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Abstract. At CRYPTO 2019, A. Gohr introduced Neural Differential Cryptanalysis
and used deep learning to improve the state-of-the-art cryptanalysis of 11-round
SPECK32. As of February 2025, according to Google Scholar, Gohr’s article has been
cited 229 times. The variety of targeted cryptographic primitives, techniques, settings,
and evaluation methodologies that appear in these follow-up works grants a careful
systematization of knowledge, which we provide in this paper. More specifically,
we propose a taxonomy of these 229 publications and systematically review the 66
papers focusing on neural differential distinguishers, pointing out promising directions.
We then highlight future challenges in the field, particularly the need for improved
comparability of neural distinguishers and advancements in scaling.
Keywords: Neural Differential Cryptanalysis, Systematization of Knowledge

1 Introduction
The security of most digital applications relies on cryptography, the science of protecting
the integrity, authenticity, and confidentiality of data. Confidentiality is about ensuring
that only intended parties can read exchanged data. Typically, an encryption key is used
in a secure cipher algorithm to encrypt the plaintext into a ciphertext. The recipient,
knowing the decryption key, can easily retrieve the plaintext from this ciphertext. On the
other hand, it is computationally intractable for an adversary who does not know the key.

The cornerstone of symmetric cryptography, where the encryption and decryption keys
are the same, is block ciphers, which encrypt fixed-size messages, usually through iterations
of a simple round function. Block ciphers play an important role in confidentiality but
can also serve as building blocks to construct other primitives, such as hash functions and
MAC schemes. Therefore, the security analysis of block ciphers (or cryptanalysis) is a
crucially important field.

In the classical security notion, Pseudo Random Permutation (PRP) security, an ad-
versary algorithm is assumed to have black-box access to an oracle function, implementing
either (A) the studied block cipher (with a hidden, random key) or (B) a random per-
mutation. A block cipher is considered secure under this notion if no such adversary can
distinguish between situation A and B faster than using the trivial strategy of enumerating
all possible keys to find one that matches the oracle’s output (A) or be convinced that
no such key exists (B). On the other hand, if a distinguisher exists, the block cipher is
considered broken, as a good distinguisher can usually be used to retrieve the key. The
performance of a distinguisher is usually expressed in terms of time complexity (number of
operations to be performed by the attacker), data complexity (amount of queries to the
oracle), and memory complexity.

The main goal of cryptanalysis is to estimate how many iterations of the round functions
(or rounds) are needed for security. This is an iterative process, and new results continue
to be published regularly years after the release of a cipher. Therefore, cryptographers are
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eager to build and improve tools that help with this tedious task. Deep learning, due to
its strength at detecting and distinguishing patterns, has long been seen as a potential
candidate to assist the task of cryptographers.

Deep learning has experienced significant advancements in recent years, leading to
remarkable achievements in various domains. Initially, Frank Rosenblatt introduced Multi-
Layer Perceptrons (MLPs) in his book Perceptron in 1958 and laid the foundation for
modern neural networks. The introduction of Convolutional Neural Networks (CNNs) in the
1980s [Fuk80] led to a breakthrough in computer vision in the form of LeNet, which achieved
human-level performance in digit recognition in 1998 [LBBH98]. Through advancements in
Monte Carlo Tree Search (MCTS) and reinforcement learning, further leaps were enabled,
such as Google’s AlphaGo surpassing human capabilities [SHM+16, SHS+18, SAH+20].
More recently, transformer-based Large Language Models (LLMs) [VSP+17], such as GPT,
have revolutionized natural language processing, demonstrating near-human capabilities
in tasks like machine translation and language generation.

Despite the long-standing recognition of the intersection between cryptography and ma-
chine learning [Wea47, Val84, Riv91], the use of computational intelligence in cryptanalytic
tasks has remained limited. Earlier approaches typically relied on extensive precomputa-
tion [PPS14], exploited implementation flaws (e.g., side-channel attacks) [RD20], targeted
inherently weak cryptographic schemes [Gre17, GHZ+18], or generally proved ineffec-
tive [CLC12a]. It was not until Gohr’s seminal work [Goh19a], presented at CRYPTO
2019 that a breakthrough was achieved by combining deep learning with traditional
cryptanalytic techniques. Gohr’s work was the first to demonstrate that neural networks
could be successfully leveraged in cryptanalysis, producing attacks that improved upon
state-of-the-art techniques against a round-reduced version of a modern block cipher.

Gohr pioneered the application of differential cryptanalysis—a powerful technique
for analyzing block ciphers—to neural networks, creating an approach now termed neu-
ral differential cryptanalysis. First introduced by Biham and Shamir in 1991 [BS91],
differential cryptanalysis examines how input differences (δ) propagate through ciphers,
seeking high-probability differentials where specific plaintext differences yield predictable
ciphertext differences (∆). While modern ciphers are designed to resist such analysis,
Gohr’s work [Goh19a] demonstrated that deep neural networks could serve as statistical
distinguishers with superior accuracy compared to conventional methods, particularly on
the NSA-designed SPECK32 [BTCS+15] reduced to 8 rounds, while significantly reduc-
ing time complexity for 11-round key recovery attacks. This breakthrough challenged
conventional wisdom by showing neural networks could discriminate between ciphertext
pairs derived from fixed versus random input differences more effectively than traditional
approaches, despite the black-box nature of neural computation.

Figure 1 a) shows the basic scheme for a neural differential distinguisher experiment
as introduced by Gohr in [Goh19a]. Figure 1 b) gives a broad overview of the research
directions in Neural Differential Cryptanalysis: Researchers have explored every part of
the basic pipeline. A majority of the works citing Gohr that focus on neural differential
distinguishers have attempted to apply the scheme to other symmetric primitives
and improve the distinguishing advantage by changing the network architecture,
increasing the number of samples available to the distinguisher, or changing the
sample format. A classification taxonomy for neural cryptanalysis was introduced at
FSE 2024 [BGH+23], categorizing approaches based on four key dimensions: the number
of input ciphertexts n, the number of distinct input differences m employed in the analysis,
the feature engineering techniques E applied to the ciphertext pair, and the distinguishing
experiment type T being conducted. This framework systematically compares neural
cryptanalytic methods and clarifies their relative strengths across attack scenarios.

Finally, we also observe emerging research directions aimed at enhancing neural dis-
tinguishers across multiple dimensions: increasing automation of the attack pipeline,
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Figure 1: a) Neural Differential Distinguisher: Basic Pipeline. Start with two
plaintext P0, P1, where P0 ⊕ P1 = δ or P0 ⊕ P1 = rand. Encrypt them using a symmetric
key K to obtain ciphertexts C0, C1. Concatenate the ciphertexts C0|C1 and input them
into a neural distinguisher N D. The neural distinguisher’s output is a neuron with a
sigmoid activation function. The sigmoid curve indicates a binary decision output to
answer if P0 ⊕ P1

?= δ. b) Neural Differential Cryptanalysis: Research Areas.

improving transparency through explainability techniques that reveal the cryptographic
features being learned, and boosting effectiveness in practical key recovery attacks.

While a substantial body of literature has focused on developing and analyzing effective
neural differential distinguishers, this paper is, to the best of our knowledge, the first to
systematically organize a large collection of research (229 papers) and highlight promising
directions and challenges in this area. Recent surveys [BHR+22, NR23, CLC12b, MLR+23,
SST24] do not claim a systematic approach, cover a significantly smaller body of work,
and most lack a specific focus on machine learning-based cryptanalysis. Bellini et al.
in [BHR+22] examine machine learning-based black-box and white-box cryptanalysis.
Regarding white-box cryptanalysis, they reference Gohr’s work [Goh19a] along with 15
related follow-up studies, though these were not selected systematically and include
preprints. Nitaj and Richidi, in [NR23], explore various cryptographic areas that could
benefit from the application of artificial intelligence (AI). While they briefly mention
the potential of machine learning to enhance side-channel and cryptanalytic attacks on
symmetric block ciphers, they neither provide a systematic analysis of existing work in this
area nor delve into the specific methodologies involved. Awad and El-Alfy, in [AEA17],
conduct a survey on computational intelligence applications in cryptography, with a focus
on the automated design and cryptanalysis of ciphers. However, their work predates
Gohr’s introduction of differential machine learning-based cryptanalysis in [Goh19a], and
as a result, it does not include a comprehensive review of neural distinguishers found
in more recent literature. Singh et al. [SST24] investigate various machine learning and
optimization techniques, including Hill Climbing and Particle Swarm Optimization, applied
to cryptanalysis. They also reference Gohr’s research [Goh19a] along with 12 subsequent
studies that build upon it. However, the selection of these papers is not based on a
systematic methodology. The work by Martinez et al. [MLR+23] is the most comparable
to ours. Although it does not follow a systematic paper selection process, it aims to
capture the state-of-the-art and categorizes 10 works, including Gohr’s, based on their
architectures and the cryptographic schemes they target.

The explosive growth of neural cryptanalysis literature has created a body of work that
is too vast for any single researcher to review comprehensively. This absence of systematic
knowledge organization has fostered several troubling trends: research teams independently
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investigating nearly identical questions, sometimes reaching contradictory conclusions
(exemplified by [Seo24]’s false claim of developing the first truncated neural distinguisher
and the significant disagreements on architecture suitability among [BR21], [SSL+22],
and [BBCD22]), and fundamental misinterpretations of seminal concepts – particularly
regarding the aggregation of multiple ciphertext pair predictions, an issue explicitly
addressed by Gohr [GLN22]. As this field continues its rapid expansion, these problems
will only intensify, underscoring the critical need for a comprehensive systematization of
knowledge in neural cryptanalysis.

Our Contributions. In our systematization of knowledge, we have achieved the following:
1. Comprehensive Field Review: We conducted an exhaustive survey of the follow-

up work (Section 4). In this process, we have identified the full body of research in
the field of Neural Differential Cryptanalysis. We analyzed the directions of the field,
resulting in a detailed taxonomy of Neural Differential Cryptanalysis (Section 4).

2. Explainability and Key Recovery Overview: We provide a comprehensive
overview of recent advancements in explainability techniques using neural differential
distinguishers (Section 5). Since analyzing neural distinguishers constitutes the core
contribution of our work, we provide a comprehensive overview of advancements in
neural-aided key recovery in Appendix C as a contextual application of our findings.

3. Rigorous Classification and Comparison: We systematically classify and com-
pare peer-reviewed research outcomes on neural differential distinguishers (Section 6),
across various techniques, architectures, and primitives. We also identify promising
research directions and severe methodological issues in some peer-reviewed papers
and challenge their results.

4. Best Practice Recommendations: Evaluating research involving the training of
neural networks presents significant challenges. We have developed a comprehensive
set of best-practice guidelines specifically tailored for reviewers of Neural Differential
Cryptanalysis research (Section 7).

5. Future Challenges: We identify and discuss two major challenges set to shape the
next six years of neural cryptanalysis (Section 8).

2 AI and Cryptography in the Beginnings
The popularity and widespread adoption of neural differential distinguishers (more precisely,
deep learning-based cryptanalysis) can be credited to the seminal work of A. Gohr [Goh19a].
However, even in that work, the author mentioned a number of related works at the
intersection between cryptanalysis and AI. What distinguishes Gohr’s work from previous
ones is that it considers relevant (modern) ciphers and manages to obtain results that
surpass state-of-the-art conventional cryptanalysis techniques. The following section is
not meant to provide an exhaustive list of works connecting AI and cryptology but rather
provide a brief historical overview of various approaches.

Already in 1947, researchers started considering connections between cryptography and
artificial intelligence [Wea47]. While this attempt was devoid of any technical details, it
still showcases the interest of the scientific community in combining these two domains. In
1984, L. Valiant discussed learnable Boolean functions and mentioned the evidence from
cryptography that the whole class of functions computable by polynomial-size circuits
is not learnable [Val84]. Shortly after, in 1988, Minsky and Papert showed that every
Boolean function can be realized by an MLP neural network [MP88]. In 1994, R. Rivest
wrote a paper on connections between cryptography and machine learning [Riv91]. Already
there, he mentioned the possibility of using machine learning for cryptanalysis.

In 2002, Klimov et al. analyzed the security of a key exchange protocol based on
mutually learning neural networks [KMS02]. While the authors experimentally verify that
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it is unlikely for a particular attacker using a similar neural network to converge to the
same key, they still break the protocol using more advanced cryptanalytic techniques.
Similarly, in 2016, Abadi and Andersen employed neural networks in a framework inspired
by generative adversarial networks (GANs) to develop an encryption scheme [CdOAB+18a].
Although this early research did not show any formal security, Coutinho et al. demonstrated
in 2018 [CdOAB+18b] that, with certain architectural modifications, the network could
be trained to learn the One-Time Pad [Sha49].

In 2002, Castro et al. used evolutionary algorithms to construct a cryptanalytic tool that
can distinguish between the two-round TEA algorithm and random permutations [CSIR02].
In 2007, Laskari et al. considered the application of diverse computational intelligence
techniques to the cryptanalysis of known cryptosystems, including public key cryptosystems
and Feistel ciphers [LMSV07]. In the same year, Tapiador et al. used heuristics to conduct
nonlinear cryptanalysis and applied it to the MARS cipher S-box [TCHC07]. In 2012,
Chou et al. experimented with machine learning techniques to mount distinguishing
attacks and concluded it is not possible to extract useful information from ciphertexts
produced by modern ciphers operating in secure modes, nor to distinguish them from
random data [CLC12b]. On the other hand, Svenda et al. in 2014 used evolutionary
algorithms to construct empirical tests for randomness [SSUM14]. Finally, in 2017, Awad
and El-Alfy surveyed computational intelligence applications in cryptography, focusing on
the automated design and cryptanalysis of ciphers [AEA17].

3 Preliminaries
This section introduces key concepts in machine learning-assisted differential cryptanal-
ysis: conventional differential cryptanalysis (Subsection 3.1), deep learning applications
(Subsection 3.2), and neural network-aided key recovery (Subsection 3.3).

3.1 Differential Cryptanalysis
Differential cryptanalysis [BS91] is a chosen plaintext attack analyzing how plaintext
perturbations propagate through ciphers. While typically using bitwise XOR differences,
some approaches employ modular addition or rotations. For a map F : {0, 1}b → {0, 1}b,
a differential transition is a pair (δ, ∆) ∈ {0, 1}b × {0, 1}b with probability:

P (δ → ∆) =
∣∣({x ∈ {0, 1}b : F (x) ⊕ F (x ⊕ δ) = ∆})

∣∣
2b

.

3.2 Training Neural Differential Distinguishers
For plaintexts p1, p2 ∈ {0, 1}b with ciphertexts ci = F (pi) ∈ {0, 1}b, neural distinguishers
approximate the function for fixed difference δ ∈ {0, 1}b:

Y (c1||c2) =
{

1, if p1 ⊕ p2 = δ,

0, else.

Success requires identifying nonrandom properties in output distributions resulting
from input difference δ. Training typically uses balanced datasets: 50% samples (c1, c2, 0)
with random p1, p2, and 50% samples (c1, c2, 1) where p2 = p1 ⊕ δ. Networks are trained
via stochastic gradient descent [RM51]1 using loss functions such as mean squared error.

1We introduce essential machine learning terminology needed to understand the techniques used in
neural differential cryptanalysis: Stochastic gradient descent is an iterative optimization method that
updates the weights of a neural network by calculating error gradients on small random subsets ("batches")
of the training data rather than the entire dataset. The "loss function" (e.g., mean squared error) quantifies
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Following Gohr [Goh19a], effective implementations use approximately 107 training
samples, 106 testing samples, batch sizes around 5000, and up to 200 training epochs.
Performance enhancements often include Adam optimizer [KB15], L2 regularization [HK00],
and cipher-specific architectures [GLN22, BGH+23].

3.3 Neural-aided Key Recovery
Neural distinguishers ND that approximate Y (c1||c2) enable practical key recovery attacks
on block ciphers, demonstrating their concrete cryptanalytic value. This section outlines
the attack methodology based on Gohr’s seminal approach [Goh19a], which has become
the standard framework in subsequent research. We denote the r-round reduced block
cipher with secret key K as F r

K .

The Basic Attack The attack leverages a pre-trained neural distinguisher NDr for F r to
compromise F r+1

K with secret key K. For example, a 5-round SPECK32/64 distinguisher
enables attacks on 6-round SPECK32/64.

The attack targets the last round key kr+1 in round-based ciphers that use function fk

with keys k1, . . . , kr+1 derived from master key K and begins by querying the oracle F r+1
K

with a conforming pair p1 and p2 = p1 ⊕δ, obtaining ciphertext pair (c1, c2). Next, for some
random key guess k′, the attacker computes c′

i = f−1
k′ (ci) and evaluates R = Dr(c′

1, c′
2). We

rank key candidates by prediction score, as the correct key yields R ≈ 1 (the distribution
matches what NDr was trained to recognize), while incorrect keys produce R ≲ 1.

For SPECK32, where round keys (16 bits) are smaller than the master key (64 bits),
we can feasibly enumerate all candidates. After identifying the last round key, the process
can be repeated to recover earlier round keys until the entire sequence is reconstructed.

Our simplified attack explanation omitted that prediction scores exhibit variance,
which can be mitigated by aggregating scores across multiple ciphertext pairs for each key
candidate, thereby enhancing the statistical reliability of the distinguisher. In [Goh19a]
the responses for a given key guess k′ are aggregated into a single score by the equation:

sk′ =
n∑

i=1
log2

(
Rk′

i

1 − Rk′
i

)
,

where Rk
i represents the distinguisher’s response for the i-th ciphertext pair.

We discuss various optimizations of this basic attack in Appendix B, including round
extension via probabilistic differentials, computational cost reduction through Bayesian
Optimization, and stopping conditions via Upper Confidence Bounds.

4 Neural Differential Cryptanalysis: A Taxonomy of Re-
search Directions

4.1 Selected Literature
As of February 03, 2025, a total of 229 works cite Gohr’s work [Goh19a] on Google Scholar.
Among these, we discarded 4 references that were either redundant or not linked to a paper
and 33 that were not available in English. Additionally, 34 references are not peer-reviewed,
and only available as preprints [BBCD20, BBDH21, BBC+23, BGL+21, DNS24, ElS21,
GJS20, GLN22, Goh22, HRC21a, HRC21b, HRC21d, JKM20, JKM21, Jun05, KJL+22,

prediction error, while an "epoch" represents one complete pass through the training dataset. The Adam
optimizer is an advanced gradient descent variant that adapts learning rates individually for each weight.
L2 regularization prevents overfitting by penalizing large weight values, essentially constraining the model’s
complexity.
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Surveys, Book Chapters, or Theses
8%

Classical Cryptanalysis 8%Historic or Toy Ciphers 4%

Deep Learning-Supported Design
4%

Theory of Neural Cryptanalysis 1%

Unrelated Topics 12%

Neural Side-Channel Attacks 3%

Cipher Distinguishers 3%

Neural Preimage Attacks 2%

New Tool or Library 4%

Cipher Proposal 3%

Neural Output Prediction 3%

Neural Integral Distinguishers 2%
Neural Attacks on Protocols 1%

Neural Attacks on Post-Quantum 1%
Neural Attacks on PRGs 1%

Neural Differential Cryptanalysis
42%

Figure 2: Taxonomy of the peer-reviewed publications in English citing [Goh19a].

KVD+25, LLL+22, LTJ+20, LSW+23, LRC22, PMC+22, PMK20, SM23a, SS23, SWL+24,
Sug24b, WNB+23, YW24, ZL20a, ZL20b, ZW22, ZZW24, ZDW+23]. After excluding
these, we are left with 158 peer-reviewed references, which we systematically categorize as
shown in Figure 2.

We consider the following references outside the field of research on Neural Differ-
ential Cryptanalysis as they are surveys, overviews, theses, or book chapters that treat
the use of “ML in cryptography” [BHR+22, Bru21, CDS22, MLR+23, NMN24, NR23,
PJ21, PJ22, Ros24, Som23, Tan23, Tu22, ZG24], or their research focuses on other
topics such as: classical cryptanalysis [Bak21, BCdST+23, ELR20, FLW+23, GPT21,
KS22, KY21, PLH+24, SLL24, WW22, YK21b, YK22], the theory of Neural Differential
Cryptanalysis [SMR+24], cryptanalysis of historic or toy ciphers [GZDAL22, KSJS21,
KLK+23, LMK+21, PKM23, PMDC22], deep learning-supported design of cryptographic
algorithms [AKVS+24, CS21, HLG+23, ITYY21, LTJ+21, MJBHC22, WIO24], neural
side-channel attacks [GJS21, TDD22, YBBP23, ZZC+22], distinguishers between different
ciphers [BPS22, DM23, MPM+21, XLC+22], neural preimage attacks [JMTD22, LLL+21,
PTD22a], the introduction of a new tool or library [BGG+23, Ess23, Hal22, ITY25,
LJSC24b, PVM24], the proposal of a new cipher [BSL21, CDJ+21, DCW23, FAAQ24],
neural output prediction attacks [JM24, KEI+22, KEI+23, LF24], neural integral distin-
guishers [HLLL, WG24, ZL22], neural attacks on protocols [TD21, ZKL20], post-quantum
schemes [LWAZ+24, WCCL22], pseudorandom number generators [Boa24b, EAZD23],
or other unrelated topics [AABAA22, AAEK22, Boa24a, DDK+23, DZF+21, PTD22b,
HLZW20, KLJW23, Kar23, MGKMP21, MKMP21, MLYW22, PYW24, RRSM22b, So20,
Sug24a, TDF+22, ZZS21, ZLF+24], which leaves us with a total of 66 peer-reviewed
publications in the field of Neural Differential Cryptanalysis.
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The Body of Peer-Reviewed Research in Neural Differential Cryptanalysis

The full body of peer-reviewed publications that focus specifically on advancing
research of Neural Differential Cryptanalysis is [BR21, BGPT21, BBCD22, BGL+22,
BBP22, BBD+23, BLYZ23, BGH+23, BPRC24, BFG+24, BPC24, CSY23, CSYY23,
DCC23, ERP22, EGP23, GLP+24, HRC21c, HGH+23, HRC23, HLF+24, HLZH25,
KJL+23, KKJ+24, LCLH22, LTZ22a, LTZ22b, LLHC23, LRC23, LRCL23, LLS+24,
LRC24, LJSC24a, MPKM+22, PPWR23, PSM23, PCDC24, RRSM22a, RLS23,
SZM21, SSL+22, SM23b, SCL24, SSL+24, SBG+24, Seo24, TH21, TTJ23, TSL23,
WW21, WWH21, WTZ+22, WQW+24, WW24b, WWS24, WW24a, YK21a, YW23,
YK24, ZLHH25, ZZY+21, ZZ21, ZLWL23, ZWC23, ZWW24, ZWL24]

4.2 Taxonomy of Research Directions

We found contributions to the explainability (or interpretability) of neural distinguishers
in the following 17 works [BGPT21, BBP22, BLYZ23, CSY23, DCC23, ERP22, Goh19a,
GLP+24, HGH+23, HLF+24, LRC23, LRC24, LJSC24a, SCL24, Seo24, YW23, ZWL24],
and will discuss their respective contributions in Section 5.
We found contributions to neural-aided key recovery attacks in the following 22 works [BGL+22,
BLYZ23, CSY23, CSYY23, Goh19a, HRC23, HLF+24, LTZ22a, LCLH22, LLHC23, LRC24,
LJSC24a, SZM21, Seo24, TH21, TTJ23, WQW+24, YW23, ZWW24, ZLWL23, ZLHH25,
ZWL24], and will give an overview of these works in Appendix C.

Most (62/66) of peer-reviewed research on Neural Differential Cryptanalysis involves
training neural differential distinguishers. More precisely, neural differential distinguish-
ers are trained in [BGPT21, BR21, BBCD22, BGL+22, BBP22, BGH+23, BBD+23,
BLYZ23, BFG+24, BPC24, CSY23, CSYY23, DCC23, ERP22, EGP23, HRC21c, HRC23,
HGH+23, HLF+24, HLZH25, KJL+23, KKJ+24, LTZ22a, LCLH22, LTZ22b, LRC23,
LRCL23, LLHC23, LLS+24, LRC24, LJSC24a, MPKM+22, PSM23, RRSM22a, RLS23,
SZM21, SSL+22, SM23b, SSL+24, SCL24, Seo24, SBG+24, TH21, TTJ23, TSL23, WW21,
WWH21, WTZ+22, WQW+24, WW24b, WWS24, WW24a, YK21a, YW23, YK24, ZZY+21,
ZZ21, ZLWL23, ZWW24, ZWC23, ZLHH25, ZWL24]

A comparative review of peer-reviewed neural differential distinguishers is provided
in Subsection 6.3. We excluded papers that were inaccessible [BPRC24, PCDC24], focused
primarily on explainability [SCL24, GLP+24], lacked concrete accuracy measurements
[HRC23], utilized leakage models outside conventional security assumptions [SBG+24,
HLZH25], or prioritized input difference compatibility over distinguisher performance in
hybrid approaches [YK21a, WW24b].

Two recent papers [HLF+24, LRC24] investigating neural differential attacks on large-
state block ciphers predominantly emphasize key recovery methodologies while providing
limited insights into their neural network training processes. This methodological opacity
presents significant challenges for our comparative review. However, Huang et al. [HLF+24]
provide their implementation, enabling a more comprehensive evaluation of their approach
despite the initial presentation’s technical brevity.

Gohr’s analysis was performed within the secret key chosen-plaintext attack (SK/CPA)
model. We do not consider the work of Phan et al. [PPWR23] as it operates under a
fundamentally different adversary model, where generative AI techniques are trained in an
adaptively chosen ciphertext or known key scenario to distinguish 10-round SPECK32/64,
making direct comparison inappropriate.
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5 Overview: Neural Differential Distinguisher Explainability
Neural distinguishers enabling new attacks, potentially better than manual cryptanalysis,
motivated researchers to try to understand what made these attacks so powerful and to
learn new properties from these. The lack of explainability is the “machine’s inability to
explain its decisions and actions to human users ” [GVWT21]. One of the major efforts
in research on explainability was the 4-year program (2017-2021) “XAI” by the Defense
Advanced Research Projects Agency (DARPA) of the United States Department of Defense
“DARPA’s Explainable Artificial Intelligence (XAI) Program” [GA19]. A more recent
review of the research in XAI is given in “Interpreting Black-Box Models: A Review on
Explainable Artificial Intelligence” [HCM+24]. To this day, explainability is an active
research field in AI and has resulted in various ways to add some explainability to a neural
network, e.g., by pruning, ablation studies, or visualization techniques.

A. Gohr investigated the capabilities of provided neural networks by introducing a
differential cryptanalytic task called the real differences experiment [Goh19a]. Then,
the author looks at the importance of features and gives some evidence that the neural
distinguishers exploit features outside the difference distribution table.

In [BGPT21], Benamira et al. studied the properties of pairs that were correctly
classified and proposed that Gohr’s neural distinguishers learn differential-linear features.
In particular, the authors observed that the pairs for which the score of the neural
distinguisher at round 5 is high often follow a specific truncated differential pattern at
round 3; a similar observation is made for rounds 6 and 4, leading to the authors proposing
that the features learned by the neural distinguisher are differential-linear in nature. The
authors further modified the neural network to use a Heaviside activation function, which
forces its output to be 0 or 1, to study the Boolean functions learned on SPECK. From these,
they derived advanced features that could be used to replace the initial 1D convolutions of
Gohr’s network. Later, the truncated differential observations from [BGPT21] were used
by [BGH+23] to identify good input differences for neural distinguishers automatically.

In [BBP22], Bacuieti et al. further investigated the structure of the neural network
itself. In particular, the authors used the lottery ticket hypothesis to prune Gohr’s neural
network to a minimal working version, on which they used feature visualization techniques
to obtain a visual representation of the neural network’s behavior. They additionally show
that, for the case of SPECK32, there is no significant accuracy difference between the
depth 1 neural network and the depth 10 version for Speck reduced to 7 and 8 rounds.

Ablation studies are routinely performed for neural networks to understand their
sensitivity and fidelity under small perturbations on either the network itself or its
input data. Ablation studies can give insights into the explainability of neural network
models, as detailed, for example, in “BASED-XAI: Breaking Ablation Studies Down for
Explainable Artificial Intelligence” [HSB+22], or “Logic Rule Guided Attribution with
Dynamic Ablation” [ALH22]. In [YW23], Yue et al. performed a data ablation study
to observe trade-offs between improved accuracy and overfitting when using multiple
ciphertext pairs per sample for neural differential distinguishers.

Seok et al. [SCL24] investigated the use of Principal Component Analysis (PCA) and K-
means clustering to define metrics for evaluating the quality of datasets in differential-neural
cryptanalysis. Their findings reveal that the datasets associated with input differences
leading to successful distinguishers tend to have more axes that effectively represent the
data compared to other datasets. Similarly, these datasets form multiple high-density
clusters compared to only a single cluster in the shape of a sphere. They introduce an
input difference search method based on PCA and K-means clustering that surpasses the
efficiency and effectiveness of the greedy approach proposed in [Goh19a].

Bao et al. developed explicit rules to be used alongside a differential distinguisher
to enhance its effectiveness and more closely match the performance of advanced neural
distinguishers [BLYZ23]. The rules are based on strong correlations between bit values in
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the right pairs of XOR-differential propagation through addition modulo 2n. The authors
also showed that those rules can be closely linked to the previous studies of the multi-bit
constraints and the fixed-key differential probability. Finally, the authors concluded that
leveraging the value-dependent differential probability makes it possible to add additional
knowledge to purely differential distinguishers. In contrast, they demonstrate that neural
differential distinguishers inherently utilize these rules. Building on this observation, Lv et
al. [LJSC24a] trained a neural distinguisher on differential-linear cryptanalysis.

Deng et al. introduced the attention mechanism into the differential cryptanalysis
on SPECK [DCC23]. The authors used a visualization algorithm to demonstrate the
effectiveness of the attention mechanism and further analyze the features extracted from
the ciphertext by deep learning. With this visualization technique, the authors evaluate
which bits the attention mechanism focuses most, providing interpretability results.

Recent advances in neural distinguishers [ERP22, GLP+24, HLF+24, LRC24, LRC23,
HGH+23, CSY23, Seo24, ZWL24] have demonstrated remarkable efficiency by operating
on partial ciphertext information rather than complete outputs. These approaches have
simultaneously advanced cryptographic interpretability methods through systematic identi-
fication of the most influential ciphertext bits. Chen et al. [CSY23] introduced “Informative
Bits” and Bit Sensitivity Testing, formally defining informative bits as ciphertext bits
that effectively distinguish between a cipher and a pseudo-random permutation. They
successfully maintained high distinguisher performance for SPECK32/64 while omitting
16 of 32 ciphertext bits through their novel testing methodology.

Hambitzer et al.’s [HGH+23] deep learning ensemble (NNBits) provided bit-profiling
capabilities specifically designed for evaluating cryptographic (pseudo) random bit se-
quences. Their work notably contributed to explaining the accuracy obtained by Gohr’s
depth-1 neural distinguisher in round 6 for SPECK32/64 by providing a detailed bit-level
analysis. Liu et al. [LRC23] performed a comprehensive interpretability analysis exploring
the relationship between neural distinguishers, truncated differentials, and advantage bits.
Their advantage bit search algorithm successfully truncated ciphertexts to just 8 bits while
leveraging XOR differences to reduce training sample size requirements significantly.

Similarly, Ebrahimi et al. [ERP22] presented a Partial Differential (PD) ML-distinguisher
for SPECK32/64, achieving nearly identical accuracy with only 8 bits compared to full
32-bit distinguishers for six rounds of the cipher. Goi et al. [GLP+24] employed explain-
able AI techniques (LIME and SHAP) to examine Gohr’s neural distinguisher, revealing
significant methodological differences: LIME effectively captures individual bit significance,
while SHAP uniquely identifies important bit pairings in the ciphertext.

Seok [Seo24] developed a specialized neural distinguisher for HIGHT that focuses
exclusively on ciphertext bits produced by one of the two independent operations in
the round function, demonstrating the viability of operation-specific analysis. Zhang et
al. [ZWL24] extended neural cryptanalysis to AES-128, training distinguishers for 2-round
reduced cipher and additionally examining specific intermediate states between rounds 2
and 3. Their approach replaced full 16-byte state processing with specialized networks
operating on just 2-byte segments while maintaining nearly identical accuracy. Huang et
al. [HLF+24] train partial neural distinguishers through extended encryption and strategic
decryption with zero-set subkey bits, and Li et al. [LRC24] develop a sophisticated ensemble
approach combining multiple student distinguishers, each strategically trained on input
differences producing mostly distinct informative ciphertext bits.

6 Comparative Review: Neural Differential Distinguishers
In the following, we provide a comparative review of all trained neural differential distin-
guishers to date. First, all investigated neural network architectures are reviewed (Sub-
section 6.1), then we detail the classification scheme (Subsection 6.2) and conclude with
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a comparative review of the best neural differential distinguishers for each symmetric
primitive (Subsection 6.3), followed by a discussion of the review (Subsection 6.4).

6.1 Architectures
In this section, we review the neural network architectures2 that have been employed in
Neural Differential Cryptanalysis.

N DGohr N DGohr is the original neural network architecture as introduced by Gohr
in [Goh19a]. It consists of an initial reshaping that “mirrors the word-oriented structure
of the cipher”, a single bit-sliced convolution, a residual convolutional tower of different
possible depths, most commonly depth-1, depth-5 and depth-10, and, finally, a fully
connected prediction head. A staged training approach in combination with an elaborate
additional training procedure is required to obtain the 8-round distinguisher for SPECK
[Goh19a]. N DGohr has subsequently been used on the majority (14/24) of the primitives.
A non-peer-reviewed work by Gohr, Leander, and Neumann [GLN22] provides a thorough
investigation of relevant hyperparameters when adapting N DGohr to a new primitive.
Variants of Gohr’s original network have been created: N Dpruned

Gohr is a pruned version of
N DGohr for SPECK introduced in [BBP22]. N Dattntn.

Gohr was introduced in [DCC23] and
adds an attention mechanism to N DGohr and applies it to SPECK. [HGH+23] uses an
ensemble of N DGohr (N Densmbl.

Gohr ) to explain the accuracy of Gohr’s network on SPECK.
A variant of Gohr’s network that uses a separable convolution instead of the traditional

one (N Dsep.conv.
Gohr ) was introduced in [LRC23] and applied to SPECK with the motivation

to save training cost. DenseNet is a variant of CNNs in which every convolutional layer is
directly connected to all following downstream layers. It has been used by [SM23b] on
SPECK-32.

DBitNet DBitNet was introduced in [BGH+23] as a “cipher-agnostic” neural network
that aims to avoid SPECK-dedicated features of N DGohr. It is based on dilated convolu-
tional layers. In a dilated convolution, the convolution kernel is not learning dependencies
between neighboring neurons but between neurons that are farther apart. In this way,
DBitNet aims to avoid the input reshaping and bit-slicing convolution of N DGohr. Notably,
using a simple staged3 training pipeline, and a simple additional polishing step, the same
accuracy as Gohr is obtained for SPECK. It has been employed in [BGH+23] to generate
distinguishers for seven primitives automatically (SPECK, SIMON, HIGHT, PRESENT,
KATAN, TEA and XTEA, and LEA).

Inception In the Inception architecture (INC), a layer inspired by GoogLeNet’s Inception
module replaces one of the (convolutional) layers of the original N DGohr architecture. The
Inception module consists of multiple parallel convolutional layers that process the module
input using a variety of kernel sizes. This might allow for extracting features that could not
be extracted with one specific kernel size at the cost of increased training times [GLN22].

2We introduce key vocabulary for Neural Differential Cryptanalysis architectures: MLPs use densely
connected layers with full connectivity between neurons, resulting in many parameters. Convolutional
layers (CNNs) apply filters to detect spatial patterns, requiring more computation but better capturing
hierarchical features. Inception modules combine parallel convolutions with various kernel sizes for enhanced
feature extraction. Residual connections (RESNets) create bypass paths to improve information flow
during training. LSTM (a type of RNN) processes sequential data using memory cells to capture long-term
dependencies. Attention mechanisms dynamically focus on relevant input portions, forming the basis of
transformer networks.

3Staged training refers to the method to continue training the best r − 1 round neural differential
distinguisher in round r.
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In [ZWW24], the authors first proposed to use an Inception-like module to train neural
distinguisher by replacing the initial convolutional block of N DGohr. Some follow up
works [ZWC23, ZLWL23] use INC and obtain neural distinguishes for SIMECK, PRESENT,
CHASKEY, and DES. [YW23] construct INC by replacing the convolutional layers in the
residual blocks of N DGohr and applying this architecture to SPECK.

[BLYZ23] introduced the idea of staged training together with a partially frozen network
(INCfreeze) . The underlying idea for the freezing of particular layers is that “convolutional
layers are viewed as feature extractors” (which can be reused in subsequent rounds and
can therefore be frozen), while “fully connected layers are viewed as a classifier” (which
have to be updated when training a new round).

MLP The MLP (Multi-Layer Perceptron) is a neural network architecture in which
subsequent layers are densely connected. MLPs are often outperformed by residual networks
and CNNs. However, they are generally computationally more lightweight, which motivates
the application of the architecture to 11 of the 24 primitives to investigate their potential
as a neural differential distinguisher.

LSTM and Transformer Long-short term memory cells (LSTMs) were used in [BBCD22,
SSL+22] on GIMLI, TinyJAMBU, and GIFT. In [BPC24], Bose et al. build a distinguisher
for LEA, PRESENT, and HIGHT by training an Encoder network, implemented either
as a Transformer or an LSTM. For the LSTM variant, each ciphertext pair is embedded
using a one-hot encoding scheme supplemented with positional encoding.

Others. In [KJL+23], the first quantum neural network based distinguisher (Quantum)
is built for SPECK. SENet stands for Squeeze-and-Excitation network and was used for
the first time as a neural differential distinguisher in [BGL+22]. SENet introduces a new
building block for CNN that improves the finding of channel interdependencies at almost
no computational cost. [BGL+22] applied SENet to SPECK and SIMON. SE-ResNet
was first used as neural differential distinguisher by [LLS+24], motivated by “the success
of N DGohr on SPECK [Goh19a] and SENet on SIMON [BGL+22]”. [LLS+24] apply SE-
ResNet to SIMON and SIMECK. Note that [BGL+22] also investigates DenseNet; it is,
however, surpassed by SENet and, therefore, does not appear in the following compilation
of best neural distinguishers.

We report Classical ML results, such as SVM in [BBD+23], on the rare occasion that
they are competitive with neural distinguishers. For instance, the distinguishers developed
by Zhang et al. [ZZ21] using classical machine learning methods – including AdaBoost,
Random Forest, Extremely Randomized Trees, and Gradient Boosting Decision Trees–
achieved accuracy rates that were consistently at least 20% lower than those obtained
using convolutional neural networks.

In [ZLHH25], the distinguisher is built using a U-Net architecture consisting of encoding
and decoding parts. This architecture is typically applied for image segmentation tasks
and was used for the analyses presented in GIFT and PRESENT.

6.2 Classification Scheme n-m-T -E for Neural Distinguishers
The proliferation of diverse training configurations for neural distinguishers often com-
plicates the comparison of results across studies. Bellini et al. [BGH+23] addressed this
challenge by proposing a systematic classification framework based on four distinctive
parameters: n, m, T , and E. We adopt this classification scheme throughout our review
due to its demonstrated robustness in organizing the extensive cryptographic literature.
We extend this framework with a taxonomy of symbols representing diverse network
architectures and experimental methodologies, enabling a nuanced categorization.
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6.2.1 Number of ciphertexts per sample: n

In [Goh19a], the scores output by a distinguisher trained to recognize single pairs are
combined for multiple pairs during the key recovery process, increasing the strength of the
signal and resulting classification accuracy. In [GLN22], the authors note that this notion
was rediscovered in several papers and propose a score combining formula to transform a
single pair classifier into a multiple pair classifier, while other works, such as [BGPT21],
used the less effective score averaging. In [SSL+24], the authors proposed to replace scores
aggregation with an MLP to classify based on the scores of multiple pairs.

In this classification, we consider the number of ciphertexts per sample used in the
distinguisher training, independently of external scores aggregation through averaging or
otherwise. This notion was introduced in [BGPT21], who built a neural distinguisher ac-
cepting multiple pairs at once. The Multiple Output Difference (MOD) format, introduced
in [HRC21c], consists in concatenating not multiple pairs, but their respective differences,
i.e., C0 ⊕ C1||C2 ⊕ C3 . . .. In [CSYY23], two different settings are explored: one where the
k pairs that form a sample share the same key and one where they do not. The authors
note that compared to [GLN22], no additional features seem to be learned by gathering
multiple pairs, compared to a single pair distinguisher and score aggregation. Here, whether
one uses a unique key for each pair or reuses the same key for all pairs appears also to
have no significant effect. In [ZWC23], the authors raised the question of the number of
samples to use when the number of pairs per sample increases and consider two scenarios
for training: one where the number of pairs is fixed to 107 and one where the number of
(multi-pair) samples is set to 107. The authors concluded that fixing the number of pairs to
107 (and hence obtaining a training set with 107

n entries) leads to overfitting, fluctuations
in validation accuracy, and slow convergence of the model. This is confirmed by [ZWW24].
Finally, in e.g., [SSL+22], the authors considered polytopic samples with multiple input
differences, where the used plaintexts are (P, P ⊕ δ0, P ⊕ δ1 . . .), effectively building k
relevant pairs from k + 1 plaintexts. A similar technique using plaintext quadruples is
referred to as mixture differential in [WQW+24].

6.2.2 Number of input differences: m

Baksi et al. [BBCD22] explored a setting where a set of m input differences are considered.
This setting was applied to various permutations: KNOT, ASCON, CHASKEY, and
GIMLI, with m = 2 for GIMLI. Su et al. [SZM21] introduced a model called polytope
neural differential network distinguisher. This model uses multiple differences, keeping one
plaintext fixed among the differences and changing the other. In [WTZ+22], the authors
proposed a multiple input difference scheme called NDam, where the first ciphertext is the
encryption of a random plaintext P0, each subsequent ciphertext Ci is the encryption of
Pi−1 ⊕ ∆i−1 so that n = m + 1. The same scheme was used in [BBCD22]. In [BBD+23],
the authors trained neural distinguishers using higher-order differentials.

6.2.3 Feature engineering type: T

Feature engineering is often used in machine learning to derive advanced features from the
raw dataset, e.g., [GBC17]. A natural feature to use for neural differential cryptanalysis
is to replace the ciphertext pairs (T = CT) by their XOR difference (T = δ ). This
approach, used by works such as Baksi et al. [BBCD22], Zezhou et al. [HRC21c], and
Yadav et al. [YK21a], simplifies the training process, at the cost of losing some information.
Similarly, other works [LRC23, ERP22] truncated the ciphertexts to a few bits and used
their XOR difference to significantly reduce the size of the training samples (T = δtr ).

Advanced types of feature engineering (T = A) include, e.g., partial decryption of the
ciphertexts. For instance, in the case of SPECK32, the right half of the previous round state
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can be computed without the key by XORing the two halves and rotating. This type of
feature engineering was used in [BGPT21, HLF+24, ZWW24]. A similar technique permits
the retrieval of the difference in the previous round for SIMON-like ciphers. [BGL+22]
showed that this transformation could significantly improve the accuracies of neural
distinguishers, and [LLS+24] exhibited even better distinguishers on SIMON by exploiting
inferred information from two rounds ahead; their data format is composed of the two
ciphertexts, the difference at the previous round, and the difference two rounds before using
subkey 0 for decryption. We refer to such types of feature engineering as A for Advanced.
Finally, in [LRCL23], two formats labeled by the authors as MRMSD (Multiple Rounds
Multiple Splicing Differences) and MRMSP (Multiple Rounds Multiple Splicing Pairs) use
partial decryption with a random key for one round; in the first case, the output difference
and this estimated previous round difference are given to the neural distinguisher. In the
second case, the corresponding ciphertexts are given. Zhu et al. modify this data format
by performing only partial encryption to some intermediate state of the round function,
i.e., the in- and output of the substitution box nonlinear operation [ZLHH25].

In [YW23], the authors used data format (Rr−1, R′
r−1, dl, C0, C1) for SPECK, where

dl is an estimation of the difference in the left part at round r − 1, computed as ((Lr ⊟
Rr−1) ⊕ (L′

r ⊟ R′
r−1), equivalent to partial decryption with key 0.

6.2.4 Type of distinguishing experiment: E

In the initial setting [Goh19b] (E = R ), the samples are EK(P0)||EK(P0 ⊕ x), and the
label is x

?= δ. Gohr additionally defines the real ciphertext experiment (E = RM ), where
the samples are EK(P0) ⊕ x||EK(P0 ⊕ δ) ⊕ x, and the label is x

?= 0, i.e., the distinguisher
determines whether the ciphertext pair has been XORed with a random mask. The success
of neural distinguishers in this experiment shows that information beyond a simple XOR
difference is learned.

In [BBCD22]’s model 1, the samples are formed as (EK(P )⊕EK(P ⊕δi)), i ∈ [0; m−1],
and the label is i (E = D). In [BR21], the samples are built using modular addition differ-
ence, rather than XOR, to analyze the ciphers TEA and RAIDEN (E = R+ ). In [EGP23],
the samples are built through rotational-XOR differences rather than XOR (E = R+ ).
In [LJSC24a], sample construction employs an XOR difference. For each ciphertext pair
(c, c′), N distinct output masks (Γ1, Γ′

1), . . . , (ΓN , Γ′
N ) are applied to generate an N -bit

input vector for the neural distinguisher, where each bit is computed as xi = Γi · c ⊕ Γ′
i · c′

(E = R+ ). This methodology represents an implementation of differential-linear cryptanal-
ysis, effectively combining differential properties with linear approximations to enhance
the distinguisher’s performance.

6.3 Comparative Review
Based on the full body of research in Neural Differential Cryptanalysis (Subsection 4.1),
this section provides a comparative review of all best published neural distinguishers,
classified according to the previously introduced scheme, together with their neural network
architecture (Subsection 6.1).

The neural differential distinguishers of each publication were selected as follows: i) We
present the best result of each work, either the standard setting (2-1-CT-R or 2-1-δ-R)
or an alternative setting (n-m-T -E). If additionally a result in the standard setting
is given, we will also present it. ii) In most works, no error margins on the results
are provided, preventing us from displaying them. Ideally, the accuracies shown should
be test accuracies on sets of several fresh samples. However, in many works, only the
validation accuracy is reported. iii) Note that from a machine learning and a statistical
perspective, the number of training and validation samples is very important. However,
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from a cryptographic perspective, the number of needed encryptions, i.e., ciphertexts, is
more relevant. Accordingly, the numbers reported in the following under Trn. (training
data) and Val. (validation data) are the number of ciphertexts.

To date, neural distinguishers have been applied to analyze 24 symmetric primitives.
This comparative review enables new research to be seamlessly integrated into the existing
body of work. Comprehensive tables compiling these analyses are provided in the appen-
dices; here, we will focus on SIMON as it is one of the most studied ciphers. The complete
list of primitives analyzed to date is as follows: AES (Table 2), ARADI (Table 3), ASCON
(Table 4), CHASKEY (Table 5), DES (Table 6), FF (Table 7), GIFT (Table 8), GIMLI
(Table 9), GOST (Table 10), HIGHT (Table 11), KATAN (Table 12), KNOT (Table 13),
LBCIoT (Table 15), LEA (Table 14), PRESENT (Table 16), PRIDE (Table 17), SHA3
(Table 18), SIMECK (Table 19), SIMON (Table 20), SKINNY (Table 21), SLIM (Table 22),
SPECK (Table 23), TEA and XTEA (Table 24), and TinyJAMBU (Table 25).

In addition, Bose et al. claimed statistically significant distinguishers for 6-round
SPARX and 8-round PICCOLO-80. As theirs is the only work targeting these ciphers
and their reported improvements for other ciphers challenge fundamental cryptographic
principles, we omitted dedicated tables that would lack contextual comparison. Instead, we
included their distinguishers for LEA, PRESENT, and HIGHT with a critical discussion.

6.3.1 SIMON

Table 1: Overview of the Neural Differential Distinguishers for SIMON.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SIMON-32/64 N DGohr 2-1-A-R 20M 2M - 8 0.834 [BGPT21]

N DGohr 2-1-CT-R 20M 2M - 9 0.5907 [HRC21c]
N DGohr 2-1-CT-R 20M 2M - 9 0.6277 [SZM21]
N DGohr 2-1-CT-R / / - 9 0.6320 [TH21]
N DGohr 4-3-CT-R 40M 4M - 9 0.6373 [SZM21]
N DGohr 4-3-CT-R 40M 4M - 8 0.923 [WQW+24]
N DGohr 64-1-δ-R 640M 6.4M - 10 0.6109 [HRC21c]
SENet 2-1-A-R 4852M 537M - 11 0.517 [BGL+22]
DBitNet 2-1-CT-R 2020M 2M ✓ 11 0.518 [BGH+23]
N DGohr 64-1-A-R 640M 64M - 11 0.6081 [LRCL23]
DenseNet 2-2-CT-D 2020M 2M ✓ 12 0.505 [WWS24]
SE-ResNet 16-1-A-R 160M 16M - 12 0.5152 [LLS+24]
INC 32-1-A-R 1280M 2M - 12 0.5218 [ZWW24]

SIMON-32/64RK N DGohr 2-1-CT-R+ 20M 2M - 11 0.5445 [EGP23]
SE-ResNet 16-1-A-R 160M 16M - 13 0.5262 [LLS+24]
SE-ResNet 16-2-A-D 320M 32M ✓ 13 0.567 [WW24a]

SIMON-48/96 N DGohr 2-1-CT-R 20M 2M - 10 0.5789 [HRC21c]
N DGohr 96-1-δ-R 960M 9.6M - 11 0.6143 [HRC21c]
DenseNet 2-2-CT-D 20M 2M ✓ 12 0.515 [WWS24]
N DGohr 96-1-A-R 960M 96M - 12 0.6159 [LRCL23]

SIMON-48/96RK SE-ResNet 16-2-A-D 320M 32M ✓ 13 0.696 [WW24a]
SIMON-64/128 N DGohr 2-1-CT-R 20M 2M - 11 0.5972 [HRC21c]

N DGohr 128-1-δ-R 1280M 12.8M - 12 0.6957 [HRC21c]
DBitNet 2-1-CT-R 20M 2M ✓ 13 0.518 [BGH+23]
N DGohr 128-1-A-R 1280M 128M - 13 0.701 [LRCL23]
DenseNet 2-2-CT-D 20M 2M ✓ 14 0.506 [WWS24]
SE-ResNet 16-1-A-R 1610M 134M - 14 0.5185 [LLS+24]

SIMON-64/128RK N DGohr 2-1-CT-R+ 20M 2M - 13 0.5151 [EGP23]
SE-ResNet 16-1-A-R 160M 16M - 14 0.5788 [LLS+24]
SE-ResNet 16-2-A-D 320M 32M ✓ 14 0.618 [WW24a]

SIMON-128/256 DBitNet 2-1-CT-R 20M 2M ✓ 20 0.507 [BGH+23]
SIMON-128/256RK N DGohr 2-1-CT-R+ 20M 2M - 16 0.5062 [EGP23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

/ Unknown quantity.
RK Related key setting.

SIMON is a family of AND-RX block ciphers, denoted SIMON-B/K, that encrypt
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blocks of size B with a key of size K. SIMON-32/64, SIMON-48/96, SIMON-64/128,
and SIMON-128/256 have 32, 36, 44, and 72 rounds, respectively. Neural differential
distinguishers have been developed for all versions of SIMON.

Table 20 provides an overview of the differential neural distinguishers developed for
the SIMON family of block ciphers. The most extensively studied variant is SIMON-32,
with various neural network architectures and settings explored across multiple works.
In the standard setting, the best distinguisher achieves round 11 through an automated
pipeline [BGH+23]. By using multiple ciphertext pairs (n = 16, 32, 64) and employing ad-
vanced feature engineering techniques, as in [LRCL23, LLS+24, ZWW24], the distinguisher
performance surpasses this result, extending the analysis to round 12 [LLS+24].

For the case of SIMON, some authors experimented with a vast amount of data: [HRC21c]
used k · 107 for k = 32, 48, 64 (maximum of 640M) pairs for training, and [BGL+22] ob-
tained an 11-round distinguisher for SIMON32 at the cost of staged trained in four steps,
with respectively 107, 228, 2 · 230 (2426M pairs). In [BGH+23], the authors proposed a
polishing step, retraining a neural distinguisher initially trained with 107 pairs with an
additional 109 pairs: 107, 3109 (1010M pairs). This polishing step was also used by Wang
et al. [WWS24]. Similarly, Zhang et al. [ZWW24] used a staged training approach: 4 · 107

samples, each sample with 16 pairs (640M pairs).
In [LLS+24], Lu et al. used advanced feature engineering and 80M ciphertext pairs (107

samples, each composed of 8 pairs) and reached 12 rounds of SIMON32 in the single-key
scenario. In the related key scenario, the same authors obtained a 13-round distinguisher,
whereas [EGP23] only reached 11 rounds with a rotational XOR distinguisher. The feature
engineering proposed in [LLS+24] was also used in [WW24a]. Further, the authors used
staged training for a subset of the obtained distinguishers: 3 · 225 samples, 8 pairs each
(805M pairs).

6.4 Discussion
Based on our comprehensive assessment of research in neural differential cryptanalysis
(Subsection 4.1), we identify several promising directions and critical challenges that merit
further investigation. Our analysis focuses primarily on thoroughly vetted cryptographic
primitives – those subjected to substantial cryptanalytic scrutiny (demonstrated by five or
more papers that have not been challenged), specifically SIMON, SIMECK, SPECK).

Network Architectures (N) Findings on optimal neural network architectures for crypt-
analysis remain contradictory. While Baksi et al. [BBCD22] concluded CNNs were unsuit-
able for distinguishers and found MLPs superior on GIMLI-PERMUTATION, Bellini et al.
[BR21] and Wang et al. [WWH21] demonstrated effective CNN-based distinguishers for
PRESENT and SPECK. Mishra et al. [MPKM+22] reported MLPs outperforming CNNs
on GIFT and PRIDE, whereas Sun et al. [SSL+22] found LSTMs superior to MLPs on
TinyJAMBU and GIFT. Tcydenova et al. [TSL23] evaluated various architectures but
found no significant improvements over ResNet, though noted overfitting issues. Lv et
al. [LJSC24a] comprehensively compared multiple techniques for differential-linear crypt-
analysis, with MLPs consistently outperforming alternatives, including ELLR, Logistic
Regression, and LightGBM.

Convolutional neural networks, pioneered as the original distinguisher architecture in
[Goh19a], consistently demonstrate excellent performance in neural cryptanalysis, with
convolutional architectures ranking among the most effective distinguishers across virtually
all cryptographic primitives with a substantial body of neural cryptanalytic research. This
is expected as DCNNs have demonstrated remarkable feature extraction capabilities across
various disciplines, particularly in image recognition. Once the relevant features have been
identified, classical or simpler neural models can often achieve performance comparable to
their complex neural counterparts [BGPT21, BLYZ23]. However, meaningful comparison
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between concrete approaches remains challenging due to numerous influential factors beyond
architecture alone, including the number of ciphertext samples and input differences, the
sophistication of feature engineering techniques, and the experimental design variations.
This complexity underscores the critical need for comprehensive benchmarking studies to
establish definitive conclusions about optimal approaches, a challenge we address in detail
in Subsection 8.1.

Unlike natural language processing, neural cryptanalysis has not consistently benefited
from the "bigger is better" scaling paradigm described by Kaplan et al. [KMH+20]. Re-
search has not conclusively demonstrated that deeper or wider neural architectures reliably
improve distinguishing capability in cryptographic contexts. Notably, Gohr [Goh19a]
employed shallower architectures for distinguishers targeting near-uniform ciphertext dis-
tributions (specifically for 7 and 8 rounds of SPECK encryption). Differential ciphertext
distributions contain subtle non-uniform statistical properties that remain challenging to
capture. This underscores a fundamental challenge in developing neural networks capable
of effectively learning these cryptographic statistics – a problem requiring sophisticated
modeling approaches, which we examine thoroughly in Subsection 8.2.

Multi-Pair Distinguishers (n > 2) Neural distinguishers that process multiple ciphertext
pairs simultaneously have historically shown minimal practical advantages over simpler
approaches [GLN22, CSYY23]. While these complex multi-pair architectures typically
performed equivalently or worse than single-pair distinguishers with basic score aggregation,
recent evidence suggests this paradigm is shifting – particularly for lightweight block ciphers.
Our comprehensive analysis reveals that for SPECK, SIMON, and SIMECK, multi-pair
distinguishers have successfully broken more rounds than their single-pair counterparts.
This development closely matches common notions in differential cryptanalysis: as the
number of rounds increases, the differential probability decreases, and more data is needed
to observe a bias; grouping multiple pairs into a sample artificially increases the chance
that a rare but relevant differential propagation will occur within each sample.

Interestingly, similar ideas have been widely studied in the machine learning community,
in particular under the name of Multiple Instance Learning [DLLP97] (MIL), but the
corresponding techniques have so far not been applied at all in the context of neural
distinguishers. A typical benchmark for MIL is the Elephant dataset, introduced in [ATH02],
where the samples are groups of images, with a positive label if the group contains an
elephant, and a negative label otherwise. This problem mirrors the case of high rounds
neural distinguishers, where most pairs are not helpful, but rare pairs that follow a ‘good’
differential pattern (the elephants) determine the label. Recent approaches to the MIL
problem, such as [ITW18], seem to be promising directions to explore in order to improve
multi-pair classifiers. Similarly, the problem of anomaly detection has received considerable
attention in the machine learning community; if we choose to treat the ‘elephant pair’ as
an anomaly to an otherwise unremarkable distribution, adapting approaches such as Deep
One-Class Classification [RVG+18] could yield interesting results. Finally, the Deep Set
framework [KATT20] considers functions of sets, and addresses issues such as permutation
invariance, which are relevant to multiple pair classification, for which the order of the
pairs has no importance.

This evolving effectiveness of multi-pair architectures represents a significant devel-
opment and offers a promising direction for future cryptanalytic research; however, this
line of work has so far largely ignored the significant body of work available in the deep
learning community, and we believe there is significant room for improvement through
incorporating these techniques.

Using Multiple Input Differences (m > 1) The effectiveness of differential cryptanalysis
using multiple input differences has been demonstrated across several cipher families,
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including SIMON, SIMECK, and SPECK. Gohr et al. [GLN22] established a crucial
relationship: neural differential distinguisher accuracy correlates with the statistical
distance between the separated ciphertext-difference distributions (particularly when
distinguishing from a uniform distribution E = R). Distinguishers naturally perform better
when targeting input differences that produce more distinguishable output distributions.

Despite this advantage, integrating multiple-difference approaches into practical key
recovery attacks presents significant challenges. The current attack framework pioneered
by Gohr [Goh19a] fundamentally relies on distinguishing real ciphertext distributions from
uniform distributions as its core mechanism. Adapting this framework to leverage the
statistical power of multiple input differences would require substantial modifications to
the underlying cryptanalytic methodology.

One promising research direction is exploiting structural relationships between differen-
tial characteristics through switching bits for adjoining differentials (SBfADs) [BGL+22].
For multi difference distinguishers, requirements could be relaxed to conformance with
any one output difference, rather than requiring all differentials to share identical output
differences.

Feature Engineering (T ) Feature engineering has demonstrated a significant impact on
distinguisher performance [LLS+24], with notable examples including partial decryption
and combining ciphertext values with difference-related features. Interestingly, virtually
all multi-pair distinguishers obtaining state-of-the-art results utilize advanced feature
engineering. Nevertheless, well-designed network architectures can autonomously learn
optimal feature representations, as demonstrated by Gohr et al. [GLN22] for SIMON,
which achieved comparable results to the feature engineering of Bao et al. [BGL+22].

The extent to which hand-crafted features enhance neural network learning capabilities
remains an open research question. Establishing comprehensive benchmarking frameworks
would provide valuable insights into the relative merits of automated versus engineered
feature extraction for cryptanalytic applications (Subsection 8.1).

Alternative Adversarial Models (E) Paralleling classical cryptanalysis, adversarial models
with expanded capabilities consistently outperform against increased cipher rounds, as
demonstrated by related-key and conditional approaches extending several rounds beyond
chosen plaintext counterparts. Rotational cryptanalysis and other specialized techniques
have also shown promising results when adapted to neural frameworks, exploiting structural
weaknesses conventional differential approaches might miss.

The critical research question is what additional adversarial models remain unexplored.
Classical cryptanalysis offers numerous attack vectors yet to be fully adapted to neural
network distinguishers. Systematically mapping these classical techniques to their neural
counterparts could reveal new attack classes.

7 Neural Distinguisher Training: Best Practices
Neural network training is not a deterministic process: it is subject to significant variations
in the outcome that are caused, for example, by the (random) network parameter initializa-
tion process, and the batch process of training data and corresponding differing movement
through the optimization plane. Further, the chosen hyperparameters and neural network
architectures heavily influence the training outcome.

To interpret the success of neural network training correctly, it is important to distin-
guish between training, validation, and test data carefully. Each dataset has an important
role: The training data is used to calculate the loss of the model and to update the model
parameters. However, the goal of neural network training is not good performance (low
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loss) on known data but instead, generalization to previously unseen data. To monitor the
model’s performance on previously unseen data during training, validation data is used.

A commonly observed phenomenon during neural network training is overfitting. At
some point during the training, the model does not learn new generalizable features of the
training data but instead uses its parameters to learn the training dataset “by heart”. This
leads to an increasing validation loss. Instead of using the model that has been trained
for the maximum number of epochs, in this case, one better uses the model with the
minimum validation data loss. However, the validation data has now been used in model
optimization and can no longer be used to characterize performance based on previously
unseen data. Fresh test data should be used for the final characterization instead.

The number of parameters of a deep neural network does not relate to its computational
training cost straightforwardly. Instead, it depends on the computations required by the
particular layers used in the network model. The computational training cost should be
measured in terms of the required number of FLOPs (floating point operations) or MACs
(multiply-accumulate operations). Popular deep learning libraries such as TensorFlow and
PyTorch provide routines to obtain neural network parameter counts as well as FLOPs.4
For example, FLOPs can be evaluated with the TensorFlow Keras module keras-flops,
and the TensorFlow native routine model.count_params() provides the parameter count.

Commonly Overlooked Best Practices for Neural Distinguisher Training

1. Results Reporting I: Clearly indicate the results obtained on training,
validation, and test datasets and the size of each dataset.

2. Results Reporting II: Denote accuracy (or any other metrics) with error
margins on multiple sets of freshly generated test data.

3. Neural Network Reporting: Indicate the network’s memory requirements
using FLOPs and the number of neural network parameters, and training time
per epoch on the specific computational environment (e.g., number and type
of GPUs or CPUs).

4. Open Reproducibility: Publish the code and trained model parameters to
enable review, replication, and future comparisons.

Though not unique to neural differential cryptanalysis, these best practices were
frequently overlooked in papers during our literature review, underscoring the importance
of emphasizing these standards.

8 Future Challenges
8.1 The Benchmarking Challenge
As the field of neural cryptanalysis grows, it is becoming more difficult to compare different
works on a given primitive due to significant variability in the architectures used, training
regimes, distinguishing experiments, or feature engineering. To gain a better understanding
of neural distinguisher, we see the creation of a benchmarking platform as an important
challenge in the medium term. The goal of such a platform would be to compare neural
architectures submitted by authors on sets of standard problems and compare them in a
leaderboard. This objective is, however, not straightforward, and we discuss some friction
points below.

Defining Problems A problem can be defined as an n-M -T -E configuration, primitive,
training pipeline, and dataset size. A logical first step would be evaluating all models on the

4The performance of libraries for training neural distinguishers has been compared in [BBD+23].
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initial SPECK32 problem in the 2-1-CT-R setting to identify top-performing architectures.
Training regimes are critical: Gohr’s work [Goh19a] required an advanced pipeline

with pre-training on likely differences followed by re-training with 100× more samples
to reach 8 rounds. Subsequent research often employs similar polishing techniques. This
creates a distinction between raw performance (training from scratch under consistent
conditions) and enhanced accuracy (using pretraining [Goh19b], layer freezing [GLN22],
previous-round distinguisher retraining [BR21], or increased final-round samples). A
standardized pipeline for comparing enhanced distinguishers would be beneficial.

Sample quantity also matters. Many works follow Gohr’s approach [Goh19a] (107

training, 106 test samples), as reduction significantly impacts performance. Multiple-pair
sample approaches [BBCD20] present comparison challenges: fixing sample count gives
unfair advantages to models seeing more pairs, while fixing pair count may disadvantage
models trained on fewer samples (extreme case: 107 pairs per sample would mean training
on a single sample). Despite some works using over 1 billion ciphertexts, little research
explores this data magnitude in the 2-1-CT-R scenario versus multiple-pair approaches –
an axis worth including in benchmarking studies.

Metrics The first challenge to comparing different models is to define what is to be
compared. As of now, the main metrics used to compare neural distinguishers are accuracy,
true positive rate, true negative rate, and more recently [BGH+23], the number of floating
point operations (FLOPS), which impacts the training time and quantifies the time
complexity of the inference part in a key recovery attack. In the Deep Learning community,
the EfficientNet framework [TL19], which proposes techniques to scale a neural network
based on inference speed or parameter count constraints, is often used as a baseline
comparison for new models. For neural distinguishers, we could similarly use the number
of parameters and FLOPs ratio with the original architecture from Gohr, providing context
to the obtained accuracy. However, we also need dedicated metrics adapted to the specific
use cases of neural cryptanalysis. In particular, the current metrics do not provide much
information on the key recovery complexity, which largely depends on the wrong key
response profile (see Appendix B), prepended differentials, and neutral bits.

8.2 The AI-N D Challenge
The neural network architectures currently employed in Neural Differential Cryptanalysis
have origins that trace back several years. For instance, the Inception Module by Google
researchers was introduced in a seminal paper in 2014 [SLJ+15]. Similarly, Kaiming
He et al. [HZRS16] won the ILSVRC (ImageNet Large Scale Visual Recognition Chal-
lenge) 2015 using ResNet. Attention was introduced in “Attention is all you need” at
NeurIPS 2017 [VSP+17], and Squeeze-and-Excitation Networks at CVPR 2018 [HSS18].

In recent years, deeper and more complex models led to a larger parameter count.
Figure 3 illustrates the general trend of the increasing parameter count in deep learning
models. This is particularly evident in the case of Large Language Models (LLMs) like
GPT, which contain billions of parameters. The deep learning models used to date in
Neural Differential Cryptanalysis have low parameter counts compared to more modern
“Deep Learning Era” models. Challenges when increasing the parameter count of the
models are higher computational load, longer training times, and overfitting.

However, the advancement of AI technologies such as transformers and reinforcement
learning, coupled with increased computational power, holds significant potential for en-
hancing cryptographic neural differential distinguishers. Transformers, with their capability
to handle long-range dependencies and their effectiveness in capturing complex patterns,
offer a robust framework for analyzing cryptographic data. Reinforcement learning, on
the other hand, provides a powerful approach for optimizing neural network performance
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Figure 3: Adapted from [Epo24] with added data for Gohr’s N DGohr on Table 23, and
DBitNet on Table 9 from [BGH+23, Table 5].

through iterative feedback and learning from interactions. These advanced AI methodolo-
gies, when applied to cryptographic neural differential distinguishers, can lead to more
accurate models. The increased computational power available today allows for training
deeper and more complex networks, which can explore a larger hypothesis space and
uncover subtle cryptographic weaknesses that simpler models might miss.

Up until now, cryptographers have mainly attempted to apply AI models. As illustrated
in Subsection 8.1, a leaderboard with cryptographically meaningful metrics should be
established. Based on the existence of transparent metrics, the AI-N D Challenge
aims at (i) motivating cryptographers to use more advanced AI technologies, but also at
(ii) motivating cryptographers to establish an AI-competition5 to allow AI researchers and
engineers to apply state-of-the-art methods to Neural Differential Cryptanalysis.

9 Conclusions
In this paper, we perform a systematic review of the follow-ups to Gohr’s seminal paper on
neural distinguishers. In the process, we identify and classify works focusing on training
neural distinguishers. This systematic review uncovered a young yet vast body of research
and a need for common methodological guidelines to grow the field, which we attempt to
provide. We also identified two challenges, namely comparing neural distinguisher results
and scaling up to much larger and more ambitious architectures.

Over the past 6 years, multiple new settings have been explored for differential crypt-
analysis, using multiple pairs per sample or polytopic differences, with the same or varied
keys across samples. In addition, various types of feature engineering, particularly through
partial inversion, have been explored. These address the question of what clues we can
give the neural distinguisher, and multiple avenues are left to explore in that direction.
But more fundamentally, what matters perhaps more is what question we ask the neural
distinguisher, given this clue, or said differently, what task we ask the neural network to
perform. So far, a large portion of the literature has focused on differential-based property

5Small AI-competitions are hosted on platforms such as Kaggle, while large AI-competitions include
the “Makrikadis” time series forecasting competition [MSA20], or ILSVRC [RDS+15].

https://www.kaggle.com/
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for one pair and one input difference, but many variations could be built, as well as tasks
related to different types of cryptanalysis or entirely new distinguishing experiments.
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A Comparative Review of all Neural Differential Distin-
guishers

A.1 AES
AES is a widely used block cipher standardized by NIST in 2001, designed for general-
purpose encryption applications. It operates on 128-bit blocks and supports key sizes of
128, 192, or 256 bits. The cipher’s structure comprises 10, 12, or 14 rounds (depending
on the key size), each involving four transformations: SubBytes (substitution), ShiftRows
(permutation), MixColumns (linear mixing), and AddRoundKey. Notably, AES’s SubBytes
transformation uses a single 8-bit S-box followed by an affine transformation.

A.2 ARADI
ARADI is a low-latency block cipher introduced by the NSA in 2024, specifically designed
for memory encryption applications. It operates on 128-bit blocks and utilizes a 256-bit key.
The cipher’s structure comprises 16 rounds, each involving a combination of substitution
and permutation operations. Notably, ARADI’s round function employs a unique S-box, a
linear layer, and a key addition layer.
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Table 2: Overview of the Neural Differential Distinguishers for AES.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
AES-128 N DGohr 2-1-CTtr-R 20M 2M - 2 0.9981 [ZWL24]

N DGohr 2-1-CT-R 20M 2M - 2 1 [ZWL24]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

RK Related key setting.

Bellini et al. [BFG+24] used the automatic analysis tool CLAASP [BGG+23] to
identify suitable input differences and to subsequently obtain (related-key) differential
neural distinguisher for the ARADI block cipher.

Table 3: Overview of the Neural Differential Distinguishers for ARADI.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
ARADI N DGohr 2-1-CT-R 20M 2M ✓ 5 0.5954 [BBCD22]
ARADI RK N DGohr 2-1-CT-R 20M 2M ✓ 6 0.5631 [BBCD22]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

RK Related key setting.

A.3 ASCON
ASCON is an SPN-based permutation with an input size of 320 bits. It can be used within
a sponge construction to build the authenticated ciphers ASCON-128 and ASCON-128a,
both using 128-bit keys and 12 rounds in the initialization, and respectively 64 and 128-bit
messages, and 6 and 8 rounds in the encryption process. The hash function ASCON-hash,
also based on sponge construction, hashes 64-bit messages over 12 rounds. ASCON was
announced as the winner of the NIST Lightweight Cryptography Competition in February
2023.

[SSL+24] trained neural differential distinguishers for the 4-round ASCON-PERMUTATION
with an accuracy of 0.5069 in the standard setting (2-1-δ-R) and were able to improve the
accuracy to 0.6925 by training another neural network to classify based on the distribution
of multiple scores. We do not include this result in the table, as it is a system where the
neural distinguisher part is run separately on single pairs rather than a neural distinguisher
accepting multiple pairs.

Table 4: Overview of the Neural Differential Distinguishers for ASCON.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
ASCON MLP 3-2-δ-D 1.1M 1.1M - 3 0.9861 [BBCD22]

MLP 2-1-δ-R 17M 2M - 4 0.502 [YK24]
MLP 2-1-δ-R 20M 20M - 4 0.5069 [SSL+24]

ASCONUnkeyed Classical ML 2-2-δ-D 64K 16K - 3 0.916 [BBD+23]‡

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and
generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.
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A.4 CHASKEY
CHASKEY is a 128-bit ARX-based permutation on 8 rounds.
In [CSYY23], the best distinguisher used 16 pairs per sample, though the authors presented
a valid single-pair distinguisher for CHASKEY and other ciphers as well. In several ciphers,
the authors observed decreasing accuracy as n increases, which starkly contrasts with
established findings in the literature.

Table 5: Overview of the Neural Differential Distinguishers for CHASKEY.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
CHASKEY-PERMUTATION N DGohr 2-1-CT-R 17M 40K - 4 0.6161 [BBCD22]‡

N DGohr 32-1-CT-R 20M 2M - 4 0.7712 [CSYY23]
INC 16-1-CT-R 60M 2M - 5 0.5181 [ZWC23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and
generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.5 DES
DES (Data Encryption Standard) is a 16-round SPN block cipher working with 56-bit
keys and 64-bit blocks.

Table 6: Overview of the Neural Differential Distinguishers for DES.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
DES N DGohr 2-1-CT-R 20M 2M - 5 0.58 [CSY23]

N DGohr 4-1-CT-R 20M 2M - 6 0.5653 [CSYY23]
INC 32-1-CT-R 1280M 32M - 7 0.5114 [ZWC23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

Zhang et al. [ZWC23] used a staged training approach to obtain a distinguisher for
7-round DES: 4 · 107 samples, 16 pairs each (640M ciphertext pairs).

A.6 FF1 and FF3
FF1 and FF3 are format-preserving encryption algorithms, with 10 and 8 rounds, respec-
tively, with block sizes of 32 and 128 bits and key sizes of 128 bits. We use the notations
FFX-D when the domain is digits and FFX-L when the domain is lowercase characters.

In [KKJ+24], the authors performed neural cryptanalysis of FF1 and FF3 for digits
(FFX-D) and lowercase letters (FFX-L). We report the best results in the 2-1-CT-R setting
but note that the authors additionally performed experiments in the m-2-CT-D setting
with similar, yet not directly comparable, results. Experiments were conducted for the
classification of up to 15 input differences. However, it is not immediately clear which
results are the best. The number of samples for training and test was not given, nor is the
source code (/-entries in Table 7).
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Table 7: Overview of the Neural Differential Distinguishers for FF.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
FF1-D MLP 2-1-CT-R / / - 10 0.855 [KKJ+24]
FF1-L MLP 2-1-CT-R / / - 2 0.522 [KKJ+24]
FF3-D MLP 2-1-CT-R / / - 8 0.977 [KKJ+24]
FF3-L MLP 2-1-CT-R / / - 2 0.554 [KKJ+24]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

/ Unknown quantity.

A.7 GIFT

GIFT is a PRESENT-inspired SPN cipher, using 128-bit keys to encrypt 64-bit (GIFT64)
or 128-bit (GIFT128) blocks for 28 and 40 rounds, respectively. GIFT was one of the
finalists of the NIST Lightweight Cryptography Competition.

In [ZZY+21]†, the authors claimed a distinguisher on 7 rounds because the training
accuracy was 0.6487, despite the validation accuracy being non-significant (0.5002); in the
table, we report this 7 rounds distinguisher as it is the best one claimed by the authors,
but also their 6-round distinguisher, which has a significant validation accuracy.

In [MPKM+22]†, the authors claimed a full round distinguisher on GIFT-64 with over
90% accuracy, using 220 polytopic samples (composed of 3 ciphertexts each) in total, of
which 15% are kept for validation, respectively testing, and a simple MLP architecture; they
also claimed a full round distinguisher on PRIDE with 100% accuracy. Full-round attacks
on modern and reputable ciphers are an extraordinary claim and require extraordinary
evidence, which the author’s manuscript does not provide.

In [RRSM22a], only 10K samples were used for training and test; as a result, the
distinguishers in Table 5 exhibit significant overfitting (e.g., 92% training accuracy and
25% test accuracy for M1 on 6 rounds).

Table 8: Overview of the Neural Differential Distinguishers for GIFT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
GIFT-64 UNet 12-1-A-R / / - 4 0.725 [ZLHH25]‡

LSTM 3-2-CT-R 17M 4M - 6 0.5754 [SSL+22]
MLP 3-2-δ-R 2.2M 500K - FULL 0.96 [MPKM+22]†

GIFT-128 MLP 2-1-δ-R 17M 2M - 7 0.55 [YK24]
MLP 2-1-δ-R 20M 2M - 7 0.5542 [SSL+24]

TweGIFT-128 MLP 2-1-CT-R 2M 200K - 6 0.5675 [ZZY+21]‡
MLP 2-1-CT-R 2M 200K - 7 0.5002 [ZZY+21]‡

GIFT-COFB MLP 2-4-δ-D 20K 20K - 4 0.615 [RRSM22a]‡

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

/ Unknown quantity.
† A critical discussion of these results is provided in the text.
‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and

generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.
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A.8 GIMLI
GIMLI is a 24-round permutation acting on 384 bits, from which a hash function GIMLI-
HASH and an authenticated cipher GIMLI-CIPHER are derived.

Table 9: Overview of the Neural Differential Distinguishers for GIMLI.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
GIMLI DBitNet 2-1-CT-R 20M 2M ✓ 11 0.524 [BGH+23]
GIMLI-HASH MLP 3-2-δ-D 400K 40K - 8 0.5219 [BBCD22]‡

GIMLI-CIPHER MLP 3-2-δ-D 400K 40K - 8 0.5099 [BBCD22]‡

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and
generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.9 GOST
GOST is a block cipher developed by the Soviet Union. It operates on 64-bit blocks with a
256-bit key and follows a Feistel network structure with 32 rounds. Each round applies a
key-dependent substitution using fixed S-boxes, followed by modular addition and bitwise
rotations to ensure diffusion and security.

Table 10: Overview of the Neural Differential Distinguishers for GOST.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
GOST N DGohr 2-1-CT-R 2M 200K - 9 0.5430 [TSL23]
GOST RK N DGohr 2-1-CT-R 2M 200K - 14 0.7134 [TSL23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

RK Related key setting.

A.10 HIGHT
HIGHT is a 32-round ARX-based block cipher operating on 64-bit blocks and 128-bit keys.

Seok et al. [Seo24] achieveded a distinguishing accuracy of 0.5707 on 10-round HEIGHT
by analyzing only half of the ciphertext difference (4 out of 8 bytes). These specific bytes
were selected through their analysis of the HIGHT round function.

Bose et al. [BPC24] † claimed advancements in distinguishing additional encryption
rounds through sequential model training on ciphertext pairs. However, these findings
contradict established cryptographic theory, which shows distinguishability decreases
monotonically with increasing rounds – a pattern absent in their results. Notably, Bellini et
al. [BGH+23] reported superior distinguishers for rounds 9 and 10 of HIGHT, challenging
the purported architecture’s effectiveness in detecting differential patterns. Given these
theoretical and empirical inconsistencies, independent verification is necessary before
accepting these anomalous results. We report the best distinguishers with statistical
significance at the 95% confidence level (z-scores > 1.96, p < 0.05), corresponding to
accuracies above 0.5011 on a test set of 5 × 106 samples.
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Table 11: Overview of the Neural Differential Distinguishers for HIGHT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
HIGHT N DGohr 2-1-CT-R 2M 200K - 9 0.7472 [TSL23]

N DGohr 2-1-δtr-R 20M 2M - 10 0.5707 [Seo24]
DBitNet 2-1-CT-R 20M 2M ✓ 10 0.751 [BGH+23]
N DGohr 2-1-CT-R 2M 200K - 11 0.7472 [TSL23]
LSTM 2-1-A-R 10M 500K - 15 0.5015 [BPC24] †

HIGHT RK DBitNet 2-1-CT-R 20M 2M ✓ 14 0.563 [BGH+23]
DenseNet 2-2-CT-D 20M 2M ✓ 14 0.640 [WWS24]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

RK Related key setting.
† A critical discussion of these results is provided in the text.

A.11 KATAN
KATAN is a family of FSR-based block ciphers with block sizes 32, 48, or 64, key size 80,
and 254 rounds.

For KATAN32, [BGH+23] reached statistically significant accuracies up to 69 rounds
in an automatically generated distinguisher, and noted that this can be improved to a
71-round distinguisher with 0.5034 ± 0.0002 accuracy using their simple polishing step. In
contrast, [LCLH22] reached 51 rounds in the standard setting and 59 when using 64 pairs.

In [LLHC23, LCLH22], the authors enhanced their neural distinguishers by prepending
an r-round conditional differential that holds with probability 1 to an s-round neural
distinguisher. While we focus solely on pure differential distinguishers in our analysis,
it is worth noting that in [LLHC23], the neural distinguishers were specifically trained
under the assumption that the conditional differential holds. This constraint on the input
distribution enabled the distinguishers to achieve higher accuracy.

In [LLHC23], these distinguishers lead to practical key recovery on 97, 82, 70 rounds of
KATAN32, 48 and 64 in the single key model. In [LCLH22], practical key recoveries were
obtained for 125, 106 and 95 rounds respectively, in the related key scenario. Single-key
conditional neural distinguishers were also mentioned in [LCLH22] for 85, 72 and 61 rounds
respectively, but the r + s decomposition was not explicitly mentioned so we omit them in
the table.
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Table 12: Overview of the Neural Differential Distinguishers for KATAN.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
KATAN32 N DGohr 2-1-δ-R 20M 2M - 51 0.533 [LCLH22]

N DGohr 128-1-δ-R 1280M 128M - 59 0.575 [LCLH22]
DBitNet 2-1-CT-R 20M 2M ✓ 69 0.505 [BGH+23]

KATAN32 C N DGohr 64-1-δ-R 64M 6.4M - 58 0.602 [LLHC23]
N DGohr 128-1-δ-R 1280M 128M - 85 0.570 [LCLH22]

KATAN32 RK,C N DGohr 128-1-δ-R 1280M 128M - 112 0.647 [LCLH22]
KATAN48 N DGohr 2-1-δ-R 20M 2M - 40 0.58 [LCLH22]

N DGohr 96-1-δ-R 960M 96M - 50 0.54 [LCLH22]
KATAN48 C N DGohr 64-1-δ-R 64M 6.4M - 47 0.582 [LLHC23]

N DGohr 96-1-δ-R 960M 96M - 72 0.582 [LCLH22]
KATAN48 RK,C N DGohr 48-1-δ-R 960M 96M - 96 0.625 [LCLH22]
KATAN64 N DGohr 2-1-δ-R 20M 2M - 31 0.718 [LCLH22]

N DGohr 128-1-δ-R 1280M 128M - 36 0.548 [LCLH22]
KATAN64 C N DGohr 64-1-δ-R 64M 6.4M - 26 0.613 [LLHC23]

N DGohr 128-1-δ-R 1280M 128M - 61 0.613 [LCLH22]
KATAN64 RK,C N DGohr 128-1-δ-R 1280M 128M - 86 0.728 [LCLH22]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

RK Related key setting.
C Conditional setting.

A.12 KNOT
KNOT is an SPN-based permutation acting on a 256, 384, or 512-bit state; when used in
a MonkeyDuplex construction to build a cipher, it uses 28 to 52 rounds, depending on the
version.

In [BBCD22], the authors useed a neural distinguisher to recognize whether a 1
difference is introduced in the first or the second byte.

Table 13: Overview of the Neural Differential Distinguishers for KNOT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
KNOT-256 MLP 3-2-δ-D 1.6M 1.6M - 10 0.5912 [BBCD22]
KNOT-512 MLP 3-2-δ-D 1.6M 1.6M - 12 0.6032 [BBCD22]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

A.13 LEA
LEA is an ARX-based block cipher, encrypting 128-bit plaintexts with 128-, 192- or 256-bit
keys for 24, 28, or 32 rounds, respectively. For LEA, [BGH+23] propose the first neural
differential distinguisher, reaching 11 rounds with accuracy 0.5109. In comparison, the
proposal of LEA [HLK+14] presents a differential characteristic with probability 2−98 for
11 rounds, and 2−128 for 12 rounds.

Bose et al. [BPC24] † claimed advancements in distinguishing additional encryption
rounds through sequential model training on ciphertext pairs. However, these findings
contradict established cryptographic theory, which shows distinguishability decreases
monotonically with increasing rounds – a pattern absent in their results. Notably, Bellini et
al. [BGH+23] reported superior distinguishers for rounds 9 and 10 of HIGHT, challenging
the purported architecture’s effectiveness in detecting differential patterns. Given these



David Gerault, Anna Hambitzer, Moritz Huppert and Stjepan Picek 47

theoretical and empirical inconsistencies, independent verification is necessary before
accepting these anomalous results. We report the best distinguishers with statistical
significance at the 95% confidence level (z-scores > 1.96, p < 0.05), corresponding to
accuracies above 0.5011 on a test set of 5 × 106 samples.

Table 14: Overview of the Neural Differential Distinguishers for LEA.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
LEA-128 DBitNet 2-1-CT-R 20M 2M ✓ 11 0.512 [BGH+23]

Transformer 2-1-A-R 10M 500K - 13 0.5012 [BPC24] †

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

A.14 LBCIoT
LBCIoT is a 32-round block cipher encrypting 32-bit plaintexts with an 80-bit key.
In [TTJ23], the authors propose a neural distinguisher on 7 rounds and build a practical
key recovery attack for 8 rounds.

Table 15: Overview of the Neural Differential Distinguishers for LBCIoT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
LBC-IoT N DGohr 2-1-CT-R 2M 200K - 7 0.6408 [TTJ23]‡

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and
generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.15 PRESENT
PRESENT is an SPN-based block cipher, encrypting 64-bit blocks with 80 (PRESENT-80)
or 128-bit keys (PRESENT-128) for 31 rounds.

In [BGH+23], a 9-round distinguisher with an accuracy of 0.5092 was given, which
favorably compares to the 7-round distinguishers of [CSYY23], despite [CSYY23] using four
pairs per sample. On the other hand, [ZW22] obtained a slightly higher accuracy at the
cost of using 32 ciphertexts per sample. In comparison, the best differential characteristic
for PRESENT reduced to 9 rounds has probability 2−36 [Wan07].

Bose et al. [BPC24] † claimed advancements in distinguishing additional encryption
rounds through sequential model training on ciphertext pairs. However, these findings
contradict established cryptographic theory, which shows distinguishability decreases
monotonically with increasing rounds – a pattern absent in their results. Notably, Bellini et
al. [BGH+23] reported superior distinguishers for rounds 9 and 10 of HIGHT, challenging
the purported architecture’s effectiveness in detecting differential patterns. Given these
theoretical and empirical inconsistencies, independent verification is necessary before
accepting these anomalous results. We report the best distinguishers with statistical
significance at the 95% confidence level (z-scores > 1.96, p < 0.05), corresponding to
accuracies above 0.5011 on a test set of 5 × 106 samples.
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Table 16: Overview of the Neural Differential Distinguishers for PRESENT.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
PRESENT-64/80 N DGohr 8-1-CT-R 20M 2M - 7 0.5853 [CSYY23]

UNet 12-1-A-R / / - 7 0.664 [ZLHH25]‡
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.512 [BGH+23]
CNN 2-2-δ-D 20M 2M - 8 0.515 [WWH21]
INC 32-1-CT-R 960M 32M - 8 0.5416 [ZWC23]
LSTM 2-1-A-R 10M 500K - 12 0.5014 [BPC24] †

PRESENT-64/80 RK MLP 6-1-δ-R 4.2M∗ 1.9M∗ - 5 0.614 [PSM23]
CNN 2-2-δ-D 20M 2M - 10 0.517 [WWH21]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

RK Related key setting.
‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and

generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.16 PRIDE
PRIDE is a 20-round SPN cipher using 64-bit blocks and 128-bit keys.
In [MPKM+22], the authors claimed a full-round distinguisher on the cipher with 100%
accuracy, which seems likely to be attributed to a methodology issue than an actual break,
as a perfect accuracy is often a sign of overfitting, especially considering the lack of evidence
provided in the paper.

Table 17: Overview of the Neural Differential Distinguishers for PRIDE.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
PRIDE MLP 2-1-δ-R 734K 157K - 20 1 [MPKM+22]‡

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and
generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.17 SHA3
SHA3-256 is a 24-round sponge-based hash function with an output size of 256.

Table 18: Overview of the Neural Differential Distinguishers for SHA3.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SHA3-256 N DGohr 2-1-CT-R 2M 2M - 3 0.9904 [CSYY23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

A.18 SIMECK
SIMECK is a variant of SIMON using a key schedule similar to that of SPECK. SIMECK-
32/64, SIMECK 48/96, and SIMECK-128/256 have 32, 36, and 44 rounds, respectively.
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In [ZLWL23], the authors used an inception-based architecture and utilized 8 pairs per
sample, with the special format (∆xr, ∆yr, xr, yr, x′

r, y′
r, ∆yr−1, p∆yr−2); the authors used

the staged training approach proposed by Gohr in [Goh19a]. Their best distinguisher
reached 12 rounds of SIMECK32.

In [WTZ+22], the authors investigated two variations of a multiple input differences
scenario, where the samples are the concatenations of pairs with differences δi. In NDrm, a
sample is the concatenation of a pair of ciphertexts for each difference (resulting in n = 2m);
in NDam, the first ciphertext is the encryption of a random plaintext P0, each subsequent
ciphertext Ci is the encryption of Pi−1 ⊕ ∆i−1 so that n = m + 1. The distinguishers were
trained on 224 (16.8M) samples, each containing 4 ciphertexts, and tested on 218 (0.3M).
The accuracy of 50.42% may not be statistically significant and should be indicated with a
mean and standard deviation on fresh sets of test samples.

In [LTZ22b], the authors proposed training a neural distinguisher multiple times
independently and selecting the model with the highest test accuracy. Notably, they
reported successfully obtaining a single 10-round Simeck distinguisher in one out of 20
independent training attempts. Furthermore, they employed a Mixed-Integer Linear
Programming (MILP) model to identify a highly probable differential, which was then
combined with the neural distinguisher.

In [WW24a], Wang et al. constructed related-key neural distinguishers to distinguish
two differences (E = D). They proposed a greedy and exhaustive search for optimal input
difference combination based on the bias score proposed in [GLN22].

Table 19: Overview of the Neural Differential Distinguishers for SIMECK.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SIMECK-32 N DGohr 2-1-CT-R 20M 2M - 10 0.5407 [LTZ22b]

N DGohr 2-1-CT-R 20M 2M - 10 0.5438 [LTZ22a]
N DGohr 4-3-A-R 67M 1M - 11 0.5042 [WTZ+22]
DenseNet 2-2-CT-D 2020M 2M ✓ 12 0.505 [WWS24]
SE-ResNet 16-1-A-R 1394M 134M - 12 0.5146 [LLS+24]
INC 16-1-A-R 32480M 32M - 12 0.5161 [ZLWL23]

SIMECK-32/64RK N DGohr 2-1-CT-R+ 20M 2M - 15 0.5134 [EGP23]
SE-ResNet 16-1-A-R 320M 32M - 15 0.5467 [LLS+24]
SE-ResNet 16-2-A-D 320M 32M ✓ 15 0.568 [WW24a]

SIMECK-32Unkeyed MLP 2-2-δ-D 66K 66K - 9 0.526 [BBD+23]‡

SIMECK-48/96 DenseNet 2-2-CT-D 20M 2M ✓ 15 0.505 [WWS24]
SIMECK-48/96RK N DGohr 2-1-CT-R+ 20M 2M - 17 0.5206 [EGP23]

SE-ResNet 16-2-A-D 320M 32M ✓ 19 0.523 [WW24a]
SIMECK-64/128 DenseNet 2-2-CT-D 20M 2M ✓ 18 0.507 [WWS24]

SE-ResNet 16-1-A-R 1394M 134M - 18 0.5218 [LLS+24]
N DGohr 2-1-CT-R+ 20M 2M - 20 0.5212 [EGP23]

SIMECK-64/128RK SE-ResNet 16-1-A-R 320M 32M - 22 0.5180 [LLS+24]
SE-ResNet 16-2-A-D 320M 32M ✓ 22 0.526 [WW24a]

SIMECK-64Unkeyed MLP 2-2-δ-D 66K 66K - 14 0.55 [BBD+23]‡

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

RK Related key setting.
‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and

generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.19 SIMON
SIMON is a family of AND-RX block ciphers, denoted SIMON-B/K, that encrypt blocks of
size B with a key of size K. SIMON-32/64, SIMON-48/96, SIMON-64/128, and SIMON-
128/256 have 32, 36, 44, and 72 rounds, respectively. Neural differential distinguishers
have been developed for all versions of SIMON.
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Table 20: Overview of the Neural Differential Distinguishers for SIMON.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SIMON-32/64 N DGohr 2-1-A-R 20M 2M - 8 0.834 [BGPT21]

N DGohr 2-1-CT-R 20M 2M - 9 0.5907 [HRC21c]
N DGohr 2-1-CT-R 20M 2M - 9 0.6277 [SZM21]
N DGohr 2-1-CT-R / / - 9 0.6320 [TH21]
N DGohr 4-3-CT-R 40M 4M - 9 0.6373 [SZM21]
N DGohr 4-3-CT-R 40M 4M - 8 0.923 [WQW+24]
N DGohr 64-1-δ-R 640M 6.4M - 10 0.6109 [HRC21c]
SENet 2-1-A-R 4852M 537M - 11 0.517 [BGL+22]
DBitNet 2-1-CT-R 2020M 2M ✓ 11 0.518 [BGH+23]
N DGohr 64-1-A-R 640M 64M - 11 0.6081 [LRCL23]
DenseNet 2-2-CT-D 2020M 2M ✓ 12 0.505 [WWS24]
SE-ResNet 16-1-A-R 160M 16M - 12 0.5152 [LLS+24]
INC 32-1-A-R 1280M 2M - 12 0.5218 [ZWW24]

SIMON-32/64RK N DGohr 2-1-CT-R+ 20M 2M - 11 0.5445 [EGP23]
SE-ResNet 16-1-A-R 160M 16M - 13 0.5262 [LLS+24]
SE-ResNet 16-2-A-D 320M 32M ✓ 13 0.567 [WW24a]

SIMON-48/96 N DGohr 2-1-CT-R 20M 2M - 10 0.5789 [HRC21c]
N DGohr 96-1-δ-R 960M 9.6M - 11 0.6143 [HRC21c]
DenseNet 2-2-CT-D 20M 2M ✓ 12 0.515 [WWS24]
N DGohr 96-1-A-R 960M 96M - 12 0.6159 [LRCL23]

SIMON-48/96RK SE-ResNet 16-2-A-D 320M 32M ✓ 13 0.696 [WW24a]
SIMON-64/128 N DGohr 2-1-CT-R 20M 2M - 11 0.5972 [HRC21c]

N DGohr 128-1-δ-R 1280M 12.8M - 12 0.6957 [HRC21c]
DBitNet 2-1-CT-R 20M 2M ✓ 13 0.518 [BGH+23]
N DGohr 128-1-A-R 1280M 128M - 13 0.701 [LRCL23]
DenseNet 2-2-CT-D 20M 2M ✓ 14 0.506 [WWS24]
SE-ResNet 16-1-A-R 1610M 134M - 14 0.5185 [LLS+24]

SIMON-64/128RK N DGohr 2-1-CT-R+ 20M 2M - 13 0.5151 [EGP23]
SE-ResNet 16-1-A-R 160M 16M - 14 0.5788 [LLS+24]
SE-ResNet 16-2-A-D 320M 32M ✓ 14 0.618 [WW24a]

SIMON-128/256 DBitNet 2-1-CT-R 20M 2M ✓ 20 0.507 [BGH+23]
SIMON-128/256RK N DGohr 2-1-CT-R+ 20M 2M - 16 0.5062 [EGP23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

/ Unknown quantity.
RK Related key setting.

Table 20 provides an overview of the differential neural distinguishers developed for
the SIMON family of block ciphers. The most extensively studied variant is SIMON-32,
with various neural network architectures and settings explored across multiple works.
In the standard setting, the best distinguisher achieves round 11 through an automated
pipeline [BGH+23]. By using multiple ciphertext pairs (n = 16, 32, 64) and employing ad-
vanced feature engineering techniques, as in [LRCL23, LLS+24, ZWW24], the distinguisher
performance surpasses this result, extending the analysis to round 12 [LLS+24].

For the case of SIMON, some authors experimented with a vast amount of data: [HRC21c]
used k · 107 for k = 32, 48, 64 (maximum of 640M) pairs for training, and [BGL+22] ob-
tained an 11-round distinguisher for SIMON32 at the cost of staged trained in four steps,
with respectively 107, 228, 2 · 230 (2426M pairs). In [BGH+23], the authors proposed a
polishing step, retraining a neural distinguisher initially trained with 107 pairs with an
additional 109 pairs: 107, 3109 (1010M pairs). This polishing step was also used by Wang
et al. [WWS24]. Similarly, Zhang et al. [ZWW24] used a staged training approach: 4 · 107

samples, each sample with 16 pairs (640M pairs).
In [LLS+24], Lu et al. used advanced feature engineering and 80M ciphertext pairs (107

samples, each composed of 8 pairs) and reached 12 rounds of SIMON32 in the single-key
scenario. In the related key scenario, the same authors obtained a 13-round distinguisher,
whereas [EGP23] only reached 11 rounds with a rotational XOR distinguisher. The feature
engineering proposed in [LLS+24] was also used in [WW24a]. Further, the authors used
staged training for a subset of the obtained distinguishers: 3 · 225 samples, 8 pairs each
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(805M pairs).

A.20 SKINNY
SKINNY is an SPN-based block cipher; SKINNY128 processes 128-bit plaintexts with 128,
256, and 384-bit keys for 40, 48, and 56 rounds, respectively.
In [BBD+23], the authors reach 7 rounds of SKINNY-128; however, this result is obtained
on an unkeyed version of the cipher and using a classical machine learning algorithm rather
than deep learning.

Table 21: Overview of the Neural Differential Distinguishers for SKINNY.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SKINNY128Unkeyed Classical ML 2-2-δ-D 32K 32K - 6 0.9912 [BBD+23]‡

Classical ML 2-2-δ-D 2M 2M - 7 0.5456 [BBD+23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and
generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.21 SLIM
SLIM is a 32-round block cipher encrypting 32-bit plaintexts with an 80-bit key.
In [RLS23], the authors performed experiments with low key entropy (10 and 100 keys,
respectively, for 1M samples), as well as with one random key per sample. We report the
last one for comparability and note that the results were very close in the 3 cases.

In [TTJ23]†, the reported accuracy is 0.5036 on 105 samples, which corresponds to less
than 3 standard deviations and has a probability over 1% of occurring for distinguisher
making predictions at random; we question the relevance of this result, as testing on more
data is required to prove statistical significance.

Table 22: Overview of the Neural Differential Distinguishers for SLIM.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SLIM N DGohr 2-1-CT-R 2M 200K - 3 0.5036 [TTJ23]†

N DGohr 2-1-CT-R 2M / - 5 0.814 [RLS23]
Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

/ Unknown quantity.
† A critical discussion of these results is provided in the text.

A.22 SPECK
SPECK is a family of ARX block ciphers, denoted as SPECK-B/K, designed to encrypt
blocks of size B with a key of size K. The variants SPECK-32/64, SPECK-48/96, SPECK-
64/128, SPECK-96/96, and SPECK-128/256 consist of 22, 23, 27, 29, and 34 rounds,
respectively. Neural differential distinguishers have been developed for all versions of
SPECK, and a comprehensive overview of these is presented in Table 23.

In the standard setting (2-1-CT-R) for SPECK-32, Gohr’s original analysis on 8
rounds remains unmatched, in which the author applied a staged training: 2 · 107, 2 · 109
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Table 23: Overview of the Neural Differential Distinguishers for SPECK.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
SPECK-32 Quantum 2-1-CT-R 60K 2K - 5 0.53 [KJL+23]†

N Dsep.conv.
Gohr 2-1-δtr-R 10M 1M - 6 0.673 [LRC23]

MLP 2-1-δtr-R 20M 2M - 6 0.688 [ERP22]
MLP 2-1-δ-R 20M 2M - 6 0.72 [ERP22]
N Densmbl.

Gohr 2-1-CT-R 20M 2M - 6 0.781 [HGH+23]
CNN 100-1-A-R 20M 2M - 6 1 [BGPT21]
DenseNet 2-1-CT-R 2M 2M - 7 0.531 [SM23b]†
N Dpruned

Gohr 2-1-CT-R 20M 2M - 7 0.596 [BBP22]†
N DGohr 2-1-δ-R 20M 2M - 7 0.583 [BGPT21]
CNN 2-2-δ-D 20M 2M - 7 0.599 [WWH21]
N DGohr 2-1-CT-R 2M / ✓ 7 0.614 [WW21]
N Dattntn.

Gohr 2-1-CT-R 20M 2M - 7 0.6169 [DCC23]
N Dsep.conv.

Gohr 8-1-CT-R 80M 8M - 7 0.6939 [LRC23]
N DGohr 16-1-CT-R 20M 2M - 7 0.7009 [CSYY23]
N Dattntn.

Gohr 16-1-CT-R 160M 16M - 7 0.728 [DCC23]
INC 64-1-A-R 64M 6.4M - 7 0.9713 [YW23]
INCfreeze 2-1-CT-R 20M 2M - 8 0.5135 [BLYZ23]
N DGohr 2-1-CT-R 4040M 2M - 8 0.514 [Goh19b]
DBitNet 2-1-CT-R 2020M 2M ✓ 8 0.514 [BGH+23]
DenseNet 2-2-CT-D 2020MM 2M ✓ 8 0.519 [WWS24]
MLP 2-1-CT-R+ 20M 2M - 8 0.5208 [LJSC24a]
N DGohr 128-1-A-R 1280M 128M - 8 0.6502 [LRCL23]
MLP 512-1-CT-R+ 20M 2M - 8 0.8866 [LJSC24a]
INC 32-1-A-R 1280M 2M - 9 0.5045 [ZWW24]

SPECK-32 RK CNN 2-2-δ-D 20M 2M - 7 0.559 [WWH21]
CNN 2-2-CT-R 20M 2M - 7 0.576 [WWH21]
N DGohr 2-1-CT-R 2M 200K - 9 0.5932 [TSL23]
INCfreeze 2-1-CT-R 20M 2M - 10 0.5562 [BLYZ23]

SPECK-32Unkeyed MLP 2-2-δ-D 66K 66K - 8 0.515 [BBD+23]‡

SPECK-48 N DGohr 2-1-CT-R 2M / ✓ 6 0.726 [WW21]
DenseNet 2-2-CT-D 20M 2M ✓ 8 0.506 [WWS24]
N DGohr 128-1-A-R 1280M 128M - 8 0.5462 [LRCL23]

SPECK-64 N DGohr 2-1-CTtr-R 20M 2M - 6 0.662 [HLF+24]
N DGohr 2-1-CT-R 20M 2M - 6 0.754 [HLF+24]
N DGohr 2-1-CT-R 20M 2M - 7 0.623 [HLF+24]
N DGohr 2-1-CT-R 2M / ✓ 7 0.632 [WW21]
INC 32-1-A-R 1280M 2M - 7 0.641 [HLF+24]
DBitNet 2-1-CT-R 20M 2M ✓ 8 0.537 [BGH+23]
DenseNet 2-2-CT-D 20M 2M ✓ 8 0.559 [WWS24]
N DGohr 128-1-δ-R 1280M 12.8M - 8 0.632 [HRC21c]
N DGohr 128-1-A-R 1280M 128M - 8 0.7181 [LRCL23]

SPECK-96 N DGohr 2-1-CTtr-R 20M 2M - 7 0.681 [HLF+24]
N DGohr 2-1-CT-R 20M 2M - 7 0.832 [HLF+24]
N DGohr 2-1-CT-R 20M 2M - 7 0.850‡ [CSY23]

SPECK-128 DBitNet 2-1-CT-R 20M 2M ✓ 10 0.593 [BGH+23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

/ Unknown quantity.
† A critical discussion of these results is provided in the text.
RK Related key setting.
‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and

generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

‡ In [CSY23], the accuracy of the teacher network for SPECK-96 was not given, but we were able to
retrieve it by running the model from the authors’ repository; we give the average of 10 runs, each
with 106 samples.

† In [BBP22], the authors evaluated several pruned neural distinguishers; we report the smallest one,
Gohr’s N DGohr with depth 1, 7 channels removed from C1, 21 from C2, 25 from C3, 46 neurons from
D1, and 36 from D2.

(2020M pairs). However, [BGH+23] achieved comparable accuracy to [Goh19b] using an
automated, generic pipeline that is not specifically tailored to SPECK6 and lacks the

6We note that [BLYZ23] stated that “the simple training pipeline [of [BGH+23]] did not produce N Ds
with the same accuracy as Gohr’s on 8-round Speck32/64; it needs a further polishing step to achieve
similar accuracy, demanding more time and data” which is not entirely correct. While in [BGH+23], a
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complex training scheme essential for high accuracy on 8 rounds. More precisely, the
authors proposed a polishing step, retraining a neural distinguisher initially trained with
107 pairs with an additional 109 pairs: 107, 3 · 109 (3010M pairs in total). Enhanced
accuracy over Gohr’s results on 8-round SPECK-32 can be achieved by employing a larger
dataset, advanced feature engineering, and using multiple ciphertext pairs (e.g., n = 128)
as shown in [LRCL23]. Similarly, for SPECK-32 with fewer than 8 rounds, higher accuracy
is reported when using multiple ciphertext pairs: [CSYY23] uses n = 16, [HRC21c] uses
n = 64, and [LRCL23] uses n = 128.

In terms of larger state experiments, two automated pipelines reached 7, respectively 8
rounds of SPECK-64 [WW21, BGH+23]. The 8-round accuracies can be improved when
increasing the number of ciphertext pairs to n = 128, respectively n = 256, and using
MRMSD feature engineering [HRC21c, LRCL23]. For SPECK-96, [CSY23] obtained the
first 7-round distinguisher, while for SPECK-128, [BGH+23] obtained the first 10-round
neural distinguisher within an automated pipeline.

In [ERP22], the authors reported an accuracy of 0.688 while using only 8 bits of
the 32-bit ciphertext difference, identified through a bit scoring algorithm. Building on
this, [LRC23] proposed a novel advantage bit search algorithm that incorporates symmetric
and differential conditions. This algorithm led to an accuracy of 0.673 on 6 rounds of
SPECK-32/64 encryption while still utilizing just 8 bits of the 32-bit ciphertext difference.
Further, the authors reported a 50% reduction in training parameters without any loss in
network accuracy using separable convolutions. Although the partial output difference
neural distinguisher achieved slightly lower accuracy, it significantly reduced the amount
of training data required. Liu et al. claimed that the result in [ERP22] was obtained
achieved using 16 bits, not 8, and assert that their method offers a significant improvement
in data complexity.

In [KJL+23]†, the author reported an accuracy of 53% (round 5) on only 1,000 validation
samples. The experimental mean or standard deviation was not given. The statistically
expected standard deviation for a binomial experiment on 1k samples is 1/(2

√
n) = 1.6%.

Therefore, the reported result is only 1.9σ away from random and is likely not statistically
significant.

[SM23b]† reported an accuracy of 53.1% (round 7) on 2M training, respectively valida-
tion samples and provides a comparison in which DenseNet outperforms N DGohr. At such
a small number of training samples, both networks show heavy overfitting ([SM23b, Table
2]), and the authors themselves called the result only “marginal.”

Wang and Wang [WWS24] developed a neural distinguisher to differentiate between
output distributions generated by two distinct input differences in the related-key setting.
Their approach aimed to maximize the average absolute distance between these output
distributions—a key metric for distinguisher performance, as established by Gohr [GLN22].
While they extend their analysis to multiple-pair distinctions, we focus on their single-pair
distinguishers, which form the core of their experimental work. They further built upon
the automation proposed in [BGH+23] to automate the training of neural distinguishers to
differentiate between output distributions generated by two distinct input differences. As
the size of the validation set has not been explicitly mentioned by the authors, we assume
that they follow the size in [BGH+23].

Lv et al. [LJSC24a] demonstrated that differential-linear cryptanalysis can produce
neural distinguishers surpassing the state-of-the-art distinguishers based solely on differen-
tial cryptanalysis. Their methodology involved an exhaustive search over differential-linear
approximations with low Hamming weights, filtering out the most influential approxi-
mations using importance metrics from the Light Gradient Boosting Machine (LGBM)
classification algorithm. However, the authors incorrectly asserted that multi-pair neural
polishing step is indeed needed to achieve the same accuracy, the polishing step is a highly simplified and
automated version of the 8-round training scheme used by Gohr (in conclusion, it does not demand more
time or data).
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differential distinguishers necessitate architectural modifications. This assertion directly
contradicts the work of Gohr [GLN22], which explicitly presented a concrete methodology
for constructing multi-pair distinguishers from single-pair architectures without requiring
structural changes. Notably, the input difference employed in their 8-round distinguisher
exhibits significant divergence from conventional patterns established in current literature,
raising interesting questions about optimal difference selection in neural cryptanalysis.

Huang et al. [HLF+24] used 24 out of 64 ciphertext bits for their partial distinguishers
(T = A and T = CTtr) and an advanced feature engineering that partially inverts 7-round
ciphertexts to 6 rounds and combines the information to a sample. For SPECK64, their
partial distinguisher was trained in a staged fashion: 4 · 107, 16 pairs each (640M pairs).

Zhang et al. [ZWW24] used a staged training approach: 4 · 107 samples, each sample
with 16 pairs (640M pairs).

A.23 TEA and XTEA
TEA and its successor XTEA are 64-round block ciphers encrypting 64-bit plaintexts with
a 128-bit key.

In [BR21], the authors considered modular addition-based differentials, where the input
difference is injected by modular addition, which we denote by R+ as the experiment.
[BGH+23] automatically found distinguishers for both TEA and XTEA for 5 cycles (10
rounds), respectively, with accuracies 0.5634 and 0.5984; the authors noted that they
interestingly share the same input difference. For TEA, [BGH+23] reached two more
rounds than [BR21].

Table 24: Overview of the Neural Differential Distinguishers for TEA and XTEA.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
TEA MLP 2-1-CT-R+ 2M 20K - 8 0.545 [BR21]‡

DBitNet 2-1-CT-R 20M 2M ✓ 10 0.563 [BGH+23]
XTEA DBitNet 2-1-CT-R 20M 2M ✓ 10 0.598 [BGH+23]

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

‡ The use of a small validation set raises concerns about the statistical robustness, reproducibility, and
generalizability of the results, as such datasets are prone to high variance and may not reliably reflect
model performance.

A.24 TinyJAMBU
TinyJambu-128 is an authenticated encryption algorithm based on a 640 rounds NLFSR-
based permutation, which encrypts 128-bit blocks. TinyJambu-128 was among the ten
NIST’s lightweight cryptography finalists.

Table 25: Overview of the Neural Differential Distinguishers for TinyJAMBU.

Primitive Arch. Class Trn. Val. AutoND Rounds Acc. Ref.
TinyJAMBU-128 MLP 2-1-δ-R 2.097M 262K - FULL 0.9958 [SSL+22]†

Class: n-m-T -E, from Subsection 6.2. Under this convention, Gohr’s initial experiments are
2-1-CT-R, and the results obtained in greyed out settings n-m-T -E are not directly comparable.
AutoND: indicates if the neural distinguisher was automatically generated (✓) or is the result of
an elaborate, manually designed training procedure (-).

† A critical discussion of these results is provided in the text.
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In [SSL+22]†, the authors claimed a full-round distinguisher on TinyJambu, which we
challenge. In the provided code, the ciphertexts in a sample use the same key, nonce, and
associated data, which would provide a trivial distinguisher. As noted by the designers
of TinyJambu7: ’When nonce is reused, an attacker can decrypt the ciphertext since the
encryption of TinyJAMBU is somehow similar to the Cipher Feedback mode.’.

B Optimizations for Neural Aided Key Recovery
This section discusses the various optimizations proposed in [Goh19a] to neural aided
key recovery, including round extension via probabilistic differentials, computational cost
reduction through Bayesian Optimization and Upper Confidence Bounds, and performance
enhancement with an additional verification step.

Extending the Rounds Covered by the Distinguisher. For ciphers like Speck or Simon,
neural distinguishers can gain a free round when initial subkey addition follows the first
nonlinearity. This is achieved by selecting plaintext pairs that deterministically yield
ciphertext differences matching the neural distinguisher’s trained input difference δ.

Additionally, prepending a classical s-round differential transition to an r-round neural
distinguisher creates an (s + r)-round differential distinguisher. Note that the choice
of differential transitions involves a fundamental tradeoff between data complexity and
rounds. In [Goh19a], the selected 2-round differential transition has probability 1

64 . While
this requires (on average) 64 times more encryptions than the original attack, it extends
the 7-round neural distinguisher to a 9-round combined distinguisher.

When prepending a classical differential to a distinguisher, aggregating scores across
multiple ciphertext pairs fails due to non-conforming pairs introducing random noise.
(Probabilistic) Neutral Bits (PNBs) improve the signal-to-noise ratio. For a neutral bit
i, pairs p1, p2 satisfying differential δ → ∆ imply p1 ⊕ (1 ≪ i), p2 ⊕ (1 ≪ i) also follow
the differential with probability 1 (or high probability for PNBs). Hence, with j PNBs, a
structure of 2j plaintext pairs can be constructed, such that either all pairs in the structure
conform to the prepended differential or none do, ensuring consistent scoring. This concept
was later extended to conditional simultaneous neutral bit-sets and switching bits for
adjacent differentials [BGL+21].

Reducing Computational Cost. In [Goh19a], the author reduces computational complex-
ity using Bayesian Optimization for key search. The approach first builds a Wrong Key
Response Profile (WKRP): For a ciphertext pair (c1, c2) from plaintexts p and p ⊕ δ, with
correct r-round key k and candidate key k′ = k ⊕ γ, the distinguisher response is modeled
as:

RD,γ(c1, c2) = D
(
f−1

k′ (c1), f−1
k′ (c2)

)
.

RD,γ follows a normal distribution with mean µγ and standard deviation σγ .
The key search iteratively queries the neural network using an acquisition function

based on the WKRP to select a set of candidates. Given observed responses R1, . . . , Rn

for key candidates k′
1, . . . , k′

n, the function chooses new candidates k that minimize:
n−1∑
i=0

(Ri − µk⊕k′
i
)2

σ2
k⊕ki

.

This aligns the precomputed wrong key response profile optimally with the observed values
and typically requires only a few iterations until key candidates with high scores are
identified, compared to the basic attack enumerating over all possible round keys.

7https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/
finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
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To prevent unnecessary computation, Upper Confidence Bounds (UCB) serve as
stopping conditions. For t independent encryption oracles F r+1

K , the attack prioritizes the
instance with the highest value:

sk = wi
max + α ·

√
log2(j)

ni
,

where wi
max is the highest distinguisher score for instance i, ni is iterations spent on

instance i, j is the current iteration, and α = 10. This tradeoff helps balancing exploration
and exploitation, focusing more on instances that are either insufficiently explored or show
high key candidate scores.

Additional Verification. Incorrect key candidates with Hamming distance 1-2 from the
correct key often produce high responses. Searching this narrow Hamming neighborhood
for the key candidate output by the key searching algorithm typically reveals the correct
key with marginally higher scores, prompting search restarts with each improved candidate.

Gohr [Goh19a] jointly recovered (r + 1)-round and r-round keys by combining dis-
tinguishers Dr and Dr−1. When an (r + 1)-round key guess exceeds threshold t1, the
r-round key is searched using Dr−1, with both keys returned if an r-round guess surpasses
threshold t2. This creates inherent verification, as incorrect (r + 1)-round keys rarely
produce high scores for any r-round key guess.

C Overview: Neural Aided Key Recovery Attacks
Gohr’s work [Goh19a] marked a breakthrough in ML-based cryptanalysis, achieving high-
accuracy neural distinguishers for 7-round SPECK32/64 and developing key recovery
attacks for 11 and 12 rounds that rivaled or surpassed state-of-the-art manual techniques.

Since then, research has progressed in multiple directions, including applying the
proposed key recovery algorithm to various cryptographic primitives [TH21, WQW+24,
TTJ23, YW23, ZLHH25, ZWW24], proposing enhancements to the original algorithm
[LTZ22a, CSY23, BGL+22, ZLWL23, SZM21, HRC23, CSYY23, LJSC24a], exploring key
recovery in alternative adversarial settings [LCLH22, LLHC23, BLYZ23], and reducing
the complexity of the attack by truncating the ciphertexts observed by the distinguish-
ers [CSY23, HLF+24, LRC24, Seo24, ZWL24]. We specifically highlight (†) papers that
implement a (full) Bayesian attack compared to those employing a simplified basic attack.

C.0.1 Key Recovery on Different Cryptographic Primitives

While the first neural-aided key recovery was performed on SPECK32/64, subsequent works
applied the same or a simplified version of the attack to SPECK [ZWW24], SIMON [TH21,
WQW+24, ZWW24], LBC-IoT [TTJ23], SLIM [TTJ23], SPECK [YW23], and PRESENT
[ZLHH25].

Zhang et al. [ZWW24]† achieved significant breakthroughs in differential-neural crypt-
analysis by performing key recovery attacks on 13- and 14-round SPECK32/64, with
the 14-round attack brute-forcing the final round’s subkey. They also executed the first
17-round key recovery attack on SIMON32/64. Building upon Gohr’s foundational work
[Goh19a], the authors implemented knowledge distillation to create dramatically smaller
student networks featuring fixed-size convolutions and GlobalAveragePooling layers. These
streamlined architectures substantially reduced computational demands during key recovery
while maintaining attack effectiveness.

Tian and Hu [TH21] developed 7-9 round neural distinguishers for SIMON32/64 and
achieved 15-round key recovery using a prepended differential with probabilistic neutral
bits, followed by brute-force subkey search.
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Teng et al. [TTJ23] demonstrated practical 8-round key recovery attacks on LBC-IoT
using their 6-round neural distinguisher.

Wu et al. [WQW+24]† introduced a mixed-neural differential network for 12-round
SIMON32/64 key recovery, achieving higher accuracy with increased complexity.

Yue and Wu [YW23] improved upon Gohr’s work with a novel data format exploiting
SPECK32/64’s round function structure, enabling 8-round key recovery.

Zhu et al. [ZLHH25] successfully executed an 8-round key recovery attack on PRESENT
by extracting non-linear S-box features using randomly generated subkeys, demonstrating
that neural networks trained on ciphertext differences substantially outperform those
trained on raw ciphertext pairs for distinguishing and key recovery tasks.

C.0.2 Advancements of the Key Recovery

Several studies aimed to advance neural-aided key recovery by focusing on parameter
selection [LTZ22a, CSY23, BGL+22], exploring variants of neutral bits in the prepended
classical differential [BGL+22, ZLWL23, SZM21], and reducing data complexity through
precomputation [HRC23, LJSC24a] and reducing encryption queries [CSYY23].

Lyu et al. exhaustively explored neural distinguishers for Bayesian key search and
applied them to SIMECK32/64 [LTZ22a]†. They obtained 8/9/10-round neural differential
distinguishers and recovered penultimate and last round subkeys for 13/14/15-round
SIMECK32/64 with low data and time complexity. Their findings revealed that key
response profile regularity plays a crucial role (varying greatly among distinguishers), as
does the number of neutral bits available for the distinguisher’s prepended differential.
Interestingly, the most accurate neural distinguisher did not necessarily achieve the best
key recovery performance.

Chen et al. proposed a Neural-Aided Statistical Attack (NASA) with experiments on
reduced-round SPECK32/64, DES, and Speck96/96 [CSY23]†. Their theoretical estimates
suggest breaking 10-round DES, surpassing Gohr’s 8-round attack. When combined with
a novel early stopping technique, neutral bits, and a Bayesian algorithm in the lines of
[Goh19a], their method reduces both computational and data complexity compared to the
original key recovery in [Goh19a].

Bao et al. introduced generalized neutral bits techniques and conditional neural differ-
ential cryptanalysis [BGL+22]†. They improved the success rate of deep learning-assisted
key recovery attacks by considering neural distinguisher accuracies, round numbers, and
classical differential paths spliced in front of neural distinguishers. They also explored data
complexity aspects and achieved successful key recovery attacks on 13-round SPECK32/64
and 16-round SIMON32/64.

In [ZLWL23]†, the authors improved SIMECK-32 attacks, enhancing the 15-round at-
tack and launching the first practical 16- and 17-round key recovery attacks for SIMECK32/64.
They extended their 12-round neural distinguisher with a 3-round differential and asso-
ciated 14 deterministic NBs and 2 SNBSs (simultaneously complementing up to 4 bits)
identified through exhaustive search.

In [SZM21]†, the authors implemented full key recovery on Simon32/64 using a distin-
guisher trained for polytopic differences. Unlike Gohr’s attack [Goh19a], their approach
doesn’t rely on neutral bits but instead filters (r + 1)-round ciphertext pairs conforming to
the initial differential using an (r + 1)-round neural distinguisher, selecting pairs producing
the highest scores.

Hou et al. in [HRC23]† leveraged key response profile periodicity to achieve key recovery
using only a partial profile. This approach is particularly necessary for block ciphers with
round key sizes significantly larger than 16 bits, such as SIMON64/128, ensuring feasible
key response profile generation.

In [CSYY23], the authors proposed a data reuse strategy for distinguishers processing
input sets of n > 2 ciphertext pairs. Their approach generates a large ciphertext set and
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forms subsets where each ciphertext pair appears in a limited number of subsets while
maintaining sufficient distinction between subsets. Using this strategy, they applied neural
distinguishers to perform 10-rounds and 11-rounds key recovery on Speck32/64 using
NASA [CSY23] and Bayesian Key Recovery, respectively.

Lv et al. [LJSC24a]† used super-neutral bits to decrease attack data complexity and a
lookup table strategy to eliminate real-time neural distinguisher invocations, performing
a practical 13-round key recovery on Speck using their novel differential-linear neural
distinguishers.

C.0.3 Bit-Level Ciphertext Analysis

Recent work on neural distinguishers [CSY23, HLF+24, LRC24, Seo24, ZWL24] offers
promising approaches for reducing both computational and data requirements in key
recovery attacks. These distinguishers can operate on partial ciphertext bits, suggesting
that complete decryption may not be necessary for successful key recovery. For detailed
explanations of approaches involving distinguishers on partial ciphertexts, see Section 5 on
interpretability. Here, we focus specifically on key recovery applications.

Chen et al. [CSY23]† trained student distinguishers using only subsets of ciphertext bits
for DES and SPECK while maintaining high accuracy. For SPECK32/64, they omitted
6 of the 32 ciphertext bits, identified through their novel Bit Sensitivity Test. These
optimized distinguishers enabled subkey recovery in smaller subspaces, reducing attack
complexity. The authors demonstrated a practical attack on SPECK32/64 and provided
theoretical estimates for attacking 10-round DES and 14-round Speck96/96.

Li et al. [LRC24] extended this work by developing an ensemble of student distinguishers,
each trained on distinct input differences and ciphertext bit combinations. Their key
insight revealed that varying input differences cause different ciphertext bits to become
critical for distinction, affecting relevant key bits. Through their novel key sensitivity
test, they partitioned the subkey space into independently solvable components, enabling
practical key recovery against previously resistant large-state block ciphers: 18-round
SIMON128, 14-round SIMON96, 14-round SIMON64, 12-round SPECK128, 10-round
SPECK96, and 9-round SPECK64.

Huang et al. [HLF+24] introduce a novel neural differential cryptanalysis framework
that substantially mitigates computational complexity in large-state block cipher key
recovery. By implementing a parallelizable multi-stage approach with strategically trained
neural distinguishers, the researchers demonstrate improvements in attacking SPECK. The
proposed methodology leverages partial neural distinguishers (PNDs) executed in parallel,
followed by a full neural distinguisher (FND) for key selection. The partial distinguishers
are trained to recover independent key bits through an innovative whitening key decryption
technique. Experimental validation on 10-round SPECK64 and 10-round SPECK96 reveals
computational efficiency gains. Their SPECK64 attack employed a customized ResNet
architecture using multiple ciphertext pairs generated via neutral bits and an advanced
staged training protocol.

Seok et al. [Seo24] attempted partial key recovery in the final transformation of 15-
round HEIGHT, claiming to recover portions of the last round key. However, their
analysis relied on an assumed differential characteristic with probability 2−31 without
addressing practical implementation details, particularly regarding the use of this prepended
differential characteristic without neutral bits. While they theorized about a divide-and-
conquer strategy, the proposal lacked concrete implementation details.

Zhang et al. [ZWL24] developed neural distinguishers targeting a 2-round reduced
version of AES-128, specifically analyzing pairs of bytes from the ciphertext. These byte-
wise distinguishers were leveraged to mount key recovery attacks on 3-round AES-128 using
a divide-and-conquer strategy where different key segments were recovered independently.
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C.0.4 Key Recovery for Related-Key and Conditional Adversaries

Conditional and related-key differential cryptanalysis enhances adversarial capabilities by
slowing diffusion of differences, enabling attacks on additional rounds of ciphers. Following
trends in classical cryptanalysis, this approach has extended key recovery attacks in the
related-key setting for SPECK [BLYZ23] and in conditional and related-key settings for
KATAN [LCLH22, LLHC23].

Lin et al. demonstrated practical key recovery attacks on KATAN ciphers [LCLH22]† by
combining conditional and related-key differential cryptanalysis. They successfully attacked
125-round KATAN32, 106-round KATAN48, and 95-round KATAN64, while proposing
parallelization of the Wrong Key Response Profile calculation to enhance efficiency.

In subsequent work, Lin et al. developed attacks targeting 97-round KATAN32, 82-
round KATAN48, and 70-round KATAN64 [LLHC23]†. Their method integrates neural
distinguishers with conditional prepended differentials that constrain specific plaintext and
key bits. By identifying optimal conditions and neutral bit sets, they improved the attack
effectiveness.

Bao et al. [BLYZ23] successfully executed a 14-round key recovery attack on SPECK32/64
in the related-key setting.

C.0.5 Limitations of Hybrid Distinguisher Models for Key Recovery

Recent works [YK21a, WWS24, WW24b] have explored hybrid approaches combining clas-
sical differential transitions with neural distinguishers. Rather than optimizing standalone
s-round neural distinguishers, these models are constrained to input differences matching
the output difference of a classical r-round differential transition. This hybridization aims
to achieve near-perfect distinction for (r + s)-encrypted ciphertexts with minimal data
complexity.

A significant limitation of these hybrid approaches stems from their dependence on
extended classical differential paths. This dependence precludes the use of neutral bits,
making it impossible to construct the plaintext structures necessary for key recovery
methods like those in [Goh19a]. While some studies, including [YK21a], have claimed
breakthrough results in key recovery, these claims lack experimental validation.

In a different approach, Yadav et al. [YK24] constructed high-accuracy neural distin-
guishers from low-accuracy ones without prepending classical differentials, though at the
cost of increased data complexity.
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