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Abstract. The Dilithium signature scheme – recently standardized by
NIST under the name ML-DSA – owes part of its success to a specific
mechanism that allows an optimizaion of its public key size. Namely,
among the data of the MLWE instance (A, t), which is at the heart of
the construction of Dilithium, the least significant part of t – denoted
by t0 – is not included in the public key. The verification algorithm had
been adapted accordingly, so that it should not require the knowledge of
t0. However, since it is still required to compute valid signatures, it has
been made part of the secret key. The knowledge of t0 has no impact
on the black-box cryptographic security of Dilithium, as can be seen in
the security proof. Nevertheless, it does allow the construction of much
more efficient side-channel attacks. Whether it is possible to recover t0
thus appears to be a sensitive question. In this work, we show that each
Dilithium signature leaks information on t0, then we construct an attack
that retrieves it from Dilithium signatures. Experimentally, depending
on the Dilithium security level, between 200 000 and 500 000 signatures
are sufficient to recover t0 on a desktop computer.

1 Introduction

Dilithium. Following NIST’s Post-Quantum Cryptography competition, the
Dilithium signature scheme [BDK+21] has been selected as one of the winners
under the name ML-DSA. It belongs to the family of lattice-based signature
schemes, and is an application of the Fiat-Shamir with abort [Lyu09] to the
Module Learning-With-Errors (MLWE) problem. In general, the public key of
such a scheme is an (M)LWE instance, which is to say a (matrix, vector) pair
(A, t) such that two “small” secret vectors s1 and s2 exist such that t = As1+s2.
One of the main selling points of Dilithium is its compressed public key. Indeed,
the vector t is split coefficient-wise into a high and a low part, respectively
denoted by t1 and t0. The Dilithium public key finally corresponds to the seed
that was used to generate the matrix A, along with t1, while t0 is considered to
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be part of the secret key. The generation of the signature and its verification must
be adapted so that the verifier is able to verify the signature without knowledge
of t0.

On the status of t0. As stated previously, t0 is considered as a part of the
secret key. However, the security proof of Dilitium [BDK+21] assumes that the
whole vector t is given in the public key, which means that this compression
is not intended to increase the security of Dilithium. Moreover, Lyubashevsky
mentions t0 in a conference given in 2022 [Lyu22]: “t0 are not given but they
are not secret, some informations is leaked with every signature. The security
proof assumes that t0 is public.”. This is further emphasized by the NIST draft
standard for ML-DSA [NIS23], which states that t0 “can be reconstructed from
a small number of signatures and, therefore, need not be regarded as secret”.
Unfortunately, it seems that this claim has never been formally studied. While
this may seem benign due to the fact that the formal security of Dilithium does
not rely on the secrecy of t0, it seems that its knowledge can be useful in the
context of side-channel attacks.

Some papers assume that t0 is known to the attacker: in [RRB+19] we can
read: “note that the security analysis of DILITHIUM is done with the assumption
that the whole of t is declared as the public key. In addition to this, some
information about t0 is leaked with every published signature and thus the whole
of t can be reconstructed by just observing several signatures generated using
the same secret key”, but unfortunately again there is no argument or proof.

Others articles remain conservative and study their attacks in both cases:
with or without the knowledge of t0. For example, in [EAB+23a] the authors
state that: “the knowledge of t0 is not required for the MLWE to RLWE reduction
part of our attack [...]. However, it has an impact on the resulting security of the
RLWE problem making it harder to solve”.

There are even papers that explicitly ask for a clarification of the role of
t0 in the side-channel literature on Dilithium. In particular in [WNGD23]: “the
main contribution of this paper is highlighting the possibility of recovering the
complete secret vector s1 from a single trace with a non-negligible probability
(9% in our experiments) in the case when t0 is known. None of the previous
attacks on Dilithium can recover the full s1 from fewer than 100 traces. Our
results demonstrate the necessity of protecting the secret key of Dilithium from
single-trace attacks. They also prompt a reassessment of the role of t0 in the
security of Dilithium implementations.”

Finally, at least one paper considers that it is unrealistic to assume that a
“real” attacker can find t0 in a side-channel setting. In [RJH+18] we read: “Thus,
it might indeed be possible that the whole of t leaks as part of the signature
and observations of sufficiently many signatures might lead to the recovery of
the complete LWE instance, t. But again, we expect the number of signatures
and the computational effort to be very high, which cannot be expected in a
practical SCA setting”.
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In conclusion, there is no consensus on the role of t0 in the case of side-channel
attacks. As side-channel protections are known to be costly, it can be tempting to
assume that attackers cannot recover t0, since it allows lighter countermeasures.
In the present paper, we show that this assumption is false.

Our contribution. In this article, we study the possibility of recovering t0
from signatures corresponding to arbitrary messages. In more details, from each
signature, we extract inequalities on the coefficients of t0, until we get a system
of linear non-equalities that admit t0 as its only solution. In order to solve the
system, we rely on Linear Programming. The key takeaways of our work are the
following:

1. Between 200 000 and 500 000 signatures are needed to reliably recover the
value of t0, depending on the security level.

2. As a consequence, this results in a very large system of inequalities, which
is computationally heavy to solve. We built a more efficient approach that
builds a sequence of filtered systems of inequalities that have an increasingly
smaller number of solutions until t0 becomes the unique solution.

Overall, our method is relatively simple yet non-trivial, and allows to find t0 in
all our experiments, each time in less than 4 hours on a desktop computer. Our
result shows two points: firstly it confirms the fact that not knowing t0 does
not strengthen Dilithium’s security (which is not really surprising) and, more
importantly, it shows that t0 can be quickly recovered in practice. Therefore
assuming that it can be recovered by a physical attacker is a sound assumption.

Outline. This paper is organized as follows. In Section 2, we redefine the basic
notions about Dilithium and recall some results from linear programming which
will be useful in the rest of this article. In Section 3, we define and motivate
the problem we will solve in the rest of the article. In Section 4, we propose
an approach based on linear programming tools. Finally, Section 5 presents the
experimental results obtained for this new attack and a brief discussion of our
results.

2 Preliminary requirements

In this section we begin by briefly introducing the notations and main func-
tions used in Dilithium. For a detailed description of Dilitihum, the reader is
referred to [BDK+21]. We then review the main definitions and results of linear
programming, which will be used in the next section.

2.1 Notations, hints and inequalities

Definition 1 Let α be an even (resp. odd) integer. We define r′ := r mod±(α)
the unique -α2 < r′ ≤ α

2 (resp. − α−1
2 ≤ r′ ≤ α−1

2 ) such that r′ = r mod (α).

We will speak of centered reduction modulo α. We define r′′ := r mod+(α) the
unique 0 ≤ r′′ < α such that r′′ = r mod (α).
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Definition 2 We define ϕn = xn + 1 with n a power of 2 and q a prime, and
introduce the following rings:

R := Z[x]/(ϕn) and Rq := Zq[x]/(ϕn).

Notation 1 For an integer l ∈ N∗ and for an element t0 ∈ Rl, we will note
t0 =(t

[0]
0 , ..., t

[l−1]
0 ) ∈ Rl and t

[j]
0,i will be the i-th coefficient of the polynomial t[j]0 .

Notation 2 We will note [[ statement ]] the boolean operator wich evaluates to
1 if statement is true, and to 0 otherwise.

Definition 3 For w ∈ Zq:

||w||∞ := |w mod± (q)|.

For w =
∑

wix
i ∈ R:

||w||∞ := max ||wi mod±(q)||∞ and ||w|| :=
(∑

||wi||2∞
)1/2

and for w = (w[0], ...,w[l−1]) ∈ Rl,

||w||∞ := max ||w[i]||∞ and ||w|| :=
(∑

||w[i]||2
)1/2

.

Finally, we define two sets Sη, S̃η ⊂ R as follows:

Sη := {w ∈ R | ||w||∞ ≤ η} and S̃η := {w mod± (2η) | w ∈ R}.

Dilithium is a signature scheme based on structured lattices, we will therefore
manipulate matrices and vectors of R or Rq, with the values of n and q fixed
at n = 256 and q = 223 − 213 + 1 = 8 380 417 regardless of the security level.
In addition, to reduce the size of the public key and to generate the signature
Dilithium uses algorithms that splits elements in Zq. The first and most natural
way is to use bit decomposition: for r ∈ Zq and d ∈ N∗, r = r12

d+r0 where r0 =
r mod± 2d and r1 = (r− r0)/2

d. This is done with the algorithm Power2Roundq
defined in Algorithm 1 and is used to reduce the size of the public key t.

Since the public key is not “completely” known to the verifier, the signer must
add “hints” to the signature to allow its verification. Given r ∈ Zq and a small
element z ∈ Zq, the verifier must calculate the high bits of z+r without knowing
z. To do this, the authors have decided to use a slightly different split: for an
even α divisor of q−1 and r ∈ Zq they define r = r1α+ r0 with r0 = r mod±(α)
and r1 = (r − r0)/α. We will call r1 the high bits of r and r0 the low bits of
r. As shown in Figure 1, for z ∈ Zq such that |z| ≤ α/2, adding z to r can
only increase or decrease the high bits of r by ±1. With this simple tweak one
can calculate the high bits of r + z, only with the knowledge of z and a hint
bit h ∈ {0, 1}. Algorithm 1 give the description of the algorithms and Lemma 1
recall the main property used.
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Fig. 1. carry caused by x

Algorithm 1 Supporting algorithms for Dilithium

Power2Roundq(r, d) :
1: r = r mod+q
2: r0 = r mod±2d

3: return (r − r0)/2
d, r0)

Decomposeq(r, α) :

1: r = r mod+q
2: r0 = r mod±α
3: if r − r0 = q − 1 then
4: r1 = 0
5: r0 = r0 − 1
6: else r1 = (r − r0)/α

7: return (r1, r0)

HighBitsq(r, α) :
1: (r1, r0) = Decomposeq(r, α)
2: return r1

LowBitsq(r, α) :
1: (r1, r0) = Decomposeq(r, α)
2: return r0

MakeHintq(z, r, α) :
1: r1 = HighBitsq(r, α)
2: v1 = HighBitsq(r + z, α)
3: return [[r1 ̸= v1]]

UseHintq(h, r, α) :
1: m = (q − 1)/α
2: (r1, r0) = Decomposeq(r, α)
3: if h = 1 and r0 > 0 then
4: return (r1 + 1) mod+m

5: if h = 1 and r0 ≤ 0 then
6: return (r1 − 1) mod+m

7: return r1

Lemma 1 [LDK+22] Let q and α be two positive integers such that q > 2α, q ≡
1 mod (α) and α even. Let r and z be two vectors of Rq such that ||z||∞ ≤ α/2
and let h,h′ be bit vectors. So the algorithms HighBitsq , MakeHintq, UseHintq
satisfy the properties:

UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r+ z, α).

2.2 Algorithm description

Key Generation: The key generation algorithm is described in Algorithm 2.
Dilithium is based on the Module-LWE problem, a variant of the LWE problem
introduced by Regev in [Reg05], which we will not recall here. From some seeds,
A ∈ Rk×l

q and s1 ∈ Sl
η and s2 ∈ Sk

η are generated and then t = As1 + s2 is
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computed. Two optimisations are made to the public key, which is traditionally
(A, t), to reduce its size. The first optimisation, the most natural, consists of
transmitting only the seed used to generate the matrix A. For the second opti-
misation, only t1 (the high part of t computed with Power2Roundq) is considered
to be part of the public key. This reduces the size of the public key by half at
the cost of adding a few bits at the time of signing, so that the verifier does not
need the knowledge of t0.

Algorithm 2 KeyGen
Ensure: (pk, sk)
1: ζ ← {0, 1}256

2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)

3: A ∈ Rk×l
q := ExpandA(ρ)

4: (s1, s2) ∈ Sl
η × Sk

η := ExpandS(ρ′)

5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ || t1)
8: return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

Signature: The signature algorithm is described in Algorithm 3. The signer
derives a masking vector y ∈ Rl

q, from which it calculates w1, the high bits
of w := Ay and then a challenge c ∈ R which is a sparse polynomial whose
coefficients are in {−1, 0, 1}. It then calculates z := y + c s1, the main part of
the signature, which verifies the following equation, used for verification:

HighBitsq(Az− ct, 2 γ2) = HighBitsq(Ay− cs2, 2 γ2).

The signer then checks that z does not give information about the secret key;
if it does, it starts again by drawing another masking vector. Once z has passed
the tests, we have the following equation:

w1 = HighBitsq(Ay− cs2, 2 γ2) = HighBitsq(Az− ct, 2 γ2).

Since t0 is not known, anyone attempting to verify the signature cannot
directly compute HighBitsq(Az− ct, 2 γ2). Using the method described in sub-
section 2.1, the signer adds h = MakeHintq(−ct0,Ay − cs2 + ct0, 2γ2) to the
signature, to allow the verifier to calculate HighBitsq(Az − ct, 2 γ2), without
the knowledge of t0. Finally, the signature is composed of the seed c̃, used to
sample the challenge polynomial, the response vector z, and the hint vector h.
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Algorithm 3 Sig
Require: sk,M
Ensure: σ = (c̃, z,h)
1: A ∈ Rk×l

q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(tr ||M)

3: κ := 0, (z,h) :=⊥
4: ρ′ ∈ {0, 1}512 := H(K ||µ)
5: while (z,h) =⊥ do
6: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay
8: w1 = HighBitsq(w, 2 γ2)

9: c̃ ∈ {0, 1}256 := H(µ ||w1)

10: c ∈ Bτ := SampleInBall(c̃)

11: z := y + c s1
12: r0 := LowBitsq(w− cs2, 2 γ2)
13: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14: (z,h) :=⊥
15: else
16: h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2)
17: if ||c t0||∞ ≥ γ2 or |h|hj=1 > ω then
18: (z,h) :=⊥
19: κ := κ+ l

20: return σ = (c̃, z,h)

Verification: The verification algorithm is described in Algorithm 4. To verify
the signature, the verifier begins by reconstructing the matrix A and the poly-
nomial c on which the signer has commited. Using the vector h of the signature
and UseHintq, w1 = HighBitsq(Az − ct, 2 γ2) is recalculated. Finally, the sig-
nature will be accepted if it is possible to reconstruct the correct c from w1 and
if z meets the security conditions imposed during signature generation.

Algorithm 4 Ver
Require: pk, σ
1: A ∈ Rk×l

q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(H(ρ || t1) ||M)

3: c := SampleInBall(c̃)

4: w′
1 := UseHintq(h,Az− ct1 · 2d, 2γ2)

5: return [[||z||∞ < γ1 − β]] and [[c̃ = H(µ ||w′
1)]] and [[|h|hj=1 ≤ ω]]
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Remark 1 As shown above, in the formal definition of Dilithium, t0 is consid-
ered to be secret data even though it reveals nothing about the other polynomials of
the secret key. Therefore, in a side channel attack, an attacker cannot use knowl-
edge of t0 to attack a Dilithium implementation. Despite this, a large proportion
of papers on side-channel or fault-based attacks against Dilithium [BVC+23]
[RRB+18] [RRB+18] [EAB+23b] make the assumption that t0 is known. In the
rest of the paper we will show that t0 can indeed be considered as part of the
public key, since it can be reconstructed from Dilithium signatures.

2.3 An overview of Polyhedral Theory

A polyhedron is a set of points verifying a finite number of inequalities, in other
words: an instersection of a finite number of half-spaces. We are interested in this
geometrical object because in Section 3 we will show that by querying Dilithium
signatures generated under the same secret key, we will collect inequalities on
the coefficients of the polynomial vector t0. t0 will therefore be in a bounded
polyhedron, traditionally called a polytope. Obtaining information about this
polytope will allow us to find t0 in Section 4. We refer to [NW88] for general
definitions and unproven propositions.

Definition 4 A polyhedron P ⊂ Rn is the set of points that satisfy a finite
number of linear inequalities, P = {x ∈ Rn : Ax ≤ b} where (A, b) is a m×(n+1)
matrix.

Definition 5 A polyhedron P ⊂ Rn is bounded if there exists an w ∈ R+ such
that P ⊂ {x ∈ Rn : −w ≤ xj ≤ w for j = 1, ..., n}. A bounded polyhedron is
called a polytope.

Definition 6 Let P ⊂ Rn be a polytope, we call the diameter of P and we note
diam(P ) the quantity:

diam(P ) = max
p1,p2∈P

||p1 − p2||∞

Definition 7 A polyhedron P is of dimension k, denoted by dim(P ) = k, if the
maximum number of affinely independent points in P is k + 1.

Remark 2 The definition of diameter and dimension provide an estimation
on the number of elements in a polytope. In our case, we are going to collect
inequalities verified by t0, so we will obtain a polytope containing t0. Estimating
the dimension and diameter of this polytope allows us to obtain an estimation
on the coefficients of t0.

2.4 The basics of Linear Programming

The general linear programming problem is to find:

zLP = max{cx : Ax ≤ b, x ∈ R }
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where A is a m× n matrix and c, b are 1× n and m× 1 matrices. This problem
is well defined is the sense that if it is feasible and does not have unbounded
optimal values, then it has an optimal solution. In the rest of this paper, we will
note (LP ) and write it in the following form:

maximize cx
subject to Ax ≤ b

x ∈ R

Remark 3 Let P be a polytope described by a set of inequalities. Trivialy, finding
an x ∈ P (i.e. a point that satisfies all the inequalities that form the description
of P ) is an (LP ) problem, as it can be solved by maximizing any function on
P . Minimising a function on P is also an (LP ) problem as it is sufficient to
maximise its opposite.

Proposition 1 Let P = {x ∈ Rn | Ax ≤ b} be a polytope, upper-bounding the
dimension of P or calculating the diameter of P are two (LP ) problems.

Proof. For i ∈ {1, . . . , n}, by solving the following two (LP ) problems:

minimize xi

subject to Ax ≤ b
x ∈ Rn

maximize xi

subject to Ax ≤ b
x ∈ Rn

Fig. 2. The 2× 256 (LP ) problems related to P .

Calculating card({i ∈ {1, . . . , n} : ∃wi ∈ R,∀x ∈ P, xi = wi}) allows to
upper-bound the dimension of P . Solving the same (LP ) problems allow also to
calculate the diameter of P .

⊓⊔

Notation 3 Let P ⊂ Rn be a polytope. The procedure for calculating a point
by minimizing the null function on P is denoted lp_guess, and we denote
calculate_diam the procedure which consists in computing the diameter of P .

3 Problem definition and existing solutions

In the rest of the paper, we study the case of an attacker who tries to recover t0
based on knowledge of pk = (ρ, t1) and a certain number of Dilithium signatures
{σi}i∈I signed under the corresponding secret key sk = (ρ,K, tr, s1, s2, t0). In
this section we show that each Dilithium signature provides information on the
coefficients of t0, in the form of inequalities on its coefficients. Naturally, we will
try to exploit this leakage of information by using linear programming theory to
propose a solution.
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Proposition 2 Let j ∈ {0, . . . , k − 1} and i ∈ {0, . . . , 255} and σ = (c̃, z,h) be
a signature of Sig.

– If h[j]
i = 0:

|(−ct0)[j]i + LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i | ≤ γ2 − β − 1.

– If h[j]
i = 1 and LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i > 0:

(−ct0)[j]i ≥ γ2 + β + 1− LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i ≥ 0.

– If h[j]
i = 1 and LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i < 0:

(−ct0)[j]i ≤ −(γ2 + β + 1)− LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i ≤ 0.

Remark 4 A and t1 are publicly known and c, z,h belongs to the signature, so
an attacker can calculate LowBitsq(Az−ct1 ·2d, 2 γ2). Since γ2 and β are known
parameters, an attacker can calculate the bound of the inequation obtained on
t0.

Proof. Let σ = (c̃, z,h) be a signature of Sig, j ∈ {0, . . . , k − 1} and i ∈
{0, . . . , 255}.

– If h[j]
i = 0, by definition of h[j]

i :

HighBitsq(Az− ct, 2 γ2)
[j]
i = HighBitsq(Az− ct1 · 2d, 2 γ2)[j]i .

Using the relation Az − ct = Az − ct1 · 2d − ct0 and decomposing Az −
ct,Az−ct1 ·2d with their high and low bits, we obtain the following relation:

LowBitsq(Az− ct, 2 γ2)
[j]
i = LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i − (ct0)

[j]
i ,

and by definition of the signature:

|LowBitsq(Az− ct, 2 γ2)
[j]
i | < γ2 − β.

So we finally obtain:

| − (ct0)
[j]
i + LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i | ≤ γ2 − β − 1.

– If h[j]
i = 1 and LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i > 0, by definition of h[j]

i :

HighBitsq(Az− ct, 2 γ2)
[j]
i = HighBitsq(Az− ct1 · 2d, 2 γ2)[j]i + 1.

Using the relation Az − ct = Az − ct1 · 2d − ct0 and decomposing Az −
ct,Az−ct1 ·2d with their high and low bits, we obtain the following relation:

LowBitsq(Az− ct, 2 γ2)
[j]
i = LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i − (ct0)

[j]
i − 2 γ2
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By definition of the signature:

|LowBitsq(Az− ct, 2 γ2)
[j]
i | < γ2 − β.

By replacing LowBitsq(Az − ct, 2 γ2)
[j]
i with the equation above and using

the fact that ||LowBitsq(Az− ct, 2 γ2)||∞ ≤ γ2 and ||ct0||∞ < γ2, we get:

(−ct0)[j]i ≥ γ2 + β + 1− LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i ≥ 0.

– If h[j]
i = 1 and LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i < 0:

By definition of h[j]
i :

HighBitsq(Az− ct, 2 γ2)
[j]
i = HighBitsq(Az− ct1 · 2d, 2 γ2)[j]i − 1.

Using the same reasoning, we obtain:

LowBitsq(Az− ct, 2 γ2)
[j]
i = LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i − (ct0)

[j]
i + 2 γ2

and therefore:

|LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i − (ct0)
[j]
i + 2 γ2| < γ2 − β.

Finally, because ||LowBitsq(Az− ct, 2 γ2)||∞ ≤ γ2 and ||ct0||∞ < γ2:

(−ct0)[j]i ≤ −(γ2 + β + 1)− LowBitsq(Az− ct1 · 2d, 2 γ2)[j]i ≤ 0.
⊓⊔

The reasoning above, for the second case is summarised in Figure 3. In red
the impossible values of (−ct0)[j]i according to the value of h[j]

i . In purple, the
impossible values of (−ct0)[j]i according to the generation of the signature.

Fig. 3. Idea to obtain inequalities on t0.

To measure the frequency with which we obtain an inequation on the co-
efficient of t0, we collected 10 000 signatures for an equal number of random
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messages for 10 random keys, for the three security level of Dilithium. The prac-
tical results are summarised in Table 1 below. For the sake of clarity, we have
split the inequations obtained for coefficients of h equal to 0 (on the left) from
the inequations obtained for coefficients of h equal to 1 (on the right).

NIST Level II III V
Average inequation obtained 1 922 + 63 2 996 + 38 3 984 + 56

Table 1. Average number of inequalities per signature, over 10 000 signatures, for
different security levels.

Remark 5 To visualise the information obtained, we can study the following
problem: an attacker knows all the coefficients of t[0]0 except the first two, t[0]0,0

and t[0]0,1. He queries signatures and obtains inequalities on the two missing co-
efficients, which can be represented as a point in the set of solutions to the
inequalities it has collected.

Fig. 4. Polytope containing (t[0]0,0, t
[0]
0,1) for 10, 50 and 100 inequalities.

In Figure 3, the two coefficients the attacker is seeking are (−961, 1631) and
the white part represents the polytope of solutions for 10, 50 and 100 collected
inequalities. As can be seen in the third image, we have an increasingly complex
algebraic description (several dozen inequations, most of which are not useful)
of a simple geometric object (a polytope with 5 faces).

3.1 A state-of-the-art solution?

The paper [BDE+18] studies the following problem: A vector s ∈ Zn is fixed and
secret, given m samples (a1, ⟨a1, s⟩+e1), . . . , (am, ⟨am, s⟩+em), where for all i in
{1, . . . ,m}, ai ∈ Zn and ei ∈ Z follows a probability distribution (χa)

n and χe

respectively, is it possible to find s? The paper answers yes to the question (under
assumptions detailed later) and gives the answer in two steps: from the point
of view of information theory, it gives a minimum bound for m (the number of
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samples required). Then they give a practical way of finding s where the number
of samples required is only slightly higher than the theoretical bound. For the
practical solution, they use the method of least squares. To avoid overloading
the paper, only the main results of the article are given.

Remark 6 It is natural to relate this problem to the problem of finding t0. Each
signature gives inequalities on a linear combination of the coefficients of t0. Con-
sequently, each signature provides an approximate value on a linear combination
of the coefficients of the polynomials of t0.

Definition 8 (ILWE Distribution [BDE+18]) For any vector s ∈ Zn and any
two probability distributions χa, χe over Z, the ILWE distribution Ds,χa,χe as-
sociated with those parameters is the probability distribution over Zn×Z defined
as follows: samples from Ds,χa,χe

are of the form

(a, b) = (a, ⟨a, s⟩+ e) with a← χn
a and e← χe.

Definition 9 (ILWE Problem [BDE+18]) The ILWE problem is the com-
putational problem parametrized by n,m, χa, χe in which, given m samples
{(ai, bi)}1≤i≤m from a distribution of the form Ds,χa,χe for some s ∈ Zn, one is
asked to recover the vector s.

Definition 10 (Subgaussian random variable [BDE+18])
A random variable X over R is said to be ζ−subgaussian for some ζ > 0 if

the following bound holds for all s ∈ R :

E[exp(sX)] ≤ exp(
ζ2s2

2
).

A random vector x ∈ Rn is called a ζ−subgaussian random vector if for all
vectors u ∈ Rn with ||u||2 = 1, the inner product ⟨u,x⟩ is a ζ−subgaussian
random variable.

Theorem 1 ([BDE+18]) Suppose that χa is a ζa−subgaussian and χe is ζe−
subgaussian, and let (M,b = Ms+e) the data constructed from m samples of the
ILWE distribution Ds,χa,χe

for some s ∈ Zn. There exist constants C,C ′ > 0
such that if:

m ≥ Cn and m ≥ C ′ × σ2
e

σ2
a

log(n)

then the least square estimators s̃ = (MTM)−1MTb satisfies ||s − s̃||∞ < 1/2,
and hence ⌈s̃⌋ = s, with probability at least 1− 1/n.

Building the ILWE system After collecting enough signatures, we will have
multiple inequalities on the k polynomials of t0 independently, so we can split
the problem into k smaller ones, one for each polynomial of the vector t0. For
the sake of clarity, let us explain the methodology for a single polynomial of the

13



vector t0 = (t
[0]
0 , . . . , t

[k−1]
0 ). We select a signature that gives an inequation on

t
[0]
0 . Let σ = (c̃, z,h) be a signature and i ∈ {0, . . . , 255} such that h[0]

i = 1 and
LowBitsq(Az− ct1 · 2d, 2 γ2)[0]i > 0:

(−ct0)[0]i ≥ γ2 + β + 1− LowBitsq(Az− ct1 · 2d, 2 γ2)[0]i , (1)
n−1∑
j=0

t[0]0,j(−cx
j)i ≥ γ2 + β + 1− LowBitsq(Az− ct1 · 2d, 2 γ2)[0]i . (2)

Since the polynomial c is known, σ gives us an inequality on the coefficients
of t[0]0 . The case of h[0]

i = 0 and LowBitsq(Az − ct1 · 2d, 2 γ2) < 0 are treated
in the same way. Thus, with these signatures, we can construct two matrices
M+ and M− and four vectors e+, b+ and e−, b− such that b+ = M+t[0]0 +

e+ and b− = M−t[0]0 + e−. Each row of one of these matrices representing an
inequality collected on t[0]0 . For the rest of this part, we assume that we have
concatenated M+,b+, e+ and M−,b−, e− to obtain M,b, e such that:

b = Mt[0]0 + e.

Remark 7 To strictly apply Theorem 1, it must be proved that the coefficients
of the matrix M, as well as the error vector e, follow subgaussian distributions,
and then estimate the corresponding standard deviations σa and σe. As always
when moving from theory to practice, certain simplifications are necessary.

Estimating probability distributions We want now to calculate, if not esti-
mate, the variance of the distribution followed by the coefficients of the matrix
M and the error vector e. Each row of the matrix M is built using the coeffi-
cients of a vector c generated with a Dilithium signature. Therefore, each line
of M has its coefficients in {−1, 0, 1}, of which τ coefficients will be ±1 (with
equiprobability), the remainder being at zero. It is not true that the coefficients
of the matrix M are independent. For example, the number of zeros in each row
of M will always be 256−τ . Even worse, by retrieving an inequation from a zero
coefficient of h, consecutive rows of the matrix M will be identical. Nevertheless,
we make the heuristic assumption that it is the case, so that we can explicitly
calculate the law followed by the coefficients of the matrix M.

Lemma 2 Let m ∈ N be the number of collected inequalities on t[0]0 , and τ the
numbers of non-zero coefficient in c. Under the heuristic assumptions described
above, the coefficients of the matrix M = (ai,j)0≤i≤m−1,0≤j≤n−1 follow the law
below:

P(ai,j = 0) =
256− τ

256
and P(ai,j = 1) = P(ai,j = −1) =

τ

2× 256
.
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Furthermore, this distribution is subgaussian and its variance can be calculated
explicitly:

σ2
a =

τ

256
.

Proof. According to [BDE+18], any real variable whose probability distribution
has a mean of zero and is carried by a segment is subgaussian, which is the case
for ai,j . In addition, the variance formula gives:

σ2
a = E(a2i,j) =

τ

256
.

⊓⊔

To demonstrate that the vector e is subgaussian, according to [BDE+18]
it is sufficient to show that it has null expectation and that it is carried by a
segment. Since e is defined by parts (depending on the inequalities we recover),
it is sufficient to show that each part is subgaussian. In order not to overload
this section, we will only give details of the inequalities obtained for coefficients
of h at 0. Let σ = (c̃, z,h) be a signature of Sig and i ∈ {0, . . . , 255} such that
h
[0]
i = 0:

|(−ct0)[0]i + LowBitsq(Az− ct1 · 2d, 2 γ2)[0]i | ≤ γ2 − β − 1.

The coefficients of t[0]0 are fixed in {−212 + 1, . . . , 212} and from the generation
of the signature ||ct0||∞ < γ2, so we can assume that (−ct0)[0]i follows a gaussian
distribution centered and carried by {−γ2+1, . . . , γ2−1}. If we also assume that
all the coefficients of LowBitsq(Az− ct1 · 2d, 2 γ2) follow a uniform distribution
in {−γ2 + 1, . . . , γ2}, then γ2 − β − 1− LowBitsq(Az− ct1 · 2d, 2 γ2)[0]i follows a
uniform distribution in {−β − 1, . . . , (2γ2 − β − 1)− 1} By the same reasoning,
−(γ2 − β − 1) − LowBitsq(Az − ct1 · 2d, 2 γ2)[0]i follows a uniform distribution
in {−(2γ2 − β − 1), . . . , β}. Finally, even if it means adding 1/2 to the error
obtained, the error vector obtained from the inequations where the coefficient
of h is zero has a null expectation and is carried by the following segment:
{−(3γ2 − β − 2), . . . , 3γ2 − β − 2}. With the same assumptions and the same
reasoning, we can show that the error vector obtained for the inequalities given by
the coefficients of h at 1 is also of zero expectation and is carried by the segment
{−(3γ2 + β), . . . , 3γ2 + β}. Finally, the error vector obtained by concatenating
all the inequalities has zero expectation and is carried by the segment {−(3γ2 +
β), . . . , 3γ2 + β}. According to [BDE+18], e is (3γ2 + β)-subgaussian and:

σ2
e ≤ (3γ2 + β)2.

Table 2 summarises the different values of τ, σa and σe (theoretical and experi-
mental) according to the different security levels.4

4 For each experimental measurement, the results are averages over 5 keys and the
unbiased sample variance was calculated using 500 000 samples.
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NIST Level II III V
τ 39 49 60

σ2
a (theory) 0.1523 0.19141 0.234375
σ2
a (exp.) 0.1523 0.19139 0.234372

upper bound on σ2
e 81 666 779 076 617 575 939 600 617 456 494 656

σ2
e (exp.) 11 411 519 137 30 832 793 508 30 752 629 506

Table 2. Value of the standard deviation according to the level of security.

It will be possible to find t0 using Theorem 1 with Ω((σe/σa)
2 log(n)) in-

equalities. However, as can be seen in Table 3 the variance of the error is sig-
nificantly higher than the variance of the coefficients of the matrix M. As it
would be necessary to collect at least m = (σe/σa)

2 inequalities over t0, the size
of the matrix M = (ai,j)0≤i≤m−1,0≤j≤n−1 makes it impossible to calculate the
least square estimator in practice (because it would be necessary to manipulate
matrices of a size close to m). Furthermore according to [BDE+18], from an
information-theoretic point of view, with fewer than m = (σe/σa)

2 inequalities
it is not possible to distinguish the distribution of Dt0,χa,χe

from Ds,χa,χe
with

s ̸= t0.

NIST Level I III V
σ2
e/σ

2
a × log(n) 239 240 239

Table 3. Theoretical bound to distinguish t0.

Remark 8 The ILWE system obtained is far too “noisy”, but in our case we get
more than an approximation of a linear combination of certain coefficients of
t0, we also know whether this approximation is greater (in the case of a “upper
inequality”) or lower (in the case of a “lower inequality”) than the value we are
seeking. This detail changes the situation: taking this information into account
by reformulating the problem of finding t0 into a linear programming problem
will allow us to create an attack that will require far fewer inequations than the
ILWE method.

Nevertheless, this section shows that the distribution of the inequalities ob-
tained for t0 follows a subgaussian distribution centered around the expected
value. This result will be important in Section 4 when it comes to demonstrat-
ing the termination of our attack.
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4 An attack methodology

The natural approach is to recover enough inequalities on t0 to form a system
(LP ) for which it is the unique solution. As we shall see later, this “naive” solution
is not possible in our case.

Building the (LP) system After collecting enough signatures, we will have
multiple inequalities on the k polynomials of t0 independently, so we can split the
problem into k smaller ones, one for each polynomial of the vector t0. We explain
the methodology for a single polynomial of the vector t0 = (t

[0]
0 , ..., t

[k−1]
0 ). We

select a signature that gives an inequation on t
[0]
0 . Let σ = (c̃, z,h) be such a

signature, with i such that h[0]
i = 1. Assuming LowBitsq(Az−ct1·2d, 2 γ2)[0]i > 0,

one has

(−ct0)[0]i ≥ γ2 + β + 1− LowBitsq(Az− ct1 · 2d, 2 γ2)[0]i , (3)
n−1∑
j=0

t[0]0,j(−cx
j)i ≥ γ2 + β + 1− LowBitsq(Az− ct1 · 2d, 2 γ2)[0]i . (4)

Since the polynomial c is known, σ gives an inequality on the coefficients of
t[0]0 . The other two inequalities are treated in the same way. Thus, with these
signatures, we can construct two matrices M+ and M− and two vectors b+ and
b− such that t[0]0 ∈ {x ∈ {−212 + 1, . . . , 212}n | M+x ≥ b+ and M−x ≤ b−}.
Each row of one of these matrices representing an inequality collected on t[0]0 . In
particular, if we collect enough inequalities for t[0]0 to be the only solution, we
can find t[0]0 by solving the following (LP ) problem of dimension n = 256:

maximize 0
subject to M+x ≥ b+

M−x ≤ b−
x ∈ [−212 + 1, 212]n

Fig. 5. The (LP ) problem related to t[0]0 .

Results using the naive approach. Unless a huge number of inequalities
is collected, as can be seen in the Table 4, t0 will never be the only solution.
Nevertheless, we can assume that we know t0, in order to estimate the size of
the polytope containing it. In Table 4, the attack time takes into account the
time required to generate the signatures and the time required to build and solve
the k (LP ) systems associated with t0, however the number of inequalities only
includes inequations associated with t[0]0 and t̃[0]0 is the polynomial obtained
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by minimizing the null function on the polytope defined by the inequalities
collected on t[0]0 . For the sake of clarity, we have split the inequations obtained
for coefficients of h equal to 0 (on the left) from the inequations obtained for
coefficients of h equal to 1 (on the right).

Number of signatures Number of inequalities ||t[0]0 − t̃[0]0 ||∞ Attack time
24 9 953 + 389 5 649 0h0m23s
117 48 456 + 1 915 1 031 0h3m52s
583 241 541 + 9 378 247 1h55m47s

Table 4. Attack times and size of the (LP ) system on t0.

The method provides us with a point close to t[0]0 (because t[0]0 is in the
polytope constructed by the (LP) system by definition). Unfortunately, it is not
possible to increase the number of inequations endlessly, as the calculation time
depends polynomially on the number of inequations.

Remark 9 If we denote P the polytope obtained on t[0]0 with a large number
of inequations, most of the inequations we collect are not “useful” in the sense
that P remains unchanged whether the inequation is taken into account or not.
This is illustrated in Figure 4: with 100 inequations collected, only 5 of them
are actually useful in describing the polytope of solutions. By collecting lots of
inequations, we get an increasingly complex algebraic description (a growing set
of inequations) of a simple geometric object: a polytope with a few faces that
approximates t[0]0 . We need a way of selecting “useful” and “useless” inequations
to reduce the complexity of solving the (LP ) problem associated with t[0]0 .

4.1 Useful inequalities

In this subsection we assume that we know t̃[0]0 ∈ Rq and C such that ||t̃[0]0 −
t[0]0 ||∞ ≤ C. In other words, t[0]0 ∈ B∞(t̃[0]0 , C). Given an inequation on t0, we
want to determine efficiently if the intersection between B∞(t̃[0]0 , C) and the set
of solutions of the inequation is non-trivial.

Definition 11 Let t̃[0]0 ∈ Rq and C ∈ R+. We say that an inequation on t[0]0 of
the form {a⊺x − b ≥ 0} (resp. {a⊺x − b ≤ 0}) is useful according to t̃[0]0 and C
if and only if:

B∞(t̃[0]0 , C) ̸⊂ {x ∈ Rn | a⊺x− b ≥ 0 } (resp. a⊺x− b ≤ 0)

Remark 10 This definition is very natural and is illustrated with Figure 6.
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Fig. 6. On the left, a useful inequation. On the right a useless inequation.

Proposition 3 An inequation on t[0]0 of the form {a⊺x − b ≥ 0} is useful ac-
cording to t̃[0]0 and C if and only if:

a⊺t̃[0]0 − C||a⊺||∗∞ < b.

An inequation on t[0]0 of the form {a⊺x − b ≤ 0} is useful according to t̃[0]0

and C if and only if:

a⊺t̃[0]0 + C||a⊺||∗∞ > b,

where ||.||∗∞ denote the operator norm.

Proof. Let f : x 7→ a⊺x− b, then:

B∞(t̃[0]0 , C) ⊂ {x ∈ Rn | f(x) ≥ 0} ⇐⇒ inf
||u||∞≤1

(f(t̃[0]0 + Cu)) ≥ 0.

In addition,

inf
||u||∞≤1

(a⊺(t̃[0]0 + Cu)− b) = a⊺t̃[0]0 − C sup
||u||∞≤1

(a⊺(−u))− b

= a⊺t̃[0]0 − C||a⊺||∗∞ − b.

This concludes the first relation, and the same reasoning can be used to deduce
the second result.

⊓⊔

Remark 11 Proposition 3 allows us to calculate efficiently whether an inequa-
tion on t0 is useful or not according to t̃0 and C. Finally, it is important to note
that the definitions and propositions stated here remain when the infinite norm
is replaced by another norm, even if these formulations are not useful for us.

Notation 4 We will note generate_useful_ineq(δ, t̃[0]0 , C) the procedure for
generating δ useful inequalities according to t̃[0]0 and C.
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4.2 Formal description of the attack

With the different tools we need now defined, the main idea behind the attack
strategy can be summed up in one sentence: ‘Collect, guess, filter, repeat.’ More
precisely we will:

– Collect inequalities to obtain a polytope P0. By definition, t[0]0 ∈ P0.
– Calculate (or estimate heuristically) the diameter of P0 to obtain C and t̃[0]0

such that t[0]0 ∈ B∞(t̃[0]0 , C).
– Collect useful inequalities according to t̃[0]0 and C to obtain P1 and by con-

struction t[0]0 ∈ P1.
– Repeat until the polytope P verifies diam(P ) ≤ 1/2, in which case t[0]0 as

been recovered.

Algorithm 5 Recovering t[0]0

Ensure: t[0]0

Require: An inequation step δ

1: t̃[0]0 = 0

2: C, diam = 212

3: P = {−212 + 1 ≤ xi ≤ 212}i=0,...,255

4: while C ≥ 1 do
5: ∆ = δ

6: while diam > C/2 do

7: P = generate_useful_ineq(∆, t̃[0]0 , C)

8: diam = calculate_diam(P )

9: ∆ = 2×∆

10: C = C/2

11: t̃[0]0 = round(lp_guess(P))
12: return t̃[0]0

Proposition 4 For any δ ∈ N∗, Algorithm 5 terminates in a finite number of
steps, giving t[0]0 .

Proof. According to Section 3 , the error between the sum of some of the coef-
ficients of t[0]0 and the bound of the inequation obtained follows a subgaussian
distribution. In particular, there are inequalities which are equalities verified by
certain coefficients of t[0]0 . Thus the procedure generate_useful_ineq finishes
in a finite time for any value of δ and C > 0. This ensures that Algorithm 5
finishes after a finite number of steps. In addition, at step i of Algorithm 5:
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t[0]0 ∈ B∞(t̃[0]0 , 212−i) so that at the last step t[0]0 ∈ B∞(t̃[0]0 , 1/2) and therefore
t[0]0 = t̃[0]0 .

⊓⊔

Remark 12 Algorithm 5 is useful because it can be proved that it systematically
finds t[0]0 . Unfortunately, in practice it is too complex to be used, as each call to
the function calculate_diam requires the solution of 2 × 256 (LP ) problems,
each potentially containing several hundred thousand inequalities. Rather than
calculating the size of the polytope containing t[0]0 at each step, we estimate the
number of inequations needed to make the size of the corresponding polytope
small enough, without having to calculate it explicitly. This is formally described
in Algorithm 6.

Algorithm 6 Recovering t[0]0 heuristically

Ensure: A candidate for t[0]0

Require: An inequation step sequence (δi)i∈{1,...,m}, a radius sequence Cm < Cm−1 <
· · · < C1 = 212.

1: t̃[0]0 = 0

2: i = 1

3: P = {−212 + 1 ≤ xi ≤ 212}i=1,...,256

4: while i ≤ m do

5: P = generate_useful_ineq(δi, t̃
[0]
0 , Ci)

6: i = i+ 1

7: t̃[0]0 = round(lp_guess(P))
8: return t̃[0]0

Remark 13 If the sequence is not chosen carefully it may be that t0 /∈ B∞(t̃[0]0 , C)
at some step of Algorithm 6. As Figure 13 shows, if at any stage of the algorithm
we have an t̃[0]0 and C such that t[0]0 /∈ B∞(t̃[0]0 , C), collecting useful inequations
according to t̃[0]0 and C can lead to a point which deviates from t[0]0 , or even
worse: an (LP ) system without solution.
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Fig. 7. (LP ) system for a poorly choosen (δi).

5 Experimental results

We have used the reference implementation of Dilithium [DKL+22] to generate
signatures and to solve the (LP ) problems linked to t0 we have decided to use
lp_solve [MB04], a free linear programming solver in C. Our attack method
applies independently of lp_solve and any other solver could have been chosen.
All the tests and results presented in this section were carried out on a laptop
computer equipped with an Intel(R) Core(TM) i7-10850H 2.70GHz CPU. The
code used for the attack will be made public in the final version of the article.

5.1 Attack on Dilithium-2

In this section we present the results obtained by applying Algorithm 6 with
different choices of filtration (Ci) and inequation (δi) sequence. This gives rise to
time/signature/memory trade-offs. To reduce the number of signatures required
we decided to store the signatures generated at each stage of the algorithm since
the same inequation can be useful for different filtration, again an attacker could
do without it at the cost of having to collect more signatures.

Remark 14 The choices of the different sequences (Ci) and (δi) are heuristic
and are given as an example. Nothing prevents trying out other sequences and
testing the results obtained.

Attack methodology 1: The most conservative method is to follow as directly
as possible Algorithm 5.We therefore choose to divide the radius by two at each
stage i.e. (Ci) = (4096, 2048, . . . , 2, 1). We also choose a constant inequation
sequence, which we have set at 50 000. In other words, at each step we collect
50 000 inequalities on each of the polynome of t0 before solving the k associated
(LP ) problems. Table 5 shows the results obtained for the first 10 KAT keys.

Signatures Inequalities selected Recovery probability Average time Median time
474 026 418 219 + 239 719 1 1h13m10s 1h12m55s

Table 5. Average results of the attack on t0
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For greater clarity, we detail the results of Algorithm 6 for the first key of the
KAT in Table 6. For this table only, the knowledge of t0 was used to illustrate the
correctness of Algorithm 6. In Table 6, Time includes time to generate signatures
as well as time to solve the k = 4 (LP ) problems at each step of Algorithm6
and in "Inequalities selected" we detail the number of inequalities from zero
and non-zero hints, for the polynomial t[0]0 . With our choice of parameters, this
attack time is largely dominated by signature collection time.

Round Ci Signatures Inequalities selected ||t0 − t̃0||∞ Time
1 4096 117 48 456 + 1 915 837 2m17s
2 2048 234 46 612 + 3 731 431 1m56s
3 1024 468 43 112 + 7 433 234 1m57s
4 512 937 37 172 + 13 540 119 1m58s
5 256 1 879 32 057 + 18 844 53 2m11s
6 128 3 743 28 787 + 21 863 27 2m37s
7 64 7 485 27 125 + 23 434 13 3m23s
8 32 14 989 26 250 + 23 434 7 3m32s
9 16 30 023 26 055 + 24 700 3 4m15s
10 8 60 200 25 735 + 25 098 1 5m7s
11 4 119 843 25 660 + 25 229 1 6m44s
12 2 238 674 25 437 + 25 009 0 13m34s
13 1 475 856 25 634 + 25 247 0 12m23s

Total - 475 856 457 373 + 253 581 - 0h51m17s
Table 6. Detailed results of Algorithm 6 on the first KAT key.

Attack methodology 2: Another method of attack consists of choosing a
more “relaxed” sequence , at the cost of queerying more signature at each step of
Algorithm 6. This method is useful in a context where the attacker have a large
computing capacity and need to find t0 with as few signatures as possible. For
our tests, to maintain a manageable attack time we have chosen the sequence
(Ci) = (212 = 4096, 2048, . . . , 16, 8) with the associated sequence inequations:
(δi) = (50 000, . . . , 50 000, 150 000). Table 7 shows the results obtained for the
first 10 KAT keys. Again, we detail the results of the attack calculation for the
first key of the KAT in Table 8, to compare it with the previous attack method.

Signatures inequalities selected Recovery probability Average time Median time
179 354 39 2696 + 21 3943 1 1h26m53s 1h24m8s

Table 7. Average results of the attack on t0
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Round Ci Signatures Inequalities selected ||t0 − t̃0||∞ Time
1 4096 117 48 456 + 1 915 1031 4m16s
2 2048 234 46 612 + 3 731 495 4m2s
3 1024 468 43 112 + 7 433 262 3m48s
4 512 937 37 172 + 13 540 135 3m44s
5 256 1 879 32 057 + 18 844 62 3m53s
6 128 3 743 28 787 + 21 863 37 3m53s
7 64 7 485 27 125 + 23 434 19 4m7s
8 32 14 989 26 250 + 23 434 10 4m48s
9 16 30 023 26 055 + 24 700 4 5m27s
10 8 179 515 76 487 + 74 192 0 47m5s

Total - 179 515 392 113 + 213 853 - 1h25m3s
Table 8. Detailed results of the attack on the first KAT key.

For both methods, if we had sought to find t0 without filtration, each of the
4 (LP) problems associated would have contained at least 170 000 signatures.
According to Section 3 we obtain on average 496 inequalities per polynomial,
resulting in four huge (LP ) systems of at least 170 000 × 496 = 84 362 500 in-
equalities each, which is much more costly to solve than our sequence of small
systems. Indeed, thanks to our natural definitions of “usefull” inequations, we
were able to find an equivalent representation of each of the polytopes contain-
ing a polynomial of t0 with only 50 000 to 150 000 inequations.

5.2 Attack on Dilithium-3 and Dilthium-5

The theory remains true regardless of the security level of Dilithium, therefore
there should not be differences by changing the security level. To provide com-
plete results we tested the attack method presented in subsection 5.1 with the
other two security levels of Dilithium. For the two security levels we tested the
same sequence (Ci) = (212 = 4096, 2048, . . . , 16, 2) associated with the following
sequence of inequations (δi) = (60 000, . . . , 60 000). Table 9 and Table 10 show
the results obtained.

Signatures inequalities selected Recovery probability Average time Median time
523 534 398 704 + 210 140 1 1h 30min 05sec 1h 30min 33sec

Table 9. Average results of the attack on t0 for Dilithium-3.
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Signatures inequalities selected Recovery probability Average time Median time
513 106 481 181 + 249 566 1 3h 21min 23sec 3h 22min 52sec

Table 10. Average results of the attack on t0 for Dilithium-5.

Remark 15 The attack is slightly less effective on Dilithum security levels 3 and
5, which is not surprising: t0 contains 6 and 8 polynomials respectively, instead
of 4 for level 2, so there are just as many (LP ) problems to solve at each step.
It should also be noted that the other security levels are slower to sign messages.

6 Conclusion

Even if the state of art of attacks against Dilithium continues to evolve, the
corresponding ML-DSA standard has recently been published. Dilithium has
thus become a leading standard, and as such, is implemented in a quickly growing
number of products, some of which are vulnerable to side-channel attacks. In
order to design and implement effective protections against such attacks, it is
necessary to have a complete knowledge of the data that are available to potential
attackers. In particular, as discussed in the introduction, the question of the exact
vulnerability level of one of the secret key vectors t0 was up to now one of the
grey areas that was greatly in need of clarification.

Our paper shows that t0 can be reconstructed from sufficiently many Dilithium
signatures (between 200 000 and 500 000, depending on the security level) and
in just a few hours of computation. In other words, in theory as in practice, it is
reasonable to consider t0 as part of the public key. The results are not surprising
but, in our opinion, it is striking that the attack is so effective. For instance,
for Dilithium 2, t0 is a vector of 4 polynomials of degree 256, whose coefficients
belong to the interval {−212 + 1, . . . , 212}, so that the set of potential solutions
is enormous. Despite this, in all our experiments, we were able to find t0 in a
few hours, with less than 200 000 signatures.

Finally, even if the various filtration techniques we used are efficient enough
to recover t0 with a reastic complexity, there is still room for optimization in
terms of both the number of signatures and the computation time.
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