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Abstract. Fully homomorphic encryption schemes are methods to perform compu-
tations over encrypted data. Since its introduction by Gentry, there has been a
plethora of research optimizing the originally inefficient cryptosystems. Over time,
different families have emerged. On the one hand, schemes such as BGV, BFV, or
CKKS excel at performing coefficient-wise addition or multiplication over vectors
of encrypted data. In contrast, accumulator-based schemes such as FHEW and
TFHE provide efficient methods to evaluate boolean circuits and means to efficiently
compute functions over small plaintext space of up to 4-5 bits in size.
In this paper, we focus on the second family. At a high level, accumulator-based
schemes encode the range of a function f in the coefficients of a polynomial, which
is then encrypted in a homomorphic accumulator. Given an input ciphertext, the
coefficients of the encrypted polynomial are homomorphically rotated, such that there
is a correspondence between the constant term of the result and the message contained
in the ciphertext. In the end, it is possible to derive a ciphertext of the constant term
encrypted with regard to the same encryption scheme as the input ciphertext. To
summarize, by appropriately encoding the function f on the accumulated polynomial,
we can compute f on the plaintext of the input ciphertext, where the output ciphertext
has its noise magnitude independent of the input ciphertext. However, by default, it
is necessary to impose restrictions on the type of functions we evaluate or drastically
limit the plaintext space that can be correctly processed. Otherwise, the procedure’s
output will be incorrect and hard to predict.
In this work, we describe two novel algorithms that have no such restrictions. Fur-
thermore, we derive an algorithm that enables a user to evaluate an arbitrary amount
of functions at a computational cost that differs only by a constant amount compared
to a single function. Our methods lead to an evaluation that is between 15 and 31%
faster than previous works while also being conceptually simpler.
Keywords: Fully Homomorphic Encryption · Arbitrary Function Evaluation ·
Bootstrapping · FHE

1 Introduction
A fully homomorphic encryption scheme allows for performing any computation on en-
crypted data. The bootstrapping technique, initially introduced by Gentry [Gen09], is still
the sole method for creating secure, fully homomorphic encryption schemes. This is be-
cause, in current homomorphic schemes, processing encrypted data generates noise, which
can ultimately corrupt the plaintext if it becomes too excessive. In practical applications,
bootstrapping also continues to be one of the primary efficiency bottlenecks.

By now, there are different types of fully homomorphic encryption schemes. On the one
hand, schemes such as BGV [BV11, Bra12], BFV [FV12, BGV12] or CKKS [CKKS17] excel
at performing coefficient-wise addition or multiplication over vectors of encrypted data. On
the other hand, we have so-called circuit bootstrapping algorithms that excel at computing
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boolean circuits. To date, the best circuit bootstrapping algorithms are based on the
blueprints by Alperin-Sheriff and Peikert [AP14], and the FHEW-style bootstrapping
developed by Ducas and Micciancio [DM15]. The FHEW algorithm was further improved
and applied in numerous works [CGGI16, CGGI20, CGGI17, MS18, BDF18, CIM19,
GBA21, WWL+24]. A core property that makes these algorithms efficient in applications
is their ability to compute arbitrary functions on the input. Namely given an encryption
ct of a message m ∈ Zt, one can bootstrap the ciphertext, and along the way compute a
function f : Zt 7→ Zt of the evaluators choice, given that f satisfies f(m + t/2) = −f(m).
The last restriction is often called the negacyclicity problem, since it stands in the way to
freely chose the function f . Consequently, in order to compute an arbitrary function, a
common technique is to assume that m < t/2. Some works like [JW22] call the technique
"zero padding" the plaintext since we need to set the plaintext’s most significant bit to
zero. This way, we can exploit the bootstrapping algorithm to compute any lookup table.
We call such bootstrapping algorithms functional or programmable bootstrapping. There
are however some limitation to that technique:

1. The precision is small, typically between 3-4 bits, depending on the underlying
parameters. We lose one bit of precision due to the padding being zero.

2. Due to limited plaintext space and zero padding, we cannot correctly compute
many linear functions in the full domain of the plaintext space. That is, we cannot
correctly compute linear functions in Zt. The reason is that adding or multiplying
two ciphertexts with messages < t/2 may put the result over the t/2 threshold.
As shown in [KS23, Klu22] this leads to speedups in the order of thousands when
computing multivariate polynomials, in comparison to computing the same functions
over a boolean circuit with the zero padding technique.

Two concurrent works [KS23, CLOT21] proposed extensions to the FHEW-style boot-
strapping schemes to increase its precision and resolve the negacyclicity problem. Further-
more, [KS23] showed that one could exploit the function bootstrapping over the entire
domain Zt to compute multivariate polynomials with a larger plaintext space (even over 32
bits) using the residue number system over the plaintext space. This extends the repertoire
of circuits efficiently computable by FHEW-style algorithms from only boolean to a mix
of boolean and arithmetic functions without switching between BGV [BV11, Bra12] and
BFV [FV12, BGV12] -style schemes. While to the best of our knowledge [CLOT21] was
never implemented, nor parameters were proposed, [KS23] was implemented on top of
the Palisade library, with timings over 10 seconds per bootstrapping depending on the
precision. The main efficiency bottleneck in the algorithm is the necessity to compute
multiple relatively expensive so-called blind rotation steps with less efficient parameters.
In practice, the number of blind rotations is over 6. Micciancio and Polyakov [LMP22] and
concurrently [YXS+21] significantly improved the technique and effectively reduced the
number of blind rotations to only two without significantly affecting other parameters. In
practice, Micciancio and Polyakov’s [LMP22] method takes approximately 0.9 seconds to
compute a full domain bootstrap of a 5-bit plaintext. The method was further improved
by [CBSZ23]. While [CBSZ23] requires four blind rotations, it allows to handle a plaintext
space larger than [YXS+21, LMP22]. To compare both methods for the same plaintext
space, that is, when both methods have equivalent functionality, we must instantiate
[YXS+21, LMP22] with larger parameters. Nevertheless, [CBSZ23] reports only 1.2×
efficiency improvement. Finally, [CBSZ23] mentions a version of their algorithm that uses
the multi-value technique from [CIM19], but to the best of our knowledge, there is no
implementation of this method available.
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1.1 Contribution
In this paper, we present improved algorithms for full domain functional bootstrapping
that, similarly to Micciancio [LMP22], require only two blind rotation invocations but are
able to handle a larger precision when instantiated over the same ring. Consequently, in
comparison with the algorithm by Micciancio and Polyakov [LMP22], when targeting the
same precision, our base algorithm achieves a speedup of about 31%. Our method also
outperforms [CBSZ23] by approximately 15%.

We give two variants of our algorithm.

• The first variant computes a single function while bootstrapping a ciphertext. This
variant is functionally equivalent to Micciancio and Polyakov [LMP22], but as stated
earlier, we achieve a speedup of 31% while decreasing the evaluation key only by
7%. Compared to the faster version of [CBSZ23], we are 15% faster but with a key
larger by 46%. Our overhead is due to an additional key switching key. Further, we
discuss a version of the algorithm without that overhead. In absolute terms, our
bootstrapping algorithm takes 0.59 seconds to bootstrap a 5-bit plaintext, while
[LMP22] requires 0.87 seconds and [CBSZ23] requires 0.72 seconds.

• The second variant can compute an arbitrary number of functions on the same input
ciphertext, at the expense of larger noise variance, which has to be compensated
with slightly larger parameters. In particular, the evaluation key size increases
by 29MB, which is an increase of 15%. The evaluation time remains roughly the
same. Technically, we accomplish this by incorporating variants [MKG23] of the
multi-value bootstrapping [CIM19]. This makes our algorithm particularly suitable
for efficient digit decomposition and conversions between binary and arithmetic
circuits. In contrast, prior works [KS23, LMP22, CBSZ23] had to execute one full
domain functional bootstrapping per output digit, whereas we need to compute one
full domain functional bootstrapping for all output. To illustrate the difference,
let’s compare ours with [CBSZ23] when computing binary decomposition of 5 bits.
In our case, the computation takes roughly 0.7 seconds as we execute only one
bootstrapping procedure, while for the faster variant of [CBSZ23], we do the same
job in 3.5 seconds. That gives us a speedup of around 485%.

We implement, test, and integrate our algorithms into a publicly available open-source
C++ library [fhe23]. Importantly, we integrate both our methods as well as [LMP22] into
the library’s high-level interface that allows programmers to use full-domain functional
bootstrapping without needing to deal with the implementation details. Finally, we note
that to the best of our knowledge we are the first to incorporate multi-value bootstrapping
into a full-domain functional bootstrapping algorithm. We noticed that the algorithm
by Micciancio and Polyakov [LMP22] can be extended this way as well. Hence, to give a
better comparison between our core techniques, we also give parameters and implement a
multi-value version of [LMP22]. Finally, we note that while [CBSZ23] uses a multi-value
technique from [CIM19] as part of their faster construction, it doesn’t seem possible to
apply the technique to the output of the bootstrapping procedure.

Applications
The primary motivation in [KS23, CLOT21] is to build a full domain functional boot-
strapping algorithm to extend the message space for input ciphertexts. Additionally,
[KS23] used the technique to compute multivariate polynomials over a residue number
system, effectively extending the plaintext space from 5 or 6 bits to 32 bits. Furthermore,
[KS23] showed how to convert between arithmetic circuit and boolean circuit for FHEW-
style schemes by exploiting the full domain bootstrapping algorithm to compute digit



4 FDFB2

decomposition. Micciancio and Polyakov [LMP22] used their algorithm to compare large
numbers. Further, Kluczniak [Klu22] instantiated Micciancio and Polyakov’s [LMP22]
method over NTRU ciphertexts to compute Gaussian elimination and solve systems of
linear equations over encrypted data. Albrecht, Davidson, Deo, and Gardham [ADDG23]
(to appear at Eurocrypt’24) use [LMP22] to construct oblivious pseudorandom functions.
Finally, Deo et al. [DJL+24] use full domain functional bootstrapping to evaluate learning
with errors-based pseudorandom functions.

2 Preliminaries
In this section, we introduce the notation that will be used throughout this text and the
background behind accumulator-based bootstrapping methods.

2.1 Notation
We denote as B the set {0, 1}, R as the set of reals, Z the set of integers, and N as the set
of natural numbers. The symbol Zq for q ∈ N, refers to the quotient ring Z/qZ, that is, the
integers modulo q. Furthermore we denote as RQ the polynomial ring ZQ[X]/(XN + 1)
with log2(N) ∈ N. When the value of Q is not ambiguous, we simply write R. We denote
vectors with a bold lowercase letter, e.g., v, and matrices with uppercase letters V. We
refer to the ith entry of a vector a as a[i]. Similarly, we address the (i, j)-th cell of a
matrix A by A[i, j]. For brevity, we denote as [k] the sequence {0, 1, ..., k − 1}. Finally,
let a =

∑N−1
i=0 ai ·Xi, be a polynomial with coefficients over any ring R, then we denote

by Coefs(a) the coefficient vector [ai]i∈[N ] ∈ RN . For a random variable a ∈ Z we denote
as Var(a) the variance of a, as stddev(a) its standard deviation and as E(a) its expectation.
For a ∈ RQ, we define Var(a) =

[
Var(Coefs(a))

]
i∈[N ], stddev(a) =

[
stddev(Coefs(a))

]
i∈[N ]

and E(a) =
[
E(Coefs(a))

]
i∈[N ]. In cases where ∀i, j ∈ [N ] : Var(ai) = Var(aj) = σ2 we

write Var(a) = σ2 and do the same for standard deviation and expectation. By Ham(a) or
||a||0 we denote the hamming weight of vector a, i.e., the number of of non-zero coordinates
of a. We also define a special symbol ∆q,t =

⌊
q
t

⌉
and a rounding function for an element

∆q,t · a ∈ Zq, as ⌊a⌉qt =
⌊

t
q ·∆q,t · a

⌉
. For ring elements, we apply the rounding function

coefficient-wise.
Throughout the paper we denote as q ∈ N and Q ∈ N two moduli. The parameter

n ∈ N always denotes the dimension of a LWE sample, that we define in the next subsection.
For rings, we always use N to denote the degree of Rq or RQ. We denote bounds on
variances of random variables by B ∈ R.

2.2 Learning With Errors
We recall the Regev encryption scheme [Reg10] that forms the base of the homomorphic
encryption scheme we describe in the next sections. We are interested in two computational
problems underlying the Regev cryptosystem. Namely the Learning with Errors (LWE)
problem, and its structured ring variant. In order not to repeat ourselves, we recall a
Generalized variant of the Regev cryptosystem and the underlying security assumption.
Definition 1 (Generalized Learning with Errors). Let Dsk be a (not necessarily uniform)
distribution over RQ, and DR,σ be a noise distribution over RQ with standard deviation
σ > 0, n ∈ N and N ∈ N be a power-of-two, that are chosen according to a security
parameter λ. For a ←$ Rn

Q, e ←$ DR,σ and s ∈ Dn
sk, we define a GLWE sample of a

message m ∈ RQ with respect to s, as

GLWEσ,n,N,Q(s,m) =
[
−a⊤ · s + e

a⊤

]
+
[
m
0

]
∈ R(n+1)

Q .
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Table 1: Key switching algorithms.
Key Switching

KeySwitchSetup Input: Takes as input two LWE secret keys s ∈ {0, 1}n,
s′ ∈ ZN

Q , a performance parameter LksK ∈ N, and a standard
deviation σksK ∈ R.
Output: Generates a key switching key ksK which consists
of N · logLksK

(Q) LWE samples using s as a secret.

KeySwitchs′→s

Input: Takes as input a key switching key ksK and a
ciphertext ct′ = LWE(s′, m).
Output: Returns a ciphertext ct = LWE(s, m).
Description: The key switching process consists of N ·
logLksK

(Q) scalar multiplications in ZQ. The parameter LksK
largely determines the time and space efficiency; that is, the
larger LksK, the faster the computation and the smaller the
space complexity of the key material, but the bigger the
noise induced by the key switching operation.

RLWEKeySwitchSetup Input: Takes as input a LWE secret key s′ ∈ Zn
Q, a RLWE

secret key s ∈ RQ, a performance parameter LpK ∈ N, and
a standard deviation σpK ∈ R.
Output: Generates a key switching key pK which consists
of N/2 · logLpK

(Q) RLWE samples.

RLWEKeySwitchs′→s

Input: Takes as input a key switching key pK, a ciphertext
ct′ = LWE(s′, m) and a polynomial h ∈ RQ.
Output: Returns a ciphertext ct = RLWE(s, m · h).
Description: The purpose of the procedure is to switch
from an LWE ciphertext, encoding the message m, to a
RLWE ciphertext that encodes m in the constant coef-
ficient. There are various techniques to implement such
key switching procedure, in this paper we use the tech-
nique from [CDKS21]. The key switching process computes
log(N) logLpK

(Q) multiplications in RQ.

We say that the GLWEσ,n,N,Q-assumption holds if for any PPT adversary A we have∣∣∣∣Pr
[
A(GLWEσ,n,N,Q(s, 0))

]
− Pr

[
A(Un+1

Q )
]∣∣∣∣ ≤ negl(λ)

where Un+1
Q is the uniform distribution over Rn+1

Q .

We denote a LWE sample as LWEσ,n,Q(s, m) = GLWEσ,n,1,Q(s, m), which is a special
case of a GLWE sample where the ring is ZQ[X]/(X + 1). Note that, in this case,
s ∈ Zp is a integer vector and m ∈ Zp. Similarly, we denote a RLWE sample as
RLWE(s,m) = GLWEσ,1,N,Q(s,m) which is the special case of an GLWE sample with
n = 1. For simplicity, we omit to state the modulus and ring dimensions for and RLWE
samples because we always use RQ = ZQ[X]/(XN + 1) where N is a power-of-two.
Similarly, we usually omit the modulus and dimension for LWE samples, as those are Q
and n respectively. We sometimes leave the inputs unspecified and substitute them with a
dot (·) when it is not necessary to refer to them within the scope of a function. We define
a spacial function Phase(c) = ⟨c, [1, s]⟩ on a ciphertext c ∈ R(n+1)

Q . The function Phase is
always computed with respect to the ciphertexts secret key.
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Table 2: List of sub-procedures commonly used in FHEW-like schemes [DM15] except for
key switching procedures which are depicted by Table 1.

Blind Rotation

BlindRotateSetup Input: Takes as input the LWE key s ∈ {0, 1}n, a RLWE key
s ∈ RQ, a performance parameter LbrK ∈ N, and a standard
deviation σbrK.
Output: Generates a blind rotation key brK that consists of
2n logLbrK

(Q) RLWE samples under key s.

BlindRotate
Input: Takes as input a blind rotation key brK, an LWE sample ct
under modulus 2N , and an accumulator acc = RLWE(s, p).
Output: BlindRotate returns a sample accout = RLWE(s, q) with
q = p · XPhase(ct). In this paper, we consider the concrete blind
rotation from [CGGI16], but other implementation are possible
like [DM15, LMK+23]. The procedure from [CGGI16] takes 2n ·
(logLksK

(Q) + 1) polynomial multiplications of elements in RQ.
Other

ModSwitchQ→q
Input: Takes as input an LWE sample LWE(s, ∆Q,t · m) under
modulus Q.
Output: Returns an LWE sample LWE(s, ∆q,t ·m) under modulus
q.

SampleExt Input: Takes as input a RLWE sample RLWE(s, p) for p ∈ RQ

and an index 0 ≤ i < N .
Output: Returns an LWE sample LWE(s′, m) with m = m[i] that
is, the LWE sample encodes the i-th coefficient of the polynomial
m. s′ is a vector of dimension N such that s′

i = si

2.3 Computing on Encrypted Data
For completeness we recall the definition of Fully Homomorphic Encryption. Furthermore,
as our main contribution presented in Section 3 relies on a set of procedures introduced
in previous work, we give all high-level interfaces at Table 1 and Table 2. In this paper
we use these procedures in a black-box fashion stating only their input-output relation.
In particular, we note that there may be different concrete implementations of these
primitives offering various time-memory-correctness trade-offs. Nevertheless, we can state
our main contribution and its analysis without referring to a concrete realization of these
primitives, what we believe makes the presentation accessible to non-experts. But for our
implementation, noise estimation and experiments in Section 4 we give an efficient sample
instantiation of these procedures.

2.4 Fully Homomorphic Encryption
An FHE scheme consists of four algorithms (Setup, Enc, Eval, Dec), each with the following
syntax [RAD+78, Gen09].

• Setup(λ): This algorithm takes as input a security parameter λ and outputs an
evaluation key ek and a secret key sk.

• Enc(sk, m): This algorithm takes as input a secret key sk as well as a message m and
returns a ciphertext ct.
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• Eval(ek, [cti]ni=1, C): Given an evaluation key ek, ciphertexts [cti]ni=1, and a circuit C,
this (non-)deterministic algorithm outputs a ciphertext ct.

• Dec(sk, ct): Given a secret key sk and a ciphertext ct, this deterministic algorithm
outputs a message m.

Informally, we say that an FHE scheme is correct, if the outcome of the evaluation of
a circuit C on ciphertexts encrypting messages m1, . . . , mn decrypts to C(m1, . . . , mn).
Formally, we say that FHE is correct if for all security parameters λ ∈ N, the circuits
C :Mn →M over the message space M of depth poly(λ), and all messages [mi ∈M]ni=1
we have

Pr
[
Dec(sk, ctout) = C([mi]ni=1)

]
= 1− negl(λ),

where (ek, sk)← Setup(λ), Dec(sk, cti) = mi for all i ∈ [n] and ctout ← Eval(ek, [cti]ni=1, C).
For efficiency, we require that Setup, Enc and Dec run in polynomial time in the security
parameter, that is poly(λ), and Eval runs in poly(λ, |C|). Finally, we say that an FHE
scheme is compact if the size of the output of Eval is independent of the size of the circuit C.
More specifically, we require that |Eval(ek, [cti]ni=1, C)| is poly(λ, |M|).

Indistinguishability Under Chosen Plaintext Attack. Let λ ∈ N be a security parameter
and A = (A0,A1) be a probabilistic polynomial-time algorithm (adversary). We say that
an FHE scheme is IND-CPA-secure if the probability

Pr

 A1(ctb, st) = b:

sk← Setup(λ),
(st, m0, m1)← AO(sk,.)

0 (λ),
b←$ {0, 1},

ctb ← Enc(λ, sk, mb)


is at most negl(λ) for all probabilistic polynomial-time adversaries A; the oracle O on
input of a message m outputs ct← Enc(sk, m).

3 Our Functional Bootstrapping
In this section, we introduce our novel bootstrapping algorithm that is not restricted to
the evaluation of negacyclic functions. We present our algorithm for the setting where a
single function is to be evaluated in Subsection 3.1. Then, in Subsection 3.2, we generalize
our algorithm to allow the computation of multiple functions at the cost of only a single
bootstrapping. That is, we give a multi-value bootstrapping variant of our full-domain
functional bootstrapping algorithm.

3.1 Single Function Case
First, we recall a helper function at Algorithm 1 that compute so-called rotation or test
polynomials rotP0, rotP1 ∈ R. These polynomials are then used in Algorithm 3 as well
as in Algorithm 4 to homomorphically rotate the encrypted accumulator and compute a
function F . In other words, polynomials are chosen and applied such that the resulting
RLWE ciphertext contains F (m) at its constant coefficient, where m is the plaintext in
the ciphertext input to the bootstrapping procedure. Finally, we can extract an LWE
ciphertext encoding the constant coefficient, i.e., F (m), and use the ciphertext to compute
a linear function or another bootstrapping.

At Algorithm 2, we give the Setup algorithm that generates the evaluation key and
the secret key for the FHE scheme. In short, the algorithm generates LWE-to-LWE,
RLWE-to-LWE key switching keys, and a blind rotation key, which are essential to realize
our bootstrapping algorithms.
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Algorithm 1: Setup(F )
Input: A map F : Zt 7→ Zt

Output: Polynomials rotP0, rotP1

1 rotP0 ← 0 ∈ R;
2 rotP1 ← 0 ∈ R;
3 for i = 0 to t

2 − 1 do
4 rotP0[

⌊
2 N

t

⌉
· i]← −F

(
t
2 − i− 1

)
(mod t);

5 rotP1[
⌊
2 N

t

⌉
· i]← F (t− i− 1);

6 end
7 return rotP0, rotP1

Algorithm 2: Setup(λ)
Input: A security parameter λ.
Input: A function F : Zt 7→ Zt to be evaluated during bootstrapping
Output: A evaluation key ek and a secret key sk.

1 Choose s ∈ {0, 1}n with n depending on λ. ;
/* We use secret keys with binary entries due to the blind rotation from [CGGI16],

but it can be ternary, or Gaussian as in [DM15, LMK+23]. */
2 Choose s ∈ Dsk, where Dsk is some secret key distribution dependent on λ.;
3 s′ ← Coefs(s).;
4 ksK← KeySwitchSetup(s′, s, LksK, σksK), where LksK ∈ N is a performance

parameter and σksK ∈ R is a standard deviation dependent on λ.;
5 pK← RLWEKeySwitchSetup(s, s, LpK, σpK), where LpK ∈ N is a performance

parameter and σpK ∈ R is a standard deviation dependent on λ.;
6 brK← BlindRotateSetup(s, s, LbrK, σbrK), where LbrK ∈ N is a performance

parameter and σbrK ∈ R is a standard deviation dependent on λ.;
7 ek←

[
ksK, pK, brK

]
;

8 sk← [s′];
9 return ek, sk

At Algorithm 3, we give our novel bootstrapping algorithm. At a high level, our
algorithm works as follows. Initially, we set the accumulator to a polynomial such
that, after performing the first blind rotation, we obtain an RLWE sample encrypting a
polynomial r with a constant term equal r0 = −

⌊
Q
2t

⌉
if m < t

2 and r0 =
⌊

Q
2t

⌉
otherwise.

After applying the blind rotation, we extract a LWE sample containing the constant
coefficient of the accumulator and add a scalar

⌊
Q
2t

⌉
in order to map (−1)1−b

⌊
Q
2t

⌉
to the

b ·
⌊

Q
t

⌉
with b = 0 when m < t

2 and b = 1 otherwise. Then, we key-switch the LWE sample
to an RLWE sample which encrypts a polynomial

t = b ·
⌊

Q

t

⌉
· h = b ·

⌊
Q

t

⌉ 2N
t −1∑
i=0

Xi.

As the value of b depends on the most significant bit message, we construct a new
accumulator with the correct sign flip by multiplying the RLWE sample with the polynomials
created by Algorithm 2. Finally, we blind-rotate the derived accumulator, and the correct
output will be encoded in the constant term of the result, from which we derive a LWE
sample.
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Algorithm 3: Bootstrap(ct, F )
Input: The evaluation key ek = (brK, ksK, pK)
Input: A ciphertext ct = LWE(s, ∆Q,tm)
Input: A function F : Zt 7→ Zt to be evaluated during bootstrapping
Output: ctout

/* Recall pre-computed values */

1 h =
∑ 2N

t −1
i=0 Xi;

2 s′ = Coefs(s);

3 ctQksK ← ModSwitchQ→QksK(ct);
4 ctksK ← KeySwitchs′→s(ksK, ctQksK);
5 ct2N ← ModSwitchQ→2N (ctksK);
6 ctboot ← ct2N + N

t ;
7 sgnP←

⌊
Q
2t

⌉
·
(
−1 +

∑N−1
i=1 Xi

)
∈ RQ;

8 accsgn,in ← [sgnP, 0]⊤;
9 accsgn,out ← BlindRotate(brK, accsgn,in, ctboot);

/* Extract and map ±
⌊

Q
2t

⌉
to
{

0,
⌊

Q
t

⌉}
*/

10 ctsgn ← SampleExt(accsgn,out, 0) +
⌊

Q
2t

⌉
;

/* RLWE Key-switch with padding */
11 acc← RLWEKeySwitchs′→s(pK, ctsgn, h);
12 rotP0, rotP1 ← Setup(F );
13 accF,in ← acc · (rotP1 − rotP0) + h ·

⌊
Q
t

⌉
· rotP0;

14 accF,out ← BlindRotate(brK, accF,in, ctboot);
15 ctout ← SampleExt(accF,out, 0);
16 return ctout

By including the polynomial h in the RLWE key-switching key, we incorporate the
padding necessary to deal with the LWE error at an early point. Then, the polynomials
rotP0, rotP1 do not need to be dense, and only t

2 coefficients need to be set. Consequently,
multiplying an RLWE sample with such polynomials increases the noise variance by a
factor of t3

2 instead of Nt2 which is beneficial as N > t and often even N > t2.
We state the bound on the output variance in Theorem 1

Theorem 1 (Correctness of functional bootstrapping). Let ct be a LWE sample under
modulus Q and dimension N such that Phase(ct) = ∆Q,tm + eQ. Furthermore, let ct2N

be the LWE sample obtained after key- and modulus switching ct to a dimension n and
modulus equal to 2N . Let BBR be the variance of noise polynomial introduced by the
blind-rotation and let BpK be a bound on the variance of the noise created by LWE to
RLWE key-switching.

If
∣∣Phase(ct2N −∆2N,tm)

∣∣ = e ∈
(
− N

t , N
t

)⋂
Z, then Algorithm 3, on input a ci-

phertext ct ∈ LWE(s, ∆Q,tm) and a function F : Zt 7→ Zt, outputs a LWE sample
ctout = LWE(s, ∆Q,t · F (m)) with noise variance Bout and

Bout ≤ (BBR + BpK) ·
(

t3

2 + 1
)

.

Proof. Recall that Phase(ct2N ) = ∆2N,t ·m + e =
⌊ 2N

t

⌉
m + e (mod q), i.e. messages are

distributed around multiples of 2N
t . Furthermore, we have that e ∈

(
−N

t , N
t

)⋂
Z and we
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write

Phase(ctboot) = Phase(ct2N ) + N

t

= ∆2N,tm + e + N

t

= 2N

t

(
t

2b + w

)
+ ē

= Nb + 2N

t
w + ē (mod 2N)

with b ∈ {0, 1}, 0 ≤ w < t
2 and 1 ≤ ē < 2N

t . The latter follows from the initial assumption
that w.r.t e. Then, we can note that

m ≥ t

2 ⇔ Phase(ctboot) ≥ N ⇔ b = 1

By the properties of blind-rotation,it follows that

Phase(accsgn,out) =
⌊

Q

2t

⌉
·

(
1−

N−1∑
i=1

Xi

)
·XPhase(ctboot) + e

(0)
out

where e
(0)
out is the error polynomial induced by blindrotation, and more importantly

Phase(accsgn,out)0 =
⌊

Q

2t

⌉
·

((
1−

N−1∑
i=1

Xi

)
·XPhase(ctboot)

)
0

+ eout,0

=

−
⌊

Q
2t

⌉
+ eout,0 if Phase(ctboot) < N⌊

Q
2t

⌉
+ eout,0 if Phase(ctboot) ≥ N

= (−1)1−b

⌊
Q

2t

⌉
+ eout,0

Then, after extracting the constant coefficient, adding
⌊

Q
2t

⌉
and key-switching to RLWE,

we obtain a RLWE sample acc with

Phase(acc) = h

(⌊
Q

t

⌉
b + eout,0

)
+ eRLWE

where eRLWE is the error polynomial stemming from RLWE keyswitching. Multiplying with
rotP0, rotP1, we have that

Phase(accF,in) =


⌊

Q
t

⌉
h · rotP0 + ē · (rotP1 − rotP0) if b = 0⌊

Q
t

⌉
h · rotP1 + ē · (rotP1 − rotP0) if b = 1

=
⌊

Q

t

⌉
h · rotPb + ē · (rotP1 − rotP0)

with ē = (h·eout,0+eRLWE). Note that eout,0 is a constant polynomial or scalar, so multiplying
by h will not increase the bound on the overall coefficient variance. Finally, it follows that

Phase(accF,out) = Phase(accF,in) ·XPhase(ctboot) + e
(1)
out

= (−1)(1−b)
⌊

Q

t

⌉
h · rotPb ·X

2N
t w+ē + ē · (rotP1 − rotP0) + e

(1)
out
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where e
(1)
out is the error polynomial induced by the second blind-rotation. Note that the

product h · rotPb yields a polynomial encoding the values of the function F in chunks of size
2N

t and in reversed order from F (t− 1) to F (0). As we assume that 1 ≤ ē < 2N
t , this error

is smaller than the chunk size, and since the selection of the polynomials rotPb, b ∈ {0, 1}
fully depends on the most significant bit of the phase we are able to encode the function
values accordingly. Then, correctness follows and we have that

Phase(accF,out)0 =
⌊

Q

t

⌉
· F (m) + (ē · (rotP1 − rotP0) + e

(1)
BR)0

Tracing our steps backwards, we note

Var(Phase(accF,out)) ≤ Var(ē(rotP1 − rotP0)) + BBR

≤ Var(ē) · t2 · t

2 + BBR

≤ (BBR + BpK) · t3

2 + BBR

≤ (BBR + BpK) ·
(

t3

2 + 1
)

3.2 Amortization over Multiple Functions
We have previously discussed how to evaluate an arbitrary function homomorphically while
circumventing the issue of negacyclicity. However, we can expect that in some cases, we
need to evaluate several functions using the same ciphertext as input. One such case is
given in a setting in which we aim to decompose a message into several bits. A naive
solution to this problem would consist of applying Algorithm 3 for every function, which is
not an efficient way to proceed. In this section, we describe a modification of the previous
algorithm that allows the evaluation of an arbitrary amount of function at the cost of a
slightly higher output variance.

We begin by briefly discussing challenges that arise in the multiple-function setting as
opposed to the single-function case. In Algorithm 3, the initial blind rotation serves the
purpose of determining the most significant bit of the phase, such that the accumulator of
the second blind rotation can be set up to properly take the sign flip of the procedure into
account and map values correctly. If we aim to bootstrap several functions, one option
would consist of determining the sign as previously and repeating the next stages for every
function. While correct, the number of blind rotations is linear in the number of functions,
which is not optimal in terms of performance. We can note that the first stage of such an
approach only determined information about the domain in which the phase of the LWE
sample falls into, i.e., whether the phase is contained in [0, N) or [N, 2N). However, in
order to compute several functions in a constant number of blind rotations, it will also be
necessary to extract information about the phase modulo N so that we can multiply the
function polynomials by the appropriate monomial.

At a high level, we solve this issue by determining RLWE samples acc+ = RLWE(s, p),
acc− = RLWE(s, q), such that

p = XPhase(ct) (mod N)

and
q = (−1)(1−b)XPhase(ct) (mod N)

where b = 0 if the encrypted message m is less than t
2 and b = 1 otherwise. Then, if

rotP0, rotP1 are the polynomials obtained by Algorithm 2, we can compute

acc = acc+ · (rotP1 + rotP0) + acc− · (rotP1 − rotP0)
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obtaining Phase(acc) = 2 · rotPb ·XPhase(ct) (mod N). Once again, the choice of polynomial
rotPb is determined by the most significant bit of the message, and the multiplication by
2 can be counteracted by employing an appropriate scaling factor. Furthermore, once
acc−, acc+ have been determined, we can repeat this calculation for arbitrarily many
functions or polynomials.

We give our solution in Algorithm 4 and state the correctness and the bound on the
output noise in Theorem 2.

Algorithm 4: Bootstrap-MV
Input: The evaluation key ek = (brK, ksK, pK)
Input: A ciphertext ct = LWE(s, ∆Q,tm)
Input: Functions (Fj)j∈[k]

Output: (ct(j)
out)j∈[k] such that ct(j)

out = LWE(s, ∆Q,tFj(m))
/* Recall pre-computed values */

1 h =
∑ 2N

t −1
i=0 Xi;

2 s′ = Coefs(s);

3 ctQksK ← ModSwitchQ→QksK(ct);
4 ctksK ← KeySwitchs′→s(ksK, ctQksK);
5 ct2N ← ModSwitchQ→2N (ctksK);
6 ctboot ← ct2N + N

t ;
7 sgnP←

⌊
Q
2t

⌉
· h;

8 accsgn ← [sgnP, 0]⊤;
9 acc− ← BlindRotate(brK, accsgn, ctboot) ;

10 for i = 0 to t
2 − 1 do

11 ct(i) ← SampleExt(acc−, 2N
t i);

12 end
13 accBR ← RLWEKeySwitchs′→s

(
pK,

∑ t
2 −1
i=0 ct(i), h

)
;

14 acc+ ← BlindRotate(brK, accBR, ctboot);
15 for j = 0 to k − 1 do
16 rotP0, rotP1 ← Setup(Fj);
17 acc(j) ← acc+ · (rotP1 + rotP0) + acc− · (rotP1 − rotP0);
18 ct(j)

out ← SampleExt(acc(j), 0);
19 end
20 return

[
ct(j)

out

]
j∈[k]

Theorem 2 (Output Noise Variance of Algorithm 4). Let ct be a LWE sample under
modulus Q and dimension N such that Phase(ct) = ∆Q,tm + eQ. Furthermore, let ct2N

be the LWE sample obtained after key- and modulus switching ct to a dimension n and
modulus equal to 2N . Let BBR be the variance of noise polynomial introduced by the
blind-rotation and let BpK be a bound on the variance of the noise created by LWE to
RLWE key-switching.

If |Phase(ct2N −∆2N,tm)| = e ∈
(
−N

t , N
t

)⋂
Z, then Algorithm 3, on input a ciphertext

ct = LWE(s, ∆Q,tm) and a set of functions Fj : Zt 7→ Zt, j ∈ [k], outputs LWE samples
ct(j)

out = LWE(s, ∆Q,t · Fj(m)) with noise variance Bout and

Bout ≤
(

t3 + t4

4

)
BBR + t3

2 BpK.
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Proof. As in the proof of Algorithm 3, we note Phase(ct2N ) = ∆2N,t ·m + e =
⌊ 2N

t

⌉
m + e

(mod q), i.e. messages are distributed around multiples of 2N
t . Furthermore, we have that

e ∈
(
−N

t , N
t

)⋂
Z and we write

Phase(ctboot) = Phase(ct2N ) + N

t

= ∆2N,tm + e + N

t

= 2N

t

(
t

2b + w

)
+ ē

= Nb + 2N

t
w + ē (mod 2N)

with b ∈ {0, 1}, 0 ≤ w < t
2 and 1 ≤ ē < 2N

t . The latter follows from the initial assumption
that w.r.t e. Then, it holds again that that

m ≥ t

2 ⇔ Phase(ctboot) ≥ N ⇔ b = 1

Next, observe that for acc− in Algorithm 4

Phase(acc−) =
⌊

Q

2t

⌉
· h ·XPhase(ctboot) + e+

= (−1)1−b

⌊
Q

2t

⌉
· h ·X 2N

t w+ē + e+

where e+ is the error term from blind-rotation. Disregarding e+ at first, it follows that
the coefficients of the polynomial contained in acc− whose index is a multiple of 2N

t are
all zero except a single one containing ±

⌊
Q
2t

⌉
and therefore adding all slots via sample

extraction yields a LWE sample of (−1)1−b
⌊

Q
2t

⌉
, i.e. a value induced by b. In the next

step, we key-switch this sample to a RLWE with additional padding h and blindrotate it
again. Then, we have that

Phase(acc+) = Phase(accBR) ·XPhase(ctboot) + e−

= (−1)(1−b)
(

(−1)(1−b)
⌊

Q

2t

⌉
h + eBR

)
·X 2N

t w+ē + e−

=
(⌊

Q

2t

⌉
h + (−1)(1−b) · eBR

)
·X 2N

t w+ē + e−

where eBR = h
∑ t

2
i=0 e+, 2N

t ·i + eRLWE, and eRLWE, e− are the error terms stemming LWE to
RLWE key-switching and from blind-rotation respectively. Finally, we observe the phase
of acc(j), discarding noise terms for now:

Phase(acc(j)) = Phase(acc+) · (rotP1 + rotP0) + Phase(acc−)(rotP1 − rotP0)

=
⌊

Q

2t

⌉
· h ·X 2N

t w+ē ·
(
rotP1 + rotP0 + (−1)1−b(rotP1 − rotP0)

)
=
⌊

Q

2t

⌉
· h ·X 2N

t w+ē ·

{
2 · rotP0 if b = 0
2 · rotP1 if b = 1

=
⌊

Q

t

⌉
· h ·X 2N

t w+ē · rotPb
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Correctness again follows from the fact that h · rotPb is a polynomial encoding the values
of F in chunks of size 2N

t and in descending order of inputs with inputs such that their
most significant bit is equal to b, combined with the fact that 1 ≤ ē < 2N

t .
We determine the variance of acc(j) as for Algorithm 3. Then, noting that the results

of rotP0 ± rotP1 can be taken modulo t and that at most t
2 coefficients will be nonzero, it

follows that

Var(Phase(acc(j)) ≤ Var(Phase(acc+) · (rotP0 + rotP1))
+ Var(Phase(acc−) · (rotP0 − rotP1))

≤ BBR ·
t3

2 +
((

t

2 + 1
)
BBR + BpK

)
· t3

2

≤
(

t3 + t4

4

)
BBR + t3

2 BpK

and therefore

Bout ≤
(

t3 + t4

4

)
BBR + t3

2 BpK

3.3 The full cryptosystem.
For completeness, we briefly describe how the algorithms fit into the FHE definition
described in Subsection 2.4.

Setup: We choose the modulus Q, a power-of-two dimension N of the ring RQ and LWE
dimension n ∈ N. Then we choose s ∈ RQ for the RLWE key, set s′ ← KeyExt(s), and
s ∈ {0, 1}n for the LWE key. Choose the radices LbrK, LksK, LpK ∈ N and the Gaussian
parameters for the noise σ, σksK, σbrK, σpK > 0. Run brK ← BRKeyGen(σbrK, s, s),
ksK ← KeySwitchSetup(σksK, s, s′), and pK ← RLWEKeySwitchSetup(s′, s, LpK, σpK).
Finally, set the evaluation key ek = (brK, ksK, pK) and the secret key sk = (s, s′, s).

Encryption: To encrypt a message m′ ∈ Zt we compute c = LWE(s′, m) ∈ ZN+1
Q with

standard deviation σ, where m = Q
t ·m

′ ∈ ZQ.

Eval: We can represent homomorphic computation as a circuit with gates of the form
f(b +

∑k
i=1 xi · ai ∈ Zt) ∈ Zt where the ai’s and b are scalars known by the evaluator

and the xi’s are the encrypted plaintexts. We compute the affine function using
the additive homomorphism of the LWE samples, and the function f : Zt 7→ Zt by
applying our bootstrapping algorithms from Section 3.

Decryption: Do decrypt an LWE sample cout = [aout, bout] we run Phase(cout) = c⊤
out[1,−s] =

b−a⊤
outs = Q

t m′
out + e ∈ Zt, and round the result

⌈
t
Q

(
Q
t m′

out + e
)⌋

= m′
out if |e| ≤ Q

2t .

4 Evaluation
In this section, we evaluate our bootstrapping algorithms. We give a theoretical comparison
to other related works in Subsection 4.1 and give concrete parameters and timings in
Subsection 4.2.
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4.1 Theoretical Comparison to Related Works
In this section, we give a theoretical comparison to recent works that describe algorithms to
approach functional bootstrapping namely [CLOT21, LMP22, KS23, CBSZ23, MHW+24],
but primarily focus on the advantages of our methods over the functional bootstrapping
algorithm introduced in [LMP22] and [CBSZ23]. For a comparison between [LMP22] and
[CLOT21] & [KS23] we refer to Section 8.1 in [LMP22].

Table 3: Bounds on variances of different procedures employed. ct = LWE(s, ·) is a LWE
sample of noise variance Bct

Operation Output Variance

BlindRotate(acc, ct) [CGGI16] Bacc + 2 · n ·N · logLbrK
(Q) · L2

brK
12 · σ

2
brK

RLWEKeySwitchs′→s(ct, h) [CDKS21] Bct + ||h||0 ·N3 · logLpK
(Q) · L2

pK
12 · σ

2
pK

KeySwitchs′→s(ct) Bct + dim(s′) · logLksK
(Q) · L2

ksK
12 · σ

2
ksK

ModSwitchQ0→Q1(ct)
(

Q1
Q0

)2
Bct + ||s||0·Var(s)

4

We recall bounds on the noise variance introduced by the primitives we rely on in
Table 3. We leverage the CGGI blind-rotation algorithm as in the original TFHE scheme
[CGGI16]. Hence, we use binary LWE keys with entries in {0, 1} and ternary keys for
RLWE ciphertexts with coefficients in {−1, 0, 1}. We use the generic LWE-LWE key-
switching algorithm (see, e.g., [KS23]), whereas the LWE to RLWE key-switching step, we
rely on the k-LWE to RLWE packing algorithm from [CDKS21].

We give an overview of our comparison in Table 41. In the case of FDFB-Compress
[MHW+24], the ciphertext modulus for both blind-rotations is technically 2N , but the
entire plaintext space is compressed into [0, N) after the initial blind-rotation. Hence, we
effectively only utilize a modulus of N during the second blind rotation, which requires
the same bounds on the error as if the modulus were equal to N .

We observe that for a single-function evaluation, both our methods and [LMP22]
require exactly two blind-rotations. However, Algorithm 4 enables an unlimited amount of
functions to be evaluated without increasing this number. Despite introducing a larger
noise variance compared to Algorithm 3 or [LMP22], the increase can be compensated
by adapting the parameter set, which may degrade the performance, but this can be
disregarded if the number of functions is significant.

Table 4 and Table 3 suggest that both our algorithms introduce a significantly higher
output variance. However, in practice, the situation is less dramatic. We note that in the
case of [LMP22] we are a setting in which the LWE modulus is restricted to N , which can
be attributed to how the algorithm works. At a high level, a ciphertext ct under modulus
N is treated as if the modulus was 2N , which introduces a random, most significant bit
in its phase. By combining ct and the result of a blind-rotation of ct, this bit is cleared.
Consequently, one obtains an LWE sample with fixed most-significant bit and therefore,
we can entirely avoid the issue of negacyclity in a subsequent blind rotation. However, the
price we must pay is that we only use half of the available plaintext, that is N instead of
2N , whereas Algorithm 3 and Algorithm 4 have no such restrictions. Therefore, in a setting
in which our algorithms and [LMP22] target the same plaintext space, we will be able to
use a polynomial dimension that is half as large. Relying on smaller values of N affects
not only the noise growth of blind rotation, but also leads to increased performance as the
primary bottleneck lies with number-theoretic-transforms (NTT) required for polynomial
multiplication which have a complexity of O(N log(N)). We note that FDFB-CancelSign
[MHW+24] uses similar concepts and therefore, the aforementioned points also apply to

1Partially adapted from [LMP22]
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Table 4: Comparison to related works. L′ denotes a basis. The formulas for the output
noise of [KS23],[CLOT21],[LMP22] were taken from [LMP22]

Work Output Variance #Blind-rotations q

[KS23] O(
√

NL′ · logL′(Q)) · BBR logL′(Q) + 1 2N
[CLOT21] O(N · t) · BBR 2 N
[LMP22] BBR 2 N

[LMP22] - MV Nt2BBR 2 N
[CBSZ23] (ComBo) 2BBR 4 2N

[CBSZ23] (ComBoMV) 2BBR 3 2N
[MHW+24] (FDFB-Compress) BBR 2 N

[MHW+24] (FDFB-CancelSign) BBR 2 N

Algorithm 3 BBR ·
(

t3

2 + 1
)

+ BpK · t3

2 2 2N

Algorithm 4
(

t3 + t4

4

)
BBR + t3

2 BpK 2 2N

this method, and we do not specifically compare our methods to [MHW+24].
We are not aware of prior work applying the multi-value bootstrapping technique to

the method of [LMP22]. Nevertheless, we note that the method can be easily applied to
[LMP22] at the cost of decreasing the decomposition factors. We give our parameter set at
Table 6 for the multi-value version of [LMP22]. Similarly to Algorithm 4, the computational
cost increases only by a negligible amount, however, at the cost of amplifying the error
induced through blind-rotation by a factor of N · t2. We include this version of the
algorithm in Table 4.

Clet et al. introduce two algorithms, ComBo and ComBoMV [CBSZ23], that leverage
the full modulus 2N . At a high level, the authors first decompose a given function into
a pair of (quasi-) even and (quasi-) odd functions, both of which can be evaluated using
two blind rotations. Then, we obtain the desired value by combining the results of the
function evaluation. The default method ComBo therefore requires 4 blind-rotations but
drops to 3 if we rely on the amortization method of [CIM19].

Finally, we note that our algorithms will require additional key material for the LWE
to RLWE key-switch operation, which requires storing 2N log2(N) logLpK

(Q) integers of
log(Q) bits as we leverage [CDKS21]. As the size may grow quickly for larger values
of N , we point out that it is possible to entirely eliminate the need for additional key
material. In [LMK+23], the authors describe a blind-rotation algorithm that relies on the
homomorphic evaluation of automorphisms of the ring R. The same techniques had been
previously used in [CDKS21] to perform the packing of multiple LWE samples into a single
RLWE ciphertext. Therefore, by carefully generating the necessary key material required
by [LMK+23], we will be in a position to reuse the same keys to perform the LWE-RLWE
key-switch without using dedicated keys.

4.2 Parameters and Bootstrap Timings
In this section, we give a practical evaluation of our algorithm.

We implement our algorithm in the FHE-Deck library2 and perform our experiments
on an Intel i7 14700KF processor using 64GiB RAM with no parallelization. We compare
our algorithms to [LMP22] and [CBSZ23] in practice, as they both represent the state of
the art for the case q = N and q = 2N respectively. For completeness, we note that we
did not re-implement the algorithms described [CBSZ23], but we measured the time for
the necessary amount of blind rotations using the selected parameters.

2https://github.com/FHE-Deck/fhe-deck-core

https://github.com/FHE-Deck/fhe-deck-core


Kamil Kluczniak and Leonard Schild 17

Table 5: Parameter sets used, λ denotes the security level.
Set λ n N log2(Q) log2(QksK) σbrK σksK LksK LbrK LpK

SET-I 140 900 211 51 30 24 212 23 217
210

SET-II 130 52 22 213

Table 6: Parameter sets used for [LMP22] and [CBSZ23] instantiation, λ denotes the
security level.

Set λ n N log2(Q) log2(QksK) σ σksK LksK LbrK

LMP-I 128 900 212 48 20 3.19 3.19 23 216

LMP-II 212

COMBO-I 128 900 211 48 20 3.19 3.19 24 216

We give an overview of the parameters chosen for Algorithm 3 and Algorithm 4 in
Table 5 and the parameters for [LMP22] and[CBSZ23] in Table 6. We selected the sets in
order to target a failure rate of 2−60 for a plaintext space of t = 25. In Table 7, we show
the failure probabilities for each parameter set for plaintext spaces t ∈ {24, 25, 26} and give
the number of subsequent evaluations necessary for a failure to occur with a probability
exceeding 0.5.

We computed the failure probabilities as follows. Let Bboot be the output variance of
ciphertext obtained by a bootstrap algorithm as given in Table 4. In order to perform
blind rotation using such a ciphertext, we modulus-switch it to QksK, key-switch it to a
secret key of dimension equal to n, and modulus-switch it to a modulus q = N in case of
[LMP22] or q = 2N otherwise. Leveraging Table 3, we determine the noise variance of the
result:

B ≤
(

q

Q

)2
Bboot +

(
q

QksK

)2
B0 + B1

where

B0 ≤ N · logLksK
(QksK) · L2

ksK
12 · σ

2
ksK + ||s

′||0 · Var(s′)
4

B1 ≤
||s||0 · Var(s)

4

The error distribution is commonly modeled as a (discrete) Gaussian with mean 0 and
variance B. Hence, we may use the error function to determine the probability that the
ciphertext modulo q of dimension n cannot be decrypted, which equals the probability
that the magnitude of the noise term e exceeds q

2t in absolute value:

P[Fail] = 1− P
[
− q

2t
< |e| < q

2t

]
= 1−

∫ q/2t

−q/2t

1√
2πB

exp
(
− t2

2B

)
dt

= 1− erf
(

q

2 · t ·
√

2B

)

Table 8 gives an overview of all obtained timings, and we briefly discuss the results.
Algorithm 3 yields the fastest evaluation, outperforming ComBoMV [CBSZ23] by 15%
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Table 7: Failure probabilities for each parameter set. P[Fail] corresponds to the probability
that the bootstrapping procedure outputs a result differing from the expected one. neval[0.5]
denotes the number of evaluation necessary for a failure to occur with a probability
exceeding 0.5

Set P[Fail] neval[0.5]
t = 16 t = 32 t = 64 t = 16 t = 32 t = 64

SET-I 2−256 2−65 2−16 8.03 · 1076 2.56 · 1019 4.54 · 104

SET-II 2−319 2−66 2−18 7.40 · 1095 5.11 · 1019 1.82 · 105

LMP-I 2−233 2−60 2−16 9.57 · 1069 7.99 · 1017 4.54 · 104

LMP-II 2−232 2−60 2−16 4.78 · 1069 7.99 · 1017 4.54 · 104

COMBO-I 2−180 2−53 2−14 1.06 · 1054 6.24 · 1015 1.14 · 104

Table 8: Bootstrap timings in milliseconds.
Work Algorithm Parameter Set Time in ms. ek Size [MB] Multi-Value
Ours Algorithm 3 SET-I 596 188 ×
Ours Algorithm 4 SET-II 721 217 ✓

[CBSZ23] ComBo COMBO-I 925 88 ×
[CBSZ23] ComBoMV COMBO-I 702 88 ×

[LMP22] LMP-I 876 176 ×
[LMP22] - Amort LMP-II 1050 236 ✓

and [LMP22] by 31%. Algorithm 4 remains faster than [LMP22] and its multi-value
counterpart by a margin of 17% and 31% respectively, but is slightly slower than ComBoMV.
Nevertheless, we believe that our algorithm remains superior as it will be possible to
amortize the runtime over the computation of several functions, which, in the case of
ComBoMV, requires additional blind rotations. Note that the size of the public keys may
differ heavily on the representation of the data structure. Here, we calculate the size of
the public keys by counting the number of integers in ring elements. For each integer, we
reserve 8 bytes. Furthermore, we assume the folklore optimization where one can compute
all the uniform random parts of a (R)LWE samples in the evaluation keys from a compact
seed and a secure pseudo-random number function. We apply this optimization to all
parameter sets.

5 Conclusion
In this work, we introduced two novel algorithms that resolve the issue of negacyclity.
Our first algorithm evaluates an arbitrary function on a ciphertext with a small noise
variance, whereas the second algorithm enables us to evaluate an unlimited amount of
functions at little to no computational overhead but with a larger output variance. Our
novel algorithms offer theoretical advantages that manifest in practice through a faster
bootstrapping procedure and algorithms that are simple to implement. We leave it to
the future work to explore further potential efficiency gains, which may be obtained by
leveraging blind-rotations methods that rely on the NTRU assumption such as [BIP+22]
or NTRU-ν-um [Klu22].
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