide our (failed) approach to construct the desired signature scheme. Our idea is the combination
of the CDH-based 5-move identification scheme [KLP17] and the sequential-OR technique for multi-round
interactive proofs, proposed in [FGQ+23]. The construction is as follows.

• Setup(1λ): Output the description of a multiplicative group G, its order p, its generator g, and the
description of hash functions H : {0, 1}∗ → G and H′ : {0, 1}∗ → Zp as par.

• Gen(par): Sample sk0, sk1 ←$ Zp, b ←$ {0, 1} and compute pk0 = gsk0 , pk1 = gsk1 . Output sk :=
(skb, b), pk := (pk0, pk1).

• Sig(sk,m): Simulate a transcript of the 5-move ID protocol for pk1−b with its simulation algorithm
Sim:

(R1−b, h1−b, R
′
1−b, h

′
1−b, s1−b)← Sim(pk1−b)

Then, compute a real transcript of the 5-move ID protocol for pkb with its prover algorithm P =
(P1, P2, P3):

Ab := (ab, a
′
b)←$ G× Zp,

(Rb, r)← P1(skb) = gr (r ←$ Zp)

a1−b := h1−b/H(pk1−b, R0, R1, Ab,m)

a′1−b := h′
1−b − H′(pk1−b, R0, R1, R

′
1−b, Ab,m)

A1−b := (a1−b, a
′
1−b)

hb := H(pkb, R0, R1, A1−b,m)× ab

R′
b ← P2(skb, Rb, hb, r) = (RLb := hskb

b , RRb := hr
b)

h′
b := H′(pkb, R0, R1, R

′
b, A1−b,m) + a′b

sb ← P3(skb, Rb, hb, R
′
b, h

′
b, r) = skb · h

′
b + r.

Output σ := (R0, R
′
0, R1, R

′
1, A0, A1, s0, s1).

• Ver(pk,m, σ = (R0, R
′
0, R1, R

′
1, A0, A1, s0, s1)): Parse A0 = (a0, a

′
0), A1 = (a1, a

′
1). For each b ∈ {0, 1},

compute

hb := H(pkb, R0, R1, A1−b,m)× ab,

h′
b := H′(pkb, R0, R1, R

′
b, A1−b,m) + a′b,

vb ← V (pkb, Rb, R
′
b, hb, h

′
b, sb)

= [Rb = gsbpk
−h′

b

b ∧RRb = hsb
b RL

−h′

b

b ].

If v0 = v1 = 1, output 1; otherwise, output 0.
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The correctness of the scheme follows from the correctness of the identification scheme and the OR-proof
technique. We now show its security.

Theorem 3. Under the CDH assumption, the above scheme has N -MU-UF-CMA-C security with the reduc-

tion loss of O(qH) in the random oracle model, where qH is the number of H queries made by A.

Proof. Let (i∗, σ∗ = (R∗
0, R

′∗
0, R

∗
1, R

′∗
1, A

∗
0, A

∗
1, s

∗
0, s

∗
1),m

∗) be A’s output. Let

b∗ = bi∗

Hb = H(pki∗,b, R
∗
0, R

∗
1, A

∗
1−b,m

∗)

H ′
b = H′(pki∗,b, R

∗
0, R

∗
1, R

′∗
b , A

∗
1−b,m

∗)

for b ∈ {0, 1}. In the following, we use the fact that, if σ∗ is accepted, there exists (h0, h
′
0, h1, h

′
1) s.t.

hb = Hb × a∗b
h′
b = H ′

b + a′b
∗

R∗
b = gs

∗

bpk
−h′

b

i∗,b

R∗
Rb = h

s∗b
b R∗

Lb
−h′

b



















(1)

for b ∈ {0, 1}.

Game 0: Original attack game.
ǫ0 = AdvN-MU-UF-CMA-C

A,SIG (λ)

Game 1: After the adversary outputs the forged signature, the challenger returns 0 if Hb∗ was queried
before H1−b∗ . Since A has no information about b∗, we have

ǫ1 = (1/2)ǫ0

Game 2: After the adversary outputs the forged signature, the challenger returns 0 if H ′
b∗ was queried

before Hb∗ . The next lemma shows
|ǫ2 − ǫ1| = 1/p.

Lemma 5. If H ′
b∗ was queried before Hb∗ , σ

∗ is rejected with probability 1− 1/p.

Proof. We can assume that H1−b∗ was queried before Hb∗ . Further, we assume that H ′
b∗ was queried before

Hb∗ , When Hb∗ is queried, R∗
0, R

∗
1, (a

∗
1, a

′∗
1), (a

∗
0, a

′∗
0),

(R∗
Lb∗ , R

∗
Rb∗) and H ′

b∗ , H1−b∗ are all fixed. From these values, values of h′
b∗ , s

∗
b∗ , hb∗ that satisfy the following

equations in Eq.(1) are uniquely determined.

h′
b∗ = H ′

b∗ + a′
∗
b∗ , (h′

b∗ is fixed)

Rb∗ = gs
∗

b∗pk
−h′

b∗

i∗,b∗ , (s∗b∗ is fixed)

R∗
Rb∗ = h

s∗b∗
b∗ R∗

Lb∗
−h′

b∗ . (hb∗ is fixed)

Therefore, the equation
hb∗ = a∗b∗ ×Hb∗

in Eq.(1) is satisfied with the probability 1/p, since Hb∗ = H(pki∗,b∗ , R
∗
0, R

∗
1, A

∗
1−b∗ ,m

∗) is randomly chosen.

Reduction: Let X = gx, Y = gy be an instance of the CDH problem. For i = 1, 2, . . . , N , the reduction
R chooses bi ←$ {0, 1}, generates (pki,1−bi

, ski,1−bi) normally, and sets pki,bi := Xgxi (xi ←$ Zp), pki :=
(pki,0, pki,1). Since R knows ski,1−bi , it can generate a valid signature for any messages, and answer corrupt
queries correctly. Further, Sig(ski,bi ,m) and Sig(ski,1−bi ,m) have the same probability distribution.

Then, R executes the adversary A on input {pki}i∈[N ] and answers oracle queries as follows:

11



• Simulation of H′ oracle: When (pk, R0, R1, R
′, A,m) is queried, return randomly chosen h′ ←$ Zp.

• Simulation of H oracle: When (pk, R0, R1, a, a
′,m) is queried, if pk = pki,bi , R returnsH ←$ G and adds

(pki,bi , R0, R1, a, a
′,m) to L1. If pk = pki,1−bi

and there exists (pki,bi , R0, R1, a1−bi , a
′
1−bi

,m) ∈ L1 for
some (a1−bi , a

′
1−bi

), then (if there are multiple a1−bi , choose one randomly, and) R chooses yj ←$ Zp

and returns Y gyj/a1−bi . Add (pki,1−bi
, R0, R1, a, a

′,m, yj) to L2. Otherwise, returns H ←$ G.

• Corr(i) query: Return ski,1−bi .

• Sig(i,m) query: Generate a signature by using ski,1−bi , and return the signature.

A outputs (i∗,m∗, σ∗), where
σ∗ = (R∗

0, R
′
0
∗
, R∗

1, R
′
1
∗
, A∗

0, A
∗
1, s

∗
0, s

∗
1).

If Hb∗ was queried before H1−b∗ or H ′
b∗ was queried before Hb∗ or Ver(pki∗ ,m

∗, σ∗) = 0, R outputs randomly
chosen element Z ←$ G.

Now consider the case that H1−b∗ , Hb∗ , H
′
b∗ are queried in this order, and Ver(pki∗ ,m

∗, σ∗) = 1.
When H1−b∗ = H(pki∗,1−b∗ , R

∗
0, R

∗
1, a

∗
b∗ , a

′∗
b∗ ,m

∗) was queried, (pki∗,1−b∗ , R
∗
0, R

∗
1, a

∗
b∗ , a

′∗
b∗ ,m

∗) was added

to L1. Suppose that there is only one such entry. In this case, whenHb∗ = H(pki∗,b∗ , R
∗
0, R

∗
1, a

∗
1−b∗ , a

′∗
1−b∗ ,m

∗)

was queried, Hb∗ = Y gyj/a∗b∗ was returned, and (pki∗,b∗ , R
∗
0, R

∗
1, a

∗
1−b∗ , a

′∗
1−b∗ ,m

∗, yj) was added to L2. R
returns

Z := R∗
Lb∗/X

yjY xi∗ gxi∗yj .

Now define ỹ as

ỹ := y + yj .

Then,
hb∗ := Hb∗ × a∗b∗ = gỹ.

Lemma 6. If H ′
b∗ is queried after H1−b∗ and Hb∗ , and the following equation does not hold, σ∗ is rejected

with probability 1− 1/p.

R∗
Lb∗ = pk

ỹ
i∗,b∗ . (2)

Proof. When H ′
b∗ is queried, R∗

0, R
∗
1, (a

∗
1, a

′∗
1), (a

∗
0, a

′∗
0), (R

∗
Lb∗ , RRb∗) and H0, H1 are all fixed. From the

following equations

R∗
b∗ = gs

∗

b∗pk
−h′

b∗

i∗,b∗ ,

R∗
Rb∗ = h

s∗b∗
b∗ R∗

Lb∗
−h′

b∗ ,

in Eq.(1), σ∗ is accepted only if

(

logg R
∗
b∗

logg R
∗
Rb∗

)

=

(

1 − logg pki∗,b∗
ỹ − logg R

∗
Lb∗

)(

s∗b∗
h′
b∗

)

holds. If Equation (2) does not hold, the matrix

(

1 − logg pki∗,b∗
ỹ − logg R

∗
Lb∗

)

is regular, so there exists only one value of h′
b∗ , and the probability the value satisfies h′

b∗ −a′b∗ = H ′
b∗ is 1/p,

since H ′
b∗ = H′(pki∗,b∗ , R

∗
0, R

∗
1, R

′∗
b , A

∗
1−b,m) is randomly chosen independently from other values. Therefore,

the signature is rejected with probability 1− 1/p.
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If Equation (2) holds,

R∗
L(b∗) = pk

ỹ
i∗,b∗

= (Xgxi∗ )ỹ

= (gx+xi∗ )y+yj = g(x+xi∗ )(y+yj).

The R’s output satisfies

Z =
R∗

Lb∗

XyjY xi∗ gxi∗yj
=

g(x+xi∗ )(y+yj)

XyjY xi∗ gxi∗yj
= gxy.

Therefore,

AdvCDH
R (λ) = Pr[Equation (2) holds]

≥ Pr[Equation (2) holds ∧ σ∗ is accepted]

= Pr[σ∗ is accepted]− Pr[σ∗ is accepted ∧ Equation (2) does not hold]

≥ Pr[σ∗ is accepted]− 1/p,

ǫ2 ≤ Pr[σ∗ is accepted]

≤ AdvCDH
R (λ) + 1/p.

Consequently, we have
AdvN-MU-UF-CMA-C

A,SIG (λ) ≤ 2(AdvCDH
R (λ) + 2/p).

If there are qH entries: In this case, we have to estimate the success probability as

AdvCDH
R (λ) =

1

qH
Pr[Equation (2) holds].

Thus we have

AdvCDH
R (λ) ≥

1

qH
(Pr[σ∗ is accepted]− 1/p),

ǫ2 ≤ qHAdvCDH
R (λ) + 1/p

and
AdvN-MU-UF-CMA-C

A,SIG (λ) ≤ 2(qHAdvCDH
R (λ) + 2/p).

5 Conclusion

In this work, we tried to construct a signature scheme whose multi-user security with corruption can be
tightly reduced to search assumptions. We first revealed the new conditions that the highest secure signature
schemes must satisfy. This result suggests that constructions based on the OR-proof are promising. Second,
by combining the 5-move CDH-based identification scheme [KLP17] and the OR-Proof technique for multi-
round interactive protocols [FGQ+23], we constructed a new signature scheme. As a result, we made the
reduction loss from its multi-user security with corruption to the CDH assumption independent of the number
of users. However, this approach failed as its loss depended on the number of queries to the RO. The existence
of a signature scheme whose multi-user security with corruption is tightly reduced to search assumptions
remains still open.
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