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Abstract. Digital signatures are fundamental building blocks in various protocols to provide integrity
and authenticity. The development of the quantum computing has raised concerns about the security
guarantees afforded by classical signature schemes. CRYSTALS-Dilithium is an efficient post-quantum
digital signature scheme based on lattice cryptography and has been selected as the primary algorithm
for standardization by the National Institute of Standards and Technology. In this work, we present
a high-throughput GPU implementation of Dilithium. For individual operations, we employ a range
of computational and memory optimizations to overcome sequential constraints, reduce memory usage
and IO latency, address bank conflicts, and mitigate pipeline stalls. This results in high and balanced
compute throughput and memory throughput for each operation. In terms of concurrent task processing,
we leverage task-level batching to fully utilize parallelism and implement a memory pool mechanism
for rapid memory access. We propose a dynamic task scheduling mechanism to improve multiprocessor
occupancy and significantly reduce execution time. Furthermore, we apply asynchronous computing
and launch multiple streams to hide data transfer latencies and maximize the computing capabilities
of both CPU and GPU. Across all three security levels, our GPU implementation achieves over 160×
speedups for signing and over 80× speedups for verification on both commercial and server-grade GPUs.
This achieves microsecond-level amortized execution times for each task, offering a high-throughput and
quantum-resistant solution suitable for a wide array of applications in real systems.
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1 Introduction

Digital signature is a cryptographic primitive that ensures message integrity and authenticity. As a crucial
component of information security, digital signature algorithms are widely adopted in various protocols and
applications, including Transport Layer Security (TLS) and blockchain systems. However, the emergence
of quantum computing threatens classical signature algorithms like RSA and ECDSA [26], which rely on
the large integer factorization and discrete logarithm problems vulnerable to quantum attacks. While it is
uncertain whether a powerful enough quantum computer will be developed within decades, it is crucial to
investigate post-quantum digital signatures to ensure long-term security.

In 2016, the National Institute of Standards and Technology (NIST) launched the post-quantum cryp-
tography (PQC) standardization project to standardize post-quantum digital signature algorithms and
public-key encryption/key encapsulation mechanisms (KEM) [5]. By 2022, four algorithms, including one
KEM and three signature schemes, were selected after three evaluation rounds. Among these, CRYSTALS-
Dilithium [8, 13] was highlighted for its robust security and efficiency, with NIST recommending Dilithium
as the preferred choice. Many real-world applications are considering deploying Dilithium for long-term pro-
tection. For example, ArielCoin [1], an experimental digital currency, uses Dilithium for verification and
authentication; the liboqs library [2] presented by the Open Quantum Safe project integrates Dilithium for
a quantum-safe TLS protocol. However, lattice-based schemes like Dilithium suffer from high computational
and memory overhead, as well as large IO transfer sizes, which make them a performance bottleneck in
server-based scenarios with vast numbers of queries. This underscores the need for optimized Dilithium
implementations that prioritize high throughput and efficient memory use in server settings.



GPUs are commonly used for concurrent processing of signatures due to their massive parallelism. Numer-
ous studies have demonstrated the high performance of GPU-based classical signatures and post-quantum
KEMs [15, 17, 19, 23, 28]. However, research on post-quantum signatures remains limited [25, 27]. Existing
methods often use single or partial threads in a warp to execute tasks, which are inefficient for minimizing IO
latency due to uncoalesced data accesses. Studies on the Dilithium algorithms software [4,11,13,16,24] and
hardware implementations [9, 12, 31] focus primarily on compact design, which does not adequately address
throughput and real-time demands.

Contributions. In this work, we present a high-throughput GPU implementation of Dilithium. Our
main contributions can be summarized as follows:

– For all operations, we develop optimized implementations to enhance performance. Specifically, we par-
allelize numerous sequential operations in rejection sampling by leveraging CUDA integer intrinsics and
warp-level primitives, optimize memory access patterns in number-theoretic transforms, and minimize
resource usage in hash functions and inner-product calculations. Additionally, we incorporate a memory
pool for efficient memory management.

– We introduce several optimizations to minimize IO latency and improve resource utilization based on
the profiling results of our implementation. First, we propose a finely-tuned fusing strategy that strikes
a balance between low IO latency and high resource utilization, resulting in optimal performance. Sec-
ond, we introduce a dynamic task scheduling mechanism to address the occupancy decrease issue when
batching multiple signings, which significantly improves resource utilization and reduces execution time.
Besides, we asynchronize the computation and launch multiple CUDA streams to hide data transfer
latency between the CPU and GPU, fully utilizing the computational capabilities of both CPU and
GPU.

– We deploy our implementation on three representative GPUs with varying computing capabilities. For
the signing procedure, we achieve 397k to 766k OP/s throughput on a server-grade NVIDIA Tesla A100
GPU, and 488k to 985k OP/s throughput on a desktop NVIDIA RTX 4090 GPU, marking at least a
166× speedup over single-thread CPU implementation.

Code. Our code is publicly available at https://github.com/encryptorion-lab/cuDilithium.
Related Works. Research on accelerating PQC schemes, specifically KEMs [15,17,19,23,28] and digital

signatures [25,27], has adopted two primary computational approaches. The first uses a single thread for all
tasks, while the second explores task parallelism using a warp or partial threads within a warp for concurrent
execution. In the first approach, Gupta et al. [17] implement both methods in three KEM schemes. Gao et al.
[15] examine more granular parallelism with thread counts of 8, 16, and 32 in their NewHope [7] acceleration,
comparing latency and throughput across these configurations. However, [17] obtain limited speedups due to
not batching tasks, which results in underutilized GPU resources. Meanwhile, this approach makes memory
access within a warp uncoalesced, increasing IO latency. The second approach, applied by multiple studies
[19, 23, 25, 27, 28], uses a warp for each task execution, typically achieving only about 33% of theoretical
streaming multiprocessor (SM) occupancy, leaving substantial GPU resources idle. Specifically, Seo et al.
[25] introduced acceleration of Dilithium in an autonomous driving context, adopting an unconventional
approach by altering the rejection sampling to use a look-up table for element loading. This method increases
memory overhead by requiring additional table inputs, which must be transferred along with the public key
and signature, potentially leading to compatibility issues and deviating from the design goal of minimizing
communication bandwidth. Further, works like those by Lee et al. and Wan et al. [19,28] have explored using
Tensor Cores, necessitating the division of elements into 8-bit segments. While effective for schemes with
small data sizes, this approach can be resource-intensive for Dilithium, potentially leading to high overhead.

2 Preliminaries

2.1 Notation

Let Z be the group of integers. We define Zq with its representation in the interval Z∩ [− q
2 ,

q
2 ), where q is a

prime. Let n be a power of 2, we denote R = Z[X]/(Xn + 1) as the 2n-th cyclotomic ring and Rq = R/qR
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Algorithm 1 Dilithium.Gen

Output: pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)
1: ζ ← {0, 1}L1

2: (ρ, ρ′,K) ∈ {0, 1}L1×L2×L1 := H(ζ)
3: Â ∈ Rk×ℓ

q := ExpandA(ρ)
4: (s1, s2) ∈ Sℓ

η × Sk
η := ExpandS(ρ′)

5: t := INTT(Â · NTT(s1)) + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}L1 := H(ρ󰀂t1)
8: pk := (ρ, t1)
9: sk := (ρ,K, tr, s1, s2, t0)

as its residue ring modulo q. Lowercase letters represent ring elements, such as f =
󰁓n−1

i=0 fiX
i, and vectors,

such as v. Bold uppercase letters represent matrices of polynomials, e.g., A. The hat symbol indicates
elements in the frequency domain.

The notation mod±α refers to centered reduction modulo α, outputting values in (−⌊α+1
2 ⌋, ⌊α

2 ⌋]. The
󰀂 · 󰀂∞ represents the ℓ∞-norm, and [·] counts coefficients equal to 1. The operator ⌊·⌋ signifies flooring, and
[·]q denotes modular reduction by q. The set {0, 1}l indicates an l-bit stream; {0, 1}∗ denotes bit streams of
arbitrary length, with | · | showing their bit-length. The operator 󰀂 concatenates bit streams converted from
elements. Uniform sampling from a finite set S is denoted as a ← S. We define Sη := {ω : ω ∈ R, 󰀂ω󰀂∞ ≤ η}
and S̃η := {ω mod ±2η : ω}. The operator 󰌻P󰌼 returns 1 if P is true and 0 otherwise.

2.2 Ring Arithmetic

Elements in Rq = Zq[X]/(Xn + 1) are represented as polynomials of degree less than n. Modular reduction
is essential for reducing the size of large integers. The Montgomery reduction [22] and Barrett reduction [10]
are two techniques employed for fast and constant-time modular reduction, by replacing the time-consuming
division with faster multiplication or bit shift operations.

Multiplication of f =
󰁓n−1

i=0 fiX
i and g =

󰁓n−1
j=0 gjX

j over Rq yields a polynomial h =
󰁓n−1

t=0 htX
t ∈

Rq, where the coefficients (h0, . . . , hn−1) are the negacylic convolution of (f0, . . . , fn−1) and (g0, . . . , gn−1).
Direct multiplication via the schoolbook method has a complexity of O(n2), posing a significant performance
bottleneck. To accelerate this, the Number-Theoretic Transform (NTT), a variant of the Discrete Fourier
Transform (DFT) for integers modulo a prime number, is used. Denoting ψ as the primitive 2n-th root of

unity, the forward and inverse negacyclic NTT for f ∈ Rq are formulated as f̂ := NTT(f) and f := INTT(f̂),

where f̂j =
󰁓n−1

i=0 fiψ
(2i+1)j (mod q) and fi =

1
n

󰁓n−1
j=0 f̂jψ

−(2i+1)j (mod q). Using NTT, the multiplication

is performed as f · g := INTT(NTT(f) ·NTT(g)). This reduces the complexity from O(n2) to O(n log n), as
both NTT and INTT have O(n log n) complexity.

2.3 CRYSTALS-Dilithium

Dilithium is a lattice-based digital signature scheme, which provides security in the Quantum Random Oracle
Model (QROM) under the Module Learning With Errors (MLWE) and a variant of the Module Short Integer
Solution (MSIS) assumptions [8, 13]. It employs the Fiat-Shamir with Aborts method [20, 21], allowing the
secret key holder to prove knowledge without revealing it by generating commitments and responding to
random challenges.

The scheme comprises three procedures: key generation (Gen), signing (Sign), and verification (Verify),
detailed in Algorithm 1, 2, and 3, respectively. Table 1 lists the parameters of Dilithium for three NIST
security levels. As a lattice-based scheme, Dilithium exhibits robust post-quantum security, making it ideal
for long-term cryptographic applications. Below are the specifications of the components used in it.

Sampling. In Dilithium, SHAKE128/256 [14] serves as the extendable-output function (XOF) to gener-
ate sufficient random bytes from input seeds, while SHAKE256 is used to instantiate the hash function H.
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Algorithm 2 Dilithium.Sign

Input: sk = (ρ,K, tr, s1, s2, t0), M ∈ {0, 1}∗
Output: σ = (c̃, z,h)
1: µ ∈ {0, 1}L2 := H(tr󰀂M)
2: ρ′ ∈ {0, 1}L2 := H(K󰀂µ)
3: Â ∈ Rk×ℓ

q := ExpandA(ρ);κ := 0; (z,h) :=⊥
4: ŝ1 := NTT(s1); ŝ2 := NTT(s2); t̂0 := NTT(t0)
5: while (z,h) =⊥ do
6: y ∈ Sℓ

γ1
:= ExpandMask(ρ′,κ)

7: w := INTT(Â · NTT(y))
8: w1 := HighBitsq(w, 2γ2)

9: c̃ ∈ {0, 1}L1 := H(µ󰀂w1)
10: c ∈ Bτ := SamplelnBall(c̃); ĉ := NTT(c)
11: z := y + INTT(ĉ · ŝ1)
12: vs := INTT(ĉ · ŝ2)
13: r0 := LowBitsq(w − vs, 2γ2)
14: if 󰀂z󰀂∞ ≥ γ1 − β or 󰀂r0󰀂∞ ≥ γ2 − β then
15: (z,h) :=⊥
16: else
17: vt := INTT(ĉ · t̂0)
18: h := MakeHintq(−vt,w − vs + vt, 2γ2)
19: if 󰀂vt󰀂∞ ≥ γ2 or [h] > ω then
20: (z,h) :=⊥
21: κ := κ+ ℓ

Algorithm 3 Dilithium.Verify

Input: pk = (ρ, t1),M ∈ {0, 1}∗,σ = (c̃, z,h)
Output: r
1: Â ∈ Rk×ℓ

q := ExpandA(ρ)
2: µ ∈ {0, 1}L2 := H (H (ρ󰀂t1) 󰀂M)
3: c := SamplelnBall(c̃); ĉ := NTT(c)
4: v := INTT(Â · NTT(z)− ĉ · NTT(t1 · 2d))
5: w′

1 := UseHintq (h,v, 2γ2)
6: r := 󰌻󰀂z󰀂∞ < γ1 − β󰌼&󰌻c̃ = H(µ󰀂w′

1)󰌼&󰌻[h] ≤ ω󰌼

A rejection sampling mechanism is applied to ensure sequences follow a uniform distribution by selecting |B|
bits per sample and retaining only those less than B. Using this mechanism, the ExpandA function produces
a matrix Â with coefficients in the range [0, q), and the ExpandS and ExpandMask functions generate vectors
with coefficients in the ranges [−η, η] and [−γ1 + 1, γ1], respectively. The SamplelnBall function generates a
sparse polynomial c with τ nonzero coefficients by selecting τ valid positions for nonzero integers, achieved
by comparing a random byte with the current loop index.

Bits Extraction and Hints. To reduce communication bandwidth, Dilithium utilizes optimizations
that compress both the public key and signature, which can occasionally cause verification failures. To
mitigate this, a hint is incorporated into the signature to ensure robustness. The following functions are
used to compute high- and low-order bits and the hint. The Power2Roundq(a, d) function divides an integer
a into (a0, a1) := (a mod ±2d, (a − a0)/2

d). The LowBitsq(r,α) and HighBitsq(r,α) functions extract the
low- and high-order bits r1 and r0, respectively. By evaluating P := (r − r0 = q − 1), where r0 := (r mod
+q) mod ±α, the outputs are (r1, r0) := (0, r0−1) if P is true, and (r1, r0) := ((r− r0)/α, r0) otherwise. The
MakeHintq(z, r,α) computes r1 := HighBitsq(r,α) and z1 := HighBitsq(r + z,α), returning 󰌻r1 ∕= v1󰌼. The
UseHintq(h, r,α) computes m := (q − 1)/α, extracts (r1, r0), and outputs r1 if h = 0. Otherwise, it returns
(r1 + 1) mod +m if r0 > 0, and (r1 − 1) mod +m if r0 ≤ 0. All these can be extended to ring elements by
applying them coefficient-wise.
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Table 1: Parameter specifications of Dilithium for three NIST security levels
Level n q (k, ℓ) d τ γ1 γ2 η β ω L1 L2

2 256 8380417 (4,4) 13 39 217 95232 2 78 80 256 512
3 256 8380417 (6,5) 13 49 219 261888 4 196 55 256 512
5 256 8380417 (8,7) 13 60 219 261888 2 120 75 256 512

Rejection Loop. During signing, a rejection stage is necessary to ensure the generated z does not reveal
information about sk. The security requirement fails if ||z||∞ ≥ γ1 − β. Additionally, if any coefficient of
the low-order bits of Ay − cs2 exceeds γ2 − β, security and correctness are compromised. The signing loop
repeats until these conditions are met, with the expected number of repetitions being 4.25, 5.1, and 3.85 for
the three security levels, respectively.

2.4 GPU Basics

In the CPU-GPU collaborative computing model, the CPU acts as a host, dispatching kernels to the GPU. In
synchronous computing, the CPU waits for the GPU to complete its tasks, while in asynchronous computing,
the CPU continues with other tasks. Figure 1 illustrates the architecture and computational model.

Kernel

L2 Cache

Processor2
Registers

...

SMEM

Block1 Block2

L1 Cache Constant

GMEM

SM

Read-write

Read-only

Processor1
Registers

32 threads 

...

Queue Task1 Task2 ...

L1 Cache
L2 Cache
L3 Cache

DRAM

Control

PCIe
Memcpy

Warp 

CPU (Host) GPU (Device)

Fig. 1: The architecture and host-device computational model.

Modern GPUs facilitate highly parallel kernel processing using numerous concurrent threads. The CUDA
programming model offers a direct interface for accessing hardware resources. Threads are organized into
thread blocks, with multiple blocks forming a grid. GPUs contain various memory types, including registers,
constant memory (CMEM), shared memory (SMEM), global memory (GMEM), local memory (LMEM), etc.
The memory hierarchy ensures low-latency data access, with registers offering the fastest access, and LMEM
having the same latency as GMEM. Threads within a block share SMEM, which has higher bandwidth and
lower latency than local or global memory. GMEM, accessible to all threads, has the highest IO latency and
is accessed through the SM L1 cache and GPU L2 cache.

During execution, blocks are assigned to streaming multiprocessors (SM), with every 32 threads forming
a warp for parallel processing. Occupancy, the ratio of active warps per SM to the maximum possible
number of active warps, reflects resource utilization. CUDA offers warp-level primitives like warp shuffle for
synchronized register data exchange and warp vote for combining values across threads in a tree-reduction
pattern and broadcasting the result.

Instructions are executed in warps, with optimal throughput achieved when all threads in a warp exe-
cute the same instruction. Divergence reduces active threads per cycle and performance. Different types of
instructions are scheduled to specific pipelines; for example, the Arithmetic Logic Unit (ALU) handles most
bit manipulation and logic instructions, while the Load Store Unit (LSU) issues load and store instructions
for memory access.
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3 Design Overview

3.1 Implementation Challenges and Bottlenecks

Dilithium involves extensive matrix and vector operations, encompassing both linear and complex operations
with specific data paths. Accelerating it presents several challenges:

– Massive Sequential Operations. Many Dilithium operations, such as rejection sampling and number
counting, require threads to track the state of their neighbors. These computations involve comparing
elements with a preset bound, storing valid ones, and counting them. The results depend on the validity
of previous elements, introducing sequential computations that are difficult to parallelize. This data-
dependent conditional computation can lead to an unbalanced workload among threads, resulting in
thread divergence and decreased performance.

– Specific Datapath. Numerous Dilithium operations have specific data paths. For instance, in NTT,
data accessed by threads is interleaved, with changing intervals as computation progresses. This can
cause issues like uncoalesced memory access and bank conflicts, increasing latency. Additionally, manip-
ulating bit streams, such as compression, concatenation, and expansion, is required. Efficient methods
for processing compressed data [30] is not suitable for evaluation over finite field here, which presents
challenges like stride reads and writes, alignment, and balancing thread workloads.

– High Memory Consumption. Dilithium involves extensive linear operations on matrices and vectors,
along with memory-intensive operations like hash functions. This leads to high memory overhead and
IO latency-dominant computations. Previous implementations used registers to improve access speed,
but excessive register usage results in increased writes to local memory with slower access speeds. Fur-
thermore, excessive memory requests can overutilize the memory input/output (MIO) pipeline, causing
warp stalls.

3.2 Operation-level Design Rationale

Warp-level implementation, which is widely used in previous works, offers substantial benefits such as coa-
lesced memory access and IO latency reduction. The sequential computations make a warp an ideal unit for
sharing registers among threads. Thus, we adopt this design. We divide operations in Gen, Sign, and Verify
into several computational tasks, each corresponding to a block. A kernel batches multiple blocks to process
same tasks simultaneously, providing high-throughput computation of Dilithium instances. We exploit the
following designs for blocks:

– Single Warp Design. Each block is initialized with one warp. The SM occupancy under this config-
uration is suboptimal. For example, with a compute capability of 8.6 and an equal partition between
the L1 cache and SMEM, the maximum occupancy of each multiprocessor hits only 33%, with a warp
occupancy of 16%. However, this design facilitates parallelizing sequential operations, and reduces waste
in hash functions where parallelism is limited to 25.

– Quartic Warps Design. Using 3 or 4 warps per block achieves 100% theoretical occupancy. However, 3
warps are not compatible with all Dilithium parameter sets. Using 4 warps is ideal, providing a maximum
of 40 registers per thread and 4 KB of shared memory per block. This design offers better performance
for most arithmetic operations.

Our implementation combines both designs, denoted as “SWarp” and “QWarp” in the following context.
This provides flexibility in choosing the most appropriate implementation based on specific circumstances,
ensuring optimal performance and compatibility when fusing operations.

3.3 Batching Multiple Tasks

To achieve high-throughput implementation and fully utilize GPU resources, we batch multiple tasks in the
implemented kernels to process multiple Dilithium instances simultaneously. The following aspects is taken
into account:
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– Memory Management. A pooling mechanism ensures efficient and secure memory access. Meanwhile,
it should be fine-tuned for data alignment and optimal storage sequences to process bit stream.

– Task Scheduling. Unlike constant-time schemes, the randomness in Dilithium causes varying repetitions
in the signing procedure across different instances. When batching multiple signing instances, some
execution units may become idle while waiting for others to complete if tasks are bound to units.
Therefore, an efficient task scheduling mechanism is needed to minimize hardware resource waste.

– Streaming to Hide Latency. Streaming, a common technique in batching processes, asynchronizes
computation to hide data transfer latency. At the same time, we should remain the synchronization
between CPU and GPU, which is required in task scheduling.

4 Implementation Details

In this section, we detail our GPU implementation, covering NTT, hash functions, rejection sampling, and
inner-product. By optimizing these operations for GPU architecture, we aim to maximize parallelism and
enhance overall performance. Below, we discuss the specific techniques employed and the innovative strategies
adopted to overcome these obstacles.

4.1 Rejection Sampling

Parallelizing sequential computations of rejection sampling and number counting is a major challenge in
accelerating Dilithium. These operations involve comparing elements with a preset bound and storing valid
ones. The main goal is to share states among threads to perform data-dependent computations and avoid
unbalanced workloads. Thus, we employ CUDA integer intrinsics and warp-level primitives to ensure all
threads perform the same operation. Algorithm 4 provides our implementation of rejection sampling in
ExpandA function. We set a predicate argument in each thread to record the comparison result so that the
entire state of the warp can be obtained through warp voting. If all 32 arguments are valid like Fig. 2a, no
additional computation is required. Otherwise, each thread computes its local inclusive state by an integer
intrinsic function to get the offset of the write address as in Fig. 2b. As only the local counter of the last
thread captures correct total numbers, we use warp shuffle synchronization to broadcast it to all threads for
correctness in subsequent iterations.

Algorithm 4 Optimized Rejection sampling in ExpandA

1: shared s[n],buf [len]
2: ctr := 0
3: for round ∈ [0, 8) do
4: pos := round ∗ 32 ∗ 3 + threadIdx.x ∗ 3
5: t := buf [pos : pos+ 2]
6: sign := [(t− q) ≫ 31]&1 ⊲ Compare with q
7: mask := ballot sync(0xFFFFFFFF, sign)
8: if mask == 0xFFFFFFFF then ⊲ All accept
9: s[ctr + threadIdx.x] := t
10: ctr := ctr + 32
11: else ⊲ Reject
12: mask := mask ≪ (31− threadIdx.x)
13: offset := popc(mask)
14: if (ctr + offset ≤ n)&sign then
15: s[ctr + offset− 1] = t
16: ctr := ctr + shfl sync(0xFFFFFFFF, offset, 31)
17: syncwarp()
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ctr ctr ctr ctrbroadcast

ctr+=offset

(b) Rejection.

Fig. 2: Computations in rejection sampling and number counting. Note number counting does not need to
write di.

4.2 Hash Functions

We employ warp-level primitives to implement a warp-based SHAKE128/256 following the methodology
described in [23]. However, [23] has limitations. The excessive register usage leading to increased local memory
writes with slow access speeds. Additionally, each thread accesses a 64-bit value through eight consecutive
8-byte reads (or writes), causing strided GMEM access. Consequently, this leads to uncoalesced memory
access, increased IO latency, and overutilization of the memory input/output (MIO) pipeline that forces
warps to stall.

To address these issues, instead of precomputing and loading all constants into registers [23], we compute
some constants during execution and store round constants in CMEM, reducing GMEM access. We align
input and output streams during absorb and squeeze phases, replacing byte-wise operations in [23] with a
single GMEM access. This adjustment results in wider but fewer loads and stores, reducing pipeline pressure.
We further refine the computational flow, especially branches handling insufficient inputs, which lessens
thread divergence and improves performance. In the internal state permutation function, 24 permutation
rounds are executed by 25 threads using warp-shuffle to access states in other threads. Our optimizations
significantly enhance performance, throughput, and occupancy, significantly reducing memory use and access.

4.3 Number-Theoretic Transform

We follow [8] and apply the negacyclic NTT with Cooley-Tukey and Gentleman-Sande algorithms for fast
polynomial multiplication. Transforming an n-dimensional polynomial requires log n levels. With Dilithium
fixed at n = 256, we implement in-place constant-time 8-level NTT and INTT, utilizing both SWarp and
QWarp for different scenarios.

In QWarp, we utilize 128 threads for each NTT/INTT and devise a 2-per-thread implementation that
performs a radix-2 butterfly operation on two coefficients at a time. The distance between coefficient indices
is 28−i at level ith, where i ∈ [1, 8]. Between levels, we use SMEM to store temporal outputs for data
exchange and prepare input for next stage. The SWarp approach trades more registers for faster data access
and reduced IO latency. Each thread loads eight coefficients into registers and performs a radix-8 NTT/INTT,
forming merged three-level [6] processing. We then use SMEM for data exchange and access elements required
by following three levels. Data transfers between SMEM and registers are only needed before the 4th and
7th levels, where the eight loaded coefficients are either continuous or at an interval of 4. Considering the
high access frequency of the pre-computed roots in batch computations, we cache the table in SMEM to
offer low latency load.

To optimize each level individually, we unroll inner loops of the 8 levels in both versions while finely
tuning execution flow to reduce pipeline stalls. For QWarp, since processed coefficients fall within same
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(a) Solving 8-way conflicts between the 3rd and 4th levels
in SWarp by padding 4 units every 32 coefficients.
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(b) Solving 2-way conflicts between the 4th and 5th levels
in QWarp by padding 8 units every 16 coefficients.

Fig. 3: Strategies to solve 8-way and 2-way conflicts in SWarp and QWarp. The SMEM units are organized
into 32 memory banks. Bank conflicts occur when multiple threads access the same memory bank, causing
serialized accesses.

warp during last five levels of NTT (and the first five levels of INTT), we can reduce thread synchronization
instructions between these levels. Additionally, we fuse the multiplications of n−1 and roots at last level of
INTT to reduce number of Montgomery multiplications.

Another observation is that strided SMEM accesses can cause bank conflicts where multiple threads
access the same memory bank. To prevent stalls and maintain memory throughput, we carefully pad SMEM
so that accesses within a warp fall into individual banks. Fig. 3 presents visualization of positions that bank
conflicts are triggered in NTT and our solution to avoid it. Below, we describe only NTT for simplicity, as
the situation is similar for INTT. In the two data exchange stages of SWarp, eight threads issue instructions
to access units in same bank, causing 8-way bank conflicts. Therefore, we pad four units every 32 coefficients
in first exchange stage and one unit every eight coefficients in second stage. In QWarp, 2-way conflicts exist
at last five levels of NTT (and the first five levels of INTT). At ith level (i ∈ [3, 7]), we pad 27−i units every
28−i coefficients when writing to SMEM to ensure conflict-free load in next level. Through these approaches,
we reduce overall pipeline stalls and improve compute and memory throughput for both NTT and INTT.

4.4 Inner-Product Computation

The three procedures in Dilithium require computing the inner-product of a k × ℓ matrix A with a ℓ × 1
vector, denoted as As1, Ay, and Az, respectively. Since A is stored in NTT domain, this operation entails
transforming the vector to the NTT domain, performing point-wise multiplication and accumulation, and
transforming back to the normal domain. However, the choice of computational flow and memory type for
storing elements affects memory consumption, IO latency, and SM occupancy, which in turn significantly
impacts performance. Meanwhile, the polynomial nature of matrix and vector elements precludes the use of
optimized libraries like cuBlas [3]. This makes us devise specific optimizations for such scenario.

Column-Major and On-the-Fly Computation. Traditional inner-product computation uses a row-
major approach that caches the entire ℓ-dimensional vector and requires ℓKB storage in SMEM. This can lead
to excessive SMEM consumption and reduced SM occupancy. Instead, we apply a column-major approach,
which stores an accumulator of dimension k. Here, each polynomial in vector is loaded at a time using 2
registers per thread. We also allocate 2k registers as accumulators in each thread for the results. This method
offers another advantage. For As1 and Az, since the multiplication occurs only once, storing the entire Â is
unnecessary. Thus, we generate Â in column order and sample one polynomial of s1,j (or unpacked zj) at
a time, multiplying the corresponding elements and accumulating the results. This on-the-fly computation
eliminates the need for additional memory allocation beyond a single buffer used as an accumulator to store
k polynomials during processing. Moreover, by computing polynomials one at a time, we can fuse operations
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Fig. 5: The implemented task-level memory pool (example in Sign) that stores the elements needed in a task
processing.

such as sampling, packing, and unpacking into the process, enabling data reuse and reducing data transfers.
Figure 4 illustrates column-major computation in Gen function and demonstrates how packing of the secret
key can be fused with this process.

4.5 Memory Pool

To ensure efficient memory access during concurrent task processing, we implement a task-level memory pool
with a fixed size. This mechanism addresses two key considerations: element storage order and alignment
requirements.

First, we arrange the order of elements for signing and verification processes according to the flow of
hash functions. This arrangement ensures contiguous addresses for input byte streams, as shown in Fig.
5, eliminating overhead from stream concatenation. Second, we meet alignment requirements using pitch
allocation for linear memory storage of seeds and streams. Moreover, since the granularity of L2 memory
requests, such as an L1TEX request, is a 128-byte cache line (comprising 4 consecutive 32-byte sectors per
L2 request), we align the streams to 256 bytes, which include the combinations of seeds for the hash calls.
This alignment improves the memory request pattern to the L2 cache line.

Implementing this mechanism reduces the costs of frequent memory allocation and deallocation, en-
hancing performance. This approach further optimizes memory management, enabling efficient handling of
multiple parallel tasks while maintaining high performance.

5 Optimizations for Task Resource Usage

This section outlines optimizations to enhance memory and resource usage, address bottlenecks, and ensure
efficient hardware utilization. We analyze profiling results, introduce fusing strategies, and explore task
scheduling to maximize parallelism. These optimizations significantly enhance performance and resource
efficiency in our implementation.
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Fig. 6: Status of the SM during batch execution of multiple tasks (SWarp). During the latter part of the
signing process, the hardware resource utilization is insufficient.

5.1 Profiling Results and Analysis

We profiled the implemented kernels using NVIDIA Nsight Compute and System tools, which revealed several
areas for improvement in resource usage.

High Consumption of SHAKE. Despite being well-optimized, the SHAKE implementation consumes
substantial resources. First, warp-level processing results in a high number of registers per thread, as each
thread must load multiple elements, while using alternative memory types could increase latency. Second,
the high volume of memory requests increases pipeline pressure. Third, occupancy levels are suboptimal.
While batching, such as having four warps in a block with one warp computing a SHAKE, could improve
occupancy, this method is not easily compatible with the early evaluation technique [24].

Waste of Hardware Resource in Rejection Loop. Figure 6 illustrates the states of SMs when
batching Gen, Sign, and Verify instances. The SM occupancy decreases when the processing bar reaches 60%
of the Sign procedure, indicating most tasks are completed and corresponding blocks become idle. While
the average number of repeat rounds is around 4, some worst cases require dozens of rounds, leaving many
blocks idle waiting for a few tasks to finish. This inefficiency in hardware resource usage needs addressing.

Insufficient Use of CPU. Synchronization leads to waste of CPU resources by enforcing a predeter-
mined execution order. During processing, the CPU hosts the kernels to the GPU and waits for the results,
which gives rise to two issues. First, the GPU waits for the CPU to transfer data, and subsequent CPU
tasks cannot proceed until preceding ones finish, which underutilize the CPUs computational capability and
reducing performance. Second, synchronization prevents hiding data transfer latency, hindering the overlap
of computation and communication. This inefficiency is particularly detrimental for GPU computing, where
data transfers are significant bottlenecks. Addressing these issues is crucial for fully harnessing both side in
modern systems.

5.2 Finely-Tuned Fusing Strategy

Accelerating each operation separately is straightforward but overlooks the correlation among operations,
which may introduce significant kernel launching and data transfer overheads. Since the operations exhibit
both internal and external data dependencies, we adapt and fuse the kernels to address the concern. This
allows us to store data in registers and SMEM, reducing IO latency and data access by reusing stored data.
To avoid over-fusing, which can lead to excessive resource consumption and decreased SM occupancy and
performance, we finely tune the methods.

Fusing in Rejection Loop. The computation of the rejection loop is illustrated in Fig. 7. In QWarp, ĉ
is computed and stored in registers, while in SWarp it is stored in GMEM to improve occupancy. The next
computation stage begins only when the ℓ∞-norm of the currently evaluated element is within the preset
threshold. We apply the early evaluation technique [24] and ensure compatibility between the ℓ∞-norm
checking and arithmetic operations. Consequently, in each iteration, we perform computation polynomial-
wise and immediately check the coefficients as they are generated. This technique enables a more timely
rejection.

11



SMEM

NTT

Pointwise 
ModMul

Add

Check Norm

Pointwise 
ModMul

LowBits

Sub

Check Norm

INTT

SMEM SMEM

INTT

Pointwise 
ModMul

Check Norm
Make 
Hint

Check Count

SMEM

INTT

SWarp

QWarp

Compute Compute Compute

GPU Global Memory

Valid

Valid

Fig. 7: Computational flow in the rejection loop of Sign.

Fusing in SWarp implementation. In SWarp approach, we fuse the Gen, the entire rejection loop in
Sign, and the Verify processes into separate kernels. The maximum SM occupancy here is only 33%, so fusing
high-consumption kernels, such as SHAKE, with others has little impact on overall occupancy but retains
intermediate values in registers and SMEM. Combined with early evaluation [24], this approach significantly
reduces overall memory requests, especially time-consuming GMEM access.

Fusing in QWarp implementation. Here, we aim to improve the occupancy of arithmetic operations.
Given the high consumption of SHAKE, fusing it with arithmetic kernels might negatively impact the effi-
ciency. Thus, in the Sign procedure, we implement the rejection loop as four kernels, responsible for sampling
y, computing the commitment w and decomposing, sampling c, and finally computing and validating signa-
tures, respectively. The primary consideration is to separate SHAKE from arithmetic operations, ensuring
the hash does not significantly reduce occupancy.

5.3 Dynamic Task Scheduling

The mathematical expectation of repetitions in the Sign of Dilithium is around 4, but in some worse cases it
may reach dozens of times. When batching multiple Sign instances, some blocks become idle after returning
valid signatures, but computation does not finish until the instance with the most repetitions is complete.
This results in wasted GPU hardware resources and low utilization.

To address this, we propose a dynamic scheduling strategy that is general and applicable to this abort
framework. The main idea is to predicate κ, and use execution units that become idle in the next round to
compute this prediction. This allows to obtain results of the same seed but with different κ. The final output
is the valid signature with the smallest κ. However, it causes a mismatch between the original tasks sequence
of instances and its execution sequence on the GPU. To ensure a single low-latency device-to-host data
transfer of results, we must maintain the same stored order in the memory pool as in the original sequence.
Thus, we construct several maps for this process and corresponding look-up tables (LUT). In our setting,
tasks in signing are kept in a queue, and we batch Φ tasks, delegating them to Ψ concurrent processing units
on the device.

The first map bridges signing tasks to GPU execution units through a task LUT of size Φ and an execution
LUT of size Ψ . The second map tracks output validity from execution units using a state LUT of size Ψ ,
recording states and nonces. The device updates both LUTs each round, and typically no units are idle
when execution LUT is full. When remaining tasks cannot fill execution LUT completely, we predicate κ.
Another issue is the competition of the execution units, where multiple units output valid signatures but with
different κ. In this case, we use another map to links the signatures with smaller κ to the correct position in
the memory pool, for writing from temporal to original pool.

Figure 8 illustrates the computational flow and data structure. Data transfers between the host and
device are asynchronous. Our prediction and scheduling strategy significantly reduces the number of execution
rounds required. In our implementation, one block computes tasks in one instance. Therefore, we recommend
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Fig. 8: The structure of the task scheduler. The left side represents the CPU (host), and the right side is the
GPU (device).

setting Ψ , the number of concurrent processing units, to match the maximum active blocks which can be
determined through kernel profiling.

5.4 Asynchronization and Streaming

Asynchronization enhances the overall performance of both sides by allowing concurrent task execution
without waiting for the completion of previous tasks. This approach effectively hides data transfer latency,
leading to better throughput and reduced idle time. By employing asynchronization and efficient data transfer
management, we can maximize resource utilization and performance.

To fully utilize the computational resources, we launch multiple CUDA streams, where each executes
a partition of the entire task set with the task scheduling technique above. To enable CUDA streams,
we asynchronously manage data transfers between the CPU and GPU. However, the scheduling requires
synchronization between the CPU and GPU, as the CPU acts as a scheduler to allocate tasks. To alleviate
the impact of synchronization, we employ multiple threads on the CPU side. Each CPU thread is assigned
a unique CUDA stream and executes a partition of the tasks. This approach not only ensures that the CPU
and GPU can work concurrently, but also diminishes data transfer latency, leading to improved performance
and resource utilization.

5.5 Versatility of Proposed Techniques

Our proposed techniques have a high degree of versatility, and the applicability extends well beyond a singular
use case. The multiple warp design is also suitable for accelerating other PQC schemes. Many GPU crypto
libraries [18,29] use 4 or 8 warps per task to improve occupancy. The implemented operations, such as NTT
and rejection sampling, are common in many PQC schemes and can be adapted with minimal parameter
changes. Our techniques for optimizing memory access and balancing pipelines are general and applicable in
various scenarios. Additionally, the Fiat-Shamir with Aborts framework, which is widely applied, can benefit
from our task scheduling mechanism.

6 Experimental Results

6.1 Experimental Setup

We compile the C/C++ code using g++ 12.2.0 and the GPU implementations with CUDA 11.8 on an Arch
Linux system with kernel 5.15. Our implementation is deployed and tested on three GPUs: a NVIDIA Tesla
A100 80G PCIe, a NVIDIA GeForce RTX 4090, and a NVIDIA GeForce RTX 3090 Ti. The performance of the
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Table 2: Performance and profiling results for operations in Dilithium2 on a 3090 Ti GPU. The throughput
reports the achieved percentage of utilization with respect to the theoretical maximum.

Operation Type Time Occupancy (%) Throughput (%) Memory Usage (B)
(µs) Theoretical Achieved Compute Memory Registers SMEM

ExpandA (SWarp, 4) 4,805.54 75 67.13 98.33 98.33 52 3,488

ExpandMask (SWarp, 1) 1,205.25 33.33 32.08 98.17 98.17 52 752

SampleInBall (SWarp, 1) 532.45 33.33 32.00 97.33 97.33 54 1,288

NTT
(SWarp, 1) 22.53 33.33 29.93 37.50 89.80 38 1,536
(QWarp, 1) 20.48 100 90.38 91.22 91.22 20 2,560

INTT
(SWarp, 1) 15.36 33.33 28.57 58.21 61.04 33 1,536
(QWarp, 1) 20.48 100 90.62 90.71 90.71 20 2,560

Inner-product
(SWarp, 1) 856.99 33.33 31.77 27.98 76.17 80 1,152
(QWarp, 1) 346.18 75 74.10 68.58 80.37 56 2,560

Rejection loop
(SWarp, 1) 470.21 33.33 30.41 41.93 74.48 54 3,540
(QWarp, 1) 299.04 83.33 77.58 81.93 81.93 48 2,688

CPU baseline is obtained on an Intel(R) XEON W7-2495X CPU with 24 cores. The throughput is measured
in operations per second (OP/s). The reported performance results are the medians of 100 executions, where
each execution batches 10,000 tasks. The latency of host-device data transfer is also included.

6.2 Performance

Below, we evaluate the performance of our implementation by profiling all operations for both SWarp and
QWarp.

Kernel Profiling Results. As an illustrative example, we present profiling results for our Dilithium2 im-
plementation in Table 2, comparing SWarp and QWarp methodologies across various arithmetic operations.
Our optimized solution almost reaches theoretical maximum occupancy, showing our methods effectively
enhance performance, throughput, and occupancy. For instance, in ExpandA, the optimized hash implemen-
tation enables more warps within a block. Consequently, we can sample four polynomials simultaneously
with four warps, increasing resource utilization. When examining the arithmetic operations, QWarp imple-
mentations consistently outperform SWarp across several metrics. It achieves higher occupancy levels and
more efficient GPU resource utilization. Additionally, QWarp delivers more balanced throughput, ensuring
a more uniform performance across different operations. Notably, the increased SMEM usage in QWarp is a
trade-off for avoiding bank conflicts through additional padding, which does not affect overall occupancy as
it stays within hardware limitations.

Performance on Different GPUs. Table 3 lists the performance of our implementation and the com-
parisons. The results for the C and AVX2 implementations are obtained by running the official implemen-
tation5 on our platform. For the closed-source work [25], we use their reported results obtained on a Jetson
AGX Xavier GPU. Notably, in [25], the authors replaced the time-consuming rejection sampling with a sim-
ple data loading based on known positions, which may lead to application incompatibilities. The works [11]
and [31] represent state-of-the-art Neon-based implementation and FPGA design of Dilithium. For our GPU
implementation, we report the performance using 10 streams, where each stream executes 1,000 tasks. In
the scheduling, the concurrent processing size is 2,512. Compared to the CPU baseline, our implementation
achieves 82×-93× improvement for Gen, 166×-181× improvement for Sign, and 88×-109× improvement for
Verify on the A100 GPU. Furthermore, our implementation demonstrates over 40× improvement compared
to the AVX2 implementation across all security levels on 4090 GPU.

5 https://github.com/pq-crystals/dilithium
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Table 3: Throughput of C and AVX2 implementations on CPU, our implementations on three different
GPUs, and related works on GPU [25], ARM Cortex-A72 [11], and FPGA [31]. The metric is the operations
per second (OP/s). The speedups refer to the comparison with CPU reference implementation.

Level
CPU Our work Related Works

Ref AVX2 A100 4090 3090 Ti [25] [11] [31]

2

Gen 20,552 59,132 1,859,231 2,704,605 1,418,283 84,993 5,561 23,217
(91×) (132×) (69×)

Sign 4,624 20,260 765,855 984,803 562,534 33,965 2,310 3,448
(166×) (213×) (122×)

Verify 18,942 57,027 2,057,013 2,873,936 1,484,420 67,738 5,498 21,904
(109×) (152×) (78×)

3

Gen 11,007 33,806 1,018,960 1,492,832 769,191 51,099 2,908 16,555
(93×) (136×) (70×)

Sign 2,845 12,664 513,468 649,498 372,873 14,875 1,377 2,167
(181×) (228×) (131×)

Verify 11,886 34,596 1,207,752 1,683,357 865,119 44,502 3,352 15,671
(102×) (142×) (73×)

5

Gen 7,617 21,768 624,070 888,971 463,949 31,800 1,916 11,051
(82×) (117×) (61×)

Sign 2,394 10,305 396,894 488,006 271,835 20,396 1,044 1,977
(166×) (204×) (114×)

Verify 7,340 21,736 643,829 964,374 488,732 27,511 1,961 10,716
(88×) (131×) (67×)

6.3 Effectiveness of Proposed Optimizations

We evaluate the impact of our optimization techniques in NTT and compare our work with open-source
alternatives, using Dilithium2 as an example to show the effectiveness.

SHAKE. Table 4 presents the profiling results of computing µ := H(tr|M) using the implementation
from [23] and our optimized SHAKE256 implementation. Our implementation shows a 5.8% increase in com-
pute and memory throughput compared to [23], resulting in a 14.1% reduction in execution time. Moreover,
our implementation significantly reduces memory consumption, requiring 37.2% fewer registers, leading to a
125% increase in theoretical occupancy and a 118.0% increase in achieved occupancy. It also demonstrates
substantial reductions in the number of instructions and L1 cache requests. GMEM instructions are reduced
by 34.2%, and LMEM usage is completely eliminated. L1 cache requests for loads and stores decrease by
60.6% and 97.7%, respectively. Similarly, L2 cache interactions with GMEM and L1 cache are reduced by
87.35% and 94.81%, respectively. These optimizations significantly enhance the overall performance and
resource utilization of our SHAKE256 implementation.

Speedup Breakdown of Memory Optimizations. We use the computation of t̂0 in the signing
procedure as a representative example to demonstrate the impact of our optimizations. This process involves
unpacking the secret key to obtain t0 and then computing NTT(t0). We present the original implementation
alongside our step-by-step optimizations, and Fig. 9 illustrates the throughput results, execution time, and
total global memory access for various optimization techniques. In the basic implementation, we launch an
unpacking kernel, store t0 in GMEM, and subsequently launch another kernel for NTT. We then apply
three successive optimizations. The first optimization entails kernel fusion without altering the memory
access pattern, leading to an 18.9% reduction in execution time. The second optimization involves merging
loops in the unpacking and NTT processes, using registers to store intermediate values. This results in a
1.4× improvement in compute throughput, a 47.2% decrease in execution time, and a 45.4% reduction in
GMEM access. Finally, the third optimization addresses bank conflict resolution, producing a kernel with
balanced compute and memory throughput and enhancing execution time by 2.7× compared to the basic
implementation.
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Table 4: Profiling results of our SHAKE256 implementation on a 3090 Ti GPU, compared with [23]. Pipe
utilization refers to the utilization of peak instructions executed.

Improved Performance

Throughput (%) Execution Occupancy (%) Pipe Utilization (%)
Compute Memory Time (µs) Theoretical Achieved LSU ALU

[23] 90.03 90.03 121.98 33.33 30.43 91.58 28.68

Ours 95.25 95.25 104.80 75 66.34 97.65 31.70
(+5.8%) (+5.8%) (−14.1%) (+125%) (+118.01%) (+6.63%) (+10.55%)

Reduced Resource Usage

Register Memory Instructions L1/TEX Cache Requests L2 Cache (KB)
Numbers Global Local Loads Stores L1/TEX Global

[23] 78 410 K 650 K 660 K 430 K 49645.82 24853.76

Ours 49 270 K 0 260 K 10 K 2578.82 3142.63
(−37.18%) (−34.15%) (−100.00%) (−60.61%) (−97.67%) (−94.81%) (−87.35%)

Fig. 9: Comparisons of throughput, execution time, and device memory usage between the basic implemen-
tation and the step-by-step application of the three optimizations.

Table 5: Performance comparisons with [25] on A100.
Operations NTT Rejection Sampling

Work [25] Ours [25] Ours
SWarp QWarp LUT Load

Time (µs) 1,596.42 28.67 19.45 154,254.33 40.96 442.37

Comparisons with Related Work. Table 5 compares our implementation with [25]. Since [25] is closed-
source and only presents the overall performance of their Dilithium implementation on an AGX Xavier GPU,
we implement their documented methods for NTT and rejection sampling to obtain comparative performance
on the same platform. Their NTT implementation does not exploit different types of memory, resulting in
lower access speeds and higher execution times. For rejection sampling, [25] divided the process into preparing
a LUT and loading data, treating the first phase as a pre-computation. While this approach improves signing
performance by eliminating sampling, it is only suitable when the matrix Â remains unchanged, leading to
potential incompatibilities in general scenarios.

6.4 Sensitivity Study

We conduct a sensitivity study of our implementation under various execution settings, using Dilithium2
as a representative example. Three parameters are involved: the number of batched tasks on the host side
(Φ), the number of concurrent processing tasks on the device side (Ψ), and the number of launched CUDA
streams. First, we examine the performance of Sign over processing sizes Ψ ranging from 1000 to 10000, and
detail the throughput results for three batch sizes (1000, 5000, and 10000) in Figure 10. The results show a
periodic performance pattern, with a rise followed by a sustained decline within each period. As Ψ increases,

16



Fig. 10: Sensitivity to the concurrent processing sizes (Ψ) under three batch sizes (Φ).

the overall throughput initially improves before declining. For all three batch sizes, the optimal point is
reached at around 2000-3000, e.g., for Ψ = 10000 the optimal processing size is Ψ = 2512. Notably, since the
randomness of the scheme affects the number of rounds, we can only obtain an optimal interval. Next, we
fix Ψ to 2512 for Sign and examine the throughput of all three procedures under different Φ. We vary the
number of launched streams from 1 to 16 to test the effectiveness of hiding IO latency. Figures 11a and 11b
demonstrate that as the batch size increases, the throughput first rises rapidly and then begins to plateau at
around 6000. The throughput of the three procedures mostly reaches optimal levels when launching around
10 to 12 streams.

7 Conclusion

In this work, we present a high-throughput GPU implementation of Dilithium that significantly enhances
performance. Through computational and memory optimizations, we have mitigated performance bottle-
necks, memory issues, and IO latency. Our results demonstrate the GPUs capacity to boost lattice-based
cryptography, offering insights for future work. The experimental outcomes underscore our implementations
capability to deliver real-time, high-throughput solutions, advancing the development and integration of
post-quantum cryptography.
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