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Abstract

An ongoing research challenge in symmetric cryptography is to design an authenticated encryption
(AE) with a commitment to the secret key or preferably to the entire context. One way to achieve
this is to use a transform on an existing AE scheme, if possible with no output length expansion.
At EUROCRYPT’22, Bellare and Hoang proposed the HtE transform, which lifts key-commitment
to context-commitment. In the same year at ESORICS’22, Chan and Rogaway proposed the CTX
transform, which works on any AE scheme where the tag is not required for decryption. However, for
AE schemes which are not key-committing to begin with and which use the tag for decryption, no such
transform exists till date. The latter category encompasses all AE schemes based on the design paradigms
SIV, MAC-then-Encrypt, and Encode-then-Encipher. In this work, we propose PACT, a transform to
convert any AE scheme into a context-committing one without any output length expansion. In addition,
PACT preserves both nonce-respecting and nonce-misuse security of the legacy AE scheme. However,
this is not the case with all the existing transforms. To demonstrate this, we show that a combination of
CTY and SC (proposed by Bellare and Hoang, CRYPTO’24) doesn’t preserve the nonce-misuse security
of the legacy AE scheme. PACT requires only one call to a collision-resistant unkeyed hash function
and one call to a block cipher. Finally, we propose a lighter transform comPACT, which converts a
nonce-respecting AE scheme into a context-committing one.

1 Introduction

Authenticated Encryption (AE) plays a pivotal role in modern symmetric cryptography by facilitating both
encryption and authentication of plaintext. Frequently, AE schemes also offer the ability to authenticate
additional data (called Associated Data), which is transmitted without encryption. These schemes are
known as Authenticated Encryption with Associated Data (AEAD). Many contemporary AE schemes
predominantly rely on nonces [Rog04], which in its most basic form require users to provide a unique
nonce for each plaintext. Such schemes are known as Unique Nonce AE (UNAE). In contrast, Deterministic
Authenticated Encryption (DAE) [RS06] is used where leveraging existing entropy or redundancy in the
input makes more sense, thereby avoiding the overhead of nonces. This is particularly advantageous, for
instance, when encrypting cryptographic keys.

Over time, the comprehension of AE security has undergone several revisions. Misuse-Resistant AE
(MRAE) [RS06] was introduced to ensure that nonce repetitions do not compromise the security of the
scheme, provided that a combination of nonce, associated data, and message values is not repeated.
Subsequently, AE security was broadened to include scenarios where unverified plaintexts are released
[ABL+14]. Further developments led to the notion of robust AE [HKR15] which allows the user to specify
the ciphertext expansion, i.e., how much longer the ciphertext is compared to the plaintext. In recent
years, a diverse array of leakage-resilient AE notions [PSV15, BMOS17, BPPS17] have spawned. More
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recent works have emphasised that nonce and associated data present in the plaintext could potentially
divulge crucial information, such as identifying sessions and users, thereby advocating for anonymous
AE [CR19] and AE2 [BNT19].

Despite the existence of AE schemes with desirable features nonetheless, the primary focus has consis-
tently centered on ensuring confidentiality and authenticity across different scenarios. Both the CAESAR
competition for authenticated encryption [CAE19] and the recent NIST lightweight cryptography (LWC)
standardisation process [NIS18] underscored the importance of AE schemes that guarantee security by
delivering both confidentiality and authenticity.

However, a recent wave of attacks has demonstrated the necessity for a reevaluation of our conception
of a secure AE scheme. The Facebook message franking attack [DGRW18] show how to break Facebook’s
message franking scheme, which means a malicious user can send an objectionable image to a recipient
but that recipient cannot report it as abuse. Vulnerabilities have also been observed in “Subscribe with
Google” [ADG+22] and Shadowsocks proxy servers [LGR21]. In the latter, adversaries can build a practical
partitioning oracle attack that quickly recovers passwords from the servers. Indeed, all these attacks can be
attributed to a common issue: the presence of ciphertexts that decrypt correctly under multiple keys. This
vulnerability persists despite efforts to ensure confidentiality and authenticity, underscoring the necessity
for an additional security notion.

Committing Authenticated Encryption. In pursuit of this goal, the notion of commitment security
[BH22] was introduced, necessitating that every ciphertext serves as a commitment to the key (which
we call CMTk security) or even to the entire context (which we call CMT security, following the trend
in concurrent work like [BCC+24] and [BH24]). The latter notion represents the strongest form and is
formalised through the following security game: The adversary provides two tuples (K,N,A,M), (K ′,
N ′, A′,M ′), each comprising a key, a nonce, an associated data, and a message. The adversary wins if
their contexts differ, (i.e., (K,N,A) ̸= (K ′, N ′, A′)) and Π.Enc(K,N,A,M) = Π.Enc(K ′, N ′, A′,M ′) holds,
where Π denotes the scheme under scrutiny. If we relax the condition of different contexts to different
keys, it becomes the CMTk security game.

The aforementioned attacks underscore the serious repercussions of employing non-committing au-
thenticated encryption. Given the likelihood of additional undiscovered attacks, addressing this issue
becomes imperative. In this regard, it is essential to subject AE schemes used in practice to scrutiny
regarding commitment security. This evaluation process has already commenced, with several com-
monly used AE schemes (such as GCM, ChaCha20-Poly1305, SIV, CCM, EAX, OCB3) undergoing exami-
nation [BH22,MLGR23,ADG+22]. Regrettably, a majority of these schemes have been found lacking in
achieving commitment security.

To attain commitment security, a viable strategy entails constructing authenticated encryption schemes
from the ground up, ensuring they inherently offer commitment security. This approach alleviates worries
about commitment attacks when these schemes are deployed in diverse protocols. Nonetheless, a more
efficient method involves devising techniques to ensure commitment security of the existing AE schemes
(which we call legacy AE schemes in this work), preferably meeting the criteria of CMT security. While
some of these techniques are AE-specific, others are applicable to a class of AE schemes. We call a
technique of this later category a generic AE transform. A generic AE transform is a technique which can
be combined with any existing AE scheme, and results in a new AE scheme.

Ensuring the CMT security of Legacy AE Schemes. Several generic AE transforms for converting
non-committing AE schemes into committing AE schemes have been suggested. Initially, these transforms
focused solely on achieving CMTk security, but our interest lies in transforms that achieve CMT security.
Bellare and Hoang [BH22] introduce the first generic transform, known as HtE (Hash-then-Encrypt), which
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HtE[Π,H].Enc(K,N,A,M)

1: K∗ ← H(K,N,A)
2: (C, T )← Π.Enc(K∗, N, ϵ,M)
3: return (C, T )

HtE[Π,H].Dec(K,N,A,C, T ∗)

1: K∗ ← H(K,N,A)
2: X ← Π.Dec(K∗, N, ϵ, C, T )
3: return X

Figure 1: Specification of HtE. HtE.Enc and HtE.Dec are the encryption and decryption algorithms of HtE
respectively. Π is the input AE scheme, and Π.Enc and Π.Dec are its encryption and decryption algorithms
respectively. K, N , A, M , C, and T denote the key, the nonce, the associated data, the message, the
ciphertext and the tag, respectively. H is a hash function whose output-size is equal to the key-size of Π.

converts a CMTk-secure scheme into a CMT-secure scheme. Fig. 1 gives the complete specification of HtE.
HtE imposes no ciphertext expansion, and preserves both UNAE and MRAE security. While this serves as
a promising starting point, HtE only works for AE schemes that are already CMTk-secure. To address this,
the same paper introduces two transforms: UtC (UNAE-then-Commit) and RtC (MRAE-then-Commit),
which transform non-committing UNAE and MRAE schemes, respectively, into CMTk-secure schemes.
However, both of these transforms result in ciphertext expansion. Consequently, any non-committing
nonce-based AE scheme can be transformed into a CMT-secure AE scheme using either HtE◦UtC or
HtE◦RtC, but both schemes entail ciphertext expansion. Also note that both these variants provide
t/2-bit CMT security, where t is the tag size of the legacy AE scheme.

As a separate contribution, the authors also suggest modifications for GCM and AES-GCM-SIV to make
them CMTk-secure. Specifically, they introduce CAU and CAU-SIV as generalisations of GCM and AES-
GCM-SIV respectively, and propose adjustments to yield CMTk-secure variants CAU-C1 and CAU-SIV-C1
respectively. Unlike UtC and RtC, these modifications do not lead to any ciphertext expansion, allowing
the application of HtE to obtain CMT-secure schemes without ciphertext expansion.

Chan and Rogaway [CR22] introduce the CTX transform, which converts an AE scheme Π into a
CMT-secure AE scheme CTX[Π], provided that the encryption algorithm of Π can be decomposed into two
independent algorithms Π.Enc and Π.Auth, where Π.Enc produces the ciphertext C and Π.Auth generates
the tag T . Fig. 2 gives the complete specification of CTX. While the authors argue that commonly used
UNAE schemes like GCM and OCB meet these structural requirements, most frequently employed MRAE
schemes such as SIV and its variants like GCM-SIV and NSIV, schemes employing the Mac-then-Encrypt
paradigm or the Encode-then-Encipher paradigm, and several DAE schemes fall beyond the scope of CTX.
In short, CTX is not applicable to any AE in which the decryption algorithm is dependent on the tag.
We call such schemes TDD (Tag Dependent Decryption based) schemes. CTX also provides t/2-bit CMT
security.

Naito et al. [NSS24] introduce a CMT transform labelled KIVR, which avoids ciphertext expansion by
leveraging redundancy inherent in the plaintext. While this transform could prove advantageous for pro-
tocols where redundancy in plaintexts is commonplace, it deviates from assumptions typically encountered
in classical settings.

Recently, in a concurrent work, Bellare et al. [BH24] have introduced the CTY transform as a faster
alternative to the CTX transform. Unlike CTX, which processes the associated data twice—once for
encryption and once for hashing, the CTY transform demonstrates that using the associated data only for
hashing is sufficient to achieve same CMT security as CTX. In the same paper, the authors argue that
since CMT attacks are offline, having approximately 128 bits of CMT security is advantageous. Given
that most AE schemes employ 128-bit tags, HtE, CTX, and CTY provide 64 bits of CMT security. To
address this limitation, the authors suggest that the output of the CTY transform does not need to be
output-length-preserving, leading them to propose a technique called SC, which reduces the output-size
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CTX[Π,H].Enc(K,N,A,M)

1: C ← Π.Enc(K,N,A,M)
2: T ← Π.Auth(K,N,A,M)
3: T ∗ ← H(K,N,A, T )
4: return (C, T ∗)

CTX[Π,H].Dec(K,N,A,C, T ∗)

1: M ← Π.Dec(K,N,A,C)
2: T ← Π.Auth(K,N,A,M)
3: If T ∗ ̸= H(K,N,A, T )
4: return ⊥
5: return M

Figure 2: Specification of CTX. CTX.Enc and CTX.Dec are the encryption and decryption algorithms of
CTX respectively. Π is the input AE scheme. Π.Enc and Π.Auth are the algorithms of Π to generate the
ciphertext and the tag respectively; and Π.Dec is the decryption algorithm of Π. K, N , A, M , C, and T
denote the key, the nonce, the associated data, the message, the ciphertext and the tag, respectively. H is
a hash function whose output-size is equal to the tag-size.

of CTY with minimal CMT security loss. They propose that if the tag-size of the legacy AE is t bits,
the output tag-size of CTY can be 2t bits, achieving t bits of CMT security, and then SC can shorten the
ciphertext-size to t bits, while (almost) preserving the t-bit CMT security. Although this is an improvement
over CTX, both CTX and SC ◦ CTY are limited to the same class of AEs, excluding TDD schemes from
their applicability.

Challenges. We observe that numerous AE schemes are incompatible with CTX. For instance, schemes
following the SIV paradigm or the Mac-then-Encrypt paradigm utilise the tag for encryption, rendering
the decryption function dependent on the tag, thus precluding the application of CTX. Similarly, AE
schemes adhering to the Encode-then-Encipher paradigm necessitate the tag for decryption, as the output
of enciphering contains both the ciphertext and the tag, making them unsuitable for CTX as well.

Additionally, during our survey, we observed that certain AE schemes possess an MRAE counterpart
to their UNAE design, with the MRAE designs typically employing the tag for encryption (and hence
decryption), thereby rendering them unsuitable for CTX. Moreover, among these AE schemes, many are
insecure even against a constant-time CMTk adversary, thus ruling out the applicability of HtE.

To the best of our knowledge, there is currently no CMT transform that is both universal, meaning
it can be applied to any legacy AE schemes, and output-length-preserving, meaning it avoids ciphertext
expansion. We stress the significance of zero ciphertext expansion for any CMT transform from a practical
standpoint, as preserving ciphertext-size is crucial for compatibility with existing hardware, databases, or
communication protocols. Additionally, we highlight the need for universality because, although efficient
transforms like SC ◦ CTY are available, they are not applicable to TDD schemes, as mentioned earlier.

1.1 Our Contributions

As a first contribution, we show simple two-query MRAE attacks on the AE transforms CTY and SC◦CTY.
Our attacks demonstrate that unlike CTX, these transforms do not preserve the MRAE security of legacy
AE schemes.

As the main contribution of this work, we propose a new generic AE transform, which we call PACT.
This is the first output-length-preserving generic AE transform which is universal, i.e., it can ensure the
CMT security of any legacy AE scheme. Specifically, this is the first such transform which can provide
CMT security to TDD AE schemes. In addition, unlike CTY and SC ◦ CTY, PACT also has the useful
property of preserving the MRAE security of the underlying AE scheme. Thus, for TDD schemes which are
MRAE secure to begin with (like Deoxys-II and Joltik=), PACT preserves MRAE security while additionally
providing CMT security.
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Technical Overview of PACT. To give a brief overview, we start with an AE scheme Π that produces
a ciphertext C and a tag T using Π.Enc(K,N,A,M). PACT modifies the tag T to a new tag T ∗ by hashing
(K,N,A) using an unkeyed hash function and then making a block cipher call with the hash output as
the key and T as the input.

At a high level, PACT differs from CTX in the fact that PACT encrypts the tag instead of hashing
it. This design choice ensures that the modification of the tag from T to T ∗ is reversible, allowing the
retrieval of the original tag T . This allows for decryption using Π.Dec(K,N,A,C, T ∗) for all Π, even if
their decryption algorithm utilises T .

We show that PACT is not heavier than HtE and CTX from the design point of view. It’s also worth
noting that unlike PACT, both HtE and CTX rely on the Random Oracle or PRF assumption for the
underlying hash function. In contrast, PACT relies solely on the collision-resistance property of the hash
and utilises a single block cipher call, which we model as an ideal cipher for security proof.

Ciphertext Collision. For the concrete security analysis of PACT, we introduce a new security notion
for authenticated encryption schemes, termed the “ciphertext collision advantage”. We demonstrate that
to achieve a robust CMT security bound for PACT, it’s essential for the legacy AE scheme to possess a
small ciphertext collision advantage. Conversely, we contend that an AE scheme deemed “good” should
inherently exhibit a small ciphertext collision advantage, roughly of the order (q2/2|S| + q2/2|T |), where
the number of AE computations by the ciphertext collision adversary is q, and |S|, |T | refer to the state-
size (e.g. block-size for block cipher-based AEs) and tag-size of the AE respectively. Furthermore, we
substantiate this assertion by examining several classes of AE schemes to confirm that they indeed possess
a small ciphertext collision advantage. It’s important to note that we don’t view this requirement as a
special condition solely for a legacy AE scheme to be compatible with PACT.

comPACT: Lighter variant for UNAE security. While PACT is universally applicable, we also
propose a more efficient version, termed comPACT. It applies to the cases where we don’t need to preserve
the MRAE security of the legacy AE, i.e., it remains only UNAE secure after applying comPACT. The
difference lies in how associated data is handled: in PACT, it’s processed by both the legacy AE and
the hash function, whereas comPACT only involves the associated data for the hash function, leaving the
legacy AE with empty associated data. The CMT security of PACT extends to comPACT, with similar
security analyses for privacy and authenticity for UNAE schemes. We also compare comPACT with CTY,
and give an attack to show that neither of them is MRAE-secure.

1.2 CMTk Security: Can we do better?

So far most of the practical commitment attacks on the AE schemes which are used in important appli-
cations have been CMTk attacks which motivated the cryptography community to explore this particular
research direction in the first place. Surprisingly all the generic length-preserving transforms so far are
CMT transforms. One might intuitively think that a good exercise could be to try and design a generic
length-preserving CMTk-only transform which prevents the practical CMTk attacks and potentially has a
lighter design as compared to the generic CMT transforms. We tried to explore this direction and found
some intuition about why it might be a little difficult.

A general underlying theme of all the CMT transforms proposed so far is to use a collision-resistant
function on the key-nonce-associated data tuple, which is very much in line with the definition of CMT
security itself. Now, if we try to extrapolate this idea to design a CMTk-only transform, we don’t need the
collision-resistant function, and can simply use the key only. Unfortunately, however, this strategy doesn’t
work in most of the AE schemes. The issue is that once an input-output tuple is fixed, the associated data
can often be used to adjust an entire new input tuple and force the output to be equal to the previous
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output. As a result, one needs a somewhat novel idea to achieve a potentially lighter CMTk-only transform.
In the following we illustrate this with the concrete example of Deoxys-II.

Suppose a CMTk adversary of Deoxys-II obtains a (K,N,A,M,C, T ) tuple by a Deoxys-II computation.
Then it queries (K,T ) to the block cipher E to obtain T ∗. Then it fixes some (K ′, N ′) with K ′ ̸= K
and makes a (K ′, T ∗) query to E−1 to obtain T ′. Now, given K ′, N ′, C, T ′, the adversary can compute
an unverified message M ′. Since the adversary has yet to choose an associated data, it can just choose
one block associated data A′ such that M ′ is verified. In this way, the adversary generates two tuples
(K,N,A,M,C, T ∗) and (K ′, N ′, A′,M ′, C, T ∗) of the CMTk-only transform and breaks its CMTk security.

1.3 Related Work

The research in the field of committing encryption goes back to 2003 with Gertner and Herzberg [GH03],
who considered the problem in both the symmetric and asymmetric settings. Abdalla et al. [ABN10] gave
definitions for what they termed robustness. This work was in the asymmetric setting and required an
adversary to produce a ciphertext that validly decrypts under two different keys. Their notion encompassed
keys that are honestly generated. Later, Farshim et al. [FLPQ13] pointed out that, for some applications,
robustness against adversarially chosen keys is critical. They strengthened Abdalla et al.’s notion to
address this observation. Farshim et al. [FOR17] contextualised Abdalla et al.’s robustness in the AE
setting, initialising the study of what we call committing AE. Shortly after, Grubbs et al. [GLR17] defined
compactly committing AE with the goal of constructing schemes that support message franking. Dodis
et al. [DGRW18] also targeted message franking and further develop the definitions from [GLR17] by
introducing encryptment as a core component of compactly committing AE, which was later explored
further in [Hir20, HM22, HM23]. Albertini et al. [ADG+22] observed the possibility of mitigating the
attacks described in [GLR17] and [DGRW18] under a weak form of commitment.

Bellare and Hoang [BH22] introduced new encryption-based and decryption-based commitment secu-
rity notions, which also incorporate the number of inputs the adversary can produce for a single out-
put. Chan and Rogaway [CR22] introduced another notion, which incorporates the degree of control
the adversary has on the key. Other contributions in [BH22] and [CR22] have already been discussed.
Menda et al. [MLGR23] introduced the notion of context discoverability and investigated discoverabil-
ity attacks on popular schemes. Len et al. [LGR21] demonstrated password-recovery attacks on non-
committing password-based AE schemes. Chen et al. [CFI+23] investigated both key-commitment and
context-commitment security of a few AE schemes that are built from a variable-length tweakable cipher
or wide block cipher (WBC) via Encode-then-Encipher (EtE) approach [BR00]. Krämer et al. [KSW23]
investigated the commitment security of the finalists of the NIST Lightweight Cryptography Standardisa-
tion Process [NIS18]. Daemen et al. [DMA23] designed sponge-based commitment secure AE schemes from
SHAKE and TurboSHAKE. Degabriele et al. [DFG23] proved commitment security of SpongeWrap. Struck
and Weishäupl [SW24] designed leakage resilient commitment secure AE schemes. Derbez et al. [DFI+24]
analysed CMTk attacks against AES-based AE schemes. Dhar et al. [DEJ+24] analysed CMT security
of leakage-resilient AE schemes. Bhaumik et al. [BCC+24] analysed commitment and context-discovery
security of MACs and AE schemes. Naito et al. [NSS22] proposed FFF, an AE scheme designed by Encode-
then-Encipher paradigm on top of a wide block cipher.

1.4 Outline of the Paper

In Section 2 we introduce some notation and cryptographic preliminaries. Section 3 demonstrates a nonce-
misuse privacy attack on CTY. In Section 4, we introduce the notion of ciphertext collision advantage
for an AE scheme, and explain why we believe it should be small for all good AE schemes. In Section 5,
we introduce the PACT transform, and state our security results on the commitment security, privacy,
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and authenticity of PACT; we also introduce the lighter transform comPACT suitable for nonce-respecting
AE schemes. In Section 6, we illustrate the applications of PACT and comPACT by exhibiting some well-
known AE schemes for which we have no known generic context-committing transform without ciphertext
expansion. In Section 7, we provide the security proofs for the results from Section 5. In Section 8 we
summarise our work and discuss open research problems in this area.

2 Preliminaries

For an event A, Pr[A] denotes its probability. For a binary string X, |X| denotes its bit-length, while ⌈X⌉n
and ⌊X⌋n denote the n most significant bits (MSBs) and least significant bits (LSBs) of X respectively,
where |X| ≥ n. For a set X , X ←$ X denotes that X is sampled from X uniformly at random.

2.1 Cryptographic Primitives

Block Cipher. A block cipher is a function E : K×{0, 1}n → {0, 1}n (where n is a positive integer) such
that for any K ∈ K, EK(·) := E(K, ·) is a permutation on {0, 1}n. K is called the key of the block cipher.
In other words, a block cipher is a set of permutations indexed by a key. The typical expectation from a
block cipher is that for a randomly sampled secret key K, EK should behave like a random permutation.

Ideal Cipher. Let BC be the set of all block ciphers from K × {0, 1}n to {0, 1}n. An ideal cipher from
K × {0, 1}n to {0, 1}n is an element from BC chosen uniformly at random. Ideal ciphers are not practical
primitives, but are often used as a theoretical representation of a perfect block cipher while studying block
cipher-based constructions where the block cipher key is dynamically generated.

An ideal cipher E can be implemented by lazy sampling in the following way. E maintains a table
Tic, where each row Tic[K] stores the query-response tuples for ideal cipher queries with key K. Let
Tic1[K] := {M |(M, ·) ∈ Tic[K]} and Tic2[K] := {C|(·, C) ∈ Tic[K]}. When a new forward (or backward)
query (K,M) (or (K,C)) is received, then it is checked if (M, ·) (or (·, C)) is present in Tic[K]. If yes,
then the response is returned from the table. If not, then E samples and returns C ←$ {0, 1}n \ Tic2[K]
(or M ←$ {0, 1}n \ Tic1[K]) is returned, and updates the row Tic[K] to Tic[K] ∪ {(M,C)}.

Hash Function. A hash function is a function H : {0, 1}∗ → {0, 1}n (where n is a positive integer).
Sometimes a hash function can take a key as an additional input; while we mostly limit ourselves to
unkeyed hash functions in this paper, we will occasionally encounter keyed hash functions while analysing
some schemes.

For our proposals, we will consider collision resistant hash functions—hash functions for which it is
difficult to find two inputs X1 and X2 such that H(X1) = H(X2). We make this notion more formal later
in this section. When we write a hash function call with multiple inputs, we implicitly assume an injective
padding that combines the inputs into a single input.

Authenticated Encryption. A nonce-based Authenticated Encryption with associated data (or in short
nAE) involves a key-space K, a nonce-space N , an associated-data-space AD, a message spaceM and a
ciphertext space C along with two functions Enc : K×N ×AD×M→ C (called the Encryption Function)
and Dec : K × N × AD × C → M ∪ {⊥} (called the Decryption Function). For any key K ∈ K, nonce
N ∈ N and associated data A ∈ AD, an nAE scheme Π is correct if for any M ∈ M, C ← Π.Enc(K,N,
A,M) implies Π.Dec(K,N,A,C) = M ; and Π is tidy if for any C ∈ C, M ← Π.Dec(K,N,A,C) implies
Π.Enc(K,N,A,M) = C. Note that Π.Enc(K,N,A, ·) and Π.Dec(K,N,A) are inverse of each other if Π
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is both correct and tidy. Also note that if Π is correct, then for a fixed K ∈ K, N ∈ N and A ∈ AD,
Enc(K,N,A, ·) is an injective function fromM to C. The schemes we consider in this work are tidy.

For an nAE scheme Π := (Π.Enc,Π.Dec), there is a constant t such that if C = Π.Enc(K,N,A,M),
then |C| = |M |+ t. Usually t bit positions in C are specified, and they are said to constitute the tag, while
only the rest of the |M | bit positions are said to constitute the ciphertext. In this paper, without loss of
generality, we assume the last t bits of the output to be the tag unless otherwise specified. A Deterministic
Authenticated Encryption with associated data (or in short DAE) is similar to nAE except that it does not
take any nonce as input. In this work, we use the generic term AE to denote an authenticated encryption
which can be either nonce-based or deterministic.

We write (K,N,A,M,C, T ) ∈ Π (or (K,N,A,M,C, T ) /∈ Π) to denote that a party interacting with an
AE Π has already verified that the tuple (K,N,A,M,C, T ) is compatible (or incompatible, respectively)
with Π. This is different from the notation (C, T ) = Π.Enc(K,N,A,M) or M = Π.Dec(K,N,A,C, T ),
either of which only states the correctness condition for the tuple (K,N,A,M,C, T ) with respect to Π,
but doesn’t guarantee any verification of the correctness by the interacting party.

2.2 Security Notions

Distinguishing Advantage. For two oracles O0 and O1, an algorithm A which tries to distinguish
between O0 and O1 is called a distinguishing adversary. A plays an interactive game with Ob where b is
unknown to A, and then outputs a guess for b; A wins when the guessed bit matches b. The distinguishing
advantage of A is defined as

AdvO1,O0(A) :=
∣∣∣Pr
O0

[A ⇒ 1]− Pr
O1

[A ⇒ 1]
∣∣∣,

where the subscript of Pr denotes the oracle with which A is playing. We note that this notation is
general enough to capture games where each oracle implements multiple functions, e.g., F can handle
both encryption and decryption queries by accepting an extra bit to indicate the direction of queries.
We’ll interchangeably use the distinguishing advantage notation with games instead of oracles when the
adversary is trying to distinguish between two games.

Privacy and Authenticity. We consider two types of adversaries of an nAE scheme. A privacy ad-
versary A of an nAE scheme Π := (Π.Enc,Π.Dec) is a distinguishing adversary which tries to distinguish
between Π.Enc and an oracle Π∗ which works as follows. For an encryption query (N,A,M), it samples
an element from {0, 1}|M |+t uniformly at random, and outputs it. The advantage of A is called privacy
advantage, denoted by AdvAEpriv

Π (A).
Sometimes A is assumed to be nonce-respecting, i.e., it isn’t supposed to repeat a nonce. Depending

on whether we make this assumption or not, we use the terms UNAE (Unique Nonce AE) or MRAE
(Misuse Resistant AE) in place of AE. In the case of an MRAE scheme, Π∗ can be fine-tuned to Π† for the
privacy game in the following game. For every encryption query (N,A, ·), it samples an element from {0,
1}|M |+t uniformly at random without replacement, and outputs it. But if we use Π∗ instead of Π†, A can
distinguish it from Π.Enc only after it can observe a collision at the output of Π∗ for the same (N,A) tuple,
which will happen after about 2|M |+t encryption queries. Since we don’t deal with beyond-birthday-bound
security in this work, we use Π∗ for MRAE as well.

An authenticity adversary B of Π is an adversary which has access to both Π.Enc and Π.Dec, and tries
to “forge”, i.e. make a successful query to Π.Dec and this query is not the result of a previous encryption
query, and its advantage is called authenticity advantage, denoted by AdvAEauth

Π (B). We always impose a
restriction on each adversary that it can’t make pointless queries, i.e., can’t repeat the same query multiple
times or can’t make the query (N,A,C, T ) to Π.Dec if it has already made a query (N,A,M) to Π.Enc
and received (C, T ) in response.

8



CTY[Π,H].Enc(K,N,A,M)

1: C ← Π.Enc(K,N, ϵ,M)
2: T ← Π.Auth(K,N, ϵ,M)
3: T ∗ ← H(K,N,A, T )
4: return (C, T ∗)

CTY[Π,H].Dec(K,N,A,C, T ∗)

1: M ← Π.Dec(K,N, ϵ, C)
2: T ← Π.Auth(K,N, ϵ,M)
3: If T ∗ ̸= H(K,N,A, T )
4: return ⊥
5: return M

Figure 3: Specification of CTY. ϵ denotes empty string.

Collision Advantage. Let X and Y be two non-empty sets, and F be a function from X to Y. Suppose
an adversary A outputs a tuple (x1, x2). A wins if x1 ̸= x2 and F (x1) = F (x2). The collision advantage
of A is defined by

AdvColl
F (A) := Pr[A wins] = Pr[F (x1) = F (x2)].

We call A a collision adversary.

2.3 Commitment Security

The two prevalent notions of commitment security in the literature are: committing solely to the key K,
which we call CMTk security, and committing to the complete context, denoted as (K,N,A), which we
call CMT security. Bellare and Hoang [BH22] demonstrated that incorporating the message M into the
context is unnecessary, as committing to (K,N,A) alone is equivalent to committing to (K,N,A,M).

CMTk game for AE. In the CMTk game against an AE scheme Π, an adversary A outputs (K,N,A,M)
and (K ′, N ′, A′,M ′); A wins if:

• K ̸= K ′;

• Π.Enc(K,N,A,M) = Π.Enc(K ′, N ′, A′,M ′).

We write AdvCMTk
Π (A) to denote the probability that A wins.

CMT game for AE. In the CMT game against an AE scheme Π, an adversary A outputs (K,N,A,M)
and (K ′, N ′, A′,M ′); A wins if:

• (K,N,A) ̸= (K ′, N ′, A′);

• Π.Enc(K,N,A,M) = Π.Enc(K ′, N ′, A′,M ′).

We write AdvCMT
Π (A) to denote the probability that A wins.

3 A Nonce-misuse Privacy Attack on CTY

Figure 3 gives the complete specification of CTY. When CTY is applied to a legacy AE scheme, the
ciphertext C is independent of the associated data A. An adversary that can misuse nonces can use this
to mount the following simple 2-query privacy attack.

It makes two queries to the encryption oracle: (N,A,M) and (N,A′,M) with A ̸= A′, receiving (C, T )
and (C ′, T ′) as responses. If C = C ′, the adversary concludes that the oracle is real; otherwise, it concludes
the oracle is ideal. The adversary almost always succeeds since, in the real scenario, Pr[C = C ′] = 1, while
in the ideal scenario, the probability is only 1/2|C|.

9



Thus, while CTX and CTY offer comparable CMT security, CTY does not maintain MRAE security.
Because SC on its own does not preserve AE security, SC ◦ CTY also fails to preserve MRAE security.

While we have noted that MRAE schemes typically use the tag during decryption, making CTY inap-
plicable in those cases, there are still MRAE schemes to which CTY can be applied. For instance, KIASU
is an MRAE scheme where CTY is applicable. However, for such schemes, although CTY provides CMT
security, it compromises MRAE security.

4 Ciphertext Collision in AE Schemes

In this section, we introduce a concept related to AE schemes called the “ciphertext collision”. In essence,
for any two key-nonce-associated data tuples (K1, N1, A1) and (K2, N2, A2), and a tag T1, a ciphertext
collision in a scheme Π refers to the situation where upon receiving a randomly generated tag T2 one
obtains two messages M1 and M2 such that for some ciphertext C it holds that

Π.Enc(K1, N1, A1,M1) = (C, T1), and Π.Enc(K2, N2, A2,M2) = (C, T2).

This is typically unnecessary in AE design scenarios where adversarial access to the key is not assumed.
However, when an adversary can choose the key, it can launch commitment attacks using the ciphertext
collision. Therefore, from a committing security standpoint, our goal is to ensure that the probability of
ciphertext collision in an AE scheme is minimal. We first formally define the relevant terms.

4.1 Ciphertext Collision Advantage

Let Π be an AE scheme with tag space T . In the course of a ciphertext collision security game, an adversary
A chooses q1 key-nonce-associated data-tag tuples {(K0

i , N
0
i , A

0
i , T

0
i ) | i ∈ [q1]}. For each i ∈ [q1], it further

chooses mi key-nonce-associated data tuples {(Kj
i , N

j
i , A

j
i ) | j ∈ [mi]}, where m1 + · · · + mq1 = q2. For

each i ∈ [q1], j ∈ [mi], and an ϵ > 0, a tag T j
i is sampled from a distribution which guarantees that for any

c ∈ T ,Pr[T j
i = c] ≤ ϵ. A can make its choices adaptively and in any order, based on previously sampled

values of T j
i .

At the end of the game, A outputs a couple of messages M1 and M2, and three indices i, j1 and j2
with 0 ≤ j1 < j2, and wins if there exists a ciphertext C such that Π.Enc(Kj1

i , N j1
i , Aj1

i ,M1) = (C, T j1
i )

and Π.Enc(Kj2
i , N j2

i , Aj2
i ,M2) = (C, T j2

i ). The ciphertext collision advantage of A is defined as

AdvCC
Π (A) := Pr[A wins].

A is called a (q1, q2, ϵ)-ciphertext collision adversary of Π. Among all (q1, q2, ϵ)-ciphertext collision ad-
versaries of Π, the advantage of the adversary with maximum advantage is called the (q1, q2, ϵ)-ciphertext
collision security of Π.

Here, we provide a rough intuition about what q1 and q2 represent. In Section 5, we define the PACT
transform, which converts any AE scheme Π into a CMT-secure one. The PACT transform takes as input
the AE scheme Π, a hash function H, and a block cipher E. In the security analysis of PACT, we consider
a (q1, q2, ϵ)-ciphertext collision adversary A, where q1 is the number of ideal cipher queries and q2 is the
number of Π computations made by A. This is a very high-level intuition, with the detailed explanation
provided in Section 5.

Our next objective is to demonstrate that for any AE scheme Π, the ciphertext collision advantage is not
substantial. In the following subsections, we analyse the ciphertext collision advantage for two prominent
AEs, Deoxys-II (in Section 4.2) and Ascon (in Section 4.3) in detail. Then, in Section 4.4, we argue why this
advantage should not be large for any AE scheme. We would like to mention that bounding the ciphertext
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Deoxys-II[Ẽ].Enc(K,N,A = A[1]∥ . . . ∥A[a],M = M [1]∥ . . . ∥M [m])

1: Auth← 0
2: for i ∈ [1..a] do
3: Auth← Auth⊕ ẼK(0010∥i, A[i]) ▷ Ẽ is a tweakable block cipher (TBC)
4: end for
5: T ← Auth
6: for j ∈ [1..m− 1] do
7: T ← T ⊕ ẼK(0000∥j,M [j])
8: end for
9: T ← T ⊕ ẼK(0100∥m, ozpad(M [m]) ▷ ozpad is the 10∗ padding if |M [m]| < n
10: T ← ẼK(0001∥04∥N,T )
11: for j ∈ [1..m] do
12: Z[j]← ẼK(1∥T ⊕ j, 08∥N)
13: end for
14: Z ← Z[1]∥ . . . ∥Z[m]
15: return (C := M ⊕ ⌈Z⌉|M|, T )

Figure 4: Encryption of Deoxys-II

collision advantage of a general AE scheme depends on some equations intrinsic to the scheme, and thus
providing an exact bound for a general scheme is tough. We have reviewed numerous AEs in practice, and
our findings support our argument. The choice of Deoxys-II and Ascon for detail analysis is also justified
in Section 4.4.

4.2 Ciphertext Collision Security of Deoxys-II

Let us first look at Deoxys-II [JNPS19,JNPS21], an AE selected as the first choice for the “in-depth security”
portfolio of the CAESAR competition. The encryption algorithm for Deoxys-II is given in Fig. 4. Let A
be a (q1, q2, ϵ)-ciphertext collision adversary of Deoxys-II. We calculate AdvCC

Deoxys-II(A). In the following
analysis Π refers to Deoxys-II.

Let us fix i, j1, j2, the indices for which A finds a collision. First assume that the Π computation at
index j1 happens after the Π computation at index j2. Let the Π computation at index j2 yield

Π.Enc(Kj2
i , N j2

i , Aj2
i ,M2) = (C, T j2

i ).

Then, for A to win, we must obtain a message M1 such that

Π.Enc(Kj1
i , N j1

i , Aj1
i ,M1) = (C, T j1

i ).

We divide this into two cases depending on whether A starts with C and tries to generate an M1 or starts
with some M1 and tries to obtain C as the ciphertext. In each case, we calculate

Pr[Π.Enc(Kj1
i , N j1

i , Aj1
i ,M1) = (C, T j1

i )]

for the M1 selected. When A starts with C at index j1, the analysis differs depending on whether j1 = 0
or j1 > 0. Therefore, we consider the following three cases:

• Case 1: A starts with C at index j1 > 0. In this case, given Kj1
i , N j1

i , Aj1
i , T j1

i , the unverified message

M1 = M1,1∥ . . . ∥M1,l is generated blockwise. The next step is the verification of the tag T j1
i . Using

Kj1
i , N j1

i , Aj1
i ,M1, the adversary can compute a new tag T̃ , and T̃ is independent of T j1

i . For the
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tag verification to be successful, we must have T̃ = T j1
i . Since, j1 > 0, T j1

i is sampled following a

distribution which guarantees that for any c ∈ T ,Pr[T j
i = c] ≤ ϵ. Hence, the probability that the

tag verification is successful is at most ϵ.

• Case 2: A starts with C at index j1 = 0. In this case, T 0
i is chosen by A. Given K0

i , N
0
i , A

0
i , T

0
i , the

unverified message M1 = M1,1∥ . . . ∥M1,l is generated blockwise. The next step is the verification of
the tag T 0

i . Since K0
i , N

0
i , A

0
i is fixed, so is Auth0i . First, let us assume |M1,l| = n. Then, the last

message block M1,l must satisfy

M1,l = Ẽ−1
K0

i

(
04∥(l − 1),

(
Auth0i ⊕

l−1∑
u=1

Ẽ(04∥(u− 1),M1,u)

⊕ Ẽ−1
K0

i
(1∥04∥N0

i , T
0
i )
))

.

(1)

This occurs with probability 1/2n. If |M1,l| < n, then we replace M1,l by M1,l∥10∗ in the above
equation and the probability remains the same.

• Case 3: A starts with an M1 at index j1. Then, A must obtain

Π.Enc(Kj1
i , N j1

i , Aj1
i ,M1) = (C, T j1

i ).

Regardless of whether j1 equals 0 or not, A must choose M1 = M1,1∥ . . . ∥M1,l such that T j1
i is

verified. To verify the tag, note that A can freely choose any (l − 1) blocks of M1 (for instance, the
last (l − 1) blocks), while the first block must satisfy

M1,1 = Ẽ−1

K
j1
i

(
0,
(
Authj1i ⊕

l∑
u=2

Ẽ(04∥(u− 1),M1,u)

⊕ Ẽ−1

K
j1
i

(1∥04∥N j1
i , T j1

i )
))

.

(2)

One thing to note here is that M1,1 must be a full block. Otherwise, the verification of T j1
i is

probabilistic, and if |M1| = n − k, then Pr[T j1
i is verified] = 1/2k accounting for the k bits of fixed

padding.

Now that the tag is verified, A needs to obtain C as the ciphertext. Since A can choose the last
(l − 1) blocks of M1 freely, A can match the last (l − 1) blocks, but given that M1,1 is fixed,

Pr[C1 = M1,1 ⊕ ẼK(1∥T ⊕ 1, 08∥N)] =
1

2|C1|
.

If |C1| = n, then the probability of A winning in this case is bounded by 1/2n. If |C1| = n − k,
then for A to win both T j1

i needs to be verified and C1 needs to match, the probability of which is
bounded above by 1/2k × 1/2n−k = 1/2n.

Next, if we assume that the Π computation at index j2 happens after the Π computation at index j1,
note that Case 2 does not arise since j2 > 0, and the analysis of the other cases are exactly the same.

Hence, Pr[A wins | i, ji, j2] = 2ϵ+ 3/2n. Summing over 0 ≤ j1 < j2, we have

Pr[A wins | i] ≤ mqi(mqi + 1)(2ϵ+ 3/2n).

Finally, summing over all i, we have

Pr[A wins] ≤ q2(q2 + 1)(2ϵ+ 3/2n).
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Ascon[P,Q].Enc(K,N,A = A[1]∥ . . . ∥A[a],M = M [1]∥ . . . ∥M [m])

1: S ← IV ∥K∥N ▷ |S| = b, |A[i]| = |M [i]| = r, c = b− r, |K| = k
2: S ← P (S)⊕ (0b−k∥K) ▷ P is the outer permutation of Ascon
3: for i ∈ [1..a] do
4: S ← Q(⌈S⌉r ⊕A[i])∥⌊S⌋c ▷ Q is the inner permutation of Ascon
5: end for
6: S ← S ⊕ (0b−1∥1)
7: for j ∈ [1..m− 1] do
8: ⌈S⌉r ← ⌈S⌉r ⊕M [i]
9: C[i]← ⌈S⌉r
10: S ← Q(S)
11: end for
12: ⌈S⌉r ← ⌈S⌉r ⊕M [m]
13: C[m]← ⌈S⌉M [m]

14: S ← P (S ⊕ (0r∥K∥0b−r−k)
15: T ← ⌊S⌋τ ⊕ ⌊K⌋τ
16: return (C := C[1]∥ . . . ∥C[m], T )

Figure 5: Encryption of Ascon

4.3 Ciphertext Collision Security of Ascon

Now, we look at Ascon, the NIST LWC standard, and also the primary choice for the “lightweight authen-
ticated encryption” portfolio of the CAESAR competition. The encryption algorithm for Ascon is given
in Fig. 5. Let A be a (q1, q2, ϵ)-ciphertext collision adversary of Ascon. We calculate AdvCC

Ascon(A). In the
following analysis, Π refers to Ascon.

As in the case of Deoxys-II, we fix i, j1, j2 and assume that the Π computation at index j1 happens
after the Π computation at index j2. It is easy to see that the winning event of A can be divided into the
same three cases as above. We analyse the three cases for Ascon now.

• Case 1: A starts with C at index j1 > 0. Note that Ascon is CTX-friendly. Hence, given Kj1
i , N j1

i ,

Aj1
i , C, the adversary A can generate the verification tag T̃ as

T̃ = Π.Auth(K,N,A,Π.Dec(K,N,A,C)),

and hence T̃ and T j1
i are necessarily independent. Since, j1 > 0, T j1

i is sampled following a distri-

bution which guarantees that for any c ∈ T ,Pr[T j
i = c] ≤ ϵ. Hence, the probability that the tag

verification is successful is at most ϵ.

• Case 2: A starts with C at index j1 = 0. In this case, T 0
i is chosen by A. But since A gets C after

it chooses T 0
i , the tag verification is not guaranteed. In fact, we must have

Cl∥X = P−1(Y ∥(T 0
i ⊕ ⌈K0

i ⌉τ )), (3)

where X is a function of (K0
i , N

0
i , A

0
i , C1, . . . , Cl−1) and Y can be chosen freely by A. For an ideal

permutation P , the probability of this event is 1/2b, where b is the permutation-size.

• Case 3: A starts with an M1 at index j1. For a successful ciphertext collision, we must have
M1 = Π.Dec(Kj1

i , N j1
i , Aj1

0 , C). Even if the adversary chooses this M1, the tag verification boils
down to either Case 1 or Case 2 depending on the value of j1.

13



Considering the instance when the Π computation at index j2 happens after the Π computation at
index j1, and summing over all i, j1, j2, we have

Pr[A wins] ≤ q2(q2 + 1)(4ϵ+ 3/2b).

4.4 Generalisation

In this section, we conjecture that if ϵ ≤ 2/2|T |, then for a “well-designed” AE scheme, the ciphertext
collision advantage of A is

O
(

q22
2|T | +

q22
2|S|

)
,

where q2 is total the number of Π computations available to A, |S| is the size of the primitive (block-size
for block cipher-based AE or permutation-size for permutation-based AE), and |T | is the tag-size. By
“well-designed”, we mean that the AE scheme must be built upon near-ideal primitives. We now provide
an intuition for why we believe our conjecture is correct. Note that the exact ciphertext collision advantage
of a scheme would depend on the scheme itself. For any Π, the cases remain the same as above, although
their analyses will differ based on the scheme.

Starting with the first case, note that the analysis hinges on the fact that the tag T̃ generated during
the verification process and the randomly chosen starting tag T j

i are independent for both Deoxys-II and
Ascon. We argue that this holds for any well-designed AE scheme.

First, note that in case of a CTX-friendly AE scheme Π, the valid tag T̃ corresponding to a tuple
(Kj

i , N
j
i , A

j
i , C) can be obtained by

T̃ = Π.Auth(Kj
i , N

j
i , A

j
i ,Π.Dec(Kj

i , N
j
i , A

j
i , C)),

and hence T̃ and T j
i are necessarily independent.

Next, for any AE scheme Π where decryption precedes verification in the decryption algorithm, if
we select a tuple (Kj

i , N
j
i , A

j
i , C, T

j
i ) with a random T j

i and decrypt, the unverified message M should

essentially be almost independent of T j
i for any well-designed AE scheme. Many schemes like Mac-then-

Encrypt and SIV (most prominent CTX-unfriendly schemes fall in this category) then employ a verification
algorithm to generate T ∗, stating that verification is successful if T j

i = T ∗. This T j
i and T ∗ are independent.

Therefore, the success probability of A in this case is of the order 1/2|T | for all well-designed schemes.
Next, for Case 2, note that A chooses a starting tag T 0

i before receiving any C from which it needs to
construct M . The verification tag T̃ must be a function of either M or C; it cannot be solely a function of
(K0

i , N
0
i , T

0
i ). We select Deoxys-II and Ascon for detailed discussions because T̃ depends on M in the case

of Deoxys-II and on C in the case of Ascon.
If T̃ is a function of C, then since C is selected later, not all values of C will decrypt successfully. For

successful decryption (i.e., T̃ = T 0
i ), C and T 0

i must be related in some way (e.g., as in equation 3 for
Ascon). In most schemes, at least one ciphertext block needs to be part of the relation.

If T̃ is a function of M , then a later-selected C can be decrypted to obtain an unverified message M ,
but for successful verification (i.e., T̃ = T 0

i ), M and T 0
i must be related in some way (e.g., as in equation

1 for Deoxys-II). In most schemes, at least one message block needs to be part of the relation. In both
these subcases, for all well-designed schemes, the success probability of A is of the order of 1/2|S|.

Finally, in Case 3 too, note that the starting tag T j
i is chosen (either by A or randomly) before A

receives C and selects an M to generate this C. For generating C, successful verification is necessary (i.e.,
the verification tag T̃ must match T j

i ).

Similar to Case 2, at least one block of either C or M needs to be related to T j
i , depending on whether

T̃ is a function of C or M . Therefore, in this case as well, the success probability of A is of the order of
1/2|S|.
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PACT[Π,H, E].Enc(K,N,A,M)

1: (C, T )← Π.Enc(K,N,A,M)
2: K∗ ← H(K,N,A)
3: T ∗ ← E(K∗, T )
4: return (C, T ∗)

PACT[Π,H, E].Dec(K,N,A,C, T ∗)

1: K∗ ← H(K,N,A)
2: T ← E−1(K∗, T ∗)
3: X ← Π.Dec(K,N,A,C, T )
4: return X

Figure 6: Specification of PACT

Then, taking a sum over i, j1, j2, our intuition is that the ciphertext collision advantage is

O
(

q22
2|T | +

q22
2|S|

)
.

5 The PACT Transform

Let Π be an AE scheme having an encryption algorithm Π.Enc(K,N,A,M) that generates a ciphertext
C and tag T . (If the AE scheme doesn’t specify the tag and instead returns an expanded ciphertext C∗

with ⌈C∗⌉ = |M | + t, we denote the ciphertext core as C = ⌈C∗⌉|M | and the remaining t bits as the tag
T .) Our PACT construction uses the same ciphertext but replaces the tag T with an alternative tag T ∗.
We compute T ∗ by hashing (K,N,A) using an unkeyed hash function and then feeding the hash output
as the key into a block cipher along with the original tag T as the input.

Let H be a hash function and E be a block cipher such that the key-size of E is equal to the output-size
of H and the block-size of E is equal to the tag-size of Π. We denote as PACT[Π,H, E] the PACT transform
using H and E applied to Π. The complete specification of PACT[Π,H, E] is given in Figure 6. Note that
we treat the nonce and the associated data in a similar fashion, and the interface of our transform accepts
DAE schemes as well.

It is worth mentioning that while hashing the context (K,N,A) has become somewhat standard for
committing security (both HtE and CTX employ this method), PACT introduces a block cipher call at the
end. This design ensures that the modification of the tag from T to T ∗ is reversible. Unlike CTX, the
information on the original tag T is preserved, allowing for decryption using Π.Dec(K,N,A,C, T ∗) for all
Π, even if their decryption algorithm utilises T . For the security proofs, we model E as an ideal cipher.

We claim that PACT[Π,H, E] is CMT-secure as long as H is collision-resistant, and the advantage of
any ciphertext collision adversary of Π is small.

Theorem 1. For any CMT adversary A of PACT[Π,H, E] making q computations of Π and qC queries
to the t-bit ideal cipher E, we can construct a collision adversary B1 of H and a (qC , q, 2/2

t)-ciphertext
collision adversary B2 of Π such that

AdvCMT
PACT[Π,H,E](A) ≤ AdvColl

H (B1) +AdvCC
Π (B2) +

2q2C
2t

+
2qqC
2t

+
2qC
2t

,

where qC < 2t−1, and the computation time of B1 doesn’t exceed that of A by more than a constant.

The proof of Theorem 1 is deferred to Section 7.1. We have already argued that the ciphertext collision
advantage should be O(q2/2|S| + q2/2t) (since the tag-size |T | equals the block-size t in the definition of
PACT) for any practical AE. Further, the CMT security of PACT is bounded by the collision security of
the hash function that it employs. One can expect to break this with about 2|K

∗|/2 operations using a
birthday attack, where |K∗| is the key-size of E. Hence, roughly, PACT guarantees min{ |S|2 , |K

∗|
2 , t

2} bits
of CMT security.
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It is also crucial to ensure that a secure AE scheme Π retains its traditional AE security properties
after undergoing the PACT transform. In Theorems 2 and 3, we demonstrate that PACT maintains privacy
security and authenticity security, respectively, thus preserving the original AE security of Π.

Theorem 2. Let A be a privacy adversary of PACT[Π,H, E] making q encryption queries and qC ideal
cipher queries. Then we can construct a collision adversary B for H and a privacy adversary B′ for Π
making q encryption queries to its own oracle, such that

AdvAEpriv
PACT[Π,H,E](A) ≤ AdvColl

H (B) +AdvAEpriv
Π (B′) + qC

2k
+

2q2

2t
,

where k and t are the key-size and tag-size of Π respectively. The computation time of B and B′ don’t
exceed that of A by more than a constant.

The proof of Theorem 2 is deferred to Section 7.2.

Theorem 3. Let A be an authenticity adversary of PACT[Π,H, E] making q1 forging attempts and q2 ideal
cipher queries. Then we can construct a collision adversary B for H and an authenticity adversary B′ of
Π making q2 forging attempts, such that

AdvAEauth
PACT[Π,H,E](A) ≤ AdvColl

H (B) +AdvAEauth
Π (B′) + 2q1

2t
.

where t is the tag-size of Π. The computation time of both B and B′ don’t exceed that of A by more than
a constant.

The proof of Theorem 3 is deferred to Section 7.3. While we prove these theorems for a nonce-based
AE, it’s evident from the proofs that the nonce doesn’t have a unique role. Therefore, these proofs can
also apply to DAE schemes.

5.1 CMT Security: PACT vs Others

We’d like to point out that from CMT security point of view, PACT performs on par with other existing
transforms. HtE and CTX guarantee at most t/2 bits of CMT security. As already mentioned above, PACT
guarantees min{|S|/2, |K∗|/2, t/2} bits of CMT security.

Firstly, the state-size |S| is the block-size for block cipher-based AE schemes, and on the permutation-
size for public permutation-based AE schemes. Since the size of the permutations commonly used to design
AE schemes is generally greater than the tag-size, this does not worsen our bound. Moreover, for block
cipher-based AE schemes, the tag-size is usually not larger than the block-size. Hence, typically, |S| ≥ t.
Therefore, our bound is not worse in that case either.

Secondly, for all practical block ciphers the key-size |K∗| is at least as large as the block-size t. Hence,
|K∗| ≥ t. Therefore, for all practical AEs, PACT also guarantees t/2 bits of CMT security.

5.2 Efficiency Comparison with HtE and CTX

PACT uses a call to a hash function H with K,N and A, and a call to a block cipher with T using
H(K,N,A) as the key. While HtE uses a call to a hash function with K,N and A, CTX uses a call to a
hash function with K,N,A and T . If we compare PACT to HtE or CTX, the only additional cost of PACT
is one single call to a block cipher, in place of processing one additional block in the hash function. On
the other hand, PACT requires only the collision-resistance assumption on H, while both HtE and CTX
require stronger assumptions on their respective hashes—a PRF assumption for HtE and a random oracle
assumption for CTX, so it’s possible to potentially instantiate PACT with a lighter hash function. Overall
PACT does not lose out in efficiency when compared to HtE and CTX, while having wider applicability.
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comPACT[Π,H, E].Enc(K,N,A,M)

1: (C, T )← Π.Enc(K,N, ϵ,M)
2: K∗ ← H(K,N,A)
3: T ∗ ← E(K∗, T )
4: return (C, T ∗)

comPACT[Π,H, E].Dec(K,N,A,C, T ∗)

1: K∗ ← H(K,N,A)
2: T ← E−1(K∗, T ∗)
3: X ← Π.Dec(K,N, ϵ, C, T )
4: return X

Figure 7: Specification of comPACT

5.3 comPACT for UNAE Schemes

PACT is designed to transform an AE scheme to a CMT secure one. As we have already mentioned, it is
a universal transform which is applicable to any AE scheme. But we can make PACT even more efficient
if we don’t need to preserve the MRAE security of the legacy AE. We call this variant comPACT. If the
legacy AE is UNAE secure, it remains so after the comPACT transform. comPACT differs from PACT in
the way it processes the associated data. In PACT, the associated data goes into both the legacy AE as
well as into the hash function of PACT. In comPACT, the associated data is processed only by the hash
function. The legacy AE is called with empty associated data. The CMT security of PACT also holds for
comPACT, as the security analysis is similar. The UNAE privacy and authenticity security analyses also
carry over without any major changes. Fig. 7 gives the complete specification of comPACT.

Comparison between comPACT and CTY. The CTX transform processes the associated data (AD)
twice: once for encryption and once for hashing. The CTY transform is a faster variant, which encrypts
with empty AD and processes the AD only for hashing. Since comPACT is derived from PACT in a similar
manner, it is natural to compare CTY and comPACT. We note the nonce-misuse attack on CTY also holds
for comPACT. Therefore, in terms of security, both transforms offer similar guarantees, while comPACT
has the advantage of being more widely applicable than CTY.

While still limited to non-TDD schemes, SC ◦ CTY achieves better CMT security than comPACT, but
this comes at a significant loss of efficiency, since the SC layer requires a call to an ‘invertible PRF’ (IPF)
in addition to the entire CTY layer. The proposed IPF HtM [BH24] requires, for instance, two additional
evaluations of a cryptographic hash function.

6 CMTk Attacks on TDD Schemes

In this section, we seek to support our proposal by illustrating constant time CMTk attacks on various AE
schemes. Each of these schemes exhibits characteristics that make them unsuitable for CTX transform,
as their decryption process relies on the tag. Moreover, none of these schemes adhere to the CAU-SIV
paradigm. Consequently, neither HtE nor CTX can effectively be applied to any of them.

Our CMTk attacks fall into two main categories. In some AE schemes, we expose vulnerabilities in
the scheme that utilise polynomial hashing for the MAC, with the hash key being independent of the
encryption key. These schemes are prone to CMTk attacks whenever a CMTk adversary can exploit the
hash, such as by finding a collision. We expose such a vulnerability for GCM-SIV in Section 6.1. In certain
other schemes, a CMTk adversary can backtrack from the tag, they can modify a few blocks of nonce or
associated data to launch a CMTk attack. We give such an attack for Deoxys-II in Section 6.2. In Section
A, we give CMTk attacks to some more AE schemes from both categories.
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6.1 GCM-SIV

Fig. 10 gives the encryption algorithm of GCM-SIV [GL15], a widely used MRAE scheme. GCM-SIV uses
three different keys: K1 for GHASH (which is a polynomial hash), K2 for the block cipher call on the
GHASH output, and K3 for the block cipher calls in the counter mode encryption. The authors suggest
three instances of GCM-SIV. A three-key instance (GCM-SIV3) where K1, K2 and K3 are independently
chosen, a two-key instance (GCM-SIV2) where K1 and K2 are independently chosen and K3 = K2, and
finally a single-key instance (GCM-SIV1) where a single key K0 is chosen first, then K1 and K2 are derived
from K0 by encrypting 0128 and 0127||1 respectively with AES instantiated with K0, and K3 = K2. We
observe that both GCM-SIV3 and GCM-SIV2 are vulnerable to a common CMTk attack, and the fix by
Bellare and Hoang (which converts CAU-SIV to CAU-SIV-C1) [BH22] does not work for either of them.
Note that GCM-SIV1 is not vulnerable to this attack, since K1 and K2 are not independent.

Let A be a CMTk adversary attacking GCM-SIVi (where i ∈ {2, 3}). It proceeds as follows.

1. A computes (C, T ) from (K1,K2,K3, N,A,M).

2. A chooses K ′
1 ̸= K1 and A′, and calculates N ′ such that

N ′ = GHASHK1(Encode(A,M))⊕ GHASHK′
1
(Encode(A′,M))⊕N,

where M is the same as the first query, and Encode is the GCM encoding function.

3. A outputs (K1,K2,K3, N,A,M) and (K ′
1,K2,K3, N

′, A′,M).

6.2 Deoxys-II and Joltik=

Now, we move on to some schemes where a CMTk adversary needs to exploit the structure of the schemes
to produce an attack. SCT (Synthetic Counter-in-Tweak) or Joltik= [JNP19], and SCT-2 or Deoxys-
II [JNPS21,JNPS19] were submitted to the CAESAR competition [CAE19], where Joltik= was selected as
a second-round candidate, and Deoxys-II was selected as the first choice in the final portfolio for defence-
in-depth. Both these constructions follow the NSIV(nonce-based SIV) paradigm [PS16] and are MRAE
schemes. Here, we show a CMTk attack on Deoxys-II. A similar attack also holds for Joltik=. Fig. 4 gives
the encryption algorithm of Deoxys-II.

Let A be a CMTk adversary attacking Deoxys-II. It proceeds as follows.

1. A computes (C, T ) from (K,N,A,M). Let C = C[1]∥ . . . ∥C[m].

2. A chooses K ′ and N ′, and fixes M ′ = M ′[1]∥ . . . ∥M ′[m] in a way such that the XOR of M ′[i] and
the encryption of 0∥N ′ yields C[i]. Formally, M ′[i] = ẼK′(1∥T ⊕ (i− 1), 08∥N ′)⊕ C[i](∀i ∈ [m]).

3. A chooses all but one of the blocks of A′ (say, the first block A′[1]), and makes forward queries to Ẽ
with all the associated data and message blocks as inputs (except A′[1]). Let X be the xor of all the
outputs from Ẽ, and Y be the output of the backward query to Ẽ with T as the input.

4. A makes a backward query to Ẽ with X ⊕ Y as the input and sets the output as A′[1].

5. A outputs (K,N,A,M) and (K ′, N ′, A′,M ′).
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7 Security Proofs

7.1 Proof of Theorem 1

In this section, we investigate the CMT security of PACT. We assume the adversary does not make any
pointless queries, which include:

• repeated queries to Π or E;

• a query (K,N,A,C, T ) to Π.Dec following a query (K,N,A,M) to Π.Enc that returned (C, T );

• a query (K,N,A,M) to Π.Enc following a query (K,N,A,C, T ) to Π.Dec that returned M ;

• a query (K∗, T ∗) to E−1 following a query (K∗, T ) to E that returned T ∗;

• a query (K∗, T ) to E following a query (K∗, T ∗) to E−1 that returned T .

First, we list the adversaries we construct to simulate A.

• B1: A collision adversary of H. It outputs a colliding H input pair of A, if any such pair exists.
Otherwise, it outputs any two random H inputs.

• B2: A (qC , q, 2/2
t)-ciphertext collision adversary of Π. Whenever A queries T ∗

j = E(K∗
j , Tj) where

K∗
i = H(Ki, Ni, Ai) and T ∗

j ̸= T ∗
k for k ∈ [j − 1], it makes a new list L[T ∗

j ], and submits (Kj , Nj ,

Aj , Tj). Whenever A queries E−1(K∗
j′ , T

∗
j ) where K∗

i′ = H(Ki′ , Ni′ , Ai′), B2 includes (Kj′ , Nj′ , Aj′)

in L[T ∗
j ] and submits the same, receives Tj′ = E−1(K∗

j′ , T
∗
j ), and forwards it to A. Finally, if A

makes any two Π computations to obtain the tuples (Ky, Ny, Ay,My, C, Ty) and (Kz, Nz, Az,Mz, C,
Tz) where both the tuples are in the same list L[T ∗

x ] and y < z, B2 outputs My,Mz, x, y and z.
Otherwise, B2 aborts.

Next, we list the bad events.

• B1: B1 wins.

Pr[B1] ≤ AdvColl
H (B1).

• B2: B2 wins.

Pr[B2] ≤ AdvCC
Π (B2).

• B3: A makes two E queries to obtain the tuples (K,X, Y ) and (K ′, X ′, Y ) such that A obtains (K ′,
X ′, Y ) after it obtains (K,X, Y ), and through a forward query (i.e., A queries Y = E(K ′, X ′)). For
a fixed pair of queries, the probability of this event can be upper-bounded by 1/(2t − qC). Because
such a pair of E queries can be chosen in

(
qC
2

)
ways, and qC < 2t−1, applying union bound we obtain

Pr[B3] ≤ 2

(
qC
2

)
/2t < 2q2C/2

t.
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• B4: A makes one Π computation to obtain an input-output tuple (K,N,A,M,C, T ), and after that,
makes an inverse query to E with K ′ and T ′, such that K ̸= K ′ and E−1(K ′, T ′) = T . As we model
E as an ideal cipher, for a fixed Π computation and a fixed E query, the probability of this event
can be upper-bounded by 1/(2t − qC). As A can make at most q computations of Π and qC queries
to E, applying union bound we obtain

Pr[B4] ≤ 2qqC/2
t.

Suppose A submits (K1, N1, A1,M1) and (K2, N2, A2,M2) with (K1, N1, A1) ̸= (K2, N2, A2) and wins.
W.l.o.g., we assume that if A has made either E(K∗

1 , T1) or E−1(K∗
1 , T

∗), as well as either E(K∗
2 , T2) or

E−1(K∗
2 , T

∗), it has made them in that order, i.e., the latter is made after the former. Then the following
must hold for some C, T ∗, T1, T2, K

∗
1 , and K∗

2 :

(C, T1) = Π.Enc(K1, N1, A1,M1),

(C, T2) = Π.Enc(K2, N2, A2,M2),

K∗
1 = H(K1, N1, A1),

K∗
2 = H(K2, N2, A2),

T ∗ = E(K∗
1 , T1) = E(K∗

2 , T2).

Next, we list the events, one of which must happen.

• E1: A makes both the queries (1) T ∗ = E(K∗
1 , T1) or T1 = E−1(K∗

1 , T
∗), and (2) T ∗ = E(K∗

2 , T2) or
T2 = E−1(K∗

2 , T
∗).

– E11: A queries E(K∗
2 , T2).

– E12: A queries E−1(K∗
2 , T

∗).

∗ E121: (K1, N1, A1,M1, C, T1) ∈ Π, (K2, N2, A2,M2, C, T2) ∈ Π.

∗ E122: (K2, N2, A2,M2, C, T2) ∈ Π, (K1, N1, A1,M1, C, T1) /∈ Π.

∗ E123: (K1, N1, A1,M1, C, T1) ∈ Π, (K2, N2, A2,M2, C, T2) /∈ Π.

∗ E124: (K1, N1, A1,M1, C, T1) /∈ Π, (K2, N2, A2,M2, C, T2) /∈ Π.

• E2: A doesn’t make both the queries (1) T ∗ = E(K∗
1 , T1) or T1 = E−1(K∗

1 , T
∗), and (2) T ∗ = E(K∗

2 ,
T2) or T2 = E−1(K∗

2 , T
∗).

Next, we analyse the winning probability of A.

• E11: This event is impossible because B3 doesn’t happen.

• E121: K∗
1 = K∗

2 is impossible as B1 doesn’t happen. And if K∗
1 ̸= K∗

2 , then this event is impossible
as B4 doesn’t happen.

• E122: This event is impossible, and the argument is the same as E121.

• E123: If A makes a forward query T ∗ = E(K∗
1 , T1), then a previous forward query T ∗ = E(K,T ) by

A is not possible because B3 doesn’t happen. Otherwise, E123 is impossible as B2 doesn’t happen.

• E124: This event is impossible, and the argument is the same as E123.
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E[T ](K∗, T )

1: T ∗ ←$ {0, 1}t \ T [K∗, • ]
2: if T [K∗, T ] ̸= ⊥ then
3: T ∗ ← T [K∗, T ]
4: else
5: T [K∗, T ]← T ∗

6: end if
7: return T ∗

PACT[Π,H,T ,K](N,A,M)

1: (C, T )← Π.Enc(K,N,A,M)
2: T ∗ ←$ {0, 1}t \ T [H(K,N,A), • ]
3: if T [H(K,N,A), T ] ̸= ⊥ then
4: T ∗ ← T [H(K,N,A), T ]
5: else
6: T [H(K,N,A), T ]← T ∗

7: end if
8: return (C, T ∗)

Figure 8: Lazy-sampled versions of E and PACT, using a shared table.

PACT◦[Π,T ◦,K](N,A,M)

1: (C, T )← Π.Enc(K,N,A,M)
2: T ∗ ←$ {0, 1}t \ T ◦[N,A, • ]
3: if T ◦[N,A, T ] ̸= ⊥ then
4: T ∗ ← T ◦[N,A, T ]
5: else
6: T ◦[N,A, T ]← T ∗

7: end if
8: return (C, T ∗)

PACT†[T ◦](N,A,M)

1: (C, T )←$ {0, 1}|M|+t

2: T ∗ ←$ {0, 1}t \ T ◦[N,A, • ]
3: if T ◦[N,A, T ] ̸= ⊥ then
4: T ∗ ← T ◦[N,A, T ]
5: else
6: T ◦[N,A, T ]← T ∗

7: end if
8: return (C, T ∗)

PACT‡[T ◦](N,A,M)

1: (C, T )←$ {0, 1}|M|+t

2: T ∗ ←$ {0, 1}t \ T ◦[N,A, • ]
3: T ◦[N,A, T ]← T ∗

4: return (C, T ∗)

PACT⋆(N,A,M)

1: (C, T )←$ {0, 1}|M|+t

2: T ∗ ←$ {0, 1}t
3: return (C, T ∗)

Figure 9: The hybrid construction oracles used in the proof of Theorem 2.

• E2: W.l.o.g., suppose E(K∗
1 , T1) or E−1(K∗

1 , T
∗) is not made by A. Then the probability of the

event E(K∗
1 , T1) = T ∗ (in case E(K∗

2 , T2) or E−1(K∗
2 , T

∗) is made by A, so that T ∗ is fixed) or
E(K∗

1 , T1) = E(K∗
2 , T2) (in case E(K∗

2 , T2) or E
−1(K∗

2 , T
∗) is not made by A) is upper-bounded by

1/(2t − qC). As A can query E maximum qC times, and qC < 2t−1, we obtain by applying union
bound

Pr[A wins] ≤ 2qC/2
t.

The final upper bound of the winning probability of A is obtained by adding the probabilities of all
the bad events and the winning probability of A in the case of E2.

7.2 Proof of Theorem 2

We bound the privacy advantage of A against PACT[Π,H, E] through a series of games. In game G0, we
begin with lazy-sampled versions of PACT and the ideal cipher E, such that PACT doesn’t make oracle
calls to E, but instead they share the same table T (Fig. 8). The adversary plays against (PACT[Π,H,
T ,K], E[T ]), where K ←$ K. In the subsequent games, we transform PACT[Π,H,T ,K] through a series
of hybrids which culminate in PACT⋆ in game G5, which is identical in output distribution to Π∗. The
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Game Construction Oracle

G0 PACT[Π,H,T ,K]
G1 PACT[Π,H,T ′,K]
G2 PACT◦[Π,T ◦,K]

G3 PACT†[T ◦]

G4 PACT‡[T ◦]
G5 PACT⋆

Table 1: The adversary’s construction oracles corresponding to the different games proof of Theorem 2.
In each game the adversary also queries E[T ]. In G0 the table T is shared between PACT and E; in G1 it
is replaced in PACT by an identical but independent table T ′. In the first three games K ←$ K as part
of the initialisation.

different hybrid construction oracles used are described in Fig. 9. Table 1 lists the series of games and the
corresponding construction oracles.

In game G1, PACT remains unchanged, but uses an independent table T ′. Suppose A1 is an adversary
trying to distinguish between G0 and G1. Since the different rows T [K∗, • ] of T are always sampled
independently, the games G0 and G1 are identical unless at some point in G0, PACT◦ and E access the same
row of T ◦; this can only happen ifA1 can correctly guess the construction keyK and setsK∗ = H(K,N,A)
for some N,A in one of its queries to E, so we have

AdvG0,G1(A1) ≤
qC
2k

.

In game G2, we replace PACT with PACT◦ which doesn’t make calls to H and uses a modified table
T ◦ where the rows are indexed with (N,A) instead of H(K,N,A). Let A2 be an adversary trying to
distinguish between G1 and G2. Let B be a collision adversary which simulates both the challenger and A2;
thus B knows K and all the online queries (N,A,M) of A2, and computes H(K,N,A) for each such online
query. If any two of these inputs X1 and X2 have H(X1) = H(X2), B outputs (X1, X2), and otherwise
B outputs a pair of random hash inputs (Z1, Z2). Then the games G1 and G2 are identical unless B wins.
Thus,

AdvG1,G2(A2) ≤ AdvColl
H (B).

In game G3, we replace PACT◦ with PACT†, which samples (C, T ) randomly instead of calling Π.Enc.
Let A3 be an adversary trying to distinguish between G2 and G3. Then we construct a privacy adversary
B′ for Π as follows: B′ simulates A3 and lets A3 play against (PACT?[T ◦], E◦), where PACT? is identical
to PACT◦ or PACT† except that the first line is replaced by a call to B′’s own oracle. B′ replicates the
output bit of A3. Then we have

AdvG2,G3(A3) ≤ AdvAEpriv
Π (B′).

In game G4, we replace PACT† with PACT‡, which updates the table T ◦ without checking for previous
entries. Let A4 be an adversary trying to distinguish between G3 and G4. The two games are identical
unless the if-clause in PACT† is executed in G3 for some query, which can only happen if a randomly
sampled T collides with an earlier T ′ for the same (N,A). Thus we have

AdvG3,G4(A4) ≤
q2

2t
.
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In game G5, we replace PACT‡ with PACT⋆, which does not maintain a table and samples T ∗ uniformly
at random. Let A5 be an adversary trying to distinguish between G4 and G5. The two games are identical
unless a randomly sampled T ∗ collides with an earlier T ′∗ for the same (N,A). Thus we have

AdvG4,G5(A5) ≤
q2

2t
.

If A wins the privacy game against PACT[Π,H, E], at least one of A1, . . . ,A5 must win. Thus we have

AdvAEpriv
PACT[Π,H,E](A) ≤

5∑
i=1

AdvGi−1,Gi(Ai)

≤ AdvColl
H (B) +AdvAEpriv

Π (B′) + qC
2k

+
2q2

2t
.

This completes the proof.

7.3 Proof of Theorem 3

Both B′ and B simulate A. B looks at the hash computations as A, and if A finds two hash inputs X1

and X2 with H(X1) = H(X2), B outputs (X1, X2), and otherwise B outputs a pair of random hash inputs
(Z1, Z2). B′ proceeds as described below.

Let the ℓ-th forging attempt of A be (Nℓ, Aℓ, Cℓ, T
∗
ℓ ) (where ℓ ∈ [q1]). For each ℓ ∈ [q1], let Lℓ be

the list of all ideal cipher query-response tuples of the form (K∗
ℓ,i, Tℓ,i, T

∗
ℓ ), such that for each i ∈ [|Lℓ|]

there is a hash computation with input (Kℓ,i, Nℓ, Aℓ) and output K∗
ℓ,i. For each ℓ ∈ [q1], i ∈ [|Lℓ|], if

Π.Dec(Kℓ,i, Nℓ, Aℓ, Cℓ, Tℓ,i) ̸= ⊥, then B′ makes a forging attempt (Nℓ, Aℓ, Cℓ, Tℓ,i).
Let K be the secret key of Π. Suppose the forging attempt (Nℓ, Aℓ, Cℓ, T

∗
ℓ ) by A is successful. This

can only happen when at least one of the following four events occurs:

• B1: A finds a collision-pair for H. When this happens, B wins, so

Pr[B1] ≤ AdvColl
H (B).

• B2: (Nℓ, Aℓ, Cℓ, T ) is a corresponding forging attempt by B′, and Kℓ,i = K for Tℓ,i = T . In this case,
whenever A wins, B′ also wins. Also note that B′ makes a maximum of q2 forging attempts with this
strategy; this is because each pair (T ∗

ℓ ,K
∗
ℓ,i) can lead to at most one forging attempt. So we obtain

Pr[B2 | ¬B1] ≤ AdvAEauth
Π (B′).

• B3: (Nℓ, Aℓ, Cℓ, T ) is a corresponding forging attempt by B′, but Kℓ,i ̸= K for Ti = T . In this case,
the forgery by A is accidental, i.e., A wins by random guess of the tag. Hence

Pr[B3 | ¬B1] ≤ q1
2t
.

• B4: B′ makes no corresponding forging attempt. This follows the same reasoning as B2, so

Pr[B4 | ¬B1] ≤ q1
2t
.

The final upper bound of the winning probability of A is obtained by applying union-bound over the four
events.
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8 Conclusion and Future Works

In this work, we proposed PACT, a CMT transform for any authenticated encryption. PACT is output-
length-preserving, works on any AE scheme and preserves both UNAE and MRAE security of the legacy
AE scheme. PACT uses only one call to a collision-resistant unkeyed hash function and one call to a block
cipher, so it’s efficient from an implementation point of view. We also proposed comPACT, a lighter version
of PACT which preserves UNAE security.

Designing generic length-preserving transforms which can provide CMTk security with a relatively
lighter design can be an interesting research challenge. Also of interest will be to find a transform which
does not use dynamic keys on the underlying block cipher or hash function, and hence lends itself to
security proofs in the standard model.

Appendix

A CMTk Attacks On CTX-unfriendly AE Schemes (Continued)

Here we continue our discussion from Section 6 on illustrating constant time CMTk attacks on various AE
schemes where neither HtE nor CTX can be applied.

A.1 GCM-SIVr

In GCM-SIVr [IM16] which runs r instances of GCM-SIV in parallel, all the keys are independent. So
GCM-SIV1 is vulnerable to the same attack, which works on GCM-SIV3 and GCM-SIV2. For GCM-SIVr
with r > 1, the CMTk adversary A proceeds as follows.

1. A computes (C, T ) from (K1,K2,K3, N,A,M). LetKi = (Ki,1, . . . ,Ki,r) for i = 1, 3 andK2 = (K2,1,
. . . ,K2,r2).

2. A chooses K ′
1 ̸= K1 and all but the first r blocks of A′, and calculates them from the following set

of r equations.

GHASHK1,1(Encode(A,M)) = GHASHK′
1,r
.(Encode(A′,M))

...

GHASHK1,r(Encode(A,M)) = GHASHK′
1,r
.(Encode(A′,M))

3. A outputs (K1,K2,K3, N,A,M) and (K ′
1,K2,K3, N,A′,M).

A.2 SCM

Synthetic Counter with Masking, or SCM [CLLL21] is yet another MRAE scheme following the NSIV
paradigm. Fig. 11 gives the encryption algorithm of SCM. We show a CMTk attack on SCM, when it is
instantiated with an ϵ-AXU polynomial hash. Let A be a CMTk adversary attacking SCM. It proceeds as
follows.

1. A computes (C, T ) from (K,N,A,M), where K = (K1, . . . ,K4).
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GCM-SIV[E,GHASH].Enc(K1,K2,K3, N,A,M = M [1]∥ . . . ∥M [m])

1: V ← GHASHK1(Encode(A,M))⊕N ▷ Encode is the GCM encoding function
2: T ← EK2(V )
3: IV ← ⌈T ⌉n−k∥0k
4: I[1]← IV
5: Z[1]← EK3(I[1])
6: for i ∈ [2..m] do
7: I[i]← inc(I[i− 1]) ▷ inc(X) := ⌈X⌉n−32∥((⌊X⌋32 + 1) mod 232)
8: Z[i]← EK3(I[i])
9: end for
10: Z ← Z[1]∥ . . . ∥Z[m]
11: return (C := M ⊕ Z, T )

Figure 10: Encryption of GCM-SIV

SCM[E,H].Enc(K1,K2,K3,K4, N,A,M = M [1]∥ . . . ∥M [m])

1: ∆← EK3(N∥00)⊕ EK3(N∥01)
2: ∆′ ← EK3(N∥00)⊕ EK3(N∥10)
3: ∆′′ ← EK3(N∥00)⊕ EK3(N∥11)
4: X ← HK1(A,M)⊕ (N∥00) ▷ H is an ϵ-AXU hash
5: T ← EK2(X)⊕∆′′

6: for i ∈ [1..m] do
7: X[i]← T ⊕ 2i−1∆
8: Z[i]← EK4(X[i])⊕∆′

9: end for
10: Z ← Z[1]∥ . . . ∥Z[m]
11: return (C := M ⊕ Z, T )

Figure 11: Encryption of SCM

2. A chooses K ′
1 ̸= K1 and all but one of the blocks of A′, (say, the first block A′[1]), and calculates

A′[1] from the equation

HK1(A,M) = HK′
1
(A′,M).

3. A outputs (K,N,A,M) and (K ′, N,A′,M), where K ′ = (K ′
1,K2,K3,K4).

A.3 DCT

We now have a look at a few DAE schemes, starting with Deterministic Counter in Tweak, or DCT
[FLLW16]. Fig. 12 gives the encryption algorithm of DCT. A CMTk attack similar to that on SCM also
holds for DCT, when it is instantiated with an ϵ-AXU polynomial hash.

A.4 BCTR

Fig. 13 gives the encryption algorithm of BCTR [CLS18], which is a DAE scheme suitable for disk encryp-
tion. We first show a CMTk attack on BCTR. In the case of BCTR, the CMTk adversary A considers the
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DCT[H, E, Ẽ].Enc(K1,K2,K3, A,M)

1: (ML,MR ← Encode(M))
2: X ← HK1(A,MR)
3: Y ←ML ⊕X
4: CL ← EK2(Y )
5: CR ← ẼK3(CL,MR)
6: return (C := CL∥CR)

Figure 12: Encryption of DCT

BCTR.Enc[E,BRW](K1,K2, τ,M = M [1]∥ . . . ∥M [m])

1: X ← K1 · BRWK1(M∥τ)
2: T ← EK2(X)
3: for i ∈ [1..m] do
4: Z[i]← EK2(T ⊕ i)
5: end for
6: return (C := M ⊕ Z, T )

Figure 13: Encryption of BCTR

tuples (K1,K2,M, τ) and (K ′
1,K2,M, τ ′) for the attack. It chooses the values for all the inputs except a

single tweak block (say, the j-th block of τ , i.e., τj), and calculates its value from the equation

K1 · BRWK1(M, τ) = K ′
1 · BRWK′

1
(M, τ ′).

A.5 SUNDAE and ANYDAE

We now have a look at SUNDAE [BBLT18], a lightweight DAE scheme, and its RUP secure modification
ANYDAE [CDD+19]. Fig. 14 gives the encryption algorithm of SUNDAE. We first show a CMTk attack
on SUNDAE. Let A be a CMTk adversary attacking SUNDAE. It proceeds as follows.

1. A computes (C, T ) from (K,A,M).

2. A then chooses a K ′ ̸= K, and fixes M ′ = M ′[1], . . . ,M ′[m] by setting M ′[1] = Ei
K′(T )⊕C[i], where

Ei denotes i compositions of E.

3. A then chooses all but one of the blocks of A′, (say, the first block A′[1]), starts going backwards
from T using inverse block cipher calls, and calculates A′[1] such that the starting value 110n−2 is
reached.

4. A outputs (K,A,M) and (K ′, A′,M ′).

A similar attack also holds for ANYDAE, if the function ρ1 is invertible. As a consequence, both
MONDAE and TUESDAE, which are two instances of ANYDAE, are vulnerable to the attack.
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SUNDAE[E].Enc(K,A = A[1]∥ . . . ∥A[a],M = M [1]∥ . . . ∥M [m])

1: T ← EK(110n−2)
2: for i ∈ [1..a] do
3: T ← EK(T ⊕A[i])
4: end for
5: T ← EK(4 · (T ⊕A[a]))
6: for i ∈ [1..m− 1] do
7: T ← EK(T ⊕M [i])
8: end for
9: T ← EK(4 · (X ⊕M [m]))
10: V ← T
11: for i ∈ [1..m] do
12: V ← EK(V )
13: C[i]←M [i]⊕ V
14: end for
15: return (C := (C[1], . . . , C[m]), T )

Figure 14: Encryption of SUNDAE

A.6 LM-DAE

Fig. 15 gives the encryption algorithm of LM-DAE [NSS20], another DAE scheme. We first show a CMTk

attack on LM-DAE. Let A be a CMTk adversary attacking LM-DAE. It proceeds as follows.

1. A computes (C, T ) from (K,A,M).

2. A chooses K ′ ̸= K, and uses K ′, C and T to compute M ′.

3. A chooses all but two two blocks of A′ (say, A′[1] and A′[2]).

4. A starts to compute towards the IV of the construction (i.e., 02n). Let the output of the penultimate
Ẽ−1 call be X, and the output of the penultimate π−1 call be Y .

5. A calculates A′[1] and A′[2] as follows.

A′[2] = X ⊕ Y ⊕ π(0n),

and, A′[1] = Ẽ−1(A′[2]⊕X).

6. A outputs (K,A,M) and (K ′, A′,M ′).

A.7 MRO, MRS and MRSO

Fig. 16 gives the encryption algorithm of MRO (Misuse Resistant Offset) [GJMN16]. We first show a
CMTk attack on MRO. Let A be a CMTk adversary attacking MRO. It proceeds as follows.

1. A computes (C, T ) from (K,N,A,M), where C = C[1]∥ . . . ∥C[m].

2. A chooses K ′ ̸= K and N ′, defines U ′ = (K ′, N ′), and computes M ′[i] = ẼU ′(0∥0∥1, T∥(i−1))⊕C[i],
∀i ∈ [m].
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LM-DAE[Ẽ, π].Enc(K,A = A[1]∥ . . . ∥A[a],M = M [1]∥ . . . ∥M [m])

1: ht ← 0n

2: hb ← 0n

3: for i ∈ [1..a− 1] do
4: ht ← ẼK(1∥hb, ht ⊕A[i])
5: hb ← π(hb)⊕ ht

6: end for
7: ht ← ẼK(3∥hb, ht ⊕A[a])
8: hb ← π(hb)⊕ ht

9: for i ∈ [1..m] do
10: ht ← ẼK(5∥hb, ht ⊕M [i])
11: hb ← π(hb)⊕ ht

12: end for
13: ht ← ẼK((5 + 6)∥hb, ht)
14: hb ← π(hb)⊕ ht

15: ht ← ẼK((5 + 6)∥hb, ht)
16: hb ← π(hb)⊕ ht

17: T ← ht∥hb

18: ht[0]← ht

19: hb[0]← hb

20: for i ∈ [1..m] do
21: ht[i]← ẼK(0∥hb[i− 1], ht[i− 1])
22: hb[i]← π(hb[i− 1])⊕ ht[i]
23: end for
24: Z ← ht[1]∥ . . . ∥ht[m]
25: return (C := M ⊕ Z, T )

Figure 15: Encryption of LM-DAE

3. A computes W ′ = Ẽ−1
U ′ (0∥2∥0, T∥0)⊕ an∥mn.

4. A chooses all but one of the blocks of A′ (say, the first block A′[1]), and computes X ′[i] = ẼU ′((i−
1)∥0∥0, A′[i]), ∀i > 1, and Y ′[i] = ẼU ′((i− 1)∥1∥0,M ′[i]) ∀i. Let V ′ = W ′ ⊕ Σi>1X

′[i] + ΣiY
′[i].

5. A computes A′[1] = Ẽ−1
U ′ (0, V ′).

6. A outputs (K,N,A,M) and (K ′, N ′, A′,M ′).

The same attack strategy works for MRS and MRSO as well.

A.8 BTM

Fig. 17 gives the encryption algorithm of BTM (Bivariate Tag Mixing) [IY09]. BTM uses a bi-variate hash
F that uses two keys L and U and accepts a vector of inputs (X1, . . . , Xd), where Xi is of length xin bits
for each i. (We skip the definition for incomplete blocks here.) F is defined as

FL,U (X1, . . . , Xd) := Ud−1 · fL(X1)⊕ · · · ⊕ U · fL(Xd−1)⊕ fL(Xd),

where fL(Xi) denotes the polynomial defined as

fL(Xi) := 2 · (Lxi ⊕ Lxi−1 ·Xi[1]⊕ · · · ⊕ L ·Xi[xi − 1]⊕Xi[xi]).
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MRO[Ẽ].Enc(K,N,A = A[1]∥ . . . ∥A[a],M = M [1]∥ . . . ∥M [m])

1: U ← K∥N
2: S ← 0
3: for i ∈ [1..a] do
4: S ← S ⊕ ẼU ((i− 1)∥0∥0, A[i])
5: end for
6: for i ∈ [1..m] do
7: S ← S ⊕ ẼU ((i− 1)∥1∥0,M [i])
8: end for
9: S ← ẼU (0∥2∥0, S ⊕ an∥mn)
10: T ← ⌈S⌉t
11: for i ∈ [1..m] do
12: Z[i]← ẼU (0∥0∥1, T∥(i− 1))
13: end for
14: return (C := M ⊕ Z, T )

Figure 16: Encryption of MRO

BTM[E,F ].Enc(K,A,M = M [1]∥ . . . ∥M [m])

1: L← EK(0)
2: U ← EK(1)
3: S ← FL,U (A,M) ▷ F is a bivariate hash
4: T ← EK(S)
5: X ← T ⊞ U ▷ ⊞ denotes half-wise addition modulo 2n/2

6: for i ∈ [1..m] do
7: Z[i]← EK(X ⊞ (i− 1))
8: end for
9: Z ← Z[1]∥ . . . ∥Z[m]
10: return (C := M ⊕ Z, T )

Figure 17: Encryption of BTM

Thus, for two inputs X1, X2 such that X1 is just one n-bit block, we have

FL,U (X1, X2) = 2 · U ·X1 ⊕ fL(X2).

Thus, if the associated data is a single block of n bits, line 3 of the algorithm in Fig. 17 gives

S = 2 · U ·A⊕ fL(M).

A CMTk adversary A can exploit this as follows.

1. A first chooses (K,A,M) with a single-block A and computes (C, T ) as the output of BTM[E,
F ].Enc(K,A,M), as well as the subkeys L = EK(0) and U = EK(1).

2. A chooses K ′ ̸= K and computes L′ = EK′(0), U ′ = EK′(1). (In the unlikely event that L′ = L,
U ′ = U , try other values of K ′ till L′ ̸= L or U ′ ̸= U .)

3. A executes lines 5-9 of the encryption algorithm in Fig. 17 starting from T and U ′ and obtains Z ′.
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4. A computes M ′ := C ⊕ Z ′ and S′ := E−1
K′ (T ).

5. A computes A′ := 2−1 · U−1 · (S′ ⊕ fL′(M ′)).

6. A outputs (K,A,M) and (K ′, A′,M ′).
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