
Finding Complete Impossible Differential Attacks
on AndRX Ciphers and Efficient Distinguishers for

ARX Designs
Debasmita Chakraborty2 , Hosein Hadipour1 , Phuong Hoa Nguyen3

and Maria Eichlseder1

1 Graz University of Technology, Graz, Austria
hsn.hadipour@gmail.com, maria.eichlseder@iaik.tugraz.at

2 Indian Statistical Institute, Kolkata, India
debasmitachakraborty1@gmail.com

3 Univ Rennes, Inria, Centre National de la Recherche Scientifique, Institut de Recherche en
Informatique et Systèmes Aléatoires, Rennes, France

phuong-hoa.nguyen@irisa.fr

Abstract. The impossible differential (ID) attack is one of the most important
cryptanalytic techniques for block ciphers. There are two phases to finding an ID
attack: searching for the distinguisher and building a key recovery upon it. Previous
works only focused on automated distinguisher discovery, leaving key recovery as a
manual post-processing task, which may lead to a suboptimal final complexity. At
EUROCRYPT 2023, Hadipour et al. introduced a unified constraint programming
(CP) approach based on satisfiability for finding optimal complete ID attacks in
strongly aligned ciphers. While this approach was extended to weakly-aligned designs
like PRESENT at ToSC 2024, its application to ARX and AndRX ciphers remained
as future work. Moreover, this method only exploited ID distinguishers with direct
contradictions at the junction of two deterministic transitions. In contrast, some ID
distinguishers, particularly for ARX and AndRX designs, may not be detectable by
checking only the existence of direct contradictions.
This paper fills these gaps by extending Hadipour et al.’s method to handle indirect
contradictions and adapting it for ARX and AndRX designs. We also present a
similar method for identifying zero-correlation (ZC) distinguishers. Moreover, we
extend our new model for finding ID distinguishers to a unified optimization problem
that includes both the distinguisher and the key recovery for AndRX designs. Our
method improves ID attacks and introduces new distinguishers for several ciphers,
such as SIMON, SPECK, Simeck, ChaCha, Chaskey, LEA, and SipHash. For example, we
achieve a one-round improvement in ID attacks against SIMON-64-96, SIMON-64-128,
SIMON-128-128, SIMON-128-256 and a two-round improvement against SIMON-128-
192. These results significantly contribute to our understanding of the effectiveness
of automated tools in the cryptanalysis of different design paradigms.
Keywords: Cryptanalysis · Impossible differentials · Key recovery · CP · ARX ·
AndRX · SIMON · SPECK · Simeck · ChaCha · Chaskey · LEA · SipHash

1 Introduction
Impossible differential (ID) cryptanalysis is one of the most powerful cryptanalytic tech-
niques for block ciphers, independently introduced by Biham et al. [BBS99] and Knudsen
[Knu98]. Its core idea is first using impossible differentials, which are differential transitions
with probability zero, to distinguish the block cipher from a random permutation. Once an

https://orcid.org/0000-0001-7240-5304
https://orcid.org/0000-0002-3820-3765
https://orcid.org/0000-0003-4074-5480
https://orcid.org/0000-0002-8750-7423
mailto:hsn.hadipour@gmail.com
mailto:maria.eichlseder@iaik.tugraz.at
mailto:debasmitachakraborty1@gmail.com
mailto:phuong-hoa.nguyen@irisa.fr

2 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

ID distinguisher is obtained, we extend it by a few rounds, possibly at both ends. A guessed
value for the involved key bits that partially encrypts/decrypts a given pair to the impossi-
ble differential is undoubtedly wrong, and we should discard it. Having access to a certain
number of pairs, the goal is to discard as many wrong candidates for the involved keys as
possible (referred to as the guess-and-filter step). Finally, we brute-force the remaining
candidates to uniquely identify the correct key (referred to as the exhaustive search step).
We can adjust the attack parameters, for example, the number of pairs, to make a trade-off
between the complexity of the guess-and-filter and the exhaustive search phases. The ID
attack has been successfully applied to many block ciphers. For example, ID attacks are
the best cryptanalysis results for CAMELLIA [LLG+12, BNPS14]. As another example, ID
attacks were the first attack on 7 rounds of AES [ZWF07, LDKK08, MDRMH10], and that
remained one of the best attacks for a long time. The dual of the ID attack in the context
of linear cryptanalysis is the zero-correlation (ZC) attack that was introduced by Bogdanov
and Rijmen [BR14]. While the ID attack exploits differential transitions with probability
zero, the ZC attack exploits linear hulls with correlation zero as a distinguishing property.

Building an ID attack, similar to many other statistical attacks on block ciphers,
includes two main phases: finding a distinguisher and extending it for key recovery.
Together with introducing the ID attack, Biham et al. [BBS99] also introduced a method
to find ID distinguishers: the miss-in-the-middle approach. The core idea of the miss-
in-the-middle approach is to find input and output differences such that if the difference
propagations are deterministic through the cipher forward and backward, respectively,
they contradict each other somewhere in the middle. A similar method applies to the ZC
attack as well. While the miss-in-the-middle method provides a systematic way to check
whether a given input/output difference results in an ID distinguisher, it does not offer
a systematic way to choose input and output differences that efficiently result in an ID
distinguisher. In practice, one should try several input/output differences (typically with
very few active words or bits) and propagate them halfway with probability one to see
if they contradict each other. While this approach might be easy to apply at the word
level for strongly aligned and symmetric designs like AES [DR99] and CLEFIA [SSA+07],
it is not straightforward to apply it to designs like SKINNY [BJK+16] with its slower
and less regular diffusion properties. Its application to bit-oriented designs like SIMON,
SPECK [BSS+15], and Simeck [YZS+15] is even more complicated.

Finding ID distinguishers requires tracking the differential transitions through the
building blocks of block ciphers at the level of words (nibbles or bytes) or sometimes
bits. Regarding the key recovery phase, the attacker has to extend the distinguisher,
possibly at two ends, considering more cryptographic properties. This includes identifying
the internal states and, subsequently, the key bits whose values are needed to determine
the input/output difference of the ID distinguisher. The distinguisher and key recovery
parameters, like the number of pairs, should be chosen to minimize the total time complexity
of the attack. Overall, building the ID attack is a combinatorial optimization problem
that can be daunting and prone to human error if done manually. Therefore, several
efforts have been made to automate ID attacks. There are two common approaches to
automating the cryptanalytic techniques in symmetric-key cryptography: the first relies
on dedicated algorithms, and the second relies on general-purpose solvers. In the second
approach, the cryptanalyst models the cryptanalytic problem as a constraint satisfaction
problem (CSP) or a constraint optimization problem (COP) and then uses state-of-the-art
general-purpose constraint programming (CP) solvers to solve it. Note that CP solvers
include many solvers, such as Satisfiability Modulo Theories (SMT), Satisfiability (SAT),
and MILP solvers.

The first few efforts to automate the ID attack relied on dedicated algorithms and only
focused on finding the distinguishers. Examples include the U -method [KHS+03] and the
UID-method [LLWG14]. Another tool based on a dedicated algorithm is the tool provided

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 3

by Derbez and Fouque at CRYPTO 2016 [DF16] for finding DS-MITM attacks that is
also applicable for finding ID attacks. The main downside of the dedicated algorithms
is that they are typically designed for a specific type of design, and modifying them for
a new design may require substantial effort. Additionally, providing dedicated, efficient
algorithms for solving cryptanalytic problems is typically a challenging task.

As one of the pioneering methods in the category of general-purpose solvers, at EURO-
CRYPT 2017, Sasaki and Todo [ST17] proposed a method based on Mixed-Integer Linear
Programming (MILP) to find ID distinguishers. Cui et al. [CCJ+21] also independently
introduced this method almost simultaneously (the paper [CCJ+21] was published in
2021, but its eprint version was online since 2016 [CJF+16]) and applied it to finding ZC
distinguishers. The main advantage of the CP-based method by Sasaki and Todo (and
Cui et al.) is that the attacker does not have to predict the contradiction mechanism, and
this tool can find more complicated contradictions that are not simply detectable by a
naive miss-in-the-middle approach. However, the main disadvantage of this approach is
that the input/output difference (or linear mask) should be fixed on each try, checking
whether the resulting model is unsatisfiable. If so, the input/output difference (resp.
linear mask) yields an impossible differential (resp. zero-correlation linear hull). Thus,
the attacker needs to try many input/output differences before finding the distinguisher,
with non-negligible complexity per try. As a result, the search space for the input/output
differences is typically limited to the input/output differences with very few active words
or bits. More importantly, the CP-based method by Sasaki and Todo [ST17] and Cui
et al. [CCJ+21] is based on the unsatisfiability of the CP/MILP model and thus cannot
be extended to a unified constraint optimization model for key recovery. This limitation
restricts the usage of this CP-based method to only finding the distinguishers.

At EUROCRYPT 2023, Hadipour et al. [HSE23] introduced a CP-based model that
converts the search for impossible differentials into a satisfiability problem, extendable
to a unified constraint optimization model for key recovery. This method also applies to
finding ZC and integral attacks. However, the CP model in [HSE23] was word-oriented,
suitable for strongly/moderately aligned designs like SKINNY. At ToSC 2024, Hadipour
et al. [HGSE24] enhanced this method by extending it to a bit-wise model, considering
the internal structure of S-boxes. As a result, they provided a bit-wise CP model based
on satisfiability for finding ID/ZC distinguishers for weakly aligned designs such as Ascon
[DEMS21]. While the methods in [HSE23, HGSE24] improved the best-known ID/ZC and
integral attacks on several SPN ciphers, their application to an essential category of block
ciphers, i.e., Addition-Rotation-XOR (ARX) and And-Rotation-XOR (AndRX) designs,
was left for future work. Additionally, the method introduced in [HSE23, HGSE24] identifies
contradictions at the junction of two deterministic propagations (referred to as direct
contradictions). However, for some ID distinguishers, the contradiction is more complicated
and cannot be identified solely based on checking the existence of direct contradictions
[SB18]. We refer to these contradictions as indirect contradictions. Therefore, extending
the method in [HSE23, HGSE24] to identify indirect contradictions while maintaining the
model based on satisfiability is an open problem.

Our contributions. This paper extends the methods proposed at EUROCRYPT 2023
and ToSC 2024 for finding ID attacks [HSE23, HGSE24] from different aspects. First,
we provide a CP-based model based on satisfiability to find ID distinguishers for ARX
and AndRX ciphers. Then, as the main contribution regarding the distinguisher part, we
propose a CP-based model based on satisfiability capable of identifying particular indirect
contradictions for the first time. The application of our CP model for identifying indirect
contradictions is not limited to ARX and AndRX ciphers; it applies to other categories of
block ciphers like SPN and Feistel ciphers. We also show the applicability of our new CP
models for finding ZC distinguishers. Next, we show how to extend the CP-model for key

4 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

recovery in [HSE23, HGSE24] for bit-wise designs, particularly AndRX designs. Lastly,
we put our new models for distinguisher and key-recovery parts into a unified CP model
for finding the complete ID attacks, including the key recovery evaluations. To show the
usefulness of our methods, we apply them to find ID distinguishers/attacks on several ARX
and AndRX ciphers and improve the best previous results. Table 1 and Table 2 provide a
summary of ID distinguishers of ARX ciphers, and a summary of the complete ID attack
on AndRX ciphers, respectively. Additionally, Table 11 (Subsection D.3 in Appendix D)
and Table 12 (Subsection D.4 in Appendix D) present an overview of existing attacks
(excluding ID attacks) on SIMON, and Simeck, respectively.

• We provide ID distinguishers for ChaCha [Ber08], Siphash [AB12], SPECK-96, and
SPECK-128 [BSS+15] for the first time.

• We provide several new ID distinguishers for Chaskey [MMH+14] and SPECK with
truncated input/output differences.

• We improve ID attacks on SIMON-64-96, SIMON-64-128, SIMON-128-128, and SIMON-
128-256 by one round, and SIMON-128-192 by two rounds.

• We provide improved attacks on various variants of SIMON and Simeck: While many
previous attacks required the full code-book, we provide ID attacks for the same
number of rounds with a lower data complexity than the full code-book.

Table 1: ID Distinguishers on ARX ciphers. #R: Length of the distinguisher. #Dist. :
Number of distinguishers found using our tool.

Cipher Contradiction #R #Dist. Ref.

SPECK-32 Direct 6 3 [RC19]
Direct 6 24 F

SPECK-48 Direct 6 20 [RC19]
Direct 6 217 F

SPECK-64 Direct 6 157 [LKH+16, RC19]
Direct 6 233 F

SPECK-96 Direct 6 265 5.1.1
SPECK-128 Direct 6 297 5.1.1

LEA Direct 10 - [CCJ+21]
Direct 10 22 5.1

ChaCha Direct 5 280 5.1

SipHash Direct 4 214 5.1

Chaskey Direct 4 15 [SBS21]
Direct 4 27 5.1

Performance. Unlike previous tools based on unsatisfiability, our tool efficiently identifies
a group of ID/ZC distinguishers (or truncated distinguishers) in just one execution, without
fixing input/output differences, and terminates within minutes to a few hours on a laptop
(Intel Core i5-8250U CPU 1.6GHz × 8 and 8GB of memory). MiniZinc [NSB+07] is
used to model and solve CSP problems. The source code of our tool is available at:
https://github.com/Debasmita-isi/zeroplusplus.

Outline. We start with an overview of ID attacks and recall Hadipour et al.’s model
in Section 2. Next, in Section 3, we describe our new approach for identifying ID/ZC
distinguishers with indirect contradictions for ARX and AndRX designs. Section 4 extends

https://github.com/Debasmita-isi/zeroplusplus

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 5

Table 2: Summary of our ID attacks. Dist. = Length of the distinguisher. #R = Number
of rounds attacked. † : Distinguisher based on indirect contradiction.
Cipher Dist. #R Time Data Mem. Ref.

SIMON-32-64

11 19 262.56 232 244 [BNPS14]
11 19 258.919 232 249.674 [CWW15]
11 20 262.8 232 243.5 [DF16]
11 19/20 259/ 262 230.79/230.47 249.8 / 251.5 F

SIMON-48-72
12 20 270.69 248 258 [BNPS14]
12 20 271.278 248 263.393 [CWW15]
12 20 267 246.79 264.8 F

SIMON-48-96
12 21 294.73 248 270 [BNPS14]
12 21 294.556 248 286.447 [CWW15]
12 21 286.79 247.7 277.8 F

SIMON-64-96
13 21 294.56 264 260 [BNPS14]
13 21 295.279 264 272.469 [CWW15]
13 21/22 270.28/291 259.27/262.79 269.3/283.8 F

SIMON-64-128
13 22 2126.56 264 275 [BNPS14]
13 22 2125.115 264 298.773 [CWW15]
13 22/23 298/2123 259.4/261.27 285.37/296.3 F

SIMON-96-96 16 24 294.62 294 261 [BNPS14]
16 24 288 283.47 269.5 F

SIMON-96-144 16 25 2142.59 296 277 [BNPS14]
16 25 2122 294.93 287.9 F

SIMON-128-128 19 27 2126.6 294 261 [BNPS14]
19 27/28 295.79/2112.64 297.79/2112.6 266.8/284.7 5.2.1

SIMON-128-192 19 28 2190.56 2128 277 [BNPS14]
19 29/30 2162/2185.47 2127.37/2127.5 2107.4/2111.47 F

SIMON-128-256 19 30 2254.68 2128 2111 [BNPS14]
19 30/31 2226/2247 2125.37/2127.64 2120.4/2127.7 F

Simeck-32 11 20 261.11 232 251 [ZLW+23]
11 20 257.27 227.28 247.3 F

Simeck-48 15† 25 294.23 246 267 [ZLW+23]
15† 25 293.05 247.05 268.12 F

Simeck-64 17† 27 2126.56 263 268 [ZLW+23]
17† 27 2126 263.47 268.45 F

our improved model to key-recovery ID attacks on AndRX ciphers. Then we discuss the
application of our methods in Section 5. Finally, Section 6 concludes the paper.

2 Background
Here, we briefly review the key recovery and complexity analysis of ID attacks. We also
recall the bit-wise CP model in [HGSE24] for identifying ID/ZC distinguishers.

2.1 Key Recovery and Complexity Analysis in ID Attacks
Consider a block cipher E with an n-bit block size and κ-bit key size. We consider pairs
(X, X ′) with X, X ′ ∈ Fn

2 and denote their difference by ∆ = X ⊕X ′. Then, Pr(∆u → ∆l)
denotes the expected differential probability that an input pair (X, X ′) with X ⊕X ′ = ∆u

6 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

yields an output pair with E(X)⊕E(X ′) = ∆l, where E is implicit from the context. More
generally, we use the same notation to also denote bitwise truncated differences ∆ ⊆ Fn

2
and the corresponding probabilities averaged over all input differences in the set. Given a
(truncated) input difference ∆u, we refer to the minimal truncated output difference ∆l
such that Pr(∆u → ∆l) = 1 as propagation with probability 1 or deterministic propagation.
If Pr(∆u → ∆l) = 0, we write ∆u ↛ ∆l and call this an impossible differential.

Suppose there exists an impossible differential ∆u ↛ ∆l for rd rounds of E (denoted as
Ed). To perform a key recovery, as illustrated in Figure 1, we extend the distinguisher by
a few rounds at both ends. Let Eb and Ef represent the rounds added before and after Ed,
respectively, with rb and rf denoting their respective numbers, such that E = Ef ◦Ed ◦Eb.
Subsequently, we propagate the difference ∆u (and ∆l) through E−1

b (and Ef) with
probability one to obtain the truncated difference ∆b (and ∆f). Here, |∆b| and |∆f|
denote the number of non-fixed bit differences in ∆b and ∆f, respectively. Assume that
Pr (∆b → ∆u) = 2−cb and Pr (∆l ← ∆f) = 2−cf . In the context of (impossible) differential
key recovery, cb and cf are typically referred to as the number of bit filters that should be
satisfied for differential transitions ∆b → ∆u and ∆l ← ∆f, respectively. As illustrated in
Figure 1, assume that the key bits kb ∪ kf are involved in deriving the difference ∆u and
∆l from ∆b and ∆f, respectively. With these parameters established, we divide the key
recovery of an ID attack into three steps:

• Pair Generation. In this step, we generate N plaintext pairs (P, P ′) such that
P ⊕ P ′ ∈ ∆b and E(P)⊕ E(P ′) ∈ ∆f. The problem of finding such pairs is known
as the limited birthday problem. The complexity of this step is (see [BNPS14])
T0 := max

{
min∆∈{∆b,∆f}

{√
N2n+1−|∆|

}
, N2n+1−|∆b|−|∆f|}.

• Guess-and-Filter. In this step, we eliminate the incorrect candidates for kb ∪ kf by
checking whether a candidate for involved key bits yields the impossible differential
for at least one of the N pairs. We typically use the early abort technique to perform
this step [LKKD08]: we split kb ∪ kf into several subsets and guess them one by one.
At each step, we check some new bit filters and discard a portion of the pairs that
do not satisfy the bit filters. The correct key guess never suggests an impossible
differential for any pairs. Thus, we perform N partial encryptions/decryptions for the
correct key guess. However, a wrong key guess may suggest an impossible differential
for some pairs. The more pairs we have, the more likely a wrong key guess suggests an
impossible differential for at least one of the pairs. A lower bound for the complexity
of this step is (see [BNPS14]) T1 + T2 = N + 2|kb∪kf| N

2cb+cf partial encryptions.

• Exhaustive Search. The probability that a wrong key passes the guess-and-filter
step is P =

(
1− 2−(cb+cf))N , which means the expected number of wrong keys that

pass the guess-and-filter step is P · 2|kb∪kf|. Considering that κ− |kb ∪ kf| key bits
are not involved in the guess-and-filter step, we should brute-force a key space of
size T3 = 2κ−|kb∪kf| · P · 2|kb∪kf| = P · 2κ to uniquely retrieve the correct key.

If we assume that CE represents the cost of executing E, and CE′ represents the
proportion of the cost for executing Eb and Ef compared to complete encryption, the
total time complexity of the ID key recovery is: Ttot = (T0 + (T1 + T2) CE′ + T3) CE . If
we consider the number of encryption queries as the data complexity, then T0 represents
the data complexity. To keep the data complexity less than the full code-book, we should
have T0 < 2n, and to keep the time complexity less than brute force, we require Ttot < 2κ.

Given that the complexity formula of ID attacks includes some exponential terms and
also the square root of some attack parameters, following the approach in [HSE23], we
reformulate them as follows to be able to incorporate them in our CP model: Let g denote
the number of key bits that we retrieve in the guess-and-filter step, i.e., P = 2−g. Assuming
that P < 1

2 , we have 1 < g ≤ |kb ∪ kf|. Also assume that (1− 2(cb+cf))N ≈ e−N ·2−(cb+cf) .

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 7

Ed
rd rounds

Ef
rf rounds

Eb
rb rounds ∆l∆u ∆f∆b

Key schedule
kb · · · kf

1 10

2−cb 2−cf

Figure 1: Overview and parameters of impossible differential attacks.

Thus, we have N = 2cb+cf+log2(g)−0.53. Moreover, suppose that LG(g) = log2(g) − 0.53.
Therefore, we can reformulate the complexity analysis of the ID attack as follows:

T0 = max

 min
∆∈{∆b,∆f}

{2
cb+cf+n+1−|∆|+LG(g)

2 },

2cb+cf+n+1−|∆b|−|∆f|+LG(g)

 , T0 < 2n

T1 = 2cb+cf+LG(g), T2 = 2|kb∪kf|+LG(g), T3 = 2k−g

Ttot = (T0 + (T1 + T2) CE′ + T3) CE , Ttot < 2k

Mtot = min
{

2cb+cf+LG(g), 2|kb∪kf|}, Mtot < 2k.

(1)

2.2 Bit-wise CP Model for Deterministic Trails
Here, we recall the bit-wise CP model in [HGSE24, HDE24] to encode the propagation of
deterministic differential/linear trails. We explain the model for differential trails, but a
similar approach can be used for linear trails. The idea is to encode the difference at each
bit position via an integer variable with a {−1, 0, 1} domain. The integer values “0” and
“1” represent the fixed difference value of “0” and “1”, and “-1” means the difference value
is either “0” or “1” (i.e., unknown). Then, the propagation of deterministic differential
trails through XOR, Branching, and S-boxes can be encoded as follows.

Proposition 1 (Branching [HGSE24, HDE24]). For f : F2 → Fn
2 , f(x) = (y0, y1, . . . , yn−1)

where y0 = y1 = · · · = x, the valid transitions for deterministic differential trails satisfy

Branch(x, y0, . . . , yn−1) :=
∧n−1

i=0 (yi = x) ,

where the integer variables x, yi ∈ {−1, 0, 1} encode the difference in x, yi for 0 ≤ i ≤ n−1.

Proposition 2 (XOR [HGSE24, HDE24]). For f : Fn
2 → F2, f(x0, x1, . . . , xn−1) = y,

where y = x0 ⊕ x1 ⊕ · · · ⊕ xn−1, the valid deterministic differential transitions satisfy

XOR(y, x0, . . . , xn−1) :=
{

if
∨n−1

i=0 (xi = −1) then y = −1
else y = x0 + · · ·+ xn−1 mod 2

The propagation of deterministic differential/linear trails through S-boxes can be
explained as follows. We can model this by using the Difference Distribution Table (DDT)
of the S-box, through which we can identify the differential transitions that have a known
output difference in at least one bit position. These transitions are known as bit-wise
deterministic differential transitions. To be more precise, let’s assume that the S-box is
an m× n S-box. We examine all input activeness patterns in {−1, 0, 1}m, where for each
input activeness pattern, we check whether at least one bit of the output difference is
known to be “0” or “1” with certainty. Next, we model all deterministic bit-wise differential
transitions through the S-box using CP constraints. For details, we refer to [HGSE24, Sec

8 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

3.2]. A similar method works for modeling the bit-wise deterministic linear trails of S-boxes,
using the Linear Approximation Table (LAT) to identify the bit-wise deterministic linear
transitions. The CP constraints for bit-wise deterministic differential/linear propagation
through S-boxes can be automatically derived with an extended version [HGSE24, HDE24]
of the S-box Analyzer tool [HNE22]. In Subsection 3.1, we extend this method to model
the building blocks of AndRX and ARX ciphers, particularly the modular addition.

2.3 CP Model for Finding ID/ZC Distinguishers
The CP model for finding ID/ZC distinguishers in [HSE23, HGSE24] is based on the miss-
in-the-middle [BBS99] technique. According to this technique, we propagate a given input
and output differences (resp. linear masks) through the block cipher with certainty forward
and backward, respectively. If the two propagations contradict each other somewhere in
the middle, then we can prove that the given input difference (resp. linear mask) never
propagates to the given output difference (resp. linear mask). As a result, we have an
ID (resp. ZC) distinguisher. The idea of Hadipour et al. is to model the deterministic
differential (resp. linear) transitions through the block cipher in two opposite directions
using CP constraints. The CP model is then extended by including some contradiction
checker constraints for each bit position to guarantee the contradiction between the two
deterministic propagations in at least one bit position. This way, any feasible solutions of
the CP model are an impossible differential (resp. zero-correlation) distinguisher. The
main advantage is that there are no constraints for the input/output differences (resp.
linear masks), and the CP model is based on satisfiability. For more details, refer to
[HSE23, HGSE24].

This method only identifies ID/ZC distinguishers relying on direct contradictions, i.e.,
contradictions that happen at the junction of two deterministic differential (or linear) trails
propagated in two opposite directions. However, some ID distinguishers [SB18] are not
detectable by only checking the existence of direct contradictions. The contradictions in
these distinguishers are more complicated, and we refer to them as indirect contradictions.
To address this gap, in Subsection 3.2, we provide a new CP model based on satisfiability,
which is capable of identifying a particular type of indirect contradiction.

2.4 Unified CP Model for Finding Complete ID Attacks
Once we have a CP model based on satisfiability, we can extend it to find an optimal
complete ID key recovery attack. We briefly recall the general view of the first CP model
for finding complete ID attacks in [HSE23]. As visualized in Figure 1, assume that we split
the block ciphers E into three sub-ciphers E = Ef ◦ Ed ◦ Eb, such that the distinguisher
covers Ed, Eb, and Ef denote the extension of the distinguisher backwards and forwards for
key recovery, respectively. Also, assume that CSPd represents the Constraint Satisfaction
Problem (CSP) modeling the distinguisher part. The idea is to extend CSPd by additional
CP variables/constraints that aim at modeling the key recovery procedure, as well as the
complexity analysis of ID key recovery.

The key recovery process involves first propagating the input/output difference of the
ID distinguisher backward/forward, then identifying the filters, and finally, pinpointing the
cell/bit positions within the internal state or sub-keys whose difference or value is necessary
for the guess-and-filter step. Once we have this information, referring to Equation 1, we
can provide a rough estimation of the time, memory, and data complexity of the ID attack,
along with a sketch of the key recovery procedure. For this purpose, according to [HSE23],
one can define four types of binary CP variables for the extended parts Eb and Ef. The
first type of binary variable encodes whether the difference in a particular position through
Eb or Ef is zero. The second type of variable encodes whether a particular position acts as
a filter. The third variable type encodes whether the difference of a certain cell within the

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 9

internal state or sub-keys should be known, and the fourth variable type encodes whether
the value pair at a certain cell should be known. Next, we can define some constraints on
these variables to model the guess-and-filter procedure and the complexity formula of ID
key recovery. Finally, one can integrate the CP models for key-bridging [HE22] into this
model to consider the relation between the involved keys kb ∪ kf (see Figure 1) to identify
the actual size of kb ∪ kf, which is a critical parameter in the time complexity of ID key
recovery.

3 Modeling the Distinguishers
In this section, we expand the bit-wise CP model presented in [HGSE24] for identifying
ID/ZC distinguishers in two key aspects. First, we introduce a rule to encode AND and
modular addition operations within the bit-wise CP model. This enables us to create a CP
model based on satisfiability to find ID/ZC distinguishers for ARX and AndRX ciphers.
Subsequently, and of greater significance, we extend the bit-wise model to detect ID/ZC
distinguishers with more intricate contradictions beyond direct ones. This adaptation
empowers our new model to identify the longest existing ID/ZC distinguishers of Simeck
that are not detectable by the models in [HSE23, HGSE24]. The versatility of our new
model in identifying complex contradictions is not restricted to ARX and AndRX ciphers;
it can also be applied to other designs, such as SPN ciphers. Similar to the CP models in
[HSE23, HGSE24], the primary advantage of our new model is its extensibility to a unified
optimization problem for discovering a complete ID attack.

3.1 Modeling the Distinguishers for ARX and AndRX Ciphers
Here, we propose some rules to model deterministic differential (linear) propagation through
AND and modular addition operations. We elaborate on our modeling of deterministic
differential trails, noting that the same approach applies to linear trails.

Proposition 3 (AND). Let f : Fn
2 → F2 be such that y = f(x0, x1, . . . , xn−1) =

∧n−1
i=0 xi.

Let xi and y be the corresponding integer variables with domain {−1, 0, 1} to encode the
difference in xi and y. Then, the valid transitions for deterministic differential trails satisfy

AND (x0, x1, . . . , xn−1, y) :=
{

if x0 = x1 = . . . = xn−1 = 0 then y = 0
else y = −1

Suppose that f : Fn
2 × Fn

2 → Fn
2 is such that z = f(x, y) = x ⊞ y, where ⊞ denotes

addition modulo 2n. Assume that we represent x as a bit-vector x0||x1|| · · · ||xn−1, where
xi ∈ F2 for 0 ≤ i ≤ n − 1, and x0 is the Most Significant Bit (MSB). As visualized in
Figure 2, we decompose the modular addition into n smaller Boolean functions (a.k.a. full-
/half-adders). Assuming that ci for 0 ≤ i ≤ n−1 are binary variables to represent the carry
bits, we define (zi, ci) = f(xi, yi, ci+1) := (xi ⊕ yi ⊕ ci, xi+1 · yi+1 ⊕ ci+1 · (xi+1 ⊕ yi+1))
for 1 ≤ i ≤ n−1, where cn−1 = 0. Additionally, we define z0 = g(x0, y0, c0) := x0⊕y0⊕ c0.
Next, we model the propagation of deterministic differential trails through f and g by CP
constraints. For g, we can use the rules for modeling XOR in Proposition 2. Regarding
f , following the same approach as [HGSE24], we consider it as an S-box: referring to its
Differential Distribution Table (DDT), we identify differential transitions in which the
difference is known with certainty in at least one output bit (referred to as deterministic
bit-wise differential transitions), and express them as CP constraints. Proposition 4 and
Proposition 5 briefly describe our CP constraints to model modular addition.

Proposition 4 (Full adder). Assume that (z, c′) = f(x, y, c) = (x⊕y⊕c, x·y⊕c·(x⊕y)),
and let x, y, c, z, c′ denote the integer variables with domain {−1, 0, 1} to encode the

10 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

g

z0

x0 y0

f

z1

x1 y1

f

zn−1

xn−1 yn−1

· · ·
c0 c1 cn−2 cn−1

Figure 2: Representing the modular addition X ⊞Y using full-adders f and a half-adder g.

corresponding differences. Then, the following CP constraints model all valid bit-wise
deterministic differential transitions through the full adder:

FA(x, y, c, z, c′) :=



if (x = 0 ∧ y = 0 ∧ c = 0) then (z = 0 ∧ c′ = 0)
elseif (x = 0 ∧ y = 0 ∧ c = 1) then (z = 1 ∧ c′ = −1)
elseif (x = 0 ∧ y = 1 ∧ c = 0) then (z = 1 ∧ c′ = −1)
elseif (x = 0 ∧ y = 1 ∧ c = 1) then (z = 0 ∧ c′ = −1)
elseif (x = 1 ∧ y = 0 ∧ c = 0) then (z = 1 ∧ c′ = −1)
elseif (x = 1 ∧ y = 0 ∧ c = 1) then (z = 0 ∧ c′ = −1)
elseif (x = 1 ∧ y = 1 ∧ c = 0) then (z = 0 ∧ c′ = −1)
elseif (x = 1 ∧ y = 1 ∧ c = 1) then (z = 1 ∧ c′ = 1)
else (z = −1 ∧ c′ = −1)

Proposition 5 (Modular Addition). Assume we express the modular addition z = x ⊞ y
as a composition of n−1 full adders f along with a half adder g as explained before, and let
xi, yi, zi, ci denote the integer variables with the domain {−1, 0, 1} for the corresponding
difference at bit positions xi, yi, zi, ci. Then the following constraints model the bit-wise
deterministic differential transitions through modular addition:

ModAdd :=
(

n−1∧
i=1

FA(xi, yi, ci, zi, ci−1)
)
∧ XOR(z0, x0, y0, c0) ∧ (cn−1 = 0). (2)

To model bit-wise deterministic linear transitions, we follow a similar approach. In this
case, for the vectorial Boolean function f, g, we refer to its Linear Approximation Table
(LAT).

3.2 New CP Model to Identify Indirect Contradictions
We now provide a CP model based on satisfiability, which can identify both direct and
indirect contradictions. In particular, we focus on the indirect contradictions first described
in [SB18]. We first give the intuition for our approach. Assume no direct contradiction
exists between the two deterministic differential trails propagated in opposite directions.
However, what if we merge the information from the two deterministic propagations at a
particular round and propagate this new information with probability one in both directions
such that further propagation of this new information contradicts one of the original forward
and backward propagations? If so, based on the proof by contradiction, we can conclude
that the original two deterministic differential trails cannot exist simultaneously. To
include these cases in our CP model, we extend it with new CP constraints that merge
the information from both deterministic differential trails and then propagate the latest
information with probability one in both directions. We equip this CP model with extra
contradiction checkers between the original and new differential trails. Lastly, we include
a constraint to ensure that at least one of the (direct or indirect) contradiction checkers is
activated.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 11

Modeling indirect contradictions. Suppose our goal is to find an ID or ZC distinguisher
for rd rounds of a block cipher E denoted by Ed. We first split Ed into two parts: an
upper part Eu that covers rm rounds, and a lower part El covering the remaining (rd− rm)
rounds. Hereafter, we refer to the trails discovered for Eu (El) as the upper (lower) trail.
The internal state of Eu after r rounds is denoted by xur, where 0 ≤ r ≤ rm. Likewise,
we denote the internal state of El after r rounds by xlrd−r, where 0 ≤ r ≤ (rd − rm).
Therefore, xurm and xlrm correspond to the same internal state at the junction of the two
sub-ciphers.

∆u

∆l

xu
r

m

xu
0

xl
r

m

xl
r

d

· · ·

· · ·
✓

��

� �

mx
0

mx
r

m
mx

r
m

mx
r

d

· · ·

· · ·

rm

rd − rm

(a) Indirect contradiction model

∆u

∆l

xu
r

m

xu
0

xu
r

d

xl
r

m

xl
0

xl
r

d

· · · · · ·

· · · · · ·
✓

��

� �

��� � � �

mx
0

mx
r

m
mx

r
m

mx
r

d

· · ·

· · ·

rm rd − rm

rm rd − rm

(b) Combined model

Figure 3: Model for impossible-differential distinguishers with indirect contradiction.

Let xur and xlr represent the difference patterns of the state variables xur and xlr,
respectively, as illustrated in Figure 3. In particular, xur[i] (or xlr[i]) is an integer variable
with a domain of {−1, 0, 1}, depicting the difference pattern in the i-th bit of xur (or xlr).
We model the propagation of the deterministic truncated differential trail through Eu and El
in the encryption (forward) and decryption (backward) directions as separate CSP models.
For this purpose, we utilize the propagation rules from [HGSE24, HSE23] along with our
new rules from Subsection 3.1. We denote the model for the propagation of deterministic
truncated trails through Eu and E−1

l as CSPu(xu0, . . . , xurm), and CSPl(xlrm , . . . , xlrd),
respectively. Also, let f denote the round function of block cipher E. We represent the
CP constraints for the propagation of deterministic truncated trails over f (resp. f−1)
as fu(x, y) (resp. fl(y, x)), where x (resp. y) denotes the activeness pattern at the input
(resp. output) of f .

Now, we explain how we model the merging of information from the upper and lower
trails and identify the indirect contradictions by defining some new CP variables and
constraints. In round rm, we need to merge the information from the upper and lower
trails at the junction of Eu and El. After merging the information in round rm, we need to
propagate this new information forward and backward. After each round of propagation
of the new information, we check whether the new activeness pattern is consistent with
the activeness pattern at the corresponding state from the original propagation. Moreover,
to determine the activeness pattern at each round, we must merge the information from
the previous round in the new propagation with the information from the corresponding
state in the original propagation.

To this end, for the internal state at each round, we define three new types of integer
variables mxr, mx′

r, and mcr with a domain {−1, 0, 1}. The integer variable mx′
r encodes the

information propagated from the previous round, mxr encodes the result of merging the
information from the previous round with the information from the corresponding state
at the original propagation, and mcr checks if there is a contradiction between the new
propagation and the original one. A more detailed explanation regarding these variables is

12 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

as follows.
To merge the information at each round of propagation, we first define the predicate

merge(xurm [i], xlrm [i], mxrm [i], mcrm [i]):
if (xurm [i] = −1) then (mxrm [i] = xlrm [i] ∧ mcrm [i] = 0)
elseif (xlrm [i] = −1) then (mxrm [i] = xurm [i] ∧ mcrm [i] = 0)
elseif (xurm [i] = xlrm [i]) then (mxrm [i] = xurm [i] ∧ mcrm [i] = 0)
else (mcrm [i] = 1)

Using this predicate, we start from the meeting point of Eu and El and merge the activeness
patterns from the upper and lower trails at the junction of Eu and El:

CSPm(xurm , xlrm , mxrm , mcrm) :=
n−1∧
i=0

merge(xurm [i], xlrm [i], mxrm [i], mcrm [i]) (3)

Now, we must propagate the result of merging, namely mxrm , to both encryption and
decryption direction with certainty. We first explain the backward propagation. Assume
that we aim to determine the activeness pattern mxr−1 at round r − 1 based on the
activeness pattern mxr at round r in the new propagation and also the activeness pattern
xur−1 at round r − 1 in the original propagation. For this purpose, using fl(mxr, mx′

r−1)
we first propagate mxr into mx′

r−1 backward through f . Next, we merge the activeness
patterns at mx′

r−1 and xur−1 into mxr−1, and finally, we check if there is a contradiction
between mx′

r−1 and xur−1 using mcr−1. We use the following constraint for this purpose:

CSPb(xu0, . . . , xurm−1, mx0, . . . , mxrm , mc0, . . . , mcrm−1) := (4)
rm∧

r=1

(
fl(mxr, mx′

r−1) ∧
(n−1∧

i=0
mergei(xur−1[i], mx′

r−1[i], mxr−1[i], mcr−1[i])
))

Similarly, we model the merging and propagation in the forward direction. For each
round r, where rm ≤ r < rd, we first use fu(mxr, mx′

r+1) to propagate mxr into mx′
r+1. Next,

we merge mx′
r+1 with xlr+1 into mxr+1 and check if there is a contradiction between mxr+1

and xlr+1 using mcr+1. To this end, we use the following constraint:

CSPf(xlrm+1, . . . , xlrd , mxrm , . . . , mxrd , mcrm+1, . . . , mcrd) := (5)
rd∧

r=rm

(
fu(mxr, mx′

r+1) ∧
(

n−1∧
i=0

mergei(xlr+1[i], mx′
r+1[i], mxr+1[i], mcr+1[i])

))

We must ensure that at least one of the contradiction checker constraints is met. To
achieve this, we introduce the following constraint. It ensures that there is a mismatch
between the new backward propagation over E−1

u and the original forward propagation
over Eu, or the new forward propagation over El, and the original backward propagation
over E−1

l in at least one bit across the entire distinguisher.

CSPc(mc0, mc1, . . . , mcrd) :=
rd−1∨
r=0

(
n−1∨
i=0

(mcr[i] = 1)
)

(6)

The conjunction of the CSP models above, denoted by CSPd, creates a unified CP model
based on satisfiability whose feasible solutions are impossible differential distinguishers:

CSPd := CSPu ∧ CSPl ∧ CSPm ∧ CSPf ∧ CSPb ∧ CSPc

Hence, when provided rd and rm, this model yields a distinguisher for rd rounds of the block
cipher where either we find a contradiction in rm round (in case of direct contradiction),

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 13

or we can find some indirect contradiction where rm is the round where first time merging
happens (rm = 8 in Figure 9 in Section 5). We explain our model for ID distinguishers,
but the same approach applies to ZC distinguishers. We provide a more detailed analysis
of the attack model to identify indirect contradictions, as explained in Figure 9 (Section 5)
in the subsequent section.

Combined model of indirect and direct contradictions. We can extend our idea to
construct a combined CSP model capable of identifying both direct and indirect contradic-
tions. Let CSPu(xu0, xu1, . . . , xurd) and CSPl(xl0, xl1, . . . , xlrd) denote the CSP models
for the forward and backward propagations through Ed, and E−1

d , respectively. We extend
the models to the full rd rounds. Next, following a similar approach, we can construct the
CSP models CSPm, CSPb, and CSPf as described in Equation 3, Equation 4, and Equation 5,
respectively. Finally, we add the following constraints to ensure the inconsistency between
the four deterministic propagations:

CSPc(xu0, . . . ,xurd , xl0, . . . , xlrd , mc0, mc1, . . . , mcrd) :=
rd−1∨
r=0

(
n−1∨
i=0

(mcr[i] = 1) ∨ (xur[i] + xlr[i] = 1)
)

The conjunction of the CSP models above, denoted by CSPd, creates a unified CP model
based on satisfiability that can successfully detect ID distinguishers based on direct and
indirect contradictions:

CSPd := CSPu ∧ CSPl ∧ CSPm ∧ CSPf ∧ CSPb ∧ CSPc

We apply the above idea to several ARX and AndRX ciphers and discover several new
distinguishers. Section 5 elaborates on the details of our applications.

3.3 Modeling ZC Distinguishers
Both ID and ZC distinguishers primarily leverage the miss-in-the-middle technique in their
construction. In Subsection 3.2, we provided a CP model based on satisfiability to identify
direct and indirect contradictions when searching for ID distinguishers. A similar approach
applies to finding ZC distinguishers. However, we encountered specific challenges when
developing the CP model for ZC distinguishers based on satisfiability for ARX ciphers.
This section delves into these challenges and presents our approach to overcome them
partially. First, we provide some basic rules to model the propagation of deterministic
bit-wise linear trails through XOR and Branching operations.

Proposition 6 (XORL). Suppose f : Fn
2 → F2 is such that f(x0, x1, . . . , xn−1) = y where

y = x0 ⊕ x1 ⊕ . . .⊕ xn−1, the valid deterministic linear trails satisfy

XORL (x0, x1, . . . , xn−1, y) :=
n−1∧
i=0

(xi = y)

where xi, and y are integer variables with the domain {−1, 0, 1}, for all 0 ≤ i ≤ (n− 1),
representing the activeness pattern of linear mask in xi and y, respectively.

For non-deterministic linear transitions, the propagation rule for branching is the same
as the rule for non-deterministic differential transitions through XOR. However, we cannot
directly apply this duality between an XOR’s differential behavior and a branching point’s
linear behavior when dealing with deterministic transitions. Consider a branching point
f(x) = (y0, y1), where y0 = y1 = x. Let x, y0, and y1 be integer variables with a domain of

14 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

{−1, 0, 1} representing the activeness pattern of linear masks for x, y0, and y1, respectively.
Suppose x = 1 with certainty. Then, the linear mask of (y0, y1) can take either (1, 0) or
(0, 1). Therefore, y0 = y1 = −1. The same is true if x = 0. Additionally, if x = −1,
then y0 = y1 = −1. This example demonstrates that if we limit ourselves to using a
3-digit encoding (i.e., {−1, 0, 1}) for modeling the propagation of deterministic linear trails
through a branching point, we quickly lose information, and the entire state becomes “−1”
(unknown) very quickly. However, suppose that, due to the location of the branching point
within the round function (e.g., Feistel structure), the activeness pattern of linear masks
at x and y0 can be derived based on information from the previous round. In that case,
we can utilize Proposition 7 to model the propagation of deterministic linear transitions
through the branching point.

Proposition 7 (BranchingL). Suppose f : F2 → Fn
2 is such that f(x) = (y0, y1, . . . , yn−1)

where y0 = y1 = . . . = yn−1. Also assume that the linear masks of x and y0, y1, · · · , yn−2
are determined in advance. Then, the valid transitions for deterministic linear trails
through the branching point satisfy

BranchL (x, y0, . . . , yn−1) :=
{

if
(∨n−2

i=0 (yi = −1)
)
∨ (x = −1) then yn−1 = −1

else yn−1 = x + y0 + . . . + yn−2 mod 2

where x and yi are integer variables with the domain {−1, 0, 1} for all 0 ≤ i ≤ (n − 1),
representing the activeness pattern of the linear mask in x and yi, respectively.

In addressing the challenge of modeling the propagation of deterministic linear trails
through the branching point, our initial focus is on AndRX ciphers, with particular
attention to two prominent ones: SIMON [BSS+15] and SIMECK [YZS+15]. We outline
our strategy for modeling ZC distinguishers for SIMON, but the same approach applies
to SIMECK. The idea is to rearrange the state array such that we can model the round
function as several consecutive S-boxes along with some branching points, such that the
branching points satisfy the requirements of Proposition 7. Then we use the rules for
propagation of deterministic linear trails through the S-boxes in [HGSE24], together with
our rule for modeling particular branching points (Proposition 7) to model the whole round
function.

In what follows, we explain the details of our workaround for SIMON. Let X0
r , and X1

r

represent the two n-bit input words to the r-th round function of SIMON. The output of
the r-th round X0

r+1, X1
r+1 is computed as:

X1
r+1 = X0

r

X0
r+1 = ((X0

r ≪ 8)⊙ (X0
r ≪ 1))⊕ ((X0

r ≪ 2)⊕X1
r)⊕Kr

X0
i X1

i

≪ 2

F

X0
i+1 X1

i+1

(a) One round of SIMON

x0 x1 x2

y0 y1 y2

(b) Ssimon, the core operation of F

Figure 4: Round function structure of SIMON, where F is defined by (y0, y1) = F (x0, x1) =
(x1⊕ (x0 ≪ 8)⊙ (x0 ≪ 1), x0) and can be expressed in terms of the 3-bit function Ssimon.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 15

Now, we can express the round function of SIMON as illustrated in Figure 4. In
Figure 4, we represent the core operation of the function F : a Toffoli gate (Figure 4b). We
treat the red dotted box as a 3× 3 S-box, referred to as SSIMON hereafter. As illustrated in
Figure 4b, we represent the input and output of SSIMON by x = (x0, x1, x2), y = (y0, y1, y2),
respectively. The algebraic normal form (ANF) of this S-box is as follows:

y0 = x0, y1 = x1, y2 = (x0 ⊙ x1)⊕ x2

We can represent the function F as a sequence of these S-boxes. Next, we use
Proposition 8 to encode the propagation of deterministic bit-wise linear transitions through
SSIMON.

Proposition 8 (Modeling deterministic linear behavior of SSIMON). Assume that x =
(x0, x1, x2) and y = (y0, y1, y2) are integer variables with domain {−1, 0, 1} to encode the
activeness pattern of linear masks at the input and output of SSIMON, respectively. The CP
constraints to describe all valid deterministic bit-wise linear transitions through SSIMON
can be derived from its LAT and are summarized in Appendix A.

Let x(r) = (xr
0, xr

1) and x(r+1) = (xr+1
0 , xr+1

1) denote the activeness pattern of determin-
istic linear masks at the input and output of the r-th round of SIMON, respectively. We
also assume that yr

0 and zr
0 represent the activeness pattern for the linear masks of the two

branches of xr
0 (zr

0 is one of the branches of xr
0 which further proceeds into the function

F). Since the activeness patterns xr
0 and xr

1 are derived from the preceding round, using
the rule to model a deterministic linear transition through XOR operation, yr

0 is actually
derived from xr

1. Then, as depicted in Figure 4a, it is evident that this branch fulfills the
conditions outlined in Proposition 7. As a result, according to Proposition 7, we can use
the following rule to model this branching point:

BranchL (xr
0[i], yr

0[i], zr
0[i]) :=

{
if (xr

0[i] = −1 ∨ yr
0[i] = −1) then zr

0[i] = −1
else zr

0[i] = xr
0[i] + yr

0[i] mod 2,

where xr
0[i], yr

0[i], and zr
0[i] are integer variables with domain {−1, 0, 1}, for all 0 ≤ i ≤

(n− 1). It is important to note that, for SIMON, and Simeck, the AND gates in one round
share certain input bits. Specifically, For SIMON, the AND function operates on X0

r as
follows:

Y 0
r = (X0

r ≪ 8)⊙ (X0
r ≪ 1)

where X0
r represent the left n-bit input words to the r-th round function of SIMON.

Therefore, AND gates within a round share certain input bits, e.g., Y 0
r [0] = X0

r [8]⊙X0
r [1],

and Y 0
r [7] = X0

r [15] ⊙ X0
r [8], which implies these two AND operations share the input

bit X0
r [8]. Our tool accounts for this shared input bit situation while modeling ID/ZC

distinguishers or ID key recovery, including for Simeck.

3.4 Application of Our Distinguisher Modeling.
To demonstrate the utility of our improved model for finding ID distinguishers, we
applied it to several AndRX (SIMON, Simeck) and ARX (SPECK, LEA, ChaCha, SipHash,
Chaskey) ciphers. Additionally, we successfully utilized our bit-wise modeling to find
ZC distinguishers of AndRX ciphers (SIMON, Simeck). While searching for ID and ZC
distinguishers, we did not fix any input/output differences. Each bit can take one of
three values: 0, 1, or -1 (indicating it can be either 0 or 1). Therefore, having more
bits with the value −1 at the input/output of the distinguisher leads to a larger set of
distinguishers. Solving one instance of the model returns one solution with several −1s at
the input and output, essentially providing a truncated ID/ZC distinguisher. Since bit
positions with −1 can take either 0 or 1, the returned solution represents a group or cluster

16 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

of distinguishers. If there are n input/output bits with −1, we have 2n distinguishers.
Additionally, when searching for ID/ZC distinguishers, we include the objective function
min. (

∑n−1
i=0 xu0[i] +

∑n−1
i=0 xlrd [i]) to maximize the number of differentially active bits at

the input and output. The number of distinguishers increases with the number of unknown
bits at the input and output of the distinguishers.

While analyzing AndRX and ARX ciphers, we found that ID and ZC distinguishers for
Simeck rely on indirect contradiction, unlike other ciphers where the best distinguishers use
direct contradiction. This technique reveals new trails for Simeck, likely due to its weaker
diffusion properties. Figure 6 (Section 5), Figure 15 (Appendix F), Figure 40 (Appendix F),
and Figure 9 (Section 5) illustrate some of the ID/ZC distinguishers discovered by our tool.
The unknown bits (difference or linear mask) in the forward and backward propagations
are depicted by , and , respectively. Also, the bit difference (linear mask) 1 (this
means active bit) is illustrated by and in the forward and backward propagations,
respectively. According to our modeling, for all 0 ≤ r ≤ rd, the CP variables xur and
xlr are represented in the upper triangle and lower triangle of the rth state, Lr||Rr,
respectively. For instance, Figure 6 in Section 5 shows the ID distinguishers for 6-round
SPECK-96, Figure 15 in Appendix F for 6-round SPECK-128, and Figure 40 in Appendix F
for 19-round SIMON-128. In Figure 6 (Section 5), the 42-th bit of R2 has difference
values of 1 and 0 in the forward and backward propagation, respectively, indicating a 0-1
contradiction in 6-round SPECK-96.

Here, Figure 9 (Section 5) illustrates the ZC distinguisher of 15-round Simeck, demon-
strating the use of indirect contradiction. According to our model, the CP variable xur

is represented in the upper triangle of the r-th state, Lr||Rr (on the left side column of
Figure 9 (Section 5)) for all 0 ≤ r ≤ rm = 8. Similarly, the CP variable xlr is represented in
the lower triangle of the r-th state, Lr||Rr (on the left side column of Figure 9 (Section 5))
for all 8 = rm ≤ r ≤ rd = 15.

Following our model to find an indirect contradiction, the variable mxrm (represented
in both the upper and lower triangle of Lm||Rm, on the right side column of Figure 9
(Section 5) with rm = 8) is the result of merging of two variables xurm (upper triangle of
Lm||Rm, on the left side column of Figure 9 (Section 5) with rm = 8), and xlrm (lower
triangle of Lm||Rm, on the left side column of Figure 9 (Section 5) with rm = 8). Now, for
all 0 ≤ r ≤ rm, we first propagate mxr (lower triangle of the state Lr||Rr on the right side
column of Figure 9 (Section 5)) to mx′

r−1 (lower triangle of the state L′
r−1||R′

r−1 on the
right side column of Figure 9 (Section 5)) backward through one round function. Then,
we merge activeness pattern of mx′

r−1, and xur−1 into mxr−1, and check whether there is a
contradiction between mx′

r−1, and xur−1. For example, we can see in Figure 9 (Section 5),
the value of xu2[0] (depicted in the upper triangle of the 0-th bit of L2 in the left column)
is 1, while the value of mx′

2[0] (depicted in the lower triangle of the 0-th bit of L′
2 in the

right column) is 0. This implies an indirect contradiction occurs in 15-round Simeck-48.
Similarly, for all rm ≤ r ≤ rd, we propagate mxr (upper triangle of the state Lr||Rr on
the right side column of Figure 9 (Section 5)) into mx′

r+1 (upper triangle of the state
L′

r+1||R′
r+1 on the right side column of Figure 9 (Section 5)), and merge mx′

r+1 with xlr+1
into mxr+1 and check if there is a contradiction between mxr+1 and xlr+1. This type of
contradiction (represented in Figure 9 (Section 5)) cannot be detected by the previous
methods.

Unlike previous tools based on unsatisfiability [ST17, CCJ+21], which require multiple
executions by fixing the input and output of the distinguisher in each run, our tool
efficiently identifies a group of ID/ZC distinguishers (or truncated distinguishers) in just
one execution, without the need to fix input/output differences (as detailed in Table 4,
Table 5, Table 6, and Table 7 in Section 5). A single execution of our tool terminates
within a few seconds (or minutes) for our models based on direct contradiction (or indirect
contradiction) when running on a regular laptop.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 17

3.5 Comparison of Our Distinguisher Modeling to Prior Methods.

Following the approach in [HSE23, HGSE24], our primary objective with our CP models
for distinguishers is to create satisfiability-based models that can extend to a unified COP
for finding complete ID and ZC attacks. In contrast to earlier tools such as [CCJ+21, ST17,
DF16], which depend on unsatisfiability and necessitate fixing input/output differences or
linear masks to identify distinguishers, our attack model is based on satisfiability. This
approach eliminates the need to fix input/output differences or linear masks. Moreover,
our bit-wise CP model for distinguishers demonstrates a novel capability by identifying
ID and ZC distinguishers based on indirect contradictions, improving on previous ones
[HSE23, HGSE24], which only handled direct contradictions. We tested our model on
various ciphers. Interestingly, only Simeck yielded longer distinguishers based on indirect
contradiction compared to the direct contradiction approach. In other AndRX and ARX
applications, the improved distinguishers we found, along with the longest existing ones,
could be explained or found through direct contradiction. Still, we believe this doesn’t lessen
our contribution with indirect contradiction, as our model is overall more complete than
its predecessor [HSE23, HGSE24], since the previous models in [HSE23, HGSE24] cannot
find the longest existing ID and ZC distinguishers of Simeck as we did. Furthermore, our
enhanced bit-wise model, which utilizes satisfiability for identifying ID/ZC distinguishers,
can be extended into a unified COP model to uncover full ID attacks on both SIMON
and Simeck. Consequently, our model enables the discovery of improved ID attacks on all
versions of Simeck, a feat beyond the capabilities of previous tools [HSE23, HGSE24].

Although our primary objective in modeling distinguishers is not to develop tools for
proving the non-existence of ID/ZC distinguishers, it is worth discussing whether our
model could also fulfill this purpose. We cannot claim that our tool can capture the longest
possible ID/ZC distinguisher or that our tools can be used to prove the non-existence
of ID/ZC distinguishers because we rely on the assumptions of round independence and
subkey independence. However, this limitation is not exclusive to our approach; it applies
to all existing tools for finding ID/ZC distinguishers. Even the tool developed in [ST17],
which captures complex contradictions, requires checking every possible input/output
combination for non-existence, which is impractical. Developing a tool for proving non-
existence remains an exciting future direction. However, our current focus is on creating a
satisfiability-based model for ID/ZC distinguishers that can be extended for key recovery
attacks. Nonetheless, our tools have demonstrated their effectiveness in identifying the
longest existing distinguishers, generating numerous new trails, and revisiting old ones
within a few minutes on a regular laptop. These applications include SIMON, Simeck,
SPECK, ChaCha, LEA, SipHash, and Chaskey.

Concerning cross-round dependencies, akin to previous tools for searching for ID/ZC,
we assume that consecutive non-linear operations (rounds) are statistically independent.
Consequently, like previous tools, any ID/ZC distinguisher we identify remains valid.
However, it is worth noting that, similar to previous tools, we may overlook some ID/ZC
distinguishers that are detectable only by considering cross-round dependencies. Neverthe-
less, it is important to acknowledge that addressing cross-round dependencies has been an
open problem in the context of ID/ZC distinguishers so far. While we are aware of recent
works that consider cross-round dependencies for differential characteristics (e.g., [PT22]),
these works primarily address dependency issues for differential characteristics (single trail)
and are not applicable to differentials (i.e., differential hulls) and ID/ZC distinguishers.
Therefore, we have chosen to keep our model simple, efficient, and based on satisfiability to
facilitate its extension for key recovery, which has been the main motivation of this work
and the underlying methods [HSE23, HGSE24]. Regarding key recovery, our approach
aligns with previous works, wherein we utilize deterministic properties and refrain from
exploiting any properties that may conflict with the fact that certain non-linear operations
may have dependencies.

18 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

In summary, our new bit-wise models bridge the gap in developing satisfiability-based
models for distinguishers applicable to ARX and AndRX ciphers. Along with that, they
upgrade the distinguisher models by handling the detection of both direct and indirect
contradictions. In Section 4, we show how to extend our CP models for distinguishers to a
unified CP model for finding complete ID attacks.

4 Modeling the Key-Recovery for Impossible Differentials
This section presents a framework to extend the distinguisher model into a unified model
for discovering complete ID attacks, including the key recovery for AndRX ciphers. Our
framework takes four integer parameters (rb, rd, rm, rf) that represent the lengths of
specific parts in Figure 1, where rm specifies the merging point throughout the distinguisher
part as explained in Subsection 3.2 and generates an optimum ID attack for r = rb +rd +rf
rounds. When searching for the full ID attack, our objective is to minimize the overall
time complexity while also ensuring that memory and data complexity stay below specified
limits.

Following the discussion on the complexity formulas described in Subsection 2.1, cb,
cf, |∆b|, |∆f|, and |kb ∪ kf| are the critical parameters which directly affect the overall
complexity of the ID attack. To determine (cb, ∆b), we need to model the propaga-
tion of truncated differential trails through Eb taking the probability of all transitions
(truncated difference → fixed difference called as probabilistic transitions) into
account. To determine kb, we need to detect the state bits that require their difference or
data values through partial encryption over Eb. The same applies for partial decryption
over E−1

f to determine cf, |∆f|, and kf. Moreover, to determine the actual size of kb ∪ kf,
we can consider the idea of the equivalent sub-key technique for Feistel ciphers or the key
bridging technique.

4.1 Brief Overview of the COP model
Our bit-wise key recovery model consists of 4 sub-models as follows:

• Modeling the distinguisher. We model the distinguisher part according to the
method explained in Section 3.

• Modeling the difference propagation through Eb and Ef. In this part, we
model truncated differential propagation ∆b

E−1
b←− ∆u and truncated differential

propagation ∆l
Ef−→ ∆f. There is a similarity between this modeling and the

modeling of distinguishers: Both use integer variables of domain {−1, 0, 1} for each
state bit. The deterministic forward and backward trails are modeled using the
simple rules for deterministic propagation through the building block operations,
e.g., XOR, AND, Branch, etc. We also model the number of filters cb and cf using
new binary variables and constraints to encode the probability of ∆b

Eb−→ ∆u and
∆l

E−1
f←− ∆l.

• Modeling guess-and-determine in outer parts. In this part, we model the
constraints over Eb and Ef to detect the state bits whose difference or data values
must be known to verify the differences ∆u starting from ∆b through Eb, and ∆l
starting from ∆f through E−1

f . We can find the key bits involved in the key recovery
attack by utilizing this information.

• Modeling the complexity formula. In this component, we model the complexity
formulas described in Subsection 2.1, and finally, we set the objective function as

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 19

Minimize T, where T is the total time complexity (in our CP model, we minimize
the maximal term in time complexity).

All the variables in our model are either integer or binary variables with domain
{−1, 0, 1}, whereas the variables related to the complexity formula are real numbers.
Our tool exclusively relies on four integer inputs, delineating the lengths of Eb (rb), Ed
(rd), Eu (rm), and Ef (rf). Users have the flexibility to experiment with various length
configurations for these components to discover an optimal ID attack strategy. Additionally,
the model’s objective function can be adapted to minimize data or memory complexities
under constraints such as time or other parameters.

4.2 Detailed Description of Bit-Wise Key Recovery Model and Appli-
cation to SIMON

In this section, we describe our bit-wise model for a full ID attack on AndRX ciphers in
more detail. To this end, we construct the COP model for finding a full ID attack on
SIMON as an example. Given four integer numbers rb, rd, rm, rf, we model the full ID
attack on r = rb + rd + rf rounds of SIMON, where rd is the length of the distinguisher,
and rm is the round where one can find a contradiction (in case of direct contradiction),
or one can find some indirect contradiction where rm is the round where the first time
merging operation happens (rm = 8 in Figure 9 in Section 5). To perform key recovery (as
shown in Figure 1), we must extend the distinguisher by a few rounds at both ends. rb
and rf are the lengths of extended backward and forward parts, respectively.

4.2.1 Modeling the Distinguisher

First, we want to model the difference propagation through the round function of SIMON.
For the detailed structure of the round function SIMON, please refer to Subsection D.1.
Here, we define xu0

r and xu1
r to be the CP variables corresponding to the two n-bit input

words to the r-th round function of SIMON, where the block size of SIMON is 2n. In more
detail, for all 0 ≤ i ≤ (n−1), xu0

r[i], and xu1
r[i] are integer variables with domain {−1, 0, 1}.

In the data path of SIMON, the operations like AND and XOR can change the difference
pattern of the state, and the rotation (ROT) can change the position of the difference
pattern of the state while propagating the deterministic differences. We described the rules
for deterministic differential propagation through these basic operations in Subsection 3.1.
Then, we construct the model CSPu for the upper part as described in Algorithm 1 in
Appendix B. Similarly, we can construct CSPl. Along with this, we also build the CSPm,
CSPb, CSPf, and CSPc according to Equation 3, Equation 4, Equation 5, and Equation 6,
respectively. The combined CSP model is CSPd := CSPu ∧CSPl ∧CSPm ∧CSPf ∧CSPb ∧CSPc.
Therefore, any feasible solution of CSPd corresponds to an ID distinguisher for SIMON
with block size 2n.

4.2.2 Modeling the Difference Propagation in Outer Parts

To model the deterministic difference propagations ∆b
E−1

b←− ∆u and ∆l
Ef−→ ∆f, we

define an integer variable of domain {−1, 0, 1} for each state bit to indicate whether its
difference value is 0, 1, or unknown. Hence, utilizing the propagation rules for deterministic
differential propagation through basic operations (AND, XOR, ROT), we can determine the
deterministic difference backward propagation starting from ∆u and the deterministic
difference forward propagation starting from ∆l.

To model the probability of difference propagations ∆b
Eb−→ ∆u and ∆l

E−1
f←− ∆f, we

should identify probabilistic transitions. The probabilistic transitions in our modeling
are the truncated difference → fixed difference throughout XOR operations. For

20 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

example, if at least one of the two input differences of the XOR operation is truncated
(unknown) but its output difference is fixed, then we have a truncated difference→
fixed difference transition. We call such a transition probabilistic. Given that the
primary source of probabilistic transitions through ∆b → ∆u and ∆l ← ∆f in our modeling
are probabilistic transitions through the XOR operations, we provide a basic rule to identify
the probabilistic transitions for XOR. Let z = x ⊕ y, where x, y, z ∈ F2. Additionally,
dx, dy, dz ∈ {−1, 0, 1} are integer variables to encode the difference at the input and
output of the XOR operation. We define a binary variable cb to indicate whether there is a
probabilistic transition over the corresponding XOR operation. According to our definition,
the binary variable cb for each bit: cb = 0 (no probabilistic transition) means that the
differential propagation happens with probability one; cb = 1 (truncated difference→
fixed difference) means probability 1/2. The constraints for deterministic propagation
already avoid cases with probability zero. Hence, the probability of difference propagations
from ∆b → ∆u is 2−|F|, where F is the set of all bits where cb = 1. In our model, we look
at this in terms of bit-conditions, not probability. Then, we use the following constraint to
determine the value of cb:

XORdp(dx, dy, dz, cb) := if (dz ≥ 0 ∧ (dx = −1 ∨ dy = −1)) then cb = 1 else cb = 0

We use this constraint for each XOR throughout Eb and Ef. For this purpose, we define a
binary variable cbj

r[i] (cfj
r[i]) for each XOR operation in the r-th round of Eb (Ef), where

0 ≤ i ≤ (n− 1), and 1 ≤ j ≤ t such that t is the total number of XOR operations in one
round function. For SIMON, there are two XOR operations in one round. Algorithm 2 in
Appendix B describes our model for difference propagation over Eb. Similarly, we can
construct our model for difference propagation over Ef. Finally, we combine CSPdp

b and
CSPdp

l into CSPDP := CSPdp
b ∧ CSPdp

f to model the difference propagation through the outer
parts.

4.2.3 Modeling Guess-and-Determine in Outer Parts

In this component, we detect the state bits whose difference or value or both are needed for
checking the bit conditions in ∆b

Eb−→ ∆u and ∆l
E−1

f←− ∆f. We first discuss detecting the
state bits whose differences are needed. The value of the difference in a state bit is needed
if the corresponding state bit contributes to a bit condition or equivalently probabilistic
transition. In our model, we propagate ∆u to ∆b (resp. ∆l to ∆f) with probability
one, whereas for key recovery, we process the data in the opposite direction. Therefore,
considering the Feistel structure of SIMON and Simeck, when processing data from ∆b
to ∆u and (resp. from ∆f to ∆l), probabilistic transitions (truncated difference →
fixed difference) only occur through XOR operations, while transitions through AND
operations are deterministic.

For example, there are two bits x, and y such that z = x⊕ y. dx, dy, and dz be integer
variables with domain {−1, 0, 1} indicating the deterministic difference pattern of x, y,
and z, and cb be the binary variable depicting whether there is a probabilistic transition
through XOR. Moreover, kdx, kdy, and kdz are binary variables indicating whether the
values of the differences of x, y, and z are needed or not. Our goal is to predict the values
of kdx and kdy given the values of dx, dy, kdz, and cb. We analyze all possible cases:

• When kdz = cb = 0, it means that the value of the difference in the z position
is not needed, and there is no probabilistic transition through the XOR operation.
Consequently, the differences in x and y positions are also not needed, implying that
kdx = kdy = 0.

• If either kdz or cb equals 1, then the values of kdx and kdy depend on the values of
dx and dy. For instance, if dx is 0 or 1, this indicates that the value of the difference

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 21

at position x is already known, which means kdx = 0. Conversely, if dx = −1, it
signifies that the value of the difference at position x is unknown, leading to kdx = 1.
A similar analysis applies to dy.

Therefore, based on the aforementioned concept, we state the following proposition.

Proposition 9 (XORgd
1). Suppose f : F2

2 → F2 is such that z = f(x, y) = x ⊕ y. Let
dx, dy, and dz be integer variables with domain {−1, 0, 1} indicating the deterministic
difference pattern of x, y, and z, and cb be the binary variable depicting whether there is
a probabilistic transition through XOR. Then, the valid transitions for detecting state bits
whose values of the differences are needed through the XOR operation should satisfy the
following constraints:

XORgd
1 (dx, dy, kdz, cb, kdx, kdy) :=

if (kdz = 0 ∧ cb = 0) then (kdx = 0 ∧ kdy = 0)
elseif ((kdz + cb) ≥ 1 ∧ dx = −1 ∧ dy ≥ 0) then (kdx = 1 ∧ kdy = 0)
elseif ((kdz + cb) ≥ 1 ∧ dx ≥ 0 ∧ dy = −1) then (kdx = 0 ∧ kdy = 1)
elseif ((kdz + cb) ≥ 1 ∧ dx = −1 ∧ dy = −1) then (kdx = 1 ∧ kdy = 1)
else (kdx = 0 ∧ kdy = 0)

where kdx, kdy, and kdz are binary variables indicating whether the values of the differences
of x, y, and z are needed or not.

Additionally, we can construct the necessary constraints to propagate the state bits
with the required difference value through the AND operation similarly. In this context,
we analyze the possible cases in the following way:

• If kdz = 0, it means that the value of the difference in the z position is not needed.
Therefore, the differences in the x, and y position also not needed, implying that
kdx = kdy = 0.

• If kdz = 1, then the values of kdx and kdy depend on the values of dx, and dy.

Hence, we state the following proposition:

Proposition 10 (ANDgd
1). Suppose f : F2

2 → F2 is such that z = f(x, y) = x · y. Let
dx, dy, and dz be integer variables with domain {−1, 0, 1} indicating the deterministic
difference pattern of x, y, and z, and kdx, kdy, and kdz binary variables indicating whether
the values of the differences of x, y, and z are needed or not. Then, the valid transitions
for detecting state bits whose values of the differences are needed through the AND operation
satisfy the following constraints:

ANDgd
1 (dx, dy, kdz, kdx, kdy) :=

if (kdz = 0) then (kdx = 0 ∧ kdy = 0)
elseif (dx = −1 ∧ dy ≥ 0 ∧ kdz = 1) then (kdx = 1 ∧ kdy = 0)
elseif (dx ≥ 0 ∧ dy = −1 ∧ kdz = 1) then (kdx = 0 ∧ kdy = 1)
elseif (dx = −1 ∧ dy = −1 ∧ kdz = 1) then (kdx = 1 ∧ kdy = 1)
else (kdx = 0 ∧ kdy = 0)

Therefore, we define binary variables for each state bit through Eb and Ef to indicate
whether the difference value of each state bit over Eb and Ef is needed, and using
Proposition 9 and Proposition 10, we encode the propagation of state bits whose difference
value is needed. In addition, we also define a new constraint to link the beginning of Eu to
the end of Eb, and the end of El to the beginning of Ef.

22 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

When considering the determination of data values, the nonlinear operation AND
becomes relevant. We describe this determination over the functions in Eb, although a
similar model can be applied to Ef. Let’s suppose z = x · y, where x, y, z ∈ F2. Assuming
δx, δy, and δz represent the values of the differences in x, y, and z, respectively, we have:
δz = (x · y)⊕ ((x⊕ δx) · (y ⊕ δy)). Now, let’s assume the values of the differences δx and
δy are known, and we aim to determine the value of δz, for instance, to check a filter.
Additionally, assume that we do not need to know the value of z. Consequently, whether
we need the value of x or y to determine δz depends on δx and δy. For instance, if δy = 0,
we do not need to know the value of x to derive δz. Similarly, if δx = 0, we do not need to
know the value of y to determine δz. Thus, it is crucial to consider the value of differences
when modeling the AND operation in guess-and-determine. Proposition 11 outlines how to
model the AND operation in guess-and-determine.

Proposition 11 (ANDgd
2). Suppose f : F2

2 → F2 is such that z = f(x, y) = x · y. Let
dx, dy, and dz be integer variables with domain {−1, 0, 1} indicating the deterministic
difference pattern of x, y, and z, and kdz binary variable indicating whether the value of
the differences of z are needed. Then, the valid transitions for detecting state bits whose
values are needed through the AND operation satisfy the following constraints:

ANDgd
2 (kdz, kz, dx, dy, kx, ky) :=

if (kdz = 0 ∧ kz = 0) then (kx = 0 ∧ ky = 0)
elseif (kdz = 1 ∧ kz = 0 ∧ dx = 0 ∧ dy ̸= 0) then (kx = 1 ∧ ky = 0)
elseif (kdz = 1 ∧ kz = 0 ∧ dx ̸= 0 ∧ dy = 0) then (kx = 0 ∧ ky = 1)
else (kx = 1 ∧ ky = 1)

where kx, ky, and kz are binary variables indicating whether the values of x, y, and z are
needed.

Proposition 12 describes how to model the XOR operation in guess-and-determine.

Proposition 12 (XORgd
2). Suppose f : F2

2 → F2 is such that z = f(x, y) = x ⊕ y. Let
kx, ky, and kz be binary variables indicating whether the values of x, y, and z are needed.
Then, the valid transitions for detecting state bits whose values are needed through the XOR
operation satisfy the following constraints:

XORgd
2 (kz, kx, ky, dy) :=

{
if (kz = 0) then (kx = 0 ∧ ky = 0)
else (kx = 1 ∧ ky = 1)

Finally, we now explain how to detect the key bits that are involved in the determination
of data values. Let ikbr[i] ∈ {0, 1}, where 0 ≤ i ≤ (n− 1), 0 ≤ r ≤ (rb − 1), be a binary
variable that indicates whether the ith bit of the subkey in the rth round of Eb is involved.
Let kxu0

r[i] and kxu1
r[i] be binary variables indicating whether the value of the i-th bit

of the input of the r-th round function of Eb needs to be determined. Then, we can
conclude that ikbr[i] = 1 if and only if kxu0

r+1[i] = 1. Otherwise ikbr[i] = 0. Similarly,
we define binary variables ikfr[i] to encode the involved subkey in Ef. Algorithm 3 in
Appendix B describes our CSP model for guess-and-determine through Eb. We refer to
CSPGD := CSPgd

b ∧ CSPgd
f as our CSP models for guess-and-determine through Eb and Ef.

4.2.4 Modeling Equivalent Subkey Technique.

The equivalent subkey technique has been widely used in various key-recovery attacks.
This technique aims to reduce the number of guessed subkey bits by replacing the original
subkeys with the equivalent subkeys. This technique was initially introduced by Isobe et al.
[IS13] to investigate generic key recovery attacks on the Feistel scheme. Subsequently, it

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 23

was adapted for zero correlation attacks on SIMON [SFW15], and for impossible differential
and zero correlation attacks on Simeck [SB18, ZGHL18].

To reduce the number of guessed subkey bits in the key recovery process, one can move
the subkey Ki of the i-th round to the (i + 1)-th round where 0 ≤ i ≤ (rb − 1), to get the
equivalent subkey Ke

i+1 (please refer to Figure 8 in Section 5). Similarly, one can move the
subkey Ki of the i-th round to the (i− 1)-th round, for (rb + rd) ≤ i ≤ (rb + rd + rf− 1) =
(r − 1), to get the equivalent subkey Ke

i−1 (please refer to Figure 8 in Section 5). We can
incorporate this idea into our key recovery model to reduce the number of involved keys.
For example, we can write the expressions of equivalent subkeys (Figure 5) as follows:

Ke
1 = K0

Ke
2 = (Ke

1 ≪ 2) ⊕ K1

Ke
3 = Ke

1 ⊕ (Ke
2 ≪ 2) ⊕ K2

Ke
4 = Ke

2 ⊕ (Ke
3 ≪ 2) ⊕ K3

...
Ke

rb−1 = Ke
rb−3 ⊕ (Ke

rb−2 ≪ 2) ⊕ Krb−2

Ke
rb = Ke

rb−2 ⊕ (Ke
rb−1 ≪ 2) ⊕ Krb−1



Ke
r−2 = Kr−1

Ke
r−3 = (Ke

r−2 ≪ 2) ⊕ Kr−2

Ke
r−4 = Ke

r−2 ⊕ (Ke
r−3 ≪ 2) ⊕ Kr−3

Ke
r−5 = Ke

r−3 ⊕ (Ke
r−4 ≪ 2) ⊕ Kr−4

...
Ke

rb+rd = Ke
rb+rd+2 ⊕ (Ke

rb+rd+1 ≪ 2) ⊕ Krb+rd+1

Ke
rb+rd−1 = Ke

rb+rd+1 ⊕ (Ke
rb+rd ≪ 2) ⊕ Krb+rd

For the r-th round of Eb, where 1 ≤ r ≤ rb − 1, let the two state variables where
the equivalent subkey is xored be yur and zur. Furthermore, we define binary variables
kyu0

r[i] and kzu0
r[i] to indicate whether the values of yur[i] and zur[i] are needed, and

ikbr[i] to indicate whether the ith bit of the equivalent subkey in the r-th round of Eb
is involved. Finally, we use the following constraints to model the idea of the equivalent
subkey technique:

CSPESK :=
{

if (kyu10
r[i] = 1 ∨ kzu10

r[i] = 1) then (ikbr[i] = 1) for 0 ≤ i ≤ (n− 1)
else (ikbr[i] = 0) for 0 ≤ i ≤ (n− 1)

where the variables kyu10
r and kzu10

r indicate the state after the α-bit right-rotation on
kyu0[r] and after the β-bit rotation on kzu0[r], respectively (where (α, β) = (8, 1) for
SIMON, and (0, 5) for Simeck).

Important Observation. We can further reduce the number of involved subkey bits by
considering a simple observation. Let z = x · y, where x, y, z are binary variables. Also
assume that kx, ky, kz are binary variables to indicate whether the values of x, y, z are
needed, and dx, dy, dz are binary variables to indicate the truncated difference pattern in
x, y, and z. Furthermore, assume x, y each involve some key bit information; for example,
x = x1 ⊕ k and y = y1 ⊕ k′, where k, k′ are two key bits.

Consider the case dx = dy = 0 and kx = ky = 1. This implies we need to know the
value of the state variables x, y, which normally means we must guess two key bits k and k′

in the basic model. However, this can be reduced to one bit of key information as follows:

• If we guess the key bit k such that x = 0, then z = 0, and we do not need to guess
the value of k′ as we don’t need to know the value of y in this case.

• If we guess the key bit k such that x = 1, then z = y, and the key bit k′ in y goes
into z linearly. Then, it can usually be merged with the next key addition (to z) and
does not need to be guessed separately.

This implies that we can reduce the number of key bits involved using the aforementioned
idea. To optimize the complexity, we can choose whether guessing k or k′ is the better
choice overall. We have included this technique in our automated model, which is easily
integrated into the model with additional decision variables to optimize the choice of
whether to guess k or k′.

24 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L0 R0
≪ 8

≪ 1

≪ 2

K1

L1 R1
≪ 8

≪ 1

≪ 2

K2

L2 R2
≪ 8

≪ 1

≪ 2

K3

L3 R3

(a) Original Subkey

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3

(b) Equivalent Subkey

Figure 5: Original Subkey vs Equivalent Subkey

4.2.5 Modeling the Complexity Formula

In this component, we discuss how to combine all CSP models and finally model the
complexity formula. The complexity formula of the ID attack is described in Equation 1.
Therefore, we can model the complexity formulas in Equation 1 by the following constraints:

d0 := min∆∈{∆b,∆f}
1
2 (cb + cf + block− 1− |∆|+ LG(g)),

d1 := cb + cf + block− 1− |∆b| − |∆f|+ LG(g),
t0 := max{d0, d1}, t0 < n

t1 := cb + cf + LG(g)
t2 := |kb ∪ kf|+ LG(g)
t3 := k− g,

T := max{t0, t1, t2, t3}

Lastly, we set the objective function to Minimize T. All the variables in our model are
binary or integer variables with a limited domain except for d0, d1, and ti for i ∈ {0, 1, 2, 3},
which are real numbers. As a result, we can model all the critical parameters of the ID
attack, and then combine all CSP models into a unified model and define an objective
function to minimize the time complexity of the ID attack. We use the CP solver Or-Tools
to find optimized ID attacks.

4.3 Results

We applied our unified COP model to find a complete ID attack on all versions of SIMON
and Simeck. Table 2 summarizes the enhanced ID attacks achieved through our novel
approach. As our analysis approach remains consistent across all the versions of SIMON
and Simeck, we will detail an ID distinguisher and the corresponding key-recovery attack
on SIMON-64-128 found using our model. The attack parameters for the other versions
will be detailed in the following section.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 25

13-round ID distinguisher of SIMON-64-128. Our unified CP model, as previously
discussed, requires four integer parameters (rb, rd, rm, rf) which denote the length of the
extended backward direction, the length of the distinguisher, the round of merging (in
case of indirect contradiction), and the length of the extended forward direction. Using
this framework, we discovered a 13-round ID distinguisher (based on direct contradiction)
used to construct the optimized 23-round full ID attack on SIMON-64-128, as illustrated
in Figure 7 in Section 5. In Figure 7 (Section 5), we notice that the truncated input
difference ∆u (illustrated in the upper triangle of L5||R5) where the upper triangle of
the bits L5[0− 18, 20, 22− 31] and all bits of R5 have a constant difference (either 0
or 1), and the upper triangle of the bit L5[19, 21] has an unknown difference (we
do not know whether there is a difference or not). Similarly, in the truncated output
difference ∆l (illustrated in the lower triangle of L18||R18), where the lower triangle of the
bits L18[0− 19, 21− 31] and all the bits R18 have zero difference, and the lower triangle of
the bit L18[20] has an active difference (). The 0-1 contradiction can be found in the bit
L10[21] (equivalently R11[21]).

It can be seen that this impossible differential is placed between rounds 5 and 18
and extended by rb = 5 and rf = 5 rounds in both directions. In this way, the first
23 = 5 + 13 + 5 rounds of SIMON-64-128 were attacked.

23-round full ID attack on SIMON-64-128. For the key recovery, the attack is illustrated
in Figure 8 in Section 5. As discussed before, first we propagate the difference ∆u (and
∆l) through E−1

b (and Ef) with probability one to obtain the truncated difference ∆b
(and ∆f), where Eb and Ef represent the rb = 5 rounds added before and rf = 5 rounds
after Ed, respectively. In this context, the bit difference one (active bit) and unknown bit
difference are represented by and . It can be seen that the truncated difference ∆b is
such that the bits L0[0, 5− 6, 12, 21, 28, 30− 31] and the bits R0[4, 29− 30] have a constant
difference (either 0 or 1), which implies |∆b| = 53 (the total number of non-fixed bit
differences in ∆b, illustrated by). Similarly, the truncated difference ∆f is such that
the bits L23[20 − 23, 27, 29] and the bits R23[3, 5, 12, 19, 21 − 25, 28 − 31] have constant
difference (either 0 or 1). This means |∆f| = 45. More precisely, by seeing ∆u and
∆l, we can state that there exist one output patterns that give the longest impossible
differential for fixed input patterns, and as |∆u| = 4, then there are four possible input
patterns. Using the idea of multiple differentials1 discussed in [BNPS14], we can update
|∆b| = 55 and |∆f| = 45. In the context, cb and cf are typically referred to as the number
of bit filters (bit conditions, or we can say probabilistic transitions) that should be satisfied
for differential transitions ∆b → ∆u and ∆l ← ∆f, respectively. In Figure 8 (Section 5),
the position of bit conditions is represented by (which means in our model, the values
of the variable cb corresponding to those positions are 1). Therefore, it can be seen that
the number of filters that should be satisfied for differential transition ∆b → ∆u is cb = 49,
and the number of filters that should be satisfied for differential transition ∆l ← ∆f is
cf = 45.

As discussed before, we have to detect the state bits whose difference or value, or
both are needed for checking bit conditions in ∆b

Eb−→ ∆u and ∆l
E−1

f←− ∆f. In Figure 8
(Section 5), the bit position where the value is needed and the difference is required for
checking bit conditions are represented by (which means in our model, the value of the
variable kx corresponding to that bit position is 1) and (which means in our model, the
value of the variable kdx corresponding to that bit position is 1), respectively. Finally, we

1In [BNPS14], the authors introduced a technique to attack SIMON using multiple im-
possible differentials simultaneously, thereby reducing data complexity. Our key recovery at-
tacks handle multiple impossible differentials, as described in [BNPS14]. This increases
the value of |∆b| (resp. |∆f|) by log{the number of multiple impossible input patterns} (resp.
log{the number of multiple impossible output patterns}), thereby reducing the data complexity of our
attack directly following the complexity formula.

26 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

know that the key bits kb ∪ kf are involved in deriving the difference ∆u and ∆l from ∆b
and ∆f, respectively. In Figure 8 (Section 5), it can be seen that kb = 66 and kf = 55,
which means the total number of subkey bits involved is 121.

Finally, we can have the complexities of this attack by using the complexity formula
discussed in Equation 1, which can be modeled in our framework by the constraints
discussed in Subsubsection 4.2.5. Therefore, the complexities of our attack are:

Time Complexity : 2123

Data Complexity : 261.27

Memory Complexity : 296.3

The previous best ID attack is found on 22-round SIMON-64-128 [BNPS14, DF16].

Discussion. The gap between the actual time complexity and the output of Boura et al.’s
formula [BNPS14] is well known. This formula provides a lower bound for the complexity
of the guess-and-filter step, which is typically close to the actual value. The reason that
[HSE23, HGSE24] and we are using this formula to build a unified CP model has been
discussed in [HGSE24] (see the last paragraph of Section 2.1 of [HGSE24]). Briefly, there
are two approaches: using this formula to estimate the complexity (as done in most of
the previous works) and keeping the model very easy to solve, or incorporating all the
details of the step-by-step early-abort technique into the CP model that is more accurate
but makes the model very hard to solve. The first approach is relatively fast and mostly
returns an optimum attack quickly. The second one can theoretically find the exact
time complexity, but it is tough to solve because the early-abort technique is a multistep
guess-and-determine procedure; implementing it into the CP model makes it very hard to
solve. So, we chose the first one to find a nearly optimum attack and then check whether
the actual time complexity matches the formula’s output discussed in [BNPS14]. In this
regard, we found that sometimes the complexities deduced from Boura et al.’s formula
[BNPS14] are lower (but relatively close) than those inferred from the step-by-step early
abort technique. For example, in Simon-64-128, we performed the step-by-step early abort
technique and got the actual complexities as follows:

Time Complexity : 2123.76

Data Complexity : 261.27

Memory Complexity : 296.28

5 Applications
This section discusses the application of our method to both ARX and AndRX ciphers.
ARX ciphers are based on three primary operations: modular addition (x ⊞ y), bitwise
rotation (x ≪ n), and XOR (x ⊕ y). We analyze different ARX constructions used in
block ciphers (e.g., LEA and SPECK), stream ciphers (e.g., ChaCha [Ber08]) and MAC
algorithms (e.g., SipHash and Chaskey). Furthermore, we expand our analysis to AndRX
ciphers, which replace modular addition with bitwise AND (x⊙ y) operations, as utilized
in ciphers such as SIMON and Simeck. Refer to Appendix C and Appendix D for brief
specifications of these ciphers.

5.1 Application to ARX Ciphers
We have successfully applied our bit-wise CP-based model to find ID distinguishers based
on satisfiability for several ARX ciphers: all versions of SPECK, LEA, ChaCha, Chaskey,
and SipHash. Table 1 presents the ID distinguishers identified using our tool and compares

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 27

them with previous ID distinguishers. Additionally, Table 3 outlines our attack parameters.
The subsequent sections provide detailed explanations of the attacks on each ARX cipher.

Table 3: Summary of our ID distinguishers for ARX ciphers
Cipher (rd, rm) Contradiction (round/type)

SPECK-32 (6, 2) 2/Direct

SPECK-48 (6, 2) 2/Direct

SPECK-64 (6, 2) 2/Direct

SPECK-96 (6, 2) 2/Direct

SPECK-128 (6, 2) 2/Direct

LEA (10, 6) 6/Direct

ChaCha (5, 2) 1.5/Direct

Chaskey (4, 2) 2/Direct

SipHash (4, 2) 2/Direct

5.1.1 Application To SPECK

SPECK is a family of ARX ciphers with a generalized Feistel structure, known for its
excellent performance in both hardware and software implementations. For more details on
the specification, please refer to Appendix C. Since its publication, numerous cryptanalyses
have been conducted [LLJW21, WW22, BdST+23]. In this context, we discuss the impact
of impossible differential cryptanalysis on SPECK.

We applied our method to search for ID distinguishers for all versions of SPECK.
Our findings include 6-round ID distinguishers for SPECK-32, SPECK-48, and SPECK-64,
matching the previous best-known ID distinguishers. Specifically, the authors of [RC19]
analyzed the differential properties of SPECK’s round function and transformed these
properties into Boolean expressions to construct a SAT model for searching impossible
differentials. They identified 3, 20, and 157 6-round IDs for SPECK-32, SPECK-48, and
SPECK-64, respectively, with Hamming weight one in both input and output differences.
In contrast, our tool found clusters of 24, 217, and 233 ID distinguishers for these versions
with Hamming weights of at least one in both input and output differences (Figure 13a,
Figure 13b, Figure 14 in Appendix F). These clusters were discovered in a single run of
our tool, demonstrating the advantage of our framework over previous methods, where
finding such large clusters would be difficult or infeasible. Additionally, we report 6-round
ID distinguishers for SPECK-96 and SPECK-128 for the first time, discovering clusters of
265 and 297 IDs, respectively (Figure 6, Figure 15 in Appendix F).

5.1.2 Application to ChaCha

We applied our method to search for an ID distinguisher for ChaCha256. For a brief
specification of ChaCha, please refer to Appendix C. The most popular cryptanalysis of
ChaCha relies on differential cryptanalysis using probabilistic neutral bits (PNBs). Since
2008 [AFK+08], there have been several advancements in PNB-based attacks on ChaCha,
resulting in improved attacks. Researchers have traditionally focused on incorporating
single-bit differences at the beginning of differential-linear distinguishers for key-recovery
attacks on ChaCha. Recently, [BGG+23] introduced an innovative approach with a 5-round
differential-linear distinguisher considering 2-bit differences at the beginning. This 5-round

28 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 6: Cluster of 265 ID distinguishers for 6-round SPECK-96.

distinguisher, integrated with the PNB framework, led to an enhanced key-recovery attack
specifically tailored for a 7-round ChaCha cipher.

To the best of our knowledge, no cryptanalytic results have been reported regarding
ID distinguishers for ChaCha. Using our model, we have detected a cluster of 280 ID
distinguishers for 5-round ChaCha for the first time. For detailed results, please refer to
Table 4.

5.1.3 Application to Chaskey

Chaskey is a permutation-based MAC algorithm presented by Mouha et al. in 2014
[MMH+14]. Appendix C briefly describes the specification of Chaskey. Several attacks
have been performed on Chaskey such as rotational cryptanalysis [KAR20], differential-
linear cryptanalysis on 7-round Chaskey [Leu16], and impossible differential cryptanalysis
[SBS21]. More precisely, the authors of [SBS21] used the MILP model proposed by
[CCJ+21] to search for impossible differentials by fixing the input/output differential. This
approach led to the discovery of 15 4-round ID distinguishers for Chaskey.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 29

We applied our advanced bit-wise CP model to find ID distinguishers of Chaskey. Our
model detected a cluster of 27 ID distinguishers for the 4-round Chaskey in a single run,
aligning with the best previous results in terms of the number of rounds. For detailed
results, please refer to Table 5.

5.1.4 Application to LEA

LEA (Lightweight Encryption Algorithm) [HLK+13] is a block cipher developed by the
Korea Internet & Security Agency (KISA) to provide lightweight encryption in resource-
constrained environments. Please refer to Appendix C for a concise specification of
LEA. The designers of LEA [HLK+13], conducted differential cryptanalysis on the LEA
cipher and identified a differential path extending up to 11 rounds with a probability of
2−98. Additionally, they performed differential-linear, impossible differential, and linear
cryptanalysis, presenting paths for 14, 10, and 11 rounds, respectively. In [ZGH16], the
authors proposed 9-round ZC distinguishers for LEA. Additionally, in [CCJ+21], the authors
applied their MILP model to search for ID distinguishers of LEA and reported a 10-round
ID distinguisher.

We employed our advanced model to search for an ID distinguisher for LEA and
identified a cluster of 22 ID distinguishers for the 10-round LEA in a single run, matching
the best previous results in terms of the number of rounds. For detailed results, please see
Table 6.

5.1.5 Applications to SipHash

SipHash is a family of pseudorandom functions introduced by Aumasson and Bernstein at
Indocrypt 2012 [AB12], designed for short message inputs. Please refer to Appendix C
for a brief specification of SipHash. In [DMS14], the authors generalized the concepts to
calculate the probability of ARX functions, which results in a characteristic for SipHash-2-4
with a probability of 2−236.3 and a distinguisher for the Finalization of SipHash-2-4 with
practical complexity. Several other improved cryptanalyses on SipHash can be found
[XLSL19, HY24]. We applied our advanced model to search for an ID distinguisher for
SipHash. To the best of our knowledge, we are the first to detect a cluster of 214 ID
distinguishers of 4-round SipHash using our model. Please refer to Table 7 for the detailed
result.

In summary, within a few minutes, our bit-wise CP model can produce the best-known
ID distinguishers for the targeted ARX ciphers with large block sizes. It is important
to note that, for all the ARX ciphers used in our paper, our distinguishers for the same
number of rounds as in previous works are actually supersets of those reported earlier.

5.2 Application to AndRX Ciphers
In this paper, we first introduce the most advanced bit-wise CP models for detecting ID
and ZC distinguishers for AndRX ciphers (SIMON, Simeck). We also extend the model for
ID distinguishers to construct a unified COP model to generate a full ID attack on AndRX
ciphers. Please refer to Appendix D for a brief overview of the specification of SIMON and
Simeck. Moreover, we demonstrated most of the existing cryptanalytic attacks on SIMON
and Simeck in Table 11 (Subsection D.3 in Appendix D) and Table 12 (Subsection D.4 in
Appendix D), respectively. It is important to note that the best existing cryptanalysis of
both ciphers is linear cryptanalysis. Thus, we do not claim that ID attacks are the best
cryptanalytic results on SIMON and Simeck. Instead, our contribution lies in developing
an efficient tool to find full ID attacks on these ciphers. Our tool provides a novel solution
that eliminates the need for manual contradiction discovery or input-output fixing, as

30 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

Table 4: Cluster of 280 impossible-differential distinguishers for 5-round ChaCha.

0
00 00
00 00
00 00
0000000000000000***********0000000000000000000000000000000000000 **

1
*******************************000000000000000000000000000000000 **
********************************00000000000000000000000000000000 **
********************************00000000000000000000000000000000 **
***********************0********00000000000000000000000000000000 **

1.5
*******************************0******************************** **
** **
** **
** **

1.5
*******************************1******************************** **
***1000000 **
** ***1
** **

2
*******************************1*****************************100 **
*************************1000000*************1000000000000000000 *****************10***
*****************************100*****************************100 *************************1000000*****************************000
*******************************1******************************** **

3
*****100000000000000000000000000*****************************100 *************************1000000************************10000000
0000000000000000000*****1000000000000000000000000000000000000000 *****************************100*************************1000000
*************100 *****100000000000000000000000000*****************************100
0000000000000000*****10000000000*************1000000000000000000 ************10000000000000000000*****10000000000*****10000000000

4
*****100 00
*****100 00
*************100 00
000000000000000000000000*****10000000000000000000000000000000000 00

5
00 00
00 00
00 00
*****100 00

Table 5: Cluster of 27 impossible-differential distinguishers for 4-round Chaskey.
0 00 *******100

1 *******1000000000000000000000000*******1000000000000000000000000 0000000000000000*******100000000*******100000000000*******100000

2 ***1 **

2 00000000000000000000000000001000****************************1000 *******************************100000000***********************1

3 00 1000

4 1000000000000000000000000000000010000000000000000000000000000000 0000000000000000100000000000000010000000000000000001000000000000

Table 6: Cluster of 22 impossible-differential distinguishers for 10-round LEA.
0 1000000000000000000000000000000010000000000000000000000000000000 1000000000000000000000000000000010000000000000000000000000000000

1 00 0000000000000000000000000000000010000000000000000000000000000000

2 00 000100

3 0000000000000000000000000000000000000***100000000000000000000000 000***1000

4 00000000000000000000000********100000********1000000000000000000 000******100

5 **********************1*********00000*************10000000000000 000*********100********1

6 ********************************00000******************100000000 **1***1*********

6 *******************************1*******************************1 **

7 **100000000000000000000000000000***********100000000000000000000 *****************************100*******************************1

8 **100000000000000000000000000000**100000000000000000000000000000 **100000000000000000000000000000**100000000000000000000000000000

9 00 00000000000000000000000000000000**100000000000000000000000000000

10 00 000**100

Table 7: Cluster of 214 impossible-differential distinguishers for 4-round SipHash.
0 00 00

**************00 00

1 **************00 **************00
00000000000000000000000000000000**************000000000000000000 **************00000000000000000000000000000**************0000000

2 ** **00
** **

2 0010 **10
** *100000000000000**

3 00 00
1000 00

4 1000 1000
0000000000000000000000000000000010000000000000000000000000000000 100100000000000000000000

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 31

required by previous automated methods. The details of our ID and ZC attacks on SIMON,
and Simeck are as follows.

Table 8: Summary of our ZC distinguishers for AndRX ciphers
Cipher (rd, rm) Contradiction (round/type) Ref.

SIMON-32 (11, −) 6/Direct [SFW15]
(11, 6) 6/Direct This Paper

SIMON-48 (12, −) 7/Direct [SFW15]
(12, 7) 7/Direct This paper

SIMON-64 (13, −) 8/Direct [SFW15]
(13, 8) 8/Direct This paper

SIMON-96 (16, −) 10/Direct [SFW15]
(16, 10) 10/Direct This paper

SIMON-128 (19, −) 12/Direct [SFW15]
(19, 12) 12/Direct This paper

Simeck-32 (11, −) −/Direct [ZWL+23]
(11, 5) 5/Direct This paper

Simeck-48 (15, −) 2/Indirect [SB18]
(15, 8) 2/Indirect This paper

Simeck-64 (17, −) 2/Indirect [SB18]
(17, 8) 2/Indirect This paper

5.2.1 Applications to SIMON

Distinguisher. First, we applied our improved bit-wise CP models for ID distinguishers
on all variants of SIMON. The results include clusters of 24, 27, 220, 233 and 246 ID
distinguishers for 11-round SIMON-32, 12-round SIMON-48, 13-round SIMON-64, 16-round
SIMON-96 and 19-round SIMON-128, respectively. These results match the previously
best-known ID distinguishers [BNPS14] in terms of number of rounds. In [BNPS14], the
authors used a miss-in-the-middle approach to find ID distinguishers, relying on manual
methods to identify contradictions and fix the input/output differences. In contrast, our
tool does not fix input/output differences, allowing us to discover a large cluster of IDs
in a single run. Moreover, an important distinction is that most of the ID distinguishers
previously reported in [BNPS14] have a Hamming weight of one in both input and output
differences. Our tool, however, identifies ID distinguishers with Hamming weights greater
than one in both input and output differences. This capability underscores the significant
contribution of our approach, offering more comprehensive and efficient discovery of ID
distinguishers. For instance, our distinguishers for SIMON are supersets of those identified
in [BNPS14].

Furthermore, we applied our bit-wise model for ZC distinguishers to all versions of
SIMON and produced ZC distinguishers of 11-round, 12-round, 13-round, 16-round, and
19-round SIMON-32, SIMON-48, SIMON-64, SIMON-96, and SIMON-128, respectively.
Although no new results were found for SIMON regarding ID and ZC distinguishers, our
automated tool can identify several ID and ZC distinguishers in just one run within a
few minutes. Please refer to Table 8 for more details of the attack parameters for ZC
distinguishers of SIMON, and Table 9 for ID distinguishers of SIMON.

Key-Recovery. We applied our unified COP model to develop a complete ID attack on all
variants of SIMON in single key settings. The parameters of our ID attack are detailed in

32 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

Table 9: Summary of our ID attack parameters for AndRX ciphers. rd: The length of the
distinguisher. rb: The length of the extended backward direction. rf: The length of the
extended forward direction. rm: The position of merging

Cipher (rb, rd, rf, rm) Contradiction (round/type) (cb, cf) (|∆b|, |∆f|) |kb ∪ kf| g

SIMON-32-64 (3, 11, 5, 5) 5/ Direct (19, 29) (23, 30) 53 5

SIMON-32-64 (4, 11, 5, 5) 5/ Direct (22, 29) (24, 30) 61 2

SIMON-48-72 (4, 12, 4, 5) 5/ Direct (34, 29) (38, 29) 64 5

SIMON-48-96 (4, 12, 5, 5) 5/ Direct (34, 41) (38, 41) 84 10

SIMON-64-96 (3, 13, 5, 5) 5/ Direct (20, 45) (30, 45) 66 28

SIMON-64-96 (4, 13, 5, 5) 5/ Direct (37, 45) (41, 45) 88 5

SIMON-64-128 (4, 13, 5, 5) 5/ Direct (36, 45) (46, 45) 93 30

SIMON-64-128 (5, 13, 5, 6) 6/ Direct (49, 45) (55, 45) 121 7

SIMON-96-96 (4, 16, 4, 9) 9/ Direct (30, 37) (30, 53) 82 8

SIMON-96-144 (4, 16, 5, 9) 9/ Direct (30, 54) (30, 60) 110 22

SIMON-128-128 (4, 19, 4, 11) 11/ Direct (30, 32) (30, 68) 91 40

SIMON-128-128 (4, 19, 5, 7) 7/ Direct (34, 47) (54, 47) 109 18

SIMON-128-192 (5, 19, 5, 7) 7/ Direct (56, 47) (62, 47) 145 30

SIMON-128-192 (5, 19, 6, 7) 7/ Direct (45, 64) (49, 64) 183 8

SIMON-128-256 (5, 19, 6, 7) 7/ Direct (60, 64) (52, 64) 194 30

SIMON-128-256 (6, 19, 6, 7) 7/ Direct (61, 64) (65, 64) 240 9

Simeck-32-64 (5, 11, 4, 4) 4/ Direct (23, 22) (31, 22) 55 7

Simeck-48-96 (5, 15, 5, 7) 13/ indirect (33, 33) (35, 35) 91 3

Simeck-64-128 (5, 17, 5, 9) 1/ indirect (34, 34) (35, 35) 101 2

Table 9, including input parameters (rb, rd, rf, rm) and output parameters (cb, cf, |∆b|, |∆f|,
the total involved keys as |kb ∪ kf|, g), crucial for generating the complexities of the
ID attacks, as shown in Equation 1. As detailed in Table 2, our ID attack for SIMON
demonstrated significant improvements:

• A 22-round complete ID attack on SIMON-64-96 (Figure 31 in Appendix F)

• A 23-round complete ID attack on SIMON-64-128 (Figure 8 in Section 5)

• A 28-round complete ID attack on SIMON-128-128 (Figure 41 in Appendix F)

• A 31-round complete ID attack on SIMON-128-256 (Figure 49 in Appendix F)

Each of these attacks extends the number of rounds by one compared to the previous
best ID attacks on the respective versions. Furthermore, we achieved a 30-round full ID
attack on SIMON-128-192, which surpasses the previous best ID attacks by two rounds.
For a detailed comparison of our attacks with the previous best attacks, please refer to
Table 2. While we did not improve the number of rounds for other versions of SIMON,
we significantly improved the time complexity of the attacks. Moreover, it is noteworthy
that while most of the previous attacks on SIMON were full codebook attacks, our COP
model enabled us to devise ID attacks that are not full codebook attacks for most SIMON
variants. This is a notable achievement of our COP model. Most previous full ID attacks
on SIMON relied on manual approaches. In contrast, [DF16] introduced an automated
tool to find ID key recovery attacks on SIMON, though their tool required several days to
produce results for larger versions. In comparison, our unified COP model offers a more
efficient and streamlined approach. A detailed comparison of our method and the previous
approaches is presented in the subsequent section, highlighting the advancements and
efficiency of our contributions.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 33

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 7: 13-round ID distinguisher for attack on 23-round SIMON64-128.

34 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4
≪ 8

≪ 1

≪ 2

Ke
4

L5 R5

13-round ID distinguisher

L18 R18
≪ 8

≪ 1

≪ 2

Ke
18

L19 R19
≪ 8

≪ 1

≪ 2

Ke
19

L20 R20
≪ 8

≪ 1

≪ 2

Ke
20

L21 R21
≪ 8

≪ 1

≪ 2

Ke
21

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23

1 any difference is needed value is needed involved in the key recovery filter

Figure 8: Key recovery of the attack on 23-round SIMON64-128.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 35

5.2.2 Applications to Simeck

Distinguisher. Initially, we employed our bit-wise CP models for ID and ZC distinguishers,
across all variants of Simeck. As a result of this, we construct 11-, 15- (indirect), and 17-
round (indirect) ID and ZC distinguishers of Simeck-32, Simeck-48, Simeck-64, respectively.
All the distinguishers are in accordance with the best previous ID and ZC distinguishers of
Simeck. It is important to note that, for Simeck, our tool can recover the same distinguishers
as found in [SB18].

Key Recovery. We applied our unified COP model to find a full ID attack on all variants
of Simeck in single key settings. Please refer to Table 9 for details of our ID attack
parameters on all versions of Simeck. The authors of [ZLW+23] proposed 20-, 25-, and
27-round ID attacks on Simeck-32, Simeck-48, and Simeck-64 with time complexities of
261.11, 294.23, and 2126.56, respectively. The authors in [ZLW+23] presented their attack,
but did not explain anything regarding their attack algorithm. However, we found 20-, 25-,
and 27-round ID attacks for the corresponding variants of Simeck with time complexities
of 257.27, 293.05, and 2126, respectively. Interestingly, we discovered a 20-round ID attack
on Simeck-32 with data complexity 227.28, while the previous best attack on Simeck-32 was
a full codebook attack. For a more detailed comparison of our ID attacks with previous
works, please refer to Table 2.

5.2.3 Discussion

Table 11 (Subsection D.3 in Appendix D) and Table 12 (Subsection D.4 in Appendix D)
provide an overview of the most popular existing cryptanalytic results on SIMON and
Simeck. Table 2 summarizes all ID attacks constructed using our tool and compares them
with the existing ID attacks on SIMON and Simeck. When looking for an attack, usually
our model picks those distinguishers with many zeroes, some ones, and some unknown (-1)
bits in both input and output differences (e.g., Figure 8 and other key-recovery figures in
the appendix). It is important to note that, for any distinguishers when the output (or
input) difference is either -1 (unknown) or 0 (inactive) for each bit, then there should be at
least one active difference (this condition is included in our model, which actually depicts
the accuracy of our tool). This is because the input or output of an ID distinguisher cannot
be entirely inactive. In [BNPS14], the authors followed a manual approach to find ID
attacks on all versions of SIMON, whereas in [DF16], the authors introduced an automatic
tool to find ID attacks on various ciphers, including SIMON. We strongly believe that the
performance of our tool significantly surpasses the tool presented in [DF16]. While the tool
in [DF16] requires several days to generate attacks on variants of SIMON with the largest
block size, our tool achieves enhanced results within hours, even when executed on a regular
laptop. Additionally, the authors of [DF16] did not provide detailed attack descriptions for
larger variants of SIMON. Our tool offers several other advantages, such as its applicability
for zero-correlation attacks and its ability to leverage any state-of-the-art CP/SMT/MILP
solvers, unlike the tool in [DF16]. Another key advantage of our tool lies in its foundation
on a unified optimization problem that considers all attack parameters, in contrast to
the approach in [DF16], which involves enumerating numerous ID distinguishers within
a limited search space and then selecting the optimal one. This fundamental difference
contributes significantly to the speed of our tool, allowing us to readily apply it to large
variants of SIMON and Simeck. It is important to recognize the challenges encountered
when constructing a unified CP model to identify a complete ID attack on ARX ciphers.
The primary difficulty arises in modeling the guess-and-determine process in the outer
sections, particularly when dealing with state bits whose differences, values, or both are
essential for verifying bit conditions through modular additions. Consequently, we have
decided to leave this aspect for future exploration.

36 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

6 Conclusion and Future Work
This paper enhanced the CP model for discovering complete ID attacks in [HSE23, HGSE24]
from three significant perspectives. Firstly, we expanded the bit-wise CP model of [HGSE24]
to encompass ARX and AndRX designs. Additionally, we demonstrated how to extend
this model to detect ZC distinguishers. Moreover, we introduced a novel CP model for
finding ID distinguishers based on direct and indirect contradictions. This model is generic
and not limited to ARX and AndRX designs. Subsequently, we extended the CP model for
the key recovery of ID attacks in [HSE23] to encompass bit-oriented designs, particularly
AndRX designs. Finally, we integrated our new CP model for detecting ID distinguishers
with the CP model for key recovery, proposing a unified CP model for identifying complete
ID attacks.

To demonstrate the utility of our new methods, we applied them to several ARX and
AndRX designs, including SIMON, Simeck, ChaCha, Siphash, and other ciphers. Notably, we
improved the ID attack on SIMON-64-96, SIMON-64-128, SIMON-128-128, SIMON-128-256
by one round and SIMON-128-192 by two rounds. Additionally, we introduced several
new ID and ZC distinguishers for our targeted ciphers. Our work also prompts intriguing
questions for future research. While we presented a workaround to apply CP models based
on satisfiability for detecting ZC distinguishers on AndRX designs, it would be interesting
for future work to develop a similar CP model for ARX designs. Another interesting work
is applying our CP model to find complete ID attacks to other bit-oriented ciphers beyond
ARX and AndRX designs. Finally, our key-recovery models may be a useful starting point
for developing and evaluating further optimization techniques for key recovery.

Acknowledgments. This work has been supported in part by the Austrian Science Fund
(FWF SFB project SPyCoDe), partially by the French Agence Nationale de la Recherche
through the OREO project under Contract ANR-22-CE39-0015 and by the France 2030
program under grant agreement No. ANR-22-PECY-0010. Debasmita Chakraborty was
a visiting research scholar at TU Graz, funded by the OeAD Ernst Mach-Stipendien,
weltweit, while carrying out this work. We sincerely thank Sadegh Sadeghi for insightful
discussions on impossible differential attacks, especially for his elucidation of their method
for finding ID distinguishers as outlined in [SB18]. We would also like to thank the
anonymous reviewers for their valuable comments and suggestions.

References
[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A fast short-

input PRF. In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT
2012, volume 7668 of LNCS, pages 489–508. Springer, 2012. doi:10.1007/
978-3-642-34931-7_28.

[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and
Christian Rechberger. New features of latin dances: Analysis of salsa, chacha,
and rumba. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,
pages 470–488. Springer, 2008. doi:10.1007/978-3-540-71039-4_30.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack
reduced to 31 rounds using impossible differentials. In EUROCRYPT
1999, volume 1592 of LNCS, pages 12–23. Springer, 1999. doi:10.1007/
3-540-48910-X_2.

[BdST+23] Alex Biryukov, Luan Cardoso dos Santos, Je Sen Teh, Aleksei Udovenko, and
Vesselin Velichkov. Meet-in-the-filter and dynamic counting with applications

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 37

to speck. In ACNS 2023, volume 13905 of LNCS, pages 149–177. Springer,
2023. doi:10.1007/978-3-031-33488-7_6.

[Ber08] Daniel J Bernstein. Chacha, a variant of salsa20, 2008. URL: https:
//cr.yp.to/chacha.html.

[BGG+23] Emanuele Bellini, David Gérault, Juan Grados, Rusydi H. Makarim, and
Thomas Peyrin. Boosting differential-linear cryptanalysis of chacha7 with
MILP. IACR Trans. Symmetric Cryptol., 2023(2):189–223, 2023. doi:
10.46586/TOSC.V2023.I2.189-223.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In CRYPTO 2016, pages 123–153. Springer, 2016. doi:
10.1007/978-3-662-53008-5_5.

[BNPS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing
and improving impossible differential attacks: applications to CLEFIA,
Camellia, LBlock and Simon. In ASIACRYPT 2014, volume 8873 of LNCS,
pages 179–199. Springer, 2014. doi:10.1007/978-3-662-45611-8_10.

[BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and
linear cryptanalysis of block ciphers. Des. Codes Cryptogr., 70(3):369–383,
2014. doi:10.1007/s10623-012-9697-z.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK lightweight block
ciphers. In DAC 2015, pages 175:1–175:6. ACM, 2015. doi:10.1145/
2744769.2747946.

[CCJ+21] Tingting Cui, Shiyao Chen, Keting Jia, Kai Fu, and Meiqin Wang. New
automatic search tool for impossible differentials and zero-correlation linear
approximations. Sci. China Inf. Sci., 64(2), 2021. See also https://eprint.
iacr.org/2016/689. doi:10.1007/S11432-018-1506-4.

[CCW+18] Zhihui Chu, Huaifeng Chen, Xiaoyun Wang, Xiaoyang Dong, and Lu Li.
Improved integral attacks on SIMON32 and SIMON48 with dynamic key-
guessing techniques. Secur. Commun. Networks, 2018:5160237:1–5160237:11,
2018. doi:10.1155/2018/5160237.

[CJF+16] Tingting Cui, Keting Jia, Kai Fu, Shiyao Chen, and Meiqin Wang. New
automatic search tool for impossible differentials and zero-correlation linear
approximations. IACR Cryptol. ePrint Arch., page 689, 2016. URL: http:
//eprint.iacr.org/2016/689.

[CW16] Huaifeng Chen and Xiaoyun Wang. Improved linear hull attack on round-
reduced simon with dynamic key-guessing techniques. In Thomas Peyrin,
editor, FSE 2016, volume 9783 of LNCS, pages 428–449. Springer, 2016.
doi:10.1007/978-3-662-52993-5_22.

[CWW15] Zhan Chen, Ning Wang, and Xiaoyun Wang. Impossible differential crypt-
analysis of reduced round SIMON. IACR Cryptol. ePrint Arch., page 286,
2015. URL: http://eprint.iacr.org/2015/286.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläf-
fer. Ascon v1.2: Lightweight authenticated encryption and hashing. Journal
of Cryptology, 34(3):33, 2021. doi:10.1007/s00145-021-09398-9.

https://doi.org/10.1007/978-3-031-33488-7_6
https://cr.yp.to/chacha.html
https://cr.yp.to/chacha.html
https://doi.org/10.46586/TOSC.V2023.I2.189-223
https://doi.org/10.46586/TOSC.V2023.I2.189-223
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/s10623-012-9697-z
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://eprint.iacr.org/2016/689
https://eprint.iacr.org/2016/689
https://doi.org/10.1007/S11432-018-1506-4
https://doi.org/10.1155/2018/5160237
http://eprint.iacr.org/2016/689
http://eprint.iacr.org/2016/689
https://doi.org/10.1007/978-3-662-52993-5_22
http://eprint.iacr.org/2015/286
https://doi.org/10.1007/s00145-021-09398-9

38 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-
middle and impossible differential attacks. In CRYPTO 2016, volume 9815 of
LNCS, pages 157–184. Springer, 2016. doi:10.1007/978-3-662-53008-5_
6.

[DMS14] Christoph Dobraunig, Florian Mendel, and Martin Schläffer. Differential
cryptanalysis of SipHash. In Antoine Joux and Amr M. Youssef, editors,
SAC 2014, volume 8781 of LNCS, pages 165–182. Springer, 2014. doi:
10.1007/978-3-319-13051-4_10.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.

[HDE24] Hosein Hadipour, Patrick Derbez, and Maria Eichlseder. Revisiting
differential-linear attacks via a boomerang perspective with application
to AES, ascon, CLEFIA, SKINNY, PRESENT, KNOT, TWINE, WARP,
LBlock, simeck, and SERPENT. IACR Cryptology ePrint Archive, Report
2016/689, 2024. URL: https://eprint.iacr.org/2024/255.

[HE22] Hosein Hadipour and Maria Eichlseder. Autoguess: A tool for finding
guess-and-determine attacks and key bridges. In Giuseppe Ateniese and
Daniele Venturi, editors, ACNS 2022, volume 13269 of LNCS, pages 230–250.
Springer, 2022. doi:10.1007/978-3-031-09234-3_12.

[HGSE24] Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, and Maria Eichlseder.
Improved search for integral, impossible differential and zero-correlation
attacks application to ascon, forkskinny, skinny, mantis, PRESENT and
qarmav2. IACR Trans. Symmetric Cryptol., 2024(1):234–325, 2024. doi:
10.46586/TOSC.V2024.I1.234-325.

[HLK+13] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho
Ryu, and Donggeon Lee. LEA: A 128-bit block cipher for fast encryption
on common processors. In WISA 2013, volume 8267 of LNCS, pages 3–27.
Springer, 2013. doi:10.1007/978-3-319-05149-9_1.

[HNE22] Hosein Hadipour, Marcel Nageler, and Maria Eichlseder. Throwing
boomerangs into Feistel structures: Application to CLEFIA, WARP, LBlock,
LBlock-s and TWINE. IACR Trans. Symmetric Cryptol., 2022(3):271–302,
2022. doi:10.46586/tosc.v2022.i3.271-302.

[HSE23] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the
impossible: Automated search for full impossible-differential, zero-correlation,
and integral attacks. In EUROCRYPT 2023, volume 14007 of LNCS, pages
128–157. Springer, 2023. doi:10.1007/978-3-031-30634-1_5.

[HY24] Le He and Hongbo Yu. Cryptanalysis of reduced-round SipHash. Comput.
J., 67(3):875–883, 2024. doi:10.1093/COMJNL/BXAD026.

[IS13] Takanori Isobe and Kyoji Shibutani. Generic key recovery attack on feistel
scheme. 8269:464–485, 2013. doi:10.1007/978-3-642-42033-7_24.

[KAR20] Liliya Kraleva, Tomer Ashur, and Vincent Rijmen. Rotational cryptanalysis
on MAC algorithm chaskey. In ACNS 2020, volume 12146 of LNCS, pages
153–168. Springer, 2020. doi:10.1007/978-3-030-57808-4_8.

[KHS+03] Jongsung Kim, Seokhie Hong, Jaechul Sung, Changhoon Lee, and Sangjin
Lee. Impossible differential cryptanalysis for block cipher structures.
In Thomas Johansson and Subhamoy Maitra, editors, INDOCRYPT

https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-662-53008-5_6
https://doi.org/10.1007/978-3-319-13051-4_10
https://doi.org/10.1007/978-3-319-13051-4_10
https://eprint.iacr.org/2024/255
https://doi.org/10.1007/978-3-031-09234-3_12
https://doi.org/10.46586/TOSC.V2024.I1.234-325
https://doi.org/10.46586/TOSC.V2024.I1.234-325
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.46586/tosc.v2022.i3.271-302
https://doi.org/10.1007/978-3-031-30634-1_5
https://doi.org/10.1093/COMJNL/BXAD026
https://doi.org/10.1007/978-3-642-42033-7_24
https://doi.org/10.1007/978-3-030-57808-4_8

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 39

2003, volume 2904 of LNCS, pages 82–96. Springer, 2003. doi:10.1007/
978-3-540-24582-7_6.

[Knu98] Lars Knudsen. DEAL – a 128-bit block cipher. Complexity, 258(2):216,
1998.

[LDKK08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New
impossible differential attacks on AES. In INDOCRYPT 2008, volume 5365 of
LNCS, pages 279–293. Springer, 2008. doi:10.1007/978-3-540-89754-5_
22.

[Leu16] Gaëtan Leurent. Improved differential-linear cryptanalysis of 7-round chaskey
with partitioning. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, volume 9665 of LNCS, pages 344–371. Springer, 2016.
doi:10.1007/978-3-662-49890-3_14.

[LKH+16] Hochang Lee, HyungChul Kang, Deukjo Hong, Jaechul Sung, and Seokhie
Hong. New impossible differential characteristic of SPECK64 using MILP.
IACR Cryptol. ePrint Arch., page 1137, 2016. URL: http://eprint.iacr.
org/2016/1137.

[LKKD08] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improving
the efficiency of impossible differential cryptanalysis of reduced Camellia and
MISTY1. In CT-RSA 2008, volume 4964 of LNCS, pages 370–386. Springer,
2008. doi:10.1007/978-3-540-79263-5_24.

[LLG+12] Ya Liu, Leibo Li, Dawu Gu, Xiaoyun Wang, Zhiqiang Liu, Jiazhe Chen,
and Wei Li. New observations on impossible differential cryptanalysis of
reduced-round camellia. In Anne Canteaut, editor, FSE 2012, volume 7549 of
LNCS, pages 90–109. Springer, 2012. doi:10.1007/978-3-642-34047-5_6.

[LLJW21] Zhengbin Liu, Yongqiang Li, Lin Jiao, and Mingsheng Wang. A new
method for searching optimal differential and linear trails in ARX ciphers.
IEEE Trans. Inf. Theory, 67(2):1054–1068, 2021. doi:10.1109/TIT.2020.
3040543.

[LLWG14] Yiyuan Luo, Xuejia Lai, Zhongming Wu, and Guang Gong. A unified
method for finding impossible differentials of block cipher structures. Inf.
Sci., 263:211–220, 2014. See also http://eprint.iacr.org/2009/627. doi:
10.1016/J.INS.2013.08.051.

[LPS21] Gaëtan Leurent, Clara Pernot, and André Schrottenloher. Clustering effect
in simon and simeck. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, volume 13090 of LNCS, pages 272–302. Springer, 2021.
doi:10.1007/978-3-030-92062-3_10.

[LRC19] Hang Li, Jiongjiong Ren, and Shaozhen Chen. Improved integral attack on
reduced-round simeck. IEEE Access, 7:118806–118814, 2019. doi:10.1109/
ACCESS.2019.2936834.

[LSG+23] Yin Lv, Danping Shi, Yi Guo, Qiu Chen, Lei Hu, and Zihui Guo. Auto-
matic Demirci-Selçuk meet-in-the-middle attack on SIMON. Comput. J.,
66(12):3052–3068, 2023. doi:10.1093/COMJNL/BXAC149.

[MDRMH10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved impossible differential cryptanalysis of 7-round
AES-128. In Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT

https://doi.org/10.1007/978-3-540-24582-7_6
https://doi.org/10.1007/978-3-540-24582-7_6
https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/978-3-662-49890-3_14
http://eprint.iacr.org/2016/1137
http://eprint.iacr.org/2016/1137
https://doi.org/10.1007/978-3-540-79263-5_24
https://doi.org/10.1007/978-3-642-34047-5_6
https://doi.org/10.1109/TIT.2020.3040543
https://doi.org/10.1109/TIT.2020.3040543
http://eprint.iacr.org/2009/627
https://doi.org/10.1016/J.INS.2013.08.051
https://doi.org/10.1016/J.INS.2013.08.051
https://doi.org/10.1007/978-3-030-92062-3_10
https://doi.org/10.1109/ACCESS.2019.2936834
https://doi.org/10.1109/ACCESS.2019.2936834
https://doi.org/10.1093/COMJNL/BXAC149

40 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

2010, volume 6498 of LNCS, pages 282–291. Springer, 2010. doi:10.1007/
978-3-642-17401-8_20.

[MMH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm
for 32-bit microcontrollers. In Antoine Joux and Amr M. Youssef, editors,
SAC 2014, volume 8781 of LNCS, pages 306–323. Springer, 2014. doi:
10.1007/978-3-319-13051-4_19.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Christian Bessiere, editor, CP 2007, volume 4741 of
LNCS, pages 529–543. Springer, 2007. doi:10.1007/978-3-540-74970-7_
38.

[PT22] Thomas Peyrin and Quan Quan Tan. Mind your path: On (key) dependencies
in differential characteristics. IACR Trans. Symmetric Cryptol., 2022(4):179–
207, 2022. doi:10.46586/TOSC.V2022.I4.179-207.

[QCW16] Lingyue Qin, Huaifeng Chen, and Xiaoyun Wang. Linear hull attack on
round-reduced simeck with dynamic key-guessing techniques. In Information
Security and Privacy - 21st Australasian Conference, ACISP 2016, Pro-
ceedings, Part II, volume 9723 of LNCS, pages 409–424. Springer, 2016.
doi:10.1007/978-3-319-40367-0_26.

[QHS16] Kexin Qiao, Lei Hu, and Siwei Sun. Differential analysis on simeck and
SIMON with dynamic key-guessing techniques. In Olivier Camp, Steven
Furnell, and Paolo Mori, editors, ICISSP 2016, volume 691 of Communi-
cations in Computer and Information Science, pages 64–85. Springer, 2016.
doi:10.1007/978-3-319-54433-5_5.

[RC19] Jiongjiong Ren and Shaozhen Chen. Cryptanalysis of reduced-round speck.
IEEE Access, 7:63045–63056, 2019. doi:10.1109/ACCESS.2019.2917015.

[SB18] Sadegh Sadeghi and Nasour Bagheri. Improved zero-correlation and impos-
sible differential cryptanalysis of reduced-round SIMECK block cipher. IET
Inf. Secur., 12(4):314–325, 2018. doi:10.1049/IET-IFS.2016.0590.

[SBS21] Mahshid Saberi, Nasour Bagheri, and Sadegh Sadeghi. Impossible differen-
tial and zero-correlation linear cryptanalysis of marx, marx2, chaskey and
speck32. In ICCKE 2021, pages 48–54, 2021. doi:10.1109/ICCKE54056.
2021.9721479.

[SFW15] Ling Sun, Kai Fu, and Meiqin Wang. Improved zero-correlation cryptanalysis
on SIMON. In Inscrypt, volume 9589 of LNCS, pages 125–143. Springer,
2015.

[SHMS14] Ling Song, Lei Hu, Bingke Ma, and Danping Shi. Match box meet-in-the-
middle attacks on the SIMON family of block ciphers. In Thomas Eisenbarth
and Erdinç Öztürk, editors, LightSec 2014, volume 8898 of LNCS, pages
140–151. Springer, 2014. doi:10.1007/978-3-319-16363-5_9.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu
Iwata. The 128-bit blockcipher CLEFIA (extended abstract). In FSE
2007, volume 4593 of LNCS, pages 181–195. Springer, 2007. doi:10.1007/
978-3-540-74619-5_12.

https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.1007/978-3-642-17401-8_20
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.46586/TOSC.V2022.I4.179-207
https://doi.org/10.1007/978-3-319-40367-0_26
https://doi.org/10.1007/978-3-319-54433-5_5
https://doi.org/10.1109/ACCESS.2019.2917015
https://doi.org/10.1049/IET-IFS.2016.0590
https://doi.org/10.1109/ICCKE54056.2021.9721479
https://doi.org/10.1109/ICCKE54056.2021.9721479
https://doi.org/10.1007/978-3-319-16363-5_9
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 41

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects. In EUROCRYPT 2017, pages 185–215,
Cham, 2017. Springer. doi:10.1007/978-3-319-56617-7_7.

[WW22] Feifan Wang and Gaoli Wang. Improved differential-linear attack with
application to round-reduced speck32/64. In ACNS 2022, volume 13269 of
LNCS, pages 792–808. Springer, 2022. doi:10.1007/978-3-031-09234-3_
39.

[WWJZ18] Ning Wang, Xiaoyun Wang, Keting Jia, and Jingyuan Zhao. Differ-
ential attacks on reduced SIMON versions with dynamic key-guessing
techniques. Sci. China Inf. Sci., 61(9):098103:1–098103:3, 2018. doi:
10.1007/S11432-017-9231-5.

[XLSL19] Wenqian Xin, Yunwen Liu, Bing Sun, and Chao Li. Improved cryptanalysis
on SipHash. In Yi Mu, Robert H. Deng, and Xinyi Huang, editors, CANS
2019, volume 11829 of LNCS, pages 61–79. Springer, 2019. doi:10.1007/
978-3-030-31578-8_4.

[YZS+15] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and Guang
Gong. The simeck family of lightweight block ciphers. In CHES 2015,
volume 9293 of LNCS, pages 307–329. Springer, 2015. doi:10.1007/
978-3-662-48324-4_16.

[ZGH16] Kai Zhang, Jie Guan, and Bin Hu. Zero correlation linear cryptanalysis on
LEA family ciphers. J. Commun., 11(7):677–685, 2016. doi:10.12720/JCM.
11.7.677-685.

[ZGHL18] Kai Zhang, Jie Guan, Bin Hu, and Dongdai Lin. Security evaluation
on simeck against zero-correlation linear cryptanalysis. IET Inf. Secur.,
12(1):87–93, 2018. doi:10.1049/IET-IFS.2016.0503.

[ZLW+23] Kai Zhang, Xuejia Lai, Lei Wang, Jie Guan, and Bin Hu. A revisited security
evaluation of simeck family ciphers against impossible differential cryptanal-
ysis. Sci. China Inf. Sci., 66(3), 2023. doi:10.1007/S11432-022-3466-X.

[ZWF07] Wentao Zhang, Wenling Wu, and Dengguo Feng. New results on impossible
differential cryptanalysis of reduced AES. In Kil-Hyun Nam and Gwangsoo
Rhee, editors, ICISC 2007, volume 4817 of LNCS, pages 239–250. Springer,
2007. doi:10.1007/978-3-540-76788-6_19.

[ZWL+23] Kai Zhang, Senpeng Wang, Xuejia Lai, Lei Wang, Jie Guan, Bin Hu, and
Tairong Shi. Impossible differential cryptanalysis and a security evaluation
framework for and-rx ciphers. IEEE Transactions on Information Theory,
pages 1–1, 2023. doi:10.1109/TIT.2023.3292241.

https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-031-09234-3_39
https://doi.org/10.1007/978-3-031-09234-3_39
https://doi.org/10.1007/S11432-017-9231-5
https://doi.org/10.1007/S11432-017-9231-5
https://doi.org/10.1007/978-3-030-31578-8_4
https://doi.org/10.1007/978-3-030-31578-8_4
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.12720/JCM.11.7.677-685
https://doi.org/10.12720/JCM.11.7.677-685
https://doi.org/10.1049/IET-IFS.2016.0503
https://doi.org/10.1007/S11432-022-3466-X
https://doi.org/10.1007/978-3-540-76788-6_19
https://doi.org/10.1109/TIT.2023.3292241

42 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

Appendix

A Constraints to Model the Toffoli Gate for SIMON
The constraints derived in Proposition 8 for the linear propagation through the Toffoli
gate Ssimon are as follows:

if (x0 = 0 ∧ x1 = 0 ∧ x2 = 0) then (y0 = 0 ∧ y1 = 0 ∧ y2 = 0)
elseif (x0 = 0 ∧ x1 = 0 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = 0 ∧ x1 = 1 ∧ x2 = 0) then (y0 = 0 ∧ y1 = 1 ∧ y2 = 0)
elseif (x0 = 0 ∧ x1 = 1 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = 0 ∧ x1 = −1 ∧ x2 = 0) then (y0 = 0 ∧ y1 = −1 ∧ y2 = 0)
elseif (x0 = 0 ∧ x1 = −1 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = 1 ∧ x1 = 0 ∧ x2 = 0) then (y0 = 1 ∧ y1 = 0 ∧ y2 = 0)
elseif (x0 = 1 ∧ x1 = 0 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = 1 ∧ x1 = 1 ∧ x2 = 0) then (y0 = 1 ∧ y1 = 1 ∧ y2 = 0)
elseif (x0 = 1 ∧ x1 = 1 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = 1 ∧ x1 = −1 ∧ x2 = 0) then (y0 = 1 ∧ y1 = −1 ∧ y2 = 0)
elseif (x0 = 1 ∧ x1 = −1 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = −1 ∧ x1 = 0 ∧ x2 = 0) then (y0 = −1 ∧ y1 = 0 ∧ y2 = 0)
elseif (x0 = −1 ∧ x1 = 0 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = −1 ∧ x1 = 0 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = −1 ∧ x1 = 1 ∧ x2 = 0) then (y0 = −1 ∧ y1 = 1 ∧ y2 = 0)
elseif (x0 = −1 ∧ x1 = 1 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
elseif (x0 = −1 ∧ x1 = −1 ∧ x2 = 0) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 0)
elseif (x0 = −1 ∧ x1 = −1 ∧ x2 = 1) then (y0 = −1 ∧ y1 = −1 ∧ y2 = 1)
else (y0 = −1 ∧ y1 = −1 ∧ y2 = −1)

B Algorithms for the Full SIMON Model
Algorithms 1, 2, and 3 provide our detailed model for SIMON as introduced in Section 4.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 43

Algorithm 1: CSPu model of difference propagation through Ed for SIMON
Input: The integer number rd
Output: CSPu

1 Declare an empty CSP model M;
2 M.var← {xu0

r[i] ∈ {−1, 0, 1}, xu1
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rd, 0 ≤ i ≤ (n− 1)};

3 M.var← {yu0
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rd − 1, 0 ≤ i ≤ (n− 1)};

4 M.var← {zu0
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rd − 1, 0 ≤ i ≤ (n− 1)};

5 M.var← {wu0
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rd − 1, 0 ≤ i ≤ (n− 1)};

6 M.var← {pu0
r[i] ∈ {−1, 0, 1}, qu0

r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rd − 1, 0 ≤ i ≤ (n− 1)};
7 for r = 0, . . . , rd − 1 do
8 M.con← yu0

r = xu0
r ≪ 8;

9 M.con← zu0
r = xu0

r ≪ 1;
10 M.con← wu0

r = xu0
r ≪ 2;

11 for r = 0, . . . , rd − 1, i = 0, . . . (n− 1) do
12 M.con← AND(yu0

r[i], zu0
r[i], pu0

r[i]);
13 for r = 0, . . . , rd − 1, i = 0, . . . (n− 1) do
14 M.con← XOR(pu0

r[i], wu0
r[i], qu0

r[i]);
15 for r = 0, . . . , rd − 1, i = 0, . . . (n− 1) do
16 M.con← XOR(qu0

r[i], xu1
r[i], xu0

r+1[i]);
17 for r = 0, . . . , rd − 1, i = 0, . . . (n− 1) do
18 M.con← (xu0

r[i] = xu1
r+1[i]);

19 return M;

Algorithm 2: CSPdp
b model of difference propagation through Eb for SIMON

Input: CSPu.var, and the integer number rb
Output: CSPdp

b
1 Declare an empty CSP model M;
2 M.var← {dxu0

r[i] ∈ {−1, 0, 1}, dxu1
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ (n− 1)};

3 M.var← {dyu0
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

4 M.var← {dzu0
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

5 M.var← {dwu0
r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

6 M.var← {dpu0
r[i] ∈ {−1, 0, 1}, dqu0

r[i] ∈ {−1, 0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
7 M.var← {cb1

r[i] ∈ {0, 1}, cb2
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

8 for i = 0, . . . (n− 1) do
9 M.con← (dxu0

rb [i] = xu0
0[i]);

10 for i = 0, . . . (n− 1) do
11 M.con← (dxu1

rb [i] = xu1
0[i]);

12 for r = 0, . . . , rb − 1 do
13 M.con← dyu0

r = dxu1
r+1 ≪ 8;

14 M.con← dzu0
r = dxu1

r+1 ≪ 1;
15 M.con← dwu0

r = dxu1
r+1 ≪ 2;

16 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
17 M.con← AND(dyu0

r[i], dzu0
r[i], dpu0

r[i]);
18 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
19 M.con← XOR(dpu0

r[i], dwu0
r[i], dqu0

r[i]);
20 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
21 M.con← XOR(dqu0

r[i], dxu0
r+1[i], dxu1

r[i]);
22 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
23 M.con← (dxu0

r[i] = dxu1
r+1[i]);

24 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
25 M.con← XORdp(dpu0

r[i], dwu0
r[i], dqu0

r[i], cb1
r[i]);

26 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
27 M.con← XORdp(dqu0

r[i], dxu1
r[i], dxu0

r+1)[i], cb2
r[i]);

28 return M;

44 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L0 R0

FK

mergeL1 R1

FK

mergeL2 R2

FK

mergeL3 R3

FK

mergeL4 R4

FK

mergeL5 R5

FK

mergeL6 R6

FK

mergeL7 R7

FK

L8 R8

merge

L8 R8

FK

mergeL9 R9

FK

mergeL10 R10

FK

mergeL11 R11

FK

mergeL12 R12

FK

mergeL13 R13

FK

mergeL14 R14

FK

L15 R15

L′
0 R′

0

FK

L1 R1

L′
1 R′

1

FK

L2 R2

L′
2 R′

2

FK

L3 R3

L′
3 R′

3

FK

L4 R4

L′
4 R′

4

FK

L5 R5

L′
5 R′

5

FK

L6 R6

L′
6 R′

6

FK

L7 R7

L′
7 R′

7

FK

L8 R8

L8 R8

FK

L′
9 R′

9

L9 R9

FK

L′
10 R′

10

L10 R10

FK

L′
11 R′

11

L11 R11

FK

L′
12 R′

12

L12 R12

FK

L′
13 R′

13

L13 R13

FK

L′
14 R′

14

L14 R14

FK

L′
15 R′

15

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 9: 15-round (indirect) ZC distinguisher for Simeck48. In this case, the bit difference
in the upper triangle of L2[0] (in the left-hand column) is 1, whereas the bit difference
in the lower triangle of L′

2[0] is 0. This leads to a contradiction occurring in the second
round.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 45

Algorithm 3: CSPgd
b model for guess-and-determine through Eb for SIMON

Input: CSPu.var, CSPdp
b , and the integer number rb

Output: CSPgd
b

1 Declare an empty CSP model M;
2 M.var← {kdxu0

r[i] ∈ {0, 1}, kdxu1
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ (n− 1)};

3 M.var← {kdyu0
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

4 M.var← {kdzu0
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

5 M.var← {kdwu0
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

6 M.var← {kdpu0
r[i] ∈ {0, 1}, kdqu0

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
7 M.var← {kdyu10

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
8 M.var← {kdzu10

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
9 M.var← {kdwu10

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
10 M.var← {kxu0

r[i] ∈ {0, 1}, kxu1
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb, 0 ≤ i ≤ (n− 1)};

11 M.var← {kyu0
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

12 M.var← {kzu0
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

13 M.var← {kwu0
r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};

14 M.var← {kpu0
r[i] ∈ {0, 1}, kqu0

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
15 M.var← {kyu10

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
16 M.var← {kzu10

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
17 M.var← {kwu10

r[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
18 M.var← {ikbr[i] ∈ {0, 1} : 0 ≤ r ≤ rb − 1, 0 ≤ i ≤ (n− 1)};
19 for i = 0, . . . (n− 1) do
20 M.con← (if dxu0

rb [i] ≥ 0 then kdxu0
rb [i] = 0 else true);

21 for i = 0, . . . (n− 1) do
22 M.con← (if dxu1

rb [i] ≥ 0 then kdxu1
rb [i] else true);

23 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
24 M.con← XORgd

1 (dxu1
r[i], dqu0

r[i], kdxu0
r+1[i], cb2

r[i], kdxu1
r[i], kdqu0

r[i]);
25 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
26 M.con← XORgd

1 (dqu0
r[i], dwu0

r[i], kdqu0
r[i], cb1

r[i], kdpu0
r[i], kdwu0

r[i]);
27 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
28 M.con← ANDgd

1 (dyu0
r[i], dzu0

r[i], kdpu0
r[i], kdyu0

r[i], kdzu0
r[i]);

29 for r = 0, . . . , rb − 1 do
30 M.con← kdyu0

r = kdyu10
r ≫ 8;

31 M.con← kdzu0
r = kdzu10

r ≫ 1;
32 M.con← kdwu0

r = kdwu10
r ≫ 2;

33 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
34 M.con← (if kdyu10

r[i] = kdzu10
r[i] = kdwu10

r[i] = kdxu1
r+1[i] = 0 then kdxu0

r[i] =
0 else kdxu0

r[i] = 1);
35 for i = 0, . . . (n− 1) do
36 M.con← (kxu0

rb [i] = 0);
37 for i = 0, . . . (n− 1) do
38 M.con← (kxu1

rb [i] = 0);
39 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
40 M.con← XORgd

2 (kxu0
r+1[i], kxu1

r[i], kqu0
r[i]);

41 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
42 M.con← XORgd

2 (kqu0
r[i], kpu0

r[i], kwu0
r[i]);

43 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
44 M.con← ANDgd

2 (kdpu0
r[i], kpu0

r[i], dyu0
r[i], dzu0

r[i], kyu0
r[i], kyu0

r[i]);
45 for r = 0, . . . , rb − 1 do
46 M.con← kyu0

r = kyu10
r ≫ 8;

47 M.con← kzu0
r = kzu10

r ≫ 1;
48 M.con← kwu0

r = kwu10
r ≫ 2;

49 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
50 M.con← (if kyu10

r[i] = kzu10
r[i] = kwu10

r[i] = kxu1
r+1[i] = 0 then kxu0

r[i] = 0 else kxu0
r[i] =

1);
51 for r = 0, . . . , rb − 1, i = 0, . . . (n− 1) do
52 M.con← (if kxu0

r+1[i] = 1 then ikbr[i] = 1 else ikbr[i] = 0);

46 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

C Brief Specification of ARX Ciphers

C.1 LEA
LEA (Lightweight Encryption Algorithm) [HLK+13] is a block cipher developed by the
Korea Internet & Security Agency (KISA) to provide lightweight encryption in resource-
constrained environments. LEA encrypts data 1.5–2 times faster than AES, the most
popular block cipher. Operating on 128-bit blocks, LEA supports key lengths of 128, 192,
and 256 bits. The round’s numbers are 24, 28, and 32 for 128-, 192- and 256-bit keys,
respectively.

The encryption algorithm of LEA divides a plaintext of four 32-bit words (x0
0, x1

0, x2
0, x3

0)
into a ciphertext (x0

i , x1
i , x2

i , x3
i), where r represents the number of rounds. The round

function for round r, r = 0, . . . , n− 1 is defined as follows:

x0
i+1 ←((x0

i ⊕ k0
i) ⊞ (x1

i ⊕ k1
i)) ≪ 9

x1
i+1 ←((x1

i ⊕ k2
i) ⊞ (x2

i ⊕ k3
i)) ≫ 5

x2
i+1 ←((x2

i ⊕ k4
i) ⊞ (x3

i ⊕ k5
i)) ≫ 3

x3
i+1 ←x0

i

where ki = k0
i , k1

i , k2
i , k3

i , k4
i , k5

i is the round key generated by the key schedule. One round
of LEA can be seen in Figure 10a.

C.2 SPECK
The lightweight block cipher SPECK [BSS+15] was announced by the NSA in 2013.
SPECK2n/mn has a block size of 2n bits and a key size of mn bits, where n can be 16, 24,
32, 48, and 64, and m can be 2, 3, or 4.

The round function of SPECK is defined in Figure 10b with the rotation parameter
(α, β) = (7, 2) if block size is 32, and (8, 3) otherwise. Let (x0

i , x1
i) be the input of the i-th

round and (x0
i+1, x1

i+1) be the output. In each round, the state is updated as follows:

(x0
i+1, x1

i+1) = Rki(x0
i , x1

i) = (((x0
i ≫ α) ⊞ x1

i)⊕ ki, (x1
i ≪ β)⊕ (((x0

i ≫ α) ⊞ x1
i)⊕ ki))

where ki is the round key. The key schedule reuses the round function to generate round
keys.

C.3 ChaCha
Chacha [Ber08] is a stream cipher designed by Daniel J. Bernstein. It belongs to the family
of ciphers known as Salsa20. ChaCha operates on 512-bit blocks, which is divided into 16
words, and supports key lengths of 128 or 256 bits. The state of ChaCha can be presented
as a 4× 4 matrix:

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1


In the initial matrix, the first row contains 4 constant words: c0, c1, c2, c3. Following are
two rows, each comprising 8 key words k0, k1, . . . , k7. The final row consists of the block
counter first, followed by the nonce.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 47

The rows and columns are updated by an operation called quarter-round, which trans-
forms a 4-word vector (a, b, c, d) into (a′′, b′′, c′′, d′′) via an intermediate vector (a′, b′, c′, d′):

a′ = a ⊞ b,

d′ = (d⊕ a′) ≪ 16,

c′ = c ⊞ d,

b′ = (b⊕ c′) ≪ 12,

a′′ = a′ ⊞ b′,

d′′ = (d′ ⊕ a′′) ≪ 8,

c′′ = c′ ⊞ d′′,

b′′ = (b′ ⊕ c′′) ≪ 7.

Figure 10c illustrates the round function of ChaCha.

C.4 SipHash
SipHash is a family of pseudorandom functions introduced by Aumasson and Bernstein
at Indocrypt 2012 [AB12], designed specifically for short message inputs. SipHash has an
internal state size of 256 bits, uses a 128-bit key, and produces a 64-bit tag. SipHash variants
are denoted as SipHash-c-d where c is the number of Compression rounds processing each
message block and d is the number of Finalization rounds. The 64-bit tag is computed as
follows:

• Initialization: Four 64-bit words of internal state v0, v1, v2 and v3 with the 128-bit
key K = k1||k0 are initialized as

v0 = k0 ⊕ 736f6d6570736575
v1 = k1 ⊕ 646f72616e646f6d

v2 = k0 ⊕ 6c7967656e657261
v3 = k1 ⊕ 7465646279746573

• Compression: SipHash-c-d processes the b-byte string m by parsing it into 64-bit
little-endian words. Each word is processed iteratively, first with v3⊕ = mi, then
through c iterations of SipRound, and finally with v0⊕ = mi.

• Finalization:: Once all message blocks are processed, the constant ff is xored with
v2. Then d iterations of SipRound are executed, and SipHash-c-d yields the 64-bit
value: v0 ⊕ v1 ⊕ v2 ⊕ v3

The round function of the SipHash is shown in Figure 10d.

C.5 Chaskey
Chaskey is a permutation-based MAC algorithm presented by Mouha et al. in 2014
[MMH+14], inspired by Siphash. Chaskey processes an arbitrary-sized message M and a
128-bit key K. The message M is divided into blocks m1, m2, . . . , mk of 128 bits each. In
case the last block is incomplete, padding is applied. It generates a t-bit tag τ (where
t ≤ n) to authenticate the message M. The core function is a permutation constructed
using the ARX design as depicted in Figure 10e.

48 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

X0
i X1

i X2
i X3

i

Ki
0 Ki

2 Ki
4

Ki
1 Ki

3 Ki
5

≪ 9 ≫ 5 ≫ 3

X0
i+1 X1

i+1 X2
i+1 X3

i+1

(a) LEA

X0
i X1

i

≫ α

≪ βki

X0
i+1 X1

i+1

(b) SPECK

X0
i X1

i X2
i X3

i

≪ 16

≪ 12

≪ 8

≪ 7

X0
i+1 X1

i+1 X2
i+1 X3

i+1

(c) Quarter-round function of ChaCha

X0
i X1

i X2
i X3

i

≪ 16 ≪ 13

≪ 32

≪ 21 ≪ 17

≪ 32

X0
i+1 X1

i+1 X2
i+1 X3

i+1

(d) SipHash

X0
i X1

i X2
i X3

i

≪ 5 ≪ 8

≪ 16

≪ 7 ≪ 13

≪ 16

X0
i+1 X1

i+1 X2
i+1 X3

i+1

(e) Chaskey

Figure 10: Round functions of various ARX designs.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 49

D Brief Specification and Existing Cryptanalysis of AndRX
Ciphers

D.1 Specification of SIMON
SIMON is a family of lightweight ciphers designed by the National Security Agency (NSA)
in 2013 [BSS+15] to provide high security and efficiency for use in constrained environments.
It is based on a typical Feistel design, where each block is divided into two halves and
consists of bitwise AND, rotation, and XOR operations. SIMON has several variants on
n-bit words and the block size is 2n-bit for n ∈ {16, 24, 32, 48, 64}. The key size is a
multiple of n by m, for m ∈ {2, 3, 4}. Each variant can be denoted as SIMON2n/mn. The
number of rounds depends on the block size and key size, according to Table 10.

Table 10: SIMON parameters
Variant Block size 2n Key size mn Word size n Key words m Round T

SIMON32 32 64 16 4 32

SIMON48 48 72 24 3 36
96 4 36

SIMON64 64 96 32 3 42
128 4 44

SIMON96 96 96 48 2 52
144 3 54

SIMON128 128
128

64
2 68

192 3 69
256 4 72

Figure 11 illustrates the operations of the round function. Let Li, Ri represent the left and
right n-bit input words to the i-th round of SIMON, the output of i-th round Li+1, Ri+1
is computed as:

Ri+1 = Lr

Li+1 = Rr ⊕Ki ⊕ ((Li ≪ 8)⊙ (Li ≪ 1))⊕ (Li ≪ 2)

Li Ri
≪ 8

≪ 1

≪ 2

Ki

Li+1 Ri+1

Figure 11: Round function of SIMON-48

The key schedule function of SIMON is linear. Depending on the size of the master key,
the subkeys are derived on mn-bit word. A more detailed specification can be found in
[BSS+15].

D.2 Specification of Simeck
Simeck is also a family of lightweight Feistel block ciphers introduced in CHES 2015
[YZS+15] that combines the most advantageous features from both SIMON and SPECK.

50 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

The Simeck block cipher with a 2n-bit block is denoted Simeck2n/4n, where n ∈ {16, 24, 32},
with a 4n-bit key. More specifically, there are 3 variants of Simeck, namely Simeck32/64,
Simeck48/96 and Simeck64/128. The corresponding numbers of rounds for these variants
are 32, 36, and 44, respectively. As shown in Figure 12, the round function of Simeck
is also composed of three operations: AND, rotation, and XOR, slightly modified from
SIMON.

Li Ri

≪ 5

≪ 1

Ki

Li+1 Ri+1

Figure 12: Round function of Simeck-64

Let Li, Ri represent the left and right n-bit input words to the i-th round of Simeck, the
output of i-th round Li+1, Ri+1 is computed as:

Ri+1 = Lr

Li+1 = Rr ⊕Ki ⊕ (Li ⊙ (Li ≪ 1))⊕ (Li ≪ 2)

The key schedule of Simeck uses an LFSR procedure. A given master key generates the
subkeys. For more details of Simeck key scheduling, we refer the reader to [YZS+15].

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 51

D.3 Cryptanalysis of SIMON

Table 11: Cryptanalysis of SIMON
Cipher Attack #R Time Data Mem. Ref.

SIMON-32-64

Differential 22 258.76 232 - [QHS16]
Linear 23 261.84 231.19 - [CW16]
MITM 18 262.57 23 - [SHMS14]
DS-MITM 16 256.29 230 - [LSG+23]
Zero-correlation 21 259.4 232 231 [SFW15]
Integral 24 263 232 233.64 [CCW+18]

SIMON-48-72

Differential 23 263.25 247 - [WWJZ18]
Linear 24 267.89 247.92 - [CW16]
MITM 17 271.75 23 - [SHMS14]
DS-MITM 16 263.24 244 - [LSG+23]
Zero-correlation 21 259.4 248 243 [SFW15]
Integral 24 271 248 250 [CCW+18]

SIMON-48-96

Differential 24 278.99 248 - [WWJZ18]
Linear 25 247.92 289.89 - [CW16]
MITM 19 295.26 23 - [SHMS14]
DS-MITM 18 291.62 245 - [LSG+23]
Zero-correlation 22 280.5 248 243 [SFW15]
Integral 25 295 248 250 [CCW+18]

SIMON-64-96

Differential 30 288 263.3 - [WWJZ18]
Linear 30 293.62 263.53 - [CW16]
MITM 17 294.05 23 - [SHMS14]
DS-MITM 18 295.94 258 - [LSG+23]
Zero-correlation 23 290.4 264 254 [SFW15]

SIMON-64-128

Differential 31 2120 263.3 - [WWJZ18]
Linear 31 2120 263.53 - [CW16]
MITM 19 2126.01 23 - [SHMS14]
DS-MITM 19 2100.94 258 - [LSG+23]
Zero-correlation 24 2116.8 264 254 [SFW15]

SIMON-96-96

Differential 37 287.17 295 - [WWJZ18]
Linear 43 289.6 294 - [LPS21]
MITM - - - - -
DS-MITM 18 277.92 236 - [LSG+23]
Zero-correlation - - - - -

SIMON-96-144

Differential 37 2130.75 295 - [WWJZ18]
Linear 45 2136.5 295 - [LPS21]
MITM 21 2141.27 24 - [SHMS14]
DS-MITM 20 2111.90 236 - [LSG+23]
Zero-correlation 28 2141 296 285 [SFW15]

SIMON-128-128

Differential 50 2119.19 2127 - [WWJZ18]
Linear 53 2121 2127 - [LPS21]
MITM - - - - -
DS-MITM 21 2106.98 247 - [LSG+23]
Zero-correlation - - - - -

SIMON-128-192

Differential 51 2183.17 2127 - [WWJZ18]
Linear 55 2185.2 2127 - [LPS21]
MITM 25 2190.60 23 - [SHMS14]
DS-MITM 23 2150.46 262 - [LSG+23]
Zero-correlation 32 2156.8 2128 2117 [SFW15]

SIMON-128-256

Differential 51 2247.17 2127 - [WWJZ18]
Linear 56 2249 2126 - [LPS21]
MITM 25 2253.94 23 - [SHMS14]
DS-MITM 26 2250.08 253 - [LSG+23]
Zero-correlation 34 2255.6 2128 2117 [SFW15]

D.4 Cryptanalysis of Simeck

52 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

Table 12: Cryptanalysis of Simeck
Cipher Attack #R Time Data Mem. Ref.

Simeck-32-64
Differential 22 257.9 232 - [QHS16]
Linear 23 261.78 231.91 - [QCW16]
Zero-correlation 21 258.78 232 231 [ZGHL18]
Integral 22 263 231 255.88 [LRC19]

Simeck-48-96
Differential 28 268.3 246 - [QHS16]
Linear 32 290.9 247 - [LPS21]
Zero-correlation 27 285.67 248 258.78 [SB18]
Integral 26 295 247 282.52 [LRC19]

Simeck-64-128
Differential 35 2116.3 263 - [QHS16]
Linear 42 2123.9 263.5 - [LPS21]
Zero-correlation 31 2124.08 264 289.35 [SB18]
Integral 30 2127.3 263 2109.02 [LRC19]

E Encoding S-boxes
The S-box Analyzer [HNE22] is an open-source tool developed to encode the differential,
linear, differential-linear, and integral properties of S-boxes using MILP, SMT/SAT, and
CP models efficiently. This tool has been used in several works [HNE22, HE22, HGSE24,
HDE24], and is publicly accessible at:

https://github.com/hadipourh/sboxanalyzer

In our paper, the CP constraints for bit-wise deterministic differential/linear propagation
through S-boxes can be automatically derived with an extended version of the S-box
Analyzer tool. The corresponding functions in S-box Analyzer for this task are as follows.
“-1” means the difference/linear mask can be either 0 or 1.

1 sage : from sboxanalyzer import *
2 sage : from sage . crypto . sboxes import CRAFT as sb
3 sage : sa = SboxAnalyzer (sb)
4 sage : ddp = sa. encode_deterministic_differential_behavior (); ddp
5 {(0 , 0, 0, 0): [0, 0, 0, 0],
6 (0, 0, 1, 0): [-1, -1, 0, -1],
7 (0, 0, -1, 0): [-1, -1, 0, -1],
8 (1, 1, 0, 1): [-1, -1, 1, -1],
9 (1, 1, 1, 1): [-1, -1, 1, -1],

10 (1, 1, -1, 1): [-1, -1, 1, -1]}
11 sage : cddp = sa. generate_cp_constraints (ddp); print (cddp)
12 Input : a0 || a1 || a2 || a3; a0: msb
13 Output : b0 || b1 || b2 || b3; b0: msb
14 if (a0 == 0 /\ a1 == 0 /\ a2 == 0 /\ a3 == 0) then (b0 = 0 /\ b1 = 0 /\ b2 = 0 /\ b3 = 0)
15 elseif (a0 == 0 /\ a1 == 0 /\ a2 == 1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
16 elseif (a0 == 0 /\ a1 == 0 /\ a2 == -1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
17 elseif (a0 == 1 /\ a1 == 1 /\ a2 == 0 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 = 1 /\ b3 = -1)
18 elseif (a0 == 1 /\ a1 == 1 /\ a2 == 1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 = 1 /\ b3 = -1)
19 elseif (a0 == 1 /\ a1 == 1 /\ a2 == -1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 = 1 /\ b3 = -1)
20 else (b0 = -1 /\ b1 = -1 /\ b2 = -1 /\ b3 = -1)
21 endif
22 sage : dlp = sa. encode_deterministic_linear_behavior ()
23 {(0 , 0, 0, 0): [0, 0, 0, 0],
24 (0, 0, 1, 0): [-1, -1, 0, -1],
25 (0, 0, -1, 0): [-1, -1, 0, -1],
26 (0, 1, 0, 1): [1, -1, 1, -1],
27 (0, 1, 1, 1): [-1, -1, 1, -1],
28 (0, 1, -1, 1): [-1, -1, 1, -1]}
29 sage : cdlp = sa. generate_cp_constraints (dlp); print (cdlp)
30 Input : a0 || a1 || a2 || a3; a0: msb
31 Output : b0 || b1 || b2 || b3; b0: msb
32 if (a0 == 0 /\ a1 == 0 /\ a2 == 0 /\ a3 == 0) then (b0 = 0 /\ b1 = 0 /\ b2 = 0 /\ b3 = 0)
33 elseif (a0 == 0 /\ a1 == 0 /\ a2 == 1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
34 elseif (a0 == 0 /\ a1 == 0 /\ a2 == -1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
35 elseif (a0 == 0 /\ a1 == 1 /\ a2 == 0 /\ a3 == 1) then (b0 = 1 /\ b1 = -1 /\ b2 = 1 /\ b3 = -1)
36 elseif (a0 == 0 /\ a1 == 1 /\ a2 == 1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 = 1 /\ b3 = -1)

https://github.com/hadipourh/sboxanalyzer

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 53

37 elseif (a0 == 0 /\ a1 == 1 /\ a2 == -1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 = 1 /\ b3 = -1)
38 else (b0 = -1 /\ b1 = -1 /\ b2 = -1 /\ b3 = -1)
39 endif

Listing 1: Encoding deterministic behaviour of S-boxes in Sbox Analyzer

F Figures Related to ID, ZC distinguisher, and Full ID
Attack on AndRX

List of Figures
1 Overview and parameters of impossible differential attacks. 7
2 Representing the modular addition X ⊞ Y using full-adders f and a half-

adder g. 10
3 Model for impossible-differential distinguishers with indirect contradiction. 11
4 Round function structure of SIMON, where F is defined by (y0, y1) =

F (x0, x1) = (x1 ⊕ (x0 ≪ 8)⊙ (x0 ≪ 1), x0) and can be expressed in terms
of the 3-bit function Ssimon. 14

5 Original Subkey vs Equivalent Subkey . 24
6 Cluster of 265 ID distinguishers for 6-round SPECK-96. 28
7 13-round ID distinguisher for attack on 23-round SIMON64-128. 33
8 Key recovery of the attack on 23-round SIMON64-128. 34
9 15-round (indirect) ZC distinguisher for Simeck48. In this case, the bit

difference in the upper triangle of L2[0] (in the left-hand column) is 1,
whereas the bit difference in the lower triangle of L′

2[0] is 0. This leads to a
contradiction occurring in the second round. 44

10 Round functions of various ARX designs. 48
11 Round function of SIMON-48 . 49
12 Round function of Simeck-64 . 50
13 6-round ID distinguisher for Speck-32 and Speck-48. 55
14 6-round ID distinguisher for Speck-64. 56
15 Cluster of 297 ID distinguishers for 6-round SPECK-128. 57
16 11-round ID distinguisher for attack on 20-round Simeck32-64. 58
17 Key recovery of the attack on 20-round Simeck32-64 59
18 Key recovery of the attack on 25-round Simeck48-96 60
19 Key recovery of the attack on 27-round Simeck64-128 61
20 11-round ID distinguisher for attack on 19-round SIMON32-64. 62
21 Key recovery of the attack on 19-round SIMON32-64. 63
22 11-round ID distinguisher for attack on 20-round SIMON32-64. 64
23 Key recovery of the attack on 20-round SIMON32-64. 65
24 12-round ID distinguisher for attack on 20-round SIMON48-72. 66
25 Key recovery of the attack on 20-round SIMON48-72. 67
26 12-round ID distinguisher for attack on 21-round SIMON48-96. 68
27 Key recovery of the attack on 21-round SIMON48-96. 69
28 13-round ID distinguisher for attack on 21-round SIMON64-96. 70
29 Key recovery of the attack on 21-round SIMON64-96. 71
30 13-round ID distinguisher for attack on 22-round SIMON64-96. 72
31 Key recovery of the attack on 22-round SIMON64-96. 73
32 13-round ID distinguisher for attack on 22-round SIMON64-128. 74
33 Key recovery of the attack on 22-round SIMON64-128. 75
34 16-round ID distinguisher for attack on 24-round SIMON96-96. 76
35 Key recovery of the attack on 24-round SIMON96-96. 77

54 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

36 16-round ID distinguisher for attack on 25-round SIMON96-144. 78
37 Key recovery of the attack on 25-round SIMON96-144. 79
38 19-round ID distinguisher for attack on 27-round SIMON128-128. 80
39 Key recovery of the attack on 27-round SIMON128-128. 81
40 19-round ID distinguisher for attack on 28-round SIMON128-128. 82
41 Key recovery of the attack on 28-round SIMON128-128. 83
42 19-round ID distinguisher for attack on 29-round SIMON128-192. 84
43 Key recovery of the attack on 29-round SIMON128-192. 85
44 19-round ID distinguisher for attack on 30-round SIMON128-192. 86
45 Key recovery of the attack on 30-round SIMON128-192. 87
46 19-round ID distinguisher for attack on 30-round SIMON128-256. 88
47 Key recovery of the attack on 30-round SIMON128-256. 89
48 19-round ID distinguisher for attack on 31-round SIMON128-256. 90
49 Key recovery of the attack on 31-round SIMON128-256. 91
50 11-round ZC distinguisher for Simeck32. 92
51 17-round ZC distinguisher for Simeck64. In this case, the bit difference in

the upper triangle of L2[0] (in the left-hand column) is 1, whereas the bit
difference in the lower triangle of L′

2[0] is 0. This leads to a contradiction
occurring in the second round. 93

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 55

L0 R0
≫ 7

≪ 2
k1

L1 R1
≫ 7

≪ 2
k2

L2 R2
≫ 7

≪ 2
k3

L3 R3
≫ 7

≪ 2
k4

L4 R4
≫ 7

≪ 2
k5

L5 R5
≫ 7

≪ 2
k6

L6 R6

L0 R0
≫ 7

≪ 2
k1

L1 R1
≫ 7

≪ 2
k2

L2 R2
≫ 7

≪ 2
k3

L3 R3
≫ 7

≪ 2
k4

L4 R4
≫ 7

≪ 2
k5

L5 R5
≫ 7

≪ 2
k6

L6 R6

(a) Speck-32.

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

(b) Speck-48.
bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 13: 6-round ID distinguisher for Speck-32 and Speck-48.

56 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 14: 6-round ID distinguisher for Speck-64.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 57

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

L0 R0
≫ 8

≪ 3
k1

L1 R1
≫ 8

≪ 3
k2

L2 R2
≫ 8

≪ 3
k3

L3 R3
≫ 8

≪ 3
k4

L4 R4
≫ 8

≪ 3
k5

L5 R5
≫ 8

≪ 3
k6

L6 R6

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 15: Cluster of 297 ID distinguishers for 6-round SPECK-128.

58 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L5 R5

≪ 5

≪ 1

L6 R6

≪ 5

≪ 1

L7 R7

≪ 5

≪ 1

L8 R8

≪ 5

≪ 1

L9 R9

≪ 5

≪ 1

L10 R10

≪ 5

≪ 1

L11 R11

≪ 5

≪ 1

L12 R12

≪ 5

≪ 1

L13 R13

≪ 5

≪ 1

L14 R14

≪ 5

≪ 1

L15 R15

≪ 5

≪ 1

L16 R16

L5 R5

≪ 5

≪ 1

L6 R6

≪ 5

≪ 1

L7 R7

≪ 5

≪ 1

L8 R8

≪ 5

≪ 1

L9 R9

≪ 5

≪ 1

L10 R10

≪ 5

≪ 1

L11 R11

≪ 5

≪ 1

L12 R12

≪ 5

≪ 1

L13 R13

≪ 5

≪ 1

L14 R14

≪ 5

≪ 1

L15 R15

≪ 5

≪ 1

L16 R16

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 16: 11-round ID distinguisher for attack on 20-round Simeck32-64.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 59

L0 R0

≪ 5

≪ 1

L1 R1

≪ 5

≪ 1

Ke
1

L2 R2

≪ 5

≪ 1

Ke
2

L3 R3

≪ 5

≪ 1

Ke
3

L4 R4

≪ 5

≪ 1

Ke
4

L5 R5

11 rounds Distinguisher

L16 R16

≪ 5

≪ 1

Ke
16

L17 R17

≪ 5

≪ 1

Ke
17

L18 R18

≪ 5

≪ 1

Ke
18

L19 R19

≪ 5

≪ 1

L20 R20

1 any difference is needed value is needed involved in the key recovery filter

Figure 17: Key recovery of the attack on 20-round Simeck32-64

60 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L0 R0

≪ 5

≪ 1

L1 R1

≪ 5

≪ 1

Ke
1

L2 R2

≪ 5

≪ 1

Ke
2

L3 R3

≪ 5

≪ 1

Ke
3

L4 R4

≪ 5

≪ 1

Ke
4

L5 R5

15 rounds Distinguisher

L20 R20

≪ 5

≪ 1

Ke
20

L21 R21

≪ 5

≪ 1

Ke
21

L22 R22

≪ 5

≪ 1

Ke
22

L23 R23

≪ 5

≪ 1

Ke
23

L24 R24

≪ 5

≪ 1

L25 R25

1 any difference is needed value is needed involved in the key recovery filter

Figure 18: Key recovery of the attack on 25-round Simeck48-96

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 61

L0 R0

≪ 5

≪ 1

L1 R1

≪ 5

≪ 1

Ke
1

L2 R2

≪ 5

≪ 1

Ke
2

L3 R3

≪ 5

≪ 1

Ke
3

L4 R4

≪ 5

≪ 1

Ke
4

L5 R5

17 rounds Distinguisher

L22 R22

≪ 5

≪ 1

Ke
22

L23 R23

≪ 5

≪ 1

Ke
23

L24 R24

≪ 5

≪ 1

Ke
24

L25 R25

≪ 5

≪ 1

Ke
25

L26 R26

≪ 5

≪ 1

L27 R27

1 any difference is needed value is needed involved in the key recovery filter

Figure 19: Key recovery of the attack on 27-round Simeck64-128

62 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L3 R3
≪ 8

≪ 1

≪ 2

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14

L3 R3
≪ 8

≪ 1

≪ 2

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 20: 11-round ID distinguisher for attack on 19-round SIMON32-64.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 63

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3

11-round ID distinguisher

L14 R14
≪ 8

≪ 1

≪ 2

Ke
14

L15 R15
≪ 8

≪ 1

≪ 2

Ke
15

L16 R16
≪ 8

≪ 1

≪ 2

Ke
16

L17 R17
≪ 8

≪ 1

≪ 2

Ke
17

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19

1 any difference is needed value is needed involved in the key recovery filter

Figure 21: Key recovery of the attack on 19-round SIMON32-64.

64 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 22: 11-round ID distinguisher for attack on 20-round SIMON32-64.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 65

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

11-round ID distinguisher

L15 R15
≪ 8

≪ 1

≪ 2

Ke
15

L16 R16
≪ 8

≪ 1

≪ 2

Ke
16

L17 R17
≪ 8

≪ 1

≪ 2

Ke
17

L18 R18
≪ 8

≪ 1

≪ 2

Ke
18

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20

1 any difference is needed value is needed involved in the key recovery filter

Figure 23: Key recovery of the attack on 20-round SIMON32-64.

66 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 24: 12-round ID distinguisher for attack on 20-round SIMON48-72.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 67

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

12-round ID distinguisher

L16 R16
≪ 8

≪ 1

≪ 2

Ke
16

L17 R17
≪ 8

≪ 1

≪ 2

Ke
17

L18 R18
≪ 8

≪ 1

≪ 2

Ke
18

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20

1 any difference is needed value is needed involved in the key recovery filter

Figure 25: Key recovery of the attack on 20-round SIMON48-72.

68 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 26: 12-round ID distinguisher for attack on 21-round SIMON48-96.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 69

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

12-round ID distinguisher

L16 R16
≪ 8

≪ 1

≪ 2

Ke
16

L17 R17
≪ 8

≪ 1

≪ 2

Ke
17

L18 R18
≪ 8

≪ 1

≪ 2

Ke
18

L19 R19
≪ 8

≪ 1

≪ 2

Ke
19

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21

1 any difference is needed value is needed involved in the key recovery filter

Figure 27: Key recovery of the attack on 21-round SIMON48-96.

70 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L3 R3
≪ 8

≪ 1

≪ 2

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16

L3 R3
≪ 8

≪ 1

≪ 2

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 28: 13-round ID distinguisher for attack on 21-round SIMON64-96.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 71

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3

13-round ID distinguisher

L16 R16
≪ 8

≪ 1

≪ 2

Ke
16

L17 R17
≪ 8

≪ 1

≪ 2

Ke
17

L18 R18
≪ 8

≪ 1

≪ 2

Ke
18

L19 R19
≪ 8

≪ 1

≪ 2

Ke
19

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21

1 any difference is needed value is needed involved in the key recovery filter

Figure 29: Key recovery of the attack on 21-round SIMON64-96.

72 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 30: 13-round ID distinguisher for attack on 22-round SIMON64-96.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 73

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

13-round ID distinguisher

L17 R17
≪ 8

≪ 1

≪ 2

Ke
17

L18 R18
≪ 8

≪ 1

≪ 2

Ke
18

L19 R19
≪ 8

≪ 1

≪ 2

Ke
19

L20 R20
≪ 8

≪ 1

≪ 2

Ke
20

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22

1 any difference is needed value is needed involved in the key recovery filter

Figure 31: Key recovery of the attack on 22-round SIMON64-96.

74 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17

Figure 32: 13-round ID distinguisher for attack on 22-round SIMON64-128.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 75

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

13-round ID distinguisher

L17 R17
≪ 8

≪ 1

≪ 2

Ke
17

L18 R18
≪ 8

≪ 1

≪ 2

Ke
18

L19 R19
≪ 8

≪ 1

≪ 2

Ke
19

L20 R20
≪ 8

≪ 1

≪ 2

Ke
20

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22

Figure 33: Key recovery of the attack on 22-round SIMON64-128.

76 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 34: 16-round ID distinguisher for attack on 24-round SIMON96-96.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 77

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

16-round ID distinguisher

L20 R20
≪ 8

≪ 1

≪ 2

Ke
20

L21 R21
≪ 8

≪ 1

≪ 2

Ke
21

L22 R22
≪ 8

≪ 1

≪ 2

Ke
22

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24

1 any difference is needed value is needed involved in the key recovery filter

Figure 35: Key recovery of the attack on 24-round SIMON96-96.

78 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 36: 16-round ID distinguisher for attack on 25-round SIMON96-144.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 79

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

16-round ID distinguisher

L20 R20
≪ 8

≪ 1

≪ 2

Ke
20

L21 R21
≪ 8

≪ 1

≪ 2

Ke
21

L22 R22
≪ 8

≪ 1

≪ 2

Ke
22

L23 R23
≪ 8

≪ 1

≪ 2

Ke
23

L24 R24
≪ 8

≪ 1

≪ 2

L25 R25

1 any difference is needed value is needed involved in the key recovery filter

Figure 37: Key recovery of the attack on 25-round SIMON96-144.

80 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 38: 19-round ID distinguisher for attack on 27-round SIMON128-128.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 81

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

19-round ID distinguisher

L23 R23
≪ 8

≪ 1

≪ 2

Ke
23

L24 R24
≪ 8

≪ 1

≪ 2

Ke
24

L25 R25
≪ 8

≪ 1

≪ 2

Ke
25

L26 R26
≪ 8

≪ 1

≪ 2

L27 R27

1 any difference is needed value is needed involved in the key recovery filter

Figure 39: Key recovery of the attack on 27-round SIMON128-128.

82 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23

L4 R4
≪ 8

≪ 1

≪ 2

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 40: 19-round ID distinguisher for attack on 28-round SIMON128-128.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 83

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4

19-round ID distinguisher

L23 R23
≪ 8

≪ 1

≪ 2

Ke
23

L24 R24
≪ 8

≪ 1

≪ 2

Ke
24

L25 R25
≪ 8

≪ 1

≪ 2

Ke
25

L26 R26
≪ 8

≪ 1

≪ 2

Ke
26

L27 R27
≪ 8

≪ 1

≪ 2

L28 R28

1 any difference is needed value is needed involved in the key recovery filter

Figure 41: Key recovery of the attack on 28-round SIMON128-128.

84 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 42: 19-round ID distinguisher for attack on 29-round SIMON128-192.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 85

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4
≪ 8

≪ 1

≪ 2

Ke
4

L5 R5

19-round ID distinguisher

L24 R24
≪ 8

≪ 1

≪ 2

Ke
24

L25 R25
≪ 8

≪ 1

≪ 2

Ke
25

L26 R26
≪ 8

≪ 1

≪ 2

Ke
26

L27 R27
≪ 8

≪ 1

≪ 2

Ke
27

L28 R28
≪ 8

≪ 1

≪ 2

L29 R29

1 any difference is needed value is needed involved in the key recovery filter

Figure 43: Key recovery of the attack on 29-round SIMON128-192.

86 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 44: 19-round ID distinguisher for attack on 30-round SIMON128-192.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 87

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4
≪ 8

≪ 1

≪ 2

Ke
4

L5 R5

19-round ID distinguisher

L24 R24
≪ 8

≪ 1

≪ 2

Ke
24

L25 R25
≪ 8

≪ 1

≪ 2

Ke
25

L26 R26
≪ 8

≪ 1

≪ 2

Ke
26

L27 R27
≪ 8

≪ 1

≪ 2

Ke
27

L28 R28
≪ 8

≪ 1

≪ 2

Ke
28

L29 R29
≪ 8

≪ 1

≪ 2

L30 R30

1 any difference is needed value is needed involved in the key recovery filter

Figure 45: Key recovery of the attack on 30-round SIMON128-192.

88 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24

L5 R5
≪ 8

≪ 1

≪ 2

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 46: 19-round ID distinguisher for attack on 30-round SIMON128-256.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 89

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4
≪ 8

≪ 1

≪ 2

Ke
4

L5 R5

19-round ID distinguisher

L24 R24
≪ 8

≪ 1

≪ 2

Ke
24

L25 R25
≪ 8

≪ 1

≪ 2

Ke
25

L26 R26
≪ 8

≪ 1

≪ 2

Ke
26

L27 R27
≪ 8

≪ 1

≪ 2

Ke
27

L28 R28
≪ 8

≪ 1

≪ 2

Ke
28

L29 R29
≪ 8

≪ 1

≪ 2

L30 R30

1 any difference is needed value is needed involved in the key recovery filter

Figure 47: Key recovery of the attack on 30-round SIMON128-256.

90 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24
≪ 8

≪ 1

≪ 2

L25 R25

L6 R6
≪ 8

≪ 1

≪ 2

L7 R7
≪ 8

≪ 1

≪ 2

L8 R8
≪ 8

≪ 1

≪ 2

L9 R9
≪ 8

≪ 1

≪ 2

L10 R10
≪ 8

≪ 1

≪ 2

L11 R11
≪ 8

≪ 1

≪ 2

L12 R12
≪ 8

≪ 1

≪ 2

L13 R13
≪ 8

≪ 1

≪ 2

L14 R14
≪ 8

≪ 1

≪ 2

L15 R15
≪ 8

≪ 1

≪ 2

L16 R16
≪ 8

≪ 1

≪ 2

L17 R17
≪ 8

≪ 1

≪ 2

L18 R18
≪ 8

≪ 1

≪ 2

L19 R19
≪ 8

≪ 1

≪ 2

L20 R20
≪ 8

≪ 1

≪ 2

L21 R21
≪ 8

≪ 1

≪ 2

L22 R22
≪ 8

≪ 1

≪ 2

L23 R23
≪ 8

≪ 1

≪ 2

L24 R24
≪ 8

≪ 1

≪ 2

L25 R25

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 48: 19-round ID distinguisher for attack on 31-round SIMON128-256.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 91

L0 R0
≪ 8

≪ 1

≪ 2

L1 R1
≪ 8

≪ 1

≪ 2

Ke
1

L2 R2
≪ 8

≪ 1

≪ 2

Ke
2

L3 R3
≪ 8

≪ 1

≪ 2

Ke
3

L4 R4
≪ 8

≪ 1

≪ 2

Ke
4

L5 R5
≪ 8

≪ 1

≪ 2

Ke
5

L6 R6

19-round ID distinguisher

L25 R25
≪ 8

≪ 1

≪ 2

Ke
25

L26 R26
≪ 8

≪ 1

≪ 2

Ke
26

L27 R27
≪ 8

≪ 1

≪ 2

Ke
27

L28 R28
≪ 8

≪ 1

≪ 2

Ke
28

L29 R29
≪ 8

≪ 1

≪ 2

Ke
29

L30 R30
≪ 8

≪ 1

≪ 2

L31 R31

1 any difference is needed value is needed involved in the key recovery filter

Figure 49: Key recovery of the attack on 31-round SIMON128-256.

92 Finding Complete Impossible Differential Attacks on AndRX Ciphers and . . .

L0 R0

FK

L1 R1

FK

L2 R2

FK

L3 R3

FK

L4 R4

FK

L5 R5

FK

L6 R6

FK

L7 R7

FK

L8 R8

FK

L9 R9

FK

L10 R10

FK

L11 R11

L0 R0

FK

L1 R1

FK

L2 R2

FK

L3 R3

FK

L4 R4

FK

L5 R5

FK

L6 R6

FK

L7 R7

FK

L8 R8

FK

L9 R9

FK

L10 R10

FK

L11 R11

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 50: 11-round ZC distinguisher for Simeck32.

D. Chakraborty, H. Hadipour, P-H. Nguyen, M. Eichlseder 93

L0 R0

FK

mergeL1 R1

FK

mergeL2 R2

FK

mergeL3 R3

FK

mergeL4 R4

FK

mergeL5 R5

FK

mergeL6 R6

FK

mergeL7 R7

FK

L8 R8

merge

L8 R8

FK

mergeL9 R9

FK

mergeL10 R10

FK

mergeL11 R11

FK

mergeL12 R12

FK

mergeL13 R13

FK

mergeL14 R14

FK

mergeL15 R15

FK

mergeL16 R16

FK

L17 R17

L′
0 R′

0

FK

L1 R1

L′
1 R′

1

FK

L2 R2

L′
2 R′

2

FK

L3 R3

L′
3 R′

3

FK

L4 R4

L′
4 R′

4

FK

L5 R5

L′
5 R′

5

FK

L6 R6

L′
6 R′

6

FK

L7 R7

L′
7 R′

7

FK

L8 R8

L8 R8

FK

L′
9 R′

9

L9 R9

FK

L′
10 R′

10

L10 R10

FK

L′
11 R′

11

L11 R11

FK

L′
12 R′

12

L12 R12

FK

L′
13 R′

13

L13 R13

FK

L′
14 R′

14

L14 R14

FK

L′
15 R′

15

L15 R15

FK

L′
16 R′

16

L16 R16

FK

L′
17 R′

17

bit difference (linear mask) 1 forward bit difference (linear mask) 1 backward
unknown difference (linear mask) forward unknown difference (linear mask) backward

Figure 51: 17-round ZC distinguisher for Simeck64. In this case, the bit difference in the
upper triangle of L2[0] (in the left-hand column) is 1, whereas the bit difference in the
lower triangle of L′

2[0] is 0. This leads to a contradiction occurring in the second round.

	Introduction
	Background
	Key Recovery and Complexity Analysis in ID Attacks
	Bit-wise CP Model for Deterministic Trails
	CP Model for Finding ID/ZC Distinguishers
	Unified CP Model for Finding Complete ID Attacks

	Modeling the Distinguishers
	Modeling the Distinguishers for ARX and AndRX Ciphers
	New CP Model to Identify Indirect Contradictions
	Modeling ZC Distinguishers
	Application of Our Distinguisher Modeling.
	Comparison of Our Distinguisher Modeling to Prior Methods.

	Modeling the Key-Recovery for Impossible Differentials
	Brief Overview of the COP model
	Detailed Description of Bit-Wise Key Recovery Model and Application to SIMON
	Results

	Applications
	Application to ARX Ciphers
	Application to AndRX Ciphers

	Conclusion and Future Work
	Constraints to Model the Toffoli Gate for SIMON
	Algorithms for the Full SIMON Model
	Brief Specification of ARX Ciphers
	LEA
	SPECK
	ChaCha
	SipHash
	Chaskey

	Brief Specification and Existing Cryptanalysis of AndRX Ciphers
	Specification of SIMON
	Specification of Simeck
	Cryptanalysis of SIMON
	Cryptanalysis of Simeck

	Encoding S-boxes
	Figures Related to ID, ZC distinguisher, and Full ID Attack on AndRX

