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Abstract. Robust message authentication codes (MACs) and authenti-
cated encryption (AE) schemes that provide authenticity in the presence
of side-channel leakage are essential primitives. These constructions of-
ten rely on primitives designed for strong leakage protection, among oth-
ers including the use of strong-unpredictable (tweakable) block-ciphers.
This paper extends the strong-unpredictability security definition to the
versatile and new forkcipher primitive. We show how to construct secure
and efficient MAC and AEs that guarantee authenticity in the presence of
leakage. We present a leakage-resistant MAC, ForkMAC, and two leakage-
resistant AE schemes, ForkDTE1 and ForkDTE2, which use forkciphers in-
stead of traditional secure (tweakable) block-ciphers as compared to the
prior art. We prove and analyze their security in the presence of leakage
based on a strong unpredictable forkcipher. A comparison with the state-
of-the-art in terms of both security and efficiency is followed in the paper.
Key advantages and highlights promoted by the proposed constructions
are that for the minimal assumptions they require, unpredictability with
leakage-based security, the tag-generation of ForkMAC is the most efficient
among leakage-resilient MAC proposals, equivalent to HBC. ForkDTE 1
and 2 have a more efficient encryption than any other scheme, achieving
integrity with leakage (and also providing misuse-resistance).

1 Introduction

One of the main goals of cryptography is to provide authenticity. For this pur-
pose, we use Message Authentication Codes (MAC) and Authenticated Encryp-
tion Schemes (AE) when in addition to authenticity, privacy is required.

Typically, the security of a scheme is proved against an adversary who inter-
acts with the scheme and obtains its outputs [26]. However, in reality, adversaries
and computing devices are in the physical medium, so, we cannot assume that
an adversary only receives the outputs of the protocol. Once a cryptographic
scheme is implemented on an electronic device, an adversary can also measure
the physical quantities involved in the computation, such as time, electromag-
netic radiation, power consumption etc. [27,28,32]. From these physical measure-
ments, an adversary can even recover complete secret values (such as the key).
Such attacks are called side-channel attacks (SCAs). However, it is not always



necessary to recover the key to break a scheme. For example, the well-known AE-
scheme OCB can be forged simply by recovering some ephemeral values without
any knowledge of the key [8]. In addition, any MAC (or AE scheme), that re-
computes the correct tag τ̃ during verification (or decryption) and checks if it is

correct (that is, Vrfyk(m, τ) computes τ̃ = Mack(m) and checks if τ̃
?
= τ) can be

forged simply by recovering τ̃ via a SCA.
To solve this, one option is to strongly protect (against side-channel ad-

versaries utilizing leakages) both the computation of τ̃ and the tag-comparison
stage [20]. To avoid protecting all these computations, another strategy can be
used in the verification: use the inverse of a block-cipher, so that we do not have
to avoid recomputing the correct tag, but instead we can perform the check on
another value, which, if leaked, will not cause any damage [14].

Many works on authenticity in the presence of leakage assume the existence
of a “leak-free” component. Although it may be theoretically possible to obtain
such a primitive (e.g., by using a high-order masking protection), such an im-
plementations are extremely costly [24,25,36,17]. Furthermore, it is impossible
for an evaluation laboratory to test whether an implementation is leak-free or
not since there is no well-defined game. For example, consider the fact that typi-
cally all implementations of a block-cipher, even if SCA-protected, trivially leak
various parameters from a simple observation: the number of rounds, architec-
tural properties of the block-cipher, information about sub-rounds and number
of Sbox executed in parallel, and structural properties of the software or hard-
ware code etc. But is this information meaningful? what part of it is and what is
not? So, Berti et al. [9] extended the unpredictability in the presence of leakage of
Dodis and Steinberger [21] introducing strong unpredictability in the presence of
leakage (sU-L2) for block-ciphers (BC). Roughly speaking, a BC F is sU-L2 if it
is difficult for an adversary to find a fresh and valid couple (input, output), even
having oracle access to Fk, its inverse F−1

k and the leakage of all these queries.
Using a sU-L2 BC and no other security assumptions in the presence of leakage,
it is possible to prove the security of a MAC with both tag-generation and veri-
fication leaking in the random oracle model [9], or in the standard model either
with a tweakable BC (TBC) (that is, a BC with an additional input, the tweak,
allowing more flexibility [29]) or with a strong assumption on the hash [12].

Andreeva et al. [3] introduced a new, efficient, interesting and flexible primi-
tive: forkciphers which map N bits into 2N bits. The idea is to have two in-
dependent pseudo-random permutations, but the cost of computing them is
amortized. Therefore, forkciphers use an additional input, 0, 1, b which indi-
cates which output (or both) is wanted. So, if FC is a forkcipher, FCk(x, b) =
(FCk(x, 0),FCk(x, 1)) = (y0, y1), where both FCk(·, 0), and FCk(·, 1) are two per-
mutations. We can also define the inverse forkcipher, FC−1 for which from yi
outputs x and/or yi⊕1. Thus, FC

−1 takes two additional inputs: one input indi-
cating whether we want the inverse (i), the other output (o), or both (b), and
another input which is either 0 or 1 to understand which output of FC is the
input of FC−1

k . For correctness, FC−1
k (FCk(x, 0), 0, o) = FCk(x, 1) (Fig. 1).



This allows us to have a building block for authenticated encryption schemes
that is more efficient and more flexible. Forkciphers have recently been used
to build encryption schemes, MAC, AE schemes, pseudorandom-generators and
efficient pseudorandom functions [3,1,2,4,5,16,23]. The flexibility of forkciphers
allows to build a leakage resilient authenticated encryption scheme, FEDT based
on EDT (proposed in [14]) and TEDT (proposed in [10]), where the forkcipher
performs the rekeying and produces each time two new refreshed keys [18] (i.e.,
k2i∥k2i+1 = FCki

(i) 3).
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Fig. 1. A schematic illustration describing a forkcipher (Def. 3) [3]. We represent
FCk(x, b), FCk(x, 1), FC−1

k (y0, 0, i), FC−1
k (y1, 1, o), and FC−1

k (y1, 1, b)

Contributions. The goal of this paper is to show how we can use forkciphers to
build leakage-resilient MACs and AEs to provide authenticity in the presence of
leakage. First, we define strong unpredictability (sU-L2) for forkciphers, adapting
the definition from [9]. Particularly tricky is the formalization of what are fresh
input/output couples.

Second, using a sU-L2 forkcipher FC we can build a leakage-resilient MAC,
ForkMAC. The idea is to use one of the FC’s outputs as the tag and do the
verification on the other. That is, τ = FCk(H(m), 0), with H a hash function;

and we check if FC−1
k (τ, 0, o)

?
= FCk(H(m), 1).

Third, we prove that using a strongly protected fork-cipher FC, we can con-
struct a nonce-based4 AE scheme which provides integrity in the presence of
leakage in both encryption and decryption. To do this, we start with the DTE2
construction [14], and we use FC to compact the two calls to the leak-free TBC.
From the hash of the nonce and the message, we can directly obtain the tag and
the first ephemeral key va FC, that is, (τ, k0) = FCk(H(n,m)), where τ is the
tag and k0 is an ephemeral key. From this ephemeral key, using an encryption
scheme based on rekeying, as PSV [31], we can encrypt the message. In decryp-
tion, given τ , we can recompute k0, from which we can recompute the nonce and
m.

In the paper we provide two leakage-resilient AE schemes: (1) ForkDTE 1
which uses the original check of DTE2 and Hash-then-MAC, that is, checking if

3 We have simplified their idea, which involves a tweak and a nonce [18].
4 To avoid using a probabilistic encryption scheme, the encryption takes an additional
input, the nonce, which should not repeat in different encryption queries [35].



FC−1
k (τ, 0, i)

?
= H(n,m), where n and m are retrieved in the verification. ForkDTE

1 uses a single call to FC in decryption, but requires the assumption that FC is
leak-free to achieve security; and (2) ForkDTE 2 which uses the idea of ForkMAC
to establish the validity of a ciphertext. So it needs two calls to FC in decryption.
Its security in the presence of leakage is achieved assuming that FC is sU-L2.
Finally, we show how we can combine our constructions with the encryption part
of FEDT [18].

2 Background

Notations. Let {0, 1}n be the set of all the n-bit strings and {0, 1}∗ be the set
of all finite strings. Given two strings x and y, let x∥y be their concatenation
and |x| be the length of the string x. When we pick x uniformly at random from

the set S, we use x
$← S. To parse a string x in N -bits blocks, we divide x in

x = (x1, ..., xℓ) with |x1| = ... = |xℓ−1| = N , |xℓ| ≤ N , and x = x1∥...∥xℓ (ℓ
is the number of blocks of the string x). Let y be a string and x ∈ N. With
πx(y) we denote the rightmost x bits of the string y. Let X be a set containing
vectors. With (x, ·) ∈ X , we denote that there is an element (x, y) ∈ X . With ∅,
we denote the empty set.

A (q1, ..., qd, t)-adversary A is a probabilistic algorithm, which is allowed qi
queries to oracle Oi and runs in time bounded by t. With y ← AO1,...,Od(x), we
denote that adversary A on input x, with access to oracles O1, ...,Od outputs y.

2.1 Hash Functions, Block-Ciphers, and Forkciphers

To build our schemes we will use hash functions, block-ciphers, and forkciphers.

Hash functions. We use hash functions to compress data. For an adversary, it
should be difficult to find a collision, (2 different inputs with the same output):

Definition 1. A hash function H : HK × {0, 1}∗ → {0, 1}N is (t, ϵ)-collision
resistant (CR) if ∀ t-adversaries A

Pr[(m0,m1)← A(s) s.t. Hs(m0) = Hs(m1) | s
$← HK] ≤ ϵ.

Since the key s of the hash function is public, we may omit it.

Block-ciphers. We use block-ciphers to produce pseudorandom random values.

Definition 2. A block-cipher E : K × {0, 1}N → {0, 1}N is a (q, t, ϵ)-PRP
(Pseudo Random Permutation) if for any (q, t)-adversary A

|Pr[1← AEk(·)]− Pr[1← Af(·)]| ≤ ϵ

where k
$← K, and f

$← PERM, where PERM is the set of the permutations
over {0, 1}N . If f is picked from FUNC, the set of functions {0, 1}N → {0, 1}N ,
E is a pseudo-random function, PRF.

A tweakable blockcipher (TBC), Def. 11, App. A, has an additional input, the
tweak, providing more flexibility. Thus, E : K × T W × {0, 1}N → {0, 1}N , with
Ek(tw, ·) a permutation, ∀(k, tw) [29]. We often denote E(k, tw, x) with Etw

k (x).



Forkciphers. To have a more flexible primitive than a block-cipher, Andreeva
et al. [3] introduced a new primitive, the fork-cipher. It takes an input x and
produces two outputs, y0 and y1. From either y0 or y1 we can reconstruct the
input x. Formally:

Definition 3 ([3]). A forkcipher is a couple of deterministic algorithms

FC : K × {0, 1}N × {0, 1, b} → {0, 1}N ∪ ({0, 1}N ∪ {0, 1}N ), and

FC−1 : K × {0, 1}N × {0, 1} × {b, i, o} → {0, 1}N ∪ ({0, 1}N ∪ {0, 1}N ),

s.t. ∀k ∈ K, x ∈ {0, 1}N , j ∈ {0, 1}:
– FC(k, ·, j) is a permutation,
– FC−1(k,FC(k, x, j), j, i) = x,
– FC−1(k,FC(k, x, j), j, o) = FC(k, x, j ⊕ 1),
– (FC(k, x, 0),FC(k, x, 1)) = FC(k, x, b), and
– (FC−1(k, x, j, i),FC−1(k, x, j, o)) = FC−1(k, x, j, b)

We often use FCk(x, j) for FC(k, x, j).

We depict a forkcipher in Fig 1. A forkcipher is secure if its outputs are indistin-
guishable from those of an idealized primitive, that is, one with the same syntax
as FC, but implemented with f0 and f1, two random permutations.

Definition 4. A forkcipher FC is a (qE , qI , t, ϵ)-pseudo random forkcipher per-
mutation (PRFP) if for any (qE , qI , t)-adversary A,

|Pr[1← AFCk(·,·),FC−1
k (·,·,·)]− Pr[1← AF̃ (·,·),F̃−1(·,·,·)]| ≤ ϵ,

where k
$← K, and F̃ is the ideal version of FC, implemented with two per-

mutations f0, f1 picked uniformly at random from the set of permutations over
{0, 1}N .

2.2 MACs and Authenticated Encryption Schemes

In the previous section, we have formally defined hash functions, block-ciphers
and forkciphers. These are the building blocks of the MAC and AE primitives,
which we define here. We use a Message Authentication Code, MAC, to authen-
ticate.

Definition 5. A Message Autentication Code (MAC) is a triple of algorithms
Π = (Gen,Mac,Vrfy) where
– The key-generation algorithm Gen generates a key from the sets of keys, K.
– The tag-generation algorithm Mac is a deterministic algorithm which takes

as input a key k ∈ K, and a message m ∈ M, and outputs a tag τ . We
denote this with τ ← Mack(m).

– The verification algorithm Vrfy is a deterministic algorithm which takes as
input a key k ∈ K, a message m ∈M, and a tag τ , outputs either ⊤ (“valid”)
or ⊥ (“invalid”). We denote this with ⊤/ ⊥= Vrfyk(m, τ).

We require correctness, that is ∀(k,m) ∈ K ×M, ⊤ = Vrfyk(m,Mack(m)).

To authenticate and encrypt we use an authenticated encryption (AE) scheme.
We assume that there is an additional input, called the nonce, that should not
be reused in different encryption query (see [35]).



Definition 6. A nonce-based authenticated encryption (nAE) scheme is a triple
of algorithms Π = (Gen,Enc,Dec) where
– The key-generation algorithm Gen generates a key from the sets of keys, K.
– The encryption algorithm Enc is a deterministic algorithm which takes as

input a key k ∈ K, a nonce n ∈ N , and a message m ∈ M, and outputs a
ciphertext c ∈ C. We denote this with c← Enck(n,m).

– The decryption algorithm Dec is a deterministic algorithm which takes as
input a key k ∈ K, and a ciphertext c ∈ C, and outputs a message m ∈ M
or ⊥ (“invalid”). We denote this with ⊥ /m = Deck(c).

We require correctness, that is ∀(k,m) ∈ K×M, m = Deck(c) if c← Enck(n,m)
for any nonce n ∈ N .

Here we follow the syntax proposed by Bellare et al. [6], where the nonces are
not an input of the decryption algorithm. For simplicity, in the main bulk of the
paper, we do not consider here associated data, that is, data that need only to
be authenticated, and not encrypted [35]. The appropriate definition (Def. 16)
can be found in App. A.

2.3 Authenticity in the Presence of Leakage

Both the previous constructions, MAC and AE, aim to provide authenticity.
Here, we give the authenticity definitions in the presence of leakage. We start
introducing the leakage and how we model it.

Leakage. Cryptographic algorithms are usually implemented on electronic de-
vices. When an adversary has physical access to an electronic device, not only
can she query the oracle O, to get its answer, but she can also access and mea-
sure the physical quantities produced during the oracle’s computation, as time,
power consumption and electronic-magnetic radiation [27,28,32]. We represent
this additional information with the leakage function LO, and we denote that an
oracle leaks appending the suffix L to the oracle, that is, OL. Thus, when an ad-
versary has access to a leaking oracle, AOLk , and she queries the oracle on input
x, she receives the oracle’s answer with the leakage function output LO(x; k).

When an adversary can model the leakage of an oracle, we denote this with
AL. This means that the adversary can query the leakage function LO, choosing
all the inputs, that is, both x and the key k′ (k′ is different from the key k of
the oracle OLk). These queries correspond to the training phase that can be per-
formed as part of an attack (for example in profiled side-channel analyses) [31].

Now, we move to the security definitions in the presence of leakage. A secure
MAC in the presence of leakage, is a MAC for which it is difficult to forge, that
is to provide a fresh and valid couple message, tag, even if the adversary has
access to MacL, VrfyL and can model the leakage. Formally:

Definition 7 ([9]). A MAC = (Gen,Mac,Vrfy) with tag-generation leakage func-
tion LM and verification leakage function LV is (qL, qM , qV , t, ϵ)-strongly exis-
tentially unforgeable against chosen message and verification attacks with leak-



age in the tag-generation and the verification (sUF-L2) if for all (qL, qM , qV , t)-
adversaries AL, we have:

Pr
[
1← FORGEL2suf-vcma-L2

MAC,LM ,LV ,A

]
≤ ϵ,

where the FORGEL2suf-vcma-L2 experiment is defined in Tab. 1.

For simplicity, in the proofs, we consider the verification query induced by the

final output of the adversary as the (qV + 1)th verification query.

The FORGEL2suf-vcma-L2
MAC,LM ,LV ,AL experiment

Initialization: Oracle MacLk(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return (τ, LM (m; k))
Finalization:

(m, τ)← AL,MacLk(·),VrfyLk(·,·) Oracle VrfyLk(m, τ):
If (m, τ) ∈ S or ⊥ = Vrfyk(m, τ) Return

Return 0 (Vrfyk(m, τ), LV (m, τ ; k))
Return 1

Table 1. The FORGEL2suf-vcma-L2
MAC,LM ,LV ,A experiment (vcma stands for Verification

and Chosen Message Attacks).

The definition for authenticity with leakage for nAE schemes is analogous. We
want that it will be difficult for an adversary to find a fresh and valid ciphertext,
even if the adversary has access to EncL and DecL. Here, we allow the adversary
to misuse the nonce, that is, the adversary can repeat the nonce in different
encryption queries.

Definition 8 ([14]). A nAE-scheme Π = (Gen,Enc,Dec) provides (qE , qD, t, ϵ)-
ciphertext integrity with nonce misuse and leakage in encryption and decryption
(CIML2), if for any (qE , qD, t)-adversary A

Pr[c← AEncLk(·,·),DecLk(·) | s.t. c is fresh and valid] ≤ ϵ. (1)

With fresh we denote that c has never been obtained as an answer from a
EncLk(n,m) query for any (n,m), and with valid that Deck(c) ̸=⊥.
The CIML2 game, is a straightforward adaptation of the FORGEL2suf-vcma-L2 game
(Tab. 1) to the nAE -syntax. We depict it in Tab. 4 in App. A.7.

Unbounded leakage model. To give a leakage function that is both: (1) realistic,
that is, coherent with concrete attacks on actual implementations, and which
does not give artificial bounds on what can be leaked (e.g., limiting the number
of bits of leakage), and (2) useful, that is, which we can use to prove the security
of a scheme, is a tough problem. For these reasons [31], the leveled implementa-
tion has been introduced: there are two types of implementations for the building
blocks of a scheme: strongly protected, modeled as leak-free or strongly unpre-
dictable with leakage (sU-L2), and weakly or unprotected. Since the strongly



protected implementations are very slow and costly [24,25,36,17], the idea is to
use as few calls to them as possible and to process the bulk of the computations
with far lighter implementations in terms of cost. For integrity, we assume that
the strongly protected blocks are either leak-free or sU-L2, that is, they leak the
inputs, outputs, but not the secret values (for example, for a block-cipher, the
key), moreover, for sU-L2, there is a leakage of the computation, while weakly
or unprotected implementations leak all their inputs and outputs, even the se-
cret ones. This is the so called unbounded leakage model [31,13]. Here, we use a
forkcipher as a strongly protected component.

The unbounded leakage model has a nice illustrative figure which we explain
later with Fig. 3 in respect with our proposed forkcipher based construction.

Note that for privacy, we cannot assume that these weakly protected blocks
leaks unboundedly. Since their keys are used few times, we can assume that their
leakage is not substantial and it does not lead to a break in the security of the
protocol, as typically done with leveled-implementations refreshing the keys, for
example [31,19,10]5.

3 Strongly Unpredictability with Leakage for Forkcipher

For the security of a forkcipher FC in the presence of leakage L we start from
the strong unpredictability definition in the presence of leakage [9] (the natural
extension of unpredictability [21,22]) for block-ciphers, and we adapt to forkci-
phers. Roughly speaking we want that an adversary cannot produce a fresh and
valid triple (input, selector, output), even if she can model the leakage, has oracle
access to FC with its leakage, and FC−1 with its leakage. Let (x, sel, y) be the
prediction of the adversary, x, y ∈ {0, 1}N , sel ∈ {0, 1, o}. We deem (x, sel, y)
valid, if FCk(x, sel) = y if sel ∈ {0, 1}, otherwise if FC−1

k (x, 0, o) = y.
Particularly tricky is to precisely formalize what means fresh. For example,

if an adversary has only called FCk on input (x, 0), we should deem (x, 1, z)
fresh. On the other hand, if an adversary has called FCk on input (x, 0) obtain-
ing y, then she has called FC−1

k on input (y, 0, o) obtaining z, if she outputs
(x, 1, z), which is correct, we deem this prediction invalid. We give an illustra-
tive representation of this in Fig. 2. For simplicity, we do not allow the adver-
sary to output (x, (y0, y1), b) as her prediction because if this is valid, that is,
FCk(x, b) = (y0, y1) and fresh, then the adversary could also win with one of
these two predictions: (x, 0, y0) or (x, 1, y1). We formalize this in the following:

Definition 9 (sU-L2). A forkcipher FC : K × {0, 1}N × {0, 1, b} → {0, 1}N ∪
({0, 1}N∪{0, 1}N ) with leakage function pair L = (LFC, LFC−1) is (qL, qF , qF−1 , t, ϵ)
strongly unpredictable with leakage in evaluation and inversion (sU-L2), if for
any (qL, qFC, qFC−1 , t)-adversary A, we have Pr[1 ← sU-L2A,FC,L] ≤ ϵ, where the
sU-L2 experiment is defined in Tab. 2, and where AL makes at most qL (offline)
queries to L.

5 The concept of lightly protected primitives (as compared to no protection) was
already practiced in [31,19]



The sU-L2A,FC,L experiment.

Initialization: Oracle FCLk(x, sel):

k
$← K y = FCk(x, sel)

C ← ∅ leak = LFC(x, sel; k)
C ← Add((x, sel, y, d), C)

Finalization: Return (y, leak)

(x, sel, y)← AL,FCLk(·,·),FC−1Lk(·,·,·)

If 0 = Fresh((x, sel, z), C) Oracle FC−1Lk(x, sel, sel
′):

Return 0 y = FC−1
k (x, sel, sel′)

If y = FCk(x, sel) leak = LFC−1(x, sel, sel′; k)
Return 1 C ← AddI((x, sel, sel′, y), C)

Return 0 Return (y, leak)

Table 2. Strong unpredictability with leakage in evaluation and inversion ex-
periment. The Add, Fresh, and AddI and Fresh algorithms are depicted in Tab. 5,
and Tab. 6 in App. D.

x

y0 y1

x

y0 y1

x

y0 y1

x

y0 y1

Fig. 2. A schematic description of fresh and not fresh queries options for forkci-
phers. With black (solid) arrows we denote queries done by the adversary, with
blue (dashed) arrows fresh predictions, while with red (dotted) not fresh predic-
tions.

To distinguish between fresh and not fresh predictions, we use a set C to keep
in memory the queries done by the adversary. The idea is to keep in memory
(x, y0, y1) for any query with FCk(x, b) = (y0, y1). But, when a query does not
give all these values, we flag the missing value with gu (which stands for this
value can be guessed). When a new query to either FC or FC−1 is done, first, we
see if it completes a previous query (thus removing the flag gu and replacing it
with the correct value), otherwise we add the obtained values as a new triple.
The Add oracle takes the set C and add the input and outputs of an FC query,
while the AddI oracle does the same for FC−1 queries. We deem a prediction as
fresh if either there is no entry in C with any of the two values of the prediction
(in the exact places) or if there is an entry with one value in the correct place
and the other value is deemed guessable (gu). We do this with the oracle Fresh.
These oracles are described in Tab. 5 and Tab. 6 in App. D.

4 ForkMAC, a MAC based on a Forkcipher

Here, we show that we can use a forkcipher to build a MAC which is secure in
the presence of leakage in the unbounded leakage model. We start introducing
the scheme, then, we prove its security.



4.1 Description of ForkMAC

One of the main challenges in designing a leakage-resilientMAC is the verification
algorithm. Often, the verification queries are done by recomputing the correct
tag, and comparing this value with the tag provided to assess the validity of the
query (systematic). That is, for example, in the well-known Hash-then-MAC [26],
the Mac first hashes the message and then uses a block-cipher with the hash as
input to compute the tag (that is, τ = Ek(H(m))). For verification, simply on

input (m, τ), the algorithm checks if τ̃ = Ek(H(m))
?
= τ . This comparison may be

attacked when the adversary exploits leakage, and needs to be protected [20,14].
In the unbounded leakage model every verification algorithm that recomputes
the correct tag is insecure since the correct tag is leaked. Thus, if we want a
leakage-resilient MAC in the unbounded leakage model, we need the verification
algorithm to perform its check on something else.

Berti et al. [14] proposed with HBC2 to exploit the inverse of the block-cipher
in verification for the Hash-then-MAC: for a verification query on input (m, τ),
they check if H(m) = E−1

k (τ). The idea is that if E is a leak-free block-cipher,

h̃ = E−1
k (τ) is random, thus, even the adversary knows h̃, she cannot forge be-

cause she should find a pre-image for a random value, and it is enough to assume
that the hash function is range-oriented pre-image resistant (Def. 10, App. A).
If E is sU-L2, the previous MAC is leakage -resistant either in the random ora-
cle model [9] or in the standard model adding a strong hypothesis on the hash
function [12].

Forkciphers allows us to find a different value to check the validity of a ver-
ification query: we use FCk(H(m), 0) as the tag and in verification we check if
FCk(H(m), 1) = FC−1

k (τ, 0, o). If an adversary gets FCk(H(m), 1), she has ob-
tained nothing because still she needs to guess FCk(H(m), 0). This is the idea
behind ForkMAC which is detailed in Alg. 1 and Fig. 3 (the tag-generation is
depicted in Fig. 5, in App. E).

4.2 sUF-L2 Security of ForkMAC

Now, we prove that our ForkMAC is leakage resistant. First, we define the leakage
functions of Mac and Vrfy, then we give the intuition for security (a full proof is
provided in the appendix).

Leakage functions. We assume that only the forkcipher is strongly protected. Let
LFC(x, sel; k) and LFC−1(x, sel, sel′; k) be its leakage functions. Then, according
to the unbounded leakage model
– LMac(m; k) := (h, LFC(h, 0; k)) with h = Hs(m).
– LVrfy((m, τ); k) := (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)) with v = FCk(h, 1)

and ṽ = FC−1
k (τ, 0, o).

Now, we can state the leakage-resistance of ForkMAC

Theorem 1. Let FC : K × {0, 1}N × {0, 1, b} → {0, 1}N ∪ ({0, 1}N )2 be a
(2qL, qM + qV , qV , t1, ϵsU-L2)-strongly unpredictable forkcipher. Let H : HK ×



Algorithm 1 ForkMAC, a sUF-L2-secure MAC based on a forkcipher.

– Gen:
• k

$← K
• s

$← HK (s is a public parameter)

– Mack(m):
• h = Hs(m) // digest
• τ = FCk(h, 0) // tag
• Return τ

– Vrfyk(m, τ):
• h = Hs(m)
• v = FCk(h, 1)
• ṽ = FC−1

k (τ, 0, o)
• If v = ṽ Return ⊤, Else Return ⊥
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Fig. 3. The verification of ForkMAC - Alg. 1 (the tag-generation algorithm can
be found in Fig. 5, App. E). We have a leveled implementation (Sec. 2.3), which
is graphically represented. We distinguish between strongly protected primitive
(in gray), and unprotected (in white). In the unbounded leakage model, we give
to the adversary the ephemeral values (the orange ones) via leakage. We assume
that only the keys of the strongly protected primitives are protected (these are
the red ones) and not leaked.

{0, 1}∗ → {0, 1}N be a (t2, ϵCR)-collision resistant hash function. Then, ForkMAC
with the leakage function described above is (qL, qM , qV , t, ϵ)-sUF-L2 MAC, with

ϵ ≤ ϵCR + [(qV )
2 + 1]ϵsU-L2,

t1 = t+ (qL + qM + qv + 1)tH, t2 = t+ (qM + qV + 1)tH + (qM + 2qV )tFC, where
tH is the time needed to evaluate once the hash function, and tFC is the time to
evaluate once FC and collect its leakage.

Here, we have a worse bound [(qV )
2 +1]ϵsU-L2 instead of the expected (qV +

1)ϵsU-L2 because the adversary has an additional winning strategy: finding a

collision between vi and ṽj for two different verification queries, the ith with vi =

FCk(h
i, 1), and the jth where ṽj = FC−1

k (τ i, 0, o). Note that without leakage,
the security of this scheme would have been the standard security (as proved in
Thm. 4, App. B.2),

ϵ = ϵPRF + ϵCR +
qV + 1

2N
.



Idea of the security argument. Let (m, τ) be the first fresh and valid verification
query (if there is one, the adversary can simply output it as her forgery) and let
h = H(m). There are two cases:

– There is a previous tag-generation query with input m′ s.t H(m′) = h′ = h
– There is no such tag-generation query.

We can easily treat both cases. In fact:

– If h′ = h we have found a collision for the hash function.
– Otherwise, either (h, 0, τ) is a fresh and valid prediction or it is not fresh.
• If it is fresh, then, we have broken sU-L2.
• If it is not fresh, this means that there have been two previous verification
queries one on input (mi, τ i) and one on input (mj , τ j) s.t. mi = m and
τ j = τ s.t. vi = ṽj . We have two possible situations: i < j or i > j (if
j = i, then (mi, τ i) would have been the first fresh and valid verification
queries, contrary to our hypothesis). Thus,

∗ if i < j, then, in the jth verification query the prediction (τ j , vi, o)
would have broken the sU-L2 security of FCk. In the jth query there
are at most j − 1 possible target for vi.

∗ if i > j, then, in the ith verification query the prediction (hi, ṽj , 1)
would have broken the sU-L2 security of FCk. In the ith query there
are at most i− 1 possible target for ṽj .

In the proof, which can be found in App. B.1, we present the ideas slightly
differently to have a better security bound.

4.3 Comparison with Other Leakage Resistant MACs

Notably, BCs implementations were deeply investigated in literature. Conse-
quently plethora of implementations, performance- and security- analysis ex-
ist. Forkciphers on the other hand are new, whereas only few implementations
proposals exist. Meaning comparison in terms of implementation efficiency is
hardly fair. Even-though, in this section we compare security aspects in a high-
level; we supplement this comparison with so called rough efficiency analysis. We
make the general assumption (similarly to [3,1,2,4]) that a forkcipher is cheaper
than a blockcipher per the functionality it provides, that protecting a forkcipher
is cheaper than protecting a blockcipher per the functionality it provides. I.e.,
whereas a BC and a FC(·, 0) are equivalent, a FC provides more functionality,
with an amortized cost [3,1,2,4], especially in the full (e.g.,) AE or MAC levels.
And similarly, that an unsecured forkcipher is less expensive than an unsecured
blockcipher, again per the functionality it provides.

With respect to HBC2 [14] ForkMAC achieves the same black-box security.
We can prove its sUF-L2-security assuming that FC is sU-L2 in the standard
model without any ideal (or strong) hypothesis on the hash function H. On the
other hand, it is less efficient in verification because we need two calls to the
forkcipher with respect to a single call to the blockcipher, and sUF-L2-security
is worse when we assume that the strongly protected component is leak-free.



With respect to HTBC [9] (Alg. 6, App D), a version of HBC, where a tweak-
able block-cipher (TBC) is used, ForkMAC will achieve worse security bound in
black-box (because HTBC is beyond-birthday) as we are bounded by the collision
resistance of the hash function. However, we believe ForkMAC is more efficient
in tag-generation since we are comparing a single forkcipher call to a single TBC
call. Moreover, for HTBC, as for HBC, it is impossible to provide sUF-L2-security
in the standard model when the TBC is sU-L2 without a strong hypothesis on
H. Inspired by HTBC, we can build ForkTMAC (Alg. 4, App D) a variant of
ForkMAC which is based on a tweakable forkcipher, Def. 11). ForkTMAC pro-
vides beyond-birthday security black-box.

With respect to the LR-MAC [12] which is sUF-L2-secure in the standard
model using a sU-L2 TBC, we have the same black-box security, but worse
sUF-L2-security. However, we believe, ForkMAC is more efficient in tag-generation
since we are using a single call to a forkcipher, with respect to a single call to a
TBC. Using a tweakable forkcipher with tweak as big as the block we can have
beyond birthday blackbox security, while LR-MAC needs a TBC whose tweaks
have twice the size of its blocks.

Finally, ForkMAC is much more efficient than ISAPMAC [19] which is a leak-
age resilient MAC since, here we have only a call to a forkcipher to achieve
leakage protection while ISAPMAC execute n rounds of a sponge. I.e., to pre-
vent differential power attack susceptibility the key is absorb bit-by-bit by the
sponge. Moreover, ISAPMAC have to protect the comparison in verification using
a permutation-based value processing function [20].

5 ForkDTE - Authenticated Encryption

In this section, we show that we can use a forkcipher as a strongly protected
component to build a nAE-scheme.

5.1 Overview of ForkDTE

DTE [13] and DTE2 [14]: We start from the DTE (Digest-Tag-and-Encrypt) nAE
encryption scheme [13]. DTE starts from a leakage-resistant encryption scheme,
PSV (detailed in Alg. 3 in App. D, and in Fig. 6) [31].

– PSV [31]: from a first ephemeral key k1 (which is generated from the master
key), a pseudo-random value y1 is created, y1 = FCk1

(PB) which is XORed
to the first block of the message, generating the first ciphertext block c1 =
y1 ⊕m1, then, the key k1 is refreshed, k2 = FCk1

(pA) (pA and pB are two
public values). Iterating, we can encrypt the full message.

– DTE [13] (Digest, Tag and Encrypt): it aims to use PSV to build a leakage-
resistant and nonce misuse-resistant (Def. 15) nAE-scheme (Def. 6). The idea
is to first use the well-known Hash-then-MAC paradigm on the nonce and the
message, to compute the tag τ . Thus, they digest (n,m) with H obtaining the
digest h = H(n∥m), then, they tag it τ = Ek(h). Finally, the nonce and the
message are encrypted using PSV. From τ the first ephemeral key k0 = Ek(τ)



is generated, and then the encryption follows PSV. In decryption, from the
tag τ , k0 is recomputed, then, the couple nonce, message (n,m) is retrieved
and it is checked to verify τ is the correct tag. Only the two calls of E using k
as key (that is, the one to generate the tag τ and the one to generate the first
ephemeral key k0), must be strongly protected against leakage. DTE provides
ciphertext integrity in the presence of leakage in encryption in the unbounded
leakage model [13] (and privacy in the presence of leakage), but it does not
provide CIML2 in the unbounded leakage model since the tag is recomputed
in verification. DTE is misuse-resistant because, roughly speaking, every bit
of the ciphertext depend on all the plaintext since all ephemeral keys depend
on h = H(n∥m) [13].

– DTE2 [14]: The CIML2-security can be obtained using the idea of inverting
the E in decryption, as it was done for Hash-then-MAC (see Sec. 4). En-
cryption is done as in DTE, while in decryption as before we start from τ
to recompute k0 and retrieve both (n,m). But to verify the validity of the

ciphertext we compute h̃ = E−1,0
k (τ) and we check if h̃

?
= h = H(n∥m) (for

security reasons, we cannot use Ek to both compute τ and k0, instead we sep-
arate these two calls using a tweakable blockcipher, with a single bit tweak:
we use the tweak 0, E0

k to generate τ and the tweak 1, E1
k for k0). This is

DTE2 [14] (Alg. 2). It is CIML2-secure in the unbounded leakage model if E
is leak-free [13], or if E is sU-L2 in the random oracle model [9] or in the
standard model with a strong hypothesis on H [12].

ForkDTE: In ForkDTE we replace the two calls to the strongly protected tweak-
able block-cipher E with calls to a strongly protected forkcipher FC. In encryption
from h instead of computing τ = E0

k(h) and k0 = E1
k(τ), we can simply compute

(τ, k0) = FCk(h, b). In decryption we have two choices:
1. ForkDTE1, we use only once FC and we compute (h̃, k0) = FC−1

k (τ, 0, b).

From k0 and h̃ we decrypt as for DTE2.
2. ForkDTE2, using the idea of ForkMAC (Sec. 4) we use twice FC: once to

recompute k0, k0 = FCk(τ, 0, o), then, from k0, we retrieve (n,m) and we
compute h. Finally, we check if the first ephemeral key is the right one given
n,m and we compute k̃0 = FCk(h, 1) and we check if it is equal to the k0 we
have obtained.

We describe ForkDTE1, and 2, and DTE2 in Alg. 2. We depict the encryption in
Fig. 4, the encryption of DTE2 in Fig. 6, the decryption of ForkDTE1 in Fig. 7,
and the decryption of ForkDTE2 in Fig. 8 (some of these figures can be found in
App. E). Note that from a functional point of view, the decryptions of ForkDTE
1 and 2 are equivalent, that is, these algorithms with the same input, give the
same result. We have given two different algorithms because their efficiency and
security in the presence of leakage is different. Finally, in Alg. 7 we show that we
can use the leakage-resilient encryption scheme proposed with FEDT [18] which
uses forkciphers.



Algorithm 2 The ForkDTE1, ForkDTE2, and DTE2 [14] algorithms. DTE2 uses
the dashed-lines-boxed instructions, both ForkDTE 1 and 2 the double boxed
instruction. ForkDTE1 uses also the boxed instructions, while ForkDTE2 the
stacked-dashed double box ones.
– Gen:

• k
$← K DTE 2 ForkDTE1 and 2 ForkDTE1 ForkDTE2

• s
$← HK

• pA, pB
$← {0, 1}N (s, pA, pB are public parameters)

– Enck(n,m):
• h = Hs(n∥m) digest

• τ = E0
k(h) tag

• k0 = E1
k(τ) generate the first ephemeral key

• (τ, k0) = FCk(h, b) tag and generate the first ephemeral key

• Parse m = (m1,m2, . . . ,mℓ) in N -bit blocks ...and encrypt
• y0 = Ek0(pB)
• c0 = y0 ⊕ n
• For i = 1, . . . l

∗ ki = Eki−1(pA)
∗ yi = Eki(pB)
∗ ci = π|mi|(yi)⊕mi

• C = (c0, c1, . . . , cℓ)
• Return c = (τ, C)

– Deck(c):
• Parse c = (τ, C) with |τ | = N
• Parse C = (c0, c1, c2, . . . , cℓ) in N -bit blocks

• k0 = E−1,1
k (τ) Recovering the first ephemeral key

• (h̃, k0) = FC−1
k (τ, 0, b) Recovering the first ephemeral key and check value

• k0 = FC−1
k (τ, 0, o) Recovering the first ephemeral key

• y0 = Ek0(pB)
• n = y0 ⊕ c0
• For i = 1, .., ℓ

∗ ki = Eki−1(pA)
∗ yi = Eki(pB)
∗ mi = π|ci|(yi ⊕ ci

• (n,m) = (n, (m1, ...,mℓ))
• h = Hs(n∥m)

• h̃ = FC−1,0
k (τ) check value

• If h = h̃ Return m; Else Return ⊥

• If h = h̃ Return m; Else Return ⊥

• k̃0 = FCk(h, 1) check value

• If k0 = k̃0 Return m; Else Return ⊥ check value



5.2 Security of ForkDTE 1 and 2

Here, we give the security properties of ForkDTE 1 and 2.

Idea of the black-box security. The black-box security of ForkDTE 1 and 2 is the
same as DTE2. Thus, both ForkDTE 1 and 2 are secure nAE-schemes (Def. 14),
and both are misuse-resistant (Def. 15). Here we give a simple argument which
justify the previous statement. Consider the following construction:

Etw
k (x) :=

{
FCk(x, 0) if tw = 0

FC−1
k (x, 0, o) if tw = 1

is a secure TBC if FC is a secure forckcipher. On the other hand, given E a
secure TBC, the following construction F̃Ck(x, b) := (E0

k(x),E
1
k(E

0
k(x))) is a se-

cure forkcipher. From the previous argument and [13,14] we obtain the claimed
security. To improve the quantitative bounds, we prove the nAE-security and
misuse-security in App. B.6 and App. B.5, respectively with a direct proof.

CIML2 security of ForkDTE 1. The fact that DTE2 and ForkDTE 1 are the same
if we are using the constructions for E and FC described before implies that in
the unbounded leakage model ForkDTE 1 is CIML2-secure if FC is leak-free. If
FC is sU-L2, applying the result to Hash-then-MAC of [9] or [12], we obtain the
CIML2 security of ForkDTE 1 in the random oracle model, or in the standard
model with a strong hypothesis on H, respectively. Here, we only give an idea
of the CIML2 security of ForkDTE1 when FC is leak-free (clearly it is strongly
inspired by [14]). First, we need to give the leakage functions for encryption and
decryption: LEnc and LDec. According to the unbounded leakage model
– LEnc((n,m); k) := (h, k0) with h = Hs(m).
– LDec(c; k) := (h̃, k0) with (h̃, k0) = FC−1

k (h, 0, b).
Note that from k0 all ephemeral values yi, ki can be recomputed in both encryp-
tion and decryption and that FC does not leak since it is leak-free.

Here, we give a security result in the standard model assuming that the
forkcipher FC is leak-free. For the security proof, similarly to [14], we need to
assume that for the hash function H it is hard to find a pre-image for a random
value. This is the range-oriented pre-image resistance (Def. 10, App. A).

Theorem 2. Let FC be a (qE , qD + 1, t1, ϵPRFP)-pseudo random forkcipher per-
mutation whose implementation is leak-free. Let H be a (t2, ϵCR)-collision re-
sistant and (t2, ϵro-PR)-range-oriented-pre-image resistant hash function. Then
ForkDTE1 is (qE , qD, t, ϵ)-CIML2-secure with

ϵ ≤ ϵPRFP + ϵCR + qDϵro-PR + (qD + 1)2−N ,

where ForkDTE1 encrypts at most Ln-bits message, t1 = t+ (qE + qD + 1)[tH +
(2L+1)tE], t2 = t+(qE + qD +1)[2tf + tH+(2L+1)tE], with tH the time needed
to execute once the hash function H, tE to execute E, and tf to randomly sample
a random permutation.



Idea of the proof. (The complete proof is in App. B.3) To every decryption
query, we associate the couple nonce-message (n,m) retrieved, and h = H(n,m),
h̃ = FC−1

k (τ, 0, i). Let c∗ be the first fresh and valid decryption query. There are
three cases:
1. There is a previous encryption query with input (n′,m′) such that H(n′∥m′) =

h′ = h∗

2. There is no encryption query s.t. h = h∗, but there is a previous decryption

query, the ith s.t. h̃i = h∗.
3. None of the previous cases.

We can easily treat all cases. In fact:
1. If h′ = h∗ we have found a collision for the hash function.
2. Since FC is a PRFP all h̃ are random. Thus, we have found a hash pre-image

for a random h̃.
3. Since FC is a PRFP and we have never queried FC−1

k (τ, 0, i) (otherwise, we
would have been in the previous case), the probability that given the digest
h we compute in decryption, h = FC−1

k (τ, 0, i) is negligible.

CIML2 security of ForkDTE 2. First, we need to give the leakage functions for
encryption and decryption: LEnc and LDec. According to the unbounded leakage
model
– LEnc((n,m); k) := (h, k0, LFC(h, b; k)) with h = Hs(m).
– LDec(c; k) := (h̃, k0, LFC−1(τ, 0, o; k), LFC(h, 1; k)) with (h̃, k0)v = FC−1

k (h, 0, b).
Note that from k0 all ephemeral values yi, ki can be recomputed. Here, we give
a proof assuming that FC is sU-L2.

Theorem 3. Let FC be a (2qL, qE + qD + 1, qD + 1, t1, ϵsU-L2)-strongly unpre-
dictable forkcipher in the presence of leakage. Let H be a (t2, ϵCR)-collision resis-
tant. Then ForkDTE1 is (qL, qE , qD, t, ϵ)-CIML2-secure with

ϵ ≤ ϵCR + [(qD)2 + 1]ϵsU-L2,

where ForkDTE2 encrypts at most Ln-bits message, t1 = t+(qL+qE+qD+1)[tH+
(2L+1)tE], t2 = t+(qE+qD+1)tH+(qE+2qD+2)tFC+(qE+qD+1)(2L+1)tE,
with tH the time needed to execute once the hash function H, tE to execute E,
and tf to randomly sample a random permutation.

Idea of the security. We observe that we can reduce the CIML2 security of
ForkDTE2 to the sUF-L2-security of ForkMAC (Sec. 4) simply observing that
an adversary against ForkMAC can simulate ForkDTE2 simply asking in addition
FCk(h, 1) in every encryption query because from k0 in both encryption and
decryption, she can compute C and and (n,m) respectively.

To improve the bound, the proof has a slightly different flow (App. B.4).

Privacy in the presence of leakage. ForkDTE 1 and 2 provides CPAL-security, that
is, CPA where the adversary gets the leakage of all encryption queries (Def. 20)
as DTE does [13]. This follows from the fact that PSV is CPAL [31], and we
are using the master key k only in a strongly protected component and FC is a
secure forkcipher. For privacy in the presence of leakage, clearly, we cannot use
the unbounded leakage model, but other models as in [31,13,10].



5.3 Comparison with Other Leakage-Resistant Schemes

Since the strongly protected components are the slowest, reducing the number
of them significantly increases efficiency, especially for short messages. With re-
spect to DTE2, the proposed constructions have faster encryption since only a
single call (although obtaining both outputs) to the strongly protected com-
ponent is made. Moreover, ForkDTE1 is also faster in decryption for the same
reason as compared to DTE2, while, ForkDTE2 should be as fast as DTE2 in ver-
ification. The comparison of the security of ForkDTE2 and DTE2 is the same as
the comparison between HBC2 and ForkMAC. ForkDTE1 is faster in decryption
than ForkDTE2, and has the same security properties as DTE2.

There are other schemes with two calls to the strongly protected compo-
nent: EDT (Encrypt-Digest and Tag) [14], its tweakable versions, TEDT [10] and
TEDT2 [30], and Spook a version where encryption and digestion are computed
simultaneously with a sponge [7]. They have the same security for CIML2 and
black-box integrity as for DTE2. These constructions have to renounce the nonce-
misuse security, but have better privacy properties in the presence of leakage.

With respect to ISAP, which follows the Encryption-then-MAC paradigm,
using the ISAPMAC to authenticate, we believe the proposed constructions are
more efficient in both encryption and decryption and we provide nonce-misuse
black-box security. From the previous discussion, the comparison between DTE2
and ISAP can be lifted to ForkDTE 1 and 2.

Moreover, we mention CONCRETE [15] an AE-scheme which provides CIML2
with a single call to a strongly protected primitive, a TBC. CONCRETE is not a
nAE, because it is a probabilistic scheme, but it provides CIML2 (where misuse
means that the adversary has taken control of the randomness source) if the TBC
is leak-free 6. We believe that CONCRETE is more efficient than our schemes,
but its security has only been proved with FC being a leak-free TBC.

Finally, FEDT [18] is based on EDT and they do a clever use of a forkcipher.
On the other hand, FEDT, having the same structure of EDT, uses two calls to
the leak-free forkcipher, while here in encryption we use only once. Moreover,
their security check is similar to the one of LR-MAC.

6 Conclusion

In this paper, we demonstrate that unpredictability with leakage definition can
also be extended for the very flexible forkcipher primitive. We have proved that
the flexibility that forkciphers is useful to provide authenticity in the presence
of leakage; and that such schemes are versatile and cost efficient.

In particular, we have provided three constructions, a MAC - ForkMAC, and
two Authenticated Encryption AE - ForkDTE1 and ForkDTE2 schemes, inspired
by previous constructions, where the use of a forkcipher has allowed security
and efficiency gains. We believe that the flexibility provided by forkciphers can
give even nicer constructions for other AE schemes. Rigorously, we detail on the

6 We strongly suspect that CONCRETE is CIML2 even if the TBC is sU-L2, but this
have not been proved yet.
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Fig. 4. The encryption algorithm of ForkDTE 1 and 2 - Alg. 2.

security proofs including high-level overview of the different constructions and
analyze security characteristics with forkciphers in the presence of leakage. The
paper also provides a comparison to the state-of-the-art in terms of both security
and efficiency. Finally, we conjecture that our MAC provides authenticity in the
presence of leakage and faults (at least faults in verification) following [11].
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tion. In P. Longa and C. Ràfols, editors, LATINCRYPT, 2021.



31. O. Pereira, F. Standaert, and S. Vivek. Leakage-resilient authentication and en-
cryption from symmetric cryptographic primitives. In CCS, 2015.

32. J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In E-smart, 2001.

33. P. Rogaway. Authenticated-encryption with associated-data. In CCS, 2002.
34. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions,

implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In FSE, 2004.

35. P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap
problem. In EUROCRYPT, 2006.

36. D. Salomon and I. Levi. Masksimd-lib: on the performance gap of a generic c
optimized assembly and wide vector extensions for masked software with an ascon-
p test case. Journal of Cryptographic Engineering, 13(3):325–342, 2023.



A Additional definitions

A.1 Pre-image resistant hash functions

There are many possible pre-image resistance definitions for hash functions,
see [34]. In this paper we make use of the following definition where a value
is picked uniformly at random from the target space of H:

Definition 10. A hash function H : HK × {0, 1}∗ → {0, 1}N is (t, ϵ)-range
oriented pre-image resistant (ro-PR) if ∀ t-adversaries A

Pr[m← A(s, y) s.t. Hs(m) = y | s $← HK, y $← {0, 1}N ] ≤ ϵ.

A.2 Tweakable block-ciphers and tweakable forkciphers

Liskov et al. [29] introduced tweakable blockciphers. These are block-ciphers
with an additional input, the tweak, that provide more flexibility. We give their
syntax and their security definitions.

Definition 11. A tweakable block-cipher (TBC) is a function E : K × T W ×
{0, 1}N → {0, 1}N , s.t. ∀(k, tw) ∈ K × T W Ek(tw, ·) is a permutation.

Definition 12. A TBC E : K × {0, 1}N → {0, 1}N is a (q, t, ϵ)-TPRP ( Tweak-
able Pseudo Random Permutation) if for any (q, t)-adversary A

|Pr[1← AFC·
k(·)]− Pr[1← Af·(·)]| ≤ ϵ

where k
$← K, and f

$← T PERM, where T PERM is the set of the tweakable
permutations over T W×{0, 1}N , that is the set of functions f : T W×{0, 1}N →
{0, 1}N s.t. ∀tw ∈ T Wf(tw) is a permutation on {0, 1}N .

When the adversary has oracle access also to the inverse of the TBC we have
the strong version of the previous definition.

Definition 13. A TBC E : K × {0, 1}N → {0, 1}N is a (q, t, ϵ)-sTPRP ( Strong
Tweakable Pseudo Random Permutation) if for any (q, qI , , t)-adversary A

|Pr[1← AFC·
k(·),FC−1,·

k (·)]− Pr[1← Af·(·),f−1,·(·)]| ≤ ϵ

where k
$← K, and f

$← T PERM, where T PERM is the set of the tweakable
permutations over T W×{0, 1}N , that is the set of functions f : T W×{0, 1}N →
{0, 1}N s.t. ∀tw ∈ T Wf(tw) is a permutation on {0, 1}N .

A.3 Additional Definitions for Authenticated Encryptions

First, we give the security definition for authenticated encryption schemes. This
definition provides both privacy and authenticity.

Definition 14. A nAE-scheme Π is (qE , qD, t, ϵ)-nAE-secure if ∀(qE , qD, t)-adversary

|Pr[AEnck(·,·),Deck(·) ⇒ 1]− Pr[A$(·,·),⊥(·) ⇒ 1]| ≤ ϵ,

where ⊥ is an oracle that outputs always ⊥. A is not allowed to ask the second
oracle on an input c if she has received c as the output of the first oracle with
input (n,m). Moreover, A is not allowed to repeat a nonce in different Enc/$-
queries.



When we remove the latter condition, we have misuse-resistance

Definition 15. A nAE-scheme Π is (qE , qD, t, ϵ)-nmAE-secure (nonce-misuse
resistant) if ∀(qE , qD, t)-adversary

|Pr[AEnck(·,·),Deck(·) ⇒ 1]− Pr[A$(·,·),⊥(·) ⇒ 1]| ≤ ϵ,

where ⊥ is an oracle that outputs always ⊥. A is not allowed to ask the second
oracle on an input c if she has received c as the output of the first oracle with
input (n,m).

In some cases, there are data that needs only to be authenticated (for example
the header). These are the so called associated data [33].

Definition 16. A nonce-based authenticated encryption with associated data
(nAAE) scheme is a triple of algorithms Π = (Gen,Enc,Dec) where
– The key-generation algorithm Gen generates a key from the sets of keys, K.
– The encryption algorithm Enc is a deterministic algorithm which takes as

input a key k ∈ K, a nonce n ∈ N , an associated data a ∈ AD, and a
message m ∈ M, and outputs a ciphertext c ∈ C. We denote this with
c← Enck(n, a,m).

– The decryption algorithm Dec is a deterministic algorithm which takes as
input a key k ∈ K, a associated data a ∈ AD, and a ciphertext c ∈ C, and
outputs a message m ∈ M or ⊥ (“invalid”). We denote this with ⊥ /m =
Deck(a, c).

We require correctness, that is ∀(k, a,m) ∈ K × AD ×M, m = Deck(a, c) if
c← Enck(n, a,m) for any nonce n ∈ N .

Definition 17. A nAAE-scheme Π is (qE , qD, t, ϵ)-nAE-secure if ∀(qE , qD, t)-
adversary

|Pr[AEnck(·,·,·),Deck(·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·) ⇒ 1]| ≤ ϵ,

where ⊥ is an oracle that outputs always ⊥. A is not allowed to ask the second
oracle on an input (a, c) if she has received c as the output of the first oracle
with input (n, a,m). Moreover, A is not allowed to repeat a nonce in different
Enc/$-queries.

A.4 Encryption schemes and privacy definitions

Historically, encryption schemes are assumed to be probabilistic, and the first
security [26]. On the other hand, since it is hard to build a probabilistic scheme,
many schemes assume that there is an additional input, called the initialization
vector, IV which is assumed to be randomly picked (there is a fall-back security
notion, nonce-security, where, for the security it is enough that the IV has never
been repeated [35]). We now formalize the syntax and the security definition:

Definition 18. A IV-based encryption (IVE)-scheme is a triple of algorithms
Π = (Gen,Enc,Dec) where
– The key-generation algorithm Gen generates a key from the sets of keys, K.
– The encryption algorithm Enc is a deterministic algorithm which takes as

input a key k ∈ K, a IV iv ∈ IV, and a message m ∈ M, and outputs a
ciphertext c ∈ C. We denote this with c← Enck(iv,m).



– The decryption algorithm Dec is a deterministic algorithm which takes as
input a key k ∈ K, an IV iv ∈ IV, and a ciphertext c ∈ C, and outputs a
message m ∈M or ⊥ (“invalid”). We denote this with ⊥ /m = Deck(iv, c).

We require correctness, that is ∀(k, iv,m) ∈ K×IV×M, m = Deck(iv,Enck(iv,m)).

Definition 19. An IVE-scheme Π is (q, t, ϵ)-IVE-secure if ∀(q, t)-adversary

|Pr[AEnc$k(·) ⇒ 1]− Pr[A$(·) ⇒ 1]| ≤ ϵ,

where Enc$(·) is an oracle that on input m, picks iv
$← IV, and output (iv, c =

Enck(iv,m)), while $(·) is an oracle that on input m outputs (iv, c), with iv
$←

IV, and c
$← {0, 1}|Enck(iv,m)|.

A.5 Privacy in the presence of leakage

Here we give the security definition for encryption and (authenticated encryp-
tion) in the presence of leakage.

Definition 20. A nAE-scheme is (q, t, ϵ)−Chosen Plaintext Attacks Secure with
leakage (CPAL)-secure if

Pr[b = b′|AL,EncLk(c∗)⇒ b′, c∗ = EncLk(n
∗,mb)] ≤

1

2
+ ϵ,

∀(q, t)-adversary A, with b
$← {0, 1}, where AL,EncLk outputs (n∗,m0,m1) with

|m0| = |m1|. Moreover, A is not allowed to repeat a nonce in different Enc-
queries.

A.6 Unforgeability for MACs

We give the black-box authenticity definition for MACs.

Definition 21. A MAC = (Gen,Mac,Vrfy) is (qM , qV , t, ϵ)-strongly existentially
unforgeable against chosen message and verification attacks (sUF) if for all
(qM , qV , t)-adversaries A, we have:

Pr
[
1← FORGEsuf-vcma

MAC,A

]
≤ ϵ,

where the FORGEsuf-vcma experiment is defined in Tab. 3.

For simplicity, in the proofs, we consider the verification query induced by the
final output of the adversary as the (qV + 1)th verification query.

A.7 Ciphertext-integrity with Misuse and Leakage

We give the description of the experiment mentioned in the CIML2 security
definition (Def. 8).



The FORGEL2suf-vcma-L2
MAC,LM ,LV ,AL experiment

Initialization: Oracle Mack(m):
k ← Gen τ = Mack(m)
S ← ∅ S ← S ∪ {(m, τ)}

Return τ
Finalization:

(m, τ)← AMack(·),Vrfyk(·,·) Oracle Vrfyk(m, τ):
If (m, τ) ∈ S or ⊥ = Vrfyk(m, τ) Return Vrfyk(m, τ)

Return 0
Return 1

Table 3. The FORGEsuf-vcma
MAC,A experiment (vcma stands for Verification and Cho-

sen Message Attacks).

The CIML2Π,LE ,LD,AL experiment

Initialization: Oracle EncLk(n,m):
k ← Gen c = Enck(n,m)
S ← ∅ S ← S ∪ {(c)}

Return (c, LE(n,m; k))
Finalization:

c← AL,EncLk(·,·),DecLk(·) Oracle DecLk(c):
If c ∈ S or ⊥ = Deck(c) Return (Deck(c), LD(c; k))

Return 0
Return 1

Table 4. The CIMLΠ,LE ,LD,A experiment.



B Proofs

B.1 Proof of the sUF-L2-security of ForkMAC

Proof. We use a sequence of games Game 0, ... , Game 4. We denote with Ei

the event that the output of Game i is 1, that is, that the adversary wins.

Game 0. This is the sUF-L2 game where the adversary A is playing against
ForkMAC.

Game 1. Similar to Game 0, except that we abort if there is a collision for the
hash function.

Transition between Game 0 and 1. Since Game 0 and Game 1 are the same
except if a hash collision is produced, we only need to bound the probability
that such a collision is found. To do this, we build a t2-adversary B which works
as follows:

At the start of the game B obtains the key of the hash function, s, which she
forwards to A. She picks a random key k and forwards s to A. Moreover, she has
a list S which is empty.

When A perform a tag-generation query on input m, B simply computes
h = Hs(m), τ = FCk(h, 0) and collects the leakage leak = LFC(h, 0; k). She
returns τ and the leakage (h, LFC(h, 0; k)) to A and she adds (m,h) to S. This
takes time tH + tFC.

When A does a verification query on input (m, τ), B simply computes h =
Hs(m), v = FCk(h, 1), ṽ = FC−1

k (τ, 0, o) and collects the leakage
LFC(h, 1; k), LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to A. Moreover,
she returns to A the leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she
adds (m,h) to S. This takes time tH + 2tFC.

When A outputs her forgery (m, τ), B simply computes h = Hs(m), she adds
(m,h) to S, and she looks into S to find a collision. If this is the case, she outputs
it, otherwise (0N , 1N ). This takes time tH.

The adversary A can do the modeling queries (which are qL) by himself, thus,
we do not have to explain how B treats them.

Thus, in total B runs in time bounded by t+(qM+qV +1)tH+(qM+2qV )tFC =
t2.

Bounding |Pr[E0] − Pr[E1]|. Since B is t2-adversary, H is a (t2, ϵCR)-collision
resistant hash function, and Game 0 and Game 1 are the same except if B finds
a collision, then

|Pr[E0]− Pr[E1]| = Pr[B wins ] ≤ ϵCR.

Game 2. Let Game 2 be Game 1, where we abort if there exist two verification

queries, the ith and the jth s.t. j < i and vi = ṽj .

Games 10, ..., 1qV . Let Game 1i be Game 1 where we abort if in one of the first

i verification queries there exist two verification queries, the lth and the jth s.t.
j < l and vl = ṽj . Note that Game 10 is Game 1, while Game 1qV is Game 2.

Transition between Game 1i and 1i+1. Since Game i and Game i + 1 are
the same except if in the ith verification query vi = ṽj for j < i, we only need
to bound the latter event.



To do this, we build a t1-adversary Ci which works as follows: At the start
of the game Ci obtains the key of the hash function, s, which she forwards to A.
Moreover, Ci has a list V which is empty.

When A does a modelling tag-generation query on input (m; k′), Ci simply
computes h = Hs(m), computes τ = FCk′(h, 0) and collects the leakage leak =
LFC(h, 0; k

′). She returns τ and the leakage (h, LFC(h, 0; k
′)) to A and she adds

(m,h) to S. This takes time tH and one modeling query to FC.
When A does a modelling verification query on input (m, τ), Ci simply com-

putes h = Hs(m), v = FCk′(h, 1), ṽ = FC−1
k′ (τ, 0, o) and collects the leakage

(LFC(h, 1; k
′), LFC−1(τ, 0, o; k′)). She returns ⊤ if v = ṽ, otherwise ⊥ to A. More-

over, she returns to A the leakage (h, v, ṽ, LFC(h, 1; k
′), LFC−1(τ, 0, o; k′)). This

takes time tH and two modeling queries to FC.
When A does a tag-generation query on input m, Ci simply computes h =

Hs(m), calls her oracle FCLk on input (h, 0), obtaining τ and the leakage LFC(h, 0; k).
She returns τ and the leakage (h, LFC(h, 0; k)) to A. This takes time tH and one
oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), Ci

simply computes h = Hs(m), calls her oracle FC on input (h, 1) obtaining v and
the leakage LFC(h, 1; k). She queries her oracle FC−1 on input (τ, 0, o), obtain-
ing ṽ and the leakage LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to
A. Moreover, she returns to A the leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)).
Finally, she adds ṽ to S. This takes time tH and one query to FC and one to
FC−1.

When A outputs the ith verification query on input (m, τ), Ci simply com-
putes h = Hs(m), picks an element x randomly from V and she outputs (h, 1, x)
as her prediction. This takes time tH.

Thus, in total Ci runs in time bounded by t + (qL + qM + qv + 1)tH = t1,
does at most 2qL modelling queries and at most qM + qV queries to FC and qV
to FC−1.

Bounding |Pr[E1i ] − Pr[E1i+1 ]| . Since Ci is (2qL, qM + qV , qV , t1)-adversary,
FC is a (2qL, qM + qV , qV , t1, ϵsU-L2)-unpredictable forkcipher, and Game 1i and
Game 1i+1 are the same except if in the ith verification query vi = ṽj with j < i,
then

|Pr[Ei
1]− Pr[E1i+1 ]| = Pr[correct guess] Pr[Ci wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible ṽs, thus, if i = 1,
|V| = 0, so C1 can never win, while, if i > 1, we have guessed correctly with
probability at least 1/|V| = (i− 1)−1.

Bounding |Pr[E1]−Pr[E2]|. Summing all the previous probabilities, we obtain

|Pr[E10 ]− Pr[E1qV ]| =
qV∑

i=1

(i− 1)ϵsU-L2 =

qV −1∑

i=1

iϵsU-L2 =
qV (qV − 1)

2
ϵsU-L2.

Game 3. Let Game 3 be Game 2, where we abort if there exist two verification

queries, the ith and the jth s.t. j < i and ṽi = vj .

Games 20, ..., 2qV . Let Game 20 be Game 2 where we abort if in one of the first

i verification queries there exist two verification queries, the lth and the jth s.t.
j < l and ṽl = vj . Note that Game 20 is Game 2, while Game 2qV is Game 3.



Transition between Game 2i and 2i+1. Since Game 2i and Game 2i+1 are
the same except if in the ith verification query ṽi = vj for j < i, we only need
to bound the latter event.

To do this, we build a t1-adversary Di which works as follows: At the start
of the game Di obtains the key of the hash function, s, which she forwards to A.
Moreover, Di has a list V which is empty.

When A does a modelling tag-generation query on input (m; k′), Di simply
computes h = Hs(m), computes τ = FCk′(h, 0) and collects the leakage leak =
LFC(h, 0; k

′). She returns τ and the leakage (h, LFC(h, 0; k
′)) to A and she adds

(m,h) to S. This takes time tH and one modeling query to FC.
When A does a modelling verification query on input (m, τ), Di simply com-

putes h = Hs(m), v = FCk′(h, 1), ṽ = FC−1
k′ (τ, 0, o) and collects the leakage

(LFC(h, 1; k
′), LFC−1(τ, 0, o; k′)). She returns ⊤ if v = ṽ, otherwise ⊥ to A. More-

over, she returns to A the leakage (h, v, ṽ, LFC(h, 1; k
′), LFC−1(τ, 0, o; k′)). This

takes time tH and two modeling queries to FC.
When A does a tag-generation query on input m, Di simply computes h =

Hs(m), calls her oracle FCLk on input (h, 0), obtaining τ and the leakage LFC(h, 0; k).
She returns τ and the leakage (h, LFC(h, 0; k)) to A. This takes time tH and one
oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), Di

simply computes h = Hs(m), calls her oracle FC on input (h, 1) obtaining v and
the leakage LFC(h, 1; k). She queries her oracle FC−1 on input (τ, 0, o), obtain-
ing ṽ and the leakage LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to
A. Moreover, she returns to A the leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)).
Finally, she adds v to S. This takes time tH and one query to FC and one to
FC−1.

When A outputs the ith verification query on input (m, τ), Di simply com-
putes h = Hs(m), picks an element x randomly from V and she outputs (τ, o, x)
as her prediction. This takes time tH.

Thus, in total Di runs in time bounded by t+(qL+ qM + qv+1)tH = t1, does
at most 2qL modelling queries and at most qM+qV queries to FC and qV to FC−1.

Bounding |Pr[E2i ] − Pr[E2i+1 ]| . Since Di is (2qL, qM + qV , qV , t1)-adversary,
FC is a (2qL, qM + qV , qV , t1, ϵsU-L2)-unpredictable forkcipher, and Game 2i and
Game 2i+1 are the same except if in the ith verification query ṽi = vj with j < i,
then

|Pr[Ei
2]− Pr[E2i+1 ]| = Pr[correct guess] Pr[Di wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible ṽs, thus, if i = 1,
|V| = 0, so D1 can never win, while, if i > 1, we have guessed correctly with
probability at least 1/|V| = (i− 1)−1.

Bounding |Pr[E2]−Pr[E3]|. Summing all the previous probabilities, we obtain

|Pr[E20 ]− Pr[E2qV ]| =
qV∑

i=1

(i− 1)ϵsU-L2 =

qV −1∑

i=1

iϵsU-L2 =
qV (qV − 1)

2
ϵsU-L2.

Games 4. Let Game 4 be Game 3 where we abort there is one fresh and valid
verification query.



Games 31, ..., 3qV +1. Let Game 3i be Game 3 where we abort if one of the
first i verification queries is fresh and valid. (We remind that we consider the

verification query induced by A output as the qV + 1th verification query. Note
that Game 30 is Game 3, while Game 3qV +1 is Game 3.

Transition between Game 3i and 3i+1. Since Game 3i and Game 3i+1 are
the same except if the ith verification query is fresh and valid, we only need to
bound the probability that the input of the ith verification query, (mi, τ i), is
fresh and Vrfyk(m

i, τ i) = ⊤.
To do this, we build a t1-adversary EEi which works as follows: At the start

of the game EEi obtains the key of the hash function, s, which she forwards to
A.

When A does a modelling tag-generation query on input (m; k′), EEi simply
computes h = Hs(m), computes τ = FCk′(h, 0) and collects the leakage leak =
LFC(h, 0; k

′). She returns τ and the leakage (h, LFC(h, 0; k
′)) to A and she adds

(m,h) to S. This takes time tH and one modelling query to FC.
When A does a modelling verification query on input (m, τ), EEi simply

computes h = Hs(m), v = FCk′(h, 1), ṽ = FC−1
k′ (τ, 0, o) and collects the leakage

(LFC(h, 1; k
′), LFC−1(τ, 0, o; k′)). She returns ⊤ if v = ṽ, otherwise ⊥ to A. More-

over, she returns to A the leakage (h, v, ṽ, LFC(h, 1; k
′), LFC−1(τ, 0, o; k′)). Finally,

she adds (m,h) to S. This takes time tH and two modelling querlies to FC.
When A does a tag-generation query on input m, EEi simply computes

h = Hs(m), calls her oracle FCLk on input (h, 0), obtaining τ and the leak-
age LFC(h, 0; k). She returns τ and the leakage (h, LFC(h, 0; k)) to A. This takes
time tH and one oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), EEi

simply computes h = Hs(m), calls her oracle FC on input (h, 1) obtaining v and
the leakage LFC(h, 1; k). She queries her oracle FC−1 on input (τ, 0, o), obtain-
ing ṽ and the leakage LFC−1(τ, 0, o; k). She returns ⊤ if v = ṽ, otherwise ⊥ to
A. Moreover, she returns to A the leakage (h, v, ṽ, LFC(h, 1; k), LFC−1(τ, 0, o; k)).
Finally, she adds (m,h) to S. This takes time tH and one query to FC and one
to FC−1.

When A outputs the ith verification query on input (m, τ), EEi simply com-
putes h = Hs(m), and she outputs (h, 0, τ) as her prediction. This takes time
tH.

Thus, in total EEi runs in time bounded by t + (qL + qM + qv + 1)tH = t1,
does at most 2qL modelling queries and at most qM + qV queries to FC and qV
to FC−1.

Bounding |Pr[E3i ]−Pr[E3i+1 ]| and |Pr[E3]−Pr[E4]|. Since EEi is (2qL, qM +
qV , qV , t1)-adversary, FC is a (2qL, qM + qV , qV , t1, ϵsU-L2)-unpredictable forkci-
pher, and Game 3i and Game 3i+1 are the same except if the ith verification
query is the first fresh and valid verification query, then

|Pr[Ei
3]− Pr[E3i+1 ]| = Pr[B wins ] ≤ ϵsU-L2.

So, |Pr[E3]− Pr[E4]| ≤
qV +1∑

i=0

|Pr[E3i ]− Pr[E4i+1 ]| ≤ (qV + 1)ϵsU-L2



Concluding the proof. We can conclude the proof, since Pr[E4] = 0, since
none of the qV verification query and the verification query induced by the
forgery output of A can be fresh and valid. Thus,

Pr[E0] ≤ Pr[E4]+

3∑

i=0

|Pr[Ei]−Pr[Ei+1]| ≤ ϵCR+
2qV (qV − 1)

2
ϵsU-L2+(qV +1)ϵsU-L2 = ϵ.

B.2 Unforgeability (Black-Box) of ForkMAC

The security definition is given by Def. 21.

Theorem 4. Let FC be a (qM + qV + 1, 0, t1, ϵPRFP)-pseudorandom forkcipher.
Let H be a (t2, ϵCR)-collision resistant. Then ForkMAC is (qM , qV , t, ϵ)-sUF-secure
with

ϵ ≤ ϵPRFP + ϵCR +
(qM + qV + 1)2 + 2qV + 2

2N+1
,

with t1 = t + (qM + qV + 1)tH, t2 = t + (qM + qV + 1)tH + (qM + qV )tf , with
tH the time needed to execute once the hash function H, tf to randomly sample
a random permutation.

Proof. We use a sequence of games Game 0, ... , Game 5. We denote with Ei

the event that the output of Game i is 1, that is, that the adversary wins.

Game 0. This is the sUF game where the adversary A is playing against ForkMAC.

Game 1. This is the sUF game where the adversary A is playing against ForkMAC′,
which is ForkMAC, where the verification is done recomputing the correct tag
and checking it.

Bounding |Pr[E0]−Pr[E1]|. It is clear that ForkMAC and ForkMAC′ are func-
tionally equivalent, that is Mac(m)k = Mac′k(m), and Vrfyk(m, τ) = Vrfy′k(m, τ),
since FC implements two permutations.

|Pr[E0]− Pr[E1]| = 0.

Game 2. It is Game 1, where we replace FC with two random permutations.

Transition between Game 1 and 2. Game 0 and Game 1 are the same except
for how τ and h̃ are computed in Mac and Vrfy queries respectively. In Game 0,
they are computed with FCk and FC−1

k , respectively, while in Game 1 with the

ideal counterpart F̃ , F̃−1. Thus, we build a (qM , qV + 1, t1)-adversary B.
B has to distinguish if she is interacting with two oracle implemented either

with FCk(·, ·),FCk(·, ·, ·) or with F̃C(·, ·), F̃C(·, ·, ·). At the start of the game, B
receives a key s for the hash function, which she forwards to A. Moreover, she
has a list S which is empty.

When A does a tag-generation query on input m, B simply computes h =
Hs(m) and queries her oracle on input (h, 0) obtaining τ . B answers A τ and she
adds (m, τ) to S. This requires an oracle query to the first oracle (implemented
with either FCk(·, ·) or F̃ (·, ·, ·)) and time tH.

When A does a verification query on input (m, τ), B simply computes h =
Hs(m) and queries her oracle on input (h, 0) obtaining τ̃ . B answers A ⊤ if τ =
˜tau; otherwise ⊥. This requires an oracle query to the first oracle (implemented
with either FCk(·, ·) or F̃ (·, ·, ·)) and time tH.



When A outputs its forgery (m, τ), B simply computes h = Hs(m) and queries
her oracle on input (h, 0) obtaining τ̃ . B outputs 1 if τ = ˜tau and (m, τ) /∈ S;
otherwise ⊥. This requires an oracle query to the first oracle (implemented with
either FCk(·, ·) or F̃ (·, ·, ·)) and time tH.

Thus, in total B does qM + qV + 1 queries to the first oracle (implemented
with either FCk(·, ·) or F̃ (·, ·, ·)), no queries to the second oracle, and time at
most t+ (qM + qV + 1)tH ≤ t1.

Bounding |Pr[E1]−Pr[E2]|. Since B is (qM +qV +1, 0, t1)-adversary, and FC is
a (qM + qV +1, 0, t1, ϵPRFP)-pseudorandom forkcipher, and B simulates correctly
Game 1 for A if her oracles are implemented with FCk(·, ·) and FC−1

k (·, ·, ·),
otherwise Game 2, thus

|Pr[E1]−Pr[E2]| = |Pr[1← BFCk(·,·),FC−1
k (·,·,·)]−Pr[1← BtildeF (·,·),F̃−1(·,·,·)]| ≤ ϵPRFP.

Observe, that since we are only using FCk(·, 0)-queries, we can consider that we
are using a random permutation.

Game 3. It is Game 2, where we assume that no collision for the hash function
is found.
Transition between Game 2 and 3. Game 2 and Game 1 are the same except
if the following event happens: a collision for the hash function. Thus, we have
only to bound the probability that the previous event happens. For this, we build
a t2-adversary against C H which aims to find a collision.

C proceeds at follows: At the start of the game, C receives a key s for the hash
function, which she forwards to A. Moreover, she picks a random permutation f,
which she lazy samples and she has a list S which is empty.

When A does a tag-generation query on input m, C simply computes h =
Hs(m), and lazy samples τ = f(h). Then, she answers τ to A, and she adds (m,h)
to S. This takes time tH + tf .

When A does a verification query on input (m, τ), C simply computes h =
Hs(m) and lazy samples τ̃ = f(h). C answers A ⊤ if τ = ˜tau; otherwise ⊥.
Moreover, she adds (m,h) to S. This needs time tH + tf .

When A outputs its forgery (m, τ), C simply computes h = Hs(m). Then,
she looks into S to see if she can find a collision. If it is the case, she outputs it,
otherwise (0, 1). This requires time tH.

Thus, in total C runs in time at most t+(qM + qV +1)tH+(qM + qV )tf ≤ t2.

Bounding |Pr[E2]−Pr[E3]|. Game 2 and 3 are the same except if a collision for
the hash function has been found. Since C wins if a collision for the has function
is found in Game 2, C is t2-adversary, H is a (t2, ϵCR)-collision resistant hash
function,

|Pr[E2]− Pr[E3]| = Pr[C wins ] ≤ ϵCR.

Game 4. Let Game 4 be Game 3 where we replace f with a random function.

Transition between Game 3 and 4. Using the well-known lemma to switch
from a PRP to a PRF, since the only difference between Game 3 and 4 is the use
of a PRP or a PRF, and we use f is qM + qV times,

|Pr[E3]− Pr[E4]| ≤
(qM + qV + 1)2

2

N+1

.

Game 5. Let Game 5 be Game 4 where we assume that there is no fresh and
valid decryption query.



Bounding |Pr[E4]− Pr[E5]|. Since the probability that the ith is valid, if it is
fresh is bounded by 2−N . Thus,

|Pr[E4]− Pr[E5]| =≤ (qV + 1)2−N .

Concluding the proof.We can conclude the proof, since Pr[E5] = 0, since none
of the qV verification query and the verification query induced by the forgery
output of A can be fresh and valid. Thus,

Pr[E0] ≤ Pr[E5]+

4∑

i=0

|Pr[Ei]−Pr[Ei+1]| ≤ ϵPRFP+ϵCR+
(qM + qV + 1)2 + 2qV + 2

2N+1
= ϵ.

B.3 Proof of the CIML2 Security of ForkDTE1

Proof. We use a sequence of games Game 0, ... , Game 4. We denote with Ei

the event that the output of Game i is 1, that is, that the adversary wins.

Game 0. This is the CIML2 game where the adversary A is playing against
ForkDTE1.

Game 1. It is Game 0, where we replace FCk with its ideal counterpart.

Transition between Game 0 and 1. Since Game 0 and Game 1 are the same
except for the use of FC, we need to build the probability an adversary distinguish
the use of FC to its ideal counterpart. To do this, we build a (qFC, qFC−1 , t1)-
adversary B which has access to two oracles which are either implemented with
FCk,FC

−1
k or their ideal counterparts. B works as follows: At the start of the game

B obtains the key of the hash function, s, which she forwards to A. Moreover, B
has a list S which is empty.

When A does an encryption query on input (n,m), B simply computes
h = Hs(n∥m), and calls her oracle on input (h, b) obtaining (τ, k0). From
k0, B computes y0 = Ek0

(pB), and c0 = y0 ⊕ n. Then, she parses m in n-bit
blocks, m1, . . . ,mℓ. After that, for all i = 1, . . . , ℓ, B computes ki = Eki−1

(pA),
yi = Eki

(pB), and ci = π|mi|(yi) ⊕ mi. Finally, she returns A c = (τ, C) and
the leakage k0, with C = (c0, . . . , cℓ) and she adds c to S. This takes one oracle
query to FCk and time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks,
τ, c0, c1, . . . ,mℓ. Then, B simply calls her inverse oracle on input (τ, 0, b), ob-
taining (h̃, k0). From k0, B computes y0 = Ek0

(pB), and n = y0 ⊕ c0. Af-
ter that, for all i = 1, . . . , ℓ, B computes ki = Eki−1

(pA), yi = Eki
(pB), and

mi = π|mi|(yi) ⊕ ci. Finally, she computes h = Hs(n∥m) and checks if h
?
= h̃.

If it is the case, B returns A m = (m1, . . . ,mℓ), and the leakage (h̃, k0); other-
wise, ⊥ and the leakage (h̃, k0). This takes one oracle query to FC−1

k and time
tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE, since ℓ ≤ L.

The adversary A can do the modeling queries (which are qL) by himself, thus,
we do not have to explain how B treats them.

When A outputs its forgery c, she proceeds as for a normal decryption query
except that she does not return anything to A. Instead, if at the end of the
verification h = h̃ and c /∈ S, B outputs 1; otherwise 0.

Thus, in total B does qE queries to FC, qD + 1 to FC−1 and runs in time
bounded by t+ (qE + qD + 1)[tH + (2L+ 1)tE] = t1.



Bounding |Pr[E0] − Pr[E1]|. If the oracles B has access to are implemented
by (FCk,FC

−1
k ), B is correctly simulating Game 0 for A; otherwise, Game 1.

Since B is (qE , qD+1, t1)-adversary, and FC is a (qE , qD+1, t1, ϵCR)-PRFP secure
forkcipher, then

|Pr[E0]− Pr[E1]| = |Pr[1← BFC,FC−1

]− Pr[1← Bf,f−1

]| ≤ ϵPRFP.

Game 2
It is Game 1, where we abort if there is a collision for the hash function.

Transition between Game 1 and 2. Since Game 1 and Game 2 are the same
except if a hash collision is found, we build a t2-adversary C based on A to find
a collision for the hash function. C works as follows: At the start of the game C
obtains the key of the hash function, s, which she forwards to A. Moreover, C
has a list S which is empty, and she picks two random permutation f0, f1, which
she lazy samples.

When A does an encryption query on input (n,m), C simply computes h =
Hs(n∥m) and she adds (n∥m,h) to S, and computes τ = f0(h), and k0 = f1(h).
From k0, C computes y0 = Ek0(pB), and c0 = y0⊕n. Then, she parses m in n-bit
blocks, m1, . . . ,mℓ. After that, for all i = 1, . . . , ℓ, C computes ki = Eki−1(pA),
yi = Eki

(pB), and ci = π|mi|(yi) ⊕ mi. Finally, she returns A c = (τ, C) and
the leakage k0, with C = (c0, . . . , cℓ). This takes time tH + 2tf + (2ℓ + 1)tE ≤
tH + (2L+ 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks,
τ, c0, c1, . . . ,mℓ. Then, C computes h̃ = f0(τ), k0 = f1(h̃). From k0, C computes
y0 = Ek0(pB), and n = y0 ⊕ c0. After that, for all i = 1, . . . , ℓ, C computes
ki = Eki−1(pA), yi = Eki(pB), and mi = π|mi|(yi) ⊕ ci. Finally, she computes

h = Hs(n∥m), she adds (n∥m,h) to S, and checks if h
?
= h̃. If it is the case,

C returns A m = (m1, . . . ,mℓ), and the leakage (h̃, k0); otherwise, ⊥ and the
leakage (h̃, k0). This takes time tH + 2tf + (2ℓ + 1)tE ≤ tH + (2L + 1)tE, since
ℓ ≤ L.

The adversary A can do the modeling queries (which are qL) by himself, thus,
we do not have to explain how C treats them.

When A outputs its forgery c, she proceeds as for a normal decryption query
except that she does not return anything to A. After this, C looks into S to see
whether she can find a collision in S. If she finds it, she outputs it; otherwise
(0, 1). Thus, in total C runs in time bounded by t + (qE + qD + 1)[2tf + tH +
(2L+ 1)tE] = t2.

Bounding |Pr[E1] − Pr[E2]|. Game 1 and Game 2 are the same except if the
event that there is a collision for the hash function happens. Since C wins only if
that event happens, C is a t2-adversary and H is (t2, ϵCR)-collision resistant hash
function,

|Pr[E1]− Pr[E2]| = Pr[ There is a collision for H] ≤ Pr[C wins] ≤ ϵCR.

Game 3
It is Game 3, where we abort if there exists a not valid decryption query which

generates h̃ and an encryption or decryption query s.t. the hash computed h is
equal to that h̃.



Games 20, ..., 2qD . Let Game 2i be Game 2 where we abort if for one of the
first i decryption queries there exist j s.t. there exists an h s.t. h = h̃j . Note
that Game 20 is Game 2, while Game 2qD is Game 3.

Transition between Game 2j and 2j+1. Since Game 2j and Game 2i+1 are
the same except there is a hash query s.t. h = h̃j , we only need to bound the
latter event.

To do this, we build a t3-adversary Dj which works as follows: At the start
of the game Di obtains the key of the hash function, s, which she forwards to A,
and a random target x. Moreover, Dj has two list S, and F which are empty,
and she picks two random permutation f0, f1, which she lazy samples.

When A does an encryption query on input (n,m), Dj simply computes
h = Hs(n∥m) and she adds (n∥m,h) to S, computes τ = f0(h) checking before
if there is an entry (h, τ) ∈ F , if it is the case, it answers τ , and k0 = f1(h),
and she adds (h, τ) to F . From k0, D

j computes y0 = Ek0
(pB), and c0 = y0 ⊕ n.

Then, she parses m in n-bit blocks, m1, . . . ,mℓ. After that, for all = 1, . . . , ℓ,
C computes ki = Eki−1

(pA), yi = Eki
(pB), and ci = π|mi|(yi) ⊕mi. Finally, she

returns A c = (τ, C) and the leakage k0, with C = (c0, . . . , cℓ). This takes time
tH + 2tf + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks,
τ, c0, c1, . . . ,mℓ. Then, if this is not the jth verification query Dj computes h̃ =
f0(τ) (checking before if there is an entry in (h̃, τ) ∈ F , if it is the case she
sets h̃ coherently the with the entry in F) Instead, if this is the jth verification
query, Dj checks if there is an entry in (h̃, τ) ∈ F , if it is the case she sets
h̃ coherently the with the entry in F , otherwise she sets h̃ := x. Then, she
adds (h̃, τ) to F . Moreover, she computes k0 = f1(h̃), and adds . From k0, D

j

computes y0 = Ek0
(pB), and n = y0 ⊕ c0. After that, for all i = 1, . . . , ℓ, C

computes ki = Eki−1(pA), yi = Eki(pB), and mi = π|mi|(yi) ⊕ ci. Finally, she

computes h = Hs(n∥m), she adds (n∥m,h) to S, and checks if h
?
= h̃. If it is the

case, Dj returns A m = (m1, . . . ,mℓ), and the leakage (h̃, k0); otherwise, ⊥ and
the leakage (h̃, k0). This takes time tH +2tf + (2ℓ+1)tE ≤ tH + (2L+1)tE, since
ℓ ≤ L.

The adversary A can do the modeling queries (which are qL) by himself, thus,
we do not have to explain how Dj treats them.

When A outputs its forgery c, she proceeds as for a normal decryption query
except that she does not return anything to A. After this, Dj looks into S to see
whether she can find an entry (·, x) in S. If she finds it, she outputs it; otherwise
0.

Thus, in total Dj runs in time bounded by t+(qE + qD +1)[2tf + tH +(2L+
1)tE] = t2. .

Bounding |Pr[E2j ] − Pr[E2j+1 ]| . We observe that if we have not set in the
jth decryption query h̃ := x, it means that the pre-image for x has already
been found in a previous query. Since Di is t2-adversary, H is a (t2, ϵro-PR)-range-
oriented-pre-image resistant hash function, and Game 2j and Game 2j+1 are the
same except if a preimage for x is found, then

|Pr[Ej
2]− Pr[E2j+1 ]| = Pr[find a pre-image] = Pr[Dj wins ] ≤ ϵro-PR.



Bounding |Pr[E2]−Pr[E3]|. Summing all the previous probabilities, we obtain

|Pr[E20 ]− Pr[E2qD ]| =
qD∑

i=1

ϵro-PR = qDϵro-PR.

Game 4. Let Game 4 be Game 3, where we abort if there exist a fresh and
valid verification query.

Games 31, ..., 3qV +1. Let Game 3i be Game 3 where we abort if one of the
first i decryption queries is fresh and valid. (We remind that we consider the

verification query induced by A output as the qV + 1th verification query. Note
that Game 30 is Game 4, while Game 3qV +1 is Game 5.

Transition between Game 3i and 3i+1. Since Game 3i and Game 3i+1 are
the same except if the ith decryption query is fresh and valid, we only need to
bound the probability of the latter event. By hypothesis, the only possibility for
an adversary to win is to ask a decryption query on input c = (τ, C), with a
fresh τ (otherwise, h̃ = f−1

0 (τ) had already been set, thus, the adversary can
win by finding a pre-image for h̃, but we have already excluded this). Since f0 is
random permutation, the probability that h = h̃ with h̃ random is 1/2N . Thus,

|Pr[E4i ]− Pr[E4i+1 ]| ≤ 2−N . Thus, |Pr[E4]− Pr[E5]| ≤ (qD + 1)2−N

Concluding the proof. We can conclude the proof, since Pr[E5] = 0, since
none of the qV decryption query and the decryptionn query induced by the
forgery output of A can be fresh and valid. Thus,

Pr[E0] ≤ Pr[E4]+

3∑

i=0

|Pr[Ei]−Pr[Ei+1]| ≤ ϵPRFP+ϵCR+qDϵro-PR++(qD+1)2−N = ϵ.

B.4 Proof of the CIML2 Security of ForkDTE2

Proof. We use a sequence of games Game 0, ... , Game 5. We denote with Ei

the event that the output of Game i is 1, that is, that the adversary wins.

Game 0. This is the CIML2 game where the adversary A is playing against
ForkDTE2.

Game 1. It is Game 0, where we abort if there is a collision for the hash function.

Transition between Game 0 and 1. Since Game 0 and Game 1 are the same
except if a hash collision is produced, we only need to bound the probability
that such a collision is found. To do this, we build a t2-adversary B which works
as follows:

At the start of the game B obtains the key of the hash function, s, which she
forwards to A. She picks a random key k and forwards s to A. Moreover, she has
a list S which is empty.

When A does an encryption query on inputm, B simply computes h = Hs(m),
(τ, k0) = FCk(h, b) and collects the leakage leak = LFC(h, b; k). After having
parsed m in N -bit blocks, m = (m1, . . . ,mℓ), from k0, B computes y0 = Ek0

(pB),
c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, B computes ki = FCki−1

(pA), yi =
FCki

(pB), ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ). She returns c = (τ, C)
and the leakage (h, k0, LFC(h, b; k)) to A and she adds c to S. This takes time
tH + tFC + (2ℓ+ 1)tE ≤ tH + tFC + (2L+ 1)tE.



When A does a decryption query on input c, B simply parses c in (τ, C). |τ | =
N , and she computes k0 = FC−1

k (τ, 0, o) and collects the leakage LFC−1(τ, 0, o; k).
After having parsed C in N -bit blocks, C = (c1, . . . , cℓ), from k0, B computes
y0 = Ek0(pB), n = y0⊕c0, and, for every i = 1, . . . ℓ, B computes ki = FCki−1(pA),
yi = FCki

(pB), mi = π|ci|(yi) ⊕ ci. She sets m = (m1, . . . ,mℓ). Then, B com-

putes h = Hs(n∥m), k̃0 = FCk(h, 1), and collects the leakage LFC(h, 1; k). She
returns m if k0 = k̃0, otherwise ⊥ to A. Moreover, she returns to A the leak-
age (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds (n∥m,h) to S. This
takes time tH + 2tFC + (2ℓ+ 1)tE ≤ tH + 2tFC + (2L+ 1)tE.

When A outputs her forgery c, B simply proceeds as for a normal decryption
query, with the exception that she does not answer A anything. Instead, she looks
into S to find a collision. If this is the case, she outputs it, otherwise (0N , 1N ).
This takes time tH + 2tFC + (2ℓ+ 1)tE ≤ tH + 2tFC + (2L+ 1)tE.

The adversary A can do the modeling queries (which are qL) by himself, thus,
we do not have to explain how B treats them.

Thus, in total B runs in time bounded by t+ (qE + qD + 1)tH + (qE + 2qD +
2)tFC + (qE + qD + 1)(2L+ 1)tE = t2.

Bounding |Pr[E0] − Pr[E1]|. Since B is t2-adversary, H is a (t2, ϵCR)-collision
resistant hash function, and Game 0 and Game 1 are the same except if B finds
a collision, then

|Pr[E0]− Pr[E1]| = Pr[B wins ] ≤ ϵCR.

Game 2. Let Game 2 be Game 1, where we abort if there exist two decryption

queries, the ith and the jth s.t. j < i and k̃i0 = kj0.

Games 10, ..., 1qD . Let Game 1i be Game 1 where we abort if in one of the first

i decryption queries there exist two verification queries, the lth and the jth s.t.

j < l and k̃0
l
= kj0. Note that Game 10 is Game 1, while Game 1qD is Game 2.

Transition between Game 1i and 1i+1. Since Game i and Game i + 1 are
the same except if in the ith decryption query k̃i0 = kj0 for j < i, we only need
to bound the latter event.

To do this, we build a t1-adversary Ci which works as follows: At the start
of the game Ci obtains the key of the hash function, s, which she forwards to A.
Moreover, Ci has a list V which is empty.

When A does a modelling encryption query on input (n,m; k′), Ci simply
computes h = Hs(n,m), computes (τ, k0) = FCk′(h, b) and collects the leakage
leak = LFC(h, b; k

′). After having parsed m in N -bit blocks, m = (m1, . . . ,mℓ),
from k0, C

i computes y0 = Ek0(pB), c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ,
Ci computes ki = FCki−1(pA), yi = FCki(pB), ci = π|mi|(yi) ⊕ mi. She sets
C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage (h, LFC(h, b; k

′)) to A
and she adds (m,h) to S. This takes time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and
one modeling query to FC.

When A does a modelling decryption query on input c, Ci simply parses
c = (τ, C). Then she computes,k0 = FC−1

k′ (τ, 0, o) and collects the leakage
LFC−1(τ, 0, o; k′). After having parsed C in N -bit blocks, C = (c1, . . . , cℓ), from
k0, C

i computes y0 = Ek0(pB), n = y0⊕c0, and, for every i = 1, . . . ℓ, Ci computes
ki = FCki−1(pA), yi = FCki(pB), mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . ,mℓ).



After that, she computes h = Hs(n∥m), k̃0 = FCk′(h, 1), and collects the leakage
LFC(h, 1; k

′). She returns m if k0 = k̃0, otherwise ⊥ to A. Moreover, she re-
turns to A the leakage (h, k0, k̃0, LFC(h, 1; k

′), LFC−1(τ, 0, o; k′)). This takes time
tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and two modeling queries to FC.

When A does an encryption query on input m, Ci simply computes h =
Hs(m), calls her oracle FCLk on input (h, b), obtaining (τ, k0) and the leakage
LFC(h, b; k). After having parsed m in N -bit blocks, m = (m1, . . . ,mℓ), from k0,
Ci computes y0 = Ek0

(pB), c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ, B computes
ki = FCki−1(pA), yi = FCki(pB), ci = π|mi|(yi) ⊕mi. She sets C = (c0, . . . , cℓ).
She returns c = (τ, C) and the leakage (h, LFC(h, b; k)) to A. This takes time
tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and one oracle query to FC.

When A does one of the first i − 1 decryption queries on input c, Ci simply
parses c = (τ, C), with |τ | = N . Then, she queries her oracle FC−1 on input
(τ, 0, o), obtaining k0 and the leakage LFC−1(τ, 0, o; k). After having parsed C
in N -bit blocks, C = (c1, . . . , cℓ), from k0, C

i computes y0 = Ek0(pB), n =
y0 ⊕ c0, and, for every i = 1, . . . ℓ, Ci computes ki = FCki−1(pA), yi = FCki(pB),
mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . ,mℓ). After that, Ci simply computes

h = Hs(n∥m), and she calls her oracle FC on input (h, 1) obtaining k̃0 and the
leakage LFC(h, 1; k). She returns m if k = k̃0, otherwise ⊥ to A. Moreover, she
returns to A the leakage (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds
k0 to S. This takes time tH and one query to FC and one to FC−1.

When A outputs the ith decryption query on input (m, τ), Ci proceeds as
for the previous decryption queries until having retrieved n and m. Then, she
computes h = Hs(m), picks an element x randomly from V and she outputs
(h, 1, x) as her prediction. This takes time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE.

Thus, in total Ci runs in time bounded by t+(qL+qE+qD)[tH+(2L+1)tE] ≤
t1, does at most 2qL modelling queries and at most qE + qD queries to FC and
qD to FC−1.

Bounding |Pr[E1i ] − Pr[E1i+1 ]| . Since Ci is (2qL, qE + qD, qD, t1)-adversary,
FC is a (2qL, qE + qD + 1, qD + 1, t1, ϵsU-L2)-unpredictable forkcipher, and Game
1i and Game 1i+1 are the same except if in the ith verification query k̃i0 = kj0
with j < i, then

|Pr[Ei
1]− Pr[E1i+1 ]| = Pr[correct guess] Pr[Ci wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible k0s, thus, if i = 1,
|V| = 0, so C1 can never win, while, if i > 1, we have guessed correctly with
probability at least 1/|V| = (i− 1)−1.

Bounding |Pr[E1]−Pr[E2]|. Summing all the previous probabilities, we obtain

|Pr[E10 ]− Pr[E1qD ]| =
qV∑

i=1

(i− 1)ϵsU-L2 =

qD−1∑

i=1

iϵsU-L2 =
qD(qD − 1)

2
ϵsU-L2.

Game 3. Let Game 3 be Game 2, where we abort if there exist two decryption

queries, the ith and the jth s.t. j < i and k̃i0 = ki0.

Games 20, ..., 2qD . Let Game 20 be Game 2 where we abort if in one of the first

i verification queries there exist two verification queries, the lth and the jth s.t.
j < l and ṽl = vj . Note that Game 20 is Game 2, while Game 2qD is Game 3.



Transition between Game 2i and 2i+1. Since Game 2i and Game 2i+1 are
the same except if in the ith verification query ṽi = vj for j < i, we only need
to bound the latter event.

To do this, we build a t1-adversary Di which works as follows: At the start
of the game Di obtains the key of the hash function, s, which she forwards to A.
Moreover, Di has a list V which is empty.

When A does a modelling encryption query on input (n,m; k′), Di simply
computes h = Hs(n,m), computes (τ, k0) = FCk′(h, b) and collects the leakage
leak = LFC(h, b; k

′). After having parsed m in N -bit blocks, m = (m1, . . . ,mℓ),
from k0, D

i computes y0 = Ek0(pB), c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ,
Di computes ki = FCki−1(pA), yi = FCki(pB), ci = π|mi|(yi) ⊕ mi. She sets
C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage (h, LFC(h, b; k

′)) to A.
This takes time tH+(2ℓ+1)tE ≤ tH+(2L+1)tE and one modeling query to FC.

When A does a modelling decryption query on input c, Di simply parses
c = (τ, C). Then she computes,k0 = FC−1

k′ (τ, 0, o) and collects the leakage
LFC−1(τ, 0, o; k′). After having parsed C in N -bit blocks, C = (c1, . . . , cℓ), from
k0, C

i computes y0 = Ek0
(pB), n = y0⊕c0, and, for every i = 1, . . . ℓ, Di computes

ki = FCki−1
(pA), yi = FCki

(pB), mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . ,mℓ).

After that, she computes h = Hs(n∥m), k̃0 = FCk′(h, 1), and collects the leakage
LFC(h, 1; k

′). She returns m if k0 = k̃0, otherwise ⊥ to A. Moreover, she re-
turns to A the leakage (h, k0, k̃0, LFC(h, 1; k

′), LFC−1(τ, 0, o; k′)). This takes time
tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and two modeling queries to FC.

When A does an encryption query on input (n,m), Di simply computes
h = Hs(m), calls her oracle FCLk on input (h, b), obtaining (τ, k0) and the
leakage LFC(h, b; k). After having parsed m in N -bit blocks, m = (m1, . . . ,mℓ),
from k0, D

i computes y0 = Ek0
(pB), c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ,

B computes ki = FCki−1(pA), yi = FCki(pB), ci = π|mi|(yi) ⊕ mi. She sets
C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage (h, LFC(h, b; k)) to A.
This takes time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and one oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), Di

simply parses c = (τ, C), with |τ | = N . Then, she queries her oracle FC−1 on
input (τ, 0, o), obtaining k0 and the leakage LFC−1(τ, 0, o; k). After having parsed
C in N -bit blocks, C = (c1, . . . , cℓ), from k0, D

i computes y0 = Ek0
(pB), n =

y0 ⊕ c0, and, for every i = 1, . . . ℓ, Di computes ki = FCki−1
(pA), yi = FCki

(pB),
mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . ,mℓ). After that, Di simply computes

h = Hs(n∥m), and she calls her oracle FC on input (h, 1) obtaining k̃0 and the
leakage LFC(h, 1; k). She returns m if k = k̃0, otherwise ⊥ to A. Moreover, she
returns to A the leakage (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). Finally, she adds
k̃0 to S. This takes time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and one query to FC
and one to FC−1.

When A outputs the ith decryption query on input (m, τ), Di simply picks
an element x randomly from S and she outputs (τ, o, x) as her prediction. This
takes no time. Thus, in total Di runs in time bounded by t+(qL+ qE + qD)[tH+
(2L+1)tE] ≤ t1, does at most 2qL modelling queries and at most qE+qD queries
to FC and qD to FC−1.



Bounding |Pr[E2i ] − Pr[E2i+1 ]| . Since Di is (2qL, qE + qD, qD, t1)-adversary,
FC is a (2qL, qE + qD, qD, t1, ϵsU-L2)-unpredictable forkcipher, and Game 2i and
Game 2i+1 are the same except if in the ith decryption query ki0 = k̃j0 with j < i,
then

|Pr[Ei
2]− Pr[E2i+1 ]| = Pr[correct guess] Pr[Di wins ] ≤ (i− 1)ϵsU-L2,

because we have randomly picked x from the set of possible k̃0s, thus, if i = 1,
|V| = 0, so D1 can never win, while, if i > 1, we have guessed correctly with
probability at least 1/|V| = (i− 1)−1.

Bounding |Pr[E2]−Pr[E3]|. Summing all the previous probabilities, we obtain

|Pr[E20 ]− Pr[E2qD ]| =
qD∑

i=1

(i− 1)ϵsU-L2 =

qD−1∑

i=1

iϵsU-L2 =
qD(qD − 1)

2
ϵsU-L2.

Games 4. Let Game 4 be Game 3 where we abort there is one fresh and valid
decryption query.

Games 31, ..., 3qD+1. Let Game 3i be Game 3 where we abort if one of the
first i decryption queries is fresh and valid. (We remind that we consider the

verification query induced by A output as the qV + 1th decryption query. Note
that Game 30 is Game 3, while Game 3qD+1 is Game 3.

Transition between Game 3i and 3i+1. Since Game 3i and Game 3i+1 are
the same except if the ith decryption query is fresh and valid, we only need to
bound the probability that the input of the ith decryption query, c, is fresh and
Deck(c) ̸=⊥.

To do this, we build a t1-adversary EEi which works as follows: At the start
of the game EEi obtains the key of the hash function, s, which she forwards to
A.

When A does a modelling encryption query on input (n,m; k′), EEi simply
computes h = Hs(n,m), computes (τ, k0) = FCk′(h, b) and collects the leakage
leak = LFC(h, b; k

′). After having parsed m in N -bit blocks, m = (m1, . . . ,mℓ),
from k0, EE

i computes y0 = Ek0
(pB), c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ,

EEi computes ki = FCki−1
(pA), yi = FCki

(pB), ci = π|mi|(yi) ⊕ mi. She sets
C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage (h, LFC(h, b; k

′)) to A.
This takes time tH+(2ℓ+1)tE ≤ tH+(2L+1)tE and one modeling query to FC.

When A does a modelling decryption query on input c, EEi simply parses
c = (τ, C). Then she computes,k0 = FC−1

k′ (τ, 0, o) and collects the leakage
LFC−1(τ, 0, o; k′). After having parsed C in N -bit blocks, C = (c1, . . . , cℓ), from
k0, C

i computes y0 = Ek0
(pB), n = y0⊕c0, and, for every i = 1, . . . ℓ, Di computes

ki = FCki−1
(pA), yi = FCki

(pB), mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . ,mℓ).

After that, she computes h = Hs(n∥m), k̃0 = FCk′(h, 1), and collects the leakage
LFC(h, 1; k

′). She returns m if k0 = k̃0, otherwise ⊥ to A. Moreover, she re-
turns to A the leakage (h, k0, k̃0, LFC(h, 1; k

′), LFC−1(τ, 0, o; k′)). This takes time
tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and two modeling queries to FC.

When A does an encryption query on input (n,m), EEi simply computes
h = Hs(m), calls her oracle FCLk on input (h, b), obtaining (τ, k0) and the
leakage LFC(h, b; k). After having parsed m in N -bit blocks, m = (m1, . . . ,mℓ),
from k0, EE

i computes y0 = Ek0(pB), c0 = y0 ⊕ n, and, for every i = 1, . . . ℓ,



EEi computes ki = FCki−1
(pA), yi = FCki

(pB), ci = π|mi|(yi) ⊕ mi. She sets
C = (c0, . . . , cℓ). She returns c = (τ, C) and the leakage (h, LFC(h, b; k)) to A.
This takes time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and one oracle query to FC.

When A does one of the first i − 1 verification queries on input (m, τ), EEi

simply parses c = (τ, C), with |τ | = N . Then, she queries her oracle FC−1 on
input (τ, 0, o), obtaining k0 and the leakage LFC−1(τ, 0, o; k). After having parsed
C in N -bit blocks, C = (c1, . . . , cℓ), from k0, EE

i computes y0 = Ek0
(pB), n =

y0 ⊕ c0, and, for every i = 1, . . . ℓ, B computes ki = FCki−1
(pA), yi = FCki

(pB),

mi = π|ci|(yi)⊕ ci. She sets m = (m1, . . . ,mℓ). After that, EEi simply computes

h = Hs(n∥m), and she calls her oracle FC on input (h, 1) obtaining k̃0 and the
leakage LFC(h, 1; k). She returns m if k = k̃0, otherwise ⊥ to A. Moreover, she
returns to A the leakage (h, k0, k̃0, LFC(h, 1; k), LFC−1(τ, 0, o; k)). This takes time
tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE and one query to FC and one to FC−1.

When A outputs the ith decryption query on input c, EEi simply behaves as
for a normal decryption query except that instead of calling her oracle on input
(h, 1), she outputs (h, 1, k0) as her prediction. This takes time tH + (2ℓ+ 1)tE ≤
tH + (2L+ 1)tE and one query to FC−1.

Thus, in total EEi runs in time bounded by t+(qL+ qE + qD +1)[tH+(2L+
1)tE] ≤ t1, does at most 2qL modelling queries and at most qE + qD queries to
FC and qD + 1 to FC−1.

Bounding |Pr[E3i ]−Pr[E3i+1 ]| and |Pr[E3]−Pr[E4]|. Since EEi is (2qL, qE +
qD, qD + 1, t1)-adversary, FC is a (2qL, qE + qD, qD + 1, t1, ϵsU-L2)-unpredictable
forkcipher, and Game 3i and Game 3i+1 are the same except if the ith decryption
query is the first fresh and valid verification query, then

|Pr[Ei
3]− Pr[E3i+1 ]| = Pr[B wins ] ≤ ϵsU-L2.

So, |Pr[E3]− Pr[E4]| ≤
qV +1∑

i=0

|Pr[E3i ]− Pr[E4i+1 ]| ≤ (qV + 1)ϵsU-L2

Concluding the proof. We can conclude the proof, since Pr[E4] = 0, since
none of the qV decryption query and the decryption query induced by the forgery
output of A can be fresh and valid. Thus,

Pr[E0] ≤ Pr[E4]+

3∑

i=0

|Pr[Ei]−Pr[Ei+1]| ≤ ϵCR+
2qV (qV − 1)

2
ϵsU-L2+(qV +1)ϵsU-L2 = ϵ.

B.5 Nonce-Misuse-Security of ForkDTE 1 and 2

Theorem 5. Let FC be a (qE , qD + 1, t1, ϵPRFP)-pseudo random forkcipher per-
mutation. Let H be a (t2, ϵCR)-collision resistant hash function. Let E be a (2, t3, ϵPRF)-
PRF Then ForkDTE1 (and ForkDTE2) is (qE , qD, t, ϵ)-nmAE-secure with

ϵ ≤ ϵPRFP + ϵCR + qE(L+ 1)ϵPRF + (qD + 1 + q2E + q2E(L+ 1)2)2−N ,

where ForkDTE1 encrypts at most Ln-bits message, t1 = t+ (qE + qD + 1)[tH +
(2L + 1)tE], t2 = t + (qE + qD + 1)[2tf + tH + (2L + 1)tE], t3 = t + (qE + qD +
1)[2tf+tH+(2L+1)tE] with tH the time needed to execute once the hash function
H, tE to execute E, and tf to randomly sample a random permutation.



ForkDTE1 and 2 have the same encryption algorithm and its verification algo-
rithm gives the same output (without leakage). Thus, a proof for the first is the
same as a proof of the second scheme.

Proof. We do not give the complete proof here. We only give the proof until we
have arrived to a step which is already covered in the original DTE paper [13].

We use a sequence of games Game 0, ... , Game 2. We denote with Ei the
event that the output of Game i is 1, that is, that the adversary wins.

Game 0. This is the nmAE game where the adversary A is playing against
ForkDTE1.

Game 1. It is Game 0, where we replace FCk with its ideal counterpart.

Transition between Game 0 and 1. Since Game 0 and Game 1 are the same
except for the use of FC, we need to build the probability an adversary distinguish
the use of FC to its ideal counterpart. To do this, we build a (qFC, qFC−1 , t1)-
adversary B which has access to two oracles which are either implemented with
FCk,FC

−1
k or their ideal counterparts. B works as follows: At the start of the game

B obtains the key of the hash function, s, which she forwards to A. Moreover, B
has a list S which is empty.

When A does an encryption query on input (n,m), B simply computes
h = Hs(n∥m), and calls her oracle on input (h, b) obtaining (τ, k0). From
k0, B computes y0 = Ek0

(pB), and c0 = y0 ⊕ n. Then, she parses m in n-bit
blocks, m1, . . . ,mℓ. After that, for all i = 1, . . . , ℓ, B computes ki = Eki−1

(pA),
yi = Eki

(pB), and ci = π|mi|(yi) ⊕mi. Finally, she returns A c = (τ, C), with
C = (c0, . . . , cℓ) and she adds c to S. This takes one oracle query to FCk and
time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE, since ℓ ≤ L.

When A does a decryption query on input c, she parses it in n-bits blocks,
τ, c0, c1, . . . ,mℓ. Then, B simply calls her inverse oracle on input (τ, 0, b), obtain-
ing (h̃, k0). From k0, B computes y0 = Ek0

(pB), and n = y0⊕c0. After that, for all
i = 1, . . . , ℓ, B computes ki = Eki−1

(pA), yi = Eki
(pB), and mi = π|mi|(yi)⊕ ci.

Finally, she computes h = Hs(n∥m) and checks if h
?
= h̃. If it is the case, B

returns A m = (m1, . . . ,mℓ); otherwise, ⊥. This takes one oracle query to FC−1
k

and time tH + (2ℓ+ 1)tE ≤ tH + (2L+ 1)tE, since ℓ ≤ L.
When A outputs its forgery c, she proceeds as for a normal decryption query

except that she does not return anything to A. Instead, if at the end of the
verification h = h̃ and c /∈ S, B outputs 1; otherwise 0.

Thus, in total B does qE queries to FC, qD + 1 to FC−1 and runs in time
bounded by t+ (qE + qD + 1)[tH + (2L+ 1)tE] = t1.

Bounding |Pr[E0] − Pr[E1]|. If the oracles B has access to are implemented
by (FCk,FC

−1
k ), B is correctly simulating Game 0 for A; otherwise, Game 1.

Since B is (qE , qD+1, t1)-adversary, and FC is a (qE , qD+1, t1, ϵCR)-PRFP secure
forkcipher, then

|Pr[E0]− Pr[E1]| = |Pr[1← BFC,FC−1

]− Pr[1← Bf,f−1

]| ≤ ϵPRFP.
Game 2

It is Game 2, where we replace the second permutation f1, with f ′1 = f1 ◦ f0.
Since f1 is a random permutation, it is impossible to distinguish f ′1 from, f1. Now,
we are exactly in the situation for DTE2 after we have replaced the tweakable
blockcipher with a random permutation.



B.6 nAE-Security of ForkDTE 1 and 2

This follows from the fact that nonce-misuse security definition (Def. 15) implies
nAE-security (Def. 14) since the latter definition is the first with an additional
requirement: the adversary is not allowed to repeat the nonce n in different
encryption queries.

C Modifying ForkDTE to Accomodate Associated Data

To modify ForkDTE to accommodate associated data, it is enough to replace
h = Hs(n∥m), with h = Hs(n, a,m). We need to be careful (and not to use
directly h = Hs(n∥a∥m) because it would be easy to find “forgeries” (for example
using a = (a0, a1),m = m0, and a′ = a0,m

′ = (a1,m0)).

D Algorithms

Algorithm 3 The PSV leakage-resilient iv-based (Def. 18 encryption
scheme [31]. E∗ is a strongly protected implementation of E.

– Gen:
• k

$← K
• pA, pB

$← {0, 1}N (pA, pB are public parameters)

– Enck(iv,m):
• Parse m = (m1,m2, . . . ,mℓ) in N -bit blocks
• k1 = E∗

k(iv) first ephemeral key k1 generation
• y1 = Ek1(pB) first pseudorandom block y1 generation
• c1 = y1 ⊕m1 first ciphertext block c1 generation
• For i = 2, . . . ℓ

∗ ki = Eki−1(pA) ith ephemeral key ki generation

∗ yi = Eki(pB) ith pseudorandom block yi generation

∗ ci = π|mi|(yi)⊕mi ith ciphertext block ci generation
• Return c = (c1, . . . , cℓ)

– Deck(iv, c):
• Parse c = (c1, c2, . . . , cℓ) in N -bit blocks
• k1 = E∗

k(iv)
• y1 = Ek1(pB)
• m1 = y1 ⊕ c1
• For i = 2, . . . ℓ

∗ ki = Eki−1(pA)
∗ yi = Eki(pB)
∗ mi = π|ci|(yi)⊕ ci

• Return m = (m1, . . . ,mℓ)

E Additional figures



Algorithm 4 ForkTMAC, a sUF-L2-secure MAC based on a forkcipher.

We use a hash function H whose output is 2n-bit long.
– Gen:
• k

$← K
• s

$← HK (s is a public parameter)

– Mack(m):
• h = Hs(m) // digest
• Parse h in n -bit blocks (h = h1∥h2)
• τ = FCh2

k (h1, 0) // tag
• Return τ

– Vrfyk(m, τ):
• h = Hs(m)
• Parse h in n -bit blocks (h = h1∥h2)
• v = FCh2

k (h1, 1)

• ṽ = FC−1,h2
k (τ, 0, o)

• If v = ṽ Return ⊤, Else Return ⊥

Algorithm 5 HBC2 [14], a sUF-L2 MAC.

We use a hash function H whose output is n-bit long, and a BC E : K×{0, 1}n → {0, 1}n
– Gen:
• k

$← K
• s

$← HK (s is a public parameter)

– Mack(m):
• h = Hs(m) // digest
• τ = Ek(h) // tag
• Return τ

– Vrfyk(m, τ):
• h = Hs(m)
• h̃ = E−1

k (τ)
• If h = h̃ Return ⊤, Else Return ⊥



Algorithm 6 HTBC [9], a sUF-L2 MAC.

We use a hash function H whose output is 2n-bit long, and a TBC E : K × {0, 1}n ×
{0, 1}n → {0, 1}n
– Gen:
• k

$← K
• s

$← HK (s is a public parameter)

– Mack(m):
• h = Hs(m) // digest
• Parse h in n -bit blocks (h = h1∥h2)
• τ = Eh2

k (h1) // tag
• Return τ

– Vrfyk(m, τ):
• h = Hs(m)
• Parse h in n -bit blocks (h = h1∥h2)
• h̃1 = E−1,h2

k (τ)
• If h1 = h̃1 Return ⊤, Else Return ⊥
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Fig. 5. The tag-generation of ForkMAC - Alg. 1.
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Fig. 6. The encryption scheme of DTE2 [14] - Alg. 2. From k0 we have PSV [31].



The Add, and Fresh algorithms for the sU-L2 experiment.

Algorithm Add((x, sel, y), C):
If sel = 0

If (x, ·, ·) ∈ C
If (x, gu, y1) ∈ C

Return C ← (C \ {(x, gu, y1)}) ∪ {(x, y, y1)}
Else Return C

If (·, y, ·) ∈ C
If (gu, y, y1) ∈ C

Return C ← (C \ {(gu, y, y1)}) ∪ {(x, y, y1)}
Else Return C

Else Return C ← C ∪ {(x, y, gu)}
If sel = 1

If (x, ·, ·) ∈ C
If (x, y0, gu) ∈ C

Return C ← (C \ {(x, y0, gu)}) ∪ {(x, y0, y)}
Else Return C

Else If (·, ·, y) ∈ C
If (gu, y0, y) ∈ C

Return C ← (C \ {(gu, y0, y)}) ∪ {(x, y0, y)}
Else Return C

Else Return C ← C ∪ {(x, gu, y)}
If sel = b

y = (y0, y1)
If (x, ·, ·) ∈ C

Return C ← (C \ {(x, ·, ·)}) ∪ {(x, y0, y1)}
Else If (·, y0, ·) ∈ C

Return C ← (C \ {(·, y0, ·)}) ∪ {(x, y0, y1)}
Else Return C ← C ∪ {(x, y0, y1)}

Algorithm Fresh((x, sel, z), C):
If sel = 0

If (x, z, ·) ∈ C
Return 0

If sel = 1
If (x, ·, z) ∈ C

Return 0
If sel = o

If (·, x, z) ∈ C
Return 0

Return 1

Table 5. The Add, and Fresh algorithms for the strong unpredictability with
leakage in evaluation and inversion experiment (Tab. 2).



The AddI algorithm for the sU-L2 experiment.

Algorithm AddI((x, sel, sel′, y), C):
If sel = 0 If sel = 1

If sel′ = i If sel′ = i
If (·, x, ·) ∈ C If (·, ·, x) ∈ C

If (gu, x, y1) ∈ C If (gu, y0, x) ∈ C
C ← C \ {(gu, x, y1)} C ← C \ {(gu, y0, x)}
Return C ← C ∪ {(y, x, y1)} Return C ← C ∪ {(y, y0, x)}

Else Return C Else Return C
If (y, ·, ·) ∈ C If (y, ·, ·) ∈ C

If (y, gu, y1) ∈ C If (y, y0, gu) ∈ C
C ← C \ {(y, gu, y1)} C ← C \ {(y, y0, gu)}
Return C ← C ∪ {(y, x, y1)} Return C ← C ∪ {(y, y0, x)}

Else Return C Else Return C
Else Return C ← C ∪ {(y, x, gu)} Else Return C ← C ∪ {(y, gu, x)}

If sel′ = o If sel′ = o
If (·, x, ·) ∈ C If (·, ·, x) ∈ C

If (z, x, gu) ∈ C If (z, gu, x) ∈ C
C ← C \ {(z, x, gu)} C ← C \ {(z, gu, x)}
Return C ← C ∪ {(z, x, y)} Return C ← C ∪ {(z, y, x)}

Else Return C Else Return C
If (·, ·, y) ∈ C If (·, y, ·) ∈ C

If (z, gu, y) ∈ C If (z, y, gu) ∈ C
C ← C \ {(z, gu, y)} C ← C \ {(z, y, gu)}
Return C ← C ∪ {(z, x, y)} Return C ← C ∪ {(z, y, x)}

Else Return C Else Return C
Else Return C ← C ∪ {(gu, x, y)} Else Return C ← C ∪ {(gu, y, x)}

If sel = b If sel = b
y = (z, y1) y = (z, y0)
If (z, ·, ·) ∈ C If (z, ·, ·) ∈ C
C ← C \ {(z, ·, ·)} C ← C \ {(z, ·, ·)}
Return C ← C ∪ {(z, x, y1)} Return C ← C ∪ {(z, y0, y)}

If (·, x, ·) ∈ C If (·, ·, x) ∈ C
C ← C \ {(·, x, ·)} Return C ← C \ {(·, ·, x)}
Return C ← C ∪ {(z, x, y1)} Return C ← C ∪ {(z, y0, x)}

Else Return C ← C ∪ {(z, x, y1)} Else Return C ← C ∪ {(z, y0, x)}
Table 6. The AddI algorithm for the strong unpredictability with leakage in
evaluation and inversion experiment (Tab. 2).
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Fig. 7. The decryption of ForkDTE1 - Alg. 2.



Algorithm 7 The ForkDTE1, ForkDTE2,where we have replaced the PSV en-
cryption with the encryption of FEDT [18]. E is a leak-free forkcipher and FC is
a forkcipher.

– Gen:

• k
$← K DTE 2 ForkDTE1 and 2 ForkDTE1 ForkDTE2

• s
$← HK

• pA, pB
$← {0, 1}N (s, pA, pB are public parameters)

– Enck(n,m):
• h = Hs(n∥m) digest

• τ = E0
k(h) tag

• k0 = E1
k(τ) generate the first ephemeral key

• (τ, k0) = FCk(h, b) tag and generate the first ephemeral key

• Parse m = (m1,m2, . . . ,mℓ) in N -bit blocks ...and encrypt
• (k1, k2) = Ek0(0

n, b)
• For i = 3, 5, 7, . . . , 2l − 1 create a tree of random value

∗ a = (i− 1)/2
∗ (ki, ki+1) = Eka(0

n, b)
• c0 = kl−1 ⊕ n encrypt the nonce
• For i = 1, . . . l encrypt the message

∗ ci = π|mi|(kl−1+i)⊕mi

• C = (c0, c1, . . . , cℓ)
• Return c = (τ, C)

– Deck(c):
• Parse c = (τ, C) with |τ | = N
• Parse C = (c0, c1, c2, . . . , cℓ) in N -bit blocks

• k0 = E−1,1
k (τ) Recovering the first ephemeral key

• (h̃, k0) = FC−1
k (τ, 0, b) Recovering the first ephemeral key and check value

• k0 = FC−1
k (τ, 0, o) Recovering the first ephemeral key

• (k1, k2) = Ek0(0
n, b)

• For i = 3, 5, 7, . . . , 2l − 1
∗ a = (i− 1)/2
∗ (ki, ki+1) = Eka(0

n, b)
• n = kl−1 ⊕ c0
• For i = 1, . . . l

∗ mi = π|ci|(kl−1+i)⊕ ci
• (n,m) = (n, (m1, ...,mℓ))
• h = Hs(n∥m)

• h̃ = FC−1,0
k (τ) check value

• If h = h̃ Return m; Else Return ⊥

• If h = h̃ Return m; Else Return ⊥

• k̃0 = FCk(h, 1) check value

• If k0 = k̃0 Return m; Else Return ⊥ check value
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Fig. 8. The decryption of ForkDTE2 - Alg. 2.
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