
Leakage-Resilience of Circuit Garbling

Ruiyang Li12, Yiteng Sun12, Chun Guo12, François-Xavier Standaert3,
Weijia Wang12, and Xiao Wang4

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong,
266237, China

2 Key Laboratory of Cryptologic Technology and Information Security of Ministry of
Education, Shandong University, Qingdao, Shandong, 266237, China

{ruiyang.li,sunyiteng}@mail.sdu.edu.cn, {chun.guo,wjwang}@sdu.edu.cn
3 ICTEAM/ELEN/Crypto Group, UCL, Louvain-la-Neuve, Belgium

fstandae@uclouvain.be
4 Northwestern University, Evanston, USA

wangxiao@northwestern.edu

Abstract. Due to the ubiquitous requirements and performance leap
in the past decade, it has become feasible to execute garbling and se-
cure computations in settings sensitive to side-channel attacks, including
smartphones, IoTs and dedicated hardwares, and the possibilities have
been demonstrated by recent works. To maintain security in the presence
of a moderate amount of leaked information about internal secrets, we
investigate leakage-resilient garbling. We augment the classical privacy,
obliviousness and authenticity notions with leakages of the garbling func-
tion, and define their leakage-resilience analogues. We examine popular
garbling schemes and unveil additional side-channel weaknesses due to
wire label reuse and XOR leakages. We then incorporate the idea of label
refreshing into the GLNP garbling scheme of Gueron et al. and propose
a variant GLNPLR that provably satisfies our leakage-resilience defini-
tions. Performance comparison indicates that GLNPLR is 60X (using
AES-NI) or 5X (without AES-NI) faster than the HalfGates garbling
with second order side-channel masking, for garbling AES circuit when
the bandwidth is 2Gbps.

1 Introduction

Garbled circuits (GCs). The idea of garbled circuits (GCs) was proposed by Yao
for constant-round secure two-party computation [44]. Yao’s protocol was proven
secure by Lindell and Pinkas [32]. Though, it was Bellare et al. [4] that firstly
formalized garbling schemes as a sort of cryptographic primitive. Concretely, a
garbling scheme G = (Garble, Encode,Eval,Decode) mainly consists of four (ran-
domized) algorithms. The garbling algorithm (F, e, d)← Garble(f) transforms a
function f : {0, 1}n → {0, 1}m into a garbled circuit F and a pair of associated
input and output tables e and d. The encoding function X := Encode(e, x) uses
e to turn an initial input x ∈ {0, 1}n into a garbled input X. The evaluating

algorithm Y := Eval(F,X) uses F to map the garbled input X to the corre-
sponding garbled output Y . Finally, the decoding function y := Decode(d, Y)
uses d to translate Y into the function output y ∈ {0, 1}m, which must coincide
with f(x). Informally, this probabilistically factors f into d ◦ F ◦ e.

Bellare et al. [4] formalized security of garbling schemes as privacy, oblivi-
ousness and authenticity, and constructed provably secure schemes from blockci-
phers. Subsequently, spurred by initial implementations demonstrating the prac-
ticality [34,40,22], circuit garbling has received a considerable amount of atten-
tion and improvements, including the point-and-permute technique [37], garbled
row reduction [37], Free-XOR [30], fleXOR [28], HalfGates garbling [46] and
its improvements [18,42,20], and optimizations using pipelined AES-NI instruc-
tions [3,17]. These have brought in significant improvements in computational
and communication costs as well as concrete security.

Side-channel attacks on GC. Due to both requirements and the various advances
in the past decade, it has become feasible to execute garbling and secure com-
putation on “low-performance” platforms such as advanced Systems-On-a Chip
(SoCs), smartphones [9,1,24], automotive, and even IoTs [1] and dedicated hard-
wares. Such hardware devices are susceptible to side-channel attacks (SCA),
which was not reflected in their classical security models. In addition, using ad-
vanced techniques such as [33], garbling implementations using AES-NI in Intel
SGX can be victims of SCAs as well.

Concretely, every time a device executes an operation over its internal secrets
(a cryptographic key, or a crucial state), it would produce some leakages (in the
form of certain physically measurable quantities) about these secrets. SCAs col-
lect and analyze such leakages to extract these secrets. Typical leakages include
timing, power consumption and electromagnetic radiation measurements. SCAs
can be mounted in two main flavors which, in the context of power consump-
tion, are called Simple Power Analysis (SPA) and Differential Power Analysis
(DPA) [35]. In an SPA, an attacker takes advantage of the leakages resulting
from a few (typically one or two) inputs of the operation. A DPA, on the other
hand, exploits the leakages resulting from multiple inputs (typically hundreds,
thousands or even more), which all provide new information about the same
internal secret in the device, reducing the computational secrecy of this state
at a rate that is exponential in the number of distinct inputs. We will use the
term SPA-type, resp. DPA-type attacks, to refer to all SCAs using a few input
leakages, resp. multiple input leakages.

Standard cryptographic constructions are typically susceptible to DPA-type
attacks. Regarding garbling, a large proposition of existing constructions em-
ployed the Free-XOR optimization [29]. Roughly, it requires Garble to set a
global secret offset ∆ and assign a random label w0 to each wire representing
garbled wire value 0 (or FALSE), and then w1 = w0⊕∆ represents garbled wire
value 1 (or TRUE). This enables computing XOR gates directly in Eval. How-
ever, using ∆ for multiple wire labels exactly fulfills the condition of mounting
DPA-type attacks, and Levi and Hazay (LH) [31] have leveraged this to mount

2

a practical attack recovering ∆. In all, designing side-channel secure garbling
schemes has become an important question.
Leakage-resilience. Traditionally, the protection against SCAs is achieved by ap-
plying implementation-level techniques to the cryptographic primitive to limit
the leakages as much as possible. One of the most popular techniques is mask-
ing [10], in which the internal state of the device is secret-shared into a number
of pieces, which are then used for the computation. The strong protection of a
cryptographic primitive (against DPA-type attacks) usually decreases the stan-
dard performance metrics of implementations by orders of magnitude compared
to non-protected ones [15,16].

Another approach, initiated by Dziembowski and Pietrzak [14], is to design
leakage-resilient constructions. Such constructions, which often come with some
computational overheads in the black-box setting, aim at substantially reducing
the possibility of mounting DPA-type attacks. A classical ingredient is to use
some form of key evolving [25,26] or re-keying [14,45] to ensure that each ex-
ecution of an underlying primitive (e.g., a blockcipher) leaks about a different
secret, hence effectively leaving the adversary with the possibility of SPA-type
attacks only. In this way, it will be tolerated that the underlying implementa-
tions continuously leak a certain amount of information to the adversary every
time they are used, hence requiring very limited protections, or even no specific
protection at all depending on the platform (we refer to [8,7] for detailed discus-
sions). This approach brings in two benefits. First, as will be demonstrated in our
experiments, it leads to more efficient implementations for a given level of side-
channel security. Second, the security reductions that come with the definition
of leakage-resilient schemes clarify requirements on the specific blocks to imple-
ment. This considerably simplifies the task of designers and security evaluation
laboratories. Therefore, this approach has spurred a plenty of works on stream
ciphers [39,45], signatures [25], MACs [36,38] and encryption schemes [26,38,2],
and has been employed by several submissions [6,13] to NIST standardization.

1.1 Our contributions

Motivated by the above discussion, we initiate leakage-resilience of circuit gar-
bling schemes, aiming at formal definitions and much more efficient solutions.
Leakage-resilience notions for garbling. Consider semi-honest adversaries.
Recall that in the classical setting, the adversary can corrupt the garbler or
evaluator, strictly follow the instructions of the protocol but are still curious to
learn information of other inputs from the transactions. In our leakage setting,
besides corrupting the evaluator, the adversary can also measure the side-channel
leakages of the garbler procedure Garble. But it is completely passive and does
not affect the evaluator’s computation or communicated data. On the other
hand, we do not consider leakages of Encode and Decode, because they only
involve simple mappings.

With the above in mind, we augment the classical security notions with leak-
ages of Garble. Considering executing Garble(f)→ (F, e, d, leak) and Encode(e, x)→

3

X, where leak is the side-channel leakage of Garble(f). Our notion leakage-
resilient privacy requires the resulted 4-tuple (F,X, d, leak) does not reveal any
information about x that cannot be learned directly from f(x), while our notion
leakage-resilient obliviousness requires the triple (F,X, leak) given by Garble(f)→
(F, e, d, leak) and Encode(e, x) → X does not reveal any information about x.
We formalize them by requiring a simulator S(f, f(x)), resp. S(f), that outputs
an indistinguishable 4-tuple (F,X, d, leak), resp. triple (F,X, leak). In this way,
schemes satisfying our definitions allow secure composition in the presence of
Garble leakages (which will be further justified by our application to Yao’s SFE
protocol [44]).

Finally, leakage-resilient authenticity requires that (F,X, leak) from Garble(f)→
(F, e, d, leak) and Encode(e, x) → X does not help computing a garbled output
Ỹ with Decode(d, Ỹ) ̸= f(x).
Discussion: LH, and evaluation leakages. By allowing to corrupt the evaluator
and get all wire labels, security in our model implies security against LH’s at-
tack [31] (which did not consider corrupting evaluator). Furthermore, in our
model, there are new SCAs using leakages of the XOR operations: please see our
discussion below.

Our security definitions and subsequent constructions only consider leakages
of the Garble algorithm. This is a relevant first step, since it has given rise to much
more efficient Garble implementations in SCA sensitive scenarios (please see our
performance report below). In addition, note that LH also focused on Garble [31],
and a scheme satisfying our security definition would resist their attack. Yet, we
admit the value and challenge in leakage-resilient Eval (see Appendix A) and
leave it as an interesting open problem.
Examining popular schemes. Due to the attack in [31], none of the existing
garbling schemes using Free-XOR is leakage-resilient. We then make a natural
step and examine leakage security of popular “non-free-XOR” garbling schemes,
i.e., those did not use the Free-XOR optimization. These include BHR [4], GRR3
and GLNP [17]. As mentioned, we identified two common side-channel weak-
nesses and excluded their possibilities of leakage-resilience.
1. DPA-type attacks due to label reuse. In a classical “non-free-XOR” garbling,
the Garble algorithm typically assigns two independent and (pseudo)-random la-
bels w0 and w1 to each wire representing garbled wire values 0 and 1. This
seems to exclude common secrets. However, it depends on a generalized form of
fan-out value of the circuit: in the to-be-garbled circuit, if a wire is connected to
the inputs of multiple gates, then during garbling these gates, the Garble algo-
rithm would (re)use the label of this wire to invoke the underlying blockcipher
E multiple times. This enables another standard DPA-type attack.

For example, consider the function fseq(α, γ1, ..., γℓ) = (α⊕γ1, α⊕γ2, ..., α⊕
γℓ) producing a sequence from an initial value α, which is used in, e.g., [19]. In
its circuit, the wire for each input bit of α is input to ℓ XOR gates, and the corre-
sponding (secret) wire labels are used in ℓ distinct XOR garbling processes. We
exhibit a concrete DPA-type attack in garbling fseq with the GLNP scheme [17].
We also serve more circuits with high fan-out in Sect. 4.1.

4

We stress that the reuse of wire labels (for high fan-out circuits) is common
in virtually all garbling schemes, including Yao, BHR [4], GRR3, etc., giving
rise to similar DPA-type attacks. To deploy garbling in SCA sensitive scenarios,
this sort of DPA has to be eliminated by either side-channel protections or label
refreshing. The latter will be used in our proposal GLNPLR.
2. XOR leaks wire labels. In virtually all “non-free-XOR” garbling schemes, if
the XOR computations in their GbAND procedures (i.e., the procedures to garble
AND gates) leak non-trivial information, then an SCA adversary corrupting the
evaluator could recover some unknown wire labels.

Briefly speaking, in “non-free-XOR” schemes, the GbAND procedure consists
of XORing the output wire labels w0

c and w1
c with some other internal secrets.

Since the truth table of AND is not uniform, the label w0
c is involved in more

XORs. Therefore, if the leakages allow the SCA adversary to distinguish XORing
with w0

c from XORing with w1
c , then it could collect XOR leakages for w0

c as
“templates”. Now, by corrupting the evaluator, the SCA adversary obtains wvc

c

with vc ∈ {0, 1} unknown. By comparing wvc
c with the above ”templates”, the

unknown vc can be determined.
We serve a complete discussion on GLNP [17]. Due to using point-and-

permute technique, we found two other similar SCA weaknesses in GLNP.GbAND.
We extend the discussion to BHR [4] and another GbAND design of [17] in Ap-
pendix B. These observations resemble the well-known fact that XOR leakages
(may) break semantic security of encryption [38]. However, our finding here is
far less trivial.
A leakage-resilient garbling scheme. We then investigate constructing leakage-
resilient garbling schemes using a blockcipher E. We were unable to find con-
structions with Free-XOR optimizations. Therefore, we seek to improve GLNP [17],
the state-of-the-art “non-free-XOR” scheme, and give the first construction GLNPLR
that provably achieves our definitions of leakage-resilience.

To garble AND and XOR gates, our procedures GbXOR and GbAND gener-
ally follow the ideas of GLNP [17]. Our novelty mainly lies in counteracting
the aforementioned weakness due to large fan-out. For this, every time our
Garble algorithm assigned labels w0

c and w1
c to wire c (this happens during

initializing labels to input wires or assigning labels to gate output wires), it
counts the number ℓc of gate input wires connected to wire c (these are called
sub-wires of wire c) and assigns ℓc independent pairs of (pseudo)random la-
bels (w0

i[1], w
1
i[1]), ..., (w

0
i[ℓc]

, w1
i[ℓc]

) to them. In this way, the associated sub-wires
are still using independent labels, excluding the mentioned DPA-type attacks.
This idea of refreshing internal secrets is classical in leakage-resilient cryptog-
raphy [14,39,45,38,8]. To avoid SCAs, the labels (w0

i[1], w
1
i[1]), ..., (w

0
i[ℓc]

, w1
i[ℓc]

)

are generated using a blockcipher-based leakage-resilient PRG of Yu et al. [45]
(denoted GSL), and we refer to Sect. 5 for technical details.

To prove security, we model leakages as PPT functions on the secret wire
labels. To limit the amount of leaked information, we follow Yu et al. [45,8]
and adopt the assumption of hard-to-invert leakages in the ideal cipher model
(i.e., we model E as a public randomly picked blockcipher). To our knowledge,

5

leakage-resilient constructions that do not rely on this combination of models
are far less efficient. We additionally remark that hard-to-invert leakages appear
to be both theoretically minimal and practically measurable, which is essential
for real-world deployments. Moreover, since we did not impose any apriori de-
termined leakage bound, our assumption fits into the continuous leakage model
that reflects actual side-channel attacks.

Regarding the XOR operations, we follow Pereira et al. [38,8] and show that
the leakage security of GLNP reduces to the leakage security of the XOR oper-
ations (the advantage of which may not be negligible). By this, the designer is
guaranteed that the security of the full construction reduces to the security of
some basic building blocks, including the blockcipher and the XORs (whatever
security he is able to achieve). With these models, we formally prove security of
GLNPLR w.r.t. our definitions.
Performance comparison. Since GLNPLR aims for side-channel security, we
compare with masked classical schemes. The plain implementation (without ex-
tra protections) of GLNPLR’s Garble procedure has been proven side-channel
secure under plausible leakage assumptions (see Sect. 5.3–5.6). We thus pro-
vide two “plain” AES-based GLNPLR implementations: one follows [17] and
uses pipelined AES-NI, and the other uses the C implementation of AES from
the OpenSSL library [43]. We choose HalfGates as the benchmark of classical
schemes, and we provide an implementation using the second-order marked AES
from [27] (built upon [41,12,47,11]). As long as the garbled circuit has 10% AND
gates and bandwidth exceeds 300Mbps, GLNPLR is 2 (without AES-NI) to sev-
eral hundred (with AES-NI) faster than the masked HalfGates.
Application. To show the usefulness of our formalism, we demonstrate an appli-
cation to secure function evaluation (SFE). Since such protocols (as well as other
garbling-based systems) are usually built upon multiple building blocks that may
leak, we are only able to formally prove that there are no SCA weaknesses due to
garbling any more. For this, we define the (weaker form of) leakage-resilience of
SFE as simulatability of the protocol outputs and the leakages of the Garble in-
vocations. We then show that Yao’s garbling-based SFE protocol [44] built upon
our leakage-resilient garbling scheme provably achieves our leakage-resilience
definition.
A summary. Our results are summarized as follows.

1. We define leakage-resilient extensions of the classical security notions. For
the simulation-based notions of privacy and obliviousness, we requires the
simulator to emulate the Garble leakages. For authenticity, we require a similar
level of unpredictability in the presence of Garble leakages.

2. We examine leakage security of popular garbling schemes, including BHR,
GRR3 and GLNP that do not employ Free-XOR optimization. We identify
two common side-channel weaknesses: (i) the reuse of secret wire labels during
garbling different gates enables a standard DPA-type attack. Therefore, none
of them is leakage-resilient. (ii) when the adversary corrupts the evaluator,
the XOR operations could leak information about wire labels.

6

3. By combining a leakage-resilient PRG of [45] with the GLNP garbling [17],
coupled with other tweaks, we propose the first scheme GLNPLR that prov-
ably achieves leakage-resilience. We implement GLNPLR and masked HalfGates
using [27], confirming that GLNPLR significantly outperforms masked HalfGates
for practical parameters.

4. We show that once built upon our leakage-resilient garbling scheme, Yao’s
Secure Function Evaluation (SFE) protocol is provably secure in the presence
of Garble leakages.

Practical interpretations. As discussed, all existing garbling admit some side-
channel weaknesses. Consequently, to deploy garbling schemes in SCA sensitive
scenarios, one has to either add heavy side-channel protections or employ our
solution GLNPLR. In the latter case, one still has to add SCA protections in
some modules, including: (i) the Eval algorithm; (ii) the XOR operations. In this
respect, the performance comparison has confirmed the advantage of GLNPLR
in SCA sensitive scenarios.
Related works and Open problems. Our work leakage-resilience of gar-
bling should be distinguished from existing elegant works of constructing leakage-
resilient crypto from garbling [23]. Regarding attacks, Hashemi et al. [21] recently
exhibited a timing attack against specific Garble implementations optimized for
SFE.

The most important yet challenging open problem is to build leakage-resilient
Eval algorithms from symmetric primitives. We briefly discuss the difficulty in
Appendix A. Equally important is to tailor the generic principles of the paper to
actual targets for garbled circuits that may be more noisy than small embedded
devices. Finally, natural future works also include designing leakage-resilient gar-
bling with better efficiency (in particular, restoring free XOR property), concrete
security or adaptive security.
Organization. We first serve necessary notations and definitions in Sect. 2. We
formalize leakage-resilient garbling in Sect. 3. We then discuss new side-channel
weaknesses in Sect. 4. Our scheme GLNPLR and its leakage-resilience proof are
given in Sect. 5, and experimental results on its performance are given in Sect.
6. We finally give the application to SFE in Sect. 7.

2 Preliminaries

A reader may skip this on first reading and refer back as necessary.
General notations. We denote x∥y by concatenation of x with y. We denote
by a (q, t)-bounded adversary a probabilistic algorithm with an oracle that can
make at most q queries to its oracle and run times at most t. If A is a finite
set, then y

$← A denotes selecting an element of A uniformly at random and
assigning it to y.
Code based game. Our security definitions are stated using code-based games [5].
A code-based game–see Fig. 1 for an example–consists of an Initialize proce-

7

dure, procedures that respond to adversary oracle queries, and a Finalize pro-
cedure. All procedures are optional. Procedure Initialize, if present, executes
first, and its output is input to the adversary, who may now invoke other proce-
dures. Each time A makes a query, the corresponding game procedure executes,
and what it returns, if anything, is the response to A’s query. The adversary’s
output is the input to Finalize, and the output of the latter, denoted GmA,
is called the output of the game. We let “GmA = c” represent the event that
this game output takes value c. In some cases, Initialize samples a random bit
b

$← {0, 1} for subsequent execution, and we denote by “GmA,β” the execution
with b = β.
Circuit: the classical formalism. Boolean circuits consist of AND and XOR
gates with fan-in 2 and NOT gates with fan-in 1. Following [4], such a circuit is
defined by a 4-tuple f = (ℓin, ℓout, g,Gates), where ℓin ≥ 2 denotes the number of
input wires, ℓout ≥ 1 is the number of output wires and g is the number of gates.
Such a circuit has ℓin+g wires numbered 1, ..., ℓin+g; we let Inputs = {1, · · · , ℓin}
and Outputs = {ℓin + g − ℓout + 1, . . . , ℓin + g}. There are g tuples of the form
(a, b, c,G) in Gates, where a, b, c ∈ {1, · · · , ℓin + g} represents a gate of type
G ∈ {XOR,AND,NOT} with input wires a, b and output wire c (if G = NOT
then b = ⊥).
Garbling schemes. Following [4,17], a garbling scheme consists of four algo-
rithms:

– Garble(f) → (F, e, d) is an algorithm that takes as input a description of a
boolean circuit f and returns a triple (F, e, d), where F represents a garbled
circuit, e represents input encoding information (i.e., all the labels on the
input wires) and d represents output decoding information (i.e., all the labels
on the output wires). Following [18], we focus on concrete security and do not
use explicit security parameters.

– Encode(e, x)→ X is a function that computes the garbled input X of an input
x according to the input encoding e.

– Eval(F,X)→ Y is a function that computes the garbled output Y of a garbled
input X under a garbled circuit F .

– Decode(Y, d) → y is a function that takes as input decoding information d
and garbled output Y and returns either the real output y of the circuit or ⊥.

Given (F, e, d) = Garble(f), correctness means Decode
(
d,Eval(F , Encode(e, x))

)
=

f(x) for any x ∈ {0, 1}n.
The classical security notions for GC include privacy, obliviousness, and au-

thenticity [4]:

– Privacy: the triple (F,X, d) does not reveal any information about x that
cannot be learned directly from f(x). More formally, there exists a simulator
S that receives input (f, f(x)) and outputs a simulated garbled circuit F with
garbled input X and decoding information d that is indistinguishable from
(F,X, d) generated using the real garbling functions (F, e, d)← Garble(f) and
X ← Encode(e, x). We refer to the experiment ExptG,SPrvSim in Fig. 1 (Top).

8

Game ExptG,S
PrvSim

procedure Initialize
b

$← {0, 1}
procedure Finalize(b′)

return (b′ = b)

procedure Main(f, x)
if b = 0 then

(F, e, d) := Garble(f)
X := Encode(e, x)

else
(F,X, d) := S(f, f(x))

return (F,X, d)

Game ExptG,S
ObvSim

procedure Initialize
b

$← {0, 1}
procedure Finalize(b′)

return (b′ = b)

procedure Main(f, x)
if b = 0 then

(F, e, d) := Garble(f)
X := Encode(e, x)

else (F,X) := S(f)
return (F,X)

Game ExptGAut
procedure Finalize(Y)

X̃ := Decode(d, Y)

if X̃ /∈ {⊥, f(x)} then
return TRUE

else return FALSE

procedure Main(f, x)
(F, e, d) := Garble(f)
X := Encode(e, x)
return (F,X)

Fig. 1: Experiments for defining the PrvSim, ObvSim and Aut security of a gar-
bling scheme G = (Garble,Encode,Decode,Eval).

– Obliviousness: the pair (F,X) does not reveal any information about x, and
this is also formalized via simulation [4]. Formally, there exists a simulator S
that receives input f and outputs a simulated garbled circuit F with garbled
input X that is indistinguishable from (F,X) generated using the real garbling
functions Garble(c) and Encode(e, x). We refer to the experiment ExptG,SObvSim

in Fig. 1 (Middle).
For xx ∈ {PrvSim,ObvSim}, the advantage AdvG,S

xx (A) is defined as AdvG,S
xx (A) =

2Pr
[
ExptG,Sxx = 1

]
− 1.

– Authenticity: given (F,X), it is difficult to produce a garbled output Ỹ that
when decoded provides a value that does not equal f(x) or abort. We refer to
ExptG,SAut in Fig. 1 (Bottom) and define AdvG

Aut(A) = Pr
[
ExptGAut = 1

]
.

Leaky implementations. A leaky implementation of an algorithm Algo is as-
sociated with a probabilistic leakage function LAlgo that captures the additional
information given by the implementation of Algo during its execution. The leak-
age functions will be parameters of relevant security definitions (e.g., see Sect. 3).
Upon each execution of Algo(x), the corresponding leakage is LAlgo(x, ι), where
ι is the internal randomness used during executing Algo(x) (when Algo is prob-
abilistic). The use of ι is mainly for the probabilistic Garble. Another approach
is to modify the syntax Garble(f) to Garble(f, ι) to make internal randomness

9

Game ExptG,S,LGarble
PrvSimL

procedure Initialize
b

$← {0, 1}
procedure Finalize(b′)

return (b′ = b)

procedure Main(f, x)
if b = 0 then

(F, e, d, leak) := LGarble(f)
X := Encode(e, x)

else
(F,X, d, leak) := S(f, f(x))

return (F,X, d, leak)

Game ExptG,S,LGarble
ObvSimL

procedure Initialize
b

$← {0, 1}
procedure Finalize(b′)

return (b′ = b)

procedure Main(f, x)
if b = 0 then

(F, e, d, leak) := LGarble(f)
X := Encode(e, x)

else (F,X, leak) := S(f)
return (F,X, leak)

Game ExptG,LGarble
AutL

procedure Finalize(Y)
X̃ := Decode(d, Y)

if X̃ /∈ {⊥, f(x)} then
return TRUE

else return FALSE

procedure Main(f, x)
(F, e, d, leak) := LGarble(f)
X := Encode(e, x)
return (F,X, leak)

Fig. 2: Experiments for defining the leakage-resilient PrvSimL, ObvSimL and AutL
security of a garbling scheme G = (Garble,Encode,Decode,Eval) with leaky im-
plementation Garble.

explicit, but this may cause difficulty in understanding and we thus eschewed.
To simplify notations, we define LAlgo(x) :=

(
Algo(x), LAlgo(x, ι)

)
for the output

of the leaky implementation of Algo.

3 Defining Leakage-Resilience of Garbling

In this section, we formalize the leakage-resilience of GC schemes (which are
natural extensions of the classical notions privacy, obliviousness, and authenticity
of [4] to the leakage setting).
Leakage-resilient privacy. Recall from Sect. 2 that the classical privacy no-
tion requires that the triple (F,X, d) given by (F, e, d) := Garble(f) and X :=
Encode(e, x) is indistinguishable from a simulator’s output. Since we concern
with leakages of Garble, the leaky extension naturally requires that both (F,X, d)
and the corresponding leakage LGarble(f, ι) can be simulated, where LGarble is an
added parameter denoting the leakage function of Garble and ι is the internal
randomness used during executing Garble(f) (see Sect. 2). Therefore, even with
the garbling leakages, the output does not reveal information about x.

To formalize, we define an experiment ExptG,S,LGarble

PrvSimL , where G is a garbling
scheme, and S is a simulator. The simulator receives input (f, f(x)) and outputs

10

a simulated circuit F with encoding and decoding information e, d, as well as the
simulated leakage that is indistinguishable from (F,X, d, leak) generated by the
leaky implementation Garble(f) (see Sect. 2) and Encode(e, x). The advantage
AdvG,S,LGarble

PrvSimL (A) of A is defined as

AdvG,S,LGarble

PrvSimL (A) = 2Pr
[
ExptG,S,LGarble

PrvSimL = 1
]
− 1.

Leakage-resilient obliviousness. Recall from Sect. 2 that the classical obliv-
iousness requires that the triple (F,X) given by (F, e, d) := Garble(f) and
X := Encode(e, x) is indistinguishable from the simulated. In a similar vein to
privacy, our leaky extension requires that both (F,X) and the garbling leakage
can be simulated. Concretely, we define an experiment ExptG,S,LGarble

ObvSimL , where G is
a garbled scheme and S is a simulator. The simulator receives f as its input and
outputs simulated F , simulated garbled input X of x and the simulated leakage
leak, such that the simulated (F,X, leak) is indistinguishable from those given
by LGarble(f) (see Sect. 2) and Encode(e, x). The advantage AdvG,S,LGarble

ObvSimL (A) is
defined as

AdvG,S,LGarble

ObvSimL (A) = 2Pr
[
ExptG,S,LGarble

ObvSimL = 1
]
− 1.

Leakage-resilient authenticity. Finally, leakage-resilient authenticity requires
that the garbling leakage does not help in producing the “valid” garbled out-
put Ỹ from (F,X). Formally, we introduce the experiment ExptG,LGarble

AutL in Fig. 2
(Bottom) and define the advantage AdvG,LGarble

AutL (A) = Pr
[
ExptG,LGarble

AutL = 1
]
.

Informally, a garbling scheme G is PrvSimL, resp. ObvSimL secure w.r.t the
leakage function LGarble, if for every efficient adversary A there exists an efficient
simulator S such that AdvG,S,LGarble

PrvSimL (A), resp. AdvG,S,LGarble

ObvSimL (A), is “sufficiently
small”. G is AutL secure w.r.t LGarble, if AdvG,LGarble

AutL is “sufficiently small” for every
efficient adversary A.

4 New Side-channel Weaknesses

As the Introduction mentions, Levi and Hazay [31] exhibited a concrete SCA
against Free-XOR garbling schemes. In this section, we exhibit additional weak-
nesses in the other schemes, including a DPA-type attack in virtually all existing
“non-free-XOR” schemes due to label reuse (in Sect. 4.1) and a weakness due to
XOR leakages in GbAND functions (in Sect. 4.2).

4.1 DPA-type attacks due to label reuse

As discussed in the Introduction, if the to-be-garbled circuit f has a high fan-out
(i.e., a wire connects to multiple gate inputs), then Garble(f) would (re)use the
label of this wire to invoke E many times, and this enables a standard DPA-type
attack. The function fseq(α, γ1, ..., γℓ) = (α⊕γ1, α⊕γ2, ..., α⊕γℓ), which is used

11

g1

g2

gℓ

......

1
2

3

ℓ+ 1

w0
1(w

1
1)

w0
2(w

0
2)

w0
1(w

1
1)

w0
3(w

1
3)

w0
1(w

1
1)

w0
ℓ+1(w

1
ℓ+1)

g1

g2

gℓ

......

1
2

3

ℓ+ 1

w0
1[1](w

1
1[1])

w0
2[1](w

0
2[1])

w0
1[2](w

1
1[2])

w0
3[1](w

1
3[1])

w0
1[ℓ](w

1
1[ℓ])

w0
ℓ+1[1](w

1
ℓ+1[1])

Fig. 3: Garbling fseq(α, γ1, ..., γℓ) = (α ⊕ γ1, ..., α ⊕ γℓ), α, γ1, ..., γℓ ∈ {0, 1}.
All the ℓ XOR gates have their first input wires connected with 1. (Left)
GLNP.Garble [17] assigns ℓ+1 pairs of labels (w0

i , w
1
i) to the ℓ+1 input wires, so

that (w0
1, w

1
1) is used in ℓ calls to GLNP.GbXOR and can be recovered via a DPA-

type attack. (Right) Our idea: our scheme GLNPLR view the ℓ gate input wires
as sub-wires of 1, and assign ℓ pairs of sub-labels (w0

1[1], w
1
1[1]), ..., (w

0
1[ℓ], w

1
1[ℓ]) for

the ℓ calls to GLNPLR.GbXOR to exclude the DPA.

in e.g., [19], to produce a sequence from an initial value α, is such a high fan-
out function. For concreteness, here we consider garbling fseq using the GLNP
scheme and exhibit the attack.

We provide a high-level description of GLNP.Garble and refer to Fig. 4 for
details. Roughly, GLNP.Garble begins by randomly choosing two n-bit strings
(labels) w0

i and w1
i and a bit πi for every input wire i. The garbled circuit is then

generated gate-by-gate in topological order. For each NOT gate in the circuit
with input wire a and output wire c (NOT gate only has one input wire and
we write b = ⊥), the garbler simply sets w0

c = w1
a, w1

c = w0
a and πc = πa. For

each XOR gate (resp. AND gate) in the circuit with input wires a, b and output
wire c, the garbler uses w0

a, w
1
a, w

0
b , w

0
a, πa, πb to compute the garbled table T

(resp. (T1, T2, T3)) as well as the labels w0
c , w

1
c . This is done using a complicated

procedure GbXOR or GbAND that is defined in Fig. 5. The garbled circuit consists
of all the garbled AND gates and garbled XOR gates (garbling NOT gate only
consists of three simple assignments, as shown in Fig. 4).

We now elaborate on the DPA against GLNP.Garble(fseq). For simplicity,
consider the case α, γ1, ..., γℓ ∈ {0, 1}. Assuming that α, γ1, ..., γℓ are input via
wires 1, 2, ..., ℓ + 1 respectively, and the XOR gate for α ⊕ γi is indexed i, as
illustrated in Fig. 3. Then, the execution of GLNP.Garble(fseq) will make calls to
GLNP.GbXOR(w0

1, w1
1, w

0
2, w

1
2, π1, π2), ...,GLNP.GbXOR(w0

1, w
1
1, w

0
ℓ+1, w

1
ℓ+1, π1, πℓ+1)

in turn. By design (see line 45 in Fig. 5), this induces ℓ calls to Ew0
1
(1∥π1),

..., Ew0
1
(ℓ∥π1) and ℓ calls Ew1

1
(1∥π1), ..., Ew1

1
(ℓ∥π1). The labels w0

1 and w1
1 can

thus be recovered via a standard DPA-type attack (as long as ℓ is large enough,
e.g., hundreds to thousands).

It is crucial to highlight that the vulnerability of this attack does not depend
on the details of the garbled scheme employed. The primary requirement for
this attack is that the garbled scheme utilizes the input wire labels in the AES
(or hash) encryption process. This usage provides the adversary A an opportu-

12

1: procedure Garble(f)
2: for i ∈ Inputs do
3: w0

i , w
1
i

$← {0, 1}n, πi
$← {0, 1}, e[i, 0] := w0

i ∥πi, e[i, 1] := w1
i ∥πi

4: g := 0
5: for (a, b, c,G) ∈ Gates do
6: g := g + 1
7: PInputs := (w0

a, w
1
a, w

0
b , w

1
b , πa, πb, g)

8: if G = XOR then
9: (w0

c , w
1
c , πc, F [g]) := GbXOR(PInputs)

10: else if G = AND then
11: (w0

c , w
1
c , πc, F [g]) := GbAND(PInputs)

12: else if G = NOT then
13: w0

c := w1
a, w1

c := w0
a, πc := πa

14: for j ∈ Outputs do
15: d[j, 0] := Ew0

j
(out∥πj), d[j, 1] := Ew1

j
(out∥πj)

16: return (F, e, d)

17: procedure Eval(F,X)
18: g := 0
19: for i ∈ Inputs do wi∥λi := X[i]

20: for (a[p], b[q], c, ℓc, G) ∈ Gates do
21: g := g + 1
22: if G = XOR then
23: T := F [g], λc := λa ⊕ λb

24: wc := Ewa(g∥λa)⊕ Ewb(g∥λb)⊕ λb · T
25: else if G = AND then
26: (T1, T2, T3) := F [g]
27: wc∥λc := T ⊕ Ewa(g∥λaλb)⊕ Ewb(g∥λaλb)
28: else if G = NOT then
29: wc := wa, λc := λa

30: for j ∈ Outputs do
31: Y [j] := Ewj (out∥λj)

32: return Y

Fig. 4: GLNP garbling [17]. Its Encode and Decode procedures are the same as
those in Fig. 6 (but are irrelevant to Sect. 4) and its GbAND and GbXOR are in
Fig. 5 .

nity to gather leakage data and potentially recover the labels associated with
a wire. Indeed, many garbled schemes, including notable examples such as the
Yao scheme, GRR2, and GRR3, necessitate the participation of the input label
in AES or hash function operations. Consequently, the attack described can be
applied to these schemes as well.

13

33: procedure GbAND(w0
a, w

1
a, w

0
b , w

1
b , πa, πb, g)

34: W0 := Ew
πa
a

(g∥00)⊕ Ew
πb
b
(g∥00)

35: if πa = πb = 1 then
36: w0

c
$← {0, 1}n, w1

c∥πc := W0

37: else
38: w0

c∥πc := W0, w1
c

$← {0, 1}n

39: W 0
c := w0

c∥πc, W 1
c := w1

c∥πc

40: T1 := Ew
πa
a

(g∥01)⊕ E
w

πb
b

(g∥01)⊕W
πa∧πb
c

41: T2 := E
w

πa
a

(g∥10)⊕ Ew
πb
b
(g∥10)⊕W

πa∧πb
c

42: T3 := E
w

πa
a

(g∥11)⊕ E
w

πb
b

(g∥11)⊕W
πa∧πb
c

43: return (w0
c , w

1
c , πc, (T1, T2, T3))

44: procedure GbXOR(w0
a, w

1
a, w

0
b , w

1
b , πa, πb, g)

45: w̃0
a := Ew0

a
(g∥πa)[1 · · ·n], w̃1

a := Ew1
a
(g∥πa)[1 · · ·n]

46: πc := πa ⊕ πb, ∆c := w̃0
a ⊕ w̃1

a

47: if πb = 0 then
48: w̃0

b := E0
wb

(g∥0)[1 · · ·n], w̃1
b := w̃1

b ⊕∆c

49: else
50: w̃1

b := E1
wb

(g∥0)[1 · · ·n], w̃0
b := w̃1

b ⊕∆c

51: T := E
w

πb
b

(g∥1)[1 · · ·n]⊕ w̃
πb
b

52: return (w0
c , w

1
c , πc, T)

Fig. 5: The procedure GbAND and GbXOR of GLNP garbling [17].

A natural idea to remedy this weakness is to generate new labels for the
connected gate input wires, as illustrated in Fig. 3 (Right). We refer to Sect. 5.1
and 5.2 for details.

Practical issues. The DPA-type attacks in this section rely on the existence of
high fan-out wires. This is common in popular MPC tasks, including (matrix)
multiplication, division, private set intersection, etc., and we list several examples
in Table 1 to illustrate. It can be seen many wires have fan-out exceeding 1000,
and there are thousands of wires with fan-out ≥ 200.

Although high fan-out wires do not account for a high proportion in these
circuits, the attack remains devastating: the recovery of two labels of any wire not
only breaks privacy in theory, but also helps deduce the other wire labels in the
circuit. Moreover, in many cases including Array Search, multiplication, division
and encryption, high fan-out wires are typically input wires. The compromise
of such wires thus recovers the circuit input, which is the searched element in
Array Search, the operator in multiplication/division and the key in encryption.
In summary, DPA-type attacks due to high fan-out circuits are common and
devastating.

14

Circuit Wires fan-out ≥ 200 fan-out ≥ 500 fan-out ≥ 1000

Multiplication 3140617 1649 1049 49
Division 4220908 1754 1304 554

Matrix multiplication 24954241 13185 8449 385
Exponential Modulus 41003946 7931 5981 2725

Private Set Intersection 50544545 52801 33601 1601
Longest-Common-Subsequence 36035250 8192 8192 0

Array Search 154661 32 32 32
Edit Distance 60762581 8192 8192 0

AES-CBC Encryption 29356000 1408 1408 1408
Table 1: Example circuits with high fan-out wires. The column “fan-out ≥ N”
indicates the number of wires with fan-out ≥ N in the corresponding circuit.
Multiplication and division operations are performed on 1024-bit data. Matrix
multiplication is performed on 128-bit data, and the matrix size is 8 × 8. The
base of the exponential modulus operation is 1024 bits, and the exponent is 3
bits. The set size in the private set intersection is 1024, and the data size is 32
bits. The array size in the array search is 1024, and the data size is 32 bits. The
length of the two sequences in the Longest-Common-Subsequence (LCS) is 1024,
and the data size in the sequence is 8 bits. The length of each sequence in the
edit distance is 1024, and the data size is 8 bits. AES-CBC Encryption refers
to the AES blockcipher in CBC mode, where the number of encrypted message
blocks is 1000.

4.2 Recovering labels using XOR leakages

Our second observation is a side-channel weakness in a series of garbling schemes
if the XOR computations in their GbAND procedures leak non-trivial informa-
tion. Again, we focus on GLNP [17] here—or its subprocedure GLNP.GbAND
(described in Fig. 4) which used the GRR3 technique with optimizations (we
will detail similar weaknesses in other schemes in Appendix B). Consider an
adversary A collecting computation leakages from an execution of GbAND(w0

a,
w1

a, w
0
b , w

1
b , πa, πb, g).

Following the semi-honest model of garbling, we assume that A corrupts
(or colludes with) the evaluator. This means A has all the values w1, ..., wn+g

computed during GLNP.Eval(F,X). By the design of GLNP, for every i ∈
{1, .., n + g}, it actually has wi = wvi

i for an unknown bit vi ∈ {0, 1}. Namely,
for every wire i A “knows” one of w0

i and w1
i , but it does not know which one it

has—and we say A breaks wire i if it determines vi (probably using the leakages).
With the above, consider an execution of GbAND(w0

a, w
1
a, w

0
b , w

1
b , πa, πb, g).

We found two issues as follows.

XOR leaks the result. First, at line 34, A would collect one leakage:

L⊕(S1, S2) : where S1 = Ewπa
a
(00) and S2 = Ew

πb
b
(00), (1)

15

where L⊕(a, b) is the leakage of a⊕ b by our convention (see Sect. 2).
Simplified case: XOR leaks 1 bit of result. First, consider the case where the leak-
ages leaked msb(W0) (S1⊕S2 = W0). In GLNP.GbAND, the value W0 computed
at line 34 fulfills W0[1 · · ·n] = wπa∧πb

c (this can be seen from the design). A com-
pares msb(W0) and msb(wvc

c): A guesses vc = 1 if msb(W0) ̸= msb(wvc
c), and

guess vc = 0 otherwise. This breaks wire c.
The main idea is that since W0[1 · · ·n] = wπa∧πb

c , msb(W0) ̸= msb(wvc
c)

necessarily implies πa∧πb ̸= vc. Since πa, πb
$← {0, 1} are independently sampled

in GLNP.Garble, Pr
[
πa ∧ πb = 0

]
= 3/4. Therefore, it likely holds vc = 1 in this

case. Similarly, it likely holds vc = πa ∧ πb = 0 in the other case. We present a
detailed analysis of the success probability in Appendix B.1.
General case. Generally, assume that A can determine if a given value equals
the result of an XOR operation S1 ⊕ S2, using the leakage of the XOR. More
formally, A could distinguish the pair

(
L⊕(S1, S2), S1⊕S2

)
from

(
L⊕(S1, S2), R

)
,

where S1 or S2 is an unknown secret and R is a random value independent from
S1 ⊕ S2. The above attack strategy easily extends to this general case.

XOR leaks the operand. Second, at line 5, A would collect three leakages:

L⊕(S1,W
πa∧π̄b
c), where S1 = Ewπa

a
(g∥01)⊕ Ew

πb
b
(g∥01),

L⊕(S2,W
π̄a∧πb
c), where S2 = Ewπa

a
(g∥10)⊕ Ew

πb
b
(g∥10),

L⊕(S3,W
π̄a∧π̄b
c), where S3 = Ewπa

a
(g∥11)⊕ Ew

πb
b
(g∥11).

Simplified case: XOR leaks 1 bit of operand. First, consider the case where the
three leakages leaked msb(Wπa∧π̄b

c),msb(W π̄a∧πb
c) and msb(W π̄a∧π̄b

c). A does
not know values Wπa∧πb

c , Wπa∧π̄b
c , W π̄a∧πb

c and W π̄a∧π̄b
c , but three of them are

identical and are likely distinct from the fourth (since the four values πi∧πj , πi∧
π̄j , π̄i ∧ πj and π̄i ∧ π̄j consist of three 0 and one 1).

When msb(W 0
c) ̸= msb(W 1

c) (the probability is ≈ 1/2), A observes one of
the follow two cases:

1. When πa∧π̄b = π̄a∧πb = π̄a∧π̄b,A observes msb (Wπa∧π̄b
c) = msb(W π̄a∧πb

c) =
msb(W π̄a∧π̄b

c). Then it necessarily be πa ∧ π̄b = ...π̄a ∧ π̄b = 0 and A has
msb(W 0

c). As discussed, A has the label wvc
c with vc ∈ {0, 1} by corrupting

the evaluator. By comparing msb(W 0
c) with msb(wvc

c), it could determine vc
and break wire c.

2. Otherwise, wlog assume πa ∧ π̄b ̸= π̄a ∧ πb = π̄a ∧ π̄b. Then, it necessarily
be πa ∧ π̄b = 1 and π̄a ∧ πb = π̄a ∧ π̄b = 0, and A observes msb(W 1

c) once
while msb(W 0

c) twice from the leakages. A could then determine msb(W 0
c)

and break the c-th wire as in the previous case.

We present a detailed analysis of the success probability in Appendix B.1.
General case. It can be seen that the above attack strategy easily extends to the
general case where A could distinguish L⊕(S,W

0
c) from L⊕(S

∗,W 1
c) (instead of

16

leaking 1 bit), where S and S∗ are arbitrary unknown secrets. Anyway, as long
as A can determine if πa∧ π̄b = π̄a∧πb = π̄a∧ π̄b or not, the same attack follows.
Discussion. In practice, leakages of uncareful XOR implementations do satisfy
our assumption. E.g., it is common that computing W0 := S1 ⊕ S2 leaks the
Hamming weight of W0, which enables distinguishing. Given the leakage trace
of a Garble execution, it requires non-trivial efforts to extract the above leakages
(but this may be feasible with the help of recent machine learning techniques,
and is an interesting future work). Importantly to us, provable security does
become vague without assumptions on XOR leakages, and this provides a valu-
able guidance by emphasizing caution on XORs in cryptographic engineering. In
Sect. 5, we will follow the approach of [38] to characterize the influence of XOR
leakages on the leakage security of the whole scheme.

4.3 The leakage of Permute bits

The permute bit is the secret value in garbled circuits and cannot be leaked.
Thus, if the operation of permute bits leaks the permute bit, the security will
be broken.

1. In GLNP.GbXOR, it computes πc = πa⊕πb. If this XOR leaks any bits πa, πb

and πc then A breaks the corresponding wire.
2. In GLNP.GbXOR, it computes πc = πa⊕πb. If this XOR leaks any bits πa, πb

and πc then A breaks the corresponding wire.

Discussion. At a theoretical level, it is possible to extract information about the
permuted bits using leakage. However, in practice, permute bits typically involve
only 1-bit XOR or AND operations, making it difficult to extract information
about the permuted bits using this leakage. In our subsequent proof, we assume
these operations are strongly protected and leak-free.

5 Improved GLNP variant and Its Leakage-resilience

We first introduce a refined model of circuits with explicit sub-wires in Sect. 5.1.
With these additional preliminaries, we describe our improved GLNP variant
GLNPLR in Sect. 5.2. We then present our leakage model in Sect. 5.3 and
leakage assumptions regarding blockcipher evaluations and XORs in Sect. 5.4
and 5.5 resp. After these, we prove leakage-resilience of GLNPLR in Sect. 5.6.

5.1 General settings

Circuit with explicit sub-wires. As discussed in Sect. 4.1, we need to assign
more than one label for the high fan-out setting. The fan-out information is
reflected by the topological structure of a circuit, but we need to refine the
classical circuit model in Sect. 2 to make it explicit. To this end, when a wire
i is connected to ℓ gate input wires, we call the latter sub-wires of wire i, and

17

we number them i[1], ..., i[ℓ] (as shown in Fig. 3 Right). With this, we refine
our circuit model as a tuple f = (ℓin, ℓout, g1, g2, g3,Gates,Wires) consisting of
ℓin ≥ 2 input wires, ℓout ≥ 1 output wires, g1 AND gates, g2 XOR gates and g3
NOT gates. Let g = g1+g2+g3. It thus has ℓin+g wires numbered 1, ..., ℓin+g.
We let Inputs = {1, . . . , ℓin} and Outputs = {ℓin+g−ℓout+1, . . . , ℓin+g} denoting
the sets of input and output wires. The set Gates =

{
(a[p], b[q], c, G)

}
containing

g tuples, specifies the wiring of the circuit; a tuple (a[p], b[q], c, G) ∈ Gates with
a, b, c ∈ {1, . . . , ℓin + g} represents a gate of type G ∈ {XOR,AND,NOT} with
input sub-wires a[p], b[q] and output wire c (b[q] = ⊥ if G = NOT). The set Wires
containing (ℓ1, . . . , ℓn+g) where ℓi represents the sub-wires number of wire i.

5.2 Description of GLNPLR

Our scheme is built upon a blockcipher E : {0, 1}n×{0, 1}n+1 → {0, 1}n+1, and
is formally described in Fig. 6. As mentioned in the Introduction, our proce-
dures GbXOR and GbAND generally follow [17], and our novelty lies in assigning
independent wire labels to all gate input wires to avoid the issue due to high fan-
out circuits. Below we provide high-level descriptions for Garble, GSL, GbXOR,
GbAND and Eval in turn.
Overview of Garble. Our Garble algorithm begins by assigning wire labels for
the input wires. In detail, for every input wire i:

1. Garble first randomly pick a permutation bit πi and a pair of n-bit wire labels
wπi

i , wπi
i . The use of permutation bit πi is intended to apply the point-and-

permutation method [37] to reduce garbled table size. As will be seen, the
bit πi also “fixes” the order of computations with w0

i and w1
i . Namely, during

addressing wire i, computations with wπi
i always go ahead of those with wπi

i

(e.g., see Fig. 6. Implementations of GLNPLR have to follow this order as
well.). In contrast, traditional designs seldom enforce such a fixed order of
computations. This “order-fixing” is crucial for our simulator (it needs to
know which label is “faked”), and we believe it also improves the leakage
property of the scheme.

2. Garble then generates the associated “sub-labels” using GSL. Concretely, as-
sume that the (input) wire i is connected to ℓi different gate inputs. Garble
then uses wπi

i and wπi
i as seeds to invoke the leakage-resilient PRG GSL to

produce two sequence of ℓi “sub-labels”.

Then, Garble generates the garbled circuit F gate-by-gate in topological or-
der. Concretely, for every gate (a[p], b[q], c, G) in circuit f , with input sub-wires
a[p], b[q] and output wire c, it uses input sub-labels wπa

a[p], w
πa

a[p], w
πb

b[q], w
πb

b[q] and
input permutation bits πa, πb to compute the output sub-labels wπc

c , wπc
c per-

mutation bit πc as well as the garbled table which is: (i) T if G = XOR; (ii)
T1, T2, T3 if G = AND; or (iii) ⊥ if G = NOT.Then, for every output label c, it
generates the associated ”sub-labels” using GSL.
Generate sub-labels (procedure GSL). GSL, as illustrated in Fig. 8, is a
blockcipher-based leakage-resilient PRG of Yu et al. [45,38]. It takes a seed k0,

18

procedure Garble(f)
for i ∈ Inputs do

wπi
i

$← {0, 1}n, wπi
i

$← {0, 1}n, πi
$← {0, 1}

e[i, πi] := wπi
i ∥0, e[i, πi] := wπi

i ∥1
(wπi

i[0], · · · , w
πi
i[ℓi]

) := GSL(wπi
i , ℓi)

(wπi
i[0], · · · , w

πi
i[ℓi]

) := GSL(wπi
i , ℓi)

for (a[p], b[q], c, G) ∈ Gates do
PInputs := (wπa

a[p], w
πa
a[p], w

πb
b[q], w

πb
b[q], πa, πb)

if G = XOR then
(wπc

c , wπc
c , πc, F [c]) := GbXOR(PInputs)

else if G = AND then
(wπc

c , wπc
c , πc, F [c]) := GbAND(PInputs)

else if G = NOT then
wπc

c = wπa
a[p], w

πc
c = wπa

a[p], πc = πa

(wπc
c[0], · · · , w

πc
c[ℓc]

) := GSL(wπc
c , ℓc)

(wπc
c[0], · · · , w

πc
c[ℓc]

) := GSL(wπc
c , ℓc)

for j ∈ Outputs do
d[j, πj] := E

w
πj
j

(0), d[j, πj] := E
w

πj
j

(1)

return (F, e, d)

procedure Eval(F,X)
for i ∈ Inputs do

wi∥λi := X[i]
(wi[0], · · · , wi[ℓi]) := GSL(wi, ℓi)

for (a[p], b[q], c, G) ∈ Gates do
if G = XOR then

T := F [c]
ŵc := Ewa[p]

(λa)[1 · · ·n]⊕ Ewb[q]
(λb)[1 · · ·n] ⊕λb · T

λc := λa ⊕ λb, wc := Eŵc(λc)[1 · · ·n]
else if G = AND then

(T1, T2, T3) := F [c]
wc∥λc := T ⊕ Ewa[p]

(λaλb)⊕ Ewb[q]
(λaλb)

else
wc = wa[p], λc = λa

(wc[0], · · · , wc[ℓc]) := GSL(wc, ℓc)

for j ∈ Outputs do
Y [j] := Ewj (λj)

return Y

Fig. 6: our garbling scheme GLNPLR (continued in Fig. 7)

which is supposed to be a label of some wire c, and an integer ℓ as inputs, uses
two public distinct constants PA, PB ∈ {0, 1}n+1, and makes (roughly) ℓ − 1
pairs of calls to E to generate ℓ− 1 pseudorandom strings as sub-labels for ℓ− 1

19

procedure GSL(k0, ℓ)
for i := 1 to ℓ− 1 do

wi := Eki−1(PB)[1 · · ·n]
ki := Eki−1(PA)[1 · · ·n]

wℓ := kℓ−1

return (w1, · · · , wℓ)

procedure Decode(Y, d)
for i := 1 to |Y | do

if Y [i] := d[i, 0] then y[i] := 0
else if Y [i] := d[i, 1] then

y[i] := 1
else return ⊥

return y
procedure Encode(e, x)

for i := 1 to |x| do
X[i] := e[i, xi]

return (X)
procedure GbXOR(wπa

a , wπa
a , w

πb
b , w

πb
b , πa, πb)

∆a := wπa
a ⊕ wπa

a , ∆b := w
πb
b ⊕ w

πb
b

πc := πa ⊕ πb, T := ∆a ⊕∆b

ŵπc
c := wπa

a ⊕ w
πb
b , ŵπc

c := wπa
a ⊕ w

πb
b

wπc
c := Eŵ

πc
c

(0)[1 · · ·n]
wπc

c := E
ŵ

πc
c

(1)[1 · · ·n]
return (wπc

c , wπc
c , πc, T)

procedure GbAND(wπa
a , wπa

a , w
πb
b , w

πb
b , πa, πb)

W0 := Ew
πa
a

(00)⊕ Ew
πb
b
(00)

if πa = πb = 1 then
w0

c
$← {0, 1}n, w1

c∥πc := W0

else
w0

c∥πc := W0, w1
c

$← {0, 1}n

W 0
c := w0

c∥πc, W 1
c := w1

c∥πc

T1 := Ew
πa
a

(01)⊕ E
w

πb
b

(01)⊕W
g(πa,πb)
c

T2 := E
w

πa
a

(10)⊕ Ew
πb
b
(10)⊕W

g(πa,πb)
c

T3 := E
w

πa
a

(11)⊕ E
w

πb
b

(11)⊕W
g(πa,πb)
c

return (wπc
c , wπc

c , πc, (T1, T2, T3))

Fig. 7: our garbling scheme GLNPLR (continued from Fig. 6)

k0

PA

E k1

PB

E w1

PA

E

PB

E

· · ·

· · ·

PA

E

PB

E

kℓ−1

wℓ−1

Fig. 8: The structure of GSL(k0, ℓ), where PA and PB are two arbitrary distinct
constants.

20

gate input wires connected with wire c (In addition, we let the ℓ− 1th sub-key
to be wℓ). Importantly, the cipher key is kept refreshed between every pair of
calls to E to avoid leaking too much.
Garble XOR gate (procedure GbXOR). We basically follow the GbXOR of
GLNP [17]. However, we enforce an order (which slightly deviates from [17])
for the sequence of operations to refine its leakage property. Concretely, GbXOR
proceeds as follows.

1. Compute the offset of sub-wires a and sub-wire b: ∆a = wπa
a ⊕ wπa

a , ∆b =
wπb

b ⊕ wπb

b

2. Set the ciphertext: T = ∆a ⊕∆b and set πc = πa ⊕ πb

3. Compute output pre-labels on wire c: ŵπc
c = wπa

a ⊕wπb

b and ŵπc
c = wπa

a ⊕wπb

b

4. Compute output labels on wire c: wπc
c = Eŵπc

c
(0), wπc

c = Eŵπc
c
(1)

Garble AND gate. We adopt the Garbled Row Reduction (GRR3) approach
from Naor, Pinkas, and Sumner [37] (also used in [17]), to decrease garbled gates
from four to three ciphertexts by setting the first ciphertext to zero. Further
details are provided in Fig 7.
Garble NOT gate. We follow the NOT gate in [17], which can still be computed
for free without using free-XOR. Consider an NOT gate g with input wire a and
output wire c, we can simply define w0

c := w1
a and w1

c := w0
a. During the garbling

of the circuit, gates receiving wire c as input will use these “reversed” values.
Furthermore, when evaluating the circuit, if the value k0a is given on wire a, then
the result of the NOT gate is k1c which equals k0a. Thus, nothing needs to be
done.
Evaluation Eval. To evaluate a garbled circuit, starting with labels {wi}i∈Inputs

(where the evaluator does not know if wi = w0
i or wi = w1

i) and signal bit λi, the
evaluator proceeds as follows. He computes the input sub-labels using procedure
GSL at first. Then, the garbled circuit is evaluated gate-by-gate in topological
order. For an XOR or AND gate with input sub-wires a, b, output wire c, and
ℓc output sub-wires, the evaluator computes the output sub-label wc using the
corresponding garbled table (see Fig. 6) and then use procedure GSL to generate
the according sub-labels)

5.3 Modeling leakages

Following [45,8], we model the blockcipher E as a (publicly accessible) ideal
cipher (so we are in the ideal cipher model), and the leakages as probabilis-
tic efficient functions manipulating and/or computing (partially) secret values.
Concretely, each computation of E (resp. ⊕) comes with some additional (in-
ternal) information given by LE (resp. L⊕). We model the leakage as a leak
list generated by probabilistic efficient functions manipulating and/or comput-
ing (partially) secret values. Such leakages might contain “future” calls to E and
enable the well-known “future computation attack” [14,45]. To overcome, we fol-
low Yu et al. [45,8] and assume oracle-free leakage functions, i.e., the leakage

21

s0

?

E s1

x1

E

x2

E

y

z

s1 E

?

ŝ1

k1

⊕ ∆1

⊕ s3 E

x

y

s2 E ŝ2

?

k2

⊕ ∆2 ⊕ T

Fig. 9: Values and E-calls involved in: (Left) the 2-up[q] assumption; (Right)
the XOR-inv[q] assumption.

functions cannot call E, since it is natural for an implementation not to evaluate
computations that are unrelated to its current state.

Furthermore, we split the leakage resulting from a leaky execution of the
blockcipher E between its input and output parts: if Ek(x) → y, LE(k, x, y) :=

(LinE (k, x), LoutE (k, y)). For XOR leakage, we define L̂⊕(m0,m1) = [L⊕(m0,m1), L⊕(m1,m0)]
for simplicity.

As discussed in [45], this leakage model appears to have a natural correspon-
dence with concrete attacks on circuits implementing blockciphers, where the
measured leakages can be interpreted as a simple function of the cipher’s in-
put and key during the first few rounds of the computation, and/or as a simple
function of the cipher’s output and key during the last few rounds of the com-
putation, but where any useful function of the cipher input and output remains
elusive (unless the implementation is fully broken).

5.4 Non-invertible leakage assumptions

We still have to limit the amount of information in leakages, which is orthogonal
to oracle-freeness. To this end, we also follow [45,8] and assume leakages are non-
invertible, i.e., it is hard to recover a secret internal state from a small number
of relevant leakages. We give two concrete definitions.
2-up[q] assumption. We first adapt the “2-up[q]” assumption of [8] to our set-
ting. Concretely, we define

Adv2-up[q](A) := PrE,s1,r

(
y = Es1(x1), z = Es1(x2), (2)

Guesses← AE(y, z, leak) : s2 ∈ Guesses
)
,

where |Guesses| = q, and AE ’s input leak depends on values s0, x1, x2 specified
by AE :

leak =
[
Lout(s0, s1∥r), Lin(s1, x1), L

out(s1, y), L
in(s1, x2), L

out(s1, z)
]

This emulates the real-world scenario in which a blockcipher-call Es0(⋆)→ s1∥r
yields (nearly) uniform output s1∥r where s1 is the key of two other blockcipher-
calls (see Fig. 9 Left), and the leakage of these three calls may contain information

22

s0 E s1 ⊕

?
mb

0,m
b
1

y s0 E s1 ⊕

?
m0

y

Fig. 10: Values and E-calls involved in: (Left) the XOR-ope assumption, and
(Right) the XOR-res assumption.

about the target secret s1. AE then outputs a set of q guesses and wins as long
as s1 is in these guesses. Note that we follow [8] and allow AE to choose the
“previous” key s0 for composability purposes in the security proof.
XOR-inv[q] assumption. For the second assumption, we define

AdvXOR-inv[q](A) = (3)
PrE,ŝ1,ŝ2,r,r′

(
∆1 = ŝ1⊕k1,∆2 = ŝ2 ⊕ k2, T ← ∆1 ⊕∆2, s3 ← (k1 ⊕ ŝ2),

y ← Es3(x),Guesses← AE(T, y, leak) : s3 ∈ Guesses)
)
,

where |Guesses| = q, and AE ’s input leak depending on values k1, s1, k2, s2, x
specified by AE :

leak =
[
Lout(s1, ŝ1∥r), Lout(s2, ŝ2∥r′), L̂⊕(ŝ1, k1), L̂⊕(ŝ2, k2),

L⊕(∆1,∆2), L̂⊕(k1, ŝ2), L̂⊕(ŝ1, ŝ2), L
in(s3, x), L

out(s3, y)
]
. (4)

We refer to Fig. 9 (Right) for the involved values and operations. Recall from
Sect. 5.3 that L̂⊕(m0,m1) = [L⊕(m0,m1), L⊕(m1,m0)].
Unstanding XOR-inv[q] Assumption. Eq. (3) defines a leakage property of a
small “unit” of XOR gate in the garbled scheme. Concretely, it captures that the
temporary key (secret value) s3 cannot be recovered from the involved leakages.

Although this assumption appears complex, the probability of an adversary
breaking this assumption is similar to breaking the 2-up[q] assumption. This
is because the leakage from XOR operations has a much smaller impact on
adversary attacks compared to leakage from blockcipher operations. Therefore,
we argue that this assumption is easy to satisfy in the real world despite its
apparent complexity.

5.5 Limiting the leakages of the XOR operation

As discussed in Sect. 4.2, without limitation on the leakages from the XOR oper-
ations, security of GbAND could not be achieved. For this, we adapt the “LORL2”
assumption from [8], which (informally) captures that the XOR operations do
not leak “too much” information about their operands. We also give a new as-
sumption XOR-res to capture that the XOR operations do not leak “too much”
about their results.

23

XOR-ope assumption

AdvXOR-ope(A) := (5)∣∣∣PrE,s1 [y0 ← s1 ⊕m0
0 ⊕m0

1 : AE(y0, leak0)⇒ 1]−

PrE,s1 [y1 ← s1 ⊕m1
0 ⊕m1

1 : AE(y1, leak1)⇒ 1]
∣∣∣

where leakb again depends on values s0,m
b
0,m

b
1 specified by AE (Note that s0 is

n bits and s1, mb
0, mb

1 are n+ 1 bits).

leakb =
[
Lout(s0, s1), L⊕(s1,m

b
0,m

b
1), L⊕(m

b
0, s1,m

b
1)
]

XOR-res assumption

AdvXOR-res(A) :=
∣∣∣PrE,s1 [y ← s1 ⊕m0 : AE(y, leak)⇒ 1]−

PrE,s1 [R
$← {0, 1}n+1 : AE(R, leak)⇒ 1]

∣∣∣ (6)

where leak again depends on values s0,m0 specified by AE . (Note that s0 is n
bits and s1, m0 are n+ 1 bits).

leak =
[
Lout(s0, s1), L

b
⊕(s1,m0)

]
Understanding XOR-ope and XOR-res assumptions. Intuitively,

– The XOR-ope assumption is adapted from “LORL2” in [8]. Intuitively, the
XOR-ope Assumption captures that the adversary cannot distinguish the out-
put and leakage from tuple m0

0,m
1
0 or tuple m0

1,m
1
1, which can capture that

the XOR operation cannot leak one bit of one operand.
– The XOR-res assumption captures that the adversary cannot distinguish the

output y, leak and R, leak, where y is from the secret value s1 XORing m0,m1,
R is a random value and leak is described above, which can capture that the
XOR computation leakage cannot leak one bit of result.

Remark. Similarly to [8,38], we aim to reduce the security of our full construc-
tion GLNPLR to the security of several considerably simpler structures (which
may not offer exponential security). The purpose is to simplify hardware design-
ers’ (arguably difficult) tasks: with such a reduction, they can focus on protecting
and testing some small structures (See Appendix C). In other words, we still
rely on implementation-level countermeasures to protect the small structures,
but in a less demanding way.

5.6 Leakage-resilience of GLNPLR

Let LGLNPLR be the leakages generated during executing the procedure GLNPLR.Garble.
In detail, LGLNPLR consists of:

24

– Lin(k, x) & Lout(k, y) generated by each internal call (including those made
by sub-procedures) to Ek(x)→ y.

– L⊕(x1, . . . , xn) generated by the internal computations (including those made
in sub-procedures) of x1 ⊕ x2 ⊕ . . .⊕ xn.

– We don’t model the leakage of the permute bit operation, and we assume that
the permutation bit XOR computations are leak-free (strongly protected in
practice).

With LGLNPLR, we define

AdvGLNPLR,S,LGLNPLR
PrvSimL (qE , t) = max

{
AdvGLNPLR,S,LGLNPLR

PrvSimL (A)
}
,

where the maximum is taken over all (qE , t)-bound adversaries.
For simplicity, for each assumption xx ∈ {2-up[q],XOR-inv[q], XOR-ope,XOR-res},

we define

Advxx(qE , t)
def
= max

{
Advxx(A)

}
, (7)

where the maximum is taken over all adversaries that make qE queries to E and
runs in time t. Our main result is then as follows.

Theorem 1. In the ideal cipher model, consider the aforementioned leakage
function LGLNPLR. If the involved leakage functions Lin, Lout, L⊕ satisfy the as-
sumptions specified by Eq. (2), Eq. (3), Eq. (5) and Eq. (6), then it holds

Adv
GLNPLR,S,LGLNPLR
PrvSimL (qE , t) ≤ (3g1 + g2 + 2ℓout − ℓin)Adv2-up[q∗](q∗, t∗)

+g2AdvXOR-inv[q∗](q∗, t∗) + g1 ·AdvXOR-res(q∗, t∗)

+ 3g1AdvXOR-ope(q∗, t∗) +
3g1
2n+1

(8)

where q∗ = (12g1 + 6g2 − 4ℓin + 6ℓout + qE), t∗ = O(t + (12g1 + 6g2 − 4ℓin +
6ℓout + qE)tl), g1, g2 is the number of AND gate and XOR gate respectively, ℓin
is the number of input wires, ℓout is the number of output wires and tl is the
total time needed for evaluating Lin, Lout.

Interpreting the bound. The terms g1·AdvXOR-res(q∗, t∗) and 3g1AdvXOR-ope(q∗, t∗)
correspond to the reduction to the “minimal” assumption on XOR leakages: un-
surprisingly, more GbAND-calls indicate less security. The terms O(g)Adv2-up[q∗](q∗, t∗)

and g2AdvXOR-inv[q∗](q∗, t∗) capture the hardness of side-channel key recovery,
and it is roughly of

O

(
σ · qE + g + t

c · 2n

)
= O

(
(qE + g + t)σ

c · 2n

)
,

for some parameter c that depends on the concrete conditions. Yet, it is nowadays
a common assumption that with such a small data complexity, the value of c
should not be significant [35,39].

25

Garbled scheme NI support? 5 Gbps 2 Gbps 300Mbps 50Mbps

HalfGate AND Y 21.9 7.99 1.18 0.19
Masked HG AND N 0.036 0.036 0.036 0.036
GLNPLR AND Y 7.8 5.62 0.79 0.13
GLNPLR XOR Y 9.9 9.01 2.37 0.39
GLNPLR AND N 0.63 0.62 0.64 0.13
GLNPLR XOR N 1.00 0.98 1.01 0.39

Table 2: Performance comparison with HalfGates (HG) in different bandwidths.
All reported numbers are in 106 gates per second. The length of the wire labels
is 128. “NI” indicates whether the implementation utilizes AES-NI instructions.

0 20 40 60 80 100

AND gate ratio (percent)

0

200

400

600

800

1000

ci
rc

ui
ts

 p
er

 s
ec

on
d

Bandwidth: 2Gbps

mask HG
GLNPLR with AES-NI
Halfgate with AES-NI
GLNPLR without AES-NI

0 20 40 60 80 100

AND gate ratio (percent)

0

50

100

150

200

ci
rc

ui
ts

 p
er

 s
ec

on
d

Bandwidth: 300Mbps

mask HG
GLNPLR with AES-NI
Halfgate with AES-NI
GLNPLR without AES-NI

0 20 40 60 80 100

AND gate ratio (percent)

0

5

10

15

20

25

30

ci
rc

ui
ts

 p
er

 s
ec

on
d

Bandwidth: 50Mbps

mask HG
GLNPLR with AES-NI
Halfgate with AES-NI
GLNPLR without AES-NI

Fig. 11: Performance comparison of GLNPLR (with and without AES-NI) versus
the HalfGates scheme (both masked and unprotected) at various AND gate ratios
within a 31,924-gate circuit. Sub-figures display performance data at bandwidths
of 50 Mbps, 300 Mbps, and 2 Gbps, demonstrating the performance advantage
of GLNPLR at higher bandwidths.

Proof (Proof sketch). We first construct a plausible simulator. We begin with
designing procedures SimGSL, SimXOR and SimAND to simulate the outputs of
LGSL, LGbXOR and LGbAND respectively. In particular, the simulated internal
secrets are randomly picked “fake” values, and the leakages are simulated by
running the leakage function on the simulated secrets. We then combine SimGSL,
SimXOR and SimAND to have a complete simulator.

We then prove indistinguishability of the simulated outputs. The main step
is to prove SimGSL ≈ LGSL, SimXOR ≈ LGbXOR and SimAND ≈ LGbAND,
and this relies on the leakage assumptions. Briefly speaking, the unpredictability
assumptions ensure that certain internal values (supposed to be secret in the non-
leaky setting) would not be involved in adversarial ideal cipher queries (so that
E-calls in Garble yield random outputs that resemble the simulated values), while
the assumptions on XOR leakages ensure that SimAND would not significantly
deviate from LGbAND (otherwise, see Sect. 4.2). We refer to Appendix D for the
full proof.

Obliviousness and authenticity of GLNPLR can be proven similarly to The-
orem 1. We defer the proofs to Appendix D.5.

26

Theorem 2. In the ideal cipher model, with the Garble leakage functions LGarble,
the following holds:

AdvGLNPLR,S,LGarble

ObvSimL (qE , t) ≤ AdvGLNPLR,S,LGarble

PrvSimL (qE , t),

AdvGLNPLR,S,LGarble

AutL (qE , t) ≤ AdvGLNPLR,S,LGarble

PrvSimL (qE , t) +
ℓout
2n+1

,

where ℓout is the number of output wires.

6 Experimental Results

Experimental settings. Admittedly, GLNPLR consumes more computational
and communication resources than the classical schemes HalfGates and GLNP.
However, given its provable leakage-resilience and suitability for side-channel
attack (SCA) sensitive scenarios, we believe the performance trade-off is accept-
able. To substantiate this, we implement GLNPLR and side-channel masked
classical schemes and compare performances. This resembles leakage-resilient
encryption [38,8].

We consider AES-based GLNPLR, i.e., setting E = AES-128 in Fig. 6. We
consider two (SCA sensitive) hardware environments, i.e., the ARM environ-
ments with and without AES-NI support (AES-NI-based garbling implementa-
tions can also be victims of SCAs [33]). For this, we provide two implementa-
tions of AES-based GLNPLR. Our first implementation used AES-NI, and we
employ the optimizations of [17] (in both Garble and GSL). Our second imple-
mentation relies on the OpenSSL C implementation of AES [43]. Thanks to its
leakage-resilience, we can directly employ existing optimized AES implementa-
tions without side-channel protections.

We choose the (original) HalfGates [46] as the benchmark of classical schemes
(which is faster than [18] and has comparable concrete security with GLNPLR),
and we provide an implementation using the C implementation of second-order
marked AES from [27] (which implements the masking scheme of [41] optimized
with CPRR method [12], the Common Shares method [47] and the Random
Reduction method [11]).

Our experiments were conducted on a virtualized platform powered by the
Apple M1 processor, featuring the ARMv8-A architecture. We utilized VMware
Fusion Professional 13.5.1 to create a virtual environment that ran Ubuntu 64-
bit ARM Server 22.04.4. The virtual machine was provisioned with 2 CPU cores
and 4 GB of RAM, specifically configured to evaluate the performance and com-
patibility of applications within an ARM-based setting.
Performance. In Table 2, we list the performance evaluations of GLNPLR and
masked HalfGates in different bandwidths. Unsurprisingly, GLNPLR (4th—7th
columns) is inferior to the (unprotected) HalfGates (2nd column). But with
masking, it can be seen:

1. The bottleneck of masked HalfGates.GbAND is computation.

27

Game ExptF,i,S
sfe

procedure Initialize
b

$← {0, 1}
procedure Finalize(b′)

return (b′ = b)

procedure GetView(f, x, y)
if b = 1 then return view := Viewi

Π(f, x, y)

if i = 1 then return view := S(x, f1(x, y), f)
if i = 2 then return view := S(y, f2(x, y), f)

Game ExptF,i,S,L1,L2
sfeLR

procedure Initialize
b

$← {0, 1}
procedure Finalize(b′)

return (b′ = b)

procedure GetView(f, x, y)
if b = 1 then

(view, leak) := ViewLi
Π(f, x, y, L1, L2)

if i = 1 then
(view, leak) := S(x, f1(x, y), f, L1, L2)

if i = 2 then
(view, leak) := S(y, f2(x, y), f, L1, L2)

return (view, leak)

Fig. 12: Games for defining the sfe and sfeLR security of an SFE scheme
Π. The leakage is computed leak :=

(
L1(x, ω1), L2(y, ω2)

)
using the two parties’

inputs and their randomness (x, ω1) and (y, ω2).

2. With a 50 Mbps network, the AES-NI-based GLNP.GbAND is 3.6 times faster
than the masked HalfGates.GbAND, and the advantage increases to 21, 156
and > 200 times at 300 Mbps, 2 Gbps and 5 Gbps respectively.

3. Without AES-NI, GLNPLR.GbAND remains 3 to 17 times faster than the
masked HalfGates.GbAND with bandwidth ranging from 50 Mbps to 5 Gbps.

HalfGates.GbXOR is free even with masking. To have a complete comparison,
we vary the ratio of AND gates in the garbled circuits, and detail the performance
curves in Fig. 11 (for different bandwidths). It can be seen GLNPLR outperforms
masked HalfGates as long as AND ratio exceeds 10% and bandwidth exceeds
300Mbps. In particular, since AES has 31,924 gates and ≈ 21.3% AND gates,
GLNPLR is 60X (using AES-NI) or 5X (without AES-NI) faster than the masked
HalfGates when the bandwidth is 2Gbps.

We remark that while our primary experiments demonstrated the advantage
of GLNPLR over the traditional masking approach, further optimized perfor-
mances are beyond the scope of this paper.

7 Application

We believe GLNPLR can be plugged into most garbling-based protocols to im-
prove robustness against SCAs. One would hope to yield “fully” leakage-resilient
protocols. However, since such protocols are usually built upon multiple build-
ing blocks, a complete leakage-resilience characterization is beyond the scope of
this paper, and we are only able to formally prove the SCA weaknesses due to
garbling are eliminated.

28

We take Yao’s Secure Function Evaluation (SFE) protocol [44] for example.
Below we first serve necessary preliminaries. We then give our leakage-resilience
definition for SFE. We finally describe the SFE protocol and prove its leakage-
resilience.
Secure Function Evaluation (SFE). An SFE is a two-party protocol defined
via a pair Π = (Π1,Π2) of polynomial time (PT) algorithms. The secret inputs
of party 1 and 2 are x ∈ {0, 1}n and y ∈ {0, 1}m respectively, while the public
input is a function f = (f1, f2). The interaction leads to party i learning fi(x, y),
but they cannot get any information about other secret inputs.

We can define a PT algorithm Viewi
I(f, x, y) that returns the view of party

i in an execution of Π with inputs (f, x, y). Concretely, Viewi
I(f, x, y) picks at

random coins ω1, ω2, executes the interaction between the parties as defined by
Π with the public input f and coins of party j ∈ {1, 2} being (x, ω1) and (y, ω2)
respectively, and returns (conv, ωi) where the conversation conv is the messages
received by party i.

To model leakages, we define another PT algorithm ViewLiI(f, x, y, L1, L2)
that on input f, x, y and two leakage functions L1 and L2 and returns the
view of party i as well as the leakages L1(x, ω1) and L2(y, ω2) of the two par-
ties during executing Π. ViewLi

I(f, x, y) returns (conv, leak, ωi) with leak =(
L1(x, ω1), L2(y, ω2)

)
, which resembles Viewi

I(f, x, y).
The conventional privacy of SFE in the semi-honest setting means the par-

ties follow the protocol, and their views do not allow the computation of any
undesired information. This is typically formalized via a simulation-based ap-
proach [32], and we present a game-based description. Concretely, we use the
game ExptF,i,S

sfe defined in Fig. 12 that is defined upon a protocol F and a simu-
lator S. The adversary B makes a query to the GetView procedure in ExptF,i,S

sfe

to collect information, and its advantage is defined as

AdvΠ,i,f,S
sfe (B) = 2Pr

[
ExptF,i,S

sfe

]
− 1

To define its leakage extension, consider the game ExptF,i,S,L1,L2

sfeLR in Fig. 12 pa-
rameterized by leakage functions L1 and L2. The adversary B queries GetView in
ExptF,i,S,L1,L2

sfeLR to collect information, and GetView includes leakages of the two
parties in its return list. The advantage of B is defined as

AdvΠ,i,f,S,L1,L2

sfeLR (B) = 2Pr
[
ExptF,i,S,L1,L2

sfeLR

]
− 1.

We say that Π is sfeLR secure w.r.t. the leakage (L1, L2), if for each i ∈ {0, 1} and
each PT adversary B there is a PT simulator S such that AdvΠ,i,f,S,L1,L2

sfeLR (B) is
negligible.
The protocol. We consider the simplest case: f = (f1, f2) where f1 = f2 :=
{0, 1}n × {0, 1}m → {0, 1}ℓ (which actually suffices for constructing secure pro-
tocols for arbitrary function f [44]). Let G = (Garble,Encode,Eval,Decode) be a
garbling scheme. Let f be a PT function where f = {0, 1}n×{0, 1}m → {0, 1}ℓ.

The construction needs an n-oblivious transfer (n-OT) protocol, where party
1 has inputs X0

1 , X
1
1 , · · · , X0

n, X
1
n, party 2 has n selection bits y1, · · · , yn, and

29

the result is that party 1 gets nothing while party 2 gets Xy1

1 , · · · , Xyn
n . Due to

page limits, we defer the formal definition to Appendix E.
We define an SFE scheme YaoSFE = (Π1,Π2) for securely computing the

functions f that can be garbled by G. In detail, Π2 (also called the garbler), on
inputs y, begins by letting (F, e, d) := Garble(f) and parsing e as (X0

1 , X
1
1 , · · · ,

X0
n+m, X1

n+m) := e. Π2 then sends F, d,Xy1

n+1, · · · , X
yn

n+m to Π1 (also called the
evaluator). Now, Π1 and Π2 execute the n-OT protocol OT , where Π1 takes x =
(x1, ..., xn) as the n selection bits and Π2 takes (X0

1 , X
1
1 , · · · , X0

n, X
1
n) as inputs.

This allows Π1 to obtain (Xx1
1 , · · · , Xxn

n). Π1 sets X := (Xx1
1 , · · · , Xxn

n , Xy1

n+1, · · · , X
ym

n+m),
outputs z := Decode(d,Eval(F,X)) and sends z to Π2.

While our leakage-resilience definition for SFE is general, our positive result
only considers garbling leakages (as mentioned in the Introduction). Namely, we
focus on L1 = ⊥ and L2 = LGarble.

Theorem 3 (Informal). Assume OT is a secure n-OT protocol and the gar-
bling scheme G = (Garble,Encode,Eval,Decode) is PrvSimL secure w.r.t the leak-
age LGarble. Then the above SFE scheme YaoSFE is sfeLR-secure w.r.t. the leakage
(⊥, LGarble).

Due to page limits, the full proof is deferred to Appendix F.

Acknowledgments

Ruiyang Li and Chun Guo are supported by the National Key Research and
Development Program of China (grant 2022YFA1004900), the National Natural
Science Foundation of China (grant 62372274) and the Taishan Scholars Pro-
gram (for Young Scientists) of Shandong. François-Xavier Standaert is a senior
research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS),
and has been funded in parts by the ERC Advanced Grant 101096871 (acronym
BRIDGE) and the Horizon Europe project 1010706275 (acronym REWIRE).
Weijia Wang is supported by the National Natural Science Foundation of China
(grant 62372273), the Taishan Scholars Program (for Young Scientists) of Shan-
dong. Views and opinions expressed are those of the authors only and do not nec-
essarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible
for them.

A Leakage-resilient evaluation and its difficulty

Recall the SFE protocol:

1. The garbler generate an encoded function (F), the encode information e, and
the decode information d: (F, e, d) := Garble(f).

2. The garbler sends the encoded function (F), the decode information d, and
the input labels corresponding to its input bits.

30

3. The garbler and the evaluator engage in an oblivious transfer (OT) protocol,
through which the evaluator gets the input labels corresponding to its input
bits.

4. Then the garbler uses all input labels and garbled function (F) to compute
the output label Y (Y := Eval(F,X)), and use the decode information d to
get the function output y := Decode(d, Y).

5. Finally, the garbler sends y to the garbler.

SFE security requires that the garbler not know the input labels correspond-
ing to the evaluator’s input bits. In other words, the garbler cannot get wi = w0

i

or wi = w1
i for every wire i, which is attached by evaluator input bits. But

the garbler holds the encoded information e (which includes all the input labels
w0

i , w
1
i for all the input wire i). If the leakage of Eval leaks one bit of wi, then

the garbler can obtain whether wi = w0
i or wi = w1

i (Similar to attack in 4).
In Eval, the label wi will participate in AES calculations and participate

in some XOR operations. It is not difficult for an adversary to obtain 1 bit of
information from these leaks. Theoretically, this wi will participate in various
operations, and it is difficult to give a unified and simple assumption to limit this
part of the leakage. In addition, from a practical level, it is relatively difficult to
require given protection to prevent all these leaks from leaking any information
(because it is relatively simple to recover 1 bit of information from AES leaks,
even with masking technology).

B Detailed Discussion on the Weakness Of AND Gate

B.1 Success probabilities of SCAs in Sect. 4.2

This section provides detailed analysis of success probabilities of the SCAs in
Sect. 4.2.

XOR leaks 1 bit of the result. Recall from Sect. 4.2 that A collects the
leakage L⊕(S1, S2) at line 34, where S1 = Ewπa

a
(00) and S2 = Ew

πb
b
(00). As

assumed, L⊕(S1, S2) leaks msb(W0) (S1⊕S2 = W0) where msb(W0) is the first bit
of W0. In GLNP.GbAND, the value W0 computed at line 34 fulfills W0[1 · · ·n] =
wπa∧πb

c (this can be seen from the design). A compares msb(W0) and msb(wvc
c):

if msb(W0) = msb(wvc
c), A guess vc = 0; Else, quit attacking.

As discussed in Sect. 4.2, since W0[1 · · ·n] = wπa∧πb
c , msb(W0) ̸= msb(wvc

c)

necessarily implies πa∧πb ̸= vc. Since πa, πb
$← {0, 1} are independently sampled

in GLNP.Garble, Pr
[
πa ∧ πb = 0

]
= 3/4.

Here we assume the AND gate input bits va, vb are uniform, this will make
Pr[vc = 0] = 3

4 and Pr[vc = 1] = 1
4 . Of course, the attack will succeed in the

general case. Here, we only discuss the uniform input bits case in a simple way.
With the above, there are two cases where A could observe msb(W0) =

msb(wvc
c), i.e.,

– πa ∧ πb = 0, vc = 0, and msb(W0) = msb(wvc
c);

31

– πa ∧ πb = 1, vc = 1, and msb(W0) = msb(wvc
c).

Therefore, the probability that A observes msb(W0) ̸= msb(wvc
c) is approxi-

mately 3
4 ×

3
4 + 1

4 ×
1
4 = 5

8 . Furthermore, conditioned on observing msb(W0) =

msb(wvc
c), A succeeds with probability

3
4×

3
4

5
8

= 9
10 , which is bigger than the

probability of 3/4.

XOR leaks 1 bit of the operand. Recall from Sect. 4.2 that A collects three
leakages at line 5 in Fig. 4:

L⊕(S1,W
πa∧π̄b
c), where S1 = Ewπa

a
(g∥01)⊕ Ew

πb
b
(g∥01),

L⊕(S2,W
π̄a∧πb
c), where S2 = Ewπa

a
(g∥10)⊕ Ew

πb
b
(g∥10),

L⊕(S3,W
π̄a∧π̄b
c), where S3 = Ewπa

a
(g∥11)⊕ Ew

πb
b
(g∥11).

When msb(W 0
c) ̸= msb(W 1

c) (the probability is nearly 1/2 since they are pseu-
dorandom), A observes one of the follow two cases:
1. When πa∧π̄b = π̄a∧πb = π̄a∧π̄b,A observes msb (Wπa∧π̄b

c) = msb(W π̄a∧πb
c) =

msb(W π̄a∧π̄b
c). Then it necessarily be πa ∧ π̄b = ...π̄a ∧ π̄b = 0 and A has

msb(W 0
c). By colluding with the evaluator, A could have the label wb

c with
b ∈ {0, 1}. By comparing msb(W 0

c) with msb(wb
c), it could determine the value

of b and break the c-th wire.
2. Otherwise, wlog assume πa ∧ π̄b ̸= π̄a ∧ πb = π̄a ∧ π̄b. Then, it necessarily

be πa ∧ π̄b = 1 and π̄a ∧ πb = π̄a ∧ π̄b = 0, and A observes msb(W 1
c) once

while msb(W 0
c) twice from the leakages. A could then determine msb(W 0

c)
and break the c-th wire as in the previous case.

This attack succeeds with probability 1 when msb(W 0
c) ̸= msb(W 1

c). In fact,
A don’t know whether msb(W 0

c) = msb(W 1
c) or msb(W 0

c) ̸= msb(W 1
c). The A

can only need to act as mentioned above. If msb(W 0
c) = msb(W 1

c), the A must
observe msb(Wπa∧π̄b

c) = msb(W π̄a∧πb
c) = msb(W π̄a∧π̄b

c). In addition, msb(W 0
c) =

msb(wvc
c) and A must guess vc = 0. This succeeds with probability p when

w0
c = w1

c where p is the probability of wvc
c = w0

c . Thus, the attack succeeds with
probability 1/2 + 1/2p≫ p.

B.2 BHR’s scheme
The scheme is described in Fig. 13.

The XOR leaks one bit of one operand. Second, at line 5, A would collect
four leakages:

L⊕(S1,W
πa∧πb
c), where S1 = Ewπa

a
(g∥00)⊕ Ew

πb
b
(g∥00),

L⊕(S2,W
πa∧πb
c), where S2 = Fwπa

b
(g∥01)⊕ F

w
πb
b

(g∥01),

L⊕(S3,W
πa∧πb
c), where S3 = Fkπa

a
(g∥10)⊕ Fk

πb
b
(g∥10),

L⊕(S4,W
π̄a∧π̄b
c), where S3 = Fkπa

a
(g∥11)⊕ F

k
πb
b

(g∥11).

32

procedure GbAND(w0
a, w

1
a, w

0
b , w

1
b , πa, πb, g)

w0
c

$← {0, 1}n, w1
c∥πc := W0, πc

$← {0, 1}
W 0

c := w0
c∥πc, W 1

c := w1
c∥πc

T0 := Ew
πa
a

(g∥00)⊕ Ew
πb
b
(g∥00)⊕W

πa∧πb
c

T1 := Ew
πa
a

(g∥01)⊕ E
w

πb
b

(g∥01)⊕W
πa∧πb
c

T2 := E
w

πa
a

(g∥10)⊕ Ew
πb
b
(g∥10)⊕W

πa∧πb
c

T3 := E
w

πa
a

(g∥11)⊕ E
w

πb
b

(g∥11)⊕W
πa∧πb
c

return (w0
c , w

1
c , πc, (T0, T1, T2, T3))

Fig. 13: The GbAND of BHR garbling scheme [4]

Recall from our convention in Sect. 2 that L⊕(a, b) is the leakage of a⊕ b.

XOR leaks 1 bit of operand. First, consider the case where the four leakages
leaked msb(W

πa∧πb)
c), msb(W

πa∧πb)
c), msb(W

πa∧πb)
c) and msb(W

πa∧πb)
c). A does

not know the values Wπa∧πb
c , Wπa∧πb

c , Wπa∧πb
c and Wπa∧πb

c , but when g rep-
resents AND, three of them are identical while another is distinct from them
(since the four values πi ∧ πj , πi ∧ π̄j , π̄i ∧ πj and π̄i ∧ π̄j consist of three 0 and
one 1).

1. When msb(w0
c) ̸= msb(w1

c), wlog assume πa∧πb ̸= πa∧ π̄b = π̄a∧πb = π̄a∧ π̄b.
Then, it necessarily be πa ∧ πb = 1 and πa ∧ π̄b = π̄a ∧ πb = π̄a ∧ π̄b = 0.
A could then determine msb(w0

c). Then, A colludes with the evaluator and
obtains wvc

c with vc ∈ {0, 1}(The A does not know whether vc = 0 or vc = 1).
By comparing msb(w0

c) with msb(wvc
c), it could determine the value of b and

break the c-th wire.
2. When msb(w0

c) = msb(w1
c), then πa∧πb = πa∧ π̄b = π̄a∧πb = π̄a∧ π̄b. Then,

the A cannot use the attack.

B.3 Another design of GbAND of GLNP

In this design, Ewπa
a
(g∥00)⊕Ew

πb
b
(g∥00) is assigned by one output label similar

to GRR3 technique. Thus, the attack described in Section 4.2 can succeed, too.

C Testers for assumption

In practice, the value of different assumptions can be similarly measured by a
tester and it is easier to study (and to reduce with relevant protections) than to
study entire modes.
Tester for 2-up[q] Adv2-up[q]

33

procedure GbAND(w0
a, w

1
a, w

0
b , w

1
b , πa, πb, g)

K0∥m0 := Ew
πa
a

(g∥00)⊕ Ew
πb
b
(g∥00)

K1∥m1 := Ew
πa
a

(g∥01)⊕ E
w

πb
b

(g∥01)
K2∥m2 := E

w
πa
a

(g∥10)⊕ Ew
πb
b
(g∥10)

K3∥m3 := E
w

πa
a

(g∥11)⊕ E
w

πb
b

(g∥11)

s := 2πa + πb, πl
$← {0, 1}

if s ̸= 0 then
w0

c = K0, w1
c = K1 ⊕K2 ⊕K3

else
w0

c = K1 ⊕K2 ⊕K3, w1
c = K0

if s = 3 then T1 = K0 ⊕K1, T2 = K0 ⊕K2

if s = 2 then T1 = K0 ⊕K1, T2 = K1 ⊕K3

if s = 1 then T1 = K2 ⊕K3, T2 = K0 ⊕K2

if s = 0 then T1 = K2 ⊕K3, T2 = K1 ⊕K3

ts = ms ⊕ πc

for α ∈ {0, 1, 2, 3}\{s} do tα = mα ⊕ πc

return (w0
c , w

1
c , πc, T1, T2, t0, t1, t2, t3)

Fig. 14: Another design of GbAND of GLNP [17].

1. Let the challenging adversary A specified s0, x1, x2

2. Pick the secret s1
$← {0, 1}n, r $← {0, 1} and compute Ppre := (Es0)

−1(s1∥r)
3. Compute s1∥r := Es0(Ppre), y := Es1(x1), and z := Es1(x2).
4. Pass the leakage of Step (3) to A. In our model, this means [Lout(s0, s1∥r),

Lin(s1, x1), Lout(s1, y), Lin(s1, x2), Lout(s1, z)] are returned to A.
5. Let the challenging adversary A output q guesses k1, . . . , kq, the adversary

wins as long as s1 ∈ {k1, . . . , kq}.

Tester for 2-up[q] AdvXOR-inv[q]

1. Let the challenging adversary A specified k1, s1, k2, s2, x.
2. Pick the secret ŝ1

$← {0, 1}n, ŝ2
$← {0, 1}n, r1

$← {0, 1}, r′
$← {0, 1} and

compute P 1
pre := (Es1)

−1(ŝ1∥r), P 2
pre := (Es2)

−1(ŝ2∥r′).
3. Compute ŝ1 := Es1(P

1
pre), ŝ2 := Es2(P

2
pre), ∆1 := ŝ1 ⊕ k1, ∆1 := k1 ⊕ ŝ1,

T := ∆1 ⊕∆2, s3 = k1 ⊕ ŝ2, s3 = ŝ2 ⊕ k1, temp = ŝ1 ⊕ ŝ2, temp = ŝ1 ⊕ ŝ1,
y = Es3(x). y := Es1(PA), and z := Es1(PB).

4. Pass the leakage of Step (3) to A. In our model, this means [Lout(s1, ŝ1∥r),
Lout(s2, ŝ2∥r′), L̂⊕(ŝ1, k1), L̂⊕(ŝ2, k2),
L⊕(∆1,∆2), L̂⊕(k1, ŝ2), L̂⊕(ŝ1, ŝ2), Lin(s3, x), Lout(s3, y)] are returned to A.

5. Let the challenging adversary A output q guesses k1, . . . , kq, the adversary
wins as long as s3 ∈ {k1, . . . , kq}.

Tester for XOR-ope AdvXOR-ope

34

1. Let the challenging adversary A specified s0,m
0
0,m

0
1,m

1
0,m

1
1.

2. Pick the secret s1
$← {0, 1}n+1, b $← {0, 1} and compute Ppre := (Es0)

−1(s1).
3. Compute s1 := Es0(Ppre), y := s1 ⊕mb

0 ⊕mb
1, y = mb

0 ⊕ s1 ⊕mb
1.

4. Pass the leakage of Step (3) to A. In our model, this means [Lout(s0, s1),
L⊕(s1,m

b
0,m

b
1), L⊕(mb

0, s1,m
b
1) are returned to A.

5. Let the challenging adversary A output the guess b′.

Tester for XOR-ope AdvXOR-ope

1. Let the challenging adversary A specified s0,m0

2. Pick the secret s1
$← {0, 1}n+1, b $← {0, 1} and compute Ppre := (Es0)

−1(s1)

3. Compute s1 := Es0(Ppre). If b = 0, y := s1 ⊕m0, otherwise, y $← {0, 1}n+1.
4. Pass the leakage of Step (3) to A. In our model, this means [Lout(s0, s1),

Lin(s1, PA), L̂⊕(s1,m0)] are returned to A.
5. Let the challenging adversary A output the guess b′.

D Proof of Theorem 1

For our proof, we need additional notations: we denote by leak := EmptyList

initializing a list leak to empty, and by leak
add←−− B adding an element B to a list

leak. Recall that the evaluator will obtain one label for every wire. For each wire
i, the label obtained is called the active label, denoted by wv

i , while the label
not obtained is referred to as the inactive label, denoted by wv

i .
Then, in Appendices D.1, D.2, D.3, we give lemmas for each modules of

GLNPLR. We then “combine” them to yield a proof for the entire GLNPLR
scheme in Appendix D.4. We finally prove leakage-resilient obliviousness and
authenticity in Appendix D.5.

D.1 GSL vs SimGSL

The indistinguishability proof of GSL and SimGSL follows [8], and we include
it here for completeness. Recall the procedure GSL(k0, ℓ) will generate different
sub-wires using a series of blockciphers. The procedure uses k0 as the first key of
two blockciphers (whose input is two different constants) and denotes the outputs
as the first sub-key k1 and the first sub-label w1. Then, the procedure repeats
this process until wℓ is generated. In addition, here we define a simulator for
procedure GSL(k0, ℓ), denoted by SimGSL(k0, ℓ). The simulator procedure is the
same as procedure GSL(k0, ℓ) except that it chooses the sub-key and sub-label
randomly rather than generated by the blockcipher. The detail is in Fig. 16.

We define LGSL := (GSL(k0, ℓ), leak) (resp. LSimGSL := (GSL(k0, ℓ), leak))
where leak is a list containing the leakage generated in procedure GSL(k0, ℓ)
(resp. SimGSL(k0, ℓ)).

For their indistinguishability, we give an experiment in Fig. 16 and have the
following lemma.

35

procedure GSL(k0, ℓ)/SimGSL(k0, ℓ)
leak := EmptyList
for i = 1, . . . , ℓ− 1 do

Ki := Eki−1(PA), Wi := Eki−1(PA) ▷ GSL

Ki
$← {0, 1}n+1, Wi

$← {0, 1}n+1 ▷ SimGSL

leak
add←−− {Lin(ki−1, PA), L

out(ki−1,Ki)},
leak

add←−− {Lin(ki−1, PB), L
out(ki−1,Wi)}

wi := Wi[1 . . . n], ki := Ki[1 . . . n]

wℓ := kℓ−1

return w1, . . . , wℓ

Fig. 15: Procedure GSL(k0, ℓ) and SimGSL(k0, ℓ)

procedure Expt(k−, ℓ) Game ExptLGSL(k
−, ℓ)

leak := EmptyList, leak add←−− Lout(k−,K0)
if b = 0 then

(w1, . . . , wℓ, leak
′) := LGSL(k0, ℓ)

else
(w1, . . . , wℓ, leak

′) := LSimGSL(k0, ℓ)

leak
add←−− leak′

return (w1, . . . , wℓ, leak)

Fig. 16: Experiment ExptLGSL, the Initialize is choose the challenge bit b
$←

{0, 1}, choose K0
$← {0, 1}n+1 and set k0 := K0[1 . . . n]. There is no Finalize

procedure.

Lemma 1. For every (qE , t)-bounded adversary AE and every (k−, ℓ) specified
by AE, it holds∣∣Pr[ExptAE ,0

LGSL = 1]−Pr[ExptA
E ,1

LGSL = 1]
∣∣

≤ (ℓ− 1) ·Adv2-up[q∗](q∗, t∗) (9)

where q∗ = qE + 2ℓ − 2, t∗ = O(t + (2ℓ − 2) · tl), tl is the total time needed for
evaluating Lin and Lout, ℓ is the number of sub-wires.

Proof. Consider the execution ofAE for ExptLGSL. We define a bad event BadQuery,
which occurs when any of the internal keys k0, k1, . . . , kℓ−1 appears in the key
field of a blockcipher E query made by AE . This event, once happens, would
cause the key stream blocks to lose randomness. So, here we just need to adapt
Yu, Bertil et al.’s argument to our setting. In detail, given an adversary AE , we

36

construct an adversary AE
2 such that

Adv2-up[q∗](AE
2) ≤ Pr

[
BadQuery in ExptA

E ,0
LGSL

]
(10)

Concretely, AE
2 runs an instance of AE and keeps a record of AE ’s queries to E

in a set τE . AE
2 simulates the following process against AE :

1. AE
2 invoke AE , get its input k−, ℓ.

2. AE
2 randomly guesses an index i

$← [0, ℓ− 2] and initializes an empty list leak
3. AE

2 samples an initial key K0
$← {0, 1}n+1, set k0 = K0[1 . . . n], and add

Lout(k−,K0) to leak.
4. For j = 1, . . . , i−1,AE

2 queries E to obtain Kj := Ekj−1
(PA), kj = Kj [1 . . . n],

Wj = Ekj−1
(PB) and wj = Wj [1 . . . n]. AE then add the leakage traces [Lin

(kj−1, PA), Lout(kj−1,Kj)], Lin(kj−1, PB), Lout(kj−1,Wj) to leak.
5. AE

2 queries Wi := Eki−1(PB) and let wi = Wi[1 . . . n]. Then AE
2 submits

s0 = ki−1, x1 = PA and x2 = PB to its 2-up[q] challenger, and (accord-
ing to our convention) this results in the outputs (y, z, leak′), where leak′

= [Lout(ki−1, s1), Lin(s1, PA), Lout(s1, y), Lin(s1, PB), Lout(s1, z)]. Then AE
2

adds Lin(ki−1, PA), Lout(ki−1, s1), Lin(ki−1, PB), Lout(ki−1, Wi) to leak as the
leakage of the i-th iteration.

6. Then AE
2 set ki+1 := y[1 . . . n], wi+1 := z[1 . . . n]. It (conceptually) takes the

challenge s1, y, z as the key ki, Ki+1, Wi+1 and adds Lin(s1, PA), Lout(s1, y),
Lin(s1, PB), L

out(s1, z) to leak as the leakage of the i+ 1-th iteration.
7. Then AE

2 starts from ki+1 to emulate the remaining actions of GSLk0
(k, σ) to

obtain wi+1, . . . , wℓ. Eventually AE
2 serves the output w1, . . . , wℓ as well as

the leakage list leak to AE , and output the set Guesses = {k : (k, x, y) ∈ τE}
for some x, y.

The strategy of AE
2 is obvious: if AE triggers the event BadQuery, then the

key ki being queried must be in τE . Therefore, AE
2 makes a uniform guess on the

position of the first key on which such a query is made; guessing the first queried
key ensures that key will only be correlated to one thing: the corresponding leak-
ages (and not any previous call on E). The guess will be correct with probability
1/ℓ. Then, AE

2 emulates the process of ExptA
E ,0

LGSL and provides the leakages to
AE , except for the i index, for which the leakages and E output are replaced by
those obtained from a challenger for the seed-preserving property. If the guess
on the index i is correct, all the inputs sent to AE are distributed exactly as
what the adversary AE obtains in ExptA

E ,0
LGSL . Therefore, when AE

2 halts, if AE
2

made a query on s1, then simply outputting τE would break the game. So we
have Pr

[
s1 ∈ Guesses| BadQuery in ExptA

E ,0
LGSL

]
= 1

ℓ−1 . Now, we observe that

Pr
[
s1 ∈ Guesses|BadQuery in ExptA

E ,0
LGSL

]
≤ Pr[s1 ∈ Guesses]

Pr
[
BadQuery in ExptA

E ,0
LGSL

]
37

procedure HXOR(PInputs)/SimXOR(PInputs)
leak := EmptyList

∆a := wv
a ⊕ wv

a, leak add←−− L⊕(w
v
a, w

v
a;λa)

∆b := wv
b ⊕ wv

b , leak add←−− L⊕(w
v
b , w

v
b ;λb)

T := ∆a ⊕∆b, leak add←−− L⊕(∆a,∆b)
λc := λa ⊕ λb

if λb = 0 then
ŵv

c := wv
a ⊕ wv

b , leak1 := L⊕(w
v
a, w

v
b)

ŵv
c := wv

a ⊕ wv
b , leak2 := L⊕(w

v
a, w

v
b)

else
ŵv

c := wv
a ⊕ wv

b , leak1 := L⊕(w
v
a, w

v
b)

ŵv
c := wv

a ⊕ wv
b , leak2 := L⊕(w

v
a, w

v
b)

leak
add←−− L(leak1, leak2;λc)

W vc
c := Eŵv

c
(λc), wvc

c := W vc
c [1 · · ·n]

leak3 := [Lin(ŵv
c , λc), L

out(ŵv
c ,W

v
c)]

W v
c := Eŵv

c
(λc), wvc

c := W v
c [1 · · ·n] ▷ HXOR

W v
c

$← {0, 1}n+1, wv
c := W v

c [1 · · ·n] ▷ SimXOR
leak4 := Lin(ŵv

c , λc), L
out(ŵv

c ,W
v
c)]

leak
add←−− L(leak3, leak4;λc)

return wv
c , w

v
c , λc, T

procedure L(leak1, leak2;λc)
if λc = 0 then

return [leak1, leak2]
else

return [leak2, leak1]

procedure L⊕(a, b;λc)
if λc = 0 then

return L⊕(a, b)
else

return L⊕(b, a)

Fig. 17: Procedure HXOR(PInputs) and SimXOR(PInputs) as well as procedure
LHXOR and LSimXOR where Inputs = (wv

a, w
v
a, w

v
b , w

v
b , λa, λb).

And it can be seen AE is (qE + 2ℓ, t∗)-bounded for t∗ = O(t+ ℓ · tl). By this,

Pr
[
BadQuery in ExptA

E ,0
LGSL

]
≤(ℓ− 1) · Pr[s1 ∈ Guesses]
≤(ℓ− 1) ·Adv2-up[q∗](AE

2)

≤(ℓ− 1) ·Adv2-up[q∗](q∗, t∗).

During the real execution ExptA
E ,0

LGSL , as long as the event BadQuery never happens,
all the keys and key stream blocks are fresh random values independent from
τE the transcript of E queries of AE , and have the same distribution as those
in the ideal execution ExptA

E ,1
LGSL . Therefore, this proof is finished.

38

D.2 HXOR vs SimXOR

Let PInputs = (wv
a, w

v
a, w

v
b , w

v
b , λa, λb). We describe two procedures, HXOR(PInputs)

and SimXOR(PInputs), in Fig 17. Here, SimXOR (PInputs) is an XOR gate gar-
bling simulator, while HXOR(PInputs) is an intermediate procedure designed to
facilitate the final proof. HXOR(PInputs) consists of the same computational
steps as GbXOR (wπa

a , wπa
a , wπb

b , wπb

b , πa, πb), but its input PInputs follows the
format of SimXOR(PInputs). In a sense, HXOR(Inputs) rearranges the represen-
tation of the inputs of GbXOR to aid in understanding and comparison with
SimXOR(PInputs).

In addition, we define LHXOR := (HXOR(PInputs), leak) and LSimXOR :=
(SimXOR(PInputs), leak) where leak is a list containing the leakages generated in
the procedure. We give an experiment in Fig. 18 and have the following lemma
for their indistinguishability. We define AdvXOR(qE , t)

def
= max

{∣∣Pr[ExptAE ,0
XOR =

1]−Pr[ExptA
E ,1

XOR = 1]
∣∣} where the maximum is taken over all the (qE , t)-bounded

adversary AE .

Lemma 2. For every (qE, t)-bounded adversary AE and every (w−
a , w

−
b , w

v
a,

wv
b , λa, λb) specified by AE, It holds

AdvXOR(qE , t) ≤ AdvXOR-inv[q∗](q∗, t∗)

where q∗ = qE + 2, t∗ = O(t + 2 · tl), tl is the total time needed for evaluating
Lin and Lout.

Proof. Consider the execution of AE against ExptA
E ,0

XOR . We define a bad event
BadQuery, which occurs when the internal key (label) ŵvc

c appears in the key
field of a blockcipher query made by AE . This event, once happens, would cause
the blockcipher output W vc

c to lose randomness. In detail, given an adversary
AE , we build a distinguisher DE such that

AdvXOR-inv[q∗](DE) ≤ Pr
[
BadQuery in ExptA

E ,0
XOR

]
(11)

where q∗ = qE +2. Concretely, DE runs an instance of AE and keeps a record of
AE ’s queries to E in a set τE . DE simulates the following process against AE :

1. DE initialize an empty list leak.
2. DE involve AE , get its input (w−

a , w
−
b , w

v
a, w

v
b , λa, λb) and set λc = λa ⊕ λb.

3. If λb = 0:
– DE submit s1 = w−

b , k1 = wv
b , s2 = w−

a , k2 = wv
a, x = λc to its

XOR-inv[q] challenger (according to our convention) this results in the out-
puts (T, y, leak) where leak = [Lout(w−

b , ŝ1||r), Lout(w−
a , ŝ2||r′), L̂⊕(ŝ1, wv

b),
L̂⊕(ŝ2, w

v
a), L⊕ (∆1,∆2), L̂⊕(wv

b , ŝ2), L̂⊕(ŝ1, ŝ2), Lin(s3, λc), Lout(s3, y)].
– It (conceptually) takes the secret ŝ1||r, ŝ1, ŝ2||r′, ŝ2, s3, y as W v

b , wv
b ,

W v
a , wv

a, ŵv
c , W v

c and adds Lout(w−
a , ŝ2||r′), Lout(w−

b , ŝ1||r), L⊕(wv
a, ŝ2;λa),

L⊕(w
v
b , ŝ1;λb), L⊕(∆1,∆2) to leak.

39

procedure Expt(w−
a , w−

b , wv
a, w

v
b , λa, λb)

PInputs := (wv
a, w

v
a, w

v
b , w

v
b , λa, λb)

leak
add←−− EmptyList

if b = 0 then
(Outputs, leak′) := LHXOR(PInputs)

else
(Outputs, leak′) := LSimXOR(PInputs)

leak
add←−− [Lout(w−

a ,W v
a), L

out(w−
b ,W v

b), leak
′]

return (Outputs, leak)

Fig. 18: Experiment ExptXOR. The Initialize procedure is that choose W v
a

$←
{0, 1}n+1,W v

b
$← {0, 1}n+1 randomly and let wv

a = W v
a [1 . . . n], w

v
b = W v

b [1 . . . n]
. There is no Finalize procedure

– It (conceptually) takes s3 as ŵv
c and compute ŵv

c = wv
a ⊕ wv

b . Let leak1 =
L⊕(w

v
a, w

v
b), leak2 = L⊕(ŝ2, w

v
b) and add L(leak1, leak2;λc) to leak.

– It (conceptually) takes y as W v
c and compute W v

c = Eŵv
c
(λc), wv

c =
W v

c [1 . . . n], wv
c = y[1 . . . n]. Let leak3 = [Lin(ŵv

c , λc), Lout(ŵv
c ,W

v
c)], leak4 =

[Lin(s3, λc), Lout(s3, y)] and add L(leak3, leak4;λc) to leak.
4. If λb = 1

– DE submit s1 = w−
a , k1 = wv

a, s2 = w−
b , k2 = wv

b , x = λc to its
XOR-inv[q] challenger (according to our convention) this results in the out-
puts (T, y, leak) where leak = [Lout(w−

a , ŝ1||r), Lout(w−
b , ŝ2||r′), L̂⊕(ŝ1, wv

a),
L̂⊕(ŝ2, w

v
b), L⊕(∆1,∆2), L̂⊕(wv

a, ŝ2), L̂⊕(ŝ1, ŝ2), Lin(s3, λc), Lout(s3, y).
– It (conceptually) takes the secret ŝ1||r, ŝ1, ŝ2||r′, ŝ2, s3, y as W v

a , wv
a,

W v
b , wv

b , ŵv
c , W v

c .
– Add [Lout(w−

a , ŝ1||r), Lout(w−
b , ŝ2||r′), L⊕(wv

a, ŝ1, λa), L⊕ (wv
b , ŝ2, λb), L⊕(∆1,∆2)

to leak.
– It (conceptually) takes s3 as ŵv

c and compute ŵv
c = wv

a ⊕ wv
b ⊕ T .Let

leak1 = L⊕(ŝ1, ŝ2), leak2 = L⊕(w
v
a, ŝ2) and add L(leak1, leak2;λc) to leak.

– It (conceptually) takes y as W v
c and compute W v

c = Eŵv
c
(λc), wv

c =
W v

c [1 . . . n], wv
c = y[1 . . . n]. Let leak3 = [Lin(ŵv

c , λc), Lout(ŵv
c ,W

v
c)], leak4 =

[Lin(s3, λc), Lout (s3, y)] and add L(leak3, leak4;λc) to leak.
5. Then DE starts from wv

c , wv
c to emulate the remaining actions HXOR. Even-

tually, DE return (wvc
c , wvc

c , λc, T , leak).

The strategy of DE is obvious: if AE triggers the event BadQuery then the
key ŵv

c must be in τE . Therefore, DE emulates the ExptA
E ,0

XOR and provides the
leakages to AE , except for the XOR gate output pre-label ŵv

c , for which the re-
lated leakages and E output are replaced by those obtained from the XOR-inv[q]
challenger for the seed-preserving property. As we can see, all the inputs sent
to AE are distributed exactly as those produced by ExptA

E ,0
XOR . Therefore, when

DE halts, if AE made a query on s3, then simply outputting τE would break

40

the game. So we have Pr
[
ŵv

c ∈ Guesses | BadQuery in ExptA
E ,0

XOR] = 1. Now, we
observe that

Pr
[
ŵvc ∈ Guesses|BadQuery in ExptA

E ,0
XOR]

≤ Pr[ŵvc ∈ Guesses]
Pr

[
BadQuery in ExptA

E ,0
XOR

]
And it can be seen DE is (qE + 4ℓ, t∗)-bounded for t∗ = O(t+ 2ℓ · tl). By this,

Pr
[
BadQueryin ExptA

E ,0
XOR

]
≤Pr[ŵv

c ∈ Guesses]
≤AdvXOR-inv[q](DE)

where q∗ = qE + 2, t∗ = O(t + 2 · tl), tl is the total time needed for evaluating
Lin and Lout.

During the real execution BadQuery in ExptA
E ,0

XOR , as long as the event BadQuery
never happens, wvc

c is fresh random values independent from τE the transcript of
blockcipher queries of AE , and have the same distribution as those in ExptA

E ,1
XOR .

D.3 HAND vs SimAND

Let PInputs1 = (wv
a, w

v
a, w

v
b , w

v
b , λa, λb, va, vb) and let PInputs2 = (wv

a, w
v
a, w

v
b ,

wv
b , λa, λb). We describe an intermediate procedure HAND(PInputs1) and AND

gate simulator SimAND(PInputs2) in Fig. 20. Similarly, HAND (PInputs1) consists
of the same computation steps as GbAND(wπa

a , wπa
a , wπb

b , wπb

b , πa, πb). To explain
this, we give an overview of HAND(PInputs1).

1. Compute W0 = Ewπa
a
(00)⊕ Ew

πb
b
(00) and add its related leakage to list leak

(Line 3—6).
– Note the dependency of Ewπa

a
(00) on λa. Specifically, Ewπa

a
(00) equals

Ewva
a
(00) when λa = 0, and Ewva

a
(00) when λa = 1. To accurately compute

Ewπa
a
(00), we define M00

a := LEnc(wva
a , wva

a , λa, 00). Similarly, for input
wire b, Ew

πb
b
(00) is correctly computed using M00

b := LEnc(wvb
b , wvb

b , λb, 00).
Finally, W0 is computed by taking the XOR of M00

a and M00
b .

2. Assign w0
c

$← {0, 1}n and w1
c∥πc := W0 if πa = πb = 1, or assign w0

c∥πc := W0

and w1
c

$← {0, 1}n (lines 8—17).
3. Compute the garbled tables T1, T2, T3 (lines 18—25). Here, we explain how

to compute T1. T2 and T3 are computed similarly to T1.
– T1 = Ewπa

a
(01)⊕E

w
πb
b

(01)⊕W g(πa,πb)
c . Similar to the above, we use M01

a =

LEnc(wva
a , wva

a , λa, 01) to compute Ewπa
a
(01) and use M01

b = LEnc(wva
b , wva

b , λb, 01)

to compute E
w

πb
b

(01). In addition, compute W
g(πa,πb)
c = W

g(λa⊕va,λb⊕vb)
c

Then, let’s demonstrate the difference between HAND(PInputs1) and SimAND(PInputs2),
which can help to understand our proof.

41

1: procedure HAND(PInputs1)
2: leak := EmptyList
3: (M00

a , leak00a) := LEnc(wv
a, w

v
a, λa, 00)

4: (M00
b , leak00b) := LEnc(wv

b , w
v
b , λb, 00)

5: leak
add←−− [leak00a , leak00b]

6: W0 := M00
a ⊕M00

b , leak add←−− L⊕(M00
a ,M00

b)
7: πa := λa ⊕ va, πb := λb ⊕ vb
8: if va = vb = 1 then
9: if πa = πb = 1 then

10: wv
c := {0, 1}n, wv

c∥λc := W0

11: else
12: wv

c∥λc := W0, wv
c

$← {0, 1}n

13: else
14: if πa = πb = 1 then
15: wv

c
$← {0, 1}n, wv

c∥λc := W0

16: else
17: wv

c∥λc := W0, wv
c

$← {0, 1}n

18: W v
c = wv

c∥λc, W v
c = wv

c∥λc

19: for 2α+ β ∈ {1, 2, 3} do
20: (Mαβ

a , leakαβ
a) := LEnc(wv

a, w
v
a, λa ⊕ α, α∥β)

21: (Mαβ
b , leakαβ

b) := LEnc(wv
b , w

v
b , λb ⊕ β, α∥β)

22: leak
add←−− [leakαβ

a , leakαβ
b]

23: Wc = W
g(α⊕λa⊕va,β⊕λb⊕vb)
c

24: T2α+β := Mαβ
a ⊕Mαβ

b ⊕Wc

25: leak
add←−− L⊕(Mαβ

a ,Mαβ
b ,Wc)

26: return (wv
c , w

v
c , λc, (T1, T2, T3))

50: procedure LEnc(w1, w2, b, x) SimLEnc(w1, w2, b, x)

51: if b = 0 then
52: w3 = Ew1(x)
53: leak′ := [Lin(w1, x), L

out(w1, w3)]
54: else
55: w3 := Ew2(x) wc := {0, 1}n

56: leak′ := [Lin(w2, x), L
out(w1, w3)]

57: return (w3, leak
′)

Fig. 19: Procedure HAND(PInputs1) where PInputs1 =
(wv

a, w
v
aw

v
b , w

v
b , λa, λb, va, vb)

1. For all blockciphers E with keys wv
a or wv

b , outputs are randomly sampled,
whereas with wv

a or wv
b , outputs are computed using the blockcipher. Thus,

we use SimLEnc to compute the blockcipher E.
2. The output labels wv

c and wv
c are assigned differently (The details are in line

36 — line 39).

42

30: procedure SimAND(PInputs2)
31: leak := EmptyList
32: (M00

a , leak1) := SimLEnc(wv
a, w

v
a, λa, 00)

33: (M00
b , leak2) := SimLEnc(wv

b , w
v
b , λb, 00)

34: leak
add←−− [leak00a , leak00b]

35: W0 := M00
a ⊕M00

b , leak add←−− L⊕(M00
a ,M00

b)
36: if λa = λb = 0 then
37: wv

c∥λc := W0, wv
c

$← {0, 1}n
38: else
39: wv

c∥λc
$← {0, 1}n+1, wv

c
$← {0, 1}n

40: for 2α+ β ∈ {1, 2, 3} do
41: (M00

a , leakαβ
a) := SimLEnc(wv

a, w
v
a, λa ⊕ α, α∥β)

42: (M00
b , leakαβ

b) := SimLEnc(wv
b , w

v
b , λb ⊕ β, α∥β)

43: leak
add←−− [leak3, leak4]

44: if 2α+ β = 2λa + λb then Wc := wv
c∥λc

45: else wc
$← {0, 1}n+1

46: T2α+β := Mαβ
a ⊕Mαβ

b ⊕Wc

47: leak
add←−− L⊕(Mαβ

a ,Mαβ
b ,Wc)

48: return (λc, w
v
c , w

v
c , (T1, T2, T3))

Fig. 20: Procedure SimAND(PInputs2) where PInputs2 = (wv
a, w

v
aw

v
b , w

v
b , λa, λb).

procedure Expt(w−
a , w−

b , wv
a, w

v
b , va, vb, λa, λb)

Inputs1 := (wv
a, w

v
a, w

v
b , w

v
b , va, vb, λa, λb)

Inputs2 := (wv
a, w

v
a, w

v
b , w

v
b , λa, λb)

if b = 0 then
(Outputs, leak) := LHAND(PInputs1)

else
(Outputs, leak) := LSimAND(PInputs2)

leak
add←−− Lout(w−

a ,W v
a), L

out(w−
b ,W v

b)
return (Outputs, leak)

Fig. 21: Experiment ExptAND. The Initialize procedure is that choose W v
a :=

{0, 1}n+1,W v
b := {0, 1}n+1 randomly and let wv

a = W v
a [1 · · ·n], wv

b = W v
b [1 · · ·n]

. There is no Finalize procedure

– If λa = λb = 0, the evaluator will compute wv
c∥λc = Ewv

a
⊕ Ewv

b
(namely

W0). Thus, the simulator set wv
c∥λc := W0 and choose wv

c randomly.
– Else, the evaluator will compute wv

c∥λc using the garbled table. Thus, the
simulator choose wv

c∥λc and wv
c randomly.

43

3. The garbled table is computed differently (The details are in line 44 — line
47). the evaluator will compute wv

c∥λc using the garbled table T2λa+λb
(think

T0 = 0). Thus, the evaluator will compute T2λa+λb
”correctly” whereas com-

puting another garbled table ”wrongly”. Concretely:
– Compute T2λa+λb

= Ewv
a
(g∥λaλb)⊕Ewv

b
(g∥λaλb)⊕W v

c where W v
c = wv

c∥λc.
– Compute T2α+β = Mαβ

a ⊕Mαβ
b ⊕R where Mαβ

a = Ewv
a
(g∥λaλb) if λa = 0,

Mαβ
a is choosed randomly, Mαβ

b is computed similarly, and R is a ramdom
n+ 1 bits string.

For the indistinguishability of procedure HAND(PInputs1) and SimAND(PInputs2),
we give a game(experiment) in Fig. 21 and define AdvAND(qE , t) = Pr[ExptA

E ,0
AND =

1] − Pr[ExptA
E ,1

AND = 1] where adversary is (qE , t) bound. Then we have the fol-
lowing lemma.

Lemma 3. For every (qE, t)-bounded adversary AE and (w−
a , w−

b , w
v
a, w

v
b ,

va, vb, λa, λb) specified by AE, It holds

AdvAE

AND(qE , t) ≤ 2 ·Adv2-up[q∗](q∗, t∗) +AdvXOR-res(q∗, t∗)+

3AdvXOR-ope(q∗, t∗) +
3

2n+1
(12)

where q∗ = (qE+8), t∗ = O(t+8 ·tl), tl is the total time needed for evaluating
Lin and Lout.

Proof. Consider an adversary AE against ExptA
E ,0

AND . We define seven games,
G0, . . . ,G6, each capturing the interaction between AE and a corresponding in-
termediate world Hi. Game G0 is identical to ExptA

E ,0
AND . Using a hybrid argument,

we progressively modify the experiment through these games, culminating in G6,
which aligns with ExptA

E ,1
AND . Specifically, G1 and G2 alter the output of the block-

cipher with an ’unknown’ key from ExptA
E ,0

AND , replacing it with a random value.
G3 modifies how the output label is assigned. Games G4, G5, and G6 introduce
changes in the computation of the garbled table. We detail the specifics of each
intermediate world Hi and explain how differences between successive worlds can
be reduced to our underlying assumptions.
H0 : This is identical to what the adversary obtains in ExptA

E ,0
AND .

H1 : For the blockcipher with key wv
a, sample the output randomly. Concretely,

we let (Mλa0
a , leakλa0

a) := SimLEnc(wv
a, w

v
a, 1, λa∥0), (Mλa1

a , leakλa1
a) := SimLEnc(wv

a, w
v
a, 1, λa∥1).

This difference can be easily reduced to assumption 2-up[q∗] (Similar to the proof
of lemma.). Concretely, we have∣∣Pr[AE(H1)⇒ 1]− Pr[AE(H0)⇒ 1]

∣∣ ≤ Adv2-up[q∗](q∗, t∗)

H2 : For the blockcipher with key wv
a, sample the output randomly. Concretely,

we let (M0,λb

b , leak0,λb

b) := SimLEnc(wv
b , w

v
b , 1, 0∥λb), (M1,λb

b , leak1,λb

b) := SimLEnc(wv
b , w

v
b , λb, 1∥λb).

44

As discussed above, this difference can be reduced to an assumption 2-up[q∗].
Concretely, we have∣∣Pr[AE(H2)⇒ 1]− Pr[AE(H1)⇒ 1]

∣∣ ≤ Adv2-up[q∗](q∗, t∗)

H3 : We modify the assignment of wv
c and wv

c to align with SimAND (PInputs2).
Specifically, if λa = λb = 0, there are no changes. Otherwise, we sample wv

c ||λc

uniformly from {0, 1}n+1 and wv
c from {0, 1}n. We can reduce this difference to

XOR-res Assumption. Concretely, we have

∣∣Pr[AE(H3)⇒ 1]− Pr[AE(H2)⇒ 1]
∣∣ ≤ AdvXOR-res(q∗, t∗) +

1

2n+1

Proof. If λa = λb = 0, H2 ≡ H3. Otherwise, consider a (qE , t)-bounded adversary
AE against H2 and H3, we build an adversaryAE

2 against the distribution defined
in Eq. (6). Concretely, AE

2 proceeds with the following steps:

1. AE
2 initialize an empty list leak. Sample W v

a
$← {0, 1}n+1, W v

b
$← {0, 1}n+1.

Let wv
a := W v

a [1 . . . n], wv
b := W v

b [1 . . . n].
2. AE

2 involve the adversary AE and get its input w−
a , w−

b , wv
a, wv

b , va, vb, λa,
λb. Then, AE

2 adds Lout(w−
a ,W

v
a), Lout(w−

b ,W
v
b) to leak.

3. If λb = 1 (λa = 0 or λa = 1)
– (M00

a , leak0,0a) := SimLEnc(wv
a, w

v
a, λa, 00). Add leak0,0a to leak.

– submit s0 = wv
b ,m0 = M00

a to its XOR-res challenger. According to our
convention,AE

2 will get (y(or R), leak′) where leak′ = Lout(wv
b , s1), L̂⊕(s1,M

00
a).

Add Lin(wv
b , 00), Lout(wv

b , s1), L⊕(M00
a , s1) to leak.

– If va = vb = 1

• If πa = πb = 1: wv
c := {0, 1}n, wv

c∥λc := (y or R)

• Else: wv
c∥λc := (y or R), wv

c
$← {0, 1}n

– Else (va ̸= 1 or vb ̸= 1)
• If πa = πb = 1: wv

c := {0, 1}n, wv
c∥λc := (y or R)

• Else wv
c∥λc := (y or R), wv

c
$← {0, 1}n

4. If λb = 0, (λa = 1):
– M00

b , leak00b := SimLEnc(wv
b , w

v
b , λb, 00).

– submit s0 = wv
a,m0 = M00

b to its XOR-res challenger. According to our
convention,AE

2 will get (y(or R), leak′) where leak′ = Lout(wv
a, s1), L̂⊕(s1,M

00
b).

Add Lin(wv
a, 00), Lout(wv

a, s1), leak00b , L⊕(s1,M00
b) to leak.

– If va = vb = 1 (must be πa = 0, πb = 1): wv
c∥λc := y or R, wv

c
$← {0, 1}n.

– Else:
• If πa = πb = 1: wv

c
$← {0, 1}n, wv

c∥λc := (y or R).
• Else, wv

c∥λc := (y or R), wv
c

$← {0, 1}n
– If πa = πb = 1: let wv

c∥λc = (y or R) and wv
c := {0, 1}n).

– Else, let wv
c ||λc = (y or R) and wv

c := {0, 1}n).
5. Then emulate the remaining action of H2.

45

It can be seen that, as long as M0,0
a ̸= s1 when λb = 1 or M0,0

b ̸= s1 when λb = 0,
depending on whether the input tuple received by AE

2 is (y, leak) or (R, leak1)
outputted by the challenger XOR-res, the inputs to AE is identical to H2 and
H3. Note that Pr[M0,0

1[p] = s1] = 1/2n+1. Moreover, DE is (q∗, t∗)-bounded if
adversary AE is (qF , t) bounded. Then, the proof is finished.

H4 : When λa = 0 and λb = 1, there are no changes. Otherwise, let T1 = M01
a ⊕

M01
b ⊕R. We can reduce this difference to XOR-ope Assumption. Concretely, we

have ∣∣Pr[AE(H4)⇒ 1]− Pr[AE(H3)⇒ 1]
∣∣

≤ AdvXOR-ope(q∗, t∗) +
1

2n+1

Proof. If λa = 0, λb = 1, H4 ≡ H3. Otherwise, consider an adversary AE against
H4 and H5, we construct a distinguisher DE against the distribution defined in
Eq. (5). Concretely

1. DE initialize an empty list leak, sample W v
a

$← {0, 1}n+1, W v
b

$← {0, 1}n+1,
let wv

a := W v
a [1 . . . n], wv

b := W v
b [1 . . . n].

2. DE involve the adversary AE and get its input w−
a , w

−
b , wv

a, w
v
b , va, vb, λa, λb.

Then, DE add Lout(w−
a ,W

v
a), Lout(w−

b , W v
b) to leak.

3. Compute (M00
a , leak00a) := SimLEnc (wv

a, wv
a, λa, 00) and (M00

b , leak00b) :=
SimLEnc(wv

b , w
v
b , λb, 00).

4. Compute W0 = M00
a ⊕M00

b and add leak00a , leak00b , L⊕(M
00
a ,M00

b) to leak.
5. If λa = λb = 0, then wv

c ||λc = W0, wv
c

$← {0, 1}n

6. Otherwise, wv
c ||λc

$← {0, 1}n+1, wv
c

$← {0, 1}n
7. Set W v

c := wv
c∥λc, W v

c := wv
c∥λc

8. If λb = 0 (λa = 0 or λa = 1):
– Compute (M01

a , leak01a) := SimLEnc(wv
a, w

v
a, λa, 00) and add leak01a to leak.

– Submit s0 = wvb

b , m0
0 = M0,1

a and m1
0 := W

g(λa⊕va,1⊕λb⊕vb)
c , m0

1 :=

M0,1
a , m1

1
$← {0, 1}n+1 to its challenger XOR-ope. Then, the distinguisher

DE will get yb and leakb where leakb = [Lout(wvb

b , s1), L⊕(s1,m
b
0,m

b
1),

L⊕(m
b
0, s1,m

b
1)]. Let T1 := yb and add Lin(wvb

b , 01), Lout(wvb

b , s1), L⊕(mb
0,

s1,m
b
1) to leak.

9. If λb = 1, (λa = 1):
– Compute (M01

b , leak01b) := SimLEnc(wv
b , w

v
b , 0, 00)

– Submit s0 = wvb
a , m0

0 = M0,1
b and m1

0 := W v
c , m0

1 := M0,1
a , m1

1
$←

{0, 1}n+1 to its challenger XOR-ope. Then, the distinguisher DE will get
yb and leakb where leakb = [Lout(wva

a , s1), L⊕(s1,mb
0,m

b
1), L⊕(mb

0, s1,m
b
1)].

Let T1 := yb and add Lin(wv
a, 01), Lout(wva

a , s1), leak01b , L⊕(s1,mb
0,m

b
1) to

leak.
10. Emulates the remaining action of H3, return the output to AE and output

the guess of AE b′.

46

It can be seen that, as long as M1,1
a ̸= s1 (if λb = 0) or M1,1

b ̸= s1 (if λb = 1),
depending on whether the input tuple received by DE is (y0, leak0) or (y1, leak1)
outputted by the challenger XOR-ope, the inputs to AE is identical to H0 and
H1. Note that Pr[M1,1

b = s1] = 1/2n+1. Moreover, DE is (q∗, t∗)-bounded if
adversary AE is (qF , t) bounded. Then, the proof is finished.

H5 : If λa = 1 and λb = 0, there are no changes, and H5 ≡ H4. Otherwise, let
T2 = M10

a ⊕M10
b ⊕R and we can reduce this difference to XOR-ope (The proof

is similar to the above). Concretely, we have∣∣Pr[AE(H5)⇒ 1]− Pr[AE(H4)⇒ 1]
∣∣

≤ AdvXOR-ope(q∗, t∗) +
1

2n+1

H6 : If λa = 1, λb = 1, there are no changes, and H6 ≡ H5. Otherwise, let
T3 = M11

a ⊕M11
b ⊕R and we can reduce this difference to XOR-ope (The proof

is similar to the above). Concretely, we have∣∣Pr[AE(H6)⇒ 1]− Pr[AE(H5)⇒ 1]
∣∣

≤ AdvXOR-ope(q∗, t∗) +
1

2n+1

It’s easy to see that G0 and G6 capture the game ExptA
E ,0

AND and ExptA
E ,1

AND

respectively. Then, using a union bound, we can get Eq. (12) (Note that one of
the cases must meet Hi ≡ Hi+1(i ∈ {2, 3, 4}), so there is a term 3

2n+1 in this
formula instead of 4

2n+1).
Then, using a union bound, we can get this Lemma.

D.4 Security proof of GLNPLR

First, We describe a simulator S and hybrid schemes G1,G2,G3, G4 for the prvL
experiment. S is invoked with input (f, f(x)) and works in Fig. 23 . As we will
show, S will define an active label on a wire a and denote it by wv

a. This label
will be the one ”obtained” by the evaluator. The other label is inactive and is
denoted by kva. Note that the simulator doesn’t know the value of va.

We begin by proving that our garbling scheme achieves privacy.

1. G1(f, x): The procedure generate (F,X, d) is same as the adversary obtained
from ExptGLNPLR,S,0

PrvSimL .
2. G2(f, x) ≡ G1(f, x). We just use the active label wvi

i and inactive label wvi
i for

all wire i, but these computations and the leakage distribution are the same.
3. G3(f, x) ≈ G2(f, x). We replace GSL(wi, ℓi) with SimGSL (wi, ℓi) for all circuit

input wire i. For the differences between G2(f, x) and G3(f, x), we have:∣∣Pr[AE(G2(f, x))⇒ 1]− Pr[AE(G3(f, x))⇒ 1]
∣∣

≤
i∈Inputs∑

(ℓi − 1) ·Adv2-up[q∗](q∗, t∗)

47

procedure G1(f, x)
for i ∈ Inputs do

wπi
i , wπi

i
$← {0, 1}n, πi

$← {0, 1} , e[i, πi] := wπi
i ∥0, e[i, πi] := wπi

i ∥1
(wπi

i[0], · · · , w
πi
i[ℓ], leak

πi
GSL) := LGSL(wπi

i , 0)

(wπi
i[0], · · · , w

πi
i[ℓ], leak

πi
GSL) := LGSL(wπi

i , 1)

for (a[p], b[q], c, G) ∈ Gates do
PInputs = (wπa

a[p], w
πa
a[p], w

πb
b[q], w

πb
b[q], πa, πb)

if G = XOR then
(wπc

c , wπc
c , πc, F [c], leak) := LGbXOR(PInputs)

else if G = AND then
(wπc

c , wπc
c , πc, F [c], leak) := LGbAND(PInputs)

else wπc
c := wπa

a , wπc
c := wπa

a , πc = πa

(wvc
c[0], · · · , w

vc
c[ℓ], leak) := LGSL(wvc

c , λc)

(wvc
c[0], · · · , w

vc
c[ℓ], leak) := LGSL(wvc

c , λc)

for i ∈ Outputs do
d[i, πi] := Fk

πi
i
(0), d[i, 1] := F

k
πi
i

(1)

return (F,X, d, leak)

procedure G2(f, x) / G3(f, x)
for i ∈ Inputs do

wvi
i , wvi

i
$← {0, 1}n, λi

$← {0, 1}, e[i] := wvi
i ∥λi

(wvi
i[0], · · · , w

vi
i[ℓ], leak) := LGSL(wvi

i , λi)

(wvi
i[0], · · · , w

vi
i[ℓ], leak) := LGSL(wvi

i , λi) ▷ G2
(wvi

i[0], · · · , w
vi
i[ℓ], leak) := LSimGSL(wvi

i , λi) ▷ G3
for (a, b, c,G) ∈ Gates do

PInputs 1 = (wva
a , wva

a , w
vb
b , w

vb
b , λa, λb)

PInputs 2 = (wva
a , wva

a , w
vb
b , w

vb
b , λa, λb, va, vb)

if G = XOR then
(wvc

c , wvc
c , λc, T, leakHXOR) := LHXOR(PInputs1)

else if G = AND then
(kvc

c , kvc
c , λc, T, leakHAND) := LHAND(PInputs2)

else wλc
c := wλa

a , wλc
c := wλa

a , λc = λa

vc = G(va, vb) (if G = NOT, think vb = ⊥)
(wvc

c[0], · · · , w
vc
c[ℓ], leak) := LGSL(wvc

c , λc)

(wvc
c[0], · · · , w

vc
c[ℓ], leak) := LGSL(wvc

c , λc)

for i ∈ Outputs do
d[i, f(x)i] := Fk

vi
i
(λi), d[i, f(x)i] := E

k
vi
i

(λi)

return (F,X, d, leak)

Fig. 22: Procedures for the proof of GLNPLR privacy. Additionally, each proce-
dure incorporates an implicit input LGarble. (Continued in Fig. 23)

48

procedure G4(f, f(x))
for i ∈ Inputs do

kvi
i , kvi

i
$← {0, 1}n, λi

$← {0, 1}, X[i] := kvi
i ∥λi

(wvi
i[0], · · · , w

vi
i[ℓ], leakGSL) := GSL(wvi

i , λi)

(wvi
i[0], · · · , w

vi
i[ℓ], leakSimGSL) := SimGSL(wvi

i , λi)

for (a[p], b[q], c, G) ∈ Gates do
PInputs = (wva

a , wva
a , w

vb
b , w

vb
b , λa, λb)

if G = XOR then
(wvc

c , wvc
c , λc, T, leakXOR) := LSimXOR(PInputs)

else if G = AND then
(wvc

c , wvc
c , λc, T, leakAND) := LSimAND(PInputs)

else
wλc

c := wλa
a , wλc

c := wλa
a , λc = λa

(wvc
c[0], · · · , w

vc
c[ℓ], leak) := LGSL(wvc

c , λc)

(wvc
c[0], · · · , w

vc
c[ℓ], leak) := LSimGSL(wvc

c , λc)

for i ∈ Outputs do
d[i, f(x)i] := Fk

vi
i
(λi), d[i, f(x)i] := E

k
vi
i

(λi)

return (F,X, d, leak)

procedure S(f, f(x))
for i ∈ Inputs do

kvi
i , kvi

i
$← {0, 1}n, λi

$← {0, 1}, X[i] := kvi
i ∥λi

(wvi
i[0], · · · , w

vi
i[ℓ], leakGSL) := GSL(wvi

i , λi)

(wvi
i[0], · · · , w

vi
i[ℓ], leakSimGSL) := SimGSL(wvi

i , λi)

for (a[p], b[q], c, G) ∈ Gates do
PInputs = (wva

a , wva
a , w

vb
b , w

vb
b , λa, λb)

if G = XOR then
(wvc

c , wvc
c , λc, T, leakXOR) := LSimXOR(PInputs)

else if G = AND then
(wvc

c , wvc
c , λc, T, leakAND) := LSimAND(PInputs)

(wvc
c[0], · · · , w

vc
c[ℓ], leak) := LGSL(wvc

c , λc)

(wvc
c[0], · · · , w

vc
c[ℓ], leak) := LSimGSL(wvc

c , λc)

for i ∈ Outputs do
d[i, f(x)i] := Fw

vi
i
(λi), d[i, f(x)i] $← {0, 1}n+1

return (F,X, d, leak)

Fig. 23: Procedures for the proof. Additionally, each procedure incorporates an
implicit input LGarble. (Continued from Fig. 22)

where q∗ = (12g1 + 6g2 − 4ℓin + 6ℓout + qE), t∗ = O(t+ (12g1 + 6g2 − 4ℓin +
6ℓout+qE)tl), g1, g2, g3 is the number of AND gate, XOR gate and XOR gate
respectively, ℓin is the number of input wires, ℓout is the number of output
wires and tl is the total time needed for evaluating Lin, Lout.

49

4. G4(f, f(x)) ≈ G3(f, f(x)). We replace LHXOR, LHAND and GSL with LSimXOR,
LSimAND and SimGSL. For the differences between G4(f, f(x)) and G3(f, f(x)),
we can use a hybrid argument easily and can obtain:∣∣Pr[AE(G4(f, f(x))) = 1]− Pr[AE(G3(f, x)) = 1]

∣∣ (13)
≤ g1AdvAND(qE , t) + g2AdvXOR(qE , t)

+

i∈{ℓin+1,...,ℓin+g}∑
(ℓi − 1) ·Adv2-up[q∗](q∗, t∗)

where q∗ = (12g1 + 6g2 − 4ℓin + 6ℓout + qE), t∗ = O(t+ (12g1 + 6g2 − 4ℓin +
6ℓout+qE)tl), g1, g2, g3 is the number of AND gate, XOR gate and XOR gate
respectively, ℓin is the number of input wires, ℓout is the number of output
wires and tl is the total time needed for evaluating Lin, Lout.

5. S(f, f(x)) ≈ G4(f, x). We replace inactive output labels d[i, f(x)i] $← {0, 1}n+1.We
have the following equation:∣∣Pr[AE(S(f, x))⇒ 1]− Pr[AE(G4(f, f(x)))⇒ 1]

∣∣ (14)
≤ ℓout ·Adv2-up[q∗](q∗, t∗, ℓi)

where q∗ = (12g1 + 6g2 − 4ℓin + 6ℓout + qE), t∗ = O(t+ (12g1 + 6g2 − 4ℓin +
6ℓout+qE)tl), g1, g2, g3 is the number of AND gate, XOR gate and XOR gate
respectively, ℓin is the number of input wires, ℓout is the number of output
wires and tl is the total time needed for evaluating Lin, Lout.

Then, using a union bound, we can get the Theorem 1. Note that (
∑i∈{1,...,ℓin+g}

ℓi =
2g1 + 2g2 + g3 + ℓout).

D.5 Proofs of Theorem 2

Proof of leakage-resilient obliviousness We construct a simulator that out-
puts (F,X, leak) given only circuit f as an input to satisfy the obliviousness
requirement. Note that the simulator S completed above for the privacy re-
quirement outputs the triple (F,X, d, leak). However, S uses circuit f only for
generating (F,X, leak), particularly the output f(x), used only for generating
d. Thus, we can remove the generation of the decoding information from S’s
instruction and obtain a simulator that produces only (F,X, leak) as required.
Proving that this simulator’s output is indistinguishable from (F,X, leak) gen-
erated by the real scheme is the same as in the proof of privacy.

Proof of leakage-resilient authenticity Regarding authenticity, we need to
show that an adversary AE that is given (F,X) as input can output Ỹ such that
Decode (Ỹ , d ̸= {f(x),⊥}) with at most probability m

2n+1 +AdvprvL(A).
At first, we claim that if we give AE the pair (F,X) generated by our simu-

lator, it can succeed only with probability at most m
2n+1 . This is because in the

simulator, for each output wire corresponding to the jth output bit, d[j, f(x)j]

50

is a random string, and it can succeed only with probability at most 1/2n+1.
Then, using a union bound can get the claim.

Now, if given the real (F,X, leak), the adversary can output such a Ỹ with
probability more than m

2n+1 +AdvGLNPLR,S,LGarble

PrvSimL (qE , t). It could be used by an
adversary given (F,X, d) to break the privacy property with probability more
than AdvGLNPLR,S,LGarble

PrvSimL (qE , t). Observe that since the adversary in the privacy
experiment is given all of the decoding information d, it can efficiently verify if
AE output a Ỹ with the property that Decode(Ỹ , d) /∈ {f(x),⊥}.

E Definition of OT Protocols

Formally, an n-OT protocol OT = (Π1,Π2) is an SFE scheme for function
fot = (fot

1 , fot
2), where fot

1 (x, y) = ⊥ and fot
2 (x, y) = (Xy1

1 , · · · , Xyn
n). In this

context, x comprises the vectors X0
1 , X

1
1 , · · · , X0

n, X
1
n, and y is an n-bit string

with yi as its ith bit.

F Proof of Theorem 4

Using the notations in Appendix E, we first provide a more formal presentation
of Theorem 3.

Theorem 4. Assume OT is an sfe security n-OT protocol and the garbling
scheme G = (Garble,Encode,Eval,Decode) is PrvSimL secure w.r.t the leakage
LGarble. Then the above SFE scheme YaoSFE is sfeLR-secure w.r.t. the leakage
(⊥, LGarble).

Proof. Let i ∈ {1, 2} and let B be a PT adversary attacking F . We build a PT
adversary BG attack G and a PT adversary BOT attack OT . By assumptions,
these have simulators, respectively SG ,SOT . We then use these simulators to
build a simulator S for B such that for i = 1, we have

AdvF,S,LGarble,1
sfeLR (B) ≤ AdvG,SG ,LGarble

PrvSimL (BG) +AdvOT ,SOT ,1
sfe (BOT)

Case 1: i = 1. Adversary BG runs B to get its GetView query f, x, y. It will
compute and return a reply view as well as the Garble leakage LGarble to this
query as follows. Adversary BG queries its LGarble oracle with f, x∥y to get back
(F, (X1, . . . , Xn+m), d, leakGb). It records (F, d) as well as Xn+1, . . . , Xn+m as
the first message in conv. (This message is from party 2 to party 1.) Now, for
i = 1, . . . , n, it lets Xxi

i := Xn+i and X1−xi
i

$← {0, 1}|Xn+i|.
It then lets viewot := V iew1

Πot(fot, x, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n)). It obtains

this by direct execution of the 2-party protocol Πot on inputs x for party
1 and (X0

1 , X
1
1 , . . . , X

0
n, X

1
n) for party 2, it appends convot to conv. Finally,

compute the output y = De(Eval(F,X)) and append y to conv and return
(conv, w1, leakGb) to B’s query. Adversary B now output a bit b′, and B adopt
this as its own output as well.

51

Adversary BOT runs B to get its GetView query f, x, y. It will compute and re-
turn a reply view to this query as follows. Adversary BOT lets (F, e, d, leakGb) :=
LGarble(f) and parses (X0

1 , X
1
1 , . . . , X0

n+m, X1
n+m) := e. It records (F, d) as

well as Xy1

n+1 . . . , Xym

n+m as the first message in conv. It makes query viewot :=
GetView(fot, x, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n)). Parsing viewot as (convot, wot

1), it ap-
pends convot to conv. Finally, compute the output y = De(Eval(F,X)), append
y to conv and return (conv, w1, leakGb) to B’s query. Adversary B now output a
bit b′, and B adopt this as its own output as well.

By assumption, the two adversaries we have just built have simulators, re-
spectively SG , SOT . We define simulator S for B. On input f, x, it lets (F, (X1, . . .,
Xm+n), d, leakGb) := SG(f(x, y), f) and records (F, d), Xn+1, . . . , Xn+m as the
first message in conv. It lets viewot := SOT (f

ot, x, (X1, . . . , Xn)). Parsing viewot

as (convot, wot
1), it appends convot to conv and then return view = (conv, wot

1 ,
leakGb)

We then use these simulators to build a simulator S for B such that for i = 2,
we have

AdvF,S,LGarble,2
sfeLR (B) ≤ AdvOT ,SOT ,2

sfe (BOT)

Case 2: i = 2. Adversary BOT (1
k) runs B(1k) to get its GetView query f, x, y.

It will compute and return a reply view to this query as follows. Adversary
BOT lets (F, e, d) := Garble(f) and parses (X0

1 , X
1
1 , . . ., X0

n+m, X1
n+m) := e. It

makes query viewot := GetView (fot, x, (X0
1 , X

1
1 , . . . , X0

n, X
1
n)). Parsing viewot

as (convot, wot
2), it appends convot to conv. Finally, compute the output (Y) =

Eval(F,X). Compute y = De(Y) and append y to conv and return (conv, w2) to
B’s query. Adversary B now output a bit b′, and B adopt this as its own output
as well.

By assumption, the adversary we have just built has simulator SOT . We de-
fine simulator S for B. On input f, x, y, it lets (F, e, d) := Gb(f) and parses
(X0

1 , X
1
1 , . . . , X0

n+m, X1
n+m) := e. It lets viewot := SOT (x, (X

x1
1 , . . . , Xxn

n),
(|X0

1 |, |X1
1 |, . . ., |X0

n|, |X1
n|)). Parsing viewot as (convot, wot

1), it appends convot

to conv. Then compute Y := Eval(F,X), let y := Decode(d, Y) and add y to
conv. Then return view = (conv, wot

1). ⊓⊔

References

1. A. Barak, M. Hirt, L. Koskas, and Y. Lindell. An end-to-end system for large scale
P2P MPC-as-a-service and low-bandwidth MPC for weak participants. In ACM
Conf. on Computer and Communications Security (CCS) 2018, pages 695–712.
ACM Press, 2018.

2. G. Barwell, D. P. Martin, E. Oswald, and M. Stam. Authenticated encryption
in the face of protocol and side channel leakage. In Advances in Cryptology—
Asiacrypt 2017, Part I, LNCS, pages 693–723. Springer, 2017.

3. M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a
fixed-key blockcipher. In IEEE Symposium on Security and Privacy (S&P) 2013,
pages 478–492, 2013.

52

4. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
ACM Conf. on Computer and Communications Security (CCS) 2012, pages 784–
796. ACM Press, 2012.

5. M. Bellare and P. Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 409–426. Springer,
2006.

6. D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval, C. Guo, G. Leander,
G. Leurent, I. Levi, C. Momin, et al. Spook: Sponge-based leakage-resistant au-
thenticated encryption with a masked tweakable block cipher. 2020. Submission
to NIST LWC.

7. D. Bellizia, O. Bronchain, G. Cassiers, V. Grosso, C. Guo, C. Momin, O. Pereira,
T. Peters, and F.-X. Standaert. Mode-level vs. implementation-level physical secu-
rity in symmetric cryptography - A practical guide through the leakage-resistance
jungle. LNCS, pages 369–400. Springer, 2020.

8. F. Berti, C. Guo, O. Pereira, T. Peters, and F.-X. Standaert. TEDT: a leakage-
resistant AEAD mode. 2020(1):256–320, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/8400.

9. P. Chapman, D. Evans, Y. Huang, and S. Koo. Secure Computation on Smart-
phones. http://mightbeevil.org/mobile/, 2017.

10. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches
to counteract power-analysis attacks. In Advances in Cryptology—Crypto 1999,
volume 1666 of LNCS, pages 398–412. Springer, 1999.

11. J.-S. Coron, A. Greuet, E. Prouff, and R. Zeitoun. Faster evaluation of sboxes
via common shares. In International Conference on Cryptographic Hardware and
Embedded Systems, pages 498–514. Springer, 2016.

12. J.-S. Coron, E. Prouff, M. Rivain, and T. Roche. Higher-order side channel security
and mask refreshing. In Fast Software Encryption (FSE), LNCS, pages 410–424.
Springer, 2014.

13. C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas, and
T. Unterluggauer. Isap v2.0. 2020. Submission to NIST LWC.

14. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In 49th Annual
Symposium on Foundations of Computer Science (FOCS), pages 293–302. IEEE,
2008.

15. D. Goudarzi and M. Rivain. How fast can higher-order masking be in software? In
Advances in Cryptology—Eurocrypt 2017, Part I, LNCS, pages 567–597. Springer,
2017.

16. H. Groß, S. Mangard, and T. Korak. An efficient side-channel protected AES
implementation with arbitrary protection order. In Cryptographers’ Track—RSA,
LNCS, pages 95–112. Springer, 2017.

17. S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast garbling of circuits under
standard assumptions. J. Cryptology, 31(3):798–844, July 2018.

18. C. Guo, J. Katz, X. Wang, C. Weng, and Y. Yu. Better concrete security for half-
gates garbling (in the multi-instance setting). LNCS, pages 793–822. Springer,
2020.

19. C. Guo, X. Wang, K. Yang, and Y. Yu. On tweakable correlation robust hashing
against key leakages. Cryptology ePrint Archive, Paper 2024/163, 2024.

20. X. Guo, K. Yang, X. Wang, W. Zhang, X. Xie, J. Zhang, and Z. Liu. Half-tree:
Halving the cost of tree expansion in COT and DPF. LNCS, pages 330–362.
Springer, 2023.

53

https://tches.iacr.org/index.php/TCHES/article/view/8400
https://tches.iacr.org/index.php/TCHES/article/view/8400
http://mightbeevil.org/mobile/

21. M. Hashemi, D. Forte, and F. Ganji. Time is money, friend! timing side-channel
attack against garbled circuit constructions. In C. Pöpper and L. Batina, edi-
tors, Applied Cryptography and Network Security - 22nd International Conference,
ACNS 2024, Abu Dhabi, United Arab Emirates, March 5-8, 2024, Proceedings, Part
III, volume 14585 of Lecture Notes in Computer Science, pages 325–354. Springer,
2024.

22. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation
using garbled circuits. In USENIX Security Symposium 2011. USENIX Association,
2011.

23. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Garbled circuits for
leakage-resilience: Hardware implementation and evaluation of one-time programs
- (full version). In Cryptographic Hardware and Embedded Systems – CHES 2010,
LNCS, pages 383–397. Springer, 2010.

24. D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert. Mobile private
contact discovery at scale. In USENIX Security Symposium 2019, pages 1447–1464.
USENIX Association, 2019.

25. J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage re-
silience. In Advances in Cryptology—Asiacrypt 2009, volume 5912 of LNCS, pages
703–720. Springer, 2009.

26. E. Kiltz and K. Pietrzak. Leakage resilient ElGamal encryption. In Advances in
Cryptology—Asiacrypt 2010, LNCS, pages 595–612. Springer, 2010.

27. knarfrank. Higher-Order-Masked-AES-128. https://github.com/knarfrank/
Higher-Order-Masked-AES-128, 2016.

28. V. Kolesnikov, P. Mohassel, and M. Rosulek. FleXOR: Flexible garbling for XOR
gates that beats free-XOR. In Advances in Cryptology—Crypto 2014, Part II,
volume 8617 of LNCS, pages 440–457. Springer, 2014.

29. V. Kolesnikov and C. Rackoff. Password mistyping in two-factor-authenticated
key exchange. In Intl. Colloquium on Automata, Languages, and Programming
(ICALP), volume 5126 of LNCS, pages 702–714. Springer, 2008.

30. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In Intl. Colloquium on Automata, Languages, and Programming
(ICALP), volume 5126 of LNCS, pages 486–498. Springer, 2008.

31. I. Levi and C. Hazay. Garbled circuits from an SCA perspective free XOR can be
quite expensive. . 2023(2):54–79, 2023.

32. Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, Apr. 2009.

33. M. Lipp, A. Kogler, D. F. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss. PLATYPUS: Software-based power side-channel attacks on x86. pages
355–371, 2021.

34. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party com-
putation system. In USENIX Security Symposium 2004, pages 287–302. USENIX
Association, 2004.

35. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks - Revealing the
Secrets of Smart Cards. Springer, 2007.

36. D. P. Martin, E. Oswald, M. Stam, and M. Wójcik. A leakage resilient MAC.
LNCS, pages 295–310, 2015.

37. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism
design. In Proceedings of the 1st ACM Conference on Electronic Commerce, pages
129–139, 1999.

54

https://github.com/knarfrank/Higher-Order-Masked-AES-128
https://github.com/knarfrank/Higher-Order-Masked-AES-128

38. O. Pereira, F.-X. Standaert, and S. Vivek. Leakage-resilient authentication and
encryption from symmetric cryptographic primitives. In ACM Conf. on Computer
and Communications Security (CCS) 2015, pages 96–108. ACM Press, 2015.

39. K. Pietrzak. A leakage-resilient mode of operation. In Advances in Cryptology—
Eurocrypt 2009, LNCS, pages 462–482. Springer, 2009.

40. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party com-
putation is practical. In Advances in Cryptology—Asiacrypt 2009, volume 5912 of
LNCS, pages 250–267. Springer, 2009.

41. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. In Cryp-
tographic Hardware and Embedded Systems – CHES 2010, LNCS, pages 413–427.
Springer, 2010.

42. M. Rosulek and L. Roy. Three halves make a whole? Beating the half-gates lower
bound for garbled circuits. LNCS, pages 94–124. Springer, 2021.

43. O. P. Team. OpenSSL Coding Style. https://www.openssl.org/policies/
codingstyle.html, 2015.

44. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science (FOCS), pages 162–167.
IEEE, 1986.

45. Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseu-
dorandom generators. In ACM Conf. on Computer and Communications Security
(CCS) 2010, pages 141–151. ACM Press, 2010.

46. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Advances in Cryptology—
Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, 2015.

47. R. Zhang, S. Qiu, and Y. Zhou. Further improving efficiency of higher order
masking schemes by decreasing randomness complexity. IEEE Transactions on
Information Forensics and Security, 12(11):2590–2598, 2017.

55

https://www.openssl.org/policies/codingstyle.html
https://www.openssl.org/policies/codingstyle.html

	 Leakage-Resilience of Circuit Garbling

