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Abstract

Privacy-Preserving Machine Learning (PPML) is one of the most
relevant use cases for SecureMultiparty Computation (MPC).While
private training of large neural networks such as VGG-16 or ResNet-
50 on state-of-the-art datasets such as ImageNet is still out of reach,
given the performance overhead of MPC, GPU-based MPC frame-
works are starting to achieve practical runtimes for private infer-
ence. However, we show that, unlike plaintext machine learning,
using GPU acceleration for both linear (e.g., convolutions) and non-
linear neural network layers (e.g., ReLU) is actually counterpro-
ductive in PPML.: While GPUs e�ectively accelerate linear layers
compared to CPU-based MPC implementations, the MPC circuits
required to evaluate non-linear layers introduce memory overhead
and frequent data movement between the GPU and the CPU to
handle network communication. This results in slow ReLU per-
formance and high GPU memory requirements in state-of-the-art
GPU-based PPML frameworks, hindering them from scaling to mul-
tiple images per second inference throughput and more than eight
images per batch on ImageNet.

To overcome these limitations, we propose PIGEON, an open-
source 1 framework for Private Inference of Neural Networks. PI-
GEON employs a novel ABG programming model that switches
between Arithmetic Vectorization and Bitslicing on the CPU for
non-linear layers depending on the MPC-speci�c computation re-
quired while o�oading linear layers to the GPU.

Compared to the state-of-the-art PPML framework Piranha, PI-
GEON improves ReLU throughput by two orders of magnitude,
reduces peak GPU memory utilization by one order of magnitude,
and scales better with large batch sizes. This translates to one to
two orders of magnitude improvements in throughput for large
ImageNet batch sizes (e.g. 192) and more than 70% saturation of a
25 Gbit/s network.
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1 Introduction

Machine learning models have shown prediction capabilities that
match human performance in various domains [4, 13, 21, 48]. Deep
neural networks (DNNs) [27], a class of machine learning models
with multiple layers, have proven particularly successful in image

1Our framework is integrated into HPMPC: https://github.com/chart21/hpmpc/

and speech recognition [19, 26], natural language processing [50],
autonomous driving [15], medical diagnosis [47], and �nancial trad-
ing [41]. These models are trained on large datasets using powerful
GPUs, which require signi�cant computational resources. As a re-
sult, companies such as OpenAI or Anthropic train general models
on large datasets and o�er services to clients who want to use these
models for inference on their data. This creates a dilemma: Either
companies must disclose their proprietary model parameters to
clients, or clients must expose their private data to the company.
In practice, clients are often at a disadvantage, as they must send
their data to company-owned servers where the model is securely
stored. The sensitive nature of data used in popular deep learning
applications such as images, voice recordings, and medical records
makes this a serious privacy concern.

Privacy-Preserving Machine Learning (PPML) [38] aims to over-
come this problem by enabling training and inference of machine
learning models while keeping both model parameters and input
data secret. One prominent approach to enable PPML is Secure
Multiparty Computation (MPC). Although training models on large
datasets like ImageNet using state-of-the-art (SOTA) MPC-based
PPML frameworks would take multiple years of runtime, private in-
ference is becoming increasingly practical: Piranha [54] and Crypt-
GPU [51] reduced theMPC-based inference throughput of large con-
volutional neural networks from a few inferences per hour to a few
inferences per minute by utilizing the GPU for all local operations
required by anMPC protocol and leaving only network communica-
tion to the CPU. Despite these advancements, we demonstrate that
a GPU-only approach constrains the performance and scalability
of private inference by not considering several unique challenges
in PPML.

1.1 Experimental Setup

While this work introduces implementation-related techniques ap-
plicable to any MPC protocol based on additive or Boolean secret-
sharing, experiments conducted focus on honest-majority compu-
tation. All experiments presented in this work are based on semi-
honest 3-PC and malicious 4-PC honest-majority protocols with
the assumption that the model owner and data owner share their
inputs with a non-colluding set of servers conducting the MPC
computation. Note that this outsourced computation model [11] is
orders of magnitude faster than performing a native 2PC between
model owner and data owner due to the high preprocessing costs
of 2PC.
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All evaluations are based on three to four nodes, each equipped
with a 32-core AMD EPYC 7543 CPU and one 24GBNVIDIA L4 GPU
in a LAN setting with 25 Gbit/s of network bandwidth, and 0.3ms
round trip latency. As a baseline for our experiments, we choose the
Piranha PPML framework [54]. Piranha was recently discovered
as the PPML framework achieving the highest throughput out of
over 50 recently proposed PPML frameworks [38]. Unless stated
otherwise, all reported timings include the complete end-to-end
forward pass, including preprocessing and the online phase. In the
context of this work, we consider an implementation that achieves
25 Gbit/s of network throughput capable of fully saturating the
network of any realistic MPC setting. Network saturation in the
context of this work is de�ned as the total communication size
in Gbit for the whole PPML inference divided by the available
network bandwidth between parties in Gbit/s. Note that a PPML
implementation is capped at 100% network saturation for a given
MPC protocol and network setting. We refer the reader to §B for
more details on network saturation and its relevance in evaluating
the performance of MPC deployments.

1.2 Unique Challenges in PPML

Our �ndings that GPUs limit PPML performance may come as a
surprise. Plaintext ML generally bene�ts from the high parallel
processing power and memory bandwidth of GPUs. In plaintext
ML, layers that require a large number of dot products, such as
convolutional layers, are the primary contributors to inference
and training runtime. Non-linear layers consume an insigni�cant
amount of GPU resources in plaintext. Thus accelerating all layers in
plaintext inference using GPUs is a logical choice. However, PPML
presents distinct challenges, which we introduce in the following
paragraphs.

Challenges in Non-linear Layers: GPU Memory In plaintext
machine learning, linear layers such as convolutions and fully con-
nected layers require more GPUmemory than non-linear layers and
therefore determine the peak GPU memory utilization. In PPML,
the opposite is the case. Computing non-linear functions such as
Softmax, ReLU, or MaxPool requires share conversion [35]. Share
conversion consists of a bit decomposition followed by evaluat-
ing a large Boolean circuit, which in�ates required memory. This
overhead is so severe that one key contribution of Piranha [54],
the SOTA PPML framework, was to evaluate the Boolean circuit in
place and reduce GPU memory compared to CryptGPU [51].

Nevertheless, depending on the MPC setting and ring size, Pi-
ranha still requires 2.4-7GB of peak GPUmemory for a single-image
inference of VGG-16 on ImageNet which exceeds plaintext PyTorch
memory requirements by more than one order of magnitude. Con-
sequently, even on a 24 GB Nvidia L4 GPU per node, we are limited
to batch sizes between 2 (64-bit ring size) and 8 (32-bit ring size)
before Piranha crashes when evaluating VGG-16 on ImageNet. The
results along with comparison to PIGEON and PyTorch [1] are
shown in Table 1. Note that large batch sizes are paramount in
PPML to amortize constant network latency between distributed
parties over multiple inputs. Yet, due to the memory overhead of
SOTA PPML frameworks, larger batch sizes need to be evaluated
sequentially, thus su�ering multiple times from network delay.

Table 1: Highest Supporteda Inference Batch Size (B) and Result-

ing Peak GPU memory of PIGEON and Piranha on 3-4 Nodes

with 24GB NVIDIA L4 GPU (32 Bit, VGG16, ImageNet)

Framework
Max Batchsize%8A0=ℎ0 Max Batchsize%���$#

3PC: � = 8a 4PC: � = 4a 3PC: � = 192 4PC: � = 192

Piranha 11.44 GB 9.36 GB - -
PIGEON GPU 1.05 GB 0.83 GB 20.46 GB 22.48 GB

PyTorchp 0.57 GB 0.72 GB 9.98 GB

a Next power of two throws runtime error
p Plaintext 32-bit �oating-point computation on a single node

Challenges in Non-linear Layers: Network Saturation

While keeping all computations on theGPUminimizes CPU/GPU
data movement in plaintext ML, the opposite is true in PPML. Non-
linear layers such as ReLU and MaxPooling require multiple rounds
of communication in MPC. In each communication round, GPU-
accelerated frameworks need to move this data to the CPU to send
it to other parties. Also, data that has been received from other
parties needs to be moved from the CPU to the GPU. While GPU to
GPU networking exists [46], these solutions require servers to be
co-located in the same data center which is not a realistic deploy-
ment scenario for MPC. In addition to the communication overhead,
the large Boolean circuits that need to be evaluated during non-
linear layers consist of operations on individual bits which does
not leverage the GPU optimally.

Given a �xed MPC protocol and circuit, 100% network satura-
tion sets a strict lower bound on the runtime achievable by an
optimal implementation. We use the metric as an indicator for
runtime bottlenecks and identify that Piranha’s 4PC ReLU imple-
mentation saturates less than 2% of a 25 Gbit/s network. An ideal
implementation should aim to saturate nearly 100% of available
network bandwidth given the low-latency test setup, thus leaving
large room for implementation-related improvements. Note that
frameworks such as Delphi [34] or FALCON [52] use the CPU in-
stead to evaluate non-linear layers but as shown by the large-scale
evaluation of [38] their performance signi�cantly falls behind the
GPU-based alternatives such as CryptGPU [51] or Piranha [54] due
to their lack of acceleration techniques to achieve high throughput
on the CPU.

Challenges in Linear Layers Convolutions and Fully Connected
layers are computationally demanding both in plaintext ML and
PPML. Evaluating a dot product, for example, requires only com-
municating a single message between parties in many MPC proto-
cols [35]. Thus, when scaling to large dot products and batch sizes,
these layers are constrained by computation rather than commu-
nication [17]. Hence, linear layers are suited for GPU acceleration
even in PPML, provided that a framework can achieve a su�ciently
large batch size where the performance gap between CPU and GPU
computation is signi�cant.

1.3 Our Contribution

To address these challenges, an e�cient implementation must: 1)
minimize CPU/GPU data movement when evaluating multi-round
circuits, 2) support high batch sizes to amortize network latency, and
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3) fully utilize available network bandwidth in distributed settings.
Note that PPML frameworks can only bene�t from the reduced
communication overhead achieved by recent MPC protocols [2, 17,
43] in terms of real-world performance if they adapt implementation
techniques that fully utilize the available network bandwidth.

While SOTA PPML frameworks [51, 54] accelerate all layers on
the GPU we �nd that the unique challenges in PPML require a
more targeted approach. Our approach accelerates non-linear lay-
ers on the CPU while using Arithmetic Vectorization and Bitslicing

to overcome the throughput limitations of CPU-based PPML frame-
works [34, 52]. We then provide novel PPML-speci�c enhancements
for linear layer implementations to maximize GPU resources. In
particular, we propose the ABG programming model that utilizes
Arithmetic Vectorization, Bitslicing, and GPU acceleration depend-
ing on the PPML layer type. To switch between these techniques
e�ciently, we implement CUDA transformations and Bitslicing
conversions. We demonstrate that by using the ABG programming
model we can get the best of both worlds: High throughput and
large batch sizes. Our PPML framework, PIGEON, implements the
ABG programming model and provides the following contributions.

Contributions to Achieve High Network Saturation

(1) PIGEON fully saturates a 25 Gbit/s bandwidth for layers
such as Average Pooling and Batch Normalization by uti-
lizing Arithmetic Vectorization on the CPU (c.f §4.1).

(2) PIGEON fully saturates a 25 Gbit/s bandwidth for Boolean
circuits required by non-linear layers such asMaxPool, Relu,
and Argmax by utilizing Bitslicing on the CPU (c.f §4.1). In
§7 we show, that this design choice leads to two orders of
magnitude higher ReLU throughput than Piranha [54].

(3) PIGEON proposes several MPC-speci�c optimizations to
reduce redundancy and interleave communication and com-
putation when evaluating matrix multiplications. This en-
ables PIGEON to saturate up to 5 Gbit/s of bandwidth for
computationally intensive layers such as convolutions on
the CPU (c.f. §4.3) and more than 10 Gbit/s on the GPU (c.f.
§4.4).

(4) PIGEONorchestrates these di�erent acceleration techniques
by o�ering e�cient conversion between computation do-
mains (c.f §4.5). Along with MPC-speci�c pipelining tech-
niques (c.f. §5), PIGEON saturates more than 70% of 25
Gbit/s over the entire end-to-end inference, thus leaving
little room for further implementation-related optimiza-
tions (c.f. §7).

Contributions to Minimize Peak GPU Memory

(1) By o�oading only convolutions to the GPU, PIGEON re-
duces peak GPU memory usage by an order of magnitude
and supports ImageNet batch sizes 24–96 times larger than
Piranha on the same hardware (c.f §7).

(2) These improvements enable us to support large ImageNet
batch sizes (e.g. 192) for the �rst time in MPC-based PPML
and consistently improve Piranha’s throughput for Ima-
geNet and CIFAR-10 inferences by one to two orders of
magnitude.

PIGEON is modular and protocol-agnostic. Existing models and
datasets can be imported from PyTorch directly into PIGEON and

we provide implementations of semi-honest three-party computa-
tion (3PC) and malicious 4PC protocols proposed by [17] out of the
box (c.f. §6) that currently provide the best-known communication
complexity in their respective setting. Hence, achieving 100% of
network saturation using these protocols would imply reaching
the practical limit of PPML deployments until further theoretical
contributions are achieved.

To increase the accessibility of PPML frameworks, we also pro-
vide a CPU-only version that achieves runtimes comparable to
Piranha for ImageNet inferences while utilizing only a single CPU
core, thereby omitting the need for expensive GPUs. When utilizing
multiple cores, the CPU-only version even improves over Piranha’s
throughput by one to two orders of magnitude. Our results are
consistent for di�erent MPC settings and ring sizes, hence enabling
us to achieve ImageNet throughput beyond one image per second
in all these scenarios. In addition, we fully integrate PIGEON into
the general-purpose HPMPC [17] framework, which bene�ts from
our e�cient conversions, GPU support, and PyTorch interface.

2 Related Work

Several MPC frameworks have been developed that support private
inference of machine learning models. Most of these frameworks
are based on additive secret sharing [12] and are typically deployed
in the 2PC, 3PC, or 4PC settings. While 2PC protocols introduce
high communication complexity in the preprocessing phase, the
semi-honest 3PC and malicious 4PC settings tolerating up to one
corruption are characterized by an inexpensive input-independent
preprocessing phase followed by an input-dependent online phase.
By leveraging the outsourced computation model [11], any num-
ber of input parties can secretly share their inputs with a set of
non-colluding computation nodes, which perform the 3PC or 4PC
computation and distribute the output shares to the intended recip-
ients. This model is well-suited for private inference-as-a-service
solutions, which, like their plaintext counterparts, handle indepen-
dent client inference requests in parallel.

Recently, frameworks based on Function Secret Sharing (FSS) [5]
have also shown impressive results, surpassing the performance
of frameworks based on additive secret sharing [16, 20]. However,
these evaluations do not consider the end-to-end performance due
to the expensive preprocessing phase of FSS. FSS-based frameworks
typically fall back on assuming that all preprocessing material is
provided by a trusted dealer and is already stored in the local �lesys-
tem or even RAM of each party. While the time of the preprocessing
phase can be ignored for low arrival rates of inference requests,
Garimella et al. [14] show that under realistic assumptions, PPML
frameworks with high preprocessing costs may have to wait for
the entire preprocessing phase to �nish before starting the online
phase thus limiting the scalability of these approaches in practice.

Given these limitations, we focus on honest-majority protocols
based on additive secret sharing in this work and consider the
full end-to-end performance of PPML frameworks including both
the preprocessing phase and the online phase. In line with related
work [51, 54], we assume that the model owner and dataset holder
honestly submit their inputs to a setup of 2-4 non-colluding servers
that carry out the MPC computation and return the results. The
model owner may also be replaced by a distributed set of parties
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who obtained a secretly shared model using private training. PI-
GEON implements both semi-honest and maliciously secure MPC
protocols proposed by [17]. We provide an overview of models and
datasets commonly used in PPML in §A.

While existing frameworks like Delphi [34] and HPMPC [17]
have employed GPU o�oading and Bitslicing, respectively, PI-
GEON’s holistic ABG programming model allows for the �rst time
to achieve high throughput for all PPML layers by combining accel-
eration strategies with e�cient conversions. We implement these
techniques on top of HPMPC which makes them also accessible for
other applications apart from PPML.

MPC-based PPML Frameworks Early work on PPML goes back
as far as 2006 [3] but the �rst training of a deep learning model
on MNIST was only achieved in 2017 by SecureML [36]. SecureML
set a standard for PPML frameworks by utilizing additive secret
sharing for linear layers and Yao’s garbled circuit protocol [55] for
non-linear layers along with e�cient transformation between these
sharing types. Over the years, other PPML frameworks picked up
on this idea and improved PPML based on secret sharing mainly
from the protocol side. ABY3 [35] focused on an honest-majority
3PC setting and proposed e�cient conversion from arithmetic to
Boolean secret sharing and Yao’s garbled circuits. The high perfor-
mance and e�cient share conversion in the honest-majority setting
sparked the interest of several other PPML frameworks in the 3PC
and 4PC settings [6, 8–10, 23, 24, 44].

CryptGPU [51] �rst broke the trend of optimizing PPML mainly
from a protocol perspective but instead proposed system optimiza-
tions to improve PPML performance using GPU acceleration. This
design choice led to 2-8 times performance improvements over CPU-
based frameworks for private inference of large neural networks.
CryptGPU implemented a wrapper for the popular ML framework
PyTorch [1] that allowed for easy integration of existing models
and datasets but introduced some trade-o�s by using �oating point
CUDA [39] kernels for �xed point computation. Piranha [54] im-
proved on CryptGPU’s performance by utilizing NVIDIA’s CUT-
LASS [40] library in C++ which provides native integer kernels
for �xed point computations. This led to a four times performance
improvement over CryptGPU for private inference of VGG16 [49].
MPC-Pipe [53] is the �rst work to introduce communication and
computation overlapping for PPML.We adapt both their inner-layer
and inter-batch pipelines for our ABG programming model.

In 2023 an SOK on PPML [38] was published that studied 53
PPML frameworks and identi�ed Piranha as the fastest PPML frame-
work to date. Interestingly, despite its relatively simple protocol
design, Piranha outperforms PPML frameworks that employ more
e�cient underlying MPC protocols [8, 9, 24], primarily due to
its emphasis on software and hardware optimizations. Also, ac-
cording to the SOK, Piranha’s 3PC implementation of Falcon [52]
achieved higher throughput on CIFAR-10 than any other cryp-
tographic PPML framework including works that utilize Homo-
morphic Encryption. These prior results motivate further research
into software and hardware optimizations for MPC-based PPML
frameworks.

3 Background: Privacy Preserving Machine
Learning based on MPC

Privacy-preserving training and inference can be implemented us-
ing MPC with a small set of primitives. Similar to other PPML
frameworks [51, 54], we focus on MPC protocols based on lin-
ear secret sharing over a ring Z2ℓ . In line with existing work, we
assume real numbers are approximated using Fixed-Point Arith-
metic (FPA) [7, 37] and mixed circuits [9, 35, 43] are used to evaluate
comparisons.

3.1 MPC Primitives

We provide an overview of secret-sharing-based MPC and the min-
imal set of primitives required to support PPML.

MPC Notations We use P to denote the set of parties and %8 to
denote the 8th party carrying out the computation. We use %� to
denote a party submitting inputs to P and %$ to denote a party
receiving output from P. Note that thanks to the outsourced com-
putation model [11], %� and %$ are not required to participate in the
computation. We denote a linear secret share (LSS) of a value G by
JGK where G8 is the share held by %8 ∈ % . An LSS has the property
that an individual secret reveals nothing about G but there exists a
threshold C such that holding C individual shares of JGK allows to
compute G using a linear combination of these shares.

Secret Sharing (ΠSh) and Reconstruction (ΠRec) Let G be a secret
held by %� . For each party %8 ∈ P, %� computes G8 and sends it to
%8 . P then holds JGK. To reconstruct G , each party %8 ∈ P, sends G8
to %$ . %$ now holds all shares to compute G .

Addition (ΠAdd) and Multiplication by Constants (ΠCMult)

Given public constants U, V,W and secret-shares JGK, J~K, parties
can locally compute the shares of JUG + V~ + WK.

Multiplication (ΠMult) and Matrix Multiplication (ΠMatMul)

Given two secret-shares JGK, J~K, parties can interactively compute
shares of JIK = JGK · J~K. ΠMult typically requires parties to send
$ (1) ring elements between each other in one communication
round. Naively evaluating a matrix multiplication with ΠMultwould
require $ (<=:) local operations and exchange of $ (<=:) ring
elements between the parties given the input dimensions< × :
and : ×= of two input matrices. However, optimizations [35] allow
evaluating a matrix multiplication with $ (<=:) local operations
but exchange of only $ (<=) ring elements.

Sign Bit Extraction (ΠBitExt) Given the arithmetic sharing of G ∈
Z2ℓ , ΠBitExt generates a Boolean sharing of the sign bit 1 ∈ Z2 of G .
The most common approach to evaluate this conversion includes
computing a parallel pre�x adder in the Boolean domain, requiring
P to exchange$ (ℓ · ;>62ℓ) bits in$ (;>62ℓ) communication rounds.
Note that in terms of message size exchanging $ (ℓ · ;>62ℓ) bits is
equivalent to exchanging $ (;>62ℓ) ring elements in Z2ℓ .

Bit toArithmetic Conversion (ΠBit2A)Given the Boolean sharing
of bit JbK ∈ Z2 , the protocol generates the arithmetic equivalent
shares JbK ∈ Z2ℓ . The most common approach to evaluate this
conversion requires computing an arithmetic XOR, requiring P to
exchange $ (1) ring elements in $ (1) communication rounds.
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Truncation (ΠTrunc) Protocols using Fixed-Point Arithmetic (FPA)
require truncation to prevent over�ows during computation and
maintain precision [7]. For a share JGK, ΠTrunc outputs its truncated

version
(

JGK
)C

= ⌊ JGK
2C
⌋. Here, C denotes the number of fractional

bits in the FPA representation.

3.2 Evaluating Neural Networks using MPC

The previously described MPC primitives are su�cient to evaluate
common neural network layers.

ML Notations. We denote by - {8 } , . {8 } , and , {8 } the input,
output, and weight matrices of the 8-th Layer respectively. We dis-
tinguish between multiplication-based layers, comparison-based
layers, and matrix-multiplication-based layers. The layer type in-
dicates which operation is predominantly used to evaluate a layer
and will prove helpful for accelerating its evaluation.

Obtaining Model Parameters and Data The parties holding the
model weights and the parties holding data in plaintext locally
convert their respective inputs - {0} and, to �xed point values
and use ΠSH to secretly share them among P.

Matrix-Multiplication-based Layers

Layers such as Convolutional and Fully Connected layers require
evaluating a large set of scalar multiplications and additions. These
layers are characterized by their high computational complexity.

Convolutions and Fully Connected Layers Fully Connected
layers can be evaluated with ΠMatMul with the input matrix - {8 }

having a row size of 1. Evaluating Convolutional Layers �rst re-
quires an im2col conversion. The im2col (image-to-column) algo-
rithm allows expressing a convolution as a matrix multiplication via
input transformation [56]. Parties locally perform the im2col trans-
formation on their shares to obtain J-̂ {8 }K and J,̂ {8 }K, followed
by ΠMatMul to obtain output matrix . {8 } .

Comparison-based Layers

Comparison-based layers require parties to convert between arith-
metic and Boolean shares to extract the sign bit of a value during
computation. These layers are characterized by their high commu-
nication and memory overhead caused by the large Boolean circuit
evaluated as part of ΠBitExt.

DReLU and ReLU DReLU outputs 0 for all negative values and 1

for all positive values in - {8 } . To compute a DReLU layer, P use
ΠBitExt to extract the sign bit J1 {8, 9 }K ∈ Z2 of all individual shares
JG {8, 9 }K ∈ J- {8 }K. They, then use ΠBit2A to obtain J1 {8, 9 }K ∈ Z2ℓ .
Finally, for each ~{8, 9 } ∈ . {8 } , they set J~{8, 9 }K = J(1 − 1 {8, 9 } )K.
ReLU outputs max(0, G {8, 9 } ) for each G {8, 9 } ∈ - {8 } . To evaluate a
ReLU layer, P compute . {8 } = �'4!* (- {8 } ) · - {8 } .
MaxPool and SoftmaxMaxPool requires parties to obtain themax-
imum of adjacent values in - {8 } . The maximum of : elements can
be computed using: pair-wisemax operations along a tree of height
;>6(:). The pair-wise maximum of two elements JG {8,0}K, JG {8,1}K
can be computed as�'4!* (JG {8,0}K−JG {8,1}K)·(JG {8,0}K−JG {8,1}K)+
JG {8,1}K. During inference, Softmax can be replaced by ArgMax,
since parties are only interested in the index of the maximum value

to obtain the �nal inference prediction. To compute ArgMax, par-
ties use a similar tree-based procedure as utilized in MaxPool. In
some cases, it might even be favorable to skip the Argmax layer to
reveal the probabilities of each class.

Multiplication-based Layers

Multiplication-based layers require parties to evaluate element-wise
multiplications and additions. These layers are characterized by
moderate computational and communication complexity.

Average Pooling Average Pooling computes the average of ad-
jacent values in J- {8 }K using a public denominator 3 . To avoid
division, each party locally computes 3̂ =

1
3
and converts the re-

sult to FPA. The average of a vector J®GK can then be computed as
(∑3

9=0JG
{ 9 }K) · J3̂K followed by truncation.

Batch Normalization Batch Normalization computes . {8 } =

- {8}−`√
f2+n

· W + V . Parameters `, f,W, V are model parameters obtained

during training, and n is a small public constant to avoid division
by zero. Thus, during inference, the party holding the model param-
eters locally computes f̂ = W · 1√

f2+n
and shares it along with ` and

V among the parties. Using these shares, the parties can compute
output J. {8 }K = (J- {8 }K − J`K) · Jf̂K + JVK.

4 The ABG Programming Model

PIGEON introduces a novel ABG programming model to address
system challenges in PPML. The ABG programming model utilizes
Arithmetic Vectorization to accelerate multiplication-based layers,
Bitslicing to accelerate comparison-based layers, and GPU o�oad-
ing to accelerate matrix-multiplication-based layers. PIGEON addi-
tionally provides novel MPC-friendly implementations of matrix
multiplications that reduce redundant computations and interleave
computation with communications to further improve network
utilization. Finally, PIGEON provides an automated approach to
switch between the various approaches with low overhead.

4.1 Accelerating Multiplication-based Layers
using Arithmetic Vectorization

Multiplication-based layers, such as Average Pooling and Batch
Normalization, consist of large numbers of element-wise arithmetic
operations on secret shares. While these layers bene�t from GPU
acceleration in plaintext inference, we observe that e�ectively uti-
lizing the CPU in PPML allows servers to fully saturate any realistic
network bandwidth for these layers. As a result, evaluating these
layers on the GPU provides no additional bene�t.

Modern CPUs support SIMD (Single Instruction, Multiple Data)
instructions, enabling them to execute identical arithmetic oper-
ations on multiple elements simultaneously. For example, x86’s
AVX-512 instructions can operate on 16 32-bit integers in paral-
lel in one cycle, thus signi�cantly improving the throughput of
large batches of element-wise operations. PIGEON utilizes SIMD
instructions like SSE, AVX-2, and AVX-512 to achieve Arithmetic
Vectorization. In addition, since element-wise operations can be
evaluated in parallel they can be further accelerated on multiple
cores. Figure 1 illustrates this vectorization process.
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Bitslicing during share conversion and between Arithmetic Vector-
ization and GPU acceleration during matrix multiplications.

Switching between Arithmetic Vectorization and Bitslicing

E�ciently converting: ℓ-bit integers stored in a single CPU register
of bit width A = : · ℓ from a vectorized to a bitsliced representation
requires accumulating at least ℓ of these A -bit variables �rst. This
way, we can obtain a new set of ℓ A -bit registers where register 8
contains the 8-th bit of all : · ℓ integers. Naively, this transposition
would be performed bit by bit in four cycles per bit [32]. However,
the authors of Usuba [32] observed that this transposition can be
optimized using a recursivematrix transposition approach proposed
by Knuth [22]. Using this insight, Usuba reduced the number of
cycles to transpose 512 AVX-512 variables to 0.09 cycles per bit [33].
The authors provide an open-source version of these transpositions
for various hardware architectures and block sizes. In the appendix,
§C describes the transition procedure in detail.

Figure 5 shows a share conversion protocol including a trans-
formation from Arithmetic Vectorization to Bitslicing. Share con-
version of a value 0 from the arithmetic to the Boolean domain as
proposed by ABY3 [35] requires the parties to hold an arithmetic
sharing of J0K� = 01 + 02 where a subset of parties Pq holds 01

and the remaining parties Pq hold 02. To perform the conversion,
the parties create Boolean sharings J0�1 K and J0�2 K followed by a

Boolean adder to obtain the �nal Boolean sharing J0K� .
We show that each party can locally accumulate and transpose

a vector of shares before communicating with the other parties to
ensure that all parties obtain a bitsliced representation of ®0. Protocol
ΠBitExt (c.f. §3) follows the same procedure as ΠA2B but uses a carry
adder in step 3 to only compute the sign bit of the addition. Share
conversion from the Boolean to the arithmetic domain can also be
implemented with local transpositions.

(1) Bitslicing Transformation:
Pq : Transpose contiguous blocks of ℓ values in ®01 into bitsliced
representation.
Pq : Transpose contiguous blocks of ℓ values in ®02 into bitsliced
representation.

(2) Secret Sharing:
Pq : Boolean Secret sharing of bitsliced representation of ®01.
Pq : Boolean Secret sharing of bitsliced representation of ®02.

(3) Jointly compute using Boolean Adder:

P : J®0K� = J ®01K� + J ®02K�

Protocol ΠA2B (J®0K� ) → J®0K�

Figure 5: Vectorized Arithmetic to Boolean Conversion with Bitslic-

ing Transformation

Switching between Arithmetic Vectorization and GPU Ac-

celeration To utilize GPU acceleration for convolutions, PIGEON
requires parties to convert their shares from Arithmetic Vector-
ization to a layout supported by the CUDA kernel provided by
CUTLASS. Note that the CUDA kernel already takes care of the
im2col subroutine. Therefore, only the raw input, kernel, and output
matrices need to be transferred between the CPU and the GPU.

While GPUs are optimized for large batch sizes we �nd that split-
ting up a large batch size into smaller batches for GPU o�oading

Table 2: Throughput of ABG Transformations in Gbit/s

Batch Size Arithemtic Vectorization Bitslicing GPUa

1 b 87 25 94
16 617 264 680

a Layout change from��,# to #�,�
b Utilizes only a single CPU core

is preferable in MPC-based PPML as it allows interleaving com-
munication and computation. These mini-batches also require a
matrix layout change from PIGEON’s ��,# vectorized layout to
an #�,� supported by CUTLASS’s convolution kernel. A��,#

layout interprets a contiguous block of data as a 4D matrix with
the dimensions of channel size (C), image height (H), image width
(W), and batch size (N), while an #�,� layout assumes a di�erent
order. To convert between these layouts, we provide optimized
CUDA kernels that closely follow NVIDIA’s reference implementa-
tions for matrix transpositions. In the appendix, §D describes the
transition procedure in detail. Table 2 shows that for batch sizes of
16, all transformations required by PIGEON achieve more than 250
Gbit/s of throughput which is signi�cantly higher than the 25 Gbit/s
network bandwidth that we assume in ideal network conditions.

4.6 Bringing It All Together

Finally, we show how PIGEON combines all acceleration techniques
to evaluate a neural network. Arithmetic Vectorization is used to
accelerate secret sharing and revealing and is thus the starting and
end point of each inference. When evaluating a non-linear layer, A
bits of ℓ vectorized inputs are packed together for Bitslicing where
A is the largest register size available on a system. Each individ-
ual Boolean instruction then operates on A bits in parallel. The
result is then converted back to Arithmetic Vectorization during
share conversion to the arithmetic domain. Similarly, to perform
a convolution or matrix multiplication, weights and inputs for a
convolution are moved to the GPU in mini-batches which allows
interleaving communication and computation. The results are then
transferred back to the CPU and loaded into vectorized variables.
Table 3 shows the utilized accelerations and transformation tech-
niques for each common neural network layer.

Table 3: Utilizing the ABG Programming Model in PIGEON

Layers Acceleration Transformation

BatchNorm Arith. Vec -
AvgPool, Adaptive AvgPool Arith. Vec -
ReLU Bitslicing A↔ B
MaxPool Bitslicing A↔ B
Argmax Bitslicing A↔ B
Convolutiona GPU A↔ G
Fully Connected Layer a GPU A↔ G

a Can also be accelerated on the CPU using Arithmetic Vector-
ization
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Table 4: Throughput and Runtime for End-To-End Inference of 192 Images, 32 Bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet50 VGG16 ResNet50 VGG16

Throughput (Images per second)

3PC
Piranha 24.57 ± 0.06 3.10 ± 0.01 10.86 ± 0.01 1.03 ± 0.00 0.21 ± 0.00
PIGEON CPU 1409.30 ± 90.70 247.72 ± 10.89 208.70 ± 3.51 8.37 ± 0.15 4.76 ± 0.11
PIGEON GPU 48.81 ± 3.53 36.25 ± 0.80 42.37 ± 1.79 7.88 ± 0.12 7.65 ± 0.12

4PC
Piranha 9.19 ± 0.01 1.02 ± 0.00 4.19 ± 0.00 -a 0.08 ± 0.00
PIGEON CPU 1034.11 ± 55.13 171.03 ± 5.42 122.78 ± 4.74 5.70 ± 0.14 3.24 ± 0.16
PIGEON GPU 45.94 ± 2.53 31.68 ± 0.91 37.38 ± 1.26 6.05 ± 0.18 6.12 ± 0.09

TTPb PyTorch 8183.47 ± 174.09 7352.94 ± 173.18 7585.57 ± 310.47 499.20 ± 1.50 392.17 ± 3.20
Runtime (Seconds for 192 images)

3PC
Piranha 7.82 ± 0.02 61.94 ± 0.20 17.68 ± 0.05 186.41 ± 0.50 914.29 ± 2.00
PIGEON CPU 0.14 ± 0.01 0.78 ± 0.03 0.92 ± 0.02 22.94 ± 0.10 40.34 ± 0.12
PIGEON GPU 3.93 ± 0.15 5.30 ± 0.10 4.53 ± 0.09 24.37 ± 0.18 25.10 ± 0.20

4PC
Piranha 20.89 ± 0.05 188.24 ± 0.30 45.82 ± 0.10 - 2400.00 ± 5.00
PIGEON CPU 0.19 ± 0.02 1.12 ± 0.04 1.56 ± 0.03 33.68 ± 0.15 59.26 ± 0.18
PIGEON GPU 4.18 ± 0.17 6.06 ± 0.12 5.14 ± 0.11 31.74 ± 0.20 31.37 ± 0.22

TTPb PyTorch 0.024 ± 0.001 0.026 ± 0.001 0.025 ± 0.001 0.385 ± 0.001 0.490 ± 0.0040
a Runtime error
b Trusted Third Party (TTP): Plaintext 32-bit �oating-point computation on a single node

Neural Network Software Components CryptGPU [51] inno-
vated the user experience of PPML by providing a PyTorch wrapper
that allows users to interact with PPML similarly to plaintext Py-
Torch. However, this design choice introduced performance over-
heads and workarounds to ensure compatibility with PyTorch such
as performing matrix multiplications on �xed point numbers by
using intermediate �oating point representations. Piranha [54] im-
proved the performance overhead of CryptGPU by relying solely
on a C++ library with custom CUDA kernels but gave up on com-
patibility with common ML frameworks. PIGEON combines the ad-
vantages of both approaches by providing a PyTorch interface that
allows users to export existing models and datasets to PIGEON’s
C++ inference engine after local processing in PyTorch.

PIGEON’s C++ inference engine implements common neural
network layers and their data �ow during inference. The infer-
ence engine relies on arithmetic operations in a black-box fashion
by using templates. This abstraction layer enables developers to
implement new neural network layers and architectures without
having to understand the underlyingMPC protocols that instantiate
the templates with MPC primitives. Out of the box, PIGEON sup-
ports various neural network architectures such as VGG16 [49] and
ResNet50 [18] and common linear layers, pooling layers, activation
functions, and batch normalization.

7 Evaluation

Given that we identi�ed Piranha [54] as the state-of-the-art PPML
framework for end-to-end private inference we compare our frame-
work mainly to Piranha. In §F, we also provide benchmarks with
CryptGPU [51].

7.1 Benchmark

We benchmark PIGEON and Piranha’s inference performance in the
3PC and 4PC settings with di�erent ring sizes. According to com-
mon practice, we replace MaxPooling layers with AveragePooling
layers which are more MPC-friendly [30]. Throughput measure-
ments report Piranha’s best-performing batch size for each model
which almost exclusively is a batch size of one due to Piranha’s
scaling limitations. We limit PIGEON’s batch size to 192. While
PIGEON supports larger batch sizes for most models and datasets
on our hardware, it might be unrealistic to assume that a real-world
setting would require processing more than 192 inputs in parallel.

Table 4 shows the throughput the two frameworks achieve when
evaluating di�erent models and datasets using a ring size of 32 bits.
In §F, Table 7 contains similar results for ring sizes of 64 bits. The
results show that PIGEON consistently outperforms Piranha by one
to two orders of magnitude. These performance improvements can
be mainly attributed to PIGEON’s e�cient ReLU implementation
which shows similar performance improvements for large batch
sizes in §F, Figure 7. When comparing the throughput to plaintext
PyTorch inference on ImageNet, PIGEON reduces the throughput
overhead from more than three orders of magnitude achieved by
state-of-the-art PPML frameworks to two.

7.2 Overcoming PPML Limitations

With its ABG programming model, PIGEON overcomes the current
limitations of state-of-the-art PPML frameworks.

Network Saturation Given the large performance improvement
of PIGEON over Piranha, we investigate whether PIGEON’s end-
to-end throughput reaches the network cap of 25 Gbit/s. Table 5
contains the layer-wise and total runtimes with resulting network
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Table 5: Layer-wise Benchmark: ImageNet, Batchsize 192, 3PC, 32 Bit

Model Layer GBc Runtime (s) Gbps

PIGEON CPU PIGEON GPU PIGEON CPU PIGEON GPU

VGG-16

LINEAR 0.01 0.62 ± 0.02 0.59 ± 0.02 0.09 ± 0.00 0.10 ± 0.00
FLATTEN 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
AVGPOOL2D 0.39 0.15 ± 0.01 0.15 ± 0.02 21.33 ± 1.59 20.36 ± 3.23
ACTIVATION 45.30 12.29 ± 0.56 16.16 ± 0.43 29.50 ± 1.34b 22.42 ± 0.60
CONV2D 10.40 29.80 ± 0.48 9.14 ± 0.57 2.79 ± 0.04 9.10 ± 0.57

Total 56.11 40.32 ± 0.83 25.10 ± 0.33 11.13 ± 0.23 17.88 ± 0.24

ResNet152

LINEAR 0.00a 0.04 ± 0.00 0.13 ± 0.03 0.17 ± 0.02 0.05 ± 0.01
ADAPTIVEAVGPOOL2D 0.00a 0.00 ± 0.00 0.00 ± 0.00 6.08 ± 0.80 4.91 ± 0.77
FLATTEN 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
AVGPOOL2D 0.05 0.04 ± 0.00 0.04 ± 0.00 10.49 ± 0.45 9.52 ± 0.96
ACTIVATION 70.39 17.87 ± 0.38 24.38 ± 2.15 31.51 ± 0.68b 23.10 ± 2.04
BATCHNORM2D 34.64 8.67 ± 0.65 12.22 ± 0.70 31.98 ± 2.38b 22.69 ± 1.30
CONV2D 17.32 23.79 ± 0.40 13.29 ± 0.52 5.83 ± 0.10 10.43 ± 0.40

Total 122.40 48.41 ± 0.66 47.39 ± 0.73 20.23 ± 0.28 20.66 ± 0.32

a Communication is greater than 0 but less than 0.01GB
b Layer bene�ts from the previous layer’s idle communication channels due to inter-batch pipelining
c Communication per party in GB

saturation that PIGEON achieves. The total runtime measures the
entire forward pass of the CNN.

The results show that fully connected layers only contribute an
insigni�cant percentage to the runtime of a CNN given their small
size. For pooling and activations, PIGEON is able to saturate more
than 20 Gbit/s of the available network bandwidth except for the
average pooling layers in ResNet-152 due to their small input size.
For convolutional layers, PIGEON GPU achieves around 10 Gbit/s
of throughput while PIGEON CPU achieves around 2-3 times lower
throughput than PIGEON GPU. However, this gap is partly closed
by PIGEON’s inter-batch pipelining and load balancing as described
in §5. The table shows that the activation and batch nomalization
layers which typically appear directly after a convolutional layer
even exceed the network bandwidth of 25 Gbit/s for PIGEON CPU
based on our measurements. This of course does not mean that at a
certain point in time, the network is oversaturated but rather that
the fraction of processes computing an activation can exploit that
another fraction of processes is still stuck in the compute-intensive
convolutional layers. As a result, even the slowest of = total pro-
cesses is still able to utilize more than 25/= Gbit/s of the network
bandwidth when evaluating an activation due to the asynchronous
network utilization of processes. In total, PIGEON GPU is able to
saturate more than 70% of the network bandwidth which implies
limited room for further improvements from a system’s perspective.

GPU Memory Requirements In §4, we showed that by using
the ABG programming model, PIGEON can accelerate most layers
on the CPU while achieving nearly 100% network utilization. This
insight allows PIGEON to outsource only convolutions to the GPU,
thus achieving a peak GPU memory utilization of only 205 MB for
a single inference of VGG-16 on ImageNet compared to 2.4-7GB
required by Piranha. By minimizing the GPU memory footprint,
PIGEON supports large batch sizes such as 192 for VGG-16 on
ImageNet while using less than 24GB of peak GPU memory. This

is more than one order of magnitude improvement compared to
Piranha. Noticeably, PIGEON only requires twice the GPU memory
for a given batch size than plaintext PyTorch. This narrow gap
to plaintext computation might be explained our the mini-batch
optimization to interleave communication and computation (c.f.
§4.4). On CIFAR-10, PIGEON is able to perform inferences on all
10,000 images in a single batch without running out of memory.

7.3 Further Throughput Improvements

We can improve throughput further by evaluating large ReLU layers
with Ripple Carry Adders, using key-bit optimizations [31], and
scaling to large batch sizes.

Utilizing Di�erent Adders In PPML, the most widely used adder
circuit to evaluate share conversion required by non-linear layers is
the Parallel Pre�x Adder (PPA) [35] which introduces a communi-
cation complexity of $ (ℓ ;>6(ℓ) per input and a round complexity
of ;>6(ℓ) + 1. When scaling PPML to large models, datasets, and
batch sizes the higher round complexity of the Ripple Carry (RCA)
seizes to become a bottleneck. An RCA can be evaluated with a
communication complexity of $ (ℓ − 1) per input and a round com-
plexity of ℓ − 1. Table 6 shows that using an RCA over a PPA pays
o� when evaluating ImageNet models or scaling to large batch
sizes for CIFAR-10. This is expected as the number of operations in-
creases signi�cantly when increasing batch sizes or using datasets
with larger dimensions while the number of communication rounds
stays constant.

Scaling to Large Batch SizesWhile we set the maximum batch
size in our benchmark to 192, some settings may bene�t from even
larger batch sizes. Table 6 shows that setting the batch size to
12,288 for VGG-16 on CIFAR-10 still provides higher throughput
than a batch size of 192. One can also observe that as the batch size
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Table 6: Throughput (Images per Second) with Di�erent Tweaks, 3PC, 32 Bit

Framework
CIFAR-10 ImageNet

VGG-16 VGG-16, � = 12, 288a ResNet50 VGG16

PIGEON CPU (PPA)b 208.70 ± 3.51 277.90 ± 3.08 8.37 ± 0.15 4.76 ± 0.11
PIGEON CPU (RCA)c 57.40 ± 0.93 308.99 ± 5.02 12.70 ± 0.33 5.08 ± 0.08
PIGEON CPU (RCA8)d 134.37 ± 3.68 341.05 ± 1.84 11.30 ± 0.18 5.48 ± 0.07
PIGEON CPU (ON,RCA8)e 144.92 ± 2.22 412.90 ± 6.72 13.78 ± 0.53 6.44 ± 0.08

PIGEON GPU (PPA) 42.37 ± 1.79 294.94 ± 0.48 7.88 ± 0.12 7.65 ± 0.12
PIGEON GPU (RCA) 31.40 ± 0.61 324.62 ± 2.35 9.54 ± 0.05 9.99 ± 0.29
PIGEON GPU (RCA8) 45.72 ± 0.08 354.24 ± 0.98 10.69 ± 0.24 12.47 ± 0.29
PIGEON GPU (ON,RCA8) 60.57 ± 0.24 573.51 ± 15.10 16.96 ± 0.75 19.42 ± 1.31

a All model’s batch sizes are set to 192, except this model where the batch size is set to 12,288
b Parallel Pre�x adder is utilized to evaluate ReLU layers
c Ripple carry adder is utilized to evaluate ReLU layers
d Only 8 key bits are considered when evaluating ReLU layers
e Only the online phase is measured. All other measurements include end-to-end inference through-
put

increases the RCA starts outperforming the PPA even for the small
images in the CIFAR-10 dataset.

Key Bit Optimization The authors of [31] propose to evaluate
ReLU heuristically by only considering certain most- and least-
signi�cant bits per ReLU layer, the so-called key bits. While their
approach has an error probability that increases when considering
fewer key bits, it reduces the round and communication complex-
ity of ReLU layers signi�cantly. Table 6 shows that considering 8
instead of 32 key-bits using an RCA improves end-to-end inference
throughput by 10% for larger, bandwidth-constrained networks,
and by more than 2 times for the smaller latency-constrained net-
works. Note that according to [31] even 6 key bits are su�cient to
achieve nearly plaintext PyTorch accuracy for various models.

Online-only Computation While PIGEON e�ciently interleaves
the preprocessing and online phases, preprocessing costs may be
less relevant for some applications. In this case, PIGEON can also
be instructed to separate both phases. Table 6 shows the resulting
throughput when only measuring PIGEON’s online phase. The end-
to-end throughput of separating both phases is signi�cantly worse
compared to PIGEON’s interleaved end-to-end time throughput,
however, when considering only the online phase one can achieve
up to 58% additional improvement in throughput.

8 Conclusion

In this work, we propose PIGEON, a framework for private in-
ference of neural networks. PIGEON provides protocol-agnostic
implementation techniques that improve the hardware utilization
of MPC servers by introducing MPC-friendly matrix multiplica-
tions, pipelining techniques, and the ABG programming model.
The ABG programming model utilizes a targeted acceleration strat-
egy for each PPML layer based on its underlying MPC primitives
while ensuring high network saturation and low GPU memory
requirements. This enables PIGEON to scale to large batch sizes
and achieve new records in PPML inference throughput. PIGEON
shows that system improvements to PPML framework design and

addressing the unique challenges that separate PPML from plain-
text ML can enable performance improvements of up to two orders
of magnitude compared to state-of-the-art frameworks.

PIGEON can import model weights and datasets from PyTorch
to easily evaluate existing models. Its software architecture enables
developers to add new MPC protocols or neural network layers in a
high-level fashion while inherently bene�ting from the acceleration
strategies introduced in this work. While PIGEON is a private
inference framework, all acceleration techniques presented in this
work are applicable to private training as well. Looking forward,
an interesting direction for future research could be to investigate
which additional challenges private training introduces that require
innovations from a framework perspective.
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A Benchmark Models and Datasets in PPML

Most PPML frameworks evaluate their performance using convolu-
tional neural networks (CNNs) on image datasets. The following
datasets are commonly used for this purpose:

• MNIST [29]: A small-scale dataset consisting of 60,000
grayscale images and 28 × 28 × 1 pixels per image.

• CIFAR-10 [25]: A dataset consisting of 60,000 color images
and 32 × 32 × 3 pixels per image.

• ImageNet [45]: A large-scale dataset with over one million
color images and 224 × 224 × 3 pixels per image.

The following neural network architectures are commonly used for
benchmarking PPML frameworks:

• LeNet [28] and AlexNet [26]: Historically important, small
CNNs with two and �ve convolutional layers respectively.

• VGG-16 [49]: A CNN with 16 convolutional layers and a
large number of operations per layer.

• ResNet-18/50/101/152 [18]: Deep CNNs with 18 to 152 con-
volutional layers but fewer operations per layer than VGG-
16.

Out of these di�erent models and datasets, only VGG-16 and the
di�erent ResNet architectures can be considered state-of-the-art
machine learning models based on their large number of trainable
parameters, while only ImageNet can be considered a state-of-the-
art dataset based on its number of pixels per image. In 2021, Crypt-
GPU [51] was the �rst MPC-based PPML framework to achieve
private inference of VGG-16 and ResNet architectures on ImageNet-
sized images.

B Network Saturation and Batch Sizes as a Key
Performance Metric of MPC Frameworks

While MPC protocols are typically evaluated by their communi-
cation and round complexity per gate, there are no standardized
metrics to evaluate MPC deployments. As parties in MPC are dis-
tributed and need to communicate over the network to evaluate a
circuit the maximum achievable throughput of an MPC implemen-
tation is capped by the total size in communication divided by the
network bandwidth available on the network added to the number
of interactions multiplied by the network latency.

For example, if each party can receive at most 8Gbit/s a second,
evaluating a circuit with a communication size of 1GB per party and
1000 communication rounds with 1ms of latency between parties
takes at least two seconds. A framework that achieves a runtime
of 2 seconds in this setting can be considered ideal and achieves a
throughput of 0.5 circuits per second.

Supporting large batch sizes enables the framework to amortize
the network latency over multiple circuits. When evaluating 10 cir-
cuits an ideal framework can achieve a runtime of 11 seconds in this
setting or a throughput of 0.91 circuits per second. To reduce PPML
overhead, a framework should thus attempt to support large batch
sizes to reduce the negative impact of network latency on inference
throughput and be able to achieve 100% network saturation.

An additional consideration is the overhead of local computa-
tion. Recent work [17] discovered that several open-source MPC
frameworks are often unable to achieve high network saturation
due to their lack of e�ectively accelerating local computations. We

therefore consider network saturation a key metric to compare
MPC and PPML deployments assuming they use a state-of-the-art
MPC protocol with low communication complexity.

C Arithemtic Vectorization to Bitslicing
Conversion

PIGEON utilizes e�cient conversions from Arithmetic Vectoriza-
tion to Bitslicing. These conversions are based on USUBA [32] and
shown in Algorithms 2 and 3. The conversion operates on blocks
of A ℓ-bit inputs where ℓ represents the utilized bitlength and A is
the register width supported on a target architecture. Note that the
�↔ � conversion can also be implemented with hardware-speci�c
instructions to further improve conversion throughput.

Algorithm 2 �↔ � Conversion

Require: Contiguous block of A ℓ-bit integers in arithmetic resp.
bitsliced representation

Ensure: Contiguous block of A ℓ-bit integers in bitsliced resp. arith-
metic representation

1: for 8 ← 0 to A by ℓ do

2: Orthogonalize(30C0[8]) ⊲ Algorithm 3

Algorithm 3 Orthogonalize

Require: ℓ-bit integer in arithmetic resp. bitsliced representation
Ensure: ℓ-bit integer in bitsliced resp. arithmetic representation
1: for 8 ← 0 to log2 (ℓ) − 1 do
2: a ← 28

3: for 9 ← 0 to ℓ by 2a do

4: for : ← 0 to a − 1 do
5: D ← 30C0[ 9 + :] ∧<0B:; [8]
6: E ← 30C0[ 9 + :] ∧<0B:A [8]
7: G ← 30C0[ 9 + a + :] ∧<0B:; [8]
8: ~ ← 30C0[ 9 + a + :] ∧<0B:A [8]
9: 30C0[ 9 + :] ← D ∨ (G ≫ a)
10: 30C0[ 9 + a + :] ← (E ≪ a) ∨ ~
Note:<0B:; ,<0B:A are arrays containing �xed values. The general
procedure presented here is further optimized with hardware-speci�c
instructions. For more details, we refer to our source code.

D Arithmetic Vectorization to GPU Conversion

To ensure compatibility between the CHWN data layout resulting
from the use of Arithmetic Vectorization and the NHWC layout
expected by Cutlass’s convolution implementation, we need to
convert the input and output matrices between CHWN and NHWC
when evaluating convolutional layers during the A↔G conversion.
PIGOEN proposes a two-step conversion mechanism. The �rst
step is to use a custom implementation that transposes between
CHWN and NCHW layouts. Then we convert the NCHW layout
to an NHWC layout, which is an existing function provided by
CUTLASS [40].

The pseudo-code for the customized transpose function is pro-
vided in Algorithm 4. To perform the CHWN to NCHW conversion,
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the transpose function is invoked with A = � × � ×, and 2 = # ,
while the inputs and outputs are contiguous blocks of memory
ordered with respect to the respective data layout.

Algorithm 4 NCHW↔ CHWN Transpose

Require: Matrix � in CHWN resp. NCHW layout.
Ensure: Transposed matrix $ in #��, resp. ��,# layout.
1: Set 2 and A to the number of columns and rows of � .
2: if 2 mod TILE_DIM ≠ 0 then

3: 2 ← 2 + (TILE_DIM − (2 mod TILE_DIM))
4: if A mod TILE_DIM ≠ 0 then

5: A ← A + (TILE_DIM − (A mod TILE_DIM))
6: grid_dim← (2/TILE_DIM, A/TILE_DIM, 1)
7: block_dim← (TILE_DIM, BLOCK_ROWS, 1)
8: Launch GPU Transpose Kernel with: ⊲ Algorithm 5
9: grid dimensions = grid_dim

10: block dimensions = block_dim

11: arguments = ($ , � , 2 , A )

Note: By default, we set TILE_DIM = 64, and BLOCK_ROWS = 16 in our
implementation.

Algorithm 5 Transpose Kernel

Require: $ , � , 2 , A .
1: Declare shared memory tile[TILE_DIM][TILE_DIM]

2: G ← BId.x × TILE_DIM + TId.x
3: ~ ← BId.y × TILE_DIM + TId.y
4: for 8 = 0 to TILE_DIM step BLOCK_ROWS do

5: if G < 2 and (~ + 8) < A then

6: tile[TId.y + i][TId.x]← input[(~ + 8) × 2 + G]
7: Synchronize threads
8: G ← BId.y × TILE_DIM + BId.x
9: ~ ← BId.x × TILE_DIM + BId.y
10: for 8 = 0 to TILE_DIM step BLOCK_ROWS do

11: if G < A and (~ + 8) < 2 then

12: output[(~ + 8) × A + G] ← tile[BId.x][TId.y + i]

Note: BId and TId refer to CUDA’s builtin blockIdx and threadIdx variables

E Making PPML More Accessible

In order to support ImageNet inference with large batch sizes, ex-
isting GPU frameworks require High-End GPUs. While CPU-only
frameworks such as FALCON [52] exist, they achieve less than
one order of magnitude of throughput for batched inference of
large neural networks than their GPU-only alternatives [54]. PI-
GEON addresses these limitations by providing GPU acceleration
with low memory requirements and a high throughput CPU-only
implementation.

PIGEON CPU As GPU hours are expensive, o�ering fast CPU-
only implementations can make PPML more accessible. Addition-
ally, CPU-based frameworks have the potential to support higher
batch sizes as system memory is typically larger than GPU memory.
Along with our GPU implementation, we provide a CPU-only im-
plementation that achieves a respectable convolution throughput

of over 5Gbit/s by utilizing the techniques described in §4.3. Table
4 shows that even PIGEON CPU achieves one to two orders of mag-
nitude higher throughput than Piranha. For models evaluated on
small datasets such as CIFAR-10, PIGEON CPU even outperforms
PIGEON GPU.

PIGEON with Limited Compute ResourcesWhile we showed
that by using server-grade hardware PIGEON can outperform Pi-
ranha by one to two orders ofmagnitude, we also show that PIGEON
is able to achieve state-of-the-art performance while utilizing only
few compute resources. In §F, Tables 8 and 9 contain the runtime of
PIGEON compared to Piranha while restricting PIGEON to utilize
only a single CPU core for local computation and a batch size of 1.
The tables show that PIGEON CPU and PIGEON GPU provide com-
parable runtimes to Piranha under these restrictions. In this setting,
PIGEON GPU only requires 205 MB of GPU memory. These results
imply that PIGEON can enable fast private ImageNet inference even
on low-end hardware.

Modular Design and PyTorch Interface Finally, PIGEON’s mod-
ular design allows developers of di�erent domains to extend either
the neural network, MPC, or core software components of PIGEON
while being oblivious to our presented optimizations.
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Table 7: Throughput and Runtime for End-To-End Inference of 192 Images, 64 Bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet50 VGG16 ResNet18 VGG16

Throughput (Images per second)

3PC
Piranha 17.99 ± 0.07 1.50 ± 0.00 5.08 ± 0.01 0.79 ± 0.01 0.11 ± 0.00
PIGEON CPU 941.51 ± 14.69 81.97 ± 1.72 76.85 ± 1.23 3.51 ± 0.06 1.77 ± 0.02

4PC
Piranha 4.19 ± 0.00 0.52 ± 0.00 1.86 ± 0.00 -a 0.04 ± 0.00
PIGEON CPU 681.68 ± 17.11 80.81 ± 0.89 75.92 ± 1.41 2.75 ± 0.03 1.40 ± 0.04

Runtime (Seconds for 192 images)

3PC
Piranha 10.67 ± 0.04 128.00 ± 0.00 37.80 ± 0.07 243.04 ± 3.08 1745.45 ± 0.00
PIGEON CPU 0.20 ± 0.00 2.34 ± 0.05 2.50 ± 0.04 54.70 ± 0.93 108.47 ± 1.23

4PC
Piranha 45.82 ± 0.00 369.23 ± 0.00 103.23 ± 0.00 -a 4800.00 ± 0.00
PIGEON CPU 0.28 ± 0.01 2.38 ± 0.03 2.53 ± 0.05 69.82 ± 0.76 137.14 ± 3.92

a Runtime error

Table 8: Single-Core Runtime (Seconds), 32 Bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet18 ResNet50 VGG16 ResNet18 VGG16

3PC
Piranhab 0.07 ± 0.00 0.22 ± 0.00 0.94 ± 0.00 0.16 ± 0.00 0.97 ± 0.00 3.50 ± 0.02
PIGEON CPU 0.05 ± 0.11 1.50 ± 0.20 2.86 ± 0.28 0.28 ± 0.00 1.50 ± 0.10 6.34 ± 0.04
PIGEON GPU 0.48 ± 0.13 1.55 ± 0.03 3.29 ± 0.12 0.60 ± 0.01 1.28 ± 0.05 1.58 ± 0.10

4PC
Piranhab 0.18 ± 0.00 0.52 ± 0.01 2.09 ± 0.01 0.44 ± 0.00 -a 9.91 ± 0.01
PIGEON CPU 0.08 ± 0.11 1.22 ± 0.00 2.84 ± 0.02 0.51 ± 0.02 3.45 ± 0.09 16.24 ± 0.17
PIGEON GPU 0.52 ± 0.13 1.60 ± 0.02 3.25 ± 0.00 0.66 ± 0.02 2.02 ± 0.14 2.97 ± 0.20

a Runtime error
b The single-core restriction only applies to PIGEON. We do not restrict Piranha’s CPU or GPU usage.

Table 9: Single-Core Runtime (Seconds), 64 Bit

Setting Framework
CIFAR-10 ImageNet

AlexNet ResNet18 ResNet50 VGG16 ResNet18 VGG16

3PC
Piranhab 0.11 ± 0.00 0.26 ± 0.00 1.50 ± 0.00 0.27 ± 0.00 1.61 ± 0.00 8.37 ± 0.04
PIGEON CPU 0.21 ± 0.13 0.66 ± 0.01 1.37 ± 0.02 0.45 ± 0.00 3.19 ± 0.16 15.66 ± 0.04
PIGEON GPU 0.67 ± 0.06 1.10 ± 0.01 1.88 ± 0.03 0.74 ± 0.00 1.72 ± 0.15 2.61 ± 0.19

4PC
Piranhab a 0.64 ± 0.00 -a 0.74 ± 0.00 -a 23.01 ± 0.02
PIGEON CPU 0.16 ± 0.09 0.77 ± 0.00 1.55 ± 0.00 0.96 ± 0.02 7.39 ± 0.10 40.22 ± 0.06
PIGEON GPU 0.64 ± 0.13 1.20 ± 0.00 2.07 ± 0.01 0.85 ± 0.02 2.62 ± 0.10 4.54 ± 0.16

a Runtime error
b The single-core restriction only applies to PIGEON. We do not restrict Piranha’s CPU or GPU usage.

Table 10: CryptGPU Benchmark: Throughput for ImageNet Inference, 3PC, 64 Bit

Framework Throughput (Images per second)

PIGEON CPU 1.77 ± 0.02
CryptGPUa 0.022 ± 0.00012
a Highest supported batch size: 3
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