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Abstract The implementation security of post-quantum cryptography (PQC) algorithms has emerged

as a critical concern with the PQC standardization process reaching its end. In a side-channel-assisted

chosen-ciphertext attack, the attacker builds linear inequalities on secret key components and uses the belief

propagation (BP) algorithm to solve. The number of inequalities leverages the query complexity of the

attack, so the fewer the better. In this paper, we use the PQC standard algorithm CRYSTALS-KYBER as

a study case to construct bilateral inequalities on key variables with substantially narrower intervals using

a side-channel-assisted oracle. For KYBER512, KYBER768, and KYBER1024, the average Shannon entropy

carried by such inequality is improved from the previous 0.6094, 0.4734, and 0.8544 to 0.6418, 0.4777, and

1.2007. The number of such inequalities required to recover the key utilizing the BP algorithm for KYBER512

and KYBER1024 is reduced by 5.32% and 40.53% in theory and experimentally the reduction is even better.

The query complexity is reduced by 43%, 37%, and 48% for KYBER512, 768, and 1024 assuming reasonably

perfect reliability. Furthermore, we introduce a strategy aimed at further refining the interval of inequalities.

Diving into the BP algorithm, we discover a measure metric named JSD (Jensen-Shannon distance)-metric

that can gauge the tightness of an inequality. We then develop a machine learning-based strategy to utilize

the JSD-metrics to contract boundaries of inequalities even with fewer inequalities given, thus improving the

entropy carried by the system of linear inequalities. This contraction strategy is at the algorithmic level and

has the potential to be employed in all attacks endeavoring to establish a system of inequalities concerning

key variables.

Keywords KYBER, chosen-ciphertext attack, side-channel, belief propagation, contraction strategy, ma-

chine learning

1 Introduction

CRYSTALS-KYBER [1] is selected by the US National Institute of Standards and Technology (NIST) [2]
as the standard post-quantum cryptographic algorithm for key-establishment to address the quantum
computing challenge to classical public-key cryptographic systems like RSA. It is a lattice-based key-
encapsulation mechanism (KEM) known for its small key and ciphertext sizes and high computational
speed, making it well-suited for resource-constrained embedded devices which are more vulnerable to
implementation attacks. As standardization completed, ensuring the implementation security of PQC
algorithms is a top priority in the cryptographic community.

The concretization of the chosen ciphertext attack (CCA) security in KYBER’s KEM variant is real-
ized through the application of the Fujisaki-Okamoto (FO) transformation [3] during the decapsulation
process. It serves as a mechanism to detect any alterations or anomalies within the ciphertexts, leading
to the expedient abandonment of the shared cryptographic key in such cases.
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However, recent investigations [4–11] have brought to light the vulnerability of the FO transformation
to side-channel leakage. This susceptibility has been exploited within the chosen-ciphertext attacks, giving
rise to equalities or inequalities concerning the secret keys and ultimately resulting in the compromise of
the full key. The inequalities can be viewed as coding of the secret values and solving such a system is a
decoding process. A sufficient number of inequalities provide sufficient information or Shannon entropy
of secret values so that an effective decoding method can be applied. Lowering the number of inequalities
is of great relevance. As is mentioned by Hermelin et al. [12], fewer inequalities mean fewer queries of
faulty ciphertexts to the vulnerable device and thus fewer measurements in side-channel attacks. From
a countermeasure perspective, an accurate estimation of the number of faulty queries needed to launch
an attack determines how many failed decapsulations are allowed to tolerate transmission errors as well
as to prevent attacks. In the realm of certification of security products, the number of side-information
measurements needed to break the security is a key factor in determining the score in a test.

This paper proposed a method to construct linear inequalities on secret key components with narrower
intervals and thus higher Shannon entropy by side-channel-assisted oracle so that the number of inequal-
ities needed is reduced. Additionally, a strategy to further refine the intervals to augment the entropy
carried by the inequalities is proposed. We use CRYSTALS-KYBER as a study case.

1.1 Related work

Oracle construction. Side-channel information is used to construct oracles to determine whether in-
termediate decrypted plaintext during the decapsulation with handcrafted ciphertexts matches some
preassumed values [13, 14]. Major oracles employed in side-channel-assisted CCA attacks on lattice-
based KEMs include plaintext-checking oracle [4, 6, 8, 9, 15–17], decryption-failure oracle [7, 18, 19] and
full-decryption oracle [10, 11, 20]. These oracles can be constructed even for protected implementa-
tions (e.g., Bhasin et al.’s decryption-failure oracle [19] for protected implementation of ciphertext
comparison [21,22]). Recently, Mondal et al. [23] presented an improved version of the plaintext checking
oracle, which reduces the number of KYBER768 queries by about 23 percent. Maliciously chosen cipher-
texts used in plaintext-checking oracle and full-decryption oracle attacks are very sparse in that most
coefficients are zeros. Such ciphertexts are of extremely low probability for honest users thus are easy to
be detected by ciphertext sanity check [14]. However, the number of queries of such ciphertexts needed
in an attack is the fewest. For example, in Qin et al.’s work [5] of investigating the lower bound on the
number of queries needed to recover the key, only one component of queried ciphertexts is non-zero. To
avoid such a malicious characteristic, we chose to use decryption-failure oracles in which queried cipher-
texts are random. Decryption-failure oracle can also be constructed by fault-injection approaches [24–28],
which are generally perceived as having a higher cost. Recently, Kundu et al. [29] proposed a new fault
attack on side-channel secure masked implementation of LWE-based KEMs exploiting fault propagation
to build decryption-failure oracle.

Solving system of inequalities. For KYBER, though inequalities within interval q/2dv have already
been constructed by side-channel approaches in [19] (also mentioned in [7]), they only approximated
the inequalities by equations and fed to the LWE framework [30] to estimate the remaining security
level instead of solving the system practically. Furthermore, with the same amount of inequalities as
those that will be solved practically in minutes in this work, their estimated security level is still above
270 [19, Figure 4a]. So such kind of system of inequalities has not been practically solved yet. Pessl et
al. [24] developed a belief-propagation technique to solve for secret variables practically. Hermelink et
al. [27] modified the solving algorithm and formally introduced the belief propagation (BP) algorithm
to solve such erroneous linear inequalities, which was also applied by D’Anvers et al. [7]. Delvaux [28]
calculated the large number of summation distributions in the BP algorithm according to the central
limit theorem (CLT) instead of Fast Fourier Transformation (FFT), which is recently applied by Kundu
et al. [29] to solve inequalities obtained from the fault on KYBER512. Recently, Hermelink et al. [12]
integrated the BP processed information in lattice reduction algorithms to make use of the advantages
of both statistic and algebraic approaches. Currently, all practically solved inequalities are unilateral
inequalities. Guo et al. [31] used BP algorithm to decode leakage in soft analytical side-channel attacks
on symmetric ciphers.
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1.2 Contributions

Assuming the presence of a decryption-failure oracle constructed through side-channel methodologies (as
exemplified in [7,19]), we concretize the approach to build bilateral inequalities on secret keys with smaller
intervals in chosen-ciphertext attack scenario and solve the system practically. Notably, the inequalities
exhibit intervals of size q/2dv (e.g., q/16 for KYBER512), which is more refined than the previously estab-
lished unilateral inequalities. The Shannon entropy carried by such inequality for KYBER512, KYBER768,
and KYBER1024 is about 0.6418, 0.4777, and 1.2007, which is higher than the previous 0.6093, 0.4734,
and 0.9943. The increase for KYBER1024 is as high as 40.53%. Subsequently, the approximate number
of inequalities needed to recover the key with success rate 1 with BP algorithm is reduced from state-
of-the-art by 10.47% for KYBER512 without ciphertext filtering technique and 25.93% for KYBER1024
with ciphertext filtering technique. The number of inequalities required for an attack on KYBER1024 is
even fewer than that for the KYBER768 version. The full key components can be recovered with 7000
inequalities in practical experiments. We explain this phenomenon from the perspective of information
theory. The query complexity of KYBER512, KYBER768, and KYBER1024 is reduced by 43%, 37.5%, and
48.4% assuming reasonably perfect reliability.

Moreover, we introduce a strategy for further narrowing down the intervals of these inequalities. Firstly,
we discover a quantitative measure, specifically the Jensen-Shannon distance (JSD) metric computed
between a marginal distribution generated during BP iterations and a uniform distribution. This measure
serves as an indicator of the proximity of the true value of the linear combination of secret variables to
the established bounds. Once the proximity value is known, the inequality can be contracted by this
amount so that the entropy it carries is improved. We develop a machine-learning model to predict the
proximities of inequalities. In the profiling phase, the JSD-metrics and known proximities are used as
the training set for a random forest model, and then in the attacking phase, the model will predict the
proximities for JSD-metrics collected under an unknown key. Note that this contraction strategy can be
applied to a system with fewer inequalities, having the potential to solve the secret variables with lower
query complexity.

In summary, existing literature has considered how to implement oracles at the hardware level, but has
not fully investigated how to make the number of inequalities required for the attack and the resulting
query complexity lower, which is in fact an essential factor in the security evaluation of the implementation
of PQC algorithms. In this paper, we are motivated to reduce the number of inequalities required for
the attack by designing a side-channel attack method against CRYSTALS-KYBER, which sets a new
record for the lowest number of inequalities and query complexity. Meanwhile, our method invokes the
decryption-failure oracle, which has the advantages of being less likely to be detected by sanity check
and having a lower device cost than the fault-injection approach. The results in this paper are important
for the security evaluation of the implementations of PQC algorithms in the future, and the revealed
discovery that the attack complexity of the KYBER1024 is lower than that of the KYBER768 also inspires
the community to re-exam the choice of KYBER parameters.

2 Preliminaries

Notations used in this paper are in Table 1. When the functions Compq or Decompq is applied on x ∈ Rq
or x ∈ Rkq , the procedure is applied to each coefficient individually.

2.1 Description of KYBER.CCAKEM

KYBER [1] is an IND-CCA2-secure KEM that relies on the hardness of module learning with errors
(MLWE) problem [32]. The elements are defined on ring Rq = Zq[x]/(x

n + 1) where n = 256, q =
3329. The parameters for the three versions are shown in Table 2. The CCA-secure is derived by
using FO transformation of a CPA-secure publick-key encryption scheme (PKE). This transformation
facilitates post-decryption re-encryption of the plaintext, followed by a rigorous equality check comparing
the received ciphertext with the resultant re-encrypted output. The key establishment procedure is shown
in Figure 1.

The ciphertext consists of compressing results of a vector of polynomials u (to get c1) and a polynomial
v (to get c2). In the decapsulation, Alice decompresses both c1 and c2, retrieves approximate values of
u and v, and retrieves the message m′ using her secret key. Then she re-encrypts the retrieved message
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Table 1 Notations

Notation Description

a||b Concatenation of a and b

Rq The ring Zq [x]/(x
n + 1), n = 256, q = 3329

Regular font letters e.g., v, e Element in Rq

Bold letters e.g., v (or A) Column vector (or matrix) with components in Rq

vT (or AT) Transpose of v (or A)

v[i] Coefficient of monomial xi in v ∈ Rq

v[i] i-th entry of v

A[i][j] Entry in row i, column j of A

r mod± q Centered modulo r′ ∈ [− q−1

2
, q−1

2
] s.t. r′ ≡ r mod q

r mod+ q Positive modulo r′ ∈ [0, q) s.t. r′ ≡ r mod q

r mod∗ q (r∗ for short) Biased modulo r′ ∈ (− q
4
, 3q

4
) s.t. r′ ≡ r mod q

⌈x⌋ Rounding of x ∈ Q to the closest integer

← Sample randomly from a distribution
r
←− Sample from a distribution using r as the random seed

Bη A centered binomial distribution:
∑η

i=1
(ai − bi) where (a1, · · · , aη , b1, · · · , bη)← {0, 1}

2η

Compq(·, ·) Compq(x, d) = ⌈(2d/q) · x⌋ mod+2d

Decompq(·, ·) Decompq(x, d) = ⌈(q/2d) · x⌋

Encode(·) Encode(x) = Compq(x, 1)

Decode(·) Decode(x) = Decompq(x, 1)

G(·),H(·) Hash function instantiated with SHA3-256 and SHA3-512

KDF(·) A key-derivation function

Table 2 KYBER parameters

n k q η1 η2 (du, dv) δ

KYBER512 256 2 3329 3 2 (10,4) 2−139

KYBER768 256 3 3329 2 2 (10,4) 2−164

KYBER1024 256 4 3329 2 2 (11, 5) 2−174

with her public key to get ciphertext c′1||c
′
2. The key is established if c′1||c

′
2 and the received c1||c2 are

equal; otherwise, a random number is returned.
The compression performed by Bob and decompression performed by Alice introduce offsets on u and

v, i.e., ∆v = v′′ − v = Decompq(Compq(v))− v and ∆u = u′′ − u = Decompq(Compq(u))− u. The noise
introduced in computing m′ (line 3.3 in Figure 1) is

d = eTr− sT(∆u + e1) + e2 +∆v. (1)

To avoid decryption errors by honest users, the parameters of KYBER are chosen such that each component
of d satisfies d[j]∗ ∈ (−q/4, q/4), ∀j ∈ [0, n− 1] with approximately probability 1. So even with noise d,
during the compression to recovered m′, the v′′ − sTu′′ is still within the hemisphere around the original
value of m as is shown in Figure 2.

2.2 Belief propagation algorithm

The belief propagation (BP) algorithm was first introduced to solve a system of linear inequalities with
variables sampling from a finite centered distribution by Hermelink and Pessl et al. [24,27]. It is an error-
tolerant and efficient method to solve systems with possible errors. The w linear inequalities deduced in
previous work [7, 12, 24, 27, 28] are of the form

∀i ∈ [0, w − 1],

ψ−1
∑

j=0

A[i][j]x[j] R b[i],

where ψ = 2nk and x[0 : ψ/2− 1] are coefficients of e and x[ψ/2 : ψ− 1] are coefficients of s in the attack
scenerio. As e, s satisfy the public key generation expression As + e = t, any nk known values of x are
enough to deduce the other unknowns.
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Figure 1 (Color online) KYBER.CCAKEM procedure (simplified).

Figure 2 Decoding of m with noise d.

The mechanism of the BP algorithm to solve a system of linear inequalities is as follows. Referring
to Figure 3, variables and inequalities constitute nodes of two subsets in a complete bipartite graph. In
each variable note, store a vector of length 2η1 + 1 of the probabilities for taking values in [−η1, η1].
The original distribution of the unknown x[j]s are Bη1 for j ∈ [0, ψ − 1]. Then the probability vectors
propagate to check nodes. Each check node uses one inequality to update the probabilities of all variables.
Without loss of generality, to update the probability vector of x[j] by the i-th inequality, compute the
probability distribution of

z[j] =
∑

j′∈[0,ψ−1]\{j}

A[i, j′]x[j′], (2)

i.e., the linear combination of all variables except the target variable x[j]. This can be done by FFT [24,27]
or by the CLT [28]. Then enumerate all the guesses for x[j]. For each guess ǫ ∈ Bη1 , calculate the
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Figure 3 A complete bipartite graph with four variable nodes and five check nodes corresponding to four variables and five

inequalities.

probability that the i-th inequality is satisfied

Pr[x[j] = ǫ regarding the i-th inequality]

=Pr[
∑

j′∈[0,ψ−1]\{j}

A[i, j′]x[j′] R b[i]−A[i, j] · ǫ]

=
∑

tRb[i]−A[i,j]·ǫ

Pr[z[j] = t].

(3)

Then the i-th check node returns the probability vector to the j-th variable node according to Equation
(3). For each variable node, after receiving probability vectors from all check nodes, perform a normal-
ization and use it as an updated distribution. This completes one iteration. Given enough inequalities,
the distributions are expected to converge to the correct solution. When the entropy of the variables is
low enough or is no longer decreasing, the iteration stops and outputs the suggested solutions, or states
“fail”.

When the BP algorithm can not fully recover the secrets, the partially recovered keys can be integrated
into lattice reduction algorithms to solve the LWE equation system As+ e = b and further estimate the
remaining security [12].

3 Side-channel attack

3.1 Side-channel based decryption failure oracle

Decryption-failure oracles can be constructed by side-channel approaches as exemplified in [7, 19]. Such
oracles predict in the CCA attack whether decrypted plaintext m′ (line 3.3 in Figure 1) from faulty
ciphertext during decapsulation equals the right plaintext m (line 2.1). If they don’t match, it is said
that a decryption failure occurs. The leakage during equality checking operation (line 3.10) or calculation
of function G (line 3.4) can all be utilized to construct such an oracle. In this paper, we assume such
oracle B is already presented and focus on how to choose ciphertexts in queries to deduce inequalities
concerning secret coefficients in e and s with interval q/2dv . Oracle B takes c = u′||v′ as input and
outputs 1 if m′ = m and 0 otherwise.

B(c) =

{

1, if m′ = m during decapsulation,

0, otherwise.

3.2 Attack scenario

Malicious Bob aims to derive biliteral inequalities on Alice’s secret key (e, s) with interval q/2dv by
obtaining the interval for decryption noise d (recall (1)). Hints on some d[j] should be converted to linear
hints on coefficients in e and s. When the coefficients in v lie in (q − 1 − q/2dv+1, q − 1], besides an
offset within q/2dv+1 an extra offset q will also be introduced in ∆v and then to the decryption error d.
Specifically, for KYBER512, v[j] ∈ [3225, 3328] are compressed to v′[j] = 0x0000 and then decompressed
to v′′[j] = 0. Then ∆v[j] = v′′ − v = Decompq(Compq(v)) − v ∈ [−3328,−3225] = [1 − q, q/2dv+1 − q].
This is the same case for u. Considering that the decryption error d lies in interval (−q/4, q/4) after the
biased modulo, to construct perfect hints on the secret keys, a biased modulo or centered modulo should
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Figure 4 Get a range of size q/2dv (q/16 for KYBER512) for noise d.

be applied to ∆v and ∆u to remove the extra offset q when calculating d. So we alter the expression of
the j-th component of d from (1) to

d[j] = eTr[j]− sT(∆∗u + e1)[j] + e2[j] + ∆∗v[j], (4)

so that all calculations are performed on the integer ring. Multiplication on Rq = Zq[x]/(x
n + 1), also

known as modular multiplication of polynomials on Zq, can be converted to matrix-vector multiplication
on Zq. In this way, any hints on d[j] will be converted to linear hints on secrete coefficients of e and s.

To get hints on d[j], after generating (c1||c2) , (u′, v′), Bob constructs faulty ciphertext v′fault by
increasing v′[j] by N (N starts from 1). The faulty ciphertext is sent to Alice and Bob observes whether
decryption failure occurs from oracle. When v′[j] increases by 1, v′′[j] = ⌈(q/2dv) · v′[j]⌋ increases by
roughly q/2dv in the decompression procedure, except when faulty v′[j] increases from 2dv − 1 to 0 such
that v′′ increases by q/2dv − q.

Use ∆∗N to denote the effective increase in d[j] when increasing the j-th component of ciphertext v′ by
N . Bob can calculate

∆∗N =(Decompq((v
′[j] +N) mod+ 2dv)− Decompq(v

′[j])) mod∗q

=q/2dv ×N.

Denote dfaultN = d[j] + ∆∗N , which means the faulty d[j] increases by q/2dv × N . When N is small,
faulty dfaultN is still within (−q/4, q/4), so no decryption failure is observed. Bob continues the query by
adding another 1 on the same ciphertext coefficient, so that faulty d[j] increases by another q/2dv . When
dfaultN steps across the hemisphere border as is illustrated in Figure 4, decryption failure is observed.
Bob obtains the faulty boundary that enables decryption failure so that a range of size q/2dv for d[j]
is derived. Suppose no decryption failure occurs when increasing the ciphertext by N and a decryption
failure first appears with fault (N + 1). When m′[j] changes from 0 to 1, the attacker has

{

d[j] + ∆∗N 6 ⌊q/4⌋,

d[j] + ∆∗N+1 > ⌈q/4⌉,

which implies

(⌈q/4⌉ −∆∗N+1)
∗ 6 d[j] 6 (⌊q/4⌋ −∆∗N )∗. (5)

Similarly, when m′[j] changes from 1 to 0, the attacker has

{

d[j] + ∆∗N + ⌈q/2⌋ 6 ⌊3q/4⌋,

d[j] + ∆∗N+1 + ⌈q/2⌋ > ⌈3q/4⌉,
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Algorithm 1 Inequalities generation procedure with decryption-failure oracle

Input: list N ′, NT in Table 3, public key t and A,KYBER parameters, w // totally collect w inequalities;

Output: coefficent matrix A, lower bound vector c, upper bound vector b // s.t. c 6 Ax 6 b;

1: Empty A, c, b;

2: neach = w/256 // collect neach inequalities for each index;

3: j = 0, ncollected = 0;

4: while j < 256 and ncollected < neach do

5: m← {0, 1}256;

6: (r, e1, e2)← (Bη1
, Bη2

, Bη2
);

7: v = tTr + e2 + Decode(m);

8: v′ = Compq(v, dv);

9: ∆∗
v = (Decompq(v

′)− v) mod∗q; // apply biased modular to remove possible extra q

10: u = ATr + e1 ∈ R
k
q ;

11: u′ = Compq(u, du);

12: ∆∗
u
= (Decompq(u

′)− u) mod∗q; // apply biased modular to remove possible extra q

13: r = concatenation of Conv(a)[j] for each compoment a in r||(−e1 −∆∗
u
) ;

14: Append r to A as a row;

15: i = 0;

16: T = [];

17: while not success(T ) do

18: v′fault = v′;

19: v′fault[j] = (v′[j] +N ′[i]) mod +2dv ;

20: Append B(u′||v′fault) to T // T [i] = B(u′||v′fault)

21: i + +;

22: end while

23: N = NT ;

24: ∆∗
N = (Decompq((v

′[j] +N) mod+2dv )− Decompq(v
′[j])) mod∗q;

25: ∆∗
N+1 = (Decompq((v

′[j] +N + 1) mod+2dv )− Decompq(v
′[j])) mod∗q;

26: if m[j] = 0 then

27: Bl = (⌈ q
4
⌉ −∆∗

N+1) mod∗q;

28: Bu = (⌊ q
4
⌋ −∆∗

N ) mod∗q;

29: else

30: Bl = (⌈3q/4⌉ − ⌈q/2⌋ −∆∗
N+1) mod∗q;

31: Bu = (⌊3q/4⌋ − ⌈q/2⌋ −∆∗
N) mod∗q;

32: end if

33: Append Bl − e2[j]−∆∗
v[j] to c;

34: Append Bu − e2[j]−∆∗
v [j] to b;

35: j = j + 1;

36: if j = n then

37: ncollected = ncollected + 1;

38: j = 0;

39: end if

40: end while

41: return A, c, b;

which implies

(⌈3q/4⌉ − ⌈q/2⌋ −∆∗N+1)
∗ 6 d[j] 6 (⌊3q/4⌋ − ⌈q/2⌋ −∆∗N )∗. (6)

The ranges of d[j] in both (5) and (6) are of size roughly q/2dv, which is q/16 for KYBER512 and
KYBER768 and q/32 for KYBER1024. In both cases we get

Bl 6 d[j] 6 Bu, Bu −Bl = q/2dv. (7)

Combining (7) and (4), the inequality constructed on secrets (e, s) is

Bl − e2[j]−∆∗v[j] 6 eT r[j]− sT (∆∗u + e1)[j] 6 Bu − e2[j]−∆∗v[j]. (8)

We illustrate the attack process in Algorithm 1.
Querying Trick. In the experiments for KYBER512, the most frequent values of N are 3 and 4, and a
few are 2 and 5. The N is determined by the distribution of the honest noise d (Equation (4)). According
to our empirical simulation and also what is mentioned in [14], d follows a Gaussian distribution with a
standard deviation of about σ = 79. So the attacker tries N from 3, and then 4 to derive the boundary
for decryption failure. In Table 3, we present a query trick by giving the trial list for N said N ′ and the
probability that the boundary can be deduced with the current number of queries. The output of oracle
B by querying with faulty ciphertext corresponding to N ′[i] is appended to list T . When T takes the
value illustrated in column ‘success(T )=true’, the attacker can deduce the boundary NT . The function
success(·) output false with all other input T s. The expected number of queries to deduce an inequality
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Table 3 Parameters used in the query trick for KYBER512

N ′ list #Queries Probability Range of d success(T )=true NT

N ′[0] = 3
2 0.4957 (0, q/16) T = [1, 0] 3

N ′[1] = 4

N ′[2] = 5 3 0.4957 (−q/16, 0) T = [1, 1, 0] 4

N ′[3] = 2 4 0.0042 (q/16, q/8) T = [0, 0, 0, 1] 2

N ′[4] = 6 5 0.0042 (−q/8,−q/16) T = [1, 1, 1, 1, 0] 5

N ′[5] = 1 6 6.9182× 10−8 (q/8, 3q/16) T = [0, 0, 0, 0, 0, 1] 1

N ′[6] = 7 7 6.9182× 10−8 (−3q/16,−q/8) T = [1, 1, 1, 1, 1, 1, 0] 6

is 2 × 0.4957 + 3 × 0.4957 + 4 × 0.0042 + 5 × 0.0042 = 2.5163. So the query complexity of the attack
is estimated as 2.5 times the number of inequalities required. Similarly, for KYBER768 and KYBER1024,
the expected number of queries to deduce an inequality is 2.5163 and 2.5743. Details are given in the
Appendix A.
Ciphertext filtering. Ciphertext filtering is an effective way to reduce the number of inequalities
needed [12, 24, 27]. The honest noise d obeys a e2 + ∆v-centered distribution and when the secret key
changes it only oscillates within a small range. For the faulty ciphertexts, the center of dfaultN moves a
distance ∆∗N which are multiples of q/2dv from e2 +∆v and we call them division points. The inequality
of (5) and (6) is to constrain faulty dfaultN in an interval between two adjacent division points and
exclude (e, s)s that leaves dfaultN out of this region. So averagely the closer the faulty dfaultN to the
division points, the more (e, s)s (half of them in the ideal case) are excluded so that the inequality is
more informative. The honest noise is around the center e2 +∆v ∈ [−η2 − q/2dv+1, η2 + q/2dv+1], so the
closer e2 + ∆v to division points (primarily 0), the closer the dfaultN to division points. So to obtain
more informative inequalities, Bob filters ciphertexts such that |e2 + ∆v| 6 ǫ to mount the attack. In
Hermelink and Pessl et al.’s work for building unilateral inequalities [12,24,27], ǫ is set to 10, which is also
applied in building bilateral inequalities in this work. To generate inequalities for filtered ciphertexts,
after line 9 in Algorithm 1, test whether |e2[j] +∆∗v[j]| 6 10. If so, continue the algorithm; otherwise, go
to line 6 to reproduce v randomly.

3.3 BP algorithm for solving systems of bilateral inequalities

We modify the BP method in [27] to solve bilateral inequalities. The inequalities deduced from
Algorithm 1 are of the form:

∀i ∈ [0, w − 1], c[i] 6
ψ−1
∑

j=0

A[i][j]x[j] 6 b[i]. (9)

Given the distribution of z[j] =
∑

j′∈[0,ψ−1]\{j}A[i, j
′]x[j′], the distribution for the x[j] indicated by the

i-th inequality is modified from (3) to

Pr[x[j] = ǫ regarding the i-th inequality]

=Pr[c[i]−A[i, j] · ǫ 6
∑

j′∈[0,ψ−1]\{j}

A[i, j′]x[j′] 6 b[i]−A[i, j] · ǫ]

=
∑

c[i]−A[i,j]·ǫ6t6b[i]−A[i,j]·ǫ

Pr[z[j] = t].

(10)

The updation of the distribution in (10) enables the BP algorithm to solve faster than when treating
bilateral inequalities as two unilateral inequalities. In experiments where secrets are recovered with
probability 1, the efficiency is improved by roughly 3 times.

3.4 Results

We replace the BP algorithm in Hermelink’s BP meets LWE [12] framework with the modified version
described in Section 3.3. For KYBER512, KYBER768 and KYBER1024, the success rate and the average
number of recovered coefficients concerning the number of bilateral inequalities are shown in Figure 5.
We ran 10 samples per number of inequalities. All experiments ran up to 50 iterations which is the same
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Figure 5 Success rate, average number of recovered coefficients, and remaining security with respect to the number of bilateral

inequalities for KYBER512, KYBER768, and KYBER1024. (a) Success rate on KYBER512; (b) success rate on KYBER768; (c) success

rate on KYBER1024; (d) average number of recovered coefficients on KYBER512; (e) average number of recovered coefficients on

KYBER768; (f) average number of recovered coefficients on KYBER1024; (g) remaining security on KYBER512; (h) remaining security

on KYBER768; (i) remaining security on KYBER1024.

as that in [12]. The running time for 9000 unfiltered inequalities is about 10 minutes on a 64-thread
server, which is superior to the estimated security level 270 previously [19, Figure 4a] with the same type
of inequalities. When the BP algorithm terminates with success, the number of recovered coefficients is
truncated to half the number of key components. Otherwise, the remaining security is measured by the
parameter β in the BKZ algorithm for solving a reduced LWE problem [12].

The comparison with previous work is shown in Tables 4 and 5. For KYBER512, the approximate
number of inequalities needed to recover the key with success rate 1 with filtered ciphertexts is about
5500 with our construction, which is smaller than 6000 to 9000 for previous unilateral inequalities [12,
Table 2]. In [12], this number is also reduced to 5500. For inequalities constructed with unfiltered
ciphertexts, the number of inequalities needed to recover coefficients with success rate 1 is reduced to
8600 by our construction, which is substantially smaller than previous 13000 [27, Figure 4] and 9500 [12,
Figure 8]. The number of inequalities on filtered ciphertexts for KYBER1024 is reduced from state-of-
the-art 8500 to 6750 by our method. There was no significant reduction on KYBER768. The unfiltered
version of KYBER768 and KYBER1024 lacks previous comparative experiments.

Regarding the query complexity, we use the notation query factor to denote the average number of ora-
cle calls to derive one inequality. In our attack scenario, by using the query trick, KYBER512, KYBER768
and KYBER1024 have a query factor of 2.5, 2.5 and 2.6 assuming perfect side-chanel reliability as is
indicated in [7,19]. The query factor of [24] is 1/0.17 ≈ 5.88 according to their practical implementation.
The query factor of both [27] and [12] are 4 assuming perfect fault injection reliability and the targeted
value is boolean-masked. The number of fault injections of [28] increases by roughly one or two orders of
magnitude compared to [27], so we estimate the query factor as 40 to get error-free inequalities. In [29],
they empirically repeat the fault injection 2.67 times for each ciphertext, so we estimate the query fac-
tor to be 2.67. The query complexity is the multiplication of the number of inequalities and the query
factor. Compared with state-of-the-art results, the query complexity of our method is reduced by 37.5%,
37.5% and 48.4% for filtered inequalities for KYBER512, 768, 1024 and 43.4% for unfiltered inequalities
for KYBER512.
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Table 4 Approximate number of filtered and unfiltered inequalities needed to recover the key with success rate 1 with different

methods

#Eqs. (KYBER512) #Eqs. (KYBER768) #Eqs. (KYBER1024)
Solving method

Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered

Pessl et al. [24] 8000 - 10500 - 13000 - BP (FFT v1)

Hermelink et al. [27] 6000 - 7000 - 8500 - BP (FFT v2)

Delvaux [28] 9000 13000 9300 - 12100 - BP (CLT)

Kundu et al. [29] 30000 - - - - - BP (CLT)

Hermelink et al. [12] 5500 9500 - - - - BP (FFT v2) + BKZ

This work 5500 8600 7000 13750 6750 7000 BP (FFT v2)+BKZ

Note: #Eqs.:number of inequalities. BP (FFT v1), BP (FFT v2), and BP (CLT) represent three different BP algorithms that

utilize FFT with clustering structure, binary tree structure, and central limit theorem, respectively. BKZ: the correctly solved

variables are brought into the LWE problem defined by the public and private keys and solved by BKZ.

Table 5 Comparison of the query complexity to recover keys with success rate 1 with different methods

#Q. (KYBER512) #Q. (KYBER768) #Q. (KYBER1024)
QF

Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered

Pessl et al. [24] 4.704× 104 - 6.174× 104 - 7.644× 104 - 5.88

Hermelink et al. [27] 2.4× 104 - 2.8× 104 - 3.4× 104 - 4

Delvaux [28] 3.6× 105 5.2× 105 3.72 × 105 - 4.84 × 105 - 40

Kundu et al. [29] 8.01× 104 - - - - - 2.67

Hermelink et al. [12] 2.2× 104 3.8× 104 - - - - 4

This work 1.375× 104 2.15× 104 1.75× 104 3.4375× 104 1.755× 104 1.82× 104 2.5,2.5,2.6

Note: #Q.:number of queries. QF: query factor.

3.5 Analysis from an information theory perspective

The number of bilateral inequalities needed to recover the key is significantly reduced for unfiltered
ciphertexts but shows no advantage over previous unilateral inequalities for filtered ciphertexts. This
can be explained from the perspective of information theory. An inequality tells the interval to which d
belongs. The unilateral inequality built in previous work is of the form d > 0 or d < 0, which divides the
range (−q/4, q/4) into two intervals. For a bilateral inequality, the range (−q/4, q/4) is divided into 2dv−1

intervals of length q/2dv . We simulate the distribution of d under a fixed set of parameters (including
public keys and e1, e2,m, r) by sampling 215 random (e, s) values. Then fit the distribution of d with a
normal distribution N (µ, σ), whose cumulative distribution function is denoted by Φµ,σ(·). The entropy
of a unilateral inequality is estimated as

Hu = −(p log2(p) + (1− p) log2(1− p)), where p = Φµ,σ(0).

The entropy of a bilateral inequality is estimated as

Hb = −
2dv−2

∑

i=−2dv−2+1

p(i) log2(p(i)), where p(i) = Φµ,σ(
iq

2dv
)− Φµ,σ(

(i − 1)q

2dv
).

We generate 50 sets of parameters and calculate the entropy of inequalities of d in all 256 compo-
nents. Figure 6 shows the information distribution of unilateral and bilateral inequalities generated under
KYBER512, KYBER768 and KYBER1024, and Table 6 shows the mean of specific information distribution.
For filtered ciphertexts of KYBER512 and both cases of KYBER768, the information carried by bilateral
and unilateral inequalities is very close. However, for unfiltered ciphertexts of KYBER512 and both cases of
KYBER1024, the information or Shannon entropy carried by a bilateral inequality is an average of 0.6418,
1.2198 and 1.2007, larger than 0.6094, 0.9943, and 0.8544 - the information carried by a unilateral inequal-
ity. Theoretically, the number of inequalities providing the same amount of entropy can be reduced by
(0.6418− 0.6094)/0.6094 = 5.32%, (1.2198− 0.9943)/0.9943 = 22.68%, and (1.2007− 0.8544)/0.8544 =
40.53%. The experiment shows that the reduction percentage is (9500 − 8600)/8600 = 10.47% and
(8500− 6750)/6750 = 25.93% for the first two cases, better than theoretical predictions. Increasing the
amount of information an equation carries is the primary advantage of bilateral inequalities over unilateral
inequalities.
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Figure 6 Distributions of entropy carried by inequalities. (a) Filtered inequalities-KYBER512; (b) unfiltered inequalities-

KYBER512; (c) filtered inequalities-KYBER768; (d) unfiltered inequalities-KYBER768; (e) filtered inequalities-KYBER1024; (f) unfil-

tered inequalities-KYBER1024.

Table 6 Comparison of average entropy carried by inequalities

Inequality type
KYBER512 KYBER768 KYBER1024

Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered

Unilateral inequality 0.9948 0.6094 0.9906 0.4734 0.9943 0.8544

Bilateral inequality 0.9956 0.6418 0.9906 0.4777 1.2198 1.2007

The question that why attacking KYBER1024 requires fewer inequalities than attacking KYBER768
can be answered based on the entropy data. Compared to KYBER768, the total amount of unknown
information in KYBER1024 increases by one-third. In the case of ciphertext filtering, the information
of the bilateral inequality in KYBER1024 is higher than that in KYBER768 by (1.2198–0.9906)/0.9906 =
23.13%. Considering that the pratical experimental results are better than the theoretical predictions,
this increase compensates for the increased amount of unknown information. Thus, the number of
inequalities required for the BP algorithm to successfully solve the unknowns remains about the same.
In the case of unfiltered ciphertexts, the increase is as high as (1.2007–0.4777)/0.4777 = 151.35%, greatly
exceeding the increase in the total amount of unknown information. Based on the proportion of the
increase in the information carried by the inequality and the unknowns, as well as the practical number
of bilateral inequalities required for KYBER768, we can estimate the number of inequalities required to
attack KYBER1024 to be 13750 × 0.4777 × (1 + 1/3)/1.2007 = 7293, which is roughly consistent with
the experimental result 7000. In this way, from an information theory perspective, we can explain why
KYBER1024 is not more secure than KYBER768 under the attack method described in this paper.

4 Modifying system of inequalities

In this section, we aim to reduce the intervals of deduced inequalities further. We formally use the
definition proximity to measure the tightness of inequalities in (9) as

proximity[i] = min{b[i]−

ψ−1
∑

j=0

A[i][j]x[j],

ψ−1
∑

j=0

A[i][j]x[j]− c[i]},
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Figure 7 Marginal distribution calculation with x[j]’s coefficient A[i][j] , a > 0. (a) For inequality with large proximity,

marginal distribution is close to uniform distribution; (b) for inequality with small proximity, marginal distribution is unlike

uniform distribution.

where i ∈ [0, w − 1] and x[j]s take the true values. In the rest of the paper, when we say that inequality
can be contracted by amount m, it means that the upper bound of the inequality can be decreased by m
and the lower bound of the inequality can be increased by m simultaneously.

From an intuitive standpoint, a decrease in the proximity of the inequalities signifies a more informative
system of inequalities. However, to judge whether inequality can be contracted and by how much without
knowing the secret key is not easy. Inspired by the BP algorithm, we discover a metric for this judgment
and propose a contraction strategy that can further contract inequalities at the algorithmic level.

4.1 Metric for contracting inequalities

We find that the potential for inequality to undergo contraction can be discerned through certain metric
assessments during BP iterations. We begin by giving an intuitive analysis of a single variable in a single
inequality in the BP algorithm. In an iteration, for each inequality, the distribution of z[j] - partial sum
(linear combinations) of variables excluding the current variable x[j], is firstly calculated as in (2). It
is a basis for determining the distribution of x[j]. Assuming that at some point the true values of the
other variables have come to the fore, then the true value of the partial sum has also come to the fore to
some degree, and the probability in the distribution z[j] is higher around this true value. As the value
of x[j] traverses through all the possible values that could be taken, the upper and lower bounds on the
inequality determine which segment of the probability in the distribution z[j] is selected for summation
in (10). Referring to Figure 7(a), if the true value of the partial sum is far from the boundary of the
inequality, then high probabilities around the true value are included in each summation for each possible
value taken by x[j], making the probabilities under different values taken by x[j] less distinguishable
and more like a uniform distribution. In this case, there is room for the boundaries of inequality to
contract. Conversely, if the true value of the partial sum is close to the inequality boundary as is shown in
Figure 7(b), it will result in high probabilities being included in only some of the summations for the
values taken by x[j]. The probabilities of x[j] taking different values in this case are highly differentiated
and more unlike the uniform distribution. In this case, the inequality boundaries do not contract. The
equations with true values close to the boundary already provide a high level of information.

Now we need a metric to distinguish the above two cases. To improve the SNR of the distributions
of x[j] of the above two cases, we dismiss the common segments in the summation and only extract the

marginal distribution. Formally, with coefficient A[i][j], the marginal distribution of x[j], say P
(i)
j , is

P
(i)
j : ∀ǫ ∈ [−η1, η1], P r[x[j] = ǫ in the margin] =

∑

t∈M

Pr[z[j] = t],

where M = [c[i]−A[j] · ǫ, c[i] + |A[j]| · η1 − 1] ∪ [b[i]− |A[i][j]| · η1 + 1, b[i]−A[i][j] · ǫ],

(11)

for j ∈ [0, ψ − 1] and i ∈ [0, w − 1]. Note that each summation only sums over 2 ·A[i][j] · η elements.
We use Jensen-Shannon distance (JSD) to measure the difference between the marginal distribution

P
(i)
j and uniform distribution U , i.e.,

JSD(P
(i)
j ,U) =

√

H(
1

2
(P

(i)
j + U))−

1

2
(H(P

(i)
j ) +H(U)),

for j ∈ [0, ψ−1], i ∈ [0, w−1], where H(P ) = −
∑

x∈χ p(x) log p(x) is the Shannon entropy for distribution
P . If the JSD regarding a variable in an inequality is lower, it is a hint that the current inequality may
be contracted.
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Figure 8 Mean and minimum values of JSD-metrics in each proximity class of filtered and unfiltered inequalities of KYBER512.

(a) For 5200 filtered inequalities; (b) for 8000 unfiltered inequalities.

An inequality is to give an update of the distributions for all 2nk variables. In order to synthesize the
JSD regarding all the variables, using KYBER512 as an example where coefficients of the inequalities only
take [−4, 4], we classify the variables into 9 categories by their coefficients in the inequality, compute the
mean of the JSDs of the variables within each category, and then take the mean again for categories with
coefficients [−3,−2,−1,1,2,3] 1) as a metric for each inequality. For each inequality i ∈ [0, w − 1],

JSD-metric[i] =

∑

a∈{−3,−2,−1,1,2,3}mean({JSD(P
(i)
j ,U)|A[i][j] = a})

6
. (12)

We use the term JSD-metric to represent this metric on individual inequalities to distinguish from the
definition on individual variables.

Illustration. To show the effectiveness of the JSD-metric in reflecting the tightness of equations,
we take 5200 inequalities deduced by filtered ciphertexts and 8000 inequalities deduced by unfiltered
ciphertexts for KYBER512 as an example. In Figure 8, we classify all inequalities by their proximity and
calculate the mean and minimum values of JSD-metrics regarding all inequalities in each class. We clip
the data to be above 0.24. It can be seen that the average JSD-metric decreases as proximity increases.
Besides, from the lines of the minimum of JSD-metrics, taking the line of the 11th iteration for 5200
filtered inequalities for example, we know that if the JSD-metric in the 11th iteration of an inequality is
below 0.275, the proximity of this inequality is by no means smaller than 40. Note that the JSD-metric
sequence of each inequality is calculated without knowing the secret key and thus can be calculated
entirely by the attacker. Suppose the relation reflected in Figure 8 is so strong that the proximity of an
inequality can be predicted with a given sequence of JSD-metric calculated in each iteration (as will be
proved in the next subsection), the upper bound and the lower bound of an inequality can be increased
and decreased by an amount equal to its proximity value without introducing errors. This motivates us
to draw a contraction strategy utilizing the JSD-metric sequences.

Since the proximity is calculated according to the known key and bounds of the inequality, the con-
traction strategy can be divided into the profiling phase and the attacking phase. In the profiling phase,
the attacker captures the relation between the JSD-metric sequence and the proximity of inequalities.
In the attacking phase, the attacker calculates JSD-metric sequences of inequalities generated under an
unknown key and predicts the proximity of inequalities. Then the inequalities can be contracted so that
the entropy carried by them is improved.

1) We omit ±4-coefficient classes since there are very few such coefficients. 0-coefficient class provides trivial JSD value.
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Table 7 Numbers of contracted inequalities

Contraction
Threshold

Among 5200 filtered Among 8000 unfiltered

amount #Correct #Error #Correct #Error

50

0.5 1126 36 2438 24

0.6 1017 15 2089 11

0.7 918 7 1754 4

0.8 769 1 1539 1

0.9 594 0 1221 1

30

0.5 2261 105 4299 46

0.6 2115 53 4064 30

0.7 1974 27 3746 17

0.8 1768 14 3394 6

0.9 1482 1 2918 1

4.2 Machine learning-based contraction strategy

The correlation between JSD-metric and proximity reflected in Figure 8 is not easy to be explicitly ex-
pressed mathematically. The problem of obtaining proximity from JSD-metric sequences of an inequality
is a classification problem, and a natural idea is to use machine learning to solve this classification prob-
lem hoping to capture this relationship better than mankind. Once the proximity of an inequality is
determined, this means that the upper and lower bounds of the inequality can be contracted by this
amount.

In the machine learning-based contraction strategy, to acquire a higher accuracy of classification, we
build a binary classification model with proximity6 m labeled by 0 and proximity> m by 1 (choose
m = 50 and 30 as examples). Once the model has been trained, to introduce error inequalities as few as
possible, the bounds of an inequality can be contracted by m only if the predicted probability is higher
than an increased threshold. In the following, we give details of the machine learning experiments for
both filtered and unfiltered inequalities.

4.2.1 Training data and test data

For filtered inequalities, the target is to perform contractions on chosen inequalities from a total of 5200.
Running BP algorithm with 50 steps on 5200 inequalities, a JSD-metric sequence of length 50 is collected
for each inequality as training samples. The JSD-metric sequences whose corresponding inequalities are
with proximity smaller than and equal to m are labeled 0, and those with proximity larger than m are
labeled 1. Seven groups of such samples are generated and a total of 7× 5200 = 3.64× 104 training data
are prepared. Then with another key, a group of 5200 inequalities is generated randomly and run with
BP algorithm to produce the JSD-metric sequences as test data.

For unfiltered inequalities, the data set is similar. Ten groups of 8000 inequalities are generated
randomly each corresponding to a random secret key. 8 × 104 samples are used as training data and
another group is used as test data.

4.2.2 Model, accuracy and prediction

For both filtered and unfiltered inequalities, we train a random forest model. The number of trees is
set to 300 and the max depth is set to 30. After training, the out-of-bag accuracies are 91.72%, 92.04%
for m = 50 and 89.81%, 92.11% for m = 30. When applying to test data, the classification accuracies
are 88.06%, 78.39% for m = 50 and 85.69%, 82.31% for m = 30. To reduce the number of erroneous
inequalities, we can require that only samples whose predicted classification probability is larger than an
improved threshold can be contracted. Table 7 shows some thresholds for contraction and the number
of correctly and erroneously contracted inequalities. For example, by using the trained model for 5200
filtered inequalities with m = 50 and setting the classification probability threshold to 0.9, among 5200
filtered inequalities, 594 can be contracted by an amount of 50 (the interval decreases by 100) without
introducing erroneous inequalities.

Our machine learning model is trained specifically for the following setups: (1) a specificKYBER version,
(2) the inequality collection method described in Section 3, (3) a specific number of inequalities (usually
with a success probability lower than 1), (4) a specific number of iterations in the BP algorithm that
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determines the length of the JSD-metric, and (5) a specific classification definition of the proximities
(e.g., in the binary classification problem, the threshold for labels 0 and 1). As long as these settings do
not change, the machine learning model does not need to be retrained.

4.3 Discussion

Although the above methods can reduce the proximity of the inequalities, we are still missing the last
piece of the puzzle in improving the number of unknowns recovered by the BP algorithm, that is, the
number of unknowns recovered by the BP algorithm and the overall tightness of the inequalities are not
strictly monotonically related. That is, there may be a case where the proximity of inequalities decreases
thus the system becomes more informative, but the number of correctly recovered unknowns does not
improve. As is mentioned by Hermelink et al. [12], the BP algorithm as a decoding method is not ideal
and redundancy in entropy is required. When the contraction of inequality intervals can not improve
the entropy by a significant amount, the result of the BP algorithm can not be improved. Nevertheless,
the JSD-metric and contraction strategies present a possibility to further improve the entropy carried
by inequalities from the algorithmic level and can be employed in any attack endeavoring to establish a
system of inequalities concerning secret variables.

Open problems. First, the current random forest model is used to solve a binary classification
problem to ensure reliability. A multi-classification problem is also possible by dividing the proximity
range (104 for KYBER512) into several classes. What is the optimal way for classification is a problem.
Secondly, in the attack phase, the classification probability threshold used for contraction can be varied
to strike a balance between entropy improvement and the number of errors. The upper bound of the
number of error inequalities that do not affect the overall performance of the BP algorithm remains
unclear. Third, the contraction strategy can be repeated on refined inequality systems until no further
contraction can be performed. We believe that multiple applications of this contraction strategy can
significantly improve the entropy carried by the system and thus have the potential to further reduce the
number of required inequalities. Fourth, the hyperparameters in the machine learning model may have
better options to achieve high accuracy. We leave all these problems for future studies.

5 Conclusion

In this paper, we focus on the implementation security of the post-quantum cryptographic algorithm
KYBER, and present a method for constructing bilateral inequalities about the secret variables carrying
higher Shannon entropy using the side-channel approach in the CCA attack. This is the first time that
systems of bilateral inequalities are practically solved. The number of inequalities needed for recovering
the secret key with probability 1 is substantially lower than that of unilateral inequalities built from fault-
injection approaches previously, as well as the query complexity. We also proposed contraction strategies
to further reduce the interval of inequalities to lead to a more informative system of inequalities.
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Appendix A Query factors for KYBER768 and KYBER1024

For KYBER768, the interval of an inequality is the same as KYBER512 and d follows a Gaussian distribution with a standard

deviation of about σ = 76. The parameters in query tricks are the same as KYBER512, shown in Table A1. The expected number

of queries to deduce an inequality is 2× 0.4957 + 3× 0.4957 + 4× 0.0042 + 5 × 0.0042 = 2.5163.

For KYBER1024, the most frequent values of N are 7 and 8, and a few are 6 and 9. According to our empirical simulation, d

follows a Gaussian distribution with a standard deviation of about σ = 58. The expected number of queries to deduce an inequality

is 2 × 0.4812 + 3× 0.4812 + 4× 0.0187 + 5 × 0.0187 = 2.5743. The parameters are shown in Table A2.

Table A1 Parameters used in the query trick for KYBER768

N ′ list #Queries Probability Range of d success(T )=true NT

N ′[0] = 3
2 0.4957 (0, q/16) T = [1, 0] 3

N ′[1] = 4

N ′[2] = 5 3 0.4957 (−q/16, 0) T = [1, 1, 0] 4

N ′[3] = 2 4 0.0042 (q/16, q/8) T = [0, 0, 0, 1] 2

N ′[4] = 6 5 0.0042 (−q/8,−q/16) T = [1, 1, 1, 1, 0] 5

N ′[5] = 1 6 6.9182 × 10−8 (q/8, 3q/16) T = [0, 0, 0, 0, 0, 1] 1

N ′[6] = 7 7 6.9182 × 10−8 (−3q/16,−q/8) T = [1, 1, 1, 1, 1, 1, 0] 6
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Table A2 Parameters used in the query trick for KYBER1024

N ′ list #Queries Probability Range of d success(T )=true NT

N ′[0] = 7
2 0.4812 (0, q/32) T = [1, 0] 7

N ′[1] = 8

N ′[2] = 9 3 0.4812 (−q/32, 0) T = [1, 1, 0] 8

N ′[3] = 6 4 0.0187 (q/32, q/16) T = [0, 0, 0, 1] 6

N ′[4] = 10 5 0.0187 (−q/16,−q/32) T = [1, 1, 1, 1, 0] 9

N ′[5] = 5 6 1.5825 × 10−8 (q/16, 3q/32) T = [0, 0, 0, 0, 0, 1] 5

N ′[6] = 11 7 1.5825 × 10−8 (−3q/32,−q/16) T = [1, 1, 1, 1, 1, 1, 0] 10

N ′[7] = 4 8 2.1617 × 10−10 (3q/32, q/8) T = [0, 0, 0, 0, 0, 0, 0, 1] 4

N ′[8] = 12 9 2.1617 × 10−10 (−q/8,−3q/32) T = [1, 1, 1, 1, 1, 1, 1, 1, 0] 11
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