
Quantum-safe Signatureless DNSSEC
Aditya Singh Rawat

Ashoka University

aditya.rawat_phd21@ashoka.edu.in

Mahabir Prasad Jhanwar

Ashoka University

mahavir.jhawar@ashoka.edu.in

Abstract
Wepresent SL-DNSSEC: a backward-compatible protocol that lever-

ages a quantum-safe KEM and a MAC to perform signature-less
(SL) DNSSEC validations in a single UDP query/response style.

Our experiments targeting NIST level I security for QTYPE A query

resolution show that SL-DNSSEC is practically equivalent to the

presently deployed RSA-2048 in terms of bandwidth usage and reso-

lution speeds. Compared to post-quantum signatures, SL-DNSSEC
reduces bandwidth consumption and resolution times by up to 95%

and 60%, respectively. Moreover, with response size < query size
≤ 1232 bytes, SL-DNSSEC obviates the long-standing issues of IP

fragmentation, TCP re-transmits and DDoS amplification attacks.

1 Introduction
A cryptanalytically relevant quantum computer (CRQC) running

Shor’s period finding algorithm [64] can efficiently solve the fac-

toring and the discrete logarithm problem (DLP) in polynomial

time. Asymmetric schemes, such as RSA and ECDSA, relying on

the foregoing hardness assumptions, thus stand in urgent need

to be replaced with their quantum-resilient counterparts. While a

CRQC can also mount Grover’s [33] quadratically faster (O(
√
2
𝑛))

brute-force search against symmetric primitives (such as AES and

SHA family), the urgency for a post-quantum transition in this case

remains less pressing since a doubling of the key length or the hash

size restores the original n-bit security.
Many Internet protocols, such as TLS and SSH, rely on public-key

cryptography 1) to provide message confidentiality and integrity,

and 2) to authenticate the communicating participants. The DNS

Security Extensions (DNSSEC) [58–60], being one among such

protocols, facilitates the validation (origin authentication and data

integrity) of DNS responses with the aid of digital signatures. Being

the backbone of the Internet, the Domain Name System (DNS) maps

a human-readable domain name (www.example.com) to a machine-

understandable IP address (1.2.3.4). At present, DNS services

are also utilized for email authentication [39], acquisition of TLS

certificates by proving a domain’s ownership [10], and supporting

Internet routing security (RPKI) [50].

Without DNSSEC in place, DNS remains vulnerable to cache

poisoning attacks [1, 11, 12] wherein an adversary can inject a false

domain-to-IP mapping in a resolver’s cache, thereby eventually re-

directing the users of the poisoned resolver to amalicious website. In

order to perform a successful attack, an off-path adversary would

need to simultaneously guess the 16-bit UDP
1
source port and

the 16-bit DNS transaction ID. However, recently researchers [51,

52] discovered critical vulnerabilities in DNS software stacks that

narrowed this search space from 2
32

to 2
16+216, effectively enabling

them to compromise resolvers’ caches.

1
DNS primarily uses UDP at the transport layer.

Table 1: A size comparison (in bytes) of signature (sig) / ci-
phertext (ct) and public key (pk) of various algorithms.

Algorithm Assumption Quantum-safe pk ct / sig
X25519 ECDLP ✗ 32 32

Kyber-512 Lattice ✓ 800 768

ECDSA P-256 ECDLP ✗ 64 64

RSA-2048 Factoring ✗ 260 256

Falcon-512 Lattice ✓ 897 666

Dilithium-2 Lattice ✓ 1312 2420

SPHINCS+-128s Hash ✓ 32 7856

AlthoughDNS over TLS (DoT) [36], DNS over HTTPS (DoH) [35],

and DNS over QUIC (DoQ) [37] have been proposed, it is important

to note that they are not a replacement for DNSSEC. The former,

being privacy focused, establish an encrypted and authenticated

channel between a client and a resolver (i.e. hop-by-hop security).

On the other hand, DNSSEC 1) operates between resolvers and

nameservers, and 2) guarantees the veracity of DNS records by

establishing a chain of trust up to the root (i.e. end-to-end integrity).

In its endeavour to sustain Internet security in the face of quan-

tum computers, the National Institute of Standards and Technol-

ogy (NIST) has selected Crystals-Kyber [20] as Key Encapsulation

Mechanism (KEM) and Crystals-Dilithium [28], Falcon [56] and

SPHINCS
+
[17] as digital signature algorithms. In comparison to

their classical counterparts however, these algorithms (colloquially

referred to under the umbrella acronym of PQC — designating Post-

Quantum Cryptography), have significantly larger public key and

signature / ciphertext sizes as elucidated in Table 1.

Size Constraints onDNS.With the quantum era on the horizon,

DNSSEC must transition to CRQC-resistant algorithms so that

it may continue to thwart cache poisoning attempts. However,

the relatively larger footprint of PQC objects, as discussed above,

will have major ramifications on the global DNS infrastructure. A

DNS message, as originally specified, was restricted to a size of

512 bytes, with UDP being its primary transport. With a view to

DNSSEC’s higher space requirements (for transferring signatures

and public keys), this size bound was eventually increased to a

theoretical value of 64 KB with Extension Mechanisms for DNS

(EDNS0) [24]. Unfortunately, a DNS packet exceeding the Path

Maximum Transmission Unit (PMTU), which is usually 1500 bytes

(<< 64 KB), triggers IP fragmentation at the intermediate routers.

The ensuing UDP/IP fragments not only may never arrive [19, 68]

(e.g., due to being blocked by stateless firewalls) but also can be used
to exhaust a resolver’s resources [41] or to inject spoofed records

in a DNS response [34]. Additionally, the study of [68] has shown

that up to 10% of resolvers fail to handle these fragments correctly.

In order to avoid the multitude of issues linked with IP fragmen-

tation, DNS messages are recommended to not exceed 1232 bytes

in size [3, 55, 68]. This conservative threshold, derived as 1280 (IPv6

Aditya Singh Rawat and Mahabir Prasad Jhanwar

NameserverResolver

www.example.com A?

UDP

www.example.com (TC)

UDP

SYN

SYN-ACK

ACK

www.example.com A?

TCP

Figure 1: Standard DNS with TCP Fallback

minimum MTU) − 40 (IPv6 Header) − 8 (UDP Header), is deemed

to prevent IP fragmentation on almost all network links [9, 54].

For conveying DNSmessages that do not fit within the preceding

size bracket, the proposed fallback transport is TCP. In Standard

DNS flow, a response is marked as truncated (TC-bit is set in the

HEADER) if the size thereof exceeds either 1) Resolver’s advertised
edns-udp-size (i.e. the maximum message size it can receive over

UDP), or 2) Nameserver’s max-udp-size (i.e. the maximum mes-

sage size it can send over UDP). In BIND9 (a popular DNS software),

valid values for these parameters range from 512 − 4096. If the

PMTU is unknown, a default value of 1232 is used.

A resolver receiving a truncated response, which is a copy of the

original query but with TC-bit set, proceeds to discard it (incurring

a wasted UDP round-trip) and retries the query (with a new transac-

tion ID) over TCP after performing a three-way handshake with the

server. Figure 1 elucidates this flow for a DNSSEC-enabled resolver

sending a QTYPE A (IPv4 address) query for www.example.com. The
response, which additionally includes one or more PQC signatures,

is marked as TC because of exceeding the UDP limits.

Unfortunately, up to 11% of nameservers have been found to lack

TCP support by [55, 69]. The report of [55] additionally remarks

that TCP/53 connections could even be blocked by intrudingmiddle-

boxes. In the surveys of [26, 53], a non-trivial number of resolvers

did not properly fall back to TCP when requested by nameservers.

Lastly, DNS over TCP has been shown to be slower (sometimes by

a factor of 4×) and more resource intensive than DNS over UDP

[5, 42], thus putting a limit on the number of TCP connections a

DNS server might be able to handle concurrently.

Note that a properly implemented TCP support on nameservers

and resolvers still does not clear away the road to post-quantum

DNSSEC. For e.g., a DNS message containing just three SPHINCS
+
-

256s NIST level V signatures, a common scenario with non-minimal
QTYPE A responses, even exceeds the maximum possible DNS

message size of 64 KB.

1.1 Related Work
Out-of-Band Key Distribution. In [55], Müller et al. propose an
out-of-band distribution (i.e. transportation outside the DNS in-

frastructure) of large public keys via HTTP or FTP. Unfortunately,

not only does this approach require zone-operators to addition-

ally maintain a web server, but it also has been shown to create a

resolution overhead of about 30% in [14]. Furthermore, the size com-

plications arising due to PQC signatures still remain unaddressed.

Merkle Tree Ladder (MTL). Fregly et al. [30] recently proposed
a MTL mode which can reduce the size impact of PQC signatures.

Specifically, the signer signs Merkle tree ladders that are derived
from the messages to be validated. Individual messages are then au-

thenticated relative to the ladder using a Merkle tree authentication

path, while the ladder itself is validated using the public key.

Application Layer Fragmentation.With an aim of avoiding

the fragility and the unavailability connected with IP fragmenta-

tion and TCP fallbacks, respectively, many proposals have been

put forward that fragment large DNS messages at the application

(DNS) layer. In such a scenario, the nameserver becomes responsi-

ble for the fragmentation of a DNS response and the resolver for

the subsequent reassembly thereof.

Sivaraman et al. [65] fragmented a large DNS response across

multiple UDP datagrams, transmitting each fragment sequentially.

On the other hand, Additional Truncation Response (ATR) [66]

(though not strictly a fragmentation scheme) involved a module

which decided whether to send an additional truncated (TC) re-
sponse (right after the original large response) or not. The basic

idea behind ATR was as follows: If the client fails to receive the

first large response (for e.g., it gets fragmented at the network layer

and the ensuing fragments get dropped by stateless firewalls), the

trailing TC response would at least trigger an immediate TCP fall-

back thereon. Unfortunately, both of these proposals failed to gain

traction since multiple responses were being sent out to a single

request. Many firewalls are configured with the policy of accepting

one response packet per query. Moreover, many resolvers close

their sockets immediately after receiving the first response packet.

Thus, there were concerns about ICMP flooding since for each

trailing response packet that could not be delivered, a destination
unreachable packet would be sent back to the nameserver.

Addressing the shortcomings of the previous drafts, A Resource

Record Fragmentation (ARRF) [32] fragments DNS resource records

and sends an additional response only upon an explicit request.
Since each extra response has its own query, prior concerns about

firewalls and ICMP flooding are mitigated. Unfortunately, ARRF
fragments, owing to their use of non-standard Type RRFRAG pseudo-
records, could be potentially dropped by inspecting middleboxes.

Secondly, ARRF remains vulnerable to memory exhaustion attacks,

as acknowledged by its authors in [32]. Finally, ARRF requires a

minimum of two round-trips to reconstruct the full DNS message.

A recent work, called QNAME-Based Fragmentation (QBF) [57],
achieves a one round-trip reassembly of post-quantum DNSSEC

messages while using only standard DNS record Type(s). Unlike

previous schemes, it fragments raw signature and public key bytes

stored inRRSIG andDNSKEY records, respectively. The implication

is that the fragments resemble the original DNS response, except
insofar as they carry partial signatures / public keys. A fragment

is explicitly requested by encoding the desired fragment number

in the QNAME field of a query. Lastly, QBF is backwards-compatible

and not susceptible to memory-depletion attacks.

Quantum-safe Signatureless DNSSEC

Discussion on ARRF / QBF. For fast query resolutions, both

ARRF (in 2nd round trip) and QBF (in 1st round trip) send mul-

tiple DNS over UDP messages in parallel. On busy resolvers and

nameservers, handling thousands of queries per second, this deluge

of DNS packets could lead to a starvation of network bandwidth.

Moreover, such bursts in traffic can conceivably overwhelm load

balancers or trigger flood protection in firewalls. This is because

unlike its TCP sibling, UDP does not have any built-in flow and

congestion control mechanisms.

Furthermore, it is crucial to remember that UDP/IP does not

guarantee a reliable delivery of packets. In ARRF/QBF, as the num-

ber of signatures to transmit or the sizes thereof grow (from setting

higher NIST levels), the number of DNS messages that need to be

exchanged also inevitably rises. Therefore, the probability of at least

one DNS query/response packet getting dropped during transit also

increases, resulting in unforeseen resolution delays or timeouts.

To give a perspective, considering a 1% network loss rate and

SPHINCS
+
-128s as the zone signing algorithm, the probability of

at least one ARRF/QBF packet being lost during transit can be

calculated as Pr = 1− (0.99)46 = 0.37, where 46 is the (approximate)

total number of DNS packets exchanged during the session. This

implies that, with a one-third probability, a ARRF/QBF SPHINCS
+

session will require an extra round-trip. While the picture is not as

bleak with Falcon and Dilithium, it is circumspect to be prepared

for all circumstances, especially since SPHINCS
+
still remains the

most conservative choice among its siblings.

Another concern with ARRF/QBF is their potential to be ex-

ploited for a DDoS attack [40, 61, 70], wherein small DNS over

UDP queries with a spoofed source IP address cause large DNS

responses (amplification) to be sent out from a server to a target

IP device (reflection), eventually overwhelming the latter or the

network thereof. In one of the major DDoS events, the attackers

were able to generate 300 Gbps of traffic on a Tier 1 provider using

open DNS resolvers [2]. On a related note, performing such type

of attacks over TCP is not feasible because of the three-way TCP

handshake. This is because client’s query is forwarded to the DNS

software only after receiving a valid
2
client ACK to the server SYN.

Bearing the above apprehensions in mind, it appears that frag-

mentation schemes may not be the panacea for DNSSEC’s com-

plications in the quantum age. Therefore, in this work, we take

a fundamentally different approach by performing DNSSEC vali-

dations without PQC signatures. More precisely, we leverage the

concept of authentication via a key exchange.

Authenticated Key Exchange without Signatures. The no-
tion of an authenticated key exchange (AKE) follows a long succes-

sion of works, with the early proposals being [16, 21]. In the SKEME

protocol [45] and the RSA key-transport (in TLS versions up to 1.2),

an entity is authenticated via a successful decryption of a challenge

message. The protocol of Bellare et al. [15] obtained authentication

from long-term Diffie-Hellman (DH) keys. In particular, the result-

ing shared secret is fed into the session key calculation to derive an

implicitly authenticated key (i.e. only the legitimate parties could

compute it). Other DH-based AKE protocols include MQV [49],

HMQV [46], NAXOS [48], Noise [6], Signal [4] and WireGuard

2
With Acknowledgment Number = Server Sequence Number + 1

[27]. Constructions using generic Key Encapsulation Mechanisms

(KEMs) for AKE have also been proposed in [25, 31].

In the domain of TLS 1.3, the OPTLS proposal [47] is a DH-based

AKE that offers a signature-free handshake. Specifically, the server

sends a certificate containing a DH public key whilst combining the

corresponding long-term secret key with the ephemeral public key

from the client. The resulting shared key is then used to generate

a MAC which authenticates the server. Unfortunately, there does

not yet exist an efficient OPTLS instantiation for a post-quantum

setting ([72], Ch. 12). KEMTLS [62], which builds upon OPTLS,

is a KEM-based AKE that bypasses the usual signed-DH flow of

TLS to achieve a signature-less PQC handshake. More concretely,

the client performs an encapsulation against the server’s KEM

public key (obtained via the ServerCertificate message during

the handshake) to derive an implicitly authenticated shared secret,

which is then used to encrypt the first flight of application data

from the client. The server is later explicitly authenticated with the

ServerFinished message. Note that to validate the server’s KEM

public key, the client still unavoidably relies upon a CA signature.

A follow-up work by the same authors, called KEMTLS-PDK [63],

is a variant of KEMTLS that uses pre-distributed keys for earlier

authentication. This scenario occurs when a web-browser caches

certificates or in the case of Internet of Things (IoT) devices or

mobile applications that come with pre-bundled certificates.

1.2 Our Contributions
Given the practical size constraint on DNSSEC messages that im-

pedes a smooth adoption of post-quantum cryptography, we show

how an authenticated key exchange (AKE) can be used to achieve a

signature-free validation of DNS resource records. To this end, we

propose SL-DNSSEC: an AKE-based protocol for DNSSEC which

uses 1) A quantum-safe KEM to first establish a shared key between

a resolver and a nameserver, and 2) a Message Authentication Code

(MAC), computed under the shared key, to simultaneously authen-

ticate a DNS record’s origin and verify its integrity.

An overview of the protocol is illustrated in Figure 2. The resolver

holds a DNSSEC-validated KEMpublic key of the nameserver. Using

a series of KEM and Key Derivation Function (KDF) operations,

both parties derive a symmetric MAC key. The nameserver sends a

MAC tag instead of a signature on the answer record.

We now outline the salient benefits of SL-DNSSEC, with a sum-

mary thereof in Table 2. All numerical values below have been

inferred from Tables (11, 12) in §5.2.1 of this paper.

• Massive bandwidth savings. Compared to SPHINCS
+
,

Dilithium and Falcon, SL-DNSSEC transfers about 95%, 86%,

and 58% less data (Fig. 3) during a QTYPE A query lookup.

• Fast 1-RTT resolution. SL-DNSSEC remains 50% − 60%
faster than DNSSEC over Standard DNS (SD), with the latter

incurring the speed penalty of a wasted UDP round-trip

and then of a three-way TCP handshake.

• One packet sent/received.AlthoughARRF/QBF take two
and one round-trip(s), respectively, they exchange multiple

packets (up to 46) in parallel, thereby increasing the chances

of packet drops and UDP flooding. SL-DNSSEC, however,
sends only a single query/response.

Aditya Singh Rawat and Mahabir Prasad Jhanwar

Resolver Nameserver

DNSSEC Validated: pk Static KEM: pk, sk

(ss, ct) $←− KEM.encap(pk)

DNS Query

QUESTION : test.example

DNSKEY : ct

ss← KEM.decap(sk, ct)

𝜔 ← MACk (ANSWER)

DNS Response

QUESTION : test.example

ANSWER : 1.2.3.4

RRSIG : 𝜔

Verify𝜔′ ?

= 𝜔

k← KDF(ss)

k← KDF(ss)

𝜔′ ← MACk (ANSWER)

Figure 2: An abstracted view of SL-DNSSEC validating the
answer IP 1.2.3.4. The resolver has already fetched and
DNSSEC-validated the KEM public key of the nameserver.

Figure 3: A total bandwidth usage comparison betweenKyber-
HMAC (SL-DNSSEC) and signature-based DNSSEC methods.
SD denotes Standard DNS.

• DDoS amplification/reflectionmitigation.With smaller
responses than queries (Fig. 4), SL-DNSSEC fulfils the take-

away 6 in the vision paper [40] of being an “amplification-
resistant solution for post-quantum DNSSEC".

• Backward compatibility. SL-DNSSEC uses standard record

Type(s) andwire format to ensure thatmessages pass through

stringent firewalls. It also allows for a graceful fallback

to regular DNSSEC flow should one of the endpoints be

protocol-oblivious.Moreover, a zone can deploy SL-DNSSEC
without needing its parent to be protocol-aware.

To evaluate SL-DNSSEC, we program a daemon that can run

atop any DNS provider (such as BIND9, PowerDNS, etc.). The dae-

mon performs all SL-DNSSEC-related operations on behalf of the

DNS software. In fact, no changes to the underlying DNS stack are

required, except for a small patch on the resolver’s side to detect

the Z-bit in the DNS HEADER.

Figure 4: A transmit (TX) / receive (RX) bandwidth usage com-
parison between Kyber-HMAC (SL-DNSSEC) and signature-
based DNSSEC methods. SD denotes Standard DNS.

Table 2: A comparison between SL-DNSSEC and signature-
based DNSSEC methods. SD : Standard DNS (TCP Fallback).

SL-DNSSEC DNSSEC
over SD

DNSSEC over
ARRF/QBF

No TCP fallback ✓ ✗ ✓

Low bandwidth usage ✓ ✗ ✗

Fast resolution ✓ ✗ ✓

DDoS amp. resistant ✓ ✓ ✗

No network flooding ✓ ✓ ✗

1 packet sent/recvd. ✓ ✗ ✗

Reliability ✓ ✓ ✗

2 Preliminaries
Notations. The term resource record (RR) is often referred to as

simply a record. | | represents concatenation. X→ Y denotesmember

Y of an abstract structure X. In the context of networking protocols,

A/B indicates A over B (e.g., DNS/UDP — DNS (Application layer)

over UDP (Transport layer)). RTT stands for round-trip time. ANS

is short for Authoritative Name Server. For presentation, we omit

the root label (i.e. the trailing period (.) as in example.com.) while
writing fully qualified domain names (FQDNs). The word transfer
is occasionally abbreviated as xfer. The Bandwidth Amplification

Factor (BAF) of a DNS over UDP session is calculated as:

BAF =
Number of bytes received (RX)

Number of bytes sent (TX)

2.1 Domain Name System (DNS)
We briefly review the relevant background on DNS. Consider a

canonical domain name: www.example.com. (with the trailing dot).

Each label: (www), (example), (com) and (.)3 corresponds to a level

within the DNS hierarchy, with the root (.) being at the apex. Under
the root come top-level domains or TLDs (com), and within these

are second-level domains (example), and then subdomains (www).
3
The root label is technically null.

Quantum-safe Signatureless DNSSEC

Table 3: DNS HEADER Wire Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ID

QR OpCode AA TC RD RA Z AD CD RCode

QDCount

ANCount

NSCount

ARCount

— ID: used by requester to match a response to its query

— QR: whether message is a query (0) or a response (1)

— AA: whether response is authoritative (1) or not (0)
— TC: whether response is truncated (1) or not (0)

— Z: a reserved bit set to 0 by default

— AD: whether response has authenticated data (1) or not (0)

— RCode: (0) or NOERROR; (1) or FORMERR – malformed query;

(2) or SERVFAIL – server failure; (3) or NXDOMAIN – domain

name does not exist

A nameserver that contains definitive information for the zone is

said to be authoritative for the zone. For e.g., example.com ANS is

authoritative over the A record for www.example.com.
DNS Lookup. To retrieve the IP address of www.example.com,

the client (stub resolver) sends a recursive QTYPE A DNS query to its
resolver (local DNS server). The resolver, in the event of not having

the answer in its cache, performs the following steps iteratively:
(1) It sends a QTYPE NS query to a root (.) nameserver, which

subsequently responds with the following glue (referral)
records: 1) A Type NS record containing the domain name

of com nameserver 2) A Type A record containing the IP

address of com nameserver.

(2) It sends a QTYPE NS query to the com nameserver, which

subsequently responds with the following glue records: 1) A
Type NS record containing the domain name of example.com
nameserver 2) A Type A record containing the IP address

of example.com nameserver.

(3) It sends a QTYPE A query to the example.com nameserver,

which finally responds with a Type A record containing the
IP address of www.example.com.

(4) It caches and forwards the received IP to the client.

DNS Wire Format. A generic DNS message is divided into 5

sections: HEADER, Question, Answer, Authority, and Additional.
The HEADER is always present and has a constant size of 12 bytes.

Table 3 presents the wire format of a DNS HEADER. The Question
section consists of the following fields: QNAME (specifies the do-

main name encoded in the standard DNS name notation. For e.g.,
test.example is encoded as [4]test[7]example[0]), QTYPE (spec-
ifies the type of DNS records being requested), and QCLASS (specifies
the class of the query, by default set to IN i.e. Internet). The last
three sections (Answer, Authority, and Additional) have the same

format: a possibly empty list of concatenated DNS records.

The DNS resource records (RRs) are database entries that provide

information about a domain name. Each record has the following

sections: NAME (specifies the domain name encoded in standard

notation), TYPE (indicates the type of RR), CLASS (specifies the class
of data, defaults to IN), TTL (time-to-live in seconds i.e. how long the

RR can stay cached), RDLENGTH (specifies the length in bytes of the

RDATA field), and RDATA (contains the actual data associated with

the record). The Type A and AAAA records contain IPv4 and IPv6

addresses in their RDATA fields, respectively. The Answer section
contains records that answer the question; the Authority section

contains records that point toward an ANS; the Additional section
contains records which relate to the query, but are not strictly

answers to the question.

OPT Record. EDNS0 [24] introduces a pseudo-record called

OPT (short for options) in the Additional section of a DNS message.

Note that unlike traditional resource records, pseudo-records do

not actually exist in a zone file and are instead created on-the-fly.

In queries, a requester specifies the maximum DNS message size

it is willing to accept (also known as EDNS0 buffer size or UDP

payload size) in OPT → CLASS. In addition to this, the requester

also indicates its ability to handle DNSSEC records by setting the

DO (DNSSEC OK) bit in OPT→ TTL.
OPT→ RDATA contains DNS cookies [29] which provide limited

security against common off-path attacks such as denial-of-service

(server resource exhaustion, amplification/reflection, etc.), cache

poisoning and answer forgery. Fundamentally, the cookies serve to

1) add entropy to DNS messages, and 2) verify the IP ownership of

the client. The cookies are computed as:

— Client Cookie (8 bytes) =

Hash(Client IP || Server IP || Client Secret)

— Server Cookie (8-32 bytes) =

Hash(Client IP || Client Cookie || Server Secret)

2.2 DNS Security Extensions (DNSSEC)
DNSSEC enhances the security of DNS by ensuring the authenticity

and integrity of resource records. To realize this aim, it introduces

three
4
new types of resource records: Resource Record Signature

(RRSIG), DNS Public Key (DNSKEY), and Delegation Signer (DS).
1) RRSIG. A digital signature is computed, using a secret key

(discussed below) over a set (called an RRset) of DNS resource

records that have the same NAME, CLASS and TYPE. The resulting
signature is stored in the RDATA → Signature field of an RRSIG
record (refer Table 4).

2) DNSKEY. A DNSKEY record (Table 5) stores a public key.

Each zone employs two types of keys: Zone Signing Key (ZSK) and
Key Signing Key (KSK). KSK is used to sign only DNSKEY RRsets

while ZSK is used to sign all other RRsets. Whenever a resolver

receives a DNS response with an RRSIG, it uses the associated

DNSKEY record to verify the signature contained therein.

3) Delegation Signer (DS). The DS record (Table 6) plays a

pivotal role in recursively constructing a secure chain of trust from

a child zone to the DNS root (.).

When a resolver verifies RRSIGs using the ZSKpk of a child zone,
it must also ascertain the authenticity of that key. Recall that the

DNSKEY RRset containing ZSKpk and KSKpk is signed using the

child’s KSKsk. Since KSK is ultimately self-signed, a resolver must

4
A fourth Type NSEC(3) record, used to verify the non-existence of a record name

and type, is outside the purview of this work.

Aditya Singh Rawat and Mahabir Prasad Jhanwar

Table 4: RRSIGWire Format

RRSIG Record
NAME TYPE = RRSIG CLASS TTL RDLENGTH

RDATA
Type Covered Type of records signed

Algorithm Signature algorithm used

Labels Number of labels in the signed name

Original TTL Original time-to-live of the records signed

Signature Expiration When the signature expires

Signature Inception When the records were signed

Key Tag Key ID to be used for signature verification

Signer’s Name Name of the signer

Signature ← sign(RRSIG→ RDATA∥RR(1)∥RR(2)∥ . . .)
where RDATA excludes Signature
and RR(𝑖) is the 𝑖-th record in the RRset

Table 5: DNSKEY Wire Format

DNSKEY Record
NAME TYPE = DNSKEY CLASS TTL RDLENGTH

RDATA
Flags Specifies whether the key is a ZSK (256) or a KSK (257)

Protocol Always set to 0x03 to indicate DNSSEC

Algorithm Signature algorithm of the key

Public Key Contains the raw public key bytes

Table 6: DS Wire Format

DS Record
NAME TYPE = DS CLASS TTL RDLENGTH

RDATA
Key Tag ID of the KSK which is hashed

Algorithm Signature algorithm of the key

Digest Type Hash algorithm

Digest ← hash(DNSKEY→ NAME ∥ DNSKEY→ RDATA)

also connect the trust thereof with the child’s parent. To specifically

aid resolvers in this endeavour, the child generates a cryptographic

hash of its KSKpk and shares it with its parent in a DS record.

During a DNS lookup, when a resolver is referred to a child zone

by its parent, the latter provides a DS record containing the hash of

the child’s KSKpk. This DS record is what indicates to the resolver

that the child zone is DNSSEC-enabled. Importantly, the parent also

furnishes an RRSIG on this DS record using its own ZSKsk.
To validate the child zone’s KSKpk, the resolver hashes it and

compares it to the DS record from the parent. Additionally, the

resolver also verifies the associated RRSIG of that DS record using

the ZSKpk of the parent.
DNSSEC Lookup. This is similar to the DNS lookup process

described in §2.1, except that the resolver now sets the DO (DNSSEC
OK) bit in its DNS query. The following extra records are therefore

returned at each step:

(1) The root (.) nameserver also sends com’s DS and RRSIG
thereon created with (.)’s ZSKsk. Additionally, it sends (on
an explicit QTYPE DNSKEY query) (.)’sDNSKEYs andRRSIG
thereon created with (.)’s KSKsk. Here, we assume the re-

solver already holds (.)’s KSKpk as the trust anchor.

(2) The com nameserver also sends example.com’s DS and

RRSIG thereon created with com’s ZSKsk. Additionally, it
sends (on an explicit QTYPE DNSKEY query) com’sDNSKEYs
and RRSIG thereon created with com’s KSKsk.

(3) The example.com nameserver also sends RRSIG created

with its ZSKsk on the Type A record containing the answer

IP. Moreover, it sends (on an explicit QTYPE DNSKEY query)
its DNSKEYs and RRSIG thereon created with its KSKsk.

On a successful DNSSEC validation, the resolver sends its answer

response to the client with HEADER→ AD set.

2.3 Key Encapsulation Mechanism (KEM)
Definition 1. A Key Encapsulation Mechanism (KEM) is an

asymmetric primitive that allows two parties to establish a shared
secret in a key space K .

A KEM instance defines three probabilistic operations:

• Key Generation: KEM.keygen() generates a public and
private keypair (pk, sk).

• Encapsulation: KEM.encap(pk) generates a shared secret
ss in a key space K and a ciphertext (encapsulation) ct
against pk.

• Decapsulation: KEM.decap(sk, ct) takes as input sk and
ct, and decapsulates the shared secret ss′ ∈ K . In a 𝛿-correct

scheme, Pr(ss = ss′) ≥ 1 − 𝛿 .
Security Model. Shared secret (ss) should be indistinguishable

from random (IND), given just pk (Chosen Plaintext Attack (CPA))
or additionally given access to a decapsulation oracle (Chosen Ci-

phertext Attack (CCA)).

3 The SL-DNSSEC Protocol
SL-DNSSEC is a backward-compatible and amplification-resistant

protocol for DNSSEC that validates DNS resource records without

signatures. Pursuant to this objective, it uses as its primary building

blocks: 1) A post-quantum KEM to first establish a shared secret

between a resolver and a nameserver 2) A KDF to derive a symmet-

ric MAC key of an appropriate length from the shared secret, and

3) A MAC to compute authentication tags on DNS records.

On a high-level, a nameserver generates a KEM keypair and

adds the public key to its DNSKEY RRset, re-signing the latter

with its KSKsk. This RRset is fetched and DNSSEC-validated by a

resolver using the covering RRSIG and a signed DS record from

the zone’s parent. For any subsequent interaction, the resolver and

the nameserver compute a symmetric MAC key using KEM and

KDF operations. The nameserver then sends MAC tags instead of

signatures on DNS RRsets.

We now demonstrate the execution of the SL-DNSSEC protocol

between a resolver and an ANS. Note that SL-DNSSEC can also be

deployed on other zones, such as (.) or com.
The protocol is broadly divided into four phases.

3.1 Phase 1: KEM Key Generation
Assume a DNSSEC-enabled zone (say, example.com) with a Key

Signing Key (KSKpk,KSKsk) and a Zone Signing Key (ZSKpk,ZSKsk).
Therefore, the current public key RRset of example.com comprises:

2 Type DNSKEY records containing KSKpk and ZSKpk, respectively.

Quantum-safe Signatureless DNSSEC

Table 7: An abstracted view of a QTYPE DNSKEY response con-
taining the public keys of example.com zone

Header Section
Question Section

QNAME = example.com

QTYPE = DNSKEY

QCLASS = IN

Answer Section
DNSKEY KSKpk
DNSKEY ZSKpk
DNSKEY ZKKpk
RRSIG with KSKsk
Authority Section
Additional Section

OPT

The zone operator now runs KEM.keygen() to generate a Zone
KEM Key: (ZKKpk,ZKKsk).

Thereafter, the operator performs the following steps:

(1) Create a generic DNSKEY record.

(2) Set DNSKEY→ RDATA→ Flags = 258
(3) Set DNSKEY→ RDATA→ Algorithm = KEM
(4) Set DNSKEY→ RDATA→ Public Key = ZKKpk
(5) Add DNSKEY to the existing RRset of public keys.

(6) Re-sign the RRset using KSKsk.

Here, the value 258 for Flags is one of the available choices

after turning off the Secure Entry Point (SEP) bit (refer RFC [60]

§2.1.1). Note that the SEP flag is set only for a KSK which has a DS
record in the parent zone. Furthermore, in some DNS software, the

signature over a public key RRset is computed using both KSKsk
and ZSKsk, thus resulting in two RRSIGs (consult [23], §4.7).

When a DNS resolver now sends a QTYPE DNSKEY query to

example.com, it will receive a DNS response (consult Table 7 for
its structure) containing the following records:

— Three DNSKEY records holding KSKpk, ZSKpk and ZKKpk,
together constituting 1 RRset

— One covering RRSIG using KSKsk on the RRset

The implication of the RRSIG is that the trust of the KEM key

(ZKK) can now be established with the zone’s parent and then

recursively with the root. This is easy to see since the com zone

(the parent of example.com) already holds a DS record bearing the

hash of example.com’s KSKpk.
The resolver thereupon verifies the RRSIG using KSKpk and

then validates KSKpk itself via the signed DS record it had earlier

received from the com nameserver during the referral.

Finally, observe that the com zone and the root are not required

to be SL-DNSSEC-aware during the entire phase.

3.2 Phase 2: Preparing a SL-DNSSEC Query
Assume that a resolver intends to send a QTYPE A query with a

QNAME www.example.com to the example.com ANS. We addition-

ally presume that the resolver has already fetched and validated

the QTYPE DNSKEY response (as outlined in §3.1) from the ANS.

The aforesaid is a common scenario in DNS, wherein a resolver

already stores the DNSKEYs of previously contacted zones in its

Table 8: Wire format: SL-DNSSEC Query Q containing the
KEM ciphertext ct

Header Section
Question Section
QNAME = www.example.com

QTYPE = A

QCLASS = IN

Answer Section
Authority Section
Additional Section
NAME = example.com
TYPE = DNSKEY
.
.
.

RDLENGTH = 𝑥

RDATA

Flags = ZKKID
Protocol = 0x03
Algorithm = KEM
Public Key = 0x2a4b. . . (ct)

OPT

cache. Alternatively, the resolvers can retrieve the public keys of

an unacquainted zone first, before dispatching their main query.

The resolver now executes the following operations:

(1) Create a QTYPE A query message, say Q .

(2) Perform aKEMencapsulation againstZKKpk of example.com
to probabilistically get a shared secret ss and ciphertext ct.

(ss, ct) $←−− KEM.encap(ZKKpk)

(3) Create a generic DNSKEY record.

(4) Set DNSKEY→ RDATA→ Flags = ZKKID
(5) Set DNSKEY→ RDATA→ Algorithm = KEM
(6) Set DNSKEY→ RDATA→ Public Key = ct
(7) Insert DNSKEY in Q → Additional section.
(8) Send Q .

In rare settings wherein a zone offers multiple KEM public keys, a

resolver additionally needs to include information about the particu-

lar KEM key it has used for encapsulation. To this end, we repurpose

the 2-byte Flags field. Specifically, the resolver computes the 2-byte

Key Tag, say ZKKID, using the Type DNSKEY record of the utilized

KEM key (refer RFC [60], Appendix B for the algorithm used for Key
Tag computation) and sets Flags = ZKKID as previously outlined.

An example wire format of the resulting DNS query Q is illus-

trated in Table 8. Notice that Q transports ciphertext ct using the
standard DNSKEY5 record and wire format. Moreover, inserting

DNSKEY record (bearing ct) in the Additional section further im-

proves backward compatibility, since a SL-DNSSEC-oblivious ANS
would ignore it and proceed with the usual DNSSEC flow.

3.3 Phase 3: Preparing a SL-DNSSEC Response
On receiving the DNS query Q , the example.com ANS executes

the following actions:

5
The Public Key field is opaque (i.e. its content is not meaningful) to middleboxes.

Semantically, ct is an encapsulated shared secret key.

Aditya Singh Rawat and Mahabir Prasad Jhanwar

Table 9: An abstracted view of a non-minimal DNS response
to a QTYPE A query

Header Section
Question Section

QNAME = www.example.com

QTYPE = A

QCLASS = IN

Answer Section
RR1 TYPE A

RRSIG1
Authority Section

RR2 TYPE NS

RRSIG2
Additional Section

RR3 TYPE A

RRSIG3
OPT

(1) Prepare a traditional QTYPE A DNS response (say, R) to Q .

In this example, we assume R to be a non-minimal DNS re-
sponse (refer Table 9 for its general format) which contains

the following records
6
:

(a) 1 Type A resource record (RR1) in Answer section con-

taining the answer IP address and 1 covering RRSIG1
(b) 1 Type NS record (RR2) in Authoritative section con-

taining the nameserver’s name and 1 covering RRSIG2
(c) 1 Type A record (RR3) inAdditional section containing

the nameserver’s IP address and 1 covering RRSIG3
(2) Check if the size of R is within:

(a) Resolver’s UDP receive limit, as publicized in Q →
OPT→ CLASS

(b) Nameserver’s UDP send limit, as configured in named.conf
— If affirmative, the ANS has the option to send R as it is (i.e.
with signatures). In this example, we presume this check to

return negative (which is expected with PQC signatures).

(3) Check for a DNSKEY record containing a KEM ciphertext

in Q → Additional section.
— If negative, continue with the regular DNSSEC flow. Oth-

erwise, proceed as below.

(4) Extract the ciphertext ct from DNSKEY record and do a

KEM decapsulation using ZKKsk to obtain the shared secret
ss.

ss←− KEM.decap(ZKKsk, ct)
— If the ANS holds multiple KEM ZKKs, the correct key
for the decapsulation can be identified using the Key Tag
(ZKKID) provided by the resolver in the Flags field (see

§3.2).

(5) Feed ss to a secure KDF to derive a key k of requisite length.

k←− KDF(ss)
(6) For every RRSIGi in response R, do:

(a) Set RRSIGi → RDATA→ Algorithm = KEM
(b) Set RRSIGi → RDATA→ Key Tag = ZKKID
(c) Let msg := RRSIGi → RDATA∥RRi (1)∥RRi (2)∥ . . .

6
For simplicity, here each RRset contains only 1 resource record.

Table 10: Wire format: Original response with signatures
(Left), SL-DNSSEC response with MACs (Right)

Header Section
Question Section
QNAME = www.example.com

QTYPE = A

QCLASS = IN

Answer Section
NAME = www.example.com
TYPE = A
.
.
.

RDLENGTH = 4
RDATA = 1.2.3.4

NAME = www.example.com
TYPE = RRSIG
.
.
.

RDLENGTH = 𝑥

RDATA

Type Covered = A
Algorithm = FALCON
.
.
.

Key Tag = ZSKID
Signer’s Name = example.com
Signature = 0x1a2b. . . (𝜎1)

Authority Section
.
.
.

.

.

.

Signature = 0x3c4d. . . (𝜎2)
Additional Section
.
.
.

.

.

.

Signature = 0x5e6f. . . (𝜎3)
OPT

Header Section
Question Section
QNAME = www.example.com

QTYPE = A

QCLASS = IN

Answer Section
NAME = www.example.com
TYPE = A
.
.
.

RDLENGTH = 4
RDATA = 1.2.3.4

NAME = www.example.com
TYPE = RRSIG
.
.
.

RDLENGTH = 𝑦

RDATA

Type Covered = A
Algorithm = KEM
.
.
.

Key Tag = ZKKID
Signer’s Name = example.com
Signature = 0xfae5. . . (𝜔1)

Authority Section
.
.
.

.

.

.

Signature = 0xd4cf. . . (𝜔2)
Additional Section
.
.
.

.

.

.

Signature = 0xb2ac. . . (𝜔3)
OPT

— where RDATA excludes Signature and RRi (𝑗) is the
𝑗-th resource record in RRseti

(d) Compute 𝜔i ←− MACk (msg)
(e) Set RRSIGi → RDATA→ Signature = 𝜔i

(7) Send R.

Table 10 depicts a comparison between the original DNS response

containing PQC signatures (here, Falcon) and the SL-DNSSEC re-

sponse containing MACs. Note that RDLENGTH 𝑦 << RDLENGTH 𝑥
since MACs are usually much smaller than post-quantum signa-

tures. The implication here is that as the number of RRSIGs in-
crease, the size disparity between a signature-based response and

its SL-DNSSEC counterpart becomes even more exaggerated.

A noteworthy distinction between SL-DNSSEC and the conven-

tional DNSSEC flow is also herein encountered. While in the latter

approach, signatures are usually pre-generated (i.e. the zone file is
signed offline and then published on the nameserver), the former

computes MACs on-the-fly7.
Finally, observe that a MAC is computed over exactly the same

message as that specified for a signature in the DNSSEC RFC (refer

7
Analogous to Cloudflare’s DNSSEC live signing with ECDSA P-256.

Quantum-safe Signatureless DNSSEC

§3.1.8.1. in [60]). Additionally, the response R uses the standard

RRSIG8
record and wire format.

3.4 Phase 4: Validating a SL-DNSSEC Response
In due course, when the resolver receives the DNS response R, it
proceeds to validate the resource records contained therein in the

following manner:

(1) Fetch the shared secret ss from the state.

(2) Feed ss to the KDF to derive the key k.

k←− KDF(ss)
(3) For every RRSIGi in response R, do:

(a) Check RRSIGi → RDATA→ Algorithm
— If a signature algorithm is detected, execute the usual

signature validation flow. If a KEM algorithm is found,

proceed as below.

(b) Let msg := RRSIGi → RDATA∥RRi (1)∥RRi (2)∥ . . .
— where RDATA excludes Signature and RRi (𝑗) is the
𝑗-th resource record in RRseti

(c) Compute 𝜔 ′i ←− MACk (msg)
(d) Verify 𝜔 ′i

?

= RRSIGi → RDATA→ Signature
(4) If all RRSIGs are verified, mark R as secure.

3.5 Backward Compatibility
We now examine what happens when only one of the end points

implements the SL-DNSSEC protocol while the other one does not.

• Protocol-aware Requester | Protocol-oblivious Responder: The
requester will not find a KEM ZKKpk in the QTYPE DNSKEY
response from the server. It will then send a plain DNS

query.

• Protocol-oblivious Requester | Protocol-aware Responder: A
KEM ZKKpk (along with KSKpk and ZSKpk) would be sent

to the requester in the QTYPE DNSKEY response. However,

ZKKpk would be ignored as a key with an unsupported algo-

rithm. The requester will then dispatch a usual DNS query.

The responder, on not finding a KEM ciphertext in the query,

will then proceed with the regular DNSSEC flow. In due

time, when the requester receives a DNS response contain-

ing signatures, it will pick the relevant key (i.e. ZSKpk) to
perform the validation of resource records.

4 Security
We assess SL-DNSSEC’s security under the standard attacker model

as used in a previous DNSSEC study [13]. In particular, the adver-

sary’s ultimate aim is to induce the resolver to accept a malicious

answer in Phase 4 (§3.4) of the protocol. All the capabilities of the

(on-path) adversary, or lack thereof, are as listed below:

— It may eavesdrop on any exchanged packet.

— It may intercept, manipulate and re-send any exchanged

packet as follows:

– It may modify any HEADER bits.

– It may modify theQuestion section.

8
The Signature field is opaque to middleboxes. Moreover, a MAC can be loosely

thought of as a symmetric signature (without the non-repudiation property).

– It may remove/add/modify any resource record, in-

cluding RRSIGs, DNSKEYs, or Type A or NS records.
— It cannot access any secret cryptographic keys.

— It can only do polynomial order computations.

Since the deployment of SL-DNSSEC does not depend on the

zone’s parent, we omit the root (.) and the comTLD from the analysis.

We also assume that a secure chain of trust exists from the root

to example.com before SL-DNSSEC is deployed. Concretely, this

secure chain of trust exists when:

(1) (.)’s KSKpk is the trust anchor on the resolver.

(2) (.)’s KSKsk signs (.)’s ZSKpk
(3) (.)’s ZSKsk signs com’sDS containing a hash of com’s KSKpk
(4) com’s KSKsk signs com’s ZSKpk
(5) com’s ZSKsk signs example.com’s DS containing a hash of

example.com’s KSKpk
We now begin to scrutinize the SL-DNSSEC protocol between

the resolver and the example.com ANS under the attacker model

explicated earlier. Note that we only analyse the attack surfaces

that are unique to SL-DNSSEC. Attacks also applicable to regular

DNSSEC, such as modifying HEADER or unsigned glue records,

have already been appraised in [13].

4.1 Attacker alters DNSKEYs sent by ANS
During phase 1 (§3.1) of the protocol, an adversary runsKEM.keygen()
to generate its own Zone KEM Key: (ZKKadvpk ,ZKKadvsk) pair. On
intercepting a QTYPE DNSKEY response sent by ANS to the re-

solver, the adversary may do either of the following changes to the

DNSKEY RRset:

— Insert ZKKadvpk into the RRset.

— Replace the authentic ZKKpk with ZKKadvpk .

— Delete ZKKpk from the RRset.

However, assuming an EUF-CMA-secure signature scheme was

used to sign the public key RRset, the RRSIG validation thereof will

fail at the resolver’s end.

Alternatively, the adversary generates its own Key Signing Key

(KSKadvpk ,KSKadvsk) pair, and substitutes KSKpk with KSKadvpk . There-

after, it performs any of the three aforesaid amendments, and re-

signs the modified RRset with KSKadvsk .

This time, the resolver will successfully verify the malicious

DNSKEY RRset with KSKadvpk . However, assuming a collision resis-
tant hash was used to compute theDS record of KSKpk, the resolver
will not be able to connect the trust of KSKadvpk with the parent, thus

failing to complete the full validation.

4.2 Attacker alters SL-DNSSEC query
The usage of an IND-CCA-secure KEM (refer §2.3 for the security

definition) restricts the adversary in phase 2 (§3.2) to either of the

manipulations underneath:

— Corrupt the ciphertext ct to ct′.
— Do a KEM encapsulation against ZKKpk of ANS to prob-

abilistically obtain a shared secret (ssadv) and ciphertext

(ctadv).

(ssadv, ctadv)
$←−− KEM.encap(ZKKpk)

Aditya Singh Rawat and Mahabir Prasad Jhanwar

Then substitute ct with ctadv in the query.

— Remove DNSKEY record holding ct from the query.

In the first case, the failure behaviour of KEM.decap(ZKKsk, ct′)
depends on the underlying KEM. In case of Kyber (refer [20], §4),

if the re-encryption fails, the decapsulation will return a pseudo-

random key ss′ = hash(𝑧, ct′), where 𝑧 is a random secret seed.

On the other hand, if ct′ is a valid ciphertext, the decapsulation

function will return a corresponding ss′. In either case, the ANS

will derive an incorrect MAC key from ss′, eventually causing MAC

failure on the resolver in phase 4 (§3.4).

Concerning the second scenario, the probability that the adver-

sary obtains a ssadv such that ssadv = ss is negligible. Therefore,
with ssadv ≠ ss, the outcome will be the same as in the first case

(i.e. MAC verification failure).

Finally, the last attempt will convert the query to a regular one.

The ANS will deem the resolver to be SL-DNSSEC-oblivious, and
thus revert to a signature-based flow.

4.3 Attacker alters SL-DNSSEC response
In phase 3 (§3.3), an adversary may tamper with the DNS response

in the following manner:

— Modify the resource records in any of the three sections.

For example, in case of a QTYPE A response, an adversary

may change the IPv4 addresses present in Type A records.

Presuming an EUF-CMA-secure MAC was used to compute au-

thentication tags on RRsets, the resolver will fail to validate the

covering RRSIGs (containing MAC tags).

5 Evaluation
5.1 Implementation
To assess the performance of SL-DNSSEC, we develop a daemon

that runs on top of a DNS software (such as BIND9 or PowerDNS).

Additionally, the daemon is designed to be agnostic to the said

software (i.e. the underlying DNS provider can be swapped with

a different one). With the daemon in place, no modifications are

required to the DNS software stack, except for a small patch on the

resolver’s side to detect whether the Z bit in the HEADER is on/off.

The Z bit is what signals to the DNS software that the response has

been successfully SL-DNSSEC-validated by the daemon. We now

succinctly discuss the functionality of the daemon in question.

Daemon. Figure 5 illustrates a SL-DNSSEC validation being

performed with the aid of the daemon. In all our experiments,

we pre-generate and hardcode the KEM keys in the daemon. In

actual practice, the KEMpublic key and the corresponding signature

thereonwould be fetched by the resolver via a QTYPE DNSKEY query
as discussed earlier in §3.1.

The daemon performs all SL-DNSSEC related operations inde-

pendently of the DNS software (here, BIND9). Observe that the

daemon on the ANS sets OPT → CLASS to 65507 (the maximum

UDP payload size over IPv4) before forwarding the query to BIND.

This is to allow the retrieval of the full DNS response from BIND
9

without truncation. If the size of BIND’s response exceeds the re-

solver’s (originally) advertised EDNS0 buffer size (here, 1232), the

daemon replaces the signatures with MACs as outlined in §3.3.

9
Increases in various BIND9 buffer sizes were also required.

On the resolver, the daemon performs the SL-DNSSEC validation

of DNS records (as elucidated in §3.4) and sets HEADER→ Z = 1
in case of a successful outcome.

Software Setup. We use the source code of QBF [57] as base to

build the SL-DNSSEC daemon. The DNS software is a BIND 9.19.17

fork [7] which supports NIST level I PQC signatures. In the fork,

we further add support for:

(1) NIST level V Falcon and Dilithium schemes

(2) Detecting the Z bit in the HEADER

The cryptographic stack is openssl 3.2, liboqs 0.10.0 [67] and

oqs-provider 0.6.0. The daemon is written in C and uses the li-

brary libnetfilter-queue to intercept incoming and outgoing

DNS packets. Docker 4.29 is used for constructing the network

scenario (described below). To simulate network bandwidth and

latency, we use Linux’s tc utility. DNS queries are issued using

dig. Communication statistics are obtained with ip command. All

experiments are run on a MacBook Air M1 with 8 GB of RAM.

Network Scenario. The DNS network contains the following

four participants: 1) A client 2) A resolver 3) A root (.) nameserver 4)

An example authoritative nameserver (ANS). We skip configuring

a com TLD to reduce complexity. Each participant runs as a private

Ubuntu 22.04 Docker container with experiment-specific bandwidth

and latency constraints. Additionally, the SL-DNSSEC daemon is

installed on both the resolver and the ANS containers.

The EDNS0 buffer size is set to the recommended value of 1232.

For simplicity, each zone is signed with a single algorithm and has

one ZSK and one KSK. The daemons on both the resolver and the

ANS are also pre-configured with the requisite KEM ZKK keys.

The zone file served by the ANS contains 10 Type A records, each
with a unique domain name and an associated RRSIG. The ANS is
configured with minimal-responses no-auth-recursive; (the
default setting that ships with BIND) which means that it will be as
complete as possible while generating responses for iterative queries.
Such a response is called non-minimal and represents theworst-case
scenario in terms of message size. Refer §3.3 for the number and

the type of records contained in a non-minimal QTYPE A response

returned by the ANS in the described setup. To facilitate modifi-

cations to DNS messages without readjusting compression name

pointers, we also set message-compression no; in named.conf.

5.2 Experiments and Results
We now assess SL-DNSSEC’s performance against signature-based

DNSSEC in terms of bandwidth usage and resolution times. We

conduct two experiments targeting NIST security level I and V
10
,

respectively. Before the start of an experiment, the resolver pre-

fetches DNSKEY and NS records of all the zones, including the DS
record of example zone. The implication is that the resolver directly

contacts the ANS in order to resolve the client’s query, rather than

starting the lookup process all the way up from the root.

Signature-based DNSSEC instances are run over two transports:

(1) Standard DNS (SD) over UDP with a fallback to TCP in case

of a truncated (TC) response
(2) An upper-layer UDP-only fragmentation scheme such as

ARRF/QBF

10
NIST level V experimental results are in the Appendix.

Quantum-safe Signatureless DNSSEC

Resolver

(BIND)

Daemon

(ZKKpk)
Daemon

(ZKKpk,ZKKsk)
example ANS

(BIND)

DNS Query

QNAME: test.example

QTYPE: A

EDNS0: 1232

→ (ss, ct) $←−−
KEM.encap(ZKKpk)

DNS Query

QNAME: test.example

QTYPE: A

DNSKEY: ct
EDNS0: 1232

→

ss←−
KEM.decap(ZKKsk, ct)

DNS Query

QNAME: test.example

QTYPE: A
EDNS0: 65507

−→

Check HEADER→ Z
?

= 1
Mark as secure

k←− KDF(ss)
𝜔 ′ ←− MACk (ANSWER)
Verify 𝜔 ′

?

= 𝜔

Set HEADER→ Z = 1

←

DNS Response

Z: 1

QNAME: test.example

QTYPE: A

ANSWER: 1.2.3.4

RRSIG: 𝜔

←

DNS Response

QNAME: test.example

QTYPE: A

ANSWER: 1.2.3.4
RRSIG: 𝜔

k←− KDF(ss)
𝜔 ←− MACk (ANSWER)
Replace signature 𝜎 with 𝜔

←

DNS Response

QNAME: test.example

QTYPE: A

ANSWER: 1.2.3.4
RRSIG: 𝜎

Figure 5: An overview of SL-DNSSEC validation via Daemon (NIST Level I)

We exclude ARRF from our experiments as its performance can

be easily extrapolated from that of QBF. Both schemes (since they

mainly differ in the way fragments are packaged) have roughly the

same bandwidth usage, with QBF being a round-trip faster than

ARRF. The number of packets sent and received also remains within

±1 margin, respectively.

Each experiment consists of two main stages: 1) Measure the

bandwidth consumption during a single query resolution, and 2)

Measure the mean resolution time of 10 queries.

Measuring bandwidth usage. We send a QTYPE A DNS query

from the client to the resolver. At the resolver’s Ethernet interface,

we then assess the communication with the ANS in terms of:

• Number of packets (technically, frames) in transmit (TX)

and receive (RX)

• Number of bytes in transmit (TX) and receive (RX). Note

that these values include:

(1) 14-byte Ethernet header

(2) 20-byte IPv4 header

(3) 8-byte UDP header or 32-byte TCP header (40-byte in

case of SYN and SYN-ACK)
• Transport protocol used. Here, TCP* indicates a TCP fall-

back wherein the first round-trip is over UDP while the

subsequent ones are over TCP. In this case, the exchanged

bytes also include SYN, ACK and FIN packets.

Measuring resolution time. We measure the DNS query reso-

lution speed, with each participant configured with the following

networking capabilities
11
:

(1) High Bandwidth (100 Mbps), Low Latency (10 ms)

(2) Low Bandwidth (1 Mbps), High Latency (100 ms)

Specifically, we issue 10 QTYPE A DNS queries from the client

to the resolver and calculate the mean resolution time. That is,

the average time elapsed between the client sending its query

11
Latency being one-way, RTT = 2× Latency. Moreover, packet loss rate = 0%. This

is the best-case performance scenario for fragmentation schemes (ARRF/QBF).

and subsequently receiving a DNSSEC validated response (with

HEADER→ AD set) from the resolver.

5.2.1 Experiment 1. We target NIST level I parameters. To in-

stantiate SL-DNSSEC, we use the following primitives:

• Post-Quantum KEM: Kyber-512
• KDF: HKDF-SHA-256 [44]
• MAC: HMAC-SHA-256 [43]

To determine how SL-DNSSEC fares against signature-based

DNSSEC, we sign the zone file with the schemes below:

— Pre-Quantum: RSA-2048, ECDSA P-256

— Post-Quantum: Falcon-512, Dilithium-2, SPHINCS
+
-128s

Results and Discussion. All the results of the experiment are

catalogued in Tables (11, 12).

We observe that the Kyber-HMAC instance of SL-DNSSEC, while
additionally providing a level I post-quantum security, is virtually

equivalent to RSA-2048 in terms of total bytes exchanged and reso-

lution times. In fact, out of all the tested mechanisms, Kyber-HMAC

has the smallest response size (RX), even beating out ECDSA-SD.

Concerning NIST selected signatures, Kyber-HMAC requires less

than half the bandwidth of Falcon instances. On bringing Dilithium

and SPHINCS
+
into the picture, the bandwidth savings become

even more dramatic (i.e. 86% and 95%, respectively). The upshot is

that, with SL-DNSSEC, servers will not need to upgrade to a higher
bandwidth connection, thus shrinking the operational costs.

Moreover, Kyber-HMAC (SL-DNSSEC) remains immune against

being exploited as a DNS amplifier. Observe that Kyber-HMAC

transmits a large query
12

owing to the KEM ciphertext contained

therein. Due to a response being smaller than its query, the Band-

width Amplification Factor (BAF) becomes < 1, resulting in a nega-

tive return on bandwidth investment for a prospective attacker. On

the other hand. all signature-based methods over UDP can be po-

tentially exploited by an attacker for DDoS amplifications attacks.

12
The total bandwidth usage still remains comparable to RSA-2048.

Aditya Singh Rawat and Mahabir Prasad Jhanwar

Table 11: A comparison of resolver’s bandwidth usage. SD
denotes Standard DNS. TCP* : TCP fallback. (NIST Level I)

Method Via
Pkts.
Sent
TX

Pkts.
Rcvd.
RX

Bytes
Sent
TX

Bytes
Rcvd.
RX

BAF
Bytes

Xferred
TX+RX

ECDSA-SD UDP 1 1 84 512 6.1 596

RSA-SD UDP 1 1 84 1088 13 1172

Falcon-SD TCP* 8 6 598 2700 - 3298

Dilithium-SD TCP* 13 11 928 8292 - 9220

SPHINCS
+
-SD TCP* 24 24 1654 25389 - 27043

Falcon-QBF UDP 3 3 258 2788 10.8 3046

Dilithium-QBF UDP 8 8 693 9225 13.3 9918

SPHINCS
+
-QBF UDP 23 23 2012 28321 14.1 30333

Kyber-HMAC UDP 1 1 867 416 0.48 1283

Table 12: A comparison of client’s query resolution time. SD
denotes Standard DNS. (NIST Level I)

Method
100 Mbps, 10 ms

Avg. Resolution Time
(±1 ms)

1 Mbps, 100 ms
Avg. Resolution Time

(±2 ms)

ECDSA-SD 44 407

RSA-SD 44 408

Falcon-SD 89 811

Dilithium-SD 89 817

SPHINCS
+
-SD 111 1025

Falcon-QBF 45 410

Dilithium-QBF 46 415

SPHINCS
+
-QBF 48 436

Kyber-HMAC 44 408

With reference to post-quantum signatures over Standard DNS

(SD), we observe a slowdown of at least 50% compared to other

setups. This because the DNS response containing PQC signatures

always exceeds the EDNS0 buffer size of 1232 bytes. Consequently,

the initial UDP round-trip is wasted (due to the response being

marked truncated (TC)) and overall resolution times further in-

creased (due to the ensuing 3-way TCP handshake).

Interestingly, SPHINCS
+
-SD even incurs an extra round-trip

compared to Falcon-SD and Dilithium-SD. This is because the size

of a SPHINCS
+
QTYPE A response exceeds the Initial Congestion

Window (initcwnd) of 10 segments set in the TCP slow start algo-

rithm [18, 22]. Given the default Maximum Segment Size (MSS) of

1220 bytes, the size of initcwnd comes out to be 10 × 1220 = 12.2

KB. The repercussion of exceeding this initcwnd is that after send-
ing about 12.2 KB of data, the nameserver waits for the resolver to

acknowledge (ACK) the received packets, before continuing with

the rest of the transmission.

While QBF matches the resolution speeds of classical DNSSEC,

it exchanges multiple DNS/UDP packets in proportion to the size

of the original (un-fragmented) response. Given the absence of

any flow and congestion control mechanisms in UDP, this torrent

of packets can potentially exhaust the network resources of busy

resolvers/nameservers and overwhelm middleboxes, whilst also

increasing the chances of the session requiring more round-trips

due to unanticipated packet drops.

Surprisingly, RSA-SD has a higher BAF than Falcon-QBF, despite

Falcon’s signature being almost 2.6× the size of RSA’s. This is be-
causeQBF sends multiple full-fledged DNS queries, which increases

the amount of TX bytes (the denominator), thereby amortizing BAF.
Finally, observe that QBF starts to consume slightly more band-

width than Standard DNS (SD) as the number of exchanged packets

grow. This is because QBF first envelops a signature fragment in

an RRSIG record. This RRSIG is then inserted in a DNS message

(along with its concomitant 12-byte HEADER, Question section,

OPT record, etc.) resulting in a data overhead. TCP, on the other

hand, is a continuous byte-stream of the original DNS response.

6 Conclusion
We presented the SL-DNSSEC protocol: a backward-compatible

and signature-free alternative for performing DNSSEC validations

in a single UDP query/response fashion. Leveraging a quantum-safe

KEM and a MAC, SL-DNSSEC achieves NIST level I security while

having analogous bandwidth usage and query resolution speeds to

that of RSA-2048. DNS messages in SL-DNSSEC remain below the

recommended 1232-byte size, thus avoiding IP fragmentation or

TCP re-transmission. Moreover, owing to smaller responses than

queries, SL-DNSSEC cannot be misused as a DNS amplifier.

Availability
The software artifact germane to this work is available online at

https://github.com/aditya-asr/sl-dnssec.

Acknowledgments
We thank the anonymous reviewers for their helpful suggestions.

The co-author of this work, M.P. Jhanwar, would also like to ac-

knowledge the MPhasis F1 Foundation for their research grant.

References
[1] [n. d.]. Dan Kaminsky, Black Ops 2008: It’s The End Of The Cache As

We Know It. https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-

Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf. Accessed: 2024-

07-09.

[2] [n. d.]. The DDoS That Almost Broke the Internet. https://blog.cloudflare.com/

the-ddos-that-almost-broke-the-internet. Accessed: 2024-07-09.

[3] [n. d.]. DNS Flag Day 2020. https://www.dnsflagday.net/2020/.

[4] [n. d.]. The Double Ratchet Algorithm. https://signal.org/docs/specifications/

doubleratchet/.

[5] [n. d.]. Is large-scale DNS over TCP practical? https://ripe76.ripe.net/

presentations/95-jonglez-dns-tcp-ripe76.pdf. Accessed: 2024-07-09.

[6] [n. d.]. Noise Protocol Framework. https://noiseprotocol.org/noise.html.

[7] [n. d.]. OQS-bind. https://github.com/Martyrshot/OQS-bind.

[8] [n. d.]. Subdomain enumeration with DNSSEC. https://blog.apnic.net/2023/01/

17/subdomain-enumeration-with-dnssec/. Accessed: 2025-01-03.

[9] 2020. Defragmenting DNS - Determining the optimal maximum UDP response

size for DNS. https://indico.dns-oarc.net/event/36/contributions/776/ Accessed:

2024-07-09.

[10] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan

Flores-López, J. Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric

Rescorla, Seth Schoen, and Brad Warren. 2019. Let’s Encrypt: An Automated

Certificate Authority to Encrypt the Entire Web. In ACM CCS.
[11] Suranjith Ariyapperuma and Chris J. Mitchell. 2007. Security vulnerabilities in

DNS and DNSSEC. In ARES.
[12] Derek Atkins and Rob Austein. 2004. Threat Analysis of the Domain Name

System (DNS). RFC 3833.

https://github.com/aditya-asr/sl-dnssec
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://www.dnsflagday.net/2020/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://ripe76.ripe.net/presentations/95-jonglez-dns-tcp-ripe76.pdf
https://ripe76.ripe.net/presentations/95-jonglez-dns-tcp-ripe76.pdf
https://noiseprotocol.org/noise.html
https://github.com/Martyrshot/OQS-bind
https://blog.apnic.net/2023/01/17/subdomain-enumeration-with-dnssec/
https://blog.apnic.net/2023/01/17/subdomain-enumeration-with-dnssec/
https://indico.dns-oarc.net/event/36/contributions/776/

Quantum-safe Signatureless DNSSEC

[13] Jason Bau and John C. Mitchell. 2010. A Security Evaluation of DNSSEC with

NSEC3. In NDSS.
[14] G.J. Beernink. 2022. Taking the quantum leap: Preparing DNSSEC for Post Quantum

Cryptography. Master’s thesis. University of Twente. http://essay.utwente.nl/

89509/

[15] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1998. A modular approach to

the design and analysis of authentication and key exchange protocols. In STOC.
[16] Mihir Bellare and Phillip Rogaway. 1994. Entity Authentication and Key Distri-

bution. In CRYPTO.
[17] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost

Rijneveld, and Peter Schwabe. 2019. The SPHINCS+ Signature Framework. In

ACM CCS.
[18] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. 2009. TCP Congestion

Control. RFC 5681.

[19] Ron Bonica, Fred Baker, Geoff Huston, Bob Hinden, Ole Trøan, and Fernando

Gont. 2020. IP Fragmentation Considered Fragile. RFC 8900.

[20] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M.

Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle. 2018. CRYSTALS -

Kyber: A CCA-Secure Module-Lattice-Based KEM. In EuroS&P.
[21] Ran Canetti and Hugo Krawczyk. 2001. Analysis of Key-Exchange Protocols and

Their Use for Building Secure Channels. In EUROCRYPT.
[22] Jerry Chu, Nandita Dukkipati, Yuchung Cheng, andMatt Mathis. 2013. Increasing

TCP’s Initial Window. RFC 6928.

[23] Taejoong Chung, Roland Van Rijswijk-Deij, Balakrishnan Chandrasekaran, David

Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo Wilson. 2017.

A longitudinal, end-to-end view of the DNSSEC ecosystem. In USENIX.
[24] Joao da Silva Damas, Michael Graff, and Paul A. Vixie. 2013. Extension Mecha-

nisms for DNS (EDNS(0)). RFC 6891.

[25] Cyprien de Saint Guilhem, Nigel P. Smart, and Bogdan Warinschi. 2017. Generic

Forward-Secure Key Agreement Without Signatures. In ISC.
[26] Pratyush Dikshit, Mike Kosek, Nils Faulhaber, Jayasree Sengupta, and Vaibhav

Bajpai. 2024. Evaluating DNS Resiliency and Responsiveness With Truncation,

Fragmentation & DoTCP Fallback. IEEE TNSM (2024).

[27] Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel.

In NDSS.
[28] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. 2018. CRYSTALS-Dilithium: A Lattice-Based

Digital Signature Scheme. IACR TCHES (2018).
[29] Donald E. Eastlake and Mark P. Andrews. 2016. Domain Name System (DNS)

Cookies. RFC 7873.

[30] Andrew Fregly, Joseph Harvey, Burton S. Kaliski Jr., and Swapneel Sheth. 2023.

Merkle Tree Ladder Mode: Reducing the Size Impact of NIST PQC Signature

Algorithms in Practice. In CT-RSA.
[31] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. 2012.

Strongly Secure Authenticated Key Exchange from Factoring, Codes, and Lattices.

In PKC.
[32] Jason Goertzen and Douglas Stebila. 2023. Post-Quantum Signatures in DNSSEC

via Request-Based Fragmentation. In PQCrypto.
[33] Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search.

In STOC.
[34] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous,

or: One-domain-to-rule-them-all.org. In IEEE CNS.
[35] Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS (DoH).

RFC 8484.

[36] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul E.

Hoffman. 2016. Specification for DNS over Transport Layer Security (TLS). RFC

7858.

[37] Christian Huitema, Sara Dickinson, and Allison Mankin. 2022. DNS over Dedi-

cated QUIC Connections. RFC 9250.

[38] Shumon Huque, Christian Elmerot, and Ólafur Guðmundsson. 2024. Compact
Denial of Existence in DNSSEC. Technical Report draft-ietf-dnsop-compact-denial-

of-existence-05.

[39] Philipp Jeitner and Haya Shulman. 2021. Injection Attacks Reloaded: Tunnelling

Malicious Payloads over DNS. In USENIX.
[40] Panos Kampanakis and Tancrède Lepoint. 2023. Vision Paper: Do We Need to

Change Some Things?. In SSR.
[41] Charlie Kaufman, Radia Perlman, and Bill Sommerfeld. 2003. DoS protection for

UDP-based protocols. In ACM CCS.
[42] Mike Kosek, Trinh Viet Doan, Simon Huber, and Vaibhav Bajpai. 2022. Measuring

DNS over TCP in the era of increasing DNS response sizes: a view from the edge.

ACM CCR (2022).

[43] Dr. Hugo Krawczyk,Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-Hashing

for Message Authentication. RFC 2104.

[44] Dr. Hugo Krawczyk and Pasi Eronen. 2010. HMAC-based Extract-and-Expand

Key Derivation Function (HKDF). RFC 5869.

[45] H. Krawczyk. 1996. SKEME: a versatile secure key exchange mechanism for

Internet. In NDSS.

[46] Hugo Krawczyk. 2005. HMQV: A High-Performance Secure Diffie-Hellman

Protocol. In CRYPTO.
[47] Hugo Krawczyk and Hoeteck Wee. 2016. The OPTLS Protocol and TLS 1.3. In

EuroS&P.
[48] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. 2007. Stronger Security

of Authenticated Key Exchange. In ProvSec.
[49] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone.

2003. An Efficient Protocol for Authenticated Key Agreement. DCC (2003).

[50] Matt Lepinski and Stephen Kent. 2012. An Infrastructure to Support Secure

Internet Routing. RFC 6480.

[51] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and

Haixin Duan. 2020. DNS Cache Poisoning Attack Reloaded: Revolutions with

Side Channels. In ACM CCS.
[52] Keyu Man, Xin’an Zhou, and Zhiyun Qian. 2021. DNS Cache Poisoning Attack:

Resurrections with Side Channels. In ACM CCS.
[53] Jiarun Mao, Michael Rabinovich, and Kyle Schomp. 2022. Assessing Support for

DNS-over-TCP in the Wild. In PAM.

[54] Giovane C. M. Moura, Moritz Müller, Marco Davids, Maarten Wullink, and

Cristian Hesselman. 2021. Fragmentation, Truncation, and Timeouts: Are Large

DNS Messages Falling to Bits?. In PAM.

[55] Moritz Müller, Jins de Jong, Maran van Heesch, Benno Overeinder, and Roland

van Rijswijk-Deij. 2020. Retrofitting post-quantum cryptography in internet

protocols: a case study of DNSSEC. ACM CCR (2020).

[56] T. Prest, P.A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T.

Ricosset, G. Seiler, W. Whyte, and Z Zhang. 2022. FALCON. Tech. rep., National

Institute of Standards and Technology, available at. https://csrc.nist.gov/Projects/

post-quantum-cryptography/selected-algorithms-2022.

[57] Aditya Singh Rawat and Mahabir Prasad Jhanwar. 2023. Post-quantum DNSSEC

over UDP via QNAME-Based Fragmentation. In SPACE.
[58] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. DNS

Security Introduction and Requirements. RFC 4033.

[59] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. Proto-

col Modifications for the DNS Security Extensions. RFC 4035.

[60] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends. 2005. Re-

source Records for the DNS Security Extensions. RFC 4034.

[61] Christian Rossow. 2014. Amplification Hell: Revisiting Network Protocols for

DDoS Abuse.. In NDSS.
[62] Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2020. Post-Quantum TLS

Without Handshake Signatures. In ACM CCS.
[63] Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2021. More Efficient Post-

quantum KEMTLS with Pre-distributed Public Keys. In ESORICS.
[64] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer. SICOMP (1997).

[65] Mukund Sivaraman, Shane Kerr, and Linjian Song. [n. d.]. DNS message frag-

ments. https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/.

[66] Linjian Song and Shengling Wang. [n. d.]. ATR: Additional Truncation Response

for Large DNS Response. https://datatracker.ietf.org/doc/draft-song-atr-large-

resp/03/.

[67] Douglas Stebila and Michele Mosca. 2017. Post-quantum Key Exchange for the

Internet and the Open Quantum Safe Project. In SAC.
[68] Gijs Van Den Broek, Roland Van Rijswijk-Deij, Anna Sperotto, and Aiko Pras.

2014. DNSSEC meets real world: dealing with unreachability caused by fragmen-

tation. IEEE Communications Magazine (2014).
[69] Roland van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko Pras. 2016. A

High-Performance, Scalable Infrastructure for Large-Scale Active DNS Measure-

ments. IEEE JSAC (2016).

[70] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. 2014. DNSSEC and its

potential for DDoS attacks: a comprehensive measurement study. In IMC.
[71] Sam Weiler and Johan Stenstam. 2006. Minimally Covering NSEC Records and

DNSSEC On-line Signing. RFC 4470.

[72] ThomWiggers. 2024. Post-Quantum TLS. Ph. D. Dissertation. Radboud University.
https://thomwiggers.nl/publication/thesis/

A Other Considerations
A.1 Fetching DNSKEYs from Nameservers
Note that SL-DNSSEC relies upon a PQC signature on theDNSKEY
RRset to ascertain the authenticity of the KEM public key (ZKKpk)
contained therein. Although DNS responses in SL-DNSSEC remain

well under 1232 bytes, the initial QTYPE DNSKEY response from a

nameserver containingmultipleDNSKEYs and one or more RRSIGs
will likely not respect the aforesaid size ceiling.

http://essay.utwente.nl/89509/
http://essay.utwente.nl/89509/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://datatracker.ietf.org/doc/draft-muks-dns-message-fragments/00/
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/
https://datatracker.ietf.org/doc/draft-song-atr-large-resp/03/
https://thomwiggers.nl/publication/thesis/

Aditya Singh Rawat and Mahabir Prasad Jhanwar

Therefore, similar to regular DNSSEC, retrieving the DNSKEYs
of a zone may entail the use of either one of the following methods:

(1) An upper-layer fragmentation scheme (ARRF/QBF)
(2) Standard DNS with a fallback to TCP

(3) An out-of-band distribution via HTTP or FTP

Fortunately, this is not much of a concern since DNSKEYs are

fetched infrequently owing to their higher caching TTLs.

A.2 Managing Keys on Nameservers
Considerations that are pertinent to DNSSEC in live (on-the-fly)

signing mode also remain applicable to SL-DNSSEC. Specifically,
since KEM keys will be stored on nameservers that connect to the

Internet (which increases the overall attack surface), a hardware

security module (HSM) is therefore recommended for a secure

management of the keys.

A.3 Computational Requirements
Table 13 contrasts the computations performed in SL-DNSSEC
and DNSSEC in online/offline signing mode. We also benchmark

13

various algorithms in a docker container running on a MacBook

Pro M4 with 16 GB RAM. The results are catalogued in Table 14.

We now give a heuristic analysis of SL-DNSSEC’s compute re-

quirements. First, note that HMAC and HKDF operations pose a

minor overhead on DNS servers for the following reasons:

(1) HKDF internally uses HMAC, which in turn uses hashing.

Thus, both primitives use hashing as their core operation.

On modern hardware, hashing is extremely fast.

(2) DNS servers are already hashing-capable since they com-

pute DNS cookies [29] (which are usually HMACs).

Next, note that Cloudflare has successfully deployed DNSSEC

live signing at scale on their servers with ECDSA P-256
14
. Since

Kyber operations are much faster than ECDSA’s (refer Table 14),

SL-DNSSEC can be straightforwardly deployed on online signing

servers, likely with major efficiency gains.

In comparison to DNSSEC in offline signing mode, SL-DNSSEC
does introduce a KEM decapsulation operation on nameservers.

We remark, however, that there is a growing incentive to switch

DNSSEC from offline to online computation, even at the cost of

some overhead. This is because NSEC(3) zone walking15 [8] coun-
termeasures, such as white or black lies [38, 71], require on-the-fly

generation of signatures (or MACs in case of SL-DNSSEC). An-
other benefit of live computation is the ability to generate records

dynamically (e.g., geolocation-based answers).

Finally, SL-DNSSEC resolvers are expected to have significantly

reduced CPU load since KEM encapsulations are computationally

far less intensive than signature verifications.

B Experiment 2 (NIST Level V)
To assess SL-DNSSEC’s scalability, we target NIST level V. This is

the highest security level and is likely excessive for DNSSEC [14].

Choice of Primitives. The updated parameters are:

• Post-Quantum KEM: Kyber-1024

13
Using openssl speed and speed_(kem/sig) of liboqs.

14
RSA-2048 is not used because of its low signing throughput.

15
This attack is used to retrieve the entire contents of a DNS zone.

Table 13: A comparison of cryptographic operations

SL-DNSSEC DNSSEC
Live Signing

DNSSEC
Offline Signing

Resolver Query KEM encap - -

Nameserver Response

KEM decap
KDF
MAC

SIG sign -

Resolver Validation KDF
MAC

SIG verify SIG verify

Table 14: Computational speeds of various algorithms

Primitive Operations/second

HMAC-SHA256 8398588 hmac/s

RSA-2048 2725 sign/s

104064 verify/s

ECDSA P-256 82027 sign/s

27312 verify/s

Falcon-512 7721 sign/s

61663 verify/s

Dilithium-2 13252 sign/s

37417 verify/s

SPHINCS
+
-128s 5 sign/s

4544 verify/s

Kyber-512 130503 encap/s

150779 decap/s

Table 15: A size comparison (in bytes) of signature (sig) /
ciphertext (ct) and public key (pk) of various algorithms.

Algorithm sig / ct pk

Falcon-1024 1280 1793

Dilithium-5 4595 2592

SPHINCS
+
-256s 29792 64

Kyber-1024 1568 1568

• KDF: HKDF-SHA-512 [44]
• MAC: HMAC-SHA-512 [43]

To compare SL-DNSSECwith signature-based DNSSEC, we sign

the zone file with Falcon-1024 and Dilithium-5. Table 15 compares

the object sizes of various NIST level V signature and KEM schemes.

We omit testing SPHINCS
+
since the resulting response would ex-

ceed 64 KB, the maximum possible size for a DNS message. Further-

more, since a DNS query carrying a Kyber ciphertext of 1568 bytes

would exceed the recommended threshold of 1232, we adapt QBF
[57] to split ct into two DNS queries, as sketched in Fig. 6.

Results and Discussion. All the findings of Experiment 2 are

rendered in Tables (16, 17). Compared to Falcon and Dilithium

Quantum-safe Signatureless DNSSEC

Resolver

(BIND)

Daemon

(ZKKpk)
Daemon

(ZKKpk,ZKKsk)
example ANS

(BIND)

DNS Query

QNAME: test.example

QTYPE: A

EDNS0: 1232

→

(ss, ct) $←−−
KEM.encap(ZKKpk)

QBF
Fragment ct
into ct1 and ct2

DNS Query

QNAME: test.example

QTYPE: A
DNSKEY: ct1
EDNS0: 1232

→

DNS Query

QNAME: ?2?test.example

QTYPE: A
DNSKEY: ct2
EDNS0: 1232

→

QBF Reassemble ct

ss←−
KEM.decap(ZKKsk, ct)

DNS Query

QNAME: test.example

QTYPE: A
EDNS0: 65507

−→

Check HEADER→ Z
?

= 1
Mark as secure

k←− KDF(ss)
𝜔 ′ ←− MACk (ANSWER)
Verify 𝜔 ′

?

= 𝜔

Set HEADER→ Z = 1

←

DNS Response

Z: 1

QNAME: test.example

QTYPE: A

ANSWER: 1.2.3.4
RRSIG: 𝜔

←

DNS Response

QNAME: test.example

QTYPE: A

ANSWER: 1.2.3.4
RRSIG: 𝜔

k←− KDF(ss)
𝜔 ←− MACk (ANSWER)
Replace signature 𝜎 with 𝜔

←

DNS Response

QNAME: test.example

QTYPE: A

ANSWER: 1.2.3.4
RRSIG: 𝜎

Figure 6: An overview of SL-DNSSEC validation via Daemon (NIST Level V)

Table 17: A comparison of client’s query resolution time. SD
denotes Standard DNS. (NIST Level V)

Method
100 Mbps, 10 ms

Avg. Resolution Time
(±1 ms)

1 Mbps, 100 ms
Avg. Resolution Time

(±2 ms)

Falcon-SD 89 812

Dilithium-SD 111 1014

Falcon-QBF 45 411

Dilithium-QBF 47 426

Kyber-HMAC 44 409

Table 16: A comparison of resolver’s bandwidth usage. SD :
Standard DNS. TCP* : TCP fallback. (NIST Level V)

Method Via
Pkts.
Sent
TX

Pkts.
Rcvd.
RX

Bytes
Sent
TX

Bytes
Rcvd.
RX

BAF
Bytes

Xferred
TX+RX

Falcon-SD TCP* 10 8 730 4674 - 5404

Dilithium-SD TCP* 18 16 1258 15147 - 16405

Falcon-QBF UDP 4 4 345 4865 14.1 5210

Dilithium-QBF UDP 14 14 1220 17165 14.1 18385

Kyber-HMAC UDP 2 1 1766 512 0.29 2278

instances, Kyber-HMAC (SL-DNSSEC) still manages to cut band-

width consumption by about 56% and 86%, respectively. Further-

more, thanks to small MACs, the response size (RX) in Kyber-HMAC

increases by only 96 bytes despite the big jump in security level.

However, to meet the UDP size constraints of 1232 bytes, the re-

solver daemon unavoidably has to dispatch an extra query.

Lastly, while Falcon-SD remains consistent with its resolution

speeds, Dilithium-SD suffers a penalty of an extra round-trip be-

cause of exceeding TCP’s initcwnd. Notice that the BAF in Falcon-

QBF and Dilithium-QBF is the same, despite a large discrepancy in

the underlying signature sizes. Again, this is to be ascribed to the

higher amount of TX bytes (due to more DNS queries) in the latter.

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Domain Name System (DNS)
	2.2 DNS Security Extensions (DNSSEC)
	2.3 Key Encapsulation Mechanism (KEM)

	3 The SL-DNSSEC Protocol
	3.1 Phase 1: KEM Key Generation
	3.2 Phase 2: Preparing a SL-DNSSEC Query
	3.3 Phase 3: Preparing a SL-DNSSEC Response
	3.4 Phase 4: Validating a SL-DNSSEC Response
	3.5 Backward Compatibility

	4 Security
	4.1 Attacker alters DNSKEYs sent by ANS
	4.2 Attacker alters SL-DNSSEC query
	4.3 Attacker alters SL-DNSSEC response

	5 Evaluation
	5.1 Implementation
	5.2 Experiments and Results

	6 Conclusion
	Acknowledgments
	References
	A Other Considerations
	A.1 Fetching DNSKEYs from Nameservers
	A.2 Managing Keys on Nameservers
	A.3 Computational Requirements

	B Experiment 2 (NIST Level V)

