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Abstract. In 2022, Wang et al. proposed the multivariate signature
scheme SNOVA as a UOV variant over the non-commutative ring of ℓ×ℓ
matrices over Fq. This scheme has small public key and signature size
and is a first round candidate of NIST PQC additional digital signature
project. Recently, Ikematsu and Akiyama, and Li and Ding show that the
core matrices of SNOVA with v vinegar-variables and o oil-variables are
regarded as the representation matrices of UOV with ℓv vinegar-variables
and ℓo oil-variables over Fq, and thus we can apply existing key recovery
attacks as a plain UOV. In this paper, we propose a method that reduces
SNOVA to smaller UOV with v vinegar-variables and o oil-variables over
Fqℓ . As a result, we show that the previous first round parameter sets at
ℓ = 2 do not meet the NIST PQC security levels. We also confirm that
the present parameter sets are secure from existing key recovery attacks
with our approach.
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1 Introduction

Standard RSA and EC cryptosystems are designed based on difficult mathe-
matical problems such as prime factorization and discrete logarithm problems.
However, these mathematical problems are known to be solved in polynomial
time using a large-scale quantum computer. It is therefore necessary to con-
struct cryptography based on new mathematical problems resistant to quantum
computers. Such cryptography is referred to as post-quantum cryptography. In
2016, the National Institute of Standards and Technology (NIST) started public
recruitment of such cryptography candidates [9].

Multivariate public key cryptography is based on an NP-hard problem of
solving a system of quadratic equations, called the MQ problem [4], and is one
of the main categories of the NIST PQC standardization project. UOV is a
multivariate signature scheme proposed by Kipnis, Patarin, and Goubin [7], and
has essentially not been broken over 20 years. It and its variants provide a faster
verification and short signature. For example, the Rainbow signature scheme
proposed by Ding and Schmidt [2], a multilayer UOV variant, was selected as a
third round finalist in the NIST PQC standardization project. However, UOV
and Rainbow have a drawback to be a large public key compared to other PQC
such as lattice-based cryptosystems.



In 2022, NIST announced that the three signature schemes, Dilithium, Fal-
con, and SPHINCS+, will be standardized, but also announced to start the ad-
ditional digital signature schemes competition. In this new process, 40 signature
schemes were accepted to the first round and published in July 2023.

SNOVA is a multivariate signature scheme proposed by Wang et al.[11] and
is accepted to the first round of the additional digital signature project [12]. It
is regarded as a UOV scheme over a non-commutative ring and its parameter
sets have short signature and a smaller public key. For example, the key and
signature size of the SL1-SNOVA with ℓ = 4 are close to the already standardized
lattice cryptography. Note that, since SNOVA takes the matrix ring as a non-
commutative ring, its core matrix is actually regarded as a large UOV matrix
over a finite field with a parameter set (q, ℓv, ℓo). Ikematsu and Akiyama [5]
and Li and Ding [8] pointed out this fact and showed the parameter set with
ℓ = 2 do not meet the NIST PQC security levels, and the designers change these
parameter sets.

1.1 Our contribution

In SNOVA, the core matrix is regarded as the matrix description of a standard
UOV polynomial with a parameter set (q, ℓv, ℓo). Then the secret non-singular
matrix T is a block matrix and each block component is chosen from the algebra
Fq[S] generated by the symmetric matrix S of size ℓ over Fq. Note that the matrix
S presented in [12] is diagonalizable over the splitting field for its characteristic
polynomial. By using this property, our proposed method transforms T to a
block diagonal matrix T̂ whose diagonal block components has the form of the
secret non-singular matrices for smaller UOVs with a parameter set (qℓ, v, o). In

particular, by concentrating on one diagonal block of T̂ , we can perform the key
recovery attack on UOV with a parameter set (ql, v, o) if mo2 ≥ vo.

For the proposed parameter sets of SNOVA, since it holds mo2 ≥ vo, our
method obtains an equivalent key by iterating a key recovery attack against
UOV with the parameter set (qℓ, v, o). As a result, when v < 2o, we can provide
a key recovery attack that are as efficient as [5] and [8] and show that the first
SNOVA parameter sets at ℓ = 2 does not meet the NIST PQC security level.
On the other hand, for SNOVA parameter sets with v ≥ 2o, including the new
parameter set at ℓ = 2, we found that SNOVA still maintains the NIST PQC
security levels against existing attacks on our method because the iterations are
less efficient than [5] and [8] due to the larger field order.

In the specification [12], the characteristic polynomial of S is irreducible over
the finite field Fq defined there, and the matrix S cannot be diagonalized over
the finite field. However, if S is diagonalized over the finite field Fq, we are
able to use our method without a field extension, and key recovery attacks with
this variant show that all the proposed parameter sets will not meet the NIST
PQC security level. Therefore, this work gives a reason why the characteristic
polynomial of S should be irreducible over Fq.
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1.2 Organization

In Section 2, we recall UOV, SNOVA and its security analysis from known key re-
covery attacks. In Section 3, we describe our lifting method for SNOVA and men-
tion the complexity estimation of existing key recovery attacks on the method.
In Section 4, we provide the security analysis for the SNOVA parameter sets
proposed in the NIST PQC additional digital signature project.

2 Preliminaries

In this section, we firstly explain the UOV scheme in Subsection 2.1 and key
recovery attacks against it in Subsection 2.2. Then, we describe the SNOVA
scheme and its security analysis according to [5].

2.1 UOV scheme

Let v, o be positive integers and Fq be the finite field of order q. Set n = v + o
and m = o. The UOV scheme is a signature scheme proposed by Kipnis, Patarin,
and Goubin [7] and consists of the following algorithms:

Key generation Let F1, . . . ,Fm be a quadratic polynomials in Fq[x1, . . . , xn]
of the form

Fk(x1, . . . , xn) =
∑

1≤i≤v,1≤j≤n

a
(k)
ij xixj , (1)

where 1 ≤ k ≤ m and a
(k)
ij ∈ Fq. Then these polynomials define a function

Fi : Fn
q → Fq and obtain a polynomial map F = (F1, . . . ,Fm) : Fn

q → Fm
q .

Moreover, we randomly choose a linear transformation T : Fn
q → Fn

q and obtain
a quadratic map P = F ◦T . We set {Fi}mi=1∪{T } as the secret key and {Pi}mi=1

as the public key.

Signature generation and verification For b ∈ Fm
q , we compute an ele-

ment of its preimage in P as follows. Randomly choose (a′1, . . . , a
′
v) ∈ Fv

q and
then {F1(a

′
1, . . . , a

′
v, xv+1, . . . , xn), . . . ,Fm(a′1, . . . , a

′
v, xv+1, . . . , xn)} is a system

of m linear polynomials in o variables xv+1, . . . , xn. We then solve this linear
system and set its solution as (a′v+1, . . . , a

′
n) if any. Otherwise, retake the value

(a′1, . . . , a
′
v) ∈ Fv

q . As a result, we obtain a preimage element a under P by com-
puting a = T −1(a′) where a′ = (a′1, . . . , a

′
n). The verification process confirms

whether P(a) = b holds.

Matrix description Note that, for any quadratic polynomial f(x1, . . . , xn),
there exists a matrix M such that f(x1, . . . , xn) = txMx where x =
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t(x1, . . . , xn). For example, we can take the following matrix Fk for the quadratic
polynomial Fk(x1, . . . , xn) of the form (1):

Fk =



a′11 · · · a′1v a′1 v+1 · · · a′1n
...

. . .
...

...
. . .

...
a′v1 · · · a′vv a′v v+1 · · · a′vn

a′v+1 1 · · · a′v+1 v 0 · · · 0
...

. . .
...

...
. . .

...
a′n 1 · · · a′n v 0 · · · 0


, (2)

where a′ij ∈ Fq. Namely, Fk(x1, . . . , xn) = txFkx. In this paper, we introduce
the following definition.

Definition 1. Denote by MatUOV (v,o)(Fq) the set of a square matrix of size
v+ o over Fq whose lower right o× o submatrix is zero, i.e. of the form (2). We
call an element of MatUOV (v,o)(Fq) a UOV matrix with a parameter set (q, v, o).

Meanwhile, it is well-known that the linear transformation T : Fn
q → Fn

q also has
a matrix description and there exists a non-singular matrix T ∈ GL(n,Fq) such
that T (x) = Tx. In the UOV scheme, it is sufficient to take T as the following
form:

T =



1 t1 v+1 · · · t1n
. . .

...
. . .

...
1 tv v+1 · · · tvn

1

O
. . .

1


. (3)

Then we can obtain the matrix description P1, . . . , Pm of the public key
P1, . . . ,Pm by

Pk = tTFkT (1 ≤ k ≤ m).

2.2 Key recovery attacks against UOV

In this subsection, we describe known key recovery attacks against UOV and
give these complexity estimations.

Kipnis-Shamir attack The Kipnis-Shamir attack is a key recovery attack
proposed by Kipnis and Shamir [6]. It randomly constructs two matrices M1

and M2 as a linear combination of public keys where M1 is non-singular, and
finds a vector of the twisted oil space T−1O from the stable subspace under
M−1

1 M2 where the oil space O = Span({ei | v + 1 ≤ i ≤ n}). For example,
T−1ei coincides with the i-th column of the secret key T−1 for v + 1 ≤ i ≤ n.
In [12], the complexity of the attack is estimated as

O(qv−o).
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Intersection attack Based on the Kipnis-Shamir attack, Beullens proposed
the intersection attack [1]. The attack randomly constructs two non-singular
matrices M1 and M2 as a linear combination of public keys. If the intersection
M1T

−1O ∩M2T
−1O has a non-zero vector x, then M−1

1 x,M−1
2 x ∈ T−1O and

we obtain 
txtM−1

1 PkM
−1
1 x = 0

txtM−1
2 PkM

−1
2 x = 0

txtM−1
1 (Pk + tPk)M

−1
2 x = 0

.

If v < 2o, the dimension of the intersection M1T
−1O∩M2T

−1O is at least 2o−v
and we can impose 2o−v affine constraints. Hence, we solve the system of 3m−2
quadratic equations in 2v− o variables by omitting two redundant polynomials.
The complexity is estimated by

O

(
3 ·
(
N +DM,N

DM,N

)2(
N + 2

2

))
,

where M = 3m− 2 and N = 2v − o,

DM,N = min{i > 0 | Coeff((1− t2)M (1− t)−N−1, ti) ≤ 1}.

If v ≥ 2o, [1] mentions that the probability of the existence of a non-trivial
intersection is 1/qv−2o+1 and estimates the complexity as

O

(
3 · qv−2o+1 ·

(
N +DM,N

DM,N

)2(
N + 2

2

))
,

where M = 3m− 2 and N = 2v − o.

Reconciliation attack The reconciliation attack is proposed by Ding et al.[3]
Set tij in (3) as variables and oi = T−1ev+i. Since oi ∈ T−1O, for 1 ≤ c ≤ o,
we obtain quadratic equations

Sc = {toiPkoi = 0, toi(Pk + tPk)oj = 0 | 1 ≤ i < j ≤ c, 1 ≤ k ≤ m}.

When m ≥ v, the reconciliation attack solves a overdetermined system S1 of m
quadratic equations in v variables. Then we can solve S2 more efficiently because
it contains m linear equations in v variables. After that, it can be solved easily
as well. Hence, the complexity of solving S1 is dominant and estimated by

O

(
3 ·
(
N +DM,N

DM,N

)2(
N + 2

2

))
, (4)

where M = m and N = v. When m
(
o+1
2

)
≥ ov, the (full) reconciliation attack

solves a overdetermined system So and its complexity is estimated by (4) with
M = m

(
o+1
2

)
and N = ov. In this paper, setting c = min{1 ≤ i ≤ o | m

(
i+1
2

)
≥

vi}, we solve the overdetermined subsystem Sc first and other subsystems sub-
sequently.
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2.3 SNOVA and its security analysis

In this subsection, we describe the SNOVA scheme proposed in the first round
of NIST PQC additional digital signature scheme project [12]. Let o and v be
two positive integers such that v > o and Fq be the finite field of order q. Denote
by R the ring of all ℓ× ℓ matrices over Fq, i.e. R = Matℓ×ℓ(Fq).

Key generation Let S be a square matrix of size ℓ. Denote by Fq[S] the algebra
generated by S over Fq, i.e.

Fq[S] = {a0Iℓ + a1S + · · ·+ aℓ−1S
ℓ−1 | ai ∈ Fq} ⊆ R.

In the specification [12], the finite field is fixed as F16 = F2[x]/〈x4 + x+ 1〉 and
the matrix S ∈ Matℓ×ℓ(F16) is given as follows.

S =



(
8 7
7 6

)
if ℓ = 2,8 7 6

7 6 5
6 5 4

 if ℓ = 3,
8 7 6 5
7 6 5 4
6 5 4 3
5 4 3 2

 if ℓ = 4,

where the elements of F×
16 are represented by {1, . . . , 15} with the correspondence

i ↔ σi and σ is a generator of the cyclic group F×
16. Then the characteristic

polynomial of each matrix S is irreducible over F16.
Let F1, . . . , Fm ∈ Matn×n(R) be randomly chosen matrices such that

Fi =

(
F 11
i F 12

i

F 21
i 0o

)
, (5)

where F 11
i ∈ Matv×v(R), F 12

i ∈ Matv×o(R), F 21
i ∈ Mato×v(R), and 0o is the

zero matrix in Mato×o(R). The non-singular matrix T is given by

T =

(
1v T 12

0o×v 1o

)
,

where T 12 ∈ Matv×o(Fq[S]) is randomly chosen, 1i is the identity matrix
in Mati×i(R), and 0o×v is the zero matrix in Mato×v(R). Then we define
P1, . . . , Pm ∈ Matn×n(R) as

Pi =
tTFiT.

We further choose Aα, Bα, Qα1, Qα2 ∈ GL(ℓ,Fq) where Qαj ∈ Fq[S] and then set
{Fi}1≤i≤m ∪ {T} as the secret key and {Pi}1≤i≤m ∪ {Aα, Bα, Qα1, Qα2}1≤α≤ℓ2

as the public key.
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Signature generation and verification In the SNOVA scheme, using the
public key, we can construct the polynomial function Pk : Rn → R as follows:

Pk(Y1, . . . , Yn) :=

ℓ2∑
α=1

∑
1≤i,j≤n

AαYiQα1Pk,[i,j]Qα2YjBα (1 ≤ k ≤ m),

where Pk,[i,j] is the (i, j)-component of Pk in Matn×n(R). Hence, we obtain the
polynomial map P = (P1, . . . ,Pm) : Rn → Rm. Note that a term of degree two
in the non-commutative polynomial R[Y1, . . . , Yn] is of form AYiCYjB where
A,B,C ∈ R. In signature generation in SNOVA, for a given hash value, we
need to find an element of its preimage under P. The polynomial map P can
be regarded as the composition of a “UOV” map and a linear map. Indeed, the
non-singular matrix T induces the linear polynomial map

T : Rn → Rn, t(X1, . . . , Xn) 7→ T · t(X1, . . . , Xn), and

the matrix sequence (F1, . . . , Fm) defines the polynomial map F = (F1, . . . ,Fm) :
Rn → Rm where

Fk(X1, . . . , Xn) =

ℓ2∑
α=1

∑
1≤i,j≤n

AαXiQα1Fk,[i,j]Qα2XjBα (1 ≤ k ≤ m).

Then we have P = F ◦ T by the commutativity of the elements in Fq[S]. By
the UOV-like definition of F1, . . . , Fm, the map F is linear when we fix values of
X1, . . . , Xv and therefore we can compute a preimage element under F by linear
algebra. The verification process performs the substitution in P.

Security analysis as Matℓn×ℓn(Fq) Since R is the matrix ring Matℓ×ℓ(Fq),
we can regard T, Fi, and Pi as elements of Matℓn×ℓn(Fq). In particular, Fi are
regarded as UOV matrices and we can apply key recovery attacks against UOV
with a parameter set (q, ℓv, ℓo). Basis on this observation, Ikematsu and Akiyama
[5] and Li and Ding [8] showed the parameter sets with ℓ = 2 do not meet
the NIST PQC security levels. In addition, they found a method to strengthen
algebraic key recovery attacks. They introduce the following matrix

Sdiag = In ⊗ S =

S
. . .

S


and show TSdiag = SdiagT . Hence, if a vector x is contained in the twisted oil

space T−1O, then xSj
diag is also contained. Indeed,

x ∈ T−1O ⇒ Sj
diagx ∈ Sj

diagT
−1O = T−1Sj

diagO = T−1O.

Thus, we can increase the number of equations to be solved in algebraic key
recovery attacks such as the reconciliation attack and the intersection attack.
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3 Proposed lifting method

In this section, we describe our lifting method for the SNOVA scheme which
reduces it to small UOVs with parameter (qℓ, v, o). We explain our lifting method
in Subsection 3.1 and mention the complexity estimation of known key recovery
attacks on the small UOV obtained by our method in Subsection 3.2.

3.1 Transformation to smaller UOVs

As mentioned in [12], the matrices S given in Subsection 2.3 have an irreducible
characteristic polynomial. The following lemma shows that such a matrix is
diagonalizable.

Lemma 1. The non-zero square matrix over a finite field with the irreducible
characteristic polynomial is diagonalizable over the splitting field of the charac-
teristic polynomial.

Proof. See Appendix. ut

Thus, for the matrix S ∈ Matℓ×ℓ(F16) defined in the specification [12] (see
Subsection 2.3), there exists a non-singular matrix B in GL(ℓ,F16ℓ) such that
B−1SB is a diagonal matrix in Matℓ×ℓ(F16ℓ). In particular, all elements of F16[S]
are simultaneously diagonalizable with this matrix B.

Let U be the diagonal block matrix with n copies of the matrix B, namely,

U = In ⊗B =

B
. . .

B

 ∈ Matℓn×ℓn(F16ℓ).

The block components of the matrix T which is an element of Matn×n(F16[S])
are diagonalized with U as follows:

T =

I

I

O

U−1TU =

I

I

O

Then the relation Pi =
tTFiT is rewritten as

tUPiU = (tU tT tU−1)(tUFiU)(U−1TU). (6)

Note that the matrix tUFiU is still a UOV matrix in Matℓn×ℓn(F16ℓ).
By the following lemma, we can derive a relation for a smaller UOV matrix

from (6):
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Lemma 2. Let Diagℓ(F) be the set of all diagonal matrices in Matℓ×ℓ(F), and
MatUOV (v,o)(F) be the set of square matrices of size v+ o whose o× o submatrix

at the lower right is zero. Let F ∈ MatUOV (ℓv,ℓo)(F) and T =

(
Iℓv T

12

O Iℓo

)
∈

GL(ℓn,F) where T
12 ∈ Matv×o(Diagℓ(F)). Then, there exists a permutation

matrix L such that

tLTL =

T̂1 O
. . .

O T̂ℓ

 , (7)

where T̂i =

(
Iv T̂ 12

i

O Io

)
∈ GL(n,F) and T̂ 12

i ∈ Matv×o(F). It deduces tLFL ∈

Matℓ×ℓ(MatUOV (v,o)(F)), i.e.

tLFL = .

Note that, when we regard the matrix F as the matrix representation of a
quadratic form, this lemma means there exists a permutation of the variables
such that it separates the variables to smaller variable sets of a UOV polynomial.

By Lemma 2, for T = U−1TU and F i =
tUFiU , we obtain the permutation

matrix L ∈ GL(ℓn,F16ℓ) satisfying the assertion in Lemma 2. Define

T̂ = tLTL, F̂i =
tLF iL, and P̂i =

tLP iL.

Note that T̂ is of the form (7) and F̂ ∈ Matℓ×ℓ(MatUOV (v,o)(F16ℓ)). Since
tL =

L−1 for a permutation matrix L, we have a relation

P̂k = tT̂ F̂kT̂ ,

but more precisely we have the following relations for block components as a
block matrix in Matℓ×ℓ(Matn×n(F16ℓ)):

P̂
[i,j]
k = tT̂i · F̂ [i,j]

k · T̂j , 1 ≤ i, j ≤ ℓ. (8)

3.2 Lifted known attacks on SNOVA

In this subsection, we show it is possible to obtain the key equivalent relation
of UOV with the parameter set (qℓ, v, o) from the SNOVA scheme proposed in
[12].
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In the previous section, after our lifted method, we obtain Equation (8) as
a relation between the public key and the secret key of SNOVA. Then, as a
diagonal component of ℓ× ℓ matrix over Matn×n(F16ℓ), we have ℓ relations

P̂
[i,i]
k = tT̂i · F̂ [i,i]

k · T̂i, 1 ≤ i ≤ ℓ. (9)

These relations are regarded as a relation between the public key and the secret
key of UOV with the parameter set (qℓ, v, o). When mo2 ≥ vo, the secret key (3)
of UOV with a parameter (v, o) is often unique for a given instance, and we can

obtain the secret key T̂1, . . . , T̂ℓ by applying a key recovery attack to the relations
(9) in the diagonal component. Note that, after recovering T̂1, we obtain linear

equations with respect to another T̂j with j 6= 1 from the (1, j)-block relation in

(8) and can utilize a more efficient key recovery attack against T̂j .

Since all SNOVA parameter sets proposed in [12] satisfy the condition mo2 ≥
vo, it is sufficient to perform a key recovery attack against ℓ UOV instances with
the parameter (qℓ, v, o) and its complexity estimation is given as follows (see also
Remark 1).

Kipnis-Shamir attack
We can apply the Kipnis-Shamir attack against each UOV public key

P̂ [j,j] = (P̂
[j,j]
1 , . . . , P̂

[j,j]
m ) with the parameter set (qℓ, v, o). Hence, by [12],

the complexity of the attack is estimated by

O((qℓ)v−o).

Note that this coincides with one of the Kipnis-Shamir attack in [5]. However,
since our attack is over the extension field, the bit complexity of our attack
is larger than their one by (10) in Subsection 4.

Reconciliation attack
Let c be the minimum number such that c2m ≥ cv. Since we consider the
case mo2 ≥ vo, there exists such a number c. Then the reconciliation attack
solves a system of c2m quadratic equations in cv variables. Hence, according
to [12], the complexity is estimated by

O

(
min
k

3 · (qℓ)k ·
(
N − k +DN−k,M

DN−k,M

)2(
N − k + 2

2

))
,

where N = vc and M = mc2.

Intersection attack
As mentioned in [5], we consider the matrix key equivalent problem (see also
Subsection 2.2) and distinguish the two relations txtM−1

1 PkM
−1
2 x = 0 and

txtM−1
2 PkM

−1
1 x = 0. When v < 2o, the attack solves the system of 4m− 2
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quadratic equations in n− (2o− v) variables and its complexity is estimated
by

O

(
min
k

3 · (qℓ)k ·
(
N − k +DN−k,M

DN−k,M

)2(
N − k + 2

2

))
,

where N = n − (2o − v) and M = 4m − 2. When v ≥ 2o, the attack tries
to find the non-trivial intersection of two images of the twisted oil-subspace
and solves the system of 4m − 2 quadratic equations in n variables. The
complexity is estimated by

O

(
min
k

3 · (qℓ)k+n−3o+1+max{n−4m+2,0} ·
(
N − k +DN−k,M

DN−k,M

)2(
N − k + 2

2

))
,

where N = min{n, 4m− 2} and M = 4m− 2.

Note that, by Remark 1 below, we cannot utilize the strengthening of [5] in our
lifting method.

Remark 1. We show that the method introduced by [5] (see Subsection 2.3)
is trivial after our lifting method and does not contribute to strengthen key
recovery attacks. When we apply the discussion in Subsection 3.1 to the ma-
trix Sdiag = In ⊗ S considered in [5] (see Subsection 2.3), we obtain Ŝdiag =

L−1U−1SdiagUL and can confirm T̂ Ŝdiag = ŜdiagT̂ . However, when setting

B−1SB =

a11
. . .

aℓℓ

 ,

we have Ŝ
[j,j]
diag = ajjIn where Ŝ

[j,j]
diag is the j-th diagonal component of Ŝdiag in

Matℓ×ℓ(Matn×n(F16ℓ)). Thus the commute T̂ Ŝdiag = ŜdiagT̂ is trivial in the
relation (8).

4 Security analysis

In this section, using the complexity estimation introduced in the previous sec-
tion, we estimate the complexity of lifted key recovery attacks against for the
SNOVA parameter sets in the first round of NIST PQC additional digital signa-
ture project.

The parameter sets proposed in the specification [12] are set to satisfy the
NIST PQC security levels. The categories of the NIST PQC security level one,
three, and five require 143 bit, 206 bit, and 272 bit security, respectively. All
proposed parameter sets satisfy the condition mo2 ≥ vo and we can apply key
recovery attacks in the previous section. Table 1 shows the complexity estimation
of key recovery attacks on our lifting method for the proposed parameter sets
and the revised parameter sets with ℓ = 2. Here we list the bit complexity for
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the number of gates which is estimated from the number of multiplications as
follows:

♯gates = ♯multiplications × (2(log2 q
ℓ)2 + log2 q

ℓ) (10)

In Table 1, “Inter.”, “KS”, and “Recon.” mean the Intersection attack, the
Kipnis-Shamir attack, and the reconciliation attack, respectively. Consequently,
similar to the results in [5] and [8], the first parameter sets with ℓ = 2 do
not meet the NIST PQC security levels. In particular, the first parameter sets
(v, o, q, ℓ) = (28, 17, 16, 2), (43, 25, 16, 2), and (61, 33, 16, 2) with ℓ = 2 are broken
within 79.63 bits, 112.74 bits, and 158.99 bits, respectively, by the intersection
attack on our lifting method. Those parameter sets were broken within 87 bits,
120 bits, and 167 bits, respectively, in [5] and within 77 bits, 167 bits, and 249
bits, respectively, in [8]. Hence, we are able to provide slightly more efficient
attacks against the parameter sets (v, o, q, ℓ) = (43, 25, 16, 2) and (61, 33, 16, 2).

Table 1. The bit-complexity estimation for our lifting method against SNOVA in the
first round of the NIST PQC additional digital signature project

SL
SNOVA log2(♯gates)
(v, o, q, ℓ) KS Recon. Inter.

1 (28, 17, 16, 2) 95.08 131.38 (c = 2, k = 0) 79.63 (k = 0)

1 (37, 17, 16, 2) 167.08 196.63 (c = 3, k = 0) 157.66 (k = 0)

1 (25, 8, 16, 3) 212.22 195.64 (c = 4, k = 0) 275.77 (k = 2)

1 (24, 5, 16, 4) 313.04 319.77 (c = 5, k = 0) 510.56 (k = 2)

3 (43, 25, 16, 2) 151.08 192.83 (c = 2, k = 0) 112.74 (k = 0)

3 (56, 25, 16, 2) 255.08 289.23 (c = 3, k = 0) 232.38 (k = 0)

3 (49, 11, 16, 3) 464.22 510.56 (c = 5, k = 0) 705.42 (k = 2)

3 (37, 8, 16, 4) 473.04 425.95 (c = 5, k = 0) 720.59 (k = 2)

5 (61, 33, 16, 2) 231.08 294.15 (c = 2, k = 1) 158.99 (k = 0)

5 (75, 33, 16, 2) 343.08 376.62 (c = 3, k = 0) 302.49 (k = 0)

5 (66, 15, 16, 3) 620.22 655.23 (c = 5, k = 0) 918.03 (k = 2)

5 (60, 10, 16, 4) 809.04 785.26 (c = 7, k = 0) 1319.04 (k = 2)

5 Conclusion

In this paper, we showed that by using the splitting field Fqℓ of the characteristic
polynomial, it is possible to diagonalize the matrix S, and that the key equivalent
problem of SNOVA is reduced to that of UOV with parameters (qℓ, v, o). As a
result, we were able to provide key recovery attacks that are as efficient as [5]
and [8] for the previous SNOVA parameter sets with v < 2o. In particular, for
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the parameter sets (v, o, q, ℓ) = (43, 25, 16, 2) and (61, 33, 16, 2), we were able
to provide slightly more efficient attacks than [5] and [8]. On the other hand,
we showed that the SNOVA parameter sets with v ≥ 2o, including the new
parameter sets with ℓ = 2, are secure for existing attacks on our lifting method.
In general, the disadvantage of our method is that it uses the field of large
order qℓ and thus requires the large number of iterations in an attack with an
exhaustive search. In particular, the condition that mo2 ≥ vo is necessary for
the efficient key recovery.

The efficiency of our method depends on the definition of Fq and S. In the
specification [12], the characteristic polynomial of S is irreducible over the finite
field Fq defined there, and the matrix S cannot be diagonalized over the finite
field. However, if the roots of the characteristic polynomial of S are different from
each other and in Fq, i.e. S is diagonalized over the finite field Fq, we are able to
use our method without a field extension. Then the complexity of Kipnis-Shamir
attack with this variant is estimated as qv−o, and it shows that all the proposed
parameter sets do not meet the NIST PQC security level. Therefore, this work
gives a reason why the characteristic polynomial of S should be irreducible over
Fq.
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Appendix (The proof of Lemma 1)

Lemma. The non-zero square matrix over a finite field with the irreducible char-
acteristic polynomial is diagonalizable over the splitting field of the characteristic
polynomial.

Proof. Let M ∈ Matn×n(Fq) and Φ(x) be its irreducible characteristic poly-
nomial where q = pe. Since Φ(x) is irreducible, it coincides with the minimal
polynomial of M , and its constant term (−1)n det(M) is non-zero, namely M
is non-singular. Hence M is contained in the finite group GL(n,Fq) and has a
finite order r := order(M). Since the irreducible characteristic polynomial Φ(x)
is the minimal polynomial of M , it divides xr−1, i.e. Φ(x) | (xr−1). We assume
that p | r. Then xr − 1 = (xc − 1)p where r = pc. Since Φ(x) is irreducible,
Φ(x) | (xc − 1)p implies Φ(x) | xc − 1 and we have order(M) ≤ c < r which is a
contradiction. Therefore, it follows that p ∤ r and the roots of xr−1 are different
each other. Thus, since Φ(x) | (xr − 1), the characteristic polynomial Φ(x) does
not have a multiple root in its splitting field and the matrix M is diagonalizable.
Since the characteristic polynomial is of degree n, the diagonal components as
its roots are contained in the splitting field whose degree of the field extension
is n. ut
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