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Abstract. In recent years a new class of symmetric-key primitives over
Fp that are essential to Multi-Party Computation and Zero-Knowledge
Proofs based protocols has emerged. Towards improving the efficiency
of such primitives, a number of new block ciphers and hash functions
over Fp were proposed. These new primitives also showed that following
alternative design strategies to the classical Substitution-Permutation
Network (SPN) and Feistel Networks leads to more efficient cipher and
hash function designs over Fp specifically for large odd primes p.
In view of these efforts, in this work we build an algebraic framework that
allows the systematic exploration of viable and efficient design strategies
for constructing symmetric-key (iterative) permutations over Fp. We first
identify iterative polynomial dynamical systems over finite fields as the
central building block of almost all block cipher design strategies. We
propose a generalized triangular polynomial dynamical system (GTDS),
and based on the GTDS we provide a generic definition of an iterative
(keyed) permutation over Fn

p .
Our GTDS-based generic definition is able to describe the three most
well-known design strategies, namely SPNs, Feistel networks (FN) and
Lai–Massey (LM). Consequently, the block ciphers that are constructed
following these design strategies can also be instantiated from our generic
definition. Moreover, we find that the recently proposed Griffin design,
which neither follows the Feistel nor the SPN design, can be described
using the generic GTDS-based definition. We also show that a new gener-
alized Lai–Massey construction can be instantiated from the GTDS-based
definition. The latter results confirm that our GTDS-based definition is
able to instantiate cryptographic permutations that are beyond SPN, FN
and LM based.
We further provide generic (security) analysis of the GTDS including an
upper bound on the differential uniformity and the correlation.
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1 Introduction

Constructing (keyed and unkeyed) permutations is at the center of designing some
of the most broadly used cryptographic primitives like block ciphers and hash
functions. After half a century of research, Feistel and Substitution-Permutation
Networks (SPN) have emerged as the two dominant iterative design strategies for
constructing unkeyed permutations or block ciphers. Another notable, although
not much used design strategy is the Lai–Massey construction. Altogether, SPN,
Feistel and Lai–Massey are at the core of some of the most well-known block
ciphers such as AES [23,18], DES [19], CLEFIA [45], IDEA [36], etc.

In the past few years, a new class of symmetric-key cryptographic functions
(block ciphers, hash functions and stream ciphers) that are essential in privacy
preserving cryptographic protocols such as Multi-Party Computation and Zero-
Knowledge Proofs and Homomorphic Encryption, has emerged. For efficiency
reasons these primitives are designed over Fp (for large primes p > 2). This is
in contrast with the classical symmetric primitives that use functions defined
over F2n (typically for small n e.g. n ≤ 8).3 By utilizing the classical SPN or
Feistel design principles, a number of such symmetric-key functions (over Fp) were
proposed. However, current research suggests that these traditional strategies
are not the best choices for efficient primitives over Fp. For example, the partial
SPN-based hash function Poseidon [30] performs more efficiently in R1CS or
Plonk prover circuits than the generalized unbalanced Feistel-based construction
GMiMCHash [3]. Recently proposed designs - Griffin [28] and Arion [44] follow
neither SPN nor Feistel, and is more efficient in circuits than GMiMCHash and
Poseidon. In the literature these new primitives are often called Arithmetization-
Oriented (AO) primitives.

An important and relevant question here is thus: What is the space of pos-
sible design strategies for constructing (efficient) symmetric-key cryptographic
permutations/functions over Fp? And how to explore the possible design strategies
systematically?

Moreover, given that such new cryptographic functions are inherently algebraic
by design, their security is dictated by algebraic cryptanalytic techniques. For
example, algebraic attacks (interpolation, Gröbner basis, GCD, etc.) [24,2,4,43]
are the main attack vectors in determining the security of GMiMC, Poseidon,
MiMC [4], etc.

A well-defined generic algebraic design framework will prescribe a systematic
approach towards exploring viable and efficient design strategies over Fp. Such a
generic framework will allow the design of new symmetric-key primitives and will
shed new light into the algebraic properties of SPN- and Feistel-based designs,
among others, over Fp. A “good” generic framework should ultimately allow
instantiation of primitives over Fq where q = pn for arbitrary primes p and
naturally encompass existing classical design strategies, such as SPN, Feistel and
Lai–Massey.
3 There are symmetric primitives that (additionally) use functions defined over the

ring Z2n for n ≥ 1
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The primary aim of this work is to find such a general framework which
describes iterative algebraic systems for constructing AO (keyed or unkeyed)
permutations.

Study of generic frameworks and our work. The study of generic frameworks
for cryptographic constructions and their generic security analysis is a topic of
high impact. It allows designers to validate their design strategies and gives
recipes for possible design and analysis optimization advancements. Examples
of research on generic design frameworks include the studies on Even-Mansour
(EM) design variants [22,16,17,21,25], Sponge construction and variants thereof
[7,11,27,26], etc. However, a generic understanding and study of AO design
strategy is not possible following this line of works. The main idea behind AO
designs are efficient polynomial evaluation and/or efficient representation of an
iterative function with minimal multiplicative complexity over a finite field. Thus,
a generic AO design requires a focus on the polynomial structure and naturally,
a polynomial-based approach.

The EM construction or general SPN or Feistel constructions considered
in (above-mentioned) previous works are much more generic in comparison to
our proposed framework. They only consider functions or permutations without
focusing on their algebraic structure. The generic framework and its analysis in
our work take polynomial structure into account and are based on the properties
of polynomials over finite fields Fq. For the cryptographic analysis in this work we
only exploit the statistical (e.g. correlation, differential) and algebraic (polynomial
degree) properties. This approach is comparable (up to the considered properties)
to the (statistical) security analysis [39] of the generic SPN.

In mathematics literature, properties of polynomial dynamical system or
iterative polynomial system are studied over finite fields. In [42], Ostafe and
Shparlinski studied the degree growth of a class of iterative polynomial system
namely triangular polynomial dynamical system. They also prove a bound on
the discrepancy which is a well-accepted measure (in mathematics literature) to
quantify the uniformity of a sequence, of this dynamical system when viewed as
pseudo-random number generator.

1.1 Our Results

In this paper we lay out a generic strategy for constructing cryptographic (keyed
and unkeyed) permutations combined with security analysis against differential
cryptanalysis.

We first discuss (Section 2) that so-called orthogonal systems are the only
polynomial systems suitable to represent (keyed) permutations and henceforth
block ciphers over finite fields.

We then propose a novel algebraic system (in Section 3) that is the foundation
for constructing generic iterative permutations. More specifically, we construct a
polynomial dynamical system over a finite field Fq (where q = pn with p a prime
and n ≥ 1) that we call Generalized Triangular Dynamical System (GTDS).
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We then provide a generic definition of iterative (keyed) permutations using
the GTDS and a linear/affine permutation. We show (in Section 4) that our
GTDS-based definition of iterative permutations is able to describe the SPN,
different types of Feistel networks and the Lai–Massey construction. Consequently,
different block ciphers that are instantiations of these design strategies can also
be instantiated from the GTDS-based permutation.

Beyond encompassing these well-known design strategies, our framework
provides a systematic way to study different algebraic design strategies and
security of permutations (with or without key). This is extremely useful in
connection with the recent design efforts for constructing block ciphers and hash
function over Fp where p is a large prime. For example, GTDS already covers
the recently proposed partial SPN design strategy [31] used in designing block
ciphers and hash functions [30].

Our GTDS-based definition of iterative permutations allows for instantiations
of new (keyed) permutations. For example, the recently proposed construction
Griffin can also be instantiated from our generic definition of an iterative
permutation. Moreover, using our generic definition we propose a generalization
(Section 4.3) of the Lai–Massey design strategy. A new efficient and secure
cryptographic permutation (and hash function) [44] with low multiplicative
complexity is also instantiated from our generic definition.

In Section 5 we perform a generic analysis to bound the differential uniformity
as well as the correlation of the GTDS.

Our generic constructions, definitions and results holds for arbitrary p. How-
ever, our main aim is to propose an algebraic framework for constructing primitives
and provide generic (security) analysis over Fp for (large) p > 2. The security
analysis given in this paper can be refined and improved for p = 2. Our (security)
analysis is not aimed for binary extension field and should be viewed as generic
analysis for p > 2. However, the GTDS-based construction(s) proposed in this
paper can be applied over Fq (where q = pn with p a prime and n ≥ 1).

2 Block Ciphers and Permutation Polynomials

In general a block cipher can be described as a pair of (keyed) mappings

F : M × K → C, F−1 : C × K → M, (1)

where M, K and C denoting the plaintext, key and ciphertext space respectively,
are finite. For any k ∈ K, Fk is a permutation and F−1(_,k) ◦ F (_,k) = idM.
In this work we will assume that M = C = Fn

q and K = Fn×r
q , where r, n ≥ 1,

and Fq is a finite field with q = pn for prime p.
For any function F : Fn

q → Fq we can find a unique polynomial P ∈
Fq[x1, . . . , xn] (via interpolation) with degree less than q in each variable such
that F (x) = P (x) for all x ∈ Fn

q . Hence, all ciphers can be viewed as vectors of
polynomials. We recall the following algebraic notion in this context.

Definition 1 ([38, 7.34., 7.35. Definition]). Let Fq be a finite field.
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(1) A polynomial f ∈ Fq[x1, . . . , xn] is called a permutation polynomial if the
equation f(x1, . . . , xn) = α has qn−1 solutions in Fn

q for each α ∈ Fq.
(2) A system of polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn], where 1 ≤ m ≤ n, is

said to be orthogonal if the system of equations f1(x1, . . . , xn) = α1, . . . ,
fm(x1, . . . , xn) = αm has exactly qn−m solutions in Fn

q for each (α1, . . . ,
αm) ∈ Fm

q .

The permutation polynomials over F2, are known as balanced functions [14] in
the cryptography/computer science literature.
Since one of our main interests is in keyed permutations let us extend the
definition of orthogonal systems. In general, we will denote with x the plaintext
variables and with y the key variables.

Definition 2. Let Fq be a finite field.

(1) Let F : Fn1
q ×Fn2

q → Fn1
q be a function. We call F a keyed permutation, if for

any fixed y ∈ Fn2
q the function F (_,y) : Fn1

q → Fn1
q induces a permutation.

(2) Let f1, . . . , fm ∈ Fn
q [x1, . . . , xn1 , y1, . . . , yn2 ], where 1 ≤ m ≤ n1 be poly-

nomials. We call f1, . . . , fm a keyed orthogonal system, if for any fixed
(y1, . . . , yn2) ∈ Fn2

q the system f1, . . . , fm is an orthogonal system.

Remark 3. (1) Note that in our definition we allow for trivial keyed permuta-
tions, i.e., permutations that are constant in the key variable. In particular, ev-
ery permutation F : Fn

q → Fn
q induces a keyed permutation F̂ : Fn

q ×Fm
q → Fn

q

via F̂ (x,y) = F (x) for any m ∈ Z≥1.
(2) A keyed orthogonal system is also an orthogonal system in Fq[x1, . . . , xn1 , y1,

. . . , yn2 ]. Suppose we are given a keyed orthogonal system f1, . . . , fm ∈
Fq[x1, . . . , xn1 , y1, . . . , yn2 ] and equations fi(x,y) = αi, where αi ∈ Fq. If
we fix y then we have qn1−m many solutions for x. There are qn2 possible
choices for y, so the system has qn1+n2−m solutions. Hence, our definition of
keyed orthogonal systems does not induce any essentially new structure, it is
merely semantic.

As intuition suggests keyed orthogonal systems are well-behaved under iteration.
We state the following theorem for completeness.

Theorem 4. Let Fq be a finite field. The keyed polynomial system f1, . . . , fm ∈
Fq[x1, . . . , xn1 , y1, . . . , yn2 ] is keyed orthogonal if and only if the system g1(f1, . . . ,
fm, y1, . . . , yn2), . . . , gm(f1, . . . , fm, y1, . . . , yn2) ∈ Fq[x1, . . . , xn1 , y1, . . . , yn2 ] is
keyed orthogonal for every keyed orthogonal system g1, . . . , gm ∈ Fq[x1, . . . , xm,
y1, . . . , yn2 ].

Proof. “⇐”: If we choose gi = xi, then by assumption the equations

gi(f1, . . . , fm, y1, . . . , yn2) = fi(x1, . . . , xn1 , y1, . . . , yn2) = βi,

where 1 ≤ i ≤ m, have qn1−m many solutions for every fixed (y1, . . . , yn2) ∈ Fn2
q .

I.e., f1, . . . , fm is a keyed orthogonal system.
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“⇒”: Suppose we are given a system of equations

g1(f1, . . . , fm, y1, . . . , yn2) = β1,

. . .

gm(f1, . . . , fm, y1, . . . , yn2) = βm,

where β1, . . . , βm ∈ Fq and {fi}1≤i≤n1 and {gi}1≤i≤m are keyed orthogonal
systems. Fix y = (y1, . . . , yn2) ∈ Fn2

q and substitute x̂i = fi, then the equations
gi(x̂1, . . . , x̂m,y) = βi have a unique solution for the x̂i’s. Since y is fixed also
the equations x̂i = fi admit qn2−m many solutions. Therefore, the composition
of keyed orthogonal systems is again keyed orthogonal. ⊓⊔

In practice keyed orthogonal systems are usually derived from orthogonal systems
by a simple addition of the key variables before or after an evaluation of a
function.

Example 5. If F : Fn
q → Fn

q is a permutation, then

F (x + y) and F (x) + y

are keyed permutations.

3 Generalized Triangular Dynamical Systems

We propose the generalized triangular dynamical system (GTDS) as the main
ingredient when designing a block cipher. The GTDS is also the main ingredient
in unifying different design principles proposed in the literature such as SPN and
Feistel networks.

Definition 6 (Generalized triangular dynamical system). Let Fq be a
finite field, and let n ≥ 1. For 1 ≤ i ≤ n, let pi ∈ Fq[x] be permutation polynomials,
and for 1 ≤ i ≤ n− 1, let gi, hi ∈ Fq[xi+1, . . . , xn] be polynomials such that the
polynomials gi do not have zeros over Fq. Then we define a generalized triangular
dynamical system F = {f1, . . . , fn} as follows

f1(x1, . . . , xn) = p1(x1) · g1(x2, . . . , xn) + h1(x2, . . . , xn),
f2(x1, . . . , xn) = p2(x2) · g2(x3, . . . , xn) + h2(x3, . . . , xn),

. . .

fn−1(x1, . . . , xn) = pn−1(xn−1) · gn−1(xn) + hn−1(xn),
fn(x1, . . . , xn) = pn(xn).

Note that a GTDS F = {f1, . . . , fn} must be considered as ordered tuple of
polynomials since in general the order of the fi’s cannot be interchanged.

Proposition 7. A generalized triangular dynamical system is an orthogonal
system.
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Proof. Suppose for 1 ≤ i ≤ n we are given equations

fi(xi, . . . , xn) = αi,

where αi ∈ Fq. To solve the system we work upwards. The last polynomial fn is
a univariate permutation polynomial, so we can find a unique solution βn for xn.
We plug this solution into the next equation, i.e.,

fn−1(xn−1, βn) = pn−1(xn−1) · gn−1(βn) + hn−1(βn).

To solve for xn−1 we subtract hn−1(βn), divide by gn−1(βn), this division is
possible since gi(xi+1, . . . , xn) ̸= 0 for all (xi+1, . . . , xn) ∈ Fn−i

q , and invert pn−1.
Iterating this procedure we can find a unique solution for all xi. ⊓⊔

Corollary 8. The inverse orthogonal system F−1 = {f̃1, . . . , f̃n} to the general-
ized triangular dynamical system F = {f1, . . . , fn} is given by

f̃1(x1, . . . , xn) = p−1
1

((
x1 − h1

(
f̃2, . . . , f̃n

))
·
(
g1
(
f̃2, . . . , f̃n

))q−2
)

f̃2(x1, . . . , xn) = p−1
2

((
x2 − h2

(
f̃3, . . . , f̃n

))
·
(
g2
(
f̃3, . . . , f̃n

))q−2
)

. . .

f̃n−1(x1, . . . , xn) = p−1
n−1

((
xn−1 − hn−1

(
f̃n

))
·
(
gn−1

(
f̃n

))q−2
)

f̃n(x1, . . . , xn) = p−1
n (xn).

Proof. If we consider F and F−1 in Fq[x1, . . . , xn]/
(
xq

1 − x1, . . . , x
q
n − xn

)
, then

it is easy to see that F−1 ◦ F = F ◦ F−1 = id. ⊓⊔

Note that the Triangular Dynamical System introduced by Ostafe and Shparlinski
[42] is a special case of our GTDS up to permutation. Moreover, one can drop the
conditions on pi and gi (given in definition 6) to obtain a generalized dynamical
system beyond permutation (which is not the focus of this work). In particular,
if we choose pi(xi) = xi for all i and impose the condition that each polynomial
gi has a unique leading monomial of maximal degree, i.e.,

gi(xi+1, . . . , xn) = x
si,i+1
i+1 · · ·xsi,n

n + g̃i(xi+1, . . . , xn), (2)

where

deg (g̃i) < si,i+1 + . . .+ si,n, and (3)
deg (hi) ≤ deg (gi) (4)

for i = 1, . . . , n − 1, then we obtain the triangular dynamical system in [42].
Notice that under iteration these systems exhibit a property highly uncommon
for general polynomial dynamical systems: polynomial degree growth (see [42,
§2.2]).

7



Since the triangular dynamical system of [42] as a special case of GTDS has
pi(xi) = xi, it can not be used to instantiate many (cryptographic) permutations.
More specifically, permutations where polynomials pi are such that deg(pi) ≥ 2
can not be instantiated. Examples of such permutation include well-known SPN,
recently proposed Reinforced Concrete permutation [29] and Arion. In this work
we will use our generalized definition 6 to describe cryptographic permutations.

3.1 GTDS and (Keyed) Permutations

In practice, every keyed permutation or block cipher (in cryptography) is con-
structed using an iterative structure where round functions are iterated a fixed
number of times. Using the GTDS we first define such a round function. In this
section n ∈ N denotes the number of field elements constituting a block and
r ∈ N denotes the number of rounds of an iterative permutation.

Definition 9 (Round function). Let Fq be a finite field, n ≥ 1 be an integer,
A ∈ Fn×n

q be an invertible matrix, and b ∈ Fn
q be a vector. Then, the affine

mixing layer is described by the map

L : Fn
q → Fn

q , x 7→ A · x + b,

and the key addition is described by the map

K : Fn
q × Fn

q → Fn
q , (x,k) 7→ x + k.

We abbreviate Kk = K(_,k). Let F ⊂ Fq[x1, . . . , xn] be a GTDS or a composition
of two or more GTDS and affine permutations. Then the round function of a
block cipher is defined as the following composition

R : Fn
q × Fn

q → Fn
q , (x,k) 7→ Kk ◦ L ◦ F (x) .

We also abbreviate Rk = R(_,k).

It is obvious that R is a keyed permutation, hence it also is a keyed orthogonal
system of polynomials in the sense of Definition 2. Now we can introduce our
generalized notion of block ciphers which encompasses almost all existing block
ciphers.

Definition 10 (An algebraic description of keyed permutations). Let
Fq be a finite field, let n, r ≥ 1 be integers, and let K ∈ Fn×(r+1)

q be a matrix.
We index the columns of K by 0, . . . , r, the ith column ki denotes the ith round
key. Let K : Fn

q × Fn
q → Fn

q be the key addition function, and let R(1), . . . ,R(r) :
Fn

q × Fn
q → Fn

q be the round functions. Then a block cipher is defined as the
following composition

Cr : Fn
q × Fn×(r+1)

q → Fn
q , (x,K) 7→ R(r)

kr
◦ · · · ◦ R(1)

k1
◦ Kk0 (x) .

We abbreviate Cr,K = Cr(_,K), and if the round functions are clear from context
or identical, then we also abbreviate Rr

k = R(r)
kr

◦ · · · ◦ R(1)
k1

.
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For the remaining parts of the paper a keyed permutation or a block cipher
should be understood as a function described as in Definition 10, unless specified
otherwise. We stress that a generic definition of an iterative block cipher may
only use the notion of round key(s) (as defined with K in Definition 10) and does
not require explicit definition of a key scheduling function. The specific definition
of a key scheduling function can depend on the input key size and specific
instantiations of the iterative block cipher. Also, in most of the cryptography
literature the generic definition, (security) analysis and security proofs of iterative
block ciphers (e.g. SPN, Even-Mansour etc.) only use the notion of round keys
[37,20,17], without an explicit scheduling function.

4 Instantiating Block Ciphers

In this section we will show that the GTDS-based algebraic definition of iterative
permutations is able to describe different design strategies.

We note with respect to GTDS that well-known design strategies such as
SPN, partial SPN, Feistel, generalized Feistel and Lai–Massey are constructed
with trivial polynomials gi in the GTDS, namely gi = 1.

4.1 Feistel Networks

For simplicity, we only show how the GTDS based algebraic definition can
describe the unbalanced Feistel with expanding round function. The classical two
branch Feistel is then a special case of the unbalanced expanding one. Moreover,
it is straight-forward to show that GTDS-based algebraic definition can describe
other types of Feistel networks such as unbalanced Feistel with expanding round
functions, Nyberg’s GFN, etc.

Unbalanced Feistel. Let n > 1, and let f ∈ Fq[x] be any function represented
by a polynomial. The unbalanced Feistel network with expanding round function
is defined as x1

...
xn

 7→


xn

x1 + f (xn)
...

xn−1 + f (xn)

 . (5)

The GTDS

fi(x1, . . . , xn) = xi + f(xn), 1 ≤ i ≤ n− 1,
fn(x1, . . . , xn) = xn,

(6)

together with the shift permutation (x1, . . . , xn−1, xn) 7→ (xn, x1, . . . , xn−1) de-
scribe the unbalanced Feistel network with expanding round function.
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4.2 Substitution-Permutation Networks

In [34, §7.2.1] a handy description of Substitution-Permutation networks (SPN)
was given. Let S ∈ Fq[x] be a permutation polynomial, the so called S-box. Then
the round function of a SPN consists of three parts:

(1) Addition of the round keys and round constants.
(2) Application of the S-box, i.e., (x1, . . . , xn) 7→

(
S(x1), . . . , S(xn)

)
.

(3) Permutation and mixing of the blocks.

The mixing in the last step is usually done via linear/affine transformations. In
this case the GTDS of a SPN reduces to

fi(x1, . . . , xn) = S(xi), (7)

where 1 ≤ i ≤ n.

AES-128. At the time of writing the most famous SPN is the AES family [1,18].
If we use the description of AES-128 given in [15], then it is easy to see that
AES-128 is also covered by our definition of block ciphers. AES-128 is defined over
the field F = F28 = F2[X]/

(
X8 +X4 +X3 +X + 1

)
and has 16 blocks, i.e., it

is a keyed permutation over F16. The GTDS of AES-128 is given by Equation (7)
and the polynomial S(x) over F is given in Appendix A.

Let us now describe the permuting and mixing of the blocks via linear
transformations. The ShiftRows operations can be described with the block
matrix

DSR = diag(DSR0 , DSR0 , DSR0 , DSR0) ∈ F16×16 (8)

where DSR is a block diagonal matrix with DSRt
=
(
∆i,(j−t) mod 4

)
∈ F4×4 and

∆i,j is the Kronecker delta. The MixColumns operation can be described as the
following tensor product

DMC =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⊗ I4 ∈ F16×16, (9)

where the entries in the left matrix are hexadecimal representations of field
elements. The linear mixing layer L of AES-128 can now be represented by the
following matrix D

D = P ·DMC ·DSR · P, (10)

where P ∈ F16×16 denotes the transposition matrix. In the last round the
MixColumns operation is dropped, hence L̃ is represented by D̃

D̃ = P ·DSR · P. (11)

Similarly, we can also describe the key schedule of AES-128.
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Partial SPN. In a partial SPN the S-box is only applied to some input variables
and not all of them. This construction was proposed for ciphers like LowMC [5],
the Hades design strategy [31] and the Poseidon family [30] that are efficient in
the MPC setting. Clearly, any partial SPN is also covered by the GTDS.

4.3 Lai–Massey Ciphers and GTDS

Another well-known design strategy for block ciphers is the Lai–Massey design
which was first introduced in [35]. For two branches let g ∈ Fq[x] be a polynomial,
then the round function of the Lai–Massey cipher is defined as

FLM :
(
x
y

)
7→
(
x+ g(x− y)
y + g(x− y)

)
. (12)

Since the difference between the branches is invariant under application of FLM
it is possible to invert the construction. At the first look it may appear that the
Lai–Massey can not be described with GTDS. However, a careful analysis shows
one round of Lai–Massey is in fact a composition of a Feistel Network and two
linear permutations. We consider the following triangular dynamical systems

F1(x, y) =
(
x− y
y

)
, F2(x, y) =

(
x

y + g(x)

)
, F3(x, y) =

(
x+ y
y

)
. (13)

Then, it is easily checked that FLM = F3 ◦ F2 ◦ F1. Due to simpler structure
of polynomials (pi), the Lai–Massey permutation can be described using the
triangular system in [42].

Generalized Lai–Massey. Recently, a generalization of the Lai–Massey was
proposed in [33, §3.3] by Grassi et al. It is based on the following observation:
If one is given field elements ω1, . . . , ωn ∈ Fq such that

∑n
i=1 ωi = 0, then the

mapping x1
...
xn

 7→

x1 + g(
∑n

i=1 ωixi)
...

xn + g(
∑n

i=1 ωixi)

 (14)

is invertible for any polynomial g ∈ Fq[x].
We will use this observation to propose an even more general version of the

Lai–Massey from the GTDS and linear permutations.

Definition 11 (Generalized Lai–Massey). Let Fq be a finite field, and let
n ≥ 2 be an integer. Let ω1, . . . , ωn ∈ Fq be such that

∑n
i=1 ωi = 0, and denote

with m the largest index 1 ≤ i ≤ n such that ωi is non-zero. For 1 ≤ i ≤ n
let pi ∈ Fq[x] be permutation polynomials, and let g ∈ Fq[x, xm+1, . . . , xn] be a
polynomial. Then we define the generalized Lai–Massey FLM = {f1, . . . , fn} as

11



follows

f1(x1, . . . , xn) = p1(x1) + g

(
m∑

i=1
ωi · pi(xi), xm+1, . . . , xn

)
,

. . .

fm(x1, . . . , xn) = pm(xm) + g

(
m∑

i=1
ωi · pi(xi), xm+1, . . . , xn

)
,

fm+1(x1, . . . , xn) = pm+1(xm+1),
. . .

fn(x1, . . . , xn) = pn(xn).

Remark 12. If n ≡ 0 mod 2, then it is evident from the first equation in the
proof of [32, Proposition 5] that Grassi et al.’s generalized Lai–Massey permutation
is also covered by Definition 11 and a linear transformation.

For completeness, we establish that the generalized Lai–Massey is indeed invert-
ible.

Lemma 13. Let Fq be a finite field. The generalized Lai–Massey is an orthogonal
system.

Proof. Suppose we are given equations fi(x1, . . . , xn) = αi, where αi ∈ Fq. For
i = m+ 1, . . . , n we simply invert pi to solve for xi. For i = 1, . . . ,m we compute∑m

i=1 ωifi =
∑m

i=1 ωipi(xi) =
∑m

i=1 ωiαi = α. Now we plug α and the solutions
for xm+1, . . . , xn into the polynomial g in the first m equations, rearrange them,
and invert the univariate permutation polynomials to obtain a unique solution.

⊓⊔

Before we prove the reduction of the generalized Lai–Massey to the GTDS we
explain the rationale behind Definition 11. Usually, in the Lai–Massey the poly-
nomial g is added to all the branches, but our definition allows the concatenation
of two independent Lai–Massey permutations

x1
x2
x3
x4

 7→


x1 + g1(x1 − x2)
x2 + g1(x1 − x2)
x3 + g2(x3 − x4)
x4 + g2(x3 − x4)

 , (15)

or the construction of intertwined Lai–Massey permutations
x1
x2
x3
x4

 7→


x1 + g1(x1 − x2, x3 − x4)
x2 + g1(x1 − x2, x3 − x4)

x3 + g2(x3 − x4)
x4 + g2(x3 − x4)

 (16)

Analog to the classical two branch Lai–Massey we can describe the generalized
Lai–Massey as composition of several GTDS and linear permutations.

12



Theorem 14. Let Fq be a finite field. The generalized Lai–Massey can be con-
structed via compositions of generalized triangular dynamical systems and affine
permutations.

Proof. The first dynamical system is the application of the univariate permutation
polynomials to the first m branches

F1 : (x1, . . . , xn)⊺ 7→
(

{pi(xi)}1≤i≤m

{xi}m+1≤i≤n

)
.

In the second one we construct the sum with the ωi’s

F2 :

x1
...
xn

 7→


{
ωi · xi, ωi ̸= 0,
xi, ωi = 0

}
1≤i≤m−1∑m

i=1 ωi · xi

{xi}m+1≤i≤n

 .

In the third one we add the polynomial g to the first m− 1 branches, though we
have to do a case distinction whether ωi ̸= 0 or not,

F3 :

x1
...
xn

 7→


{
xi + ωi · g(xm, xm+1, . . . , xn), ωi ̸= 0,
xi + g(xm, xm+1, . . . , xn), ωi = 0

}
1≤i≤m−1

{xi}m≤i≤n


Then we add the polynomial g to the mth branch and cancel the factors ωi

whenever necessary

F4 :

x1
...
xn

 7→



{
ω−1

i · xi, ωi ̸= 0,
xi, ωi = 0

}
1≤i≤m−1

ω−1
m ·

(
xm −

∑
1≤i≤m−1

ωi ̸=0
xi

)
{xi}m+1≤i≤n

 .

Lastly, we apply the univariate permutation polynomials to the remaining
branches

F5 : (x1, . . . , xn)⊺ 7→
(

{xi}1≤i≤m

{pi(xi)}m+1≤i≤n

)
.

Now it follows from a simple calculation that indeed F5 ◦ · · · ◦ F1 implements
the generalized Lai–Massey construction. ⊓⊔

4.4 Constructions with Non-Trivial gi’s

Recall that for 1 ≤ i ≤ n− 1 the ith branch in a GTDS is given by

fi(x1, . . . , xn) = pi(xi) · gi(xi+1, . . . , xn) + hi(xi+1, . . . , xn), (17)

where gi is a polynomial that does not have any zeros. All constructions we have
investigated so far have one thing in common, they all use trivial gi’s, that is
gi = 1. Therefore, it is now time to cover constructions that have non-trivial gi’s.
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Horst & Griffin. The Horst scheme [28] was introduced as generalization of
the Feistel scheme. It is defined asx1

...
xn

 7→


x1 · g1(x2, . . . , xn) + h1(x2, . . . , xn)

...
xn−1 · gn−1(xn) + hn−1(xn)

xn

 , (18)

where gi, hi ∈ Fq[xi+1, . . . , xn]. If the polynomials gi’s do not have any zeros
over Fq, then Horst induces a permutation. Clearly, this is a special instance of
a GTDS. The permutation Griffin-π [28] is a concatenation of a SPN and a
Horst permutation, so it is also covered by the GTDS framework. Note that the
simpler structure of polynomials pi allows describing Griffin-π with the triangular
dynamical system of [42].

Reinforced Concrete. The Reinforced Concrete [29] hash function is the
first Arithmetization-Oriented hash function that utilizes lookup tables. At round
level the Reinforced Concrete permutation over F3

p, where p ≳ 264 is a prime,
consists of three small permutations. The first permutation is the mapping Bricks

Bricks : F3
p → F3

p,x1
x2
x3

 7→

 xd
1

x2 ·
(
x2

1 + α1 · x1 + β1
)

x3 ·
(
x2

2 + α2 · x2 + β2
)
 ,

(19)

where d = 5, note that the prime must be suitable chosen such that gcd (d, p− 1)
= 1 else the first component does not induce a permutation, and α1, α2, β1, β2 ∈
Fp such that α2

i − 4βi is not quadratic residue module p, then the quadratic
polynomials do not have any zeros over Fp. The second permutation is called
Concrete and is given by matrix multiplication and constant addition. The third
permutation Bars is an S-box that is implemented via a lookup table. Clearly,
these mappings are covered by the GTDS framework.

Arion. The Arion block cipher and ArionHash [44] are the first designs that utilize
the full GTDS structure at round level. It is defined over prime fields with p ≥ 260,
and its GTDS is

fi(x1, . . . , xn) = xd1
i · gi(σi+1,n) + hi(σi+1,n), 1 ≤ i ≤ n− 1,

fn(x1, . . . , xn) = xe
n,

(20)

where d1 ∈ Z>1 is the smallest integer such that gcd (d1, p− 1) = 1, for one
d2 ∈ {121, 123, 125, 129, 161, 257} e ∈ Z>1 is such that e · d2 ≡ 1 mod p − 1,
gi, hi ∈ Fp[x] are quadratic polynomials such that the gi’s are irreducible, and

σi+1,n =
n∑

j=i+1
xi + fi. (21)
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5 Analysis of GTDS-based Permutations

5.1 Bounding the Differential Uniformity of the GTDS

Differential cryptanalysis [13] and its variants are one of the most widely used
attack vectors in modern cryptography. It is based on the observation that
certain input differences can propagate through the rounds of a block cipher
with high probability. The key measure to quantify whether a function is weak
to differential cryptanalysis is the so-called differential uniformity. In this section
we prove an upper bound for the differential uniformity of the GTDS under
minimal assumptions on the polynomials pi, gi and hi. We recall the definition
of differential uniformity.

Definition 15 ([41]). Let Fq be a finite field, and let f : Fn
q → Fm

q be a function.
The differential distribution table of f at a ∈ Fn

q and b ∈ Fm
q is defined as

δf (a,b) =
∣∣{x ∈ Fn

q | f(x + a) − f(x) = b}
∣∣ .

The differential uniformity of f is defined as δ(f) = maxa∈Fn
q \{0},b∈Fm

q
δf (a,b).

The following lemma will play an essential role in the proof of the main result
of this section.

Lemma 16. Let Fq be a finite field, and let f ∈ Fq[x]/(xq − x). Then δ(f) < q
if and only if deg

(
f(x+ a) − f(x)

)
> 0 for all a ∈ F×

q . In particular, if δ(f) < q
then δ(f) < deg (f).

Proof. “⇐”: By assumption, for all a ∈ F×
q and all b ∈ Fq we have that f(x +

a) − f(x) − b is a non-constant polynomial whose degree is less than deg (f), so
we have that δ(f) < deg (f) < q.

“⇒”: Suppose there exists an a ∈ F×
q such that deg

(
f(x− a) − f(x)

)
≤ 0.4

Then we can find b ∈ Fq such that f(x+ a) − f(x) − b = 0, so δ(f) = q. Now the
claim follows by contraposition. ⊓⊔

Next we compute an upper bound for the differential uniformity of a GTDS.

Theorem 17. Let Fq be a finite field, let n ≥ 1 be an integer, and let F : Fn
q →

Fn
q be a GTDS. Let p1, . . . , pn ∈ Fq[x]/(xq − x) be the univariate permutation

polynomials of the GTDS F such that for every i either

(i) deg (pi) = 1, or
(ii) deg (pi) ≥ 2 and δ(pi) < q.

4 Some textbooks define deg (0) = −1 or deg (0) = −∞, hence the inequality.
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Let ∆x,∆y ∈ Fn
q be such that ∆x ̸= 0. Then the differential distribution table

of F at ∆x and ∆y is bounded by

δF (∆x,∆y) ≤


δ(pn), ∆xn ̸= 0,
q, ∆xn,∆yn = 0,
0, ∆xn = 0, ∆yn ̸= 0


·

n−1∏
i=1


deg (pi) , ∆xi ̸= 0, deg (pi) > 1,
q, ∆xi ̸= 0, deg (pi) = 1,
q, ∆xi = 0

 .

Proof. Suppose we are given the differential equation

F(x + ∆x) − F(x) = ∆y, (22)

Then, the last component of the differential equation only depends on the variable
xn, i.e.,

pn(xn + ∆xn) − pn(xn) = ∆yn.

If ∆xn ̸= 0, then this equation has at most δ(pn) many solutions. If ∆xn =
∆yn = 0, then this equation has q many solutions for xn. Lastly, if ∆xn = 0
and ∆yn ̸= 0, then there cannot be any solution for xn.

Now suppose we have a solution for the last component, say x̂n ∈ Fq. Then,
we can substitute it in Equation (22) into the (n− 1)th component

fn−1(xn−1 + ∆xn−1, x̂n + ∆xn) − fn−1(xn−1, x̂n) = ∆yn−1.

Since x̂n is a field element we can reduce this equation to

α · pn−1(xn−1 + ∆xn−1) − β · pn−1(xn−1) + γ = ∆yn−1, (23)

where α, β, γ ∈ Fq and α, β ̸= 0. Now we have to do a case distinction on the
various case for α, β, ∆xn−1 and deg (pn−1).

– For ∆xn−1 ≠ 0 and α ̸= β, then Equation (23) has at most deg (pn−1) many
solutions.

– For ∆xn−1 ≠ 0, α = β and deg (pn−1) > 1, Equation (23) is the differential
equation for pn−1 scaled by α and by assumption this equation has at most
δ(pn−1) < q many solutions. So we can apply Lemma 16 to immediately
conclude that δ(pn−1) < deg (pn−1).

– For α = β and deg (pn−1) = 1, then only constant terms remain in Equa-
tion (23). In principle, it can happen that α · an−1,1 · ∆xn−1 + γ = ∆yn−1,
where an−1,1 ∈ F×

q is the coefficient of the linear term of pn−1. So this case
can have at most q many solutions.

– For ∆xn−1 = 0, then in principle it can happen that α = β and ∆yn−1 = γ.
So this case can have at most q many solutions.

Summarizing these cases we conclude that
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– If ∆xn−1 ̸= 0 and deg (pn−1) > 1, then Equation (23) has at most deg (pn−1)
many solutions.

– If ∆xn−1 ̸= 0 and deg (pn−1) = 1, then Equation (23) has at most q many
solutions.

– If ∆xn−1 = 0, then Equation (23) has at most q many solutions.

Inductively, we now work upwards through the branches to derive the claim. ⊓⊔

Let the function wt : Fn
q → Z denote the Hamming weight, i.e. it counts the

number of non-zero entries of a vector in Fn
q .

Corollary 18. Let Fq be a finite field, let n ≥ 1 be an integer, and let F : Fn
q →

Fn
q be a GTDS. Let p1, . . . , pn ∈ Fq[x]/(xq − x) be the univariate permutation

polynomials of the GTDS F , and let ∆x,∆y ∈ Fn
q be such that ∆x ≠ 0. If for

all 1 ≤ i ≤ n one has that 1 < deg (pi) ≤ d and δ(pi) < q, then

δF (∆x,∆y) ≤ qn−wt(∆x) · dwt(∆x).

In particular,

P [F : ∆x → ∆y] ≤
(
d

q

)wt(∆x)
.

Proof. By our assumptions we can apply Theorem 17 for the first inequality. The
second inequality follows from the first and division by qn. ⊓⊔

Let p1, . . . , pn ∈ Fq[x] be univariate permutation polynomials that satisfy the
assumption from Theorem 17 and assume that 1 < δ(pi) ≤ d for all i. Let us
consider the SPN

S : (x1, . . . , xn) 7→
(
p1(x1), . . . , pn(xn)

)
. (24)

It is well-known that

P [S : ∆x → ∆y] ≤
(
d

q

)wt(∆x)
. (25)

Now let F : Fn
q → Fn

q be a GTDS with the univariate permutation polynomials
p1, . . . , pn. Provided that δ(pi) ≈ deg (pi) when compared to q, then we expect
that the bound from Corollary 18 almost coincides with Equation (25). I.e., the
GTDS F and the SPN S are in almost the same security class with respect to
differential cryptanalysis. What is the contribution of the polynomials gi and hi

in the GTDS F then? Conceptually, they can only lower the probability compared
to the “SPN bounds” from Equation (25) but never increase it.

Of course, this now raises the question of how this contribution can be
incorporated into an improved bound. If we recall the proof of the theorem, then
we can translate this question into the following problem: Let f ∈ Fq[x] be a
polynomial, let α, β,∆x ∈ F×

q and δ,∆y ∈ Fq. How many solutions does the
equation

α · f(x+∆x) − β · f(x) + γ = ∆y (26)

17



have? Moreover, one could try to estimate the codomains of the gi’s and hi’s to
exclude values for α, β, γ that can never arise in the differential equation of the
GTDS.

For the application of Theorem 17 it is crucial that one knows that the univari-
ate permutation polynomials have non-trivial differential uniformity. Therefore,
we derive two efficient criteria that bypass the computation of the full differential
distribution table.

Lemma 19. Let Fq be a finite field of characteristic p, let a ∈ F×
q , and let

f =
∑d

i=0 bi · xi ∈ Fq[x]/(xq − x) be such that d = deg (f) > 1.

(1) If q is prime, then f(x+ a) − f(x) is a non-constant polynomial.
(2) If q is a prime power, let d′ = max

{
deg

(
f − bd · xd

)
, 1
}

. If there exists
d′ ≤ k ≤ d − 1 such that gcd

(
p,
(

d
k

))
= 1, then f(x + a) − f(x) is a non-

constant polynomial.

Proof. For (1), we expand f via the binomial formula

f(x+ a) − f(x) =
deg(f)∑

i=0
bi ·
(
(x+ a)i − xi

)
=

deg(f)∑
i=0

bi ·

(
i−1∑
k=0

(
i

k

)
· ai−k · xk

)

= bd ·
(

d

d− 1

)
· a · xd−1 + g(x),

where deg (g) < d− 1. Since d < q and q is prime we always have that
(

d
d−1
)

̸≡ 0
mod q.

For (2), the assumption on the binomial coefficient guarantees that at least
one binomial coefficient

(
d
k

)
, where d′ ≤ k ≤ d− 1, is non-zero in Fq. ⊓⊔

By (1), over prime fields we can apply Theorem 17 for every univariate per-
mutation polynomial of degree greater than 1. With (2) we can settle some
polynomials f ∈ Fq[x]/(xq − x) such that gcd

(
q,deg(f)

)
̸= 1. E.g., let q = 2n,

and let f = x2n−2, then(
2n − 2
2n − 4

)
= (2n − 3) ·

(
2n−1 − 1

)
≡ 1 mod 2. (27)

Finally, Theorem 17 performs best for designs where either deg (pi) ≪ q or
deg

(
p−1

i

)
≪ q for all i. Arithmetization-Oriented primitives for Multi-Party

Computation and Zero-Knowledge protocols often satisfy this condition. Main
performance measure in these applications is the number of multiplications
necessary for evaluation. So low degree polynomials at round level are an attractive
choice to instantiate these primitives. Typically, these protocols are instantiated
over prime fields p ≥ 264 and one utilizes a univariate permutation polynomial
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f ∈ Fp[x]/(xp − x) such that deg (f) < 29 or deg
(
f−1) < 29. So we obtain a

bound which is less than 29

264 for the respective component. For an iterated design
this bound is small enough to provide resistance against differential cryptanalysis
and its variants. It is worthwhile mentioning that some AO primitives rely
on high degree permutations, e.g. Vision [6] which is based on the inverse
permutation xq−2. For such designs one will need different techniques to estimate
resistance against differential cryptanalysis and its variants. We also highlight
that Theorem 17 has been applied in the differential cryptanalysis of Arion [44,
§3.1].

5.2 A Bound on the Correlation of the GTDS

Linear cryptanalysis was introduced in [40] and extended to non-binary ciphers
in [8]. In this cryptanalysis one tries to find linear approximations of the rounds
of a block cipher for a sample of known plaintexts. The key measure to quantify
whether a function is weak under linear cryptanalysis is the so-called correlation.
In this section we will prove an upper bound for the maximum absolute correlation
of the GTDS under minimal assumptions on the polynomials pi, gi and hi. We
recall a modern definition of the correlation over finite fields, see [12, Definition 3.3]
and the equation thereafter.

Definition 20. Let Fq be a finite field, let n ≥ 1, let χ, ψ : Fn
q → C be non-trivial

additive characters, and let F : Fn
q → Fn

q be a function. The correlation for the
characters (χ, ψ) of F is defined as

CORRF (χ, ψ) = 1
qn

·
∑

x∈Fn
q

χ
(
F (x)

)
· ψ(x).

Let Fq be a finite field of characteristic p, and let Tr : Fq → Fp be the absolute
trace function, see [38, 2.22. Definition]. For all x ∈ Fq we define the function χ1
as

χ1(x) = exp
(

2πi
p

· Tr(x)
)
. (28)

Then, every additive character χ : Fq → C is of the form χ(x) = χ1(a · x) for
some a ∈ Fq, see [38, 5.7. Theorem]. Moreover, any additive character χ : Fn

q → C
is of the form χ(x) = χ1

(
⟨a,x⟩

)
for some a ∈ Fn

q . (The proof of this statement is
a simple generalization of [38, 5.7. Theorem].) So without loss of generality we
can express the correlation of a function F as

CORRF (χ, ψ) = CORRF (a,b) = 1
qn

·
∑

x∈Fn
q

χ1

(
⟨b,x⟩ −

〈
a, F (x)

〉)
, (29)

for some a,b ∈ Fn
q .

As preparation, we prove a bound on univariate character sums which follows
as corollary to [38, 5.38. Theorem].
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Lemma 21. Let Fq be a finite field, let χ : Fq → C be a non-trivial additive
character, let f ∈ Fq[x] be a permutation polynomial such that gcd (deg (f) , q) =
gcd

(
deg

(
f−1) , q) = 1, and let a, b ∈ F×

q . Then∣∣∣∣∣∣
∑
x∈Fq

χ (a · f(x) + b · x)

∣∣∣∣∣∣ ≤
(

min
{

deg (f) ,deg
(
f−1)}− 1

)
· q1/2.

Proof. Since f is a permutation polynomial we can rewrite the character sum∑
x∈Fq

χ (a · f(x) + b · x) =
∑
y∈Fq

χ
(
a · f

(
f−1(y)

)
+ b · f−1(y)

)
=
∑
y∈Fq

χ
(
a · y + b · f−1(y)

)
,

where the second equality follows from f
(
f−1(x)

)
≡ x mod (xq − x). By our

assumptions we can then apply the Weil bound [38, 5.38. Theorem] to obtain
the inequality. ⊓⊔

Now we can compute an upper bound on the correlation of the GTDS.

Theorem 22. Let Fq be a finite field, let n ≥ 1, let a,b ∈ Fn
q , let F =

{f1, . . . , fn} ⊂ Fq[x1, . . . , xn] be a GTDS, and let p1, . . . , pn ∈ Fq[x]/(xq − x) be
the univariate permutation polynomials in the GTDS F such that gcd (deg (pi) , q)
= gcd

(
deg

(
p−1

i

)
, q
)

= 1 for all 1 ≤ i ≤ n. If a ̸= 0 denote with 1 ≤ j ≤ n the
first index such that aj ̸= 0. Then

|CORRF (a,b)| ≤



1, a,b = 0,

0,
{

a = 0, b ̸= 0,
a ̸= 0, b = 0,

0, bj = 0,
1, bj ̸= 0, deg (pj) = 1,

min
{

deg (pj) ,deg
(
p−1

j

)}
− 1

√
q

, bj ̸= 0, deg (pj) > 1.

Proof. The first case is trivial, for the second and the third we recall that any non-
trivial linear combination of an orthogonal system is a multivariate permutation
polynomial, cf. [38, 7.39. Corollary]. Recall that for any multivariate permutation
polynomial f ∈ Fq[x1, . . . , xn] the equation f(x1, . . . , xn) = α has qn−1 many
solutions for every α ∈ Fq. So the exponential sum of the correlation collapses to

qn−1 ·
∑
x∈Fq

χ1(x) = 0,

which is zero by [38, 5.4. Theorem].
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Now let us assume that aj ̸= 0. Then we apply the triangular inequality to
the variables xj+1, . . . , xn as follows∣∣∣∣∣∣
∑

x∈Fn
q

χ1

(
⟨b,x⟩ −

〈
a, F (x)

〉)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

x∈Fn
q

χ1

 n∑
i=j+1

bi · xi − ai · fi(x)

 · χ1

(
bj · xj − aj · fj(x)

)∣∣∣∣∣∣
≤

∑
xj+1,...,xn∈Fq

∣∣∣∣∣∣χ1

 n∑
i=j+1

bi · xi − ai · fi(x)

 ·
∑

x1,...,xj∈Fq

χ1

(
bj · xj − aj · fj(x)

)∣∣∣∣∣∣
=

∑
xj+1,...,xn∈Fq

∣∣∣∣∣∣χ1

 n∑
i=j+1

bi · xi − ai · fi(x)

∣∣∣∣∣∣ ·

∣∣∣∣∣∣
∑

x1,...,xj∈Fq

χ1

(
bj · xj − aj · fj(x)

)∣∣∣∣∣∣
=

∑
xj+1,...,xn∈Fq

∣∣∣∣∣∣qj−1 ·
∑

xj∈Fq

χ1

(
bj · xj − aj · fj(xj , . . . , xn)

)∣∣∣∣∣∣ = (∗).

For any fixed (xj+1, . . . , xn) ∈ Fn−j
q we have that

f̂j(xj) = −aj · fj(xj , . . . , xn) + bj · xj = −aj ·
(
pj(xj) · α+ β

)
+ bj · xj ,

where α = gj(xj+1, . . . , xn) ∈ F×
q , and β = hj(xj+1, . . . , xn) ∈ Fq. If bj = 0, then

f̂j is a univariate permutation polynomial in xj . So the exponential sum inside
the absolute value of (∗) must vanish for every (xj+1, . . . , xn) ∈ Fn−j

q .
For bj ̸= 0, if deg (pj) = 1, then in principle f̂j can be a constant polynomial.

Since we do not know for how many (xj+1, . . . , xn) ∈ Fn−j
q this happens we have

to use the trivial bound.
For the final case deg (pj) > 1, recall that we assumed

gcd (deg (pi) , q) = gcd
(
deg

(
p−1

i

)
, q
)

= 1

for all 1 ≤ i ≤ n. So for every fixed (xj+1, . . . , xn) ∈ Fn−j
q we can now apply

Lemma 21 to bound the absolute value in (∗). This yields

(∗) ≤ pj−1 ·
n∑

k=j+1

∑
xk∈Fq

(
min

{
deg (pj) ,deg

(
p−1

j

)}
− 1
)

· p1/2

= pn−1/2 ·
(

min
{

deg (pj) ,deg
(
p−1

j

)}
− 1
)
,

which concludes the proof. ⊓⊔

Note if q is a prime number and f ∈ Fq[x]/(xq −x), then the coprimality condition
is always satisfied.
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Analog to the differential uniformity, let us compare Theorem 22 to a SPN of
the form S : (x1, . . . , xn) 7→

(
p1(x1), . . . , pn(xn)

)
, where the pi’s are univariate

permutation polynomials with 1 < deg (pi) ≤ d ≪ q and gcd (deg (pi) , q) = 1 for
all i. It is well-known that

CORRS (a,b) ≤



1, a,b = 0,

0, ∃i : ai ̸= 0, bi = 0,
∃i : ai = 0, bi ̸= 0,(

d− 1
√
q

)wt(a)
, else.

(30)

(This inequality essentially follows from rearranging the character sum and Weil’s
bound [38, 5.38. Theorem].) This bound decreases with O

(
q− wt(a)

2

)
while our

bound from Theorem 22 (if non-trivial) is always in O
(
q−1). Therefore, we leave

improving Theorem 22 as open problem for future work.
As for the differential uniformity bound, Theorem 22 performs best for GTDS

instances where either deg (pi) ≪ q or deg
(
p−1

i

)
≪ q for all i. Moreover, over

prime fields the coprimality condition is always satisfied. On the other hand, over
binary fields Theorem 22 restricts us to univariate permutation polynomials of
odd degree. In particular, Theorem 22 cannot be applied to x2m−2 over F2m .

We highlight that Theorem 22 has been applied in the linear cryptanalysis of
Arion [44, §3.1].

5.3 Degree Growth Of Block Ciphers

For algebraic security analysis of block ciphers it is important to understand the
polynomial degree growth over Fq[x1, . . . , xn] of the polynomials that represent
the branches. For certain classes of GTDS the degree growth can be described
via triangular matrices.

Definition 23 (Well-behaved GTDS). Let Fq be a finite field, and let F :
Fn

q → Fn
q be a GTDS.

Case 1 If deg (hi) ≤ deg (gi) + deg (pi) for all 1 ≤ i ≤ n, and gi has a unique
leading monomial, i.e., gi(xi+1, . . . , xn) = x

si,i+1
i+1 · · ·xsi,n

n + g̃i(xi+1, . . . , xn), for
some g̃i ∈ Fq[xi+1, . . . , xn] with deg (g̃i) < si,i+1 + . . .+ si,n, then we define

S =


d1 s1,2 s1,3 . . . s1,n

0 d2 s2,3 . . . s2,n

. . .
0 0 0 0 dn

 ∈ Zn×n,

where di = deg (pi) for all 1 ≤ i ≤ n.

22



Case 2 If deg (hi) > deg (gi) + deg (pi) for all 1 ≤ i ≤ n and hi has a unique
leading monomial, i.e., hi(xi+1, . . . , xn) = x

ti,i+1
i+1 · · ·xti,n

n + h̃i(xi+1, . . . , xn), for
some h̃i ∈ Fq[xi+1, . . . , xn] with deg

(
h̃i

)
< ti,i+1 + . . .+ ti,n, then we define

T =


0 t1,2 t1,3 . . . t1,n

0 0 t2,3 . . . t2,n

. . .
0 0 0 0 dn

 ∈ Zn×n.

Let d0 = (1, . . . , 1)⊺, then Sd0 and Td0 respectively describe the polynomial
degrees of the components of F(x).

If the polynomial degrees of the round functions of a block cipher C are
bounded by d, then after r iterations one has the trivial upper bound dr among
all components. While this bound is straight forward, obtaining a better bound
without any assumption of the polynomial forms in GTDS appears to be difficult.
We leave this question open for future research.

6 Discussion

Hash Functions and PRFs. Our generic description of (keyed) permutations
when viewed as a vector of functions over Fn

q , can be used to define a hash
function H : F∗

q → Ft
q where the domain of H is of arbitrary length over Fq

and the hash value is of length t > 0 over Fq. For example, an instantiation
of GTDS-based permutations can be used in a sponge mode [9,10] to define
such a hash function. Thus, all our analysis can be easily extrapolated to hash
functions. The invertibility conditions in GTDS can be dropped if the goal is not
to construct a permutation but possibly a pseudo-random function. Potentially,
such a GTDS (without the necessary constraints for invertibility) can be used to
construct PRFs over Fq and is an interesting direction for future work.

Beyond the GTDS. The quasi-Feistel cipher idea [47] provides a unified
framework for Feistel and Lai–Massey ciphers. While our approach utilizes the
polynomial structure over finite fields, [47] uses a contrarian approach by requiring
as little algebraic structure as possible. In particular, they demonstrate that
invertible Feistel and Lai–Massey ciphers can be instantiated over quasigroups
(cf. [46]). Furthermore, this little algebraic structure is already sufficient to prove
theoretical security bounds in the Luby-Rackoff model for quasi-Feistel ciphers.
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