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Abstract
Secure multi-party computation (MPC) enables multiple dis-
trusting parties to jointly compute a function while keep-
ing their inputs private. Computing the AES block cipher in
MPC, where the key and/or the input are secret-shared among
the parties is important for various applications, particularly
threshold cryptography.

In this work, we propose a family of dedicated, high-
performance MPC protocols to compute the non-linear S-box
part of AES in the honest majority setting. Our protocols
come in both semi-honest and maliciously secure variants.
The core technique is a combination of lookup table protocols
based on random one-hot vectors and the decomposition of
finite field inversion in GF(28) into multiplications and inver-
sion in the smaller field GF(24), taking inspiration from ideas
used for hardware implementations of AES. We also apply
and improve the analysis of a batch verification technique
for checking inner products with logarithmic communication.
This allows us to obtain malicious security with almost no
communication overhead, and we use it to obtain new, secure
table lookup protocols with only O(

√
N) communication for

a table of size N, which may be useful in other applications.
Our protocols have different trade-offs, such as having a

similar round complexity as previous state-of-the-art by Chida
et al. [WAHC’18] but 37% lower bandwidth costs, or hav-
ing 27% fewer rounds and 16% lower bandwidth costs. An
experimental evaluation in various network conditions using
three party replicated secret sharing shows improvements in
throughput between 28% and 71% in the semi-honest setting.
For malicious security, we improve throughput by 319% to
384% in LAN and by 717% in WAN due to sublinear batch
verification.

1 Introduction

Secure multi-party computation (MPC) has become a prac-
tical component to realize privacy-preserving computation,
improving both privacy and security of existing processes

and data flows. Using MPC, a set of distrusting parties can
jointly evaluate a function while keeping their own inputs pri-
vate. The security relies on distributed trust that no adversary
corrupts more parties than the allowed corruption threshold.

MPC protocols are often designed to support generic com-
putation with good performance over commonly used func-
tions. Unfortunately, complex functions such as block ciphers
will not always yield optimal performance when using a
generic MPC protocol. In these cases, the effort of designing
highly-specialized and high-performance MPC protocols for
essential building blocks is worthwhile to improve the overall
performance of privacy-preserving systems and applications.

In this work, we will focus on such specialized protocols for
AES to evaluate the AES block cipher with a secret-shared key
and input, which has various applications. Such multi-party
AES can be used when clients communicate and exchange
data with a cluster of MPC engines in a secure manner using,
e.g., oblivious TLS [2] or clients secret-share a secret key
to enable MPC parties to distributively decrypt [10, 51] and
arbitrarily process their data on their behalf [49] in a secure
way, e.g., for secure IoT data collection and processing [1].
Furthermore, it enables secure database joins [43], keyword
search [30], private set intersection [36] or allows to increase
the trust in systems that rely on centralized secrets, like the
Key Distribution Center in the Kerberos authentication proto-
col or brokered identification systems [17]. Distributed vari-
ants [6] and similar distributed authentication protocols [9]
rely on AES evaluations with a secret-shared key or can use
AES as an oblivious PRF with high confidence in its secu-
rity. The general case of this class of applications is threshold
cryptography, which uses MPC to protect cryptographic keys
while they are used, adding a layer of distributed trust to a
secure system. NIST identified this use-case and initiated the
multi-party threshold cryptography project1 to study, among
others, symmetric-key functions like AES-based enciphering,
CMAC and HMAC in a threshold way.

Since cryptographic primitives tend to be fairly complex to

1https://csrc.nist.gov/projects/threshold-cryptography
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evaluate inside an MPC protocol, much effort has been put
into designing MPC-friendly variants of standard primitives
such as hash functions [3], block ciphers [4] and pseudoran-
dom functions [34]. This approach comes with two major
drawbacks, however. Firstly, since these primitives are rela-
tively new, they have not been subjected to the same level
of scrutiny from cryptanalysts as established, longstanding
primitives like AES or SHA-256, so there is less confidence
in their security. Secondly, none of these primitives are stan-
dardized or even in widespread use. This rules out deploying
these types of constructions in applications where MPC must
be integrated into an existing system, which only uses stan-
dard cryptographic primitives. Aside from these adoption and
integration challenges, some MPC-friendly primitives also
require many more rounds, e.g., MiMC [3] needs ≈ 8 times
more rounds for the same security level compared to AES.
Furthermore, large (prime) field arithmetic or extensive use of
bit-bit multiplication (e.g., in the linear layers of LowMC [4])
makes them relatively slow to evaluate in plain software.

1.1 Contribution

We present a family of MPC protocols to evaluate the AES
block cipher in the multi-party, honest majority setting with
both semi-honest and maliciously secure variants. Our contri-
bution is three-fold.
(i) We securely compute the inversion in GF(28) (where 0
maps to 0) with novel techniques. The proposed protocols ei-
ther rely on lookup table protocols based on preprocessed ran-
dom one-hot vectors, or on the isomorphism between GF(28)
and GF((24)2) or on a combination of both techniques. This
results in a range of different trade-offs in computational
complexity, bandwidth costs and round complexity.
(ii) We present several lookup table protocols for (t,n) repli-
cated and (n,n) additive secret-sharing, which may be of in-
dependent interest. In particular, our protocol based on repli-
cated secret sharing is maliciously secure and only needs
O(
√

N) communication for a table of size N. All prior ma-
licious protocols based on information-theoretic primitives
require Ω(N) communication.
(iii) We implemented the described protocols in the 3-party
setting, and experimentally verified their performance in mul-
tiple network settings. We obtain improvements between 28%
and 71% for online phase and total throughput in the semi-
honest setting, compared with the best prior work by Chida et
al. [21]. For malicious security, we improve the total through-
put by 319% in LAN and by 717% in WAN compared to a
version of [21] using cut-and-choose.

1.2 Technical Overview

We now give a brief overview of our main protocols. Their per-
formance characteristics in the 3-party setting, together with

those of the most competitive related work, are summarised
in Table 1.

Here, the communication volume represents the number of
bits sent by each party, excluding the cost of key expansion
steps. As shown in Table 1, the execution of a 10-round obliv-
ious AES protocol involves a communication volume of 4320
bits in 22 communication rounds. We have reduced the round
complexity by 27% and communication by 16% compared to
the state-of-the-art [21], whilst also adding malicious security
with almost no communication overhead.

Warm up: GF(28) Inversion from [21]. We start with the
inversion protocol [21] that computes z−1 ∈GF(28) as z−1 =
z254 = (z15)16 · z14, where z15 = (z3)4 · (z3), z14 = (z3)4 · z2

and z3 = z · z2. This can be done with four multiplications in
three rounds since squaring is GF(2)-linear.

S-box via GF(24) Inversion. Our main approach to eval-
uating the S-box in MPC views the inversion in GF(28) as
an extension of GF(24) at the cost of one inversion and 3
multiplications in GF(24). We observe that this representa-
tion considerably simplifies the complexity of the S-box and
identify suitable MPC sub-protocols for the GF(24) inver-
sion. Although methods for finite field inversion via a tower
of field extensions are well-known [39] and have been applied
to AES [12, 20], as far as we are aware, they have not been
explicitly considered in an MPC context.

GF(24)-circuit: Inversion as an Arithmetic Circuit. First,
we consider the simple approach of computing x−1 = x14 =
x2 · x4 · x8 in GF(24). This can be done with just 2 multipli-
cations, since squaring is GF(2)-linear. This already reduces
the communication by more than one third, compared with
a GF(28) circuit-based approach [21], while preserving the
same round complexity.

GF(24)-LUT-16: Inversion with a Lookup Table. Our next
variant uses lookup table techniques to evaluate the inverse.
Here, we adapt techniques from the dishonest majority MPC
literature [18,25,40], which allow to offload the work of com-
puting a lookup table to a preprocessing phase. The high-level
idea is to use the preprocessing phase to compute a secret-
shared, random one-hot binary vector (that is, all-zero except
for a single position) of length equal to the table size, which
we do based on a protocol from [40, 42]. Using this, in the
online phase the parties can open the masked input and then
compute the table lookup with a single linear combination.
This reduces communication in the online phase by a further
20%, and reduces round complexity, but adds some cost in an
input-independent preprocessing phase.

LUT-256: S-box via a Single Table Lookup. Our second
class of protocols treats the S-box as a single lookup table of
256 elements. The main advantage of this approach is that it
gets the best round complexity since the S-box can be evalu-
ated in a single round in the online phase (or 10 rounds for
1 AES block). Here, we present two different variants, based
on either additive secret sharing (⟨⟨·⟩⟩) or replicated secret
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Table 1: Performance comparison of our multi-party AES protocols and other approaches.
† the protocol communicates O(κ) during the input phase but nothing is sent during the computation phase.
∗ these protocols incur an additional O(logN) communication and rounds where N is the total number of multiplications verified.

Preprocessing Phase Online Phase

Protocol Comm. Bit Rounds Comm.Bit Rounds Total Comm. Malicious

Obliv. select [43] – – 286720 30 286720 ✗
GF(2)-circuit [6, 43] – – 5120 60 5120 ✗
GF(2)-circuit [5] – – 35840 60 35840 ✓
GF(2)-circuit [44] – – 5120∗ 60∗ 5120 ✓

GF(28)-circuit [21] – – 5120 30 5120 ✗

GF(28)-circuit [21, 31] ≈ 15000 O(1) 6144 30 ≈ 21144 ✓

GF(28)-circuit [15, 21] – – 5120∗ 30∗ 5120 ✓

Garbled circuit [45, 50] 614400 1 0† 1 ≈ 614400 ✓

GF(24)-circuit – – 3200∗ 30∗ 3200 ✓

GF(24)-LUT-16 1760 2 2560∗ 20∗ 4320 ✓
⟨⟨·⟩⟩-LUT-256 3520 2 2560∗ 10∗ 6080 ✓
J·K-LUT-256 39520 6 1280∗ 10∗ 39800 ✓

sharing (J·K). Replicated secret sharing has the lowest online
communication cost, but has very expensive preprocessing.
With additive secret sharing, through a novel approach, we are
able to reduce the preprocessing cost by more than 10x, whilst
only doubling the communication in the online phase. Based
on our implementation, it seems that the LUT-256 protocols
are best suited to a WAN setting, where round complexity is
more critical, especially since the local computation cost of
the table lookups is larger.

Achieving Malicious Security. One of the main challenges
in our protocols is to achieve malicious security with a low
overhead. One reason this is difficult is that our protocols rely
on additive secret sharing at various points, instead of purely
robust schemes like replicated or Shamir secret sharing. This
makes it hard to apply standard verification techniques, such
as the batch multiplication procedure of Boneh et al. [11],
which is often used for distributed zero-knowledge proofs and
MPC protocols [15, 32, 44]. To overcome this, we carefully
design our protocols such that the necessary replicated shares
can be extracted from our additively shared table lookup pro-
tocols. This allows the result of a table lookup on additively
shared inputs to be cheaply verified by checking the previous
multiplication gate. Additionally, for our additively shared
LUT-256 protocol, we rely on the algebraic structure of the
S-box to reduce the cost of the correctness check of an S-box
computation, after a potentially faulty table lookup, inspired
by recent work in zero-knowledge proofs [8]. This allows all
of our maliciously secure protocols to have the same amor-
tized communication cost as their semi-honest counterparts.

As a stepping stone in one of our protocols, we also obtain
a general-purpose, malicious protocol for table lookups with
O(
√

N) communication complexity for a table of size N. To

the best of our knowledge, all prior practical approaches with
malicious security require a cost of Ω(N). Our protocol relies
on the observation that a table lookup can be verified using
a single inner product check. By applying the generalised
version of the batch multiplication verification from [11],
which allows for checking inner product relations, we show
how to verify a O(

√
N) complexity lookup table with almost

no communication overhead.
Interestingly, for our additively shared AES protocol based

on a specialization of this technique, we observe that it’s not
sufficient to directly use the verification protocol from [11,
15, 32], which inherently leak any errors in multiplication (or
inner product) triples being verified to the adversary. While
this leakage would typically be harmless, since the errors are
already known to the adversary, this turns out not to be the
case for us (for further discussion, see Section 3.5.2). We
therefore show how to modify the verification procedure to
remove any leakage.

Overall, as can be seen in Table 1, our maliciously secure
protocols lead to a large reduction in communication costs
compared with prior approaches. Our implementation results
show that this approach comes with a slight increase in com-
putational costs, but is still highly practical.

1.3 Related Work
Background. Known oblivious AES protocols are classified
into two primary categories: those utilizing garbled circuits
and those employing secret sharing schemes. Garbled circuit-
based approaches [35, 37, 40, 50, 54] have the advantage of
fewer communication rounds, but have high bandwidth costs
due to the extensive size of garbled circuits. On the other
hand, secret sharing schemes require more communication
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rounds, but less communication. In recent years, efficient
methods for performing secure Boolean operations have been
proposed [6, 21] in the honest-majority setting, improving the
performance of AES in MPC. The main challenge in con-
structing oblivious AES protocols lies in computing S-boxes,
which requires non-linear operations [6] and thus communi-
cation. Previous research addressing this challenge can be
broadly categorized into two types: methods using secure ta-
ble lookup protocols [42,43], and secure computation of algo-
rithms that focus on the specific structure of S-boxes [23, 43].
Our proposed protocol integrates good aspects from both of
these methods.

Oblivious AES using Lookup Tables. Oblivious AES com-
putation using secure table lookups was proposed by Launch-
bury et al. [42] and Laur et al. [43], by converting the secret
lookup index x into a one-hot vector encoding, with a one in
position x and zeroes elsewhere. This approach performs the
encoding entirely in the online phase and requires 304 secure
multiplications and 3 rounds to process one S-box as a size-
256 table. Later works have used this technique in both the dis-
honest majority and honest majority settings [7,18,25,40,48],
with the main improvement being to offload the computation
of the one-hot vector to a preprocessing phase, leading to
a very lightweight online phase. For example, the protocols
from [18, 40] require 2k− k−1 secure AND gates to prepro-
cess a table of size N = 2k. Our J·K-LUT-256 protocol is based
on these ideas applied to the setting of replicated secret shar-
ing. Other approaches using distributed point functions can
reduce the bandwidth cost to O(kλ), for security parameter λ,
but this comes with computational security and an expensive
setup phase [13, 14].

Structure of the S-box. Protocols exploiting the structure
of the AES S-box have proposed various ways to improve
efficiency. Laur et al. [43] securely compute S-boxes with
the optimized Boolean circuit of Boyar et al. [12], obtaining
a protocol in 6 rounds and with 32 AND gates. Subsequent
works [5, 6] employ the same technique in the replicated
secret-sharing setting for semi-honest and malicious adver-
saries. By focusing on the algebraic structure of the S-box,
methods like the one in [21, 23, 24, 40] securely compute the
S-box as a multiplicative inverse x−1 = x254 in GF(28). The
previous most efficient AES protocols compute the inversion
as a circuit in GF(28) [21, 40]. In Chida et al.’s protocol [21],
this inversion can be performed with only four multiplica-
tions in three rounds. While it is also possible to interpolate
the AES S-box as a sparse polynomial in GF(28) [46], as
explored in [24], the cost of 18 multiplications in 12 rounds
is prohibitively high compared to other techniques.

Technique for Multiplicative Inverse. The technique we
use in this paper to calculate the multiplicative inverse using
an extension of GF(24) has mainly been used in hardware
implementations of AES [52,53]. Garbled circuit-based meth-
ods for oblivious AES have used optimized circuits based on

this approach [37].

Maliciously Secure Protocols. There are also oblivious
AES protocols that are secure against malicious adver-
saries [5, 24, 26, 27]. Our maliciously secure protocols tar-
get the three-party honest-majority setting. In the same set-
ting, [5], improving over [31], use bucket cut-and-choose
techniques to compute Boolean circuits with a total commu-
nication cost of 7 bits per AND gate. Afterwards, batched
multiplication checks with logarithmic overhead have been
employed to reduce communication [15,44] where each party
proves correct behaviour separately. Extending this approach,
in all of our protocols, the parties jointly prove correctness
of the multiplications. This leads to a factor 3 improvement
in local computation which is the bottleneck when employed
over medium to high bandwidth networks. Furthermore, we
leverage the AES circuit-specific relations between multi-
plications and encode multiple multiplication triples to be
checked into a single triple in the larger field which is needed
for soundness. The three-party garbling framework by Mohas-
sel et al. [45] lifts any semi-honest two-party garbling scheme
into a malicious three-party protocol in the honest-majority
setting. Instantiated with the ThreeHalves scheme [50], the
communication cost per AND gate is 1.5κ ≈ 120 bits for
80-bit security.

In other settings, maliciously secure two-party proto-
cols [26] and multi-party protocols [23, 24, 27] for dishonest
majority implement the AES function. These protocols re-
quire more than five times the communication cost compared
to semi-honest secure protocols.

2 Preliminaries

We begin by outlining some notation. We write x⃗ to denote
vectors and index them as x⃗i. We write x⃗ · y⃗ to describe the
inner product. We use z⃗ = x⃗∥⃗y to denote concatenation, i.e.,
z⃗ first contains elements of x⃗, then of y⃗. One-hot vectors are
written as e(r) where r is the index of the single one in the
vector, i.e., e(r)r = 1 and e(r)i = 0 for i ̸= r. Public truth table
vectors are denoted with T , omitting the⃗.

2.1 Finite Fields and Field Inversion
Let F2 be the field of order 2. We define the finite fields
GF(28) and GF(24) as follows:

GF(28) := F2[X ]/(X8 +X4 +X3 +X +1) ,

GF(24) := F2[X ]/(X4 +X +1) .

Note that the irreducible polynomial used in the definition
of GF(28) comes from the AES specification [28]. We con-
sider elements of GF(28) as bit-strings of length 8 corre-
sponding to the coefficients of a degree-7 polynomial over
F2. In particular, we write ∑

7
i=0 aixi ∈ GF(28) as the string
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{a7a6 . . .a1a0}2 or the corresponding 2-digit hexadecimal no-
tation. For example, {6E}16 represents the equivalence class
of X6+X5+X3+X2+X . Similarly, elements of GF(24) are
represented as 4-bit sequences or 1-digit hexadecimal nota-
tion. For example, {E}16 ∈GF(24) represents the equivalence
class of X3 +X2 +X .

We define the finite field (extension) GF((24)2) over
GF(24) as GF((24)2) := GF(24)[X ]/(X2 +X +{E}16). Ele-
ments of GF((24)2) are represented as a degree-1 polynomial
ahX +aℓ over GF(24). Each coefficient’s binary representa-
tion is {ah3ah2ah1ah0}2 and {aℓ3aℓ2aℓ1aℓ0}2.

Multiplicative Inversion in GF((24)2). A formula for the
inverse of a = ahX + aℓ ∈ GF((24)2) can be calculated by
solving a system of equations derived from aa−1 = 1 (see, for
instance, [20, 29]), giving

(ahX +aℓ)−1 = (ah⊗ v−1)X +(ah⊕aℓ)⊗ v−1. (1)

Here, ⊕,⊗ represent addition and multiplication in GF(24)
respectively, and v ∈ GF(24) is defined as follows

v := (a2
h⊗{E}16)⊕ (ah⊗aℓ)⊕a2

ℓ . (2)

This shows that the inverse in GF((24)2) can be obtained
through the calculation of one inverse v−1 in GF(24), plus
three multiplications and two squarings in GF(24).

Isomorphism Between GF(28) and GF((24)2). The finite
fields GF(28) and GF((24)2) are isomorphic. We use the ex-
plicit isomorphism and its inverse, described by Wolkerstorfer,
Oswald and Lamberger [53], given by the following maps.

Φ : GF(28)
∼−−→ GF((24)2) : {a7a6 . . .a0}2 7−→ (ah,aℓ) ,

ah0 := a4⊕a5⊕a6, aℓ0 := a0⊕a4⊕a5⊕a6,

ah1 := a1⊕a4⊕a6⊕a7, aℓ1 := a1⊕a2,

ah2 := a2⊕a3⊕a5⊕a7, aℓ2 := a1⊕a7,

ah3 := a5⊕a7, aℓ3 := a2⊕a4.

and

Φ
−1 : GF((24)2)

∼−−→ GF(28) : (ah,aℓ) 7−→ {a7a6 . . .a0}2 .

a0 := aℓ0⊕ah0, a4 := aℓ1⊕aℓ3⊕ah0⊕ah1⊕ah3,

a1 := ah0⊕ah1⊕ah3, a5 := aℓ2⊕ah0⊕ah1,

a2 := aℓ1⊕ah0⊕ah1⊕ah3, a6 := aℓ1⊕aℓ2⊕aℓ3⊕ah0⊕ah3,

a3 := ah0⊕ah1⊕ah2⊕aℓ1, a7 := aℓ2⊕ah0⊕ah1⊕ah3.

2.2 Advanced Encryption Standard (AES)
AES is a block cipher standardized by NIST [28], with a
128-bit block size. We focus on AES-128, with a key length
of 128 bits. For a detailed overview of the algorithm, see
Appendix C.

High-Level Structure and S-box. AES follows a
substitution-permutation network design, with alternating lay-
ers of non-linear S-boxes and linear permutations. In addition,
there is a key schedule that expands the 128-bit key into a set
of round keys to be used in each round. The linear components
of a round are ShiftRows, MixColumns and AddRoundKey,
which XORs the state with the round key. These can be ex-
pressed as linear operations in GF(28).

The S-box of AES — also called SubBytes — operates on
one byte of the state at a time, and is the only non-linear part of
AES. It can be expressed as the mapping over the finite field
GF(28) that sends x 7→ Affine(x254), where Affine is an in-
vertible affine transformation. Since the multiplicative group
of GF(28) has order 255, the computation of x254 maps every
non-zero x to x−1 and 0 to 0. We will often abuse terminology
slightly and refer to this as an inversion in GF(28).

2.3 Security Model
We consider protocols secure against up to t − 1 out of n
corrupted parties, where t−1 < n/2. We will often focus on
the case of 1-out-of-3 corruptions, where n = 3, t = 2. All
of our protocols are presented and analyzed in the malicious
model with abort, where a corrupt party may deviate from the
protocol specification and honest parties are not guaranteed
to receive output. We also consider relaxations in the semi-
honest model, where each party is assumed to follow the
protocol, which are obtained by omitting any verification
steps in the protocol.

We model ideal functionalities and give security proofs in
the Universal Composability (UC) framework [19], which
gives strong composition guarantees.

2.4 Secure Multi-Party Computation
We build upon MPC protocols based on replicated secret shar-
ing [38]. This approach is well-suited for secure computations
involving GF(2k) values such as those occurring in oblivious
AES. Additionally, it offers the advantage of a lightweight
protocol for multiplications of secret-shared values.

Replicated Secret Sharing and Additive Secret Sharing.
We use both t-out-of-n replicated secret sharing (t,n)-RSS
and n-out-of-n additive secret sharing (n,n)-SS.

In (t,n)-RSS, we write JaK. For a secret a in a finite field F,
a is split into

( n
t−1

)
random shares a(T ) ∈ F, for each subset

T ⊂ [n] of size t − 1, with the shares sampled so that a =

∑T a(T ). Party i gets the
(n−1

t−1

)
shares JaKi = {a(T )}T,i/∈T . The

overall sharing of a is JaK = (JaK1, . . . ,JaKn). In case of three
parties, each party holds exactly two of the three shares.

In (n,n)-SS, we write ⟨⟨a⟩⟩. For a secret a ∈ F, each party i
holds ⟨⟨a⟩⟩i = a(i) ∈ F s.t. a = a(1)+ · · ·+a(n). A share of a
value a is ⟨⟨a⟩⟩= (⟨⟨a⟩⟩1, . . . ,⟨⟨a⟩⟩n).

In this paper, the field F is always characteristic 2, and typi-
cally either GF(2), GF(24), or GF(28). With both replicated
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and additive sharing, a sharing in GF(2k) can be decomposed
into an array of k shares over GF(2) without communication
by doing binary decomposition.

We denote the set of corrupted parties by C , and the set
of honest parties by H . For a sharing JxK, we let JxKC =

{JxKi}i∈C be the set of all corrupt parties’ shares, and JxKH

the set of all honest shares (and similarly define ⟨⟨·⟩⟩C , ⟨⟨·⟩⟩H
for additive sharings).

Definition 2.1 (Consistent shares) Let S⊂ [n] and consider
a set of replicated shares {JxKi}i∈S, where JxKi = {x

(T )
i }T ̸∋i.

We say that the set of shares is consistent if x(T )i = x(T )i′ for
every i, i′ and T where i, i′ /∈ T .

When modelling security, we often define ideal function-
alities where the adversary provides as input a set of shares
JxKC . In this case, we implicitly require that the functionality
only accepts a set of consistent shares. Our functionalities
also often rely on the following straightforward fact.

Proposition 2.2 Given a secret x and a consistent set of cor-
rupted parties’ shares JxKC , a consistent set of honest shares
JxKH can always be defined.

Note that if exactly t parties are corrupted, then the honest
parties’ shares are defined uniquely; otherwise, they can be
sampled at random.

We consider reconstruction as an interactive protocol,
where parties exchange shares and reconstruct a secret. We
have the following two protocols.

Opening Additive Shares: x = Reconst(⟨⟨x⟩⟩). Each party
sends its share x(i) to all other parties, and reconstructs
x = ∑x(i). This requires n− 1 field elements of communi-
cation per party in one round. Alternatively, one can use the
“king” approach, where the parties send their shares to a des-
ignated party, who reconstructs and sends back x. This takes
on average only 2(n−1)/n field elements per party but two
rounds of interaction. In our implementation, since we fo-
cus on the 3-party setting, we chose to take the one-round
approach with two elements of communication. Note that in
the malicious setting, a corrupted party can easily change the
result of reconstruction by lying about their share.

Opening Replicated Shares: x = Reconst(JxK). With repli-
cated secret sharing, the parties can robustly open a secret,
guaranteeing that each party either outputs the correct value
or aborts. The simplest protocol is for the parties to exchange
all of their shares, and check whether the resulting sharing
is consistent before reconstructing x. When reconstructing
many values, this protocol can be optimized by optimistically
sending the minimal number of shares needed to reconstruct x,
and later verifying all openings in a batch by exchanging and
comparing hashes of the remaining shares. This was demon-
strated for the 3-party setting in [31] and later extended to the
multi-party setting [41].

Functionality Frand(F)
1. Frand receives from the adversary the shares JrKC .
2. Frand samples r← F, and uses (r,JrKC ) to define JrKH .
3. Frand distributes the shares JrKH to the honest parties.

Functionality Fzero(F)
1. Fzero receives from the adversary the shares ⟨⟨z⟩⟩C , and

samples random shares ⟨⟨z⟩⟩H , such that z = 0 ∈ F.
2. Fzero distributes the shares ⟨⟨z⟩⟩H to the honest parties.

Functionality Fcoin(k)
1. Fcoin samples (b1, . . . ,bk)← {0,1}k and sends this to

the adversary.
2. On receiving OK from the adversary, it delivers

(b1, . . . ,bk) to the honest parties.

Figure 1: The functionalities Frand, Fzero and Fcoin.

2.5 Correlated Randomness and Coin Tossing

We require the parties to have access to different forms of
correlated randomness, for obtaining replicated sharings of
random values, and additive sharings of zero (see Fig. 1).
The Frand functionality can be implemented using pseudo-
random secret sharing [22], where after a one-time setup to
distribute pseudorandom function keys among the parties, the
correlated randomness can be generated non-interactively. Ob-
taining random additive sharings of zero, modelled in Fzero,
can similarly be done using pseudorandom secret sharing.
One simple approach is to use Frand to obtain a random JrK,
and then each party XORs together n−1 of its share elements,
appropriately selected such that all shares cancel out and sum
to zero.

Finally, we also rely on the coin-tossing functionality, Fcoin,
which can be realized by running Reconst on a random shar-
ing from Frand.

2.6 Computations on Shares

Linear Operations. Any GF(2)-linear operation can be
performed locally on replicated or additively shared values,
by simply applying the operation to each element of each
party’s share. Similarly, addition by a constant can be per-
formed by adding it to a fixed subset of the shared elements.
Given sharings JxK, JyK and public values a,c, we denote
these operations by Jax+ y+ cK := aJxK+ JyK+ c and simi-
larly ⟨⟨ax+ y+ c⟩⟩ := a⟨⟨x⟩⟩+ ⟨⟨y⟩⟩+ c.

Free Squaring. Since squaring in GF(2k) is linear over
GF(2), it can be performed locally in both (t,n)-RSS and
(n,n)-SS: each party simply squares their corresponding
shares. We denote Jx2K := Square(JxK).

Local Multiplication. We rely on the multiplicative prop-
erty of replicated secret sharing: given sharings JxK and
JyK, the parties can obtain an additive sharing ⟨⟨xy⟩⟩ with-
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Functionality FweakMult / FweakDotProduct

Input: J⃗xK, J⃗yK: (t,n)-RSS share of x⃗ and y⃗.
Output: J⃗x · y⃗K: (t,n)-RSS share of the product x⃗ · y⃗.

1. FweakMult receives the shares J⃗xKH , J⃗yKH from honest
parties and reconstructs the secrets x⃗, y⃗.

2. FweakMult computes the corrupted parties’ shares
J⃗xKC , J⃗yKC and sends these shares to the adversary.

3. FweakMult receives an error d and a set of shares JzKC

from the adversary.
4. FweakMult computes z := x⃗ · y⃗+ d and samples honest

parties’ shares JzKH by using d and JzKC .
5. FweakMult sends the shares JzKH to honest parties.

Figure 2: Functionality for multiplication with additive error.
We refer to the functionality as FweakMult if x⃗, y⃗ have length 1,
and FweakDotProduct otherwise.

out any interaction. This holds because when t − 1 < n/2,
any pair of share elements x(T ),x(T

′), for size-(t − 1) sub-
sets T,T ′, is held by at least one party. For example, when
n= 3, party i holds (x(i),x(i+1)),(y(i),y(i+1)) and can compute
⟨⟨xy⟩⟩i := x(i)y(i)+(x(i)+ x(i+1))(y(i)+ y(i+1)). We write this
multiplication as ⟨⟨xy⟩⟩ :=MultLocal(JxK,JyK).
Share Conversion from ⟨⟨x⟩⟩ to JxK. This can be achieved
with a single communication round. Essentially, each party
creates a replicated secret sharing Jx(i)K of its additive share,
and distributes the resulting shares to the remaining parties.
With n = 3, this can be achieved by having the parties first re-
randomize their shares by adding a share of zero from Fzero.
Then, party i sends its share x(i) to party i+ 1. The cost is
sending 1 field element per party in one round [6]. We write
this as JxK = Reshare(⟨⟨x⟩⟩).

Multiplication with Additive Errors. Combining the local
multiplication and resharing protocols above, we obtain a
multiplication protocol on J·K-shared values. In the malicious
setting, a corrupted party may cheat during the resharing step,
introducing an error into the output. We model this in the
FweakMult functionality (Fig. 2), adapted from [33], which
allows the adversary to choose an error d that is added into the
output shares. We additionally extend this to FweakDotProduct,
for computing an inner product, where the inner product is
computed locally followed by a single resharing.

2.7 Verifying Multiplications and Dot Products
with Malicious Security

To ensure correct multiplications with malicious security, we
use a batch verification procedure. The idea is that during the
main MPC execution, the parties can use FweakMult, and later
verify that all multiplications were correct. This batch verifi-
cation can be safely postponed until the end of the protocol,
as long as any outputs of the computation are only revealed
after the multiplications have been verified.

Protocol 1 CheckTriple(JxK,JyK,JzK)→ 0/1
Input: JxK,JyK,JzK.
Output: Verify that xy = z.

1: Jx′K,JrK← Frand(F)
2: Jz′K← FweakMult(Jx′K,JyK)
3: t← Fcoin(F)
4: ρ := Reconst(JxK+ tJx′K)
5: JσK := FweakMult(JzK+ tJz′K−ρJyK,JrK)
6: if Reconst(JσK) = 0 then
7: return 1
8: else
9: return 0

10: end if

Some prior works implementing MPC for Boolean circuits,
such as [5,31], use cut-and-choose techniques to verify multi-
plications. These have a large communication overhead, and
require running in very large batches to obtain reasonable pa-
rameters. Instead, we verify multiplication triples by adapting
the protocol of [32,33], originally presented for Shamir-based
MPC, and based on similar ideas used previously for dis-
tributed zero-knowledge proofs [11] and MPC [15, 16, 47].
The work of Li et al. [44] uses similar techniques to check
multiplications in Boolean circuits but their encoding of bit
triples into prime field triples does not efficiently generalize
for binary extension fields that our protocols require.

Our protocol realizes the functionality Fverify (Fig. 3). The
main protocol uses a recursive inner product check, which
is essentially that of [16, 32] adapted to more general secret-
sharing schemes. However, we make two key changes that
are needed in some of our applications. Firstly, we extend the
protocol to verifying not just multiplications, but also inner
product relations using the approach from [11]. Secondly,
prior works [16, 32] only realized a functionality that leaks
the errors zi−xiyi in all multiplication triples to the adversary.
Instead, we modify the base case of the protocol to realize a
stronger functionality, which only leaks the result of the veri-
fication check and no additional information. In typical usage,
the errors in multiplications are chosen by the adversary so
leaking them in Fverify would not be an issue. However, specif-
ically for our AES protocol in Section 3.5.3, it turns out that
leaking these errors would compromise security.

The main protocol is shown in Protocol 2. To ensure cor-
rect triples with high probability, we need to work over an
exponentially large finite field F. We therefore use the pro-
tocol by first taking our Boolean (or small field) triples and
lifting the shares into a large extension field. Then, the proto-
col begins by randomizing the batch of inner product triples,
converting it into a single, large inner product of length N.
To verify the inner product, the protocol proceeds in logN
rounds, where in each round the dimension is halved, by first
viewing the inner product as an inner product on length-N/2
vectors of suitably defined degree-1 polynomials, followed
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Protocol 2 Verifying a batch of inner products
Functionality: 0/1← Fverify(J· · ·K).
Input: Shared triples {J⃗xiK, J⃗yiK,JziK}m−1

i=0 , where x⃗i, y⃗i ∈ Fni

and zi ∈ F for each i.
Output: Verify that x⃗i · y⃗i = zi, for all i.

1: r← Fcoin(F)
2: return VerifyDotProduct(J⃗x0∥r⃗x1∥· · ·∥rm−1⃗xm−1K,

J⃗y0∥· · · ∥⃗ym−1K,∑m−1
i=0 riJziK)

3: procedure VerifyDotProduct((Jx0K, . . . ,JxN−1K),(Jy0K, . . . ,
JyN−1K),JzK)

4: if N = 1 then
5: return CheckTriple(Jx0K,Jy0K,Jz0K)
6: end if

▷polynomials in X : fi(b) = x2i+b, gi(b) = y2i+b, for b ∈ {0,1}
7: for i = 0 to N/2−1 do
8: J fi(X)K := Jx2iK+(Jx2iK+ Jx2i+1K)X
9: Jgi(X)K := Jy2iK+(Jy2iK+ Jy2i+1K)X

10: end for
11: Jh(1)K← FweakDotProduct(J f⃗ (1)K, J⃗g(1)K)
12: Jh(2)K← FweakDotProduct(J f⃗ (2)K, J⃗g(2)K)
13: Jh(0)K := JzK− Jh(1)K ▷defines degree-2 h(X)
14: r← Fcoin(F)
15: Locally compute Jh(r)K via Lagrange interpolation
16: return VerifyDotProduct(J f⃗ (r)K, J⃗g(r)K,Jh(r)K)
17: end procedure

by evaluating the polynomials at a random challenge to com-
press this to an inner product of vectors of field elements.
Eventually, it reaches a base case where N = 1, and performs
a naive triple check (Protocol 1) that uses one extra, random
multiplication and a random challenge to check the remaining
one. Importantly, step 5 of the protocol computes the value
z+ tz′−ρy = (z− xy)+ t(z′− x′y), which should equal 0 if
the triple is correct. However, this cannot be revealed directly,
as it would leak information on z− xy to the adversary. To
prevent this, we re-randomize it via the additional multipli-
cation with JrK; this change allows us to realize the stronger
Fverify functionality.

We prove the following in Appendix D.

Theorem 2.3 Protocol 2 (Verify) securely realizes the func-
tionality Fverify (see Fig. 3), in the (FweakMult,Fcoin,Frand)-
hybrid model. The failure probability in the simulation is at
most (m+2logN)/|F|.

In the above bound, m denotes the number of inner product
triples of length ni, 1 ≤ i ≤ m, and N = ∑

m
i=1 ni. In order to

obtain statistical security ρ, the size of the field in Protocol 2
must be ≥ ρ bit. Thus the computation phase of all our MPC
protocols uses the small fields GF(24), GF(28) but the multi-
plication check phase embeds the observed small field triples
into triples in GF(264) to achieve the required soundness
level.

Table 2: Embeddings used to convert smaller field triples into
GF(264) elements for Fverify.

Field

GF(24) ψ(X) = {a181e7d66f5ff794}16
GF(28) ψ(X) = {033ce8beddc8a656}16

(GF(24))4 ψ(α) = {14f1968d182dd50f}16

Details on Embeddings. Since the inputs to Fverify are
GF(264) elements, the parties locally convert their shares of
each inner product triple J⃗xK, J⃗yK,JzK with xi,yi,z∈GF(2k) to
an inner product triple in GF(264) by computing the isomor-
phism ψ : GF(2k)

∼−−→ G where G is a subfield of GF(264)
of size 2k (where k = 24 or k = 28). Due to the linearity of
ψ, ψ(JxiK) = Jψ(xi)K, all this computation is local and secure
due to the J·K-sharing. For correctness, note that the check
∑ψ(xi)ψ(yi) = ψ(z+δ) = ψ(z)+ψ(δ) ∈ GF(264) with the
error δ ∈GF(2k) (in the small field) holds iff. δ = 0 since the
bijective ψ only maps 0 ∈ GF(2k) to 0 ∈ GF(264).

In Table 2 we detail the concrete isomorphisms used in
our protocols. We let GF(264) := F2[Y ]/(Y 64 +Y 4 +Y 3 +
Y + 1) and write its elements as 64-bit integers in hexadec-
imal notation in little endian order, i.e., {141}16 denotes
Y 9 +Y 7 + 1. Further, we define the degree-k extension of
GF(24) (see Protocol 3) for the check with a reduced num-
ber of multiplications as (GF(24))4 :=GF(24)[α]/{2}16α4+
{2}16α2 +{4}16α+{8}16. Finally, the embedding used for
the improved multiplication check in Protocol 8 embeds
(b0, . . . ,b7)∈ F8

2 into GF(264) as b0+b1Y + · · ·+b7Y 7. Note
that this is not an isomorphism to a subfield of GF(264) of
size 28, however the check Eq. 5 and 6 only requires a single
multiplication where this naive embedding is still correct. Im-
portantly, the adversary can only add bit errors on the right
hand side of the equations, thus cannot cancel other errors by
triggering a reduction modulo (Y 64 +Y 4 +Y 3 +Y +1).

2.8 Functionality for Table Lookup

In Fig. 4, we present a functionality for performing a secret-
shared table lookup. The functionality is parameterized by
the secret-sharing schemes used for the inputs and outputs,
denoted ss1 and ss2 respectively, which can be any combina-
tion of replicated shares (J·K) and additive shares (⟨⟨·⟩⟩). We
shorten the description to F ss

LUT if ss1 = ss2. Note that the
variant J·K 7→ J·K is fully maliciously secure, while variants
where the input or output is ⟨⟨·⟩⟩-shared inherently allow a
corrupt party to change the input or output. Importantly, if the
input is ⟨⟨·⟩⟩-shared then the functionality additionally outputs
a J·K sharing of the input that was used. We use this in our
maliciously secure protocols for verifying the correct inputs
were used after the protocol execution.

In Section 3.3, we will describe a protocol for realizing
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Functionality Fverify

Input: (J⃗x(1)K, J⃗y(1)K,Jz(1)K), . . . ,(J⃗x(m)K, J⃗y(m)K,Jz(m)K),
where m is the number of inner product triples to be
verified.

Output: b ∈ {accept(1),abort(0)} to honest parties.
1. Fverify receives from honest parties their shares of

(J⃗x(i)K, J⃗y(i)K,Jz(i)K) to reconstruct (⃗x(i), y⃗(i),z(i)) for all
i ∈ [m].

2. Fverify computes the rest of the corrupted parties’ shares
of (J⃗x(i)K, J⃗y(i)K,Jz(i)K) for all i ∈ [m] and sends these
shares to the adversary.

3. Fverify sets b := abort if there exists i ∈ [m] such that
z(i) ̸= x⃗(i) · y⃗(i) and sets b := accept otherwise.

4. Fverify sends b to the adversary and proceeds as follows:

• If the adversary replies continue, send b to honest
parties.

• If the adversary replies abort, send abort to honest
parties.

Figure 3: The functionality Fverify.

F ⟨⟨·⟩⟩→J·K
LUT . Later, in Section 3.5.3, we give protocols for the

other variants.

3 Protocols for Multi-Party AES

In this section, we construct the MPC protocols that compute
AES. We define the ideal functionality FAES as the function-
ality that computes the AES block encryption taking secret-
shared inputs {JxiK}i=0,...,127 and a secret-shared encryption
key {JkiK}i=0,...,127, and returns shared outputs of Enc(k,x),
{JziK}i=0,...,127. Note that in our setting, i.e., replicated secret
sharing with honest majority, we can transparently switch be-
tween shares of the binary extension GF(2k) and k many bit
shares GF(2), as these two have the same size. All proposed
protocols securely compute the ideal functionality FAES.

3.1 Overview of the Proposed Protocols
To compute the AES algorithm in MPC, all steps need to be
computed on secret-shared data. However, the linear layers of
AES (ShiftRows, MixColumns, AddRoundKey) can be com-
puted locally on the shares, as detailed in Sect. 2.6. Thus,
we focus on constructing the non-linear operations within
the KeyExpansion and SubBytes steps, that is, multiplicative
inversions in GF(28) within the S-box. This is (essentially)
the only place where our variants differ. For completeness,
we give the full oblivious AES algorithm in Protocol 9 in
Appendix C. We briefly summarize the following approaches
to compute multiplicative inversions in GF(28); their costs
are also summarized in Table 3.

The straightforward approach is to compute the inverse
directly using a 256-elements lookup table. We call this proto-

Functionality F ss1 7→ss2
LUT /F ss

LUT

Input: v shared under scheme ss1 ∈ {⟨⟨·⟩⟩,J·K}, and public
vector T .

Output: T ’s v-th element Tv shared under scheme ss2 ∈
{⟨⟨·⟩⟩,J·K}. If ss1 = ⟨⟨·⟩⟩, also output JvK.

1. To define the input sharings, if ss1 = ⟨⟨·⟩⟩:
• FLUT receives from each party a share ⟨⟨v⟩⟩i, and

reconstructs v = ∑i⟨⟨v⟩⟩i.
2. Otherwise, if ss1 = J·K:

• FLUT receives from honest parties their shares
JvKH , and reconstructs v.

• FLUT computes the corrupted parties’ shares JvKC

and sends these to the adversary.

3. FLUT looks up Tv.
4. FLUT receives from the adversary a set of corrupted

shares sh(Tv)
C , under scheme ss2.

5. FLUT samples consistent honest shares sh(Tv)
H using

(Tv,sh(Tv)
C ), under scheme ss2.

6. If ss1 = ⟨⟨·⟩⟩: FLUT additionally receives consistent
shares JvKC from the adversary, and defines the hon-
est shares JvKH using (v,JvKC ).

7. FLUT outputs the shares sh(Tv)
H , and optionally JvKH ,

to the honest parties.

Figure 4: Ideal functionality for secret-shared table lookup.

col the LUT-256 (see Sect. 3.5). Here, parties prepare a public
256-elements lookup table for inversion and convert an input
share JxK for x∈GF(28) into a one-hot vector e(x) ∈ {0,1}256

that has 1 at the position x and 0 otherwise. Then, they com-
pute an inner product of the lookup table and the one-hot
vector to obtain Jx−1K. While this approach is optimal in
round complexity, it requires heavy offline communication to
generate random one-hot vectors.

The main protocol (Protocol 3 in Sect. 3.2), LUT-16, re-
duces such offline cost by using a smaller lookup table. The
idea is to reduce the computation of multiplicative inversion
over GF(28) into the one over GF(24) as shown in Eq. (1), (2)
by using the isomorphism between GF(28) and GF((24)2)
from Sect. 2.1. Computing the inverse in GF(24) only re-
quires a lookup table of size 16.

Our lookup table protocol (Protocol 4) in Sect. 3.3 takes
⟨⟨v⟩⟩,v ∈ GF(24) as well as a public table T and outputs the
corresponding shared value JTvK using the table. When the
table is the inversion table, the obtained output Tv = v−1. The
key subfunctionality is FRandOHV by which we can obtain a
shared randomness JrK and the corresponding shared one-hot
vector Je(r)K. This allows the table lookup to be performed as
a linear function on e(r), after reconstructing a masked value
c = v⊕ r in the online phase, for a lookup table input v.
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Table 3: Comparison of maliciously secure S-Box evalua-
tion methods. # Mult is the number of multiplication triples
checked by Fverify.

Offline Online Rounds # MultComm. Comm.

Boolean circuit – 32 6 32
GF(28) circuit – 32 4 4

GF(24) circuit – 20 4 3
GF(24)/LUT-16 11 16 2 3
(3,3) LUT-256 22 16 1 6
(2,3) LUT-256 247 8 1 7

Functionality FInv

Input: JxK
Output: Jx−1K

1. FInv receives from honest parties their shares of JxKH

to reconstruct x.
2. FInv computes the corrupted parties’ shares JxKC and

sends these shares to the adversary.
3. FInv obtains x−1 from x.
4. FInv receives a set of shares Jx−1KC from the adversary.
5. FInv computes the honest shares Jx−1KH by using the

set of shares Jx−1KC and x−1.
6. FInv outputs the shares Jx−1KH to the honest parties.

Figure 5: The functionality FInv for GF(28).

3.2 Secure Protocol for Multiplicative Inverse

We propose a protocol for securely computing the multiplica-
tive inverse in GF(28) in Protocol 3. The ideal functionality
FInv is described in Fig. 5. By applying Φ from Sect. 2.1, the
secure computation of a multiplicative inverse in GF(28) can
be reduced to three secure multiplications in GF(24) and one
secure multiplicative inverse in GF(24).

To achieve malicious security, we need to ensure that cor-
rupt parties use the correct additively shared input ⟨⟨v⟩⟩ to
F ⟨⟨·⟩⟩→J·K
LUT . To do this, we rely on the fact that F ⟨⟨·⟩⟩→J·K

LUT also
outputs the replicated sharing JvK, giving a commitment to
what value was actually used as input. We then check that v
was correct by working backwards until the previous multipli-
cation (step 6), computing replicated shares of the multiplica-
tion input. Then, if we verify this multiplication using Fverify,
this guarantees that the correct value was input to F ⟨⟨·⟩⟩→J·K

LUT .
We prove the following in Appendix B.1.

Lemma 3.1 The protocol Inv in Protocol 3 securely com-
putes FInv with abort in the

{
F ⟨⟨·⟩⟩→J·K
LUT ,FweakMult,Fverify

}
-

hybrid model in the presence of a malicious adversary under
the honest majority setting.

Protocol 3 Multiplicative Inversion over GF(28) against Ma-
licious Adversary

Functionality: Jx−1K← FInv(JxK)
Input: Share JxK of x ∈ GF(28)
Output: Share Jx−1K of the inverse of x ∈ GF(28)
Subfunctionality: FLUT

1: (JahK,JaℓK)←Φ(JxK) ∈ GF((24)2) ▷Φ in Sec. 2.1
2: Ja2

hK := Square(JahK)
3: ⟨⟨a2

h⟩⟩ ← ToAdditive(Ja2
hK)

4: Ja2
ℓK := Square(JaℓK)

5: ⟨⟨a2
ℓ⟩⟩ := ToAdditive(Ja2

ℓK)
6: ⟨⟨ah×aℓ⟩⟩ :=MultLocal(JahK,JaℓK)
7: ⟨⟨v⟩⟩ := ({E}16×⟨⟨a2

h⟩⟩)⊕⟨⟨ah×aℓ⟩⟩⊕⟨⟨a2
ℓ⟩⟩

8: (Jv−1K,JvK)← F ⟨⟨·⟩⟩→J·K
LUT (⟨⟨v⟩⟩,T inv) ▷1 round, 8 bits

9: Jah×aℓK := JvK⊕ ({E}16× Ja2
hK)⊕ Ja2

ℓK
10: Ja′hK← FweakMult(JahK,Jv−1K)
11: Ja′ℓK← FweakMult(JahK⊕ JaℓK,Jv−1K) ▷1 round, 8 bits
12: JyK←Φ−1(Ja′hK,Ja′ℓK) ∈ GF(28)
13: Execute Fverify for the following multiplication triples:

1. (JahK,JaℓK,Jah×aℓK)

2. (JahK,Jv−1K,Ja′hK)

3. (Jah⊕aℓK,Jv−1K,Ja′ℓK)

14: return JyK

Reducing the number of multiplication checks. Instead of
checking 3 multiplications, we observe that the protocol can
be optimized by embedding all checks into one multiplication.
For some k ≥ 3 and degree-k, irreducible polynomial f (α)
over GF(24), define the extension field K = GF((24)k) =
GF(24)[α]/ f (α). An element of K can be expressed as a
polynomial ak−1αk−1+ · · ·+a1α+a0, for ai ∈GF(24). Then,
we can check the following equation over K:

(JahK+αJaℓK) · (JaℓK+αJv−1K)

= Jah×aℓK+αJa′h⊕a2
ℓK+α

2Ja′ℓ⊕a′hK .
(3)

Note that shares of a2
ℓ can be computed locally.

Lemma 3.2 If the checking equation Eq. (3) holds, the multi-
plication triples (1), (2) and (3) in Protocol 3 are all correct.

Proof: Let dv ∈ GF(24) be the error introduced by
A for the input ⟨⟨v⟩⟩ of F ⟨⟨·⟩⟩→J·K

LUT , thus the function-
ality returns (J(v⊕dv)

−1K,Jv⊕dvK). Then further, let
d1,d2 ∈ GF(24) denote the additive errors introduced in
Ja′h⊕d1K ← FweakMult(JahK,J(v⊕dv)

−1K) and Ja′ℓ⊕d2K ←
FweakMult(JahK⊕ JaℓK,J(v⊕dv)

−1K).
The parties call Fverify with the tuple

(JahK+αJaℓK,JaℓK+αJ(v⊕dv)
−1K,

Jah×aℓ⊕dvK+αJa′h⊕d1⊕a2
ℓK+α

2Ja′ℓ⊕d2⊕a′hK) ,
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corresponding to Eq. (3) where a′h = ah(v⊕dv)
−1 and a′ℓ =

(ah⊕aℓ)(v⊕dv)
−1. Note that Fverify computes the check and

obtains
0 = dv +αd1 +α

2(d1⊕d2) ,

where both sides are elements in the extension field K. The
check is zero if and only if dv, d1 and d2 are all zero. □

3.3 Secure Table Lookup Protocol
We present Protocol 4 that securely computes the ideal func-
tionality F ⟨⟨·⟩⟩→J·K

LUT from Fig. 4. Step 1 executes the ideal
functionality FRandOHV, which performs secure random one-
hot vector encoding that takes N = 2k as input and outputs the
shared randomness JrK and its corresponding shared random
one-hot vector Je(r)K (see Fig. 6). Using the randomness, the
protocol masks the input and reveals c = v+ r. The rest of the
computation can be done locally as in Step 4-5.

We show that the proposed approach correctly computes the
desired value. It is sufficient to show that for each i, the value
ti computed in Step 4 matches the i-th digit T (i)

v of T ’s v-th el-
ement Tv. According to the definition, t =

⊕
0≤ j≤n−1 e(r)j Tc⊕ j,

and since the inner product on the right-hand side turns 0 for
all terms but e(r)r Tc⊕r, resulting in t = Tv.

Protocol 4 Table lookup of size N = 2k, from ⟨⟨·⟩⟩ to J·K
sharing
Functionality: JTvK← FLUT(⟨⟨v⟩⟩,T )
Input: Share ⟨⟨v⟩⟩ of v ∈ GF(2k), table T : GF(2k) →

GF(2ℓ)
Output: Share JTvK of the value Tv ∈ GF(2ℓ)
Subfunctionality: FRandOHV

1: ({JriK}0≤i<k,{Je(r)j K}0≤ j<N)← FRandOHV(k)
2: ⟨⟨0⟩⟩ ← FZero(GF(2k))
3: c := Reconst(⟨⟨v⟩⟩+ToAdditive(JrK)+ ⟨⟨0⟩⟩) ▷1

round, 2k bits
4: JtK :=

⊕N−1
j=0 Je(r)j K ·Tc⊕ j

5: JvK := JrK⊕ c
6: return (JtK,JvK)

We prove the following in Appendix B.2.

Lemma 3.3 The protocol LUT in Protocol 4 securely com-
putes F ⟨⟨·⟩⟩→J·K

LUT in the {FRandOHV,Fzero}-hybrid model in the
presence of a malicious adversary.

3.4 General One-Hot Vector Protocol
We now show how to compute the random one-hot vector
that was required in the table lookup. We start with a general
protocol Ohv to securely compute the one-hot vector of a
shared input and turn it to a random one-hot vector protocol
by inputting a set of random shared bits (see Protocol 5). In

Functionality FRandOHV

Input: N = 2k

Output: k random bits {JriK}k−1
i=0 and length-N one-hot vec-

tor Je(r)K for r = rk−1 . . .r0

1. FRandOHV receives from the adversary A the shares{
JriKC}k−1

i=0 and Je(r)KC considered as the shares of ran-
domness and the corresponding share of the one-hot
vector held by corrupted parties.

2. FRandOHV samples {ri}k−1
i=0 then computes r = ∑

k−1
i=0 2i ·

ri and e(r).
3. FRandOHV generates JriKH from (ri,JriKC ) for i ∈
{0,1, . . . ,k−1}.

4. FRandOHV generates Je(r)KH from e(r) and Je(r)KC .
5. FRandOHV distributes the shares JriKH and Je(r)KH to

the honest parties.

Figure 6: The functionality FRandOHV to create a random one-
hot vector of length N.

Appendix A, we also give a specialized protocol for vectors
of length 16 with lower round complexity.

We sketch the procedure of Ohv, which is based on the dis-
honest majority protocol from [40]. It takes (Jvk−1K, . . . ,Jv0K)
as input. First, it selects bit Jv0K and creates a one-hot vec-
tor with length 2, (1− Jv0K,Jv0K). Then, it selects bit Jv1K
and computes a one-hot vector ((1− Jv1K) · (1− Jv0K,Jv0K),
Jv1K · (1− Jv0K,Jv0K)) with length 4. This is repeated until bit
Jvk−1K computes a one-hot vector ((1−Jvk−1K) · f⃗ ,Jvk−1K · f⃗ )
with length 2k, where f⃗ is a one-hot vector with length 2k−1

from the previous iteration.
The communication complexity with three parties is as fol-

lows. For general N, the communication cost is N− logN−1
bits within logN−1 rounds. For N = 256, the communication
cost will be 247 bits.

3.5 Approaches Using Large Lookup Tables

In this section, we explore alternative ways of securely com-
puting the AES S-box, using a single lookup table of size 256.
We present two protocols for secure AES evaluation with
different tradeoffs in communication complexity and round
complexity. We also present a third protocol, in Section 3.5.4,
which is less efficient for AES, but allows securely evaluating
an arbitrary lookup table of size N on J·K-shared values, with
a communication cost in O(

√
N) instead of O(N). The cost

of this protocol (Protocol 10) is shown in Table 4, together
with other protocols for comparison.

3.5.1 New F ss1 7→ss2
LUT Instantiations.

As building blocks, we use three variants of the F ss1 7→ss2
LUT

functionality with different combinations of secret sharing
schemes, namely, F J·K

LUT, F ⟨⟨·⟩⟩LUT and F J·K→⟨⟨·⟩⟩
LUT .
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Protocol 5 Random One-hot Vector
Functionality: (JrK,Je(r)K)← FRandOHV(N = 2k)
Input: ⊥
Output: Shared random bits {JriK}k−1

i=0 , and length-N one-hot vec-
tor Je(r)K for r = ∑

k−1
i=0 2iri

1: (Jrk−1K, . . . ,Jr0K) := Frand(k)
2: Je(r)K := OHV(Jrk−1K, . . . ,Jr0K;N)
3: Execute Fverify for the following multiplication triplets

from Ohv: (vi−1,( f0, . . . , f2i−1−2),(e0, . . . ,e2i−1−2)) for all i ∈
{2, . . . ,k}

4: return ({JriK}k
i=0, J⃗e(r)K)

5: procedure Ohv((Jvk−1K, . . . ,Jv0K;N = 2k))
6: if N = 2 then
7: return (1− Jv0K,Jv0K)
8: else ▷logN−2 recursive calls with N > 2
9: J f0K, . . . ,J fN/2−1K :=Ohv(Jvk−2K, . . . ,Jv0K;N/2)

10: Je0K, . . . ,JeN/2−2K :=Mult(Jvk−1K,(J f0K, . . . ,J fN/2−2K))
▷1 round, N/2 − 1 bits; store triple vk−1,
( f0, . . . , fN/2−2),(e0, . . . ,eN/2−2)

11: JeN/2−1K := Jvk−1K−
⊕N/2−2

i=0 JeiK
12: Je(v)K := (J f0K − Je0K, . . . ,J fN/2−1K − JeN/2−1K,

Je0K, . . . ,JeN/2−1K)
13: return Je(v)K ▷e(v) = ((1− vk−1) · f⃗ ,vk−1 · f⃗ )
14: end if
15: end procedure

Table 4: Comparison of protocols for table lookup of size N =
2k, with communication complexity for n = 3, t = 1. # Mult is
the length of the input to Fverify needed for malicious security

Protocol Offline Online Rounds # Mult

⟨⟨·⟩⟩ 7→ J·K (Prot. 4) N− k−1 2k 1 k−1
J·K 7→ J·K (Prot. 4 variant) N− k−1 k 1 k−1
⟨⟨·⟩⟩ 7→ ⟨⟨·⟩⟩ (Prot. 6) 2(

√
N− k

2 −1) 2k 2 k−2
J·K 7→ ⟨⟨·⟩⟩ (Prot. 6 variant) 2(

√
N− k

2 −1) k 1 k−2

J·K 7→ J·K (Prot. 10) 2(
√

N− k
2 −1) 2k 2 N

In F J·K
LUT, both the input JvK and output JTvK are given as

replicated sharings. This is a stronger requirement than pre-
viously, where v was only given additively shared, allowing
an adversary to add an error to the input. The simplest way
to realize F J·K

LUT is with a slight tweak to the LUT protocol
(Protocol 4): since the input is given in replicated shares, we
now run the Reconst procedure (step 3) on the replicated
sharing Jv+ rK instead of ⟨⟨v+ r⟩⟩. For a small number of
parties, this reduces communication since opening replicated
shares is cheaper. For instance, with n = 3, t = 1, the cost is
reduced from 2k bits per party down to just k. Note that the
preprocessing cost — generating a random one-hot vector of
length N = 2k via Protocol 5 — is identical to that of FLUT.

F ⟨⟨·⟩⟩LUT can be implemented using Protocol 6. This protocol is
very similar to that for F ⟨⟨·⟩⟩→J·K

LUT (Protocol 4), except the one-
hot vector only needs to be generated in additive shares, rather

than replicated shares. This allows for a much more efficient
preprocessing protocol: the parties can run the replicated one-
hot vector functionality FRandOHV twice on input length 2k/2,
obtaining two one-hot vectors Je(r)K,Je(r

′)K. Then, they can
locally compute additive shares of the tensor product vector
e(r)× e(r

′), giving a one-hot vector of length 2k. Note that,
since FRandOHV gives replicated shares of the non-zero index,
the same shares can still be used to obtain replicated shares
of the index of the length 2k vector.

Protocol 6 Table Lookup of size N = 2k in additive sharing
Functionality: (⟨⟨Tv⟩⟩,JvK)← FLUT(⟨⟨v⟩⟩,T )
Input: Share ⟨⟨v⟩⟩ of v ∈ GF(2k), table T : GF(2k) →

GF(2ℓ)
Output: Share ⟨⟨Tv⟩⟩ of the value Tv ∈GF(2ℓ), and share JvK
Subfunctionality: FRandOHV

1: Call FRandOHV(k/2) twice to get
({JriK}

k/2−1
i=0 ,{Je(r)j K}

√
N−1

j=0 ),({Jr′iK}
k/2−1
i=0 ,{Je(r

′)
j K}

√
N−1

j=0 )

2: JrK := (Jr0K, . . . ,Jrk/2−1K,Jr′0K, . . . ,Jr′k/2−1K)
3: ⟨⟨0⟩⟩ ← Fzero(GF(2k))
4: c← Reconst(⟨⟨v⟩⟩+ToAdditive(⟨⟨r⟩⟩)+ ⟨⟨0⟩⟩) ▷1

round, 2k bits
5: JvK := JrK+ c

6: ⟨⟨ f⃗ ⟩⟩ ←
(
MultLocal(Je(r)i K,Je(r

′)
j K)

)√N−1

i, j=0

7: ⟨⟨t⟩⟩ ←
⊕N−1

j=0 ⟨⟨ f⃗ j⟩⟩ ·Tc⊕ j

8: return (⟨⟨t⟩⟩,JvK)

The protocol securely realises the functionality F ⟨⟨·⟩⟩LUT from
Figure 4. Despite being maliciously secure, one must still
take care when composing this protocol with others, since the
ideal functionality inherently allows an adversary to cheat by
simply changing its additive share of the input or output. In
Section 3.5.3, we show how to overcome this issue for the
case of AES. We omit the proof of the following, which is
very similar to Lemma 3.3.

Lemma 3.4 Protocol 6 securely realizes the functionality
F ⟨⟨·⟩⟩LUT in the (FRandOHV,Fzero)-hybrid model.

Finally, F J·K→⟨⟨·⟩⟩
LUT can be implemented using Protocol 6,

except the opening of c in step 4 is done on replicated sharings
instead of additive. This achieves the strongest performance
characteristics of all variants: only k bits of communication
per party (for n = 3, t = 1) and a cheap preprocessing phase
that only requires two replicated, random one-hot vectors of
length 2k/2.

3.5.2 AES Protocol Based on Replicated Sharing

Given the F J·K
LUT functionality, our protocol for AES evaluation

is straightforward. We assume the parties start with replicated
shares of the input and expanded key. Then, each S-box is
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evaluated with a single call to F J·K
LUT of length N = 256, and

the linear layers are evaluated locally on the shares. Assuming
a maliciously secure implementation of F J·K

LUT, this protocol is
maliciously secure, since F J·K

LUT does not allow any errors to
be introduced by the adversary.

With n = 3, t = 1, the cost of this protocol in the online
phase is just 8 bits of communication per party per S-box, or
a total of 10 · 8 · 16 = 1280 bits for one block of AES. The
total round complexity is 10 rounds. The preprocessing phase,
however, is much more expensive, due to the need to generate
a large, replicated one-hot vector for each S-box. This costs
247 bits per party, per S-box, for a total of 39520 bits. Achiev-
ing malicious security can be done by batch verifying each of
the multiplications in the RndOhv protocol using Fverify.

3.5.3 AES Protocol Based on Additive Sharing

By relying on F ⟨⟨·⟩⟩LUT instead of F J·K
LUT, we can reduce the pre-

processing cost of the previous protocol by more than 10x.
This is because F ⟨⟨·⟩⟩LUT can be realized by generating only two
replicated one-hot vectors of length 16, instead of one of
length 256. Running the whole protocol on additive instead
of replicated shared inputs, we get a 3-party, passively secure
protocol with an online communication complexity of 16 bits
per S-box (2560 bits overall) and only 22 bits per S-box in the
preprocessing phase (3200 overall). The main challenge is
now how to add malicious security since we are now dealing
with additive shares which are easily tampered with.

We consider two approaches to malicious security. First, we
describe a specialized method tailored to AES, which needs no
additional communication except for one call to Fverify. The
core idea is to exploit the fact that F ⟨⟨·⟩⟩LUT outputs replicated
shares of its input x, and use this to obtain replicated shares of
the F ⟨⟨·⟩⟩LUT output from the previous round, by evaluating the
AES linear layer backwards. We combine this with a cheap
way of verifying input/output S-box pairs by verifying two
multiplication triples, relying on the algebraic structure of the
S-box.

Our second approach is more general and can be used to re-
alize F J·K

LUT with malicious security for arbitrary lookup tables
of domain size 2k. The preprocessing cost is the same as the
AES-specific protocol, but the online phase has slightly more
communication and requires using Fverify to verify a length-2k

dot product triple, instead of just two multiplications.

AES-Optimized Protocol. We present the full protocol for
AES evaluation in Protocol 7. The protocol begins with the
inputs and round keys distributed as replicated shares. The
first round of S-boxes is computed with F J·K→⟨⟨·⟩⟩

LUT . For each
subsequent round, we proceed to evaluate the linear layer,
denoted Li, and round key addition, followed by the S-box
with F ⟨⟨·⟩⟩LUT to get an S-box output yi = SubBytes(xi). We then
invert the linear layer on the replicated shares of xi to recover

Protocol 7 ⟨⟨·⟩⟩-LUT based AES

Input: Message JxK, round keys {Jk(i)K,⟨⟨k(i)⟩⟩}10
i=0

Output: JzK, where z = AESk(x)
1: Jx0K← JxK+ Jk(0)K ▷AddRoundKey

▷xi
b,y

i
b is byte b of xi,yi

2: {⟨⟨y0
b⟩⟩}15

b=0←{F
J·K→⟨⟨·⟩⟩
LUT (Jx0

bK)}15
b=0 ▷SubBytes

3: for i = 1, . . . ,9 do
4: ⟨⟨xi⟩⟩ ← Li

(
⟨⟨yi−1⟩⟩

)
+ ⟨⟨k(i)⟩⟩ ▷Shift/Mix/AddRK

5: {(⟨⟨yi⟩⟩b,Jxi
bK)}15

b=0←{F
⟨⟨·⟩⟩
LUT

(
⟨⟨xi

b⟩⟩
)
}15

b=0 ▷SubBytes

6: Jyi−1K← L−1
i

(
JxiK− Jk(i)K

)
7: end for
8: Jy9K← Reshare(⟨⟨y9⟩⟩)
9: JzK← L10

(
Jy9K

)
+ Jk(10)K ▷ShiftRows/AddRoundKey

10: triples←
⋃9

i=0
⋃15

b=0 VERIFYSBOX
(
Jxi

bK,Affine−1(Jyi
bK)

)
11: Run Fverify to check triples
12: return JzK

13: procedure VERIFYSBOX(JxK,JyK)
14: Jx2K = Square(JxK)
15: Jy2K = Square(JyK)
16: return {(Jx2K,JyK,JxK),(JxK,Jy2K,JyK)}
17: end procedure

replicated shares of yi−1. Finally, each S-box input/output pair
(xi,yi) is verified with Fverify, by first inverting the affine com-
ponent of the S-box, denoted Affine, to get ŷi, and checking
the two equations: x2

i ŷi = xi, and xiŷ2
i = ŷi which hold if and

only if ŷi = x254
i in GF(28). This idea was recently proposed

for zero-knowledge proofs of AES [8].
One subtlety of the security proof (in Appendix B.3) is

that when using Fverify, we cannot allow the adversary to
learn the errors in the multiplication triples, e.g. the values
di = x2

i ŷi − xi. This is because an error in an S-box input
corresponds to an error in xi, which would lead to a non-zero
value of di that leaks information on ŷi. While at first glance,
it may seem that even the presence of input-dependent errors
would leak information to the adversary, in our case it is not
a security issue to reveal whether some error occurred: if any
error di is non-zero then at least one of x2

i ŷi = xi or xiŷ2
i = ŷi

must be false. The key point is that we cannot reveal the value
or location of this error, which is why we need the stronger
Fverify functionality from Section 2.7.

We prove the following in Appendix B.3.

Lemma 3.5 Protocol 7 securely realizes the functionality
FAES in the (F ⟨⟨·⟩⟩LUT,Fverify)-hybrid model with malicious secu-
rity.

3.5.4 Improved Protocol for F J·K
LUT

In Protocol 10, shown in Appendix E, we present an alter-
native protocol for F J·K

LUT, which generalizes the ideas of the
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previous protocol to arbitrary lookup tables. Compared with
the naive protocol for F J·K

LUT discussed in the previous section,
we reduce the communication cost of the preprocessing to
O(
√

N). The online phase, however, has roughly double the
cost in terms of communication and rounds. This is not as
efficient as the AES-specific protocol in the previous section,
but may still be useful in other applications.

The protocol follows a similar approach to Protocol 6,
building a length-N one-hot vector taking the tensor prod-
uct of two length-

√
N vectors, except it works on replicated

shared inputs. Recall that Protocol 6 computes the output
v =

⊕
j f⃗ j ·Tc⊕ j, where c is a masked version of the input and

f⃗ is the one-hot vector. We observe that, when f⃗ is decom-
posed into a tensor product of two smaller one-hot vectors,
v can be seen as an inner product of two secret, J·K-shared
vectors of length N. This means we can tweak this to obtain
replicated shares of the output, by using the FweakDotProduct

functionality, followed by Fverify to obtain malicious security.

4 Performance

We implemented the proposed protocols and two most re-
lated protocols from the state of the art in the same software
framework for a fair comparison. Our code in the Rust pro-
gramming language is available2. Non-linear operations in
small fields, e.g., GF(28), GF(24), are implemented via table
lookups. Networking and I/O is done in a separate thread
where each channel between two parties is encrypted and
mutually authenticated using TLS1.3 with client/server cer-
tificates. Local randomness, for instance, to implement Frand,
comes from a PRNG based on ChaCha20, the hash function
we use for compare-view is SHA-256.

For semi-honest security, we implement Chida et al.’s
GF(28)-Circuit [21, Algorithm 5] as the baseline. We imple-
ment LUT-16 (Protocol 3 using Protocol 8 in the offline phase
to generate random one-hot vectors), GF(24)-Circuit (Proto-
col 3 but with the GF(24) inverse Jv−1K as Jv2K · Jv4K · Jv8K),
(2,3) LUT-256 (Protocol 4 using Protocol 5 to generate length-
256 random one-hot vectors) and (3,3) LUT-256 (Protocol 7
with Protocol 6 and Protocol 8 in the offline phase to generate
two length-16 random one-hot vectors).

For malicious security, we check the multiplications for
correctness using Protocol 2 in all variants described above
except (2,3) LUT-2563. Protocol 2 is implemented in GF(264)
to achieve an acceptable level of soundness of at least 40
bits and utilize hardware support for carry-less multiplication
(CLMUL). We also gain some efficiency by doing modular
reduction only once at the end when computing inner products.
We include a baseline from previous work, GF(28)-Circuit
( [21] + [31]), that uses bucket cut-and-choose adapted to
GF(28) with bucket size B = 3 and C = 3 triples to open (for

2https://github.com/KULeuven-COSIC/maestro
3Its costly preprocessing phase makes this variant unappealing.

≥ 219 multiplications, i.e., ≥ 820 AES blocks). All described
optimizations to reduce the number of multiplications triples
to check have been implemented. Note that we estimate that
Protocol 2 leads to about a factor 3 improvement in local
computation compared to the techniques from [15, 44]. Thus,
the performance of GF(28)-Circuit + Protocol 2 should have
equal or better performance4.

4.1 Experimental Setup
We experimentally evaluate the performance of the proposed
protocols in different settings using two sets of three machines.
Within each set, the machines have identical specifications:
the first set (16-core Intel Core i9-9900 3.10GHz, 128GB
RAM) is used in the 10 Gbit/s setting (≈ 9.47 Gbit/s, <1ms
latency), and the second set (16-core Intel XEON E5-2650v2
2.60GHz, 128 GB RAM) is used for the remaining network
settings, i.e., the 1 Gbit/s, 200 MBit/s, 100 MBit/s and WAN
(50 MBit/s) setting. The network throughput/latency was al-
tered using tc. In all settings, 16 computation threads were
used. We measure execution time (wall clock time) and the
total amount of bytes sent per party during the computation of
s many parallel AES block ciphers without the keyschedule
to amortize performance. The reported benchmark data is the
execution time/data communication of the slowest party, av-
eraged over at least 10 iterations of the protocol. The through-
put (denoted in AES blocks per second) is computed as ⌊s/t⌋
where t is the execution time in seconds.

4.2 Benchmark Results
We defer a detailed description of the benchmark results to
Appendix F and only highlight the main results for the high-
throughput setting in Table 5. Table 8 in Appendix F summa-
rizes the computation latency for one AES block. While our
protocols improve the online phase and total throughput by a
factor of 1.3 to 1.7 for semi-honest security compared to the
state-of-the-art, we cannot name a clear winner. The journey
to reduce communication creates trade-offs, such as introduc-
ing preprocessing (LUT-16), more rounds (GF(24)-Circuit)
or increased local computation (LUT-256). The saved com-
munication translates into higher throughput, particularly ben-
efiting lower bandwidth networks, but we cannot realize the
full potential of a very efficient online phase for the LUT-256
variants due to the much more involved local computation.

For active security, replacing the bucket cut-and-choose
with sublinear checks increases the total throughput by factor
4 to 8, even in high bandwidth networks. Considering only the
throughput of the online phase in the high-bandwidth settings,
we find that linear communication techniques for checking
multiplications, e.g., the triple sacrifice of [31], outperforms

4In the LAN setting, [44] report a performance of 10000 AES blocks in
1.08s, i.e., a total throughput of≈ 9260, so in this rough estimate our protocol
GF(28)-Circuit + Protocol 2 is factor ≈ 4.9 faster.
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Table 5: The throughput in AES blocks per second for different network settings. We denote the best value for online and total
throughput in bold. All maliciously secure protocols except GF(28)-Circuit ( [21] + [31]) have ≥ 37 bit statistical security.
GF(28)-Circuit ( [21] + [31]) has ≥ 40 bit.

Throughput (blocks/s)
Protocol Malicious Online Total Online Total Online Total Online Total Online Total

GF(28)-Circuit [21] ✗ 568 504 568 504 124 290 124 290 24 917 24 917 13 392 13 392 6 743 6 743
LUT-16 ✗ 775 697 318 498 180 606 99 656 35 063 20 174 16 617 10 840 11 052 6 739
GF(24)-Circuit ✗ 729 822 729 822 179 369 179 369 32 866 32 866 18 497 18 497 11 590 11 590
(2,3) LUT-256 ✗ 381 521 37 611 100 214 9 979 17 410 2 025 14 583 1 379 7 513 970
(3,3) LUT-256 ✗ 641 302 108 114 117 991 36 462 25 756 6 844 16 574 5 216 9 358 4 676

GF(28)-Circuit ( [21] + [31]) ✓ 152 127 6 044 32 185 2 703 7 889 1 481 4 707 1 039 2 832 743
GF(28)-Circuit ( [21] + Protocol 2) ✓ 33 709 33 709 13 235 13 235 5 696 5 696 4 694 4 694 4 716 4 716
LUT-16 + Protocol 2 ✓ 50 189 44 883 19 113 17 344 6 472 5 707 5 273 4 481 5 844 4 365
GF(24)-Circuit + Protocol 2 ✓ 48 924 48 924 18 829 18 829 6 429 6 429 5 396 5 396 6 073 6 073
(3,3) LUT-256 + Protocol 7 ✓ 32 508 25 409 13 547 10 560 3 732 2 652 3 370 2 345 5 056 3 289

Network 10 Gbit/s 1 Gbit/s 200 MBit/s 100 MBit/s 50 MBit/s
≤ 1ms RTT ≤ 1ms RTT 15ms RTT 30ms RTT 100ms RTT

Batch size 250 000 250 000 100 000 100 000 100 000

our protocols using the sublinear checks due to the increased
computational cost. This advantage decreases as bandwidth
decreases. In our studied settings, the bandwidth around 100
MBit/s is the tipping point where even the online phase of [31]
(which can only be efficient due to the costly preprocessing)
becomes slower than Protocol 2 due to the communication
overhead. Further communication-saving techniques from
the semi-honest setting only show a moderate effect of 6%
to 28% improvement in throughput since Protocol 2’s local
computation becomes the main bottleneck.

4.3 Discussion, Strengths and Limitations
We conclude by discussing strengths and limitations of the
presented protocols. They explore different trade-offs between
local computation and communication, thus the concrete per-
formance will depend on the computational and network re-
sources in a specific scenario. This makes a generic state-
ment with concrete numbers difficult, however we will sketch
strengths and limitations in various settings in a qualitative
way.

LUT-16. In settings with high bandwidth and low latency,
this protocol performs best in terms of online phase through-
put. However, for malicious security, previous work, GF(28)-
Circuit ( [21] + [31]), is to be preferred to reach high online
phase throughput. The necessary preprocessing and larger
batch sizes limit LUT-16’s utility for high total throughput
and low computation latency, respectively.

GF(24)-Circuit. This protocol is most effective in all net-
work settings when a high total throughput is desired. Its
comparatively simple structure without preprocessing makes
it attractive for both semi-honest and malicious security. The
protocol shares the downside of higher computation latency
for each block with LUT-16 since it works more efficiently

on large batches.

(2,3) LUT-256. This protocol is a straight-forward variant
of [40] adapted to replicated secret sharing. It does not have
significant advantages over the improved variant (3,3) LUT-
256 and shares its limitations. Although the online bandwidth
cost is lower than (3,3) LUT-256, this is not reflected in its
performance in our network settings due to the high cost of
local computation.

(3,3) LUT-256. This protocol should be used to compute a
small number of AES blocks in networks with latency when
low computation latency is desired. Due to the higher local
computation complexity, the throughput is limited when larger
batches are needed.

Overall, both the LUT-16 and the GF(24)-Circuit variant
emerge as a valuable trade-off for scenarios with high through-
put goals while the (3,3) LUT-256 protocol minimizes compu-
tation latency for a small batch size. Moreover, we closed the
gap between semi-honest and malicious security in the WAN
setting and achieve an overhead for malicious security of only
11% compared to the previous semi-honest state-of-the-art.
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carrying out the work have no direct ethical concerns. We
can also consider the ethical implications of the results and
general topic of our research. The primary use-case for our
work is threshold cryptography, which aims to provide an
extra layer of defence for cryptographic key storage, reducing
the likelihood of key theft or loss of encrypted data. Our re-
sults share the ethical considerations of AES and encryption
in general. Encryption, and in particular AES as used in In-
ternet communication protocols increase privacy and security
for sensitive data. This is important for individuals at risk
of surveillance, e.g., activists under an authoritarian regime.
Similarly, strong encryption can help to protect business in-
formation or intellectual property. On the flip side, encryption
can help malicious actors to hide their nefarious activities
from authorities. However, we strongly believe that the bene-
fits of encryption strongly outweigh the abuse potential. It is
possible that the techniques we develop will have secondary
applications in other areas of secure multi-party computation.

Open Science
All artifacts (code of the implemented protocols and raw
benchmark data of the results in Sect. 4) are publicly available
at https://doi.org/10.5281/zenodo.14719154 under MIT Li-
cense and at https://github.com/KULeuven-COSIC/maestro.
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A Random One-Hot Vector Protocol for
Length 16

We propose a protocol to securely compute the ideal function-
ality FRandOHV with length-16 output in Protocol 8. Compared

Protocol 8 Random One-hot Vector (RndOhv) with Length
16
Functionality: ({JriK}i,{Je(r)j K} j)← FRandOHV(⊥)
Input: ⊥
Output: Shared random boolean values (Jr3K,Jr2K,Jr1K,Jr0K) for

r0,r1,r2,r3 ∈ {0,1} and the corresponding shared one-hot vec-

tor Je(r)K for r = ∑
3
i=0 2iri, where

∣∣∣e(r)∣∣∣= 16
Subfunctionality: Frand

1: JrkK← Frand(⊥) for k ∈ [0,3]
2: Jrir jK← FweakMult(JriK,Jr jK) for all 3≥ i > j ≥ 0
3: Jrir jrkK← FweakMult(JriK,Jr jrkK) for all 3≥ i > j > k ≥ 0
4: Jr3r2r1r0K← FweakMult(Jr3r2K,Jr1r0K)

▷2 offline rounds, 11 bits
5: Servers locally compute Je(r)j K from the shares of the products

as in Eq.(4), for j ∈ [0,15]
6: Execute Fverify for the following multiplication triplets:

1. (JriK,Jr jK,Jrir jK) for all 3≥ i > j ≥ 0

2. (JriK,Jr jrkK,Jrir jrkK) for all 3≥ i > j > k ≥ 0

3. (Jr3r2K,Jr1r0K,Jr3r2r1r0K)

7: return {JriK}0≤i≤3,{Je(r)j K}0≤ j≤15

to Protocol 5, it has the same communication complexity but
fewer rounds. The fundamental idea is based on the two-party
Unitv-prep protocol for secure random unit vectorization pro-
tocol proposed in [7]. However, our proposed approach differs
in that it allows the multi-party setting and it outputs sharings
that are suitable for our construction.

The idea behind the construction is based on the fact that
for a single random bit b, the pair (b⊕1,b) forms a one-hot
vector of length 2. Additionally, two one-hot vectors of length
t can be tensor-multiplied to generate a one-hot vector of
length 2t. In the proposed approach, the constructed one-hot
vector e(r) satisfies the following equation

e(r)j =
∧

0≤i≤3

( j[i]⊕ r[i]⊕1), (4)

where j[i] (resp., r[i]) represents the i-th bit of j ∈ Z16 (resp.,
r ∈ Z16). Note that, by the distributive property, the terms
on the right-hand side for any j ∈ Z16 can be expressed as
the sum of partial products of {r0,r1,r2,r3}. The proposed
protocol achieves the one-hot encoding by generating random
shares of r[i] ∈ F2 and securely computing all their partial
products using Eq. (4).

Lemma A.1 The protocol RndOhv in Protocol 8 se-
curely computes FRandOHV for k = 4 with abort in the
{Frand,FweakMult,Fverify}-hybrid model in the presence of a
malicious adversary under the honest majority setting.

Proof: Simulation of RndOhv. S emulates Frand and re-
ceives from A the share Jr3KC , . . . ,Jr0KC held by corrupted
parties. For 11 invocations of Mult, S emulates FweakMult and
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sends A corrupt parties’ input shares (JriKC ,Jr jKC ) for all
3≥ i > j ≥ 0, (JriKC ,Jr jrkKC ) for all 3≥ i > j > k ≥ 0, and
(Jr3r2KC Jr1r0KC ). S receives from A the pairs of the error
and shares (di j,Jrir jKC ) for all 3≥ i > j ≥ 0, (di jk,Jrir jrkKC )
for all 3 ≥ i > j > k ≥ 0, and (d,Jr3r2r1r0KC ). S computes
Je(r)j KC for j ∈ [0,15] using the above shares held by cor-
rupted parties. S sends JrKC := Jrk−1∥ . . .∥r0KC and Je(r)KC :=
Je(r)0 ∥ . . .∥e

(r)
15 KC to FRandOHV. S emulates Fverify and sends A

the multiplication triples, (JriKC ,Jr jKC Jrir jKC ) for all 3≥ i >
j ≥ 0, (JriKC ,Jr jrkKC Jrir jrkKC ) for all 3≥ i > j > k≥ 0, and
(Jr3r2KC ,Jr1r0KC ,Jr3r2r1r0KC ). If there exists a non-zero er-
ror among di j,di jk or d, S sets b = abort, and otherwise S
sets b = accept. If b = accept and A replies continue , S pro-
ceeds to the next step. Otherwise, S sends abort to FRandOHV

and aborts.
We now show that the ideal execution and the real exe-

cution are indistinguishable. The view of A consists of the
corrupt parties’ input shares to FweakMult, which are computed
the same since they are obtained through linear operations
from Jr3KC , . . . ,Jr0KC . We also show that the output shares of
all parties are distributed the same in both executions. The
corrupted parties output shares in the ideal world are com-
puted the same way as those in the real world. For the honest
parties’ shares, they are determined by using Je(r)KC and e(r)

in the ideal world conditioned on Je(r)KH is a shared one-
hot vector of r. In the real world, Je(r)KH is computed from
Jr3KH ,Jr2KH ,Jr1KH , Jr0KH as defined in Eq. (4) which satis-
fies e(r) is a one-hot vector of r. Here, Je(r)KH is distributed
uniformly since it is computed via linear combination of cor-
rupted parties’ shares of output from FweakMult. □

Reducing the number of multiplication checks. Instead
of verifying all 11 AND gates separately, we observe that it
suffices to check 2 multiplications over a sufficiently large
extension field GF(2k) = GF(2)[X ]/ f (X). The first multipli-
cation verifies all the pairwise products rir j:

(r0 + r1X + r2X2) · (r3 + r0X3 + r1X6) =

r0r3 + r1r3X + r2r3X2

+X3(r0 + r0r1X + r0r2X2)

+X6(r0r1 + r1X + r1r2X2) .

(5)

The second multiplication verifies the remaining products:

(r0r1 + r0r3X + r1r3X2) · (r2 + r3X3 + r2r3X6) =

r0r1r2 + r0r2r3X + r1r2r3X2

+X3(r0r1r3 + r0r3X + r1r3X2)

+X6(r0r1r2r3 + r0r2r3X + r1r2r3X2) .
(6)

Lemma A.2 If the checking equations Eq. (5) and (6) both
hold, then the multiplication triples (JriK,Jr jK,Jrir jK) for all

3≥ i > j≥ 0, (JriK,Jr jrkK,Jrir jrkK) for all 3≥ i > j > k≥ 0
and (Jr3r2K,Jr1r0K,Jr3r2r1r0K) are all correct.

Proof: Let di j ∈ F2 for all 3 ≥ i > j ≥ 0 be the addi-
tive errors introduced by A in FweakMult for all pairwise
products. Then we denote di jk ∈ F2 the additive error from
Jrir jrk⊕di jkK← FweakMult(JriK,Jr jrk⊕d jkK), for all 3≥ i >
j > k ≥ 0, and further we denote d ∈ F2 the additive error
from Jr3r2r1r0⊕dK← FweakMult(Jr3r2⊕d32,r10⊕d10K).

For the check with reduced number of multiplication
checks, the parties interact with Fverify which now accepts
triples in GF(2ρ), ρ ≥ 9. The parties compute shares of
t1, t2, t3,h1,h2,h3 ∈ GF(2ρ) as

Jt1K := Jr0K+ Jr1KX + Jr2KX2 ,

Jt2K := Jr3K+ Jr0KX + Jr1KX6 ,

Jt3K := Jr0r3K+ Jr1r3KX + Jr2r3KX2

+X3(Jr0K+ Jr1r0⊕d10KX + Jr2r0⊕d20KX2)

+X6(Jr1r0⊕d10K+ Jr1KX + Jr2r1⊕d21KX2) ,

and

Jh1K := Jr1r0⊕d10K+ Jr3r0⊕d30KX + Jr3r1⊕d31KX2 ,

Jh2K := Jr2K+ Jr3KX3 + Jr3r2⊕d32KX6 ,

Jh3K := Jr2r1r0⊕d210K+ Jr3r2r0⊕d320KX + Jr3r2r1⊕d321KX2

+X3(Jr3r1r0⊕d310K+ Jr3r0⊕d30KX + Jr3r1⊕d31KX2)

+X6(Jr3r2r1r0⊕dK+ Jr3r2r0⊕d320KX + Jr3r2r1⊕d321KX2) .

The parties send (Jt1K,Jt2K,Jt3K) and (Jh1K,Jh2K,Jh3K) to
Fverify which checks t1 · t2 = t3 and h1 ·h2 = h3, thus obtains

0 = d30 +d31X +d32X2 +d10X4 +d20X5 +d10X6 +d21X8 ,

0 = d210 +d320X +d321X2 +d310X3 +dX6 +d320X7 +d321X8 ,

respectively. Thus, Fverify accepts if and only if all errors di j,
di jk and d are zero. □

B Deferred Proofs

B.1 Proof of Lemma 3.1
Lemma 3.1 (restated) The protocol Inv in Pro-
tocol 3 securely computes FInv with abort in the{

F ⟨⟨·⟩⟩→J·K
LUT ,FweakMult,Fverify

}
-hybrid model in the presence

of a malicious adversary under the honest majority setting.

Proof: S receives JxKC from FInv and computes JvxKC

through Step 1–7 using JxKC . S emulates F ⟨⟨·⟩⟩→J·K
LUT and

receives ⟨⟨v⟩⟩C ,Jv−1KC and JvKC from A , and defines
the error dv = JvxKC ⊕ JvKC . S emulates FweakMult, com-
putes JahKC and JahKC ⊕ JaℓKC using JxKC , and sends

19



(JahKC ,Jv−1KC ),(JahKC ⊕ JaℓKC ,Jv−1KC ) to A . S receives
(d1,Ja′hK

C ),(d2,Ja′ℓK
C ) from A . S emulates Fverify and

sends A the multiplication triples (JahKC ,JaℓKC ,Jah×aℓKC ),
(JahKC ,Jv−1KC ,Ja′hK

C ) and (Jah⊕aℓKC ,Jv−1KC ,Ja′ℓK
C ). Note

that the first triple (JahK,JaℓK,Jah×aℓK) can indirectly prove
that F ⟨⟨·⟩⟩→J·K

LUT outputs the correct JvK, that is, c is correctly
computed. Here, Jv−1K is computed locally and we don’t need
to verify.

If there exists a non-zero error among dv, d1 or d2, S sets
b= abort, and otherwise S sets b= accept. If b= accept and
if A replies continue, S proceeds to the next step. Otherwise,
S sends abort to FInv and aborts.

S computes Jx−1KC using Ja′hK
C and Ja′ℓK

C . S sends Jx−1KC

to FInv.
We state why the ideal execution is indistinguishable from

the real execution. The view of the adversary consists of the
corrupt parties’ shares of the first inputs to multiplicative in-
versions JahK and Jah⊕aℓK, but these are uniformly random
in both executions because they are obtained by applying a
non-zero affine map to JxKC . We also need to show that the
output shares of all parties are distributed the same in both
executions. The corrupted parties’ output shares are the same
in both executions. For the honest parties’ output shares in
the ideal execution, they are sampled at random conditioned
on that they can be reconstructed to x−1. In the real execution,
the honest parties’ output share JyKH is obtained as Jx−1KH

as the correctness was shown in Sect. 2.1, and it is uniformly
distributed since it is computed by applying a non-zero affine
map to the output of multiplications that were sampled uni-
formly. □

B.2 Proof of Lemma 3.3

Lemma 3.3 (restated) The protocol LUT in Protocol 4 se-
curely computes F J·K→⟨⟨·⟩⟩

LUT in the {FRandOHV,Fzero}-hybrid
model in the presence of a malicious adversary.

Proof: Let A denote the adversary. We will construct a
simulator, S , to simulate the honest parties’ behaviour in the
real execution.
Simulation of LUT. S emulates FRandOHV and receives JrKC

and Je(r)j KC from A , and defines ⟨⟨r⟩⟩C = ToAdditive(JrKC ).
S emulates Fzero and receives J0KC from A . S receives ⟨⟨c⟩⟩C
from the adversary and computes ⟨⟨v⟩⟩C = ⟨⟨c⟩⟩C ⊕⟨⟨r⟩⟩C ⊕
⟨⟨0⟩⟩C . S samples at random a set of shares ⟨⟨c⟩⟩H held by hon-
est parties and sends them to the adversary. S computes the
set of shares JtKC :=

⊕n−1
j=0Je(r)j KC ·Tc⊕ j and JvKC := JrKC ⊕c.

S sends to F ⟨⟨·⟩⟩→J·K
LUT the corrupted parties’ input shares ⟨⟨v⟩⟩C ,

and the outputs shares JtKC ,JvKC .
We now argue why the ideal execution is indistinguish-

able from the real execution. The view of the adversary con-
sists of the honest parties’ shares of the reconstructed c, but

these are uniformly random in both executions, thanks to the
masking with ⟨⟨0⟩⟩. We also need to show that the output
shares of all parties are distributed the same in both worlds.
The corrupted parties’ shares are computed exactly the same
way in both executions. For the honest parties’ shares, in
the ideal world they are sampled at random conditioned on
t = Tv. In the real protocol, since e(r)j has a 1 in position
r, we have t = Tv⊕r⊕r = Tv. Furthermore, since the shares
Je(r)KH ,JrKH sampled by FRandOHV are sampled uniformly,
the output shares JtKH ,JvKH are also uniformly distributed,
since they are each obtained by applying a non-zero affine
map to Je(r)KH and JrKH . □

B.3 Proof of Lemma 3.5

Lemma 3.5 (restated) Protocol 7 securely realizes the func-
tionality FAES in the (F ⟨⟨·⟩⟩LUT,Fverify)-hybrid model with mali-
cious security.

Proof: We construct a simulator, S , as follows. First, S
receives from FAES the corrupted parties’ shares JxKC and
Jk(i)KC , and defines ⟨⟨k(i)⟩⟩C = ToAdditive(Jk(i)KC ). For the
first set of calls to F J·K→⟨⟨·⟩⟩

LUT , S sends to A the appropriate
shares of x0

b, and receives the output shares ⟨⟨y0
b⟩⟩C . For each

subsequent round, for i = 1, . . . ,9, S does as follows:

• Apply the linear layer Li to the corrupted parties’ shares
to obtain ⟨⟨xi⟩⟩C .

• Receive ⟨⟨x̂i⟩⟩C from A , as input to F ⟨⟨·⟩⟩LUT.
• Define the error δi =

⊕
j∈C (⟨⟨xi⟩⟩ j⊕⟨⟨x̂i⟩⟩ j).

• Receive the adversary’s output sharings ⟨⟨yi⟩⟩C ,Jxi
bK

C

for F ⟨⟨·⟩⟩LUT.
• Compute the shares Jyi−1KC according to the protocol.

Finally, S emulates Reshare, and computes the corresponding
error δ10 in the new sharing of y9. To emulate Fverify, S first
sends to A the corresponding shares of the triples. Then, if
any δi is non-zero, S sends abort to A and aborts; otherwise,
S sends accept, and if A responds with continue, S sends to
FAES the corrupted parties’ shares of the outputs, z.

We claim that the ideal execution is distributed identically
to that of the real execution. Note that the real protocol aborts
if any of the S-box input/output pairs are incorrect; otherwise,
the output z must be the result of a correct AES evaluation.
In the ideal execution, the protocol aborts if any error δi is
non-zero. Since δi is the sum of all corrupt parties’ shares of
the xi value which was meant to be input into FLUT, and x̂i

was was used as input, any non-zero δi means that an incorrect
S-box input was used in round i. Since this input is used to
derive the sharings JxiK, this will cause the S-box verification
for round i−1 to fail, and the protocol will abort. □
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C Details on AES

C.1 Encryption Algorithm for Each Block
The encryption of a block in AES is a deterministic algorithm
that takes a 128-bit array and an encryption key as input and
produces a 128-bit array as output. The algorithm can be
defined as a function Enc : {0,1}128×{0,1}128→{0,1}128.

The protocol proceeds as follows.

1. Initialization: The input values are divided into 8-bit
segments, each of which is considered an element of
GF(28). These elements are represented in a 4×4 array
with column-first order, denoted as {sr,c}0≤r,c≤3. The
same process is applied to the encryption key.

2. Key Expansion: The round keys {k(i)r,c}0≤r,c≤3,0≤i≤10 to
be used in each round i ∈ {1, . . . ,10} are generated
from the encryption keys {kr,c}0≤r,c≤3. This is done as
follows:

k(i)r,c :=


kr,c if i = 0 ,

k(i−1)
r,0 ⊕Sbox(k(i−1)

(r+1 mod 4),3)⊕ rc(i)r if i ̸= 0,c = 0 ,

k(i−1)
r,c ⊕ k(i)r,c−1 otherwise .

Here, rc(i)r ∈ GF(28) is defined as rc(i)0 := ({02}16)
i−1

and rc(i)r := {00}16 for 1≤ r≤ 3. Sbox represents a sub-
stitution according to a predefined table (Section C.2).

3. Each element of the array is computed as sr,c := sr,c⊕
k(0)r,c .

4. Round Processing: For i= 1, . . . ,10, the following steps
are repeated:

• SubBytes: Each element of the array is substituted
according to a predefined table (AES S-box):

sr,c := Sbox(sr,c) .

• ShiftRows: Each row is shifted according to the
following rule: sr,c := sr,(c+r mod 4).

• MixColumns: For each column, the following are
calculated:


s0,c
s1,c
s2,c
s3,c

 :=


{02}16 {03}16 {01}16 {01}16
{01}16 {02}16 {03}16 {01}16
{01}16 {01}16 {02}16 {03}16
{03}16 {01}16 {01}16 {02}16




s0,c
s1,c
s2,c
s3,c


Note that this step is omitted when i = 10.

• AddRoundKey: Each element of the array is
XORed with the round key: sr,c := sr,c⊕ k(i)r,c .

5. Finalization: The 4×4 array {sr,c} is concatenated in
column-first order to produce the output.

C.2 AES S-Box

The AES S-Box is a substitution table used in the key ex-
pansion and SubBytes step to ensure the non-linearity of
encryption. Specifically, for an input s ∈ GF(28), it produces
an output {a7 · · ·a0}2 ∈ GF(28) defined as follows:

a0 := b0⊕b4⊕b5⊕b6⊕b7⊕1 ,
a1 := b0⊕b1⊕b5⊕b6⊕b7⊕1 ,
a2 := b0⊕b1⊕b2⊕b6⊕b7 ,

a3 := b0⊕b1⊕b2⊕b3⊕b7 , (7)
a4 := b0⊕b1⊕b2⊕b3⊕b4 ,

a5 := b1⊕b2⊕b3⊕b4⊕b5⊕1 ,
a6 := b2⊕b3⊕b4⊕b5⊕b6⊕1 ,
a7 := b3⊕b4⊕b5⊕b6⊕b7 .

Here, {b7 · · ·b0}2 represents the bit sequence that denotes
the multiplicative inverse s−1 ∈ GF(28) of the input value
s ∈GF(28). Note that when s = {00}16, all bi are set to 0 for
all i.

C.3 Oblivious AES

Protocol 9 describes the whole AES algorithm that is com-
puted in MPC. The main body of the paper focused on com-
puting SubBytes.

Protocol 9 Oblivious AES
Functionality: {JziK}← FAES({JxiK},{JkiK})
Input: 128-bit Boolean shared values {JxiK}i=0,...,127,
{JkiK}i=0,...,127

Output: 128-bit Boolean shared value {JziK}i=0,...,127
1: Servers locally perform initialization step to obtain
{Jxr,cK}0≤r,c≤3 and {Jkr,cK}0≤r,c≤3

2: {Jk(i)r,cK}0≤i≤10,0≤r,c≤3← KeyExpansion({Jkr,cK}0≤r,c≤3)
▷one-time operation for each key

3: {Jxr,cK}← AddRoundKey({Jxr,cK},{Jk(0)r,c K})
4: for i = 1, . . . ,9 do
5: {Jxr,cK}← SubBytes({Jxr,cK})
6: {Jxr,cK}← ShiftRows({Jxr,cK})
7: {Jxr,cK}←MixColumns({Jxr,cK})
8: {Jxr,cK}← AddRoundKey({Jxr,cK},{Jk(i)r,cK})
9: end for

10: {Jxr,cK}← SubBytes({Jxr,cK})
11: {Jxr,cK}← ShiftRows({Jxr,cK})
12: {Jxr,cK}← AddRoundKey({Jxr,cK},{Jk(10)

r,c K})
13: Servers locally perform finalization step to obtain
{JziK}i=0,...,127

14: return {JziK}i=0,...,127
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D Batch Verification Protocol

We now prove security of Protocol 2.
Theorem 2.3 (restated) Protocol 2 (Verify) securely realizes
the functionality Fverify (see Fig. 3), in the (FweakMult, Fcoin,
Frand)-hybrid model. The failure probability in the simulation
is at most (m+2logN)/|F|.

Proof: We begin by proving the base case when N = 1,
namely, Protocol 1.

Proposition D.1 Protocol 1 securely realizes Fverify for a sin-
gle multiplication triple.

Proof: The simulator, S , receives the corrupted parties’
shares JxKC ,JyKC ,JzKC from Fverify, and receives the outcome
b ∈ {accept, abort}. It emulates Frand and FweakMult, re-
ceiving shares Jx′KC ,JrKC and Jz′KC , plus an additive error
d, and then sends a random t← F for Fcoin. It simulates the
first Reconst by sending a random value ρ. For the second
FweakMult, it receives the shares JσKC , together with another
additive error f . For the second Reconst, if b = accept, d = 0
and f = 0 then S opens σ by sending honest shares corre-
sponding to the secret 0, and sends continue to Fverify. Other-
wise, it samples honest shares corresponding to a random σ,
sends these to the adversary and sends abort to Fverify.

First, notice that in the real world, ρ is statistically close
to uniform, because of the tx′ term that masks x. Secondly, if
e = z− xy is the error in the triple, then we have

z+ tz′−ρy = z− xy+ t(z′− x′y) = e+ td .

So, if the triple is correct and the adversary chooses d =
0, f = 0 then we always have σ = 0 in both real and ideal
worlds, and furthermore the output in both cases will be
accept. On the other hand, if there are any errors then in
the real world we have σ = (e+ td)r + f . If e is non-zero,
then e+ td is non-zero except with probability 1/|F|, since
d is fixed before the sampling of t. It follows that σ is sta-
tistically close to uniform, since r is uniformly random and
unknown to the adversary. Finally, this implies that the proto-
col output will be abort except with probability 1/|F|, which
is statistically close to the ideal world. □

Next, we analyze the VerifyDotProduct procedure with an
inductive argument. Namely, we show that if the recursive
call to VerifyDotProduct of length N/2 securely realizes the
functionality, then so does the main procedure.

Proposition D.2 Suppose that VerifyDotProduct on input of
an inner product triple of length N/2 securely implements
Fverify, with m = 1 and length N/2. Then, VerifyDotProduct
securely implements Fverify with m = 1 and length N. The
failure probability in the simulation is 2/|F|.

Proof: We construct a simulator, S , as follows. S receives
from Fverify the corrupted shares of the triple J⃗xKC , J⃗yKC ,JzKC ,
and the result b ∈ {accept,abort}. S computes the shares of
fi and gi, and uses these to simulate FweakDotProduct. It receives
the adversary’s shares h(1),h(2), and locally computes the
shares of h(0), to define shares of the polynomial Jh(X)KC . It
also receives from A errors, which define via interpolation an
error polynomial e(X) such that h(X) = f⃗ (X) · g⃗(X)+ e(X).

Next, S sends a random r← F to A . It then emulates the
recursive call to VerifyDotProduct; if b = abort or e(X) ̸= 0,
it sends abort to the adversary, followed by abort to the
length-N Fverify. Otherwise, it sends accept to the adversary;
if it responds with continue, then send accept to Fverify, oth-
erwise send abort.

We now argue indistinguishability. In the real world, if the
inner VerifyDotProduct check succeeds then h(r) = f⃗ (r) ·
g⃗(r). Since h(X) is degree at most 2, this implies that h(X) and
f⃗ (X) · g⃗(X) are equal as polynomials, except with probability
2/|F|. Since h(0)+h(1) = z, by construction, it follows that,
except with negligible probability, if the protocol accepts then
z = f⃗ (0) · g⃗(0)+ f⃗ (1) · g⃗(1) = x⃗ · y⃗, as required.

Meanwhile, in the ideal world, the simulator always aborts
if the triple is incorrect, or if e(X) ̸= 0. The only possible
differences between the two worlds are the cases: (i) the triple
is correct, but e(X) ̸= 0 and VerifyDotProduct accepts, or (ii)
the triple is incorrect, but the real protocol accepts. Each of
these cases would require VerifyDotProduct to accept in the
real world, even though h(X) ̸= f⃗ (X) · g⃗(X). As argued above,
this happens with probability at most 2/|F|. □

Proposition D.3 If at least one triple input to Protocol 2 is
incorrect, then so is the input to VerifyDotProduct, except
with probability at most m/|F|.

Proof: Suppose that zi = x⃗i · y⃗i +δi, and at least one δi ̸= 0.
Then, if

(⃗x0, r⃗x1, . . . ,rm−1⃗xm−1) · (⃗y0, . . . , y⃗m−1) =
m−1

∑
i=0

rizi ,

then it holds that

(1,r, . . . ,rm−1) · (δ0, . . . ,δm−1) = 0 .

Viewing the δi’s as coefficients of a non-zero, degree m−1
polynomial, this holds with probability at most m/|F|, for a
random r. □

The claim and final bound in the theorem follows
by a hybrid argument over the logN recursive calls to
VerifyDotProduct and the final base case. □

E Improved Protocol for F J·K
LUT

We present the improved protocol for F J·K
LUT in Protocol 10.

Since the protocol operates entirely on J·K-shared data, its
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security is straightforward and we omit the proof of the fol-
lowing.

Lemma E.1 Protocol 10 securely realizes the functionality
F J·K
LUT with malicious security.

Protocol 10 Table Lookup of size N = 2k in replicated sharing
Functionality: JTvK← FLUT(JvK,T )
Input: Share JvK of v∈GF(2k), table T : GF(2k)→GF(2ℓ)
Output: Share JTvK of the value of T at v
Subfunctionality: FRandOHV

1: Call FRandOHV(k/2) twice to get ({JriK}
k/2−1
i=0 ,

{Je(r)j K}
√

N−1
j=0 ) and ({Jr′iK}

k/2−1
i=0 ,{Je(r

′)
j K}

√
N−1

j=0 )

2: JrK := (Jr0K, . . . ,Jrk/2−1K,Jr′0K, . . . ,Jr′k/2−1K)
3: c← Reconst(JvK+ JrK) ▷1 round, k bits

▷ f⃗ (0), f⃗ (1) ∈ {0,1}N

4: J f⃗ (0)K := (Je(r)0 K, . . . ,Je(r)0 K, . . . ,Je(r)√
N−1

K, . . . ,Je(r)√
N−1

)K

5: J f⃗ (1)K := (Je(r
′)

0 K, . . . ,Je(r
′)√
N
K, . . . ,Je(r

′)
0 K, . . . ,Je(r

′)√
N−1

)K

6: J⃗g(0)K := (Tc · J f⃗ (0)0 K, . . . ,Tc⊕(N−1) · J f⃗ (0)N−1K)
7: JvK← FweakDotProduct(J⃗g(0)K,J f⃗ (1)K) ▷1 round, k bits
8: Run Fverify on input (J⃗g(0)K,J f⃗ (1)K,JvK)
9: return JvK

F Detailed Benchmark Results

F.1 Implementation Details
For LUT-16 and LUT-256, the offline phase computes on bit
shares. We implemented the generation of random one-hot
vectors using bit-slicing where we operate on a pack of 16
bits. This improves both local computation and efficiency for
I/O. The inner product required in oblivious table lookups
is realized using 16 and 256 hard-coded tables, respectively,
that contain the lookup table permuted by the reconstructed
public c⊕ j (see Step 4 in Protocol 4). Specifically, the table
entry contains 4 and 8 bitvectors, respectively, where each
encodes the i-th output bit of the permuted table. Then, given
the random one-hot vector e⃗ as bitvector, the inner product
for each output bit can be computed as (⃗e & t⃗[i]).parity()
mod 2 where & denotes bit-wise AND. This approach nei-
ther requires branching nor multiplication instructions and
improves local computation of Protocol 4 by about 10 times
compared to a naive approach.

F.2 Benchmark Results
Tables 6 and 7 give detailed numbers, including preprocessing
and online phase communication for passive and active secu-
rity. The time/communication for preprocessing and online

phase includes all necessary checks for malicious security
(e.g., Protocol 2 and compare-view).

For semi-honest security, two of our protocols, LUT-16
and GF(24)-Circuit outperform the state-of-the-art GF(28)-
Circuit protocol. LUT-16 offers the fastest online phase
which improves online throughput by factor 1.36 compared to
GF(28)-Circuit, while GF(24)-Circuit has the highest, overall
throughput resulting in a factor 1.28 improvement compared
to GF(28)-Circuit. The LUT-256 protocol variants allows for
a potentially rapid online phase due to the few communication
rounds and low amount of data. Our current implementation
cannot fully realize this potential. The bottleneck is the lo-
cal computation of the inner product between the random
one-hot bitvector and the permuted 256-element lookup table.
Further optimization is required for this step. This poor perfor-
mance coupled with the high cost of the preprocessing makes
the (2,3) variant not attractive for the malicious security set-
ting, so we didn’t implement it. The (3,3) LUT-256 protocol
overcomes the expensive preprocessing phase at the cost of
doubling the communication in the online phase compared
to (2,3) LUT-256 and can thus improve throughput by factor
≈ 2.8. However, it still falls short to GF(24)-Circuit since the
more expensive local computation dominates in this setting.

For malicious security, we first note that our implementa-
tion of the multiplication correctness check of Protocol 2 is
comparatively much slower than, e.g., the triple post-sacrifice
step in [31], despite optimizations using carry-less multiplica-
tion for GF(264) multiplication and inner products (about 3
to 8 times). This results in a significantly slower online phase
for our protocols. However, regarding overall throughput, all
protocols using Protocol 2 outperform the check of [31] with
improvements ranging from factor 2 to 4, respectively. Nat-
urally, these protocol variants also use much less communi-
cation, decreasing the number of sent bytes by up to factor
12.

While our protocol implementation was geared towards
high-throughput, it is possible to get an approximation of
the computation latency by evaluating only one AES block
(see Table 8). In network settings with latency, lookup-table
based approaches with a lower number of rounds therefore
have a lower latency. LUT-16 and LUT-256 reduce latency
by factor 1.2 to 2.4 compared to GF(28)-Circuit, respectively.
Our GF(24)-Circuit variant requires 4 rounds per S-box and
thus increases computation latency.

Chida et al. [21] also report on another setup where ma-
chines are connected in a ring topology with dual connec-
tions between each machine. This allows for optimizations
where for each step, half of the data is sent to one party, and
half is sent to the other party, essentially rotating the parties’
roles to improve throughput. Moreover, they also implement
counter-mode caching as a mode-level optimization. Both
optimizations can be implemented in our protocols and are
expected to enhance the performance.
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Table 6: Benchmark results for passive security on batches of 250 000 AES blocks in the LAN setting with ≈ 9.42 Gbits/sec
bandwidth. Time and communicated data is reported per batch, the throughput is reported as AES blocks per second. We denote
the best value for online phase and throughput in bold.

Protocol Preprocessing Online Throughput (blocks/s)
Time (s) Data (MB) Time (s) Data (MB) Preprocessing Online Total

GF(28)-Circuit [21] - - 0.44 160 - 568 504 568 504

LUT-16 0.46 55 0.32 80 540 374 775 697 318 498

GF(24)-Circuit - - 0.34 100 729 822 729 822

(2,3) LUT-256 5.99 1235 0.66 40 41 724 381 521 37 611

(3,3) LUT-256 1.92 110 0.39 80 130 036 641 302 108 114

Table 7: Benchmark results for active security on batches of 100 000 AES blocks in the LAN setting with ≈ 9.42 Gbits/sec
bandwidth. Time and communicated data is reported per batch, the throughput is reported as AES blocks per second. We denote
the best value per metric in bold.

Protocol Preprocessing Online Throughput (blocks/s)
Time (s) Data (MB) Time (s) Data (MB) Preprocessing Online Total

GF(28)-Circuit ( [21] + [31]) 9.56 ≈ 470 0.72 ≈ 192 10 459 138 832 9 727

GF(28)-Circuit ( [21] + Protocol 2) - - 2.17 ≈ 64 - 46 081 46 081

LUT-16 + Protocol 2 0.23 22 2.24 ≈ 32 442 095 44 624 40 533

GF(24)-Circuit + Protocol 2 - - 2.34 ≈ 40 - 42 799 42 799

(3,3) LUT-256 + Protocol 7 0.84 44 3.65 ≈ 32 119 745 27 373 22 280

Table 8: Computation latency for one AES block, reported as the execution time of the online phase in various network settings.
Protocol Malicious Latency (in ms)

GF(28)-Circuit [21] ✗ 3 454 818 2489
LUT-16 ✗ 19 489 801 1955
GF(24)-Circuit ✗ 4 592 1246 3577
(2,3) LUT-256 ✗ 1 174 308 1002
(3,3) LUT-256 ✗ 1 167 357 1024

GF(28)-Circuit ( [21] + [31]) ✓ 17 449 872 2761
GF(28)-Circuit ( [21] + Protocol 2) ✓ 11 718 1449 4317
LUT-16 + Protocol 2 ✓ 103 729 1303 3414
GF(24)-Circuit + Protocol 2 ✓ 12 862 1712 5161
(3,3) LUT-256 + Protocol 7 ✓ 39 415 783 2475

Network 1 Gbit/s 200 MBit/s 100 MBit/s 50 MBit/s
≤ 1ms RTT 15ms RTT 30ms RTT 100ms RTT
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