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Abstract. In recent years, ML based differential distinguishers have
been explored and compared with the classical methods. Complexity of
a key recovery attack on block ciphers is calculated using the probability
of a differential distinguisher provided by classical methods. Since the-
oretical computations suffice to calculate the data complexity in these
cases, so there seems no restrictions on the practical availability of com-
putational resources to attack a block cipher using classical methods.
However, ML based differential cryptanalysis is based on the machine
learning model that uses encrypted data to learn its features using avail-
able compute power. This poses a restriction on the accuracy of ML dis-
tinguisher for increased number of rounds and ciphers with large block
size. Moreover, we can still construct the distinguisher but the accu-
racy becomes very low in such cases. In this paper, we present a new
approach to construct the differential distinguisher with high accuracy
using the existing ML based distinguisher of low accuracy. This approach
outperforms all existing approaches with similar objective. We demon-
strate our method to construct the high accuracy ML based distinguish-
ers for GIFT-128 and ASCON permutation. For GIFT-128, accuracy of
7-round distinguisher is increased to 98.8% with 29 data complexity. For
ASCON, accuracy of 4-round distinguisher is increased to 99.4% with
218 data complexity. We present the first ML based distinguisher for 8
rounds of GIFT-128 using the differential-ML distinguisher presented in
Latincrypt-2021. This distinguisher is constructed with 99.8% accuracy
and 218 data complexity.

Keywords: ASCON, Block Cipher, Differential Cryptanalysis, GIFT,
Machine Learning

1 Introduction

Application of machine learning (ML) in cryptanalysis of symmetric ciphers
is trending in recent years [11] [13] [22] [23]. Cryptanalysts are experimenting
with the different types of machine learning architectures to construct ML based
distinguishers for symmetric ciphers [3] [21]. High probable characteristics are
required to mount an attack on a block cipher but searching such characteristics
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with large block size is computationally intensive task. The automated tech-
niques [18] reduces the effort of cryptanalysts and help to rule out or propose
the existence of high probability differential characteristics in a block cipher.
Since the first proposal of differential attack in 1993 [5], numerous techniques
have been devised to solve the differential characteristic search problem. Solu-
tion to these problems are automated by modeling with MILP [15], SAT/SMT,
constraint programming [17] to get a solution using an appropriate solver.

In a classical differential attack, we search for an input difference ∆i that
leads to an output difference ∆o with a probability 2−p larger than 2−n for a
block cipher with n-bit block size. If we can find multiple paths connecting these
input and output differences then it is called a differential and its probability
2−

∑
pj is calculated by adding the probabilities of j individual paths. The mul-

tiple differential is a generalization of classical differential where we combine the
differential characteristic with multiple input and multiple output differences.
The multiple differentials work with lower complexity than any single differen-
tial characteristic of the differential.

The current trends in AI and ML has improvised its usage in cryptanaly-
sis of block cipher [9]. The first application of ML in this direction was pre-
sented by Gohr in 2019 through an ML based differential distinguisher for
SPECK32/64 [10]. The ML based differential distinguisher was searched using
machine learning algorithm and key recovery mechanism was also proposed us-
ing ML by Gohr for the first time. The distinguisher is trained on the data with
single input difference ∆i but it tends to learn the multiple differences in the out-
puts. The capability of learning the multiple differentials in the output provides
an edge to the ML based differential distinguisher. This distinguisher achieved
higher accuracy than the classical distinguisher and covered more rounds for
SPECK. The labeled data was used by Gohr to train a deep neural network
where half of the data was from a random source and half was taken from actual
cipher. The trained ML model was used to predict the cipher with an accuracy.
Baksi et.al. extended the Gohr‘s approach on Gimli using multi layer perceptron
and other architectures available in deep learning networks [1].

Yadav et.al. proposed the first extension of ML with classical differential dis-
tinguisher at Latincrypt-2021 [24]. This distinguisher was called as differential-
ML distinguisher which covered more rounds then the ML and classical alone.
The high accuracy ML distinguisher was trained for s-rounds on the data with
fixed difference. This distinguisher was used for prediction on (r+s)-rounds with
an input difference after appending the r-round classical differential character-
istic on the top. The complexity of differential-ML distinguisher was calculated
experimentally based on the cutoff for number of high accuracy predictions by
the authors. Differential-ML distinguisher was able to cover more rounds with
high accuracy than classical and ML based distinguisher proposed by Gohr.

The accuracy of neural differential distinguisher becomes very low as the
number of rounds are increased for ciphers with large block size. Shen et.al.
[19] proposed paired ML models based approach and uses a low accuracy neural
distinguisher to construct the high accuracy distinguisher through a score distri-
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bution of predictions for multiple ciphertext differences. This approach is used to
improve the prediction accuracy of 7-round GIFT-128 from 55.42% to 99.36 %
and 4-round ASCON form 50.69% to 69.25%. We have found some discrepancies
in the implementation of GIFT-128 encryption given by authors at Github and
therefore, the results claimed by the authors in [19] for GIFT-128 could not be
validated.
Our Contribution. In this paper, we address a major challenge that have
become a roadblock for ML based distinguishers. The challenge is to construct
ML based distinguisher with high accuracy and lesser data complexity than the
classical distinguisher. To overcome this challenges, we propose a new approach
to construct the ML based differential distinguisher with high accuracy and its
application to GIFT-128 and ASCON. A comparison of our results with the
existing work is presented in Table 1. It can be inferred from the results that
the approach presented in this paper constructs a better ML based differential
distinguisher in terms of accuracy than existing approaches. We also present the
first ML based distinguisher for 8 rounds of GIFT-128 with 99.8% accuracy and
218 data complexity.
Organization. This paper is divided into 5 sections. We provide a brief de-
scription of GIFT-128 and ASCON permutation in Section 2. We present a new
approach to construct ML based differential distinguisher with high accuracy
and its application to GIFT-128 and ASCON in Section 3. The construction of
8-round distinguisher for GIFT-128 with modified differential-ML approach and
experimental results are discussed in section 4. We conclude the paper in Section
5.

Cipher Rounds
Classical Distinguishers ML based Distinguishers

Source
Data Complexity [4] [7] Bits Data Complexity Accuracy

GIFT-128 7 229.415 128 29 99.36 1 [19]

GIFT-128 7 229.415 128 29 98.8 This paper

GIFT-128 8 241 128 218 99.8 This paper

ASCON 4 2107 320 212 69.25 [19]

ASCON 4 2107 320 218 99.4 This paper

Table 1: Summary of Results

2 Block Ciphers: GIFT and ASCON

The block ciphers GIFT [4] and ASCON [6] were among the finalist of NIST
lightweight cryptography competition concluded in 2023 [16] and ASCON re-
mained a winner in this competition. The base permutation of these two ciphers
are briefly discussed in this section. For more details on the design specifications
and key scheduling of these ciphers, the papers [4] and [6] can be referred.

1 Results could not be validated due to discrepancies in GIFT-128 implementation
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2.1 Specifications of GIFT-128

GIFT is a family of two lightweight block ciphers GIFT-64 and GIFT-128 which
was proposed by Banik et.al. in 2017. Two lightweight authenticated encryp-
tion schemes namely GIFT-COFB and SUNDAE-GIFT were submitted to NIST
lightweight cryptography competition and both of these use GIFT-128 block ci-
pher as their base permutation [2]. GIFT-128 is based on SPN structure that
applies a round function 40 times iteratively to encrypt the 128-bit plaintext
using a 128-bit secret key. In each round, it applies round keys and constant
addition operation on selective bits, substitution using 4-bit S-box 32 times in
parallel and bit-wise permutation operation on 128 bits. The 4-bit S-box and
128-bit permutation are given in the Table 2 and 3 respectively. Encryption
function of GIFT-128 is described in Algorithm 1.

Algorithm 1: GIFT-128 Permutation

1 Input: X1 = (x127, x126, · · · , x0) and RKi; 1 ≤ i ≤ 41
2 Output: C = X41 ⊕RK41 ⊕RC41

3 for i ← 1 to 40 do
4 Ti = Xi ⊕RKi ⊕RCi

5 Ti = (t127, t126, · · · , t0)
6 for j ← 0 to 31 do
7 (u4∗j+3||u4∗j+2||u4∗j+1||u4∗j) = S[t4∗j+3||t4∗j+2||t4∗j+1||t4∗j ]
8 end
9 Ui = (u127, u126, · · · , u0)

10 Vi = PN(Ui)
11 Xi+1 = Vi = (x127, x126, · · · , x0)

12 end

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Table 2: S-box for GIFT-128
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PN(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
PN(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
PN(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
PN(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
PN(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
PN(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
PN(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
PN(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

Table 3: Bit Permutation for GIFT-128

2.2 Specifications of ASCON

ASCON was declared winner in the lightweight cryptography competition by
NIST and it was also selected in the final portfolio of CAESAR competition.
ASCON was designed by Dobrauing et.al. [6] with an input state size of 320
bits. The 320-bit input is divided into 5 64-bit words wi. The round function
is composed of adding 8-bit round constants (Table 4) to the w2, application
of 5-bit S-box (Table 5) in columns and diffusion layer on each 64-bit word. A
total of 12 rounds are used in the ASCON permutation. ASCON permutation
is described in Algorithm 2.

Algorithm 2: ASCON permutation

1 Input: X0 = (x319, x318, · · · , x0) = (w4||w3||w2||w1||w0);RCi

2 Output: X12

3 for i ← 0 to 11 do
4 w2 = w2 ⊕RCi

5 for j ← 0 to 63 do
6 (w4(j), w3(j), w2(j), w1(j), w0(j)) =

S[w4(j)||w3(j)||w2(j)||w1(j)||w0(j)]
7 end
8 w4 = w4 ⊕ (w4 ≫ 19)⊕ (w4 ≫ 28))
9 w3 = w3 ⊕ (w3 ≫ 61)⊕ (w3 ≫ 39))

10 w2 = w2 ⊕ (w2 ≫ 1)⊕ (w2 ≫ 6))
11 w1 = w1 ⊕ (w1 ≫ 10)⊕ (w1 ≫ 17))
12 w0 = w0 ⊕ (w0 ≫ 7)⊕ (w0 ≫ 41))
13 Xi+1 = (w4||w3||w2||w1||w0)

14 end
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i 0 1 2 3 4 5 6 7 8 9 10 11

RCi f0 e1 d2 c3 b4 a5 96 87 78 69 5a 4b

Table 4: Round Constants for ASCON

x 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 04 0b 1f 14 1a 15 09 02 1b 05 08 12 1d 03 06 1c 1e 13 07 0e 00 0d 11 18 10 0c 01 19 16 0a 0f 17

Table 5: S-box for ASCON

3 Improved Differential Distinguishers: A New Approach

Finding relations between the input and output differences is the key idea be-
hind differential cryptanalysis. These high probability relations are used as dis-
tinguishers which have better data complexity than exhaustive trials. Non-linear
component of the cipher makes it difficult to find such relations with high prob-
ability. S-box is a non-linear component that is widely used to design the block
ciphers. There are various approaches that are used to search the high prob-
ability differential distinguishers e.g. branch-and-bound based [14], constraint
programming [17], and mixed integer linear programming [15]. In contrast to
classical approaches, where such distinguishers are identified using difference
propagation, machine learning based distinguishers learn these relations on the
difference of encrypted data.

3.1 Machine Learning based Differential Distinguishers

Gohr proposed an approach to model the distinguisher using real and random
differences [10]. Real difference is the input/plaintext difference for which the
distinguisher is designed. The approach is a two class problem where the machine
tries to classify the given data in any one of the two classes. The main benefit of
ML based approach is that the classification can be done for a single data point
unlike the classical approach. In this approach, we generate half of the data with
fixed input difference (∆0) and remaining data with random differences (∆R).
The data is encrypted and the corresponding output differences are computed.
Differences in the output that belong to input difference ∆0 are part of the class
1 while remaining data belongs to class 0. Once this model is trained, it is used
for prediction and classification on the output difference. If the probability of
prediction is greater than 0.5, then it is classified as class 1 data. If probability
of prediction is less than or equal to 0.5, then it is classified as class 0 data. This
approach is widely used with various kinds of neural networks to construct the
ML based differential distinguishers.
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In this paper, multi layer perceptrons (MLP) are used to train the ML distin-
guisher. MLP consists of input layer, output layer and two hidden layers. Hidden
layers contain same number of neurons as in the input layer with ReLu activa-
tion function. Output layer uses sigmoid function to predict the probabilities of
belonging to class 1 or 0. We use 223 data for training the model and 220 for
validation in each experiment.

The approach discussed in above paragraph works well but the benefits comes
with a drawback that the classification is probabilistic and thus, the distin-
guisher predicts with an accuracy. This accuracy decreases drastically when the
number-of-rounds or block-size is increased. After a threshold, the training data
also becomes a constraint as it is limited by the computation power. Therefore,
despite being a promising approach, a low accuracy distinguisher lacks the prac-
tical applicability in comparison to the classical distinguishers. To address this
drawback, we present a new method that is used to increase the accuracy of ML
based distinguisher of low accuracy. We use the existing ML based distinguisher
as a subsystem of the new proposed distinguisher.

3.2 New Approach to Construct ML based Distinguishers with
High Accuracy

Gohr’s ML based differential distinguisher (DML) works with an accuracy. This
accuracy is comprised of two parts, true positive (TP) and true negative (TN).
Both of these accuracy are important as predicting a correct class is necessary
for a positive data point as well as for a negative data point. The accuracy of a
model is the average of TP and TN accuracies. While distinguishing the data, it is
much required that both accuracies should be high for correct predictions. If one
of the accuracy is too high and other one is too low, then despite getting a good
average accuracy, the distinguisher will not work as expected. Some examples
indicating such cases are shown in Table 6.

Cipher Rounds Total Accuracy TP Accuracy TN Accuracy

GIFT-128 5 0.939 0.915 0.967

GIFT-128 6 0.731 0.608 0.848

GIFT-128 7 0.538 0.366 0.710

Table 6: TP and TN Accuracies of DML for GIFT-128

As shown in Table 6, the accuracy of 7-round GIFT-128 distinguisher is
0.538 where TP accuracy is 0.366 and TN accuracy is 0.710. It means that data
belonging to real difference (∆0) is classified with almost half of the accuracy
than random differences (∆R). Therefore, model’s accuracy may create a false
perception that both the classes are predicted with the same accuracy in these
cases. Such instance arises when a model’s accuracy is low to distinguish the data
correctly. To overcome this problem, we propose a new approach to construct
the high accuracy distinguishers. This approach is motivated by our previous
work on Differential-ML distinguisher [24]. It uses both TP and TN accuracies.
The main aim is to increase the accuracy of a distinguisher in both the cases by
increasing the data required for prediction. We define this new distinguisher as
High Accuracy ML based Distinguisher (DHA−ML). It uses DML as a subsystem
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for prediction with other parameters viz. threshold probability (T ), cutoff (CT )
and data complexity (β). The approach to construct DHA−ML is described in
Algorithm 3.

An s-roundDHA−ML
r+1···r+s distinguisher is developed in two phases (Algorithm 3).

Construction phase uses s-round ML based distinguisher DML
r+1···r+s and thresh-

old probability T as inputs. It starts with two pairs (δ = 1) and generate 2δ

plaintext pairs (P∆0
, P

′

∆0
) for fixed/real difference (∆0) and 2δ plaintext pairs

(P∆R
, P

′

∆R
) for random difference (∆R). The plaintext data is encrypted with

s-round cipher (CIPHERs) to get the corresponding ciphertext pairs (C∆0
, C

′

∆0
)

and (C∆R
, C

′

∆R
). We use the s-round distinguisher DML

r+1···r+s to make predic-
tions on the difference of encrypted data and get prediction probabilities p∆0

and
p∆R

. Now, we count the number of elements in p∆0 and p∆R
above threshold

probability T to get TP∆0 and TP∆R
respectively.

We plot the TP∆0
and TP∆R

points where x-axis represents the number
of experiments and y-axis represents the number of true positive points. This
experiment is repeated 50 times to get 100 points on the curve corresponding
to TP∆0

and TP∆R
. If the curves intersect then we increase the value of δ and

repeat the experiment till we get curves that do not intersect. When the curves
do not intersect, CT is calculated as an average of ordinates of closest points on
TP∆0

and TP∆R
curves and data complexity β is obtained as 2δ.

In prediction phase, we use DML
r+1···r+s, CT , and β to make predictions. We

generate β plaintext pairs with difference ∆0 and get the encrypted data from an
ORACLE. We make the predictions on the difference of encrypted data and get
the prediction probabilities (p). If number of elements with p greater than thresh-
old probability (T ) is greater than cutoff (CT ), then we predict that ORACLE
is the s-round CIPHERs. High accuracy differential distinguishers (DHA−ML

r+1···r+s)
for GIFT-128 and ASCON are constructed using the Algorithm 3.
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Algorithm 3: High Accuracy ML distinguisherDHA−ML
r+1···r+s : (D

ML
r+1···r+s,

T , CT , β)

1 Function Construction Phase(DML
r+1···r+s, T = 0.5):

2 δ ← 1
3 repeat
4 for k ← 1 to 50 do
5 K ← Choose a random key

6 (P∆0
, P

′

∆0
) ← 2δ plaintext pairs with difference ∆0

7 (P∆R
, P

′

∆R
) ← 2δ plaintext pairs with random difference ∆R

8 (C∆0
, C

′

∆0
)← (CIPHERs(P∆0 ,K),CIPHERs(P

′

∆0
,K))

9 (C∆R
, C

′

∆R
)← (CIPHERs(P∆R

,K),CIPHERs(P
′

∆R
,K))

10 p∆0
← prediction probabilities for (C∆0

⊕ C
′

∆0
) using

DML
r+1···r+s

11 p∆R
← prediction probabilities for (C∆R

⊕ C
′

∆R
) using

DML
r+1···r+s

12 TP∆0
← number of elements with p∆0

> T
13 TP∆R

← number of elements with p∆R
> T

14 Plot the curve for TP∆0
and TP∆R

values

15 end
16 δ ← δ +1

17 until (TP∆0
and TP∆R

curves do not intersect);
18 CT ≈ average of ordinates of closest points on TP∆0 and TP∆R

curves
19 Data Complexity(β) ← 2δ

20 return CT , β

21 End Function

22 Procedure Prediction Phase( DML
r+1···r+s,CT , β):

23 Test Data (TD) ← (.)
24 for i ← 1 to β do
25 Pi ←Choose a random plaintext

26 P
′

i = Pi ⊕∆0

27 Ci ← ORACLE(Pi)

28 C
′

i ← ORACLE(P
′

i )

29 Append TD by Ci ⊕ C
′

i

30 end

31 p← prediction probabilities for elements in TD using DML
r+1···r+s

32 if ((number of elements with p > T ) > CT ) then
33 ORACLE = CIPHERs

34 end
35 else
36 ORACLE ̸= CIPHERs

37 end

38 end Procedure
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3.3 Application of DHA−ML
r+1···r+s to GIFT-128 and ASCON

For 7-round GIFT-128, the accuracy of DML
r+1···r+7 is 0.55. To calculate CT and

β, curves are plotted in Fig. 1 as described in Algorithm 3. Although, the curves
are almost separated at δ = 28 (Fig. 1 (c)) but a clear separation is visible in
Fig. 1 (d) at δ = 29 and hence, the data complexity (β) is 29. The average of
two closest points 171 and 181 on these curves is 176 which provides the value
of CT as 176. Using CT and β values, we perform 10 experiments to validate the
distinguisher’s accuracy similar to previous case. Each experiment contains 50
TP and 50 TN samples and every sample contain 29 ciphertext differences. The
results are presented in Table 10 which shows that the accuracy is higher than
97% in most of the cases. The source code for these experiments is available on
GitHub2.

For 4-round ASCON, the accuracy of DML
r+1···r+4 is 0.502 and it is too low

for an ML based distinguisher. Even with such a low accuracy, we are able
to construct DHA−ML

r+1···r+4 as shown in Fig. 2. To find a clear separation of the
TP∆0

and TP∆R
curves, data requirement increases due to the low accuracy of

DML
r+1···r+4. The curves are almost separated at δ = 218 (Fig. 2 (d)) and hence,

the data complexity (β) is 218 and calculated CT is 132825. The experiments to
validate this distinguisher are presented in the Table 10 and very high accuracy
is obtained in all cases. The accuracy is equal to 100% in half of the experiments.

The values of CT and β to construct the distinguishers with high accuracy
for GIFT-128 and ASCON are summarized in Table 7.

Cipher Rounds Size Accuracy
Algorithm 3
CT β

GIFT-128 7 128 0.55 176 29

ASCON 4 320 0.502 132825 218

Table 7: CT and β for Differential Distinguishers with High Accuracy

4 Differential-ML distinguisher for 8-round GIFT-128

Yadav et. al. [24] extended the classical differential distinguisher with the ML
based distinguisher and it was called a Differential-ML distinguisher. In [24],
an experimental approach to construct the differential-ML distinguisher was
presented by the authors. In this section, we construct the 8-round Differential-
ML distinguisher extending the 3 and 2 rounds of classical distinguisher with 5
and 6 rounds of ML distinguisher respectively. An Algorithm to construct the

2 https://github.com/tarunyadav/Improved-Differential-Distinguisher-GIFT128-
ASCON
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Fig. 1: CT and β for 7-round GIFT-128 Distinguisher (DHA−ML
r+1···r+7)

differential-ML distinguisher(DCD→ML
1···r+s ) is presented in [24]. Differential-ML dis-

tinguisher DCD→ML
1···r+s is represented with five parameters namely, r-round clas-

sical distinguisher DCD
1···r, s-round ML distinguisher DML

r+1···r+s, threshold proba-
bility T , cutoff CT , and data complexity β. In this paper, threshold probabilty
is taken as 0.5 instead of accuracy (αs) of ML based distinguisher used in [24].
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Fig. 2: CT and (β) for 4-round ASCON Distinguisher (DHA−ML
r+1···r+4)

Round Input Difference Probability

(r) (△r) (2−pr )
0 0000 0000 0000 0000 0000 0000 10c0 0000 0

1 0000 0000 0000 0000 0000 0000 0000 00a0 2−5

2 0000 0001 0000 0000 0000 0000 0000 0000 2−2

3 0800 0000 0000 0000 0000 0000 0000 0000 2−3

4 2000 0000 1000 0000 0000 0000 0000 0000 2−2

5 4040 0000 2020 0000 0000 0000 0000 0000 2−5

6 5050 0000 0000 0000 5050 0000 0000 0000 2−8

7 0000 0000 0000 0000 0000 0000 a000 a000 2−12

8 0000 0000 0000 0000 0000 0011 0000 0000 2−4

9 0000 0800 0000 0800 0000 0000 0000 0000 2−6

10 0202 0000 0101 0000 0000 0000 0000 0000 2−4

11 0000 0000 5050 0000 0000 0000 5050 0000 2−10

12 0000 0000 0000 0000 0000 0000 00a0 00a0 2−12

13 0000 0011 0000 0000 0000 0000 0000 0000 2−4

14 0800 0000 0800 0000 0000 0000 0000 0000 2−6

15 2020 0000 1010 0000 0000 0000 0000 0000 2−4

16 5050 0000 0000 0000 5050 0000 0000 0000 2−10

17 0000 0000 0000 0000 0000 0000 a000 a000 2−12

18 0000 0000 0000 0000 0000 0011 0000 0000 2−4

19 0000 0000 0000 0c00 0000 0600 0000 0000 2−6

20 0002 0200 0000 0000 0000 0000 0000 0000 2−4

Table 8: Differential Characteristic for 20-round GIFT-128
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We searched for an optimal 20-round differential characteristics (Table 8) for
GIFT-128 and used a difference 0x00020200000000000000000000000000 as ∆0

for training the s-round DML
r+1···r+s. We use 5-round ML distinguisher as DML

3···8
and DML

2···8 respectively. We construct high accuracy differential-ML distinguisher
(DCD→ML

1···8 ) for 8 rounds of GIFT-128. We extend 3 rounds of differential char-
acteristics mentioned Table 8 (∆17 → ∆20) with 5-round DML

3···8 of accuracy 0.83.
The results are shown in Fig. 3. A separation of curves occur at δ = 218 and
it becomes the data complexity (β) of DCD→ML

1···r+8 . We perform 10 experiments
containing 50 TP and 50 TN samples where each sample consists of 218 output
differences. It is observed form the results that the differential-ML distinguisher
DCD→ML

1···r+8 provides 100% accuracy in most of the cases.
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Fig. 3: CT and β for 8-round GIFT-128 Distinguisher (DCD→ML
1···8 : DCD

1···3;D
ML
4···8)
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Cipher Rounds Classical Distinguisher ML Distinguisher Differential-ML Distinguisher

Total Rounds Data Complexity Rounds Accuracy Data Complexity Accuracy

GIFT-128 8 3 214 5 0.83 218 99.8%

GIFT-128 8 2 210 6 0.58 218 99.2%

Table 9: Differential-ML Distinguisher for GIFT-128

5 Conclusion

The accuracy of ML based differential distinguisher with increased number of
rounds and block size becomes very low. In this paper, we have addressed this
challenge and proposed a new technique to convert the existing low accuracy
ML based differential distinguisher to a high accuracy ML based distinguish-
ers. We obtained improved differential distinguishers for 7-round GIFT-128 and
4-round ASCON permutation with very high accuracy. Our approach provided
best improvements as compared to all of the existing approaches proposed in
the literature to increase the accuracy of ML based distinguishers. Further, dif-
ferential distinguishers for 8 rounds of GIFT-128 are constructed using machine
learning with accuracy more than 99%.
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Appendix A - Experimental Accuracy of Distinguishers

Experiment
No.

GIFT-128 ASCON

s=7, m=128,
CT = 176, β = 29

s=4, m=320,
CT = 13825, β = 218

TP TN Accuracy TP TN Accuracy

1 49 50 99 50 50 100

2 49 50 99 50 48 98

3 47 50 97 49 50 99

4 49 50 99 50 48 98

5 50 50 100 50 50 100

6 49 50 99 50 50 100

7 48 50 98 50 50 100

8 50 50 100 50 50 100

9 50 50 100 50 46 96

10 47 50 97 50 50 100

Table 10: Accuracy of DHA−ML
r+1···r+s for 7-round GIFT-128 and 4-round ASCON


