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Abstract. In this paper, we propose a new structure for the SQIsign
family: Pentagon Isogeny-based Signature in High Dimension (referred
to as PIsignHD). The new structure separates the hash of the commit-
ment and that of the message by employing two cryptographic hash func-
tions. This feature is desirable in reality, particularly for applications
based on mobile low-power devices or for those deployed interactively
over the Internet or in the cloud computing setting.
This structure can be generally applied to all SQIsign variants. In this
work, we focus on the instance based on SQIsignHD. Compared with
SQIsignHD, PIsignHD has the same signature size (even smaller for some
application scenarios). For the NIST-I security level, the signature size
of PIsignHD can be reduced to 519 bits, while the SQIsignHD signature
takes 870 bits. Additionally, PIsignHD has an efficient online signing
process and enjoys much desirable application flexibility. In our experi-
ments, the online signing process of PIsignHD runs in 4 ms.

Keywords: Digital signatures · SQIsign · SQIsignHD · Isogeny ·
Γ -protocol.

1 Introduction

Isogeny-based cryptography is attractive for its compact keys in post-quantum
cryptography, but the expensive computational cost limits the practical appli-
cations of isogeny-based cryptosystems. Various digital signatures under isogeny
assumptions have been proposed in recent years, such as [23,13,4,19]. However,
many of these schemes suffer from relatively large signature or public-key sizes.

Conversely, SQIsign [14] and SQIsignHD [12] fully highlight the compact-
ness as isogeny-based signatures. SQIsign has a very efficient verification, but
the signing phase is expensive due to the ideal-to-isogeny translation. Although
the ideal-to-isogeny translation has been improved recently [15,25,29], it remains



the main efficiency bottleneck in the signing phase. SQIsignHD applies the algo-
rithms derived from SIDH attacks [6,27,33], and offers a remarkably smaller sig-
nature size and much faster response since the prover does not need to compute
large degree isogenies. Conversely, the verification in SQIsignHD is inefficient as
it involves isogeny computations in high dimension.
Motivation. Currently, both SQIsign and SQIsignHD are based onΣ-protocols.
Therefore, the challenge is derived from the knowledge of the commitment and
the message. However, this feature may result in inconvenient deployments or
inefficient implementations, particularly for applications based on low-power de-
vices or applications in the cloud computing setting. We present and discuss
some motivating application scenarios below.

– Application 1: Hardware wallet based on SIM card. This is a typical
application scenario based on mobile low-power devices. The SIM card acts as
the signer who keeps the signing secret key and performs signing operations,
while the message data to be signed is usually generated by applications
in the mobile phone. When generating a signature based on a Σ-protocol,
the SIM card has to compute the hash value of the concatenation of the
commitment and the message data (note that when the message data is large,
this would be unfriendly as the interaction cost is expensive), or transfer the
commitment to the system on chip (SoC) to compute the hash value.

– Application 2: Document online signing by enterprise. When us-
ing the signature scheme in practice, particularly by enterprises, the signing
server is usually deployed in the cloud or run by the enterprise. In the sce-
nario of online signing, Σ-signatures require the signer to upload the entire
document to the signature server. This may consume a significant amount
of bandwidth and cause more computing burden on the signature server,
resulting in a system bottleneck.

Remark 1. When sending the full message is problematic, one may consider
signing a hash of the message instead of the full message. For signing the message
m with Σ-signature, we need to consider the collision resistance of single-hashing
h(a||m), where a is the commitment and h is a hash function. But for signing
h(m), we need to consider the collision resistance of double-hashing h(a||h(m)).
Double-hashing has much lower collision-resistance than single-hashing. That is
the reason why Σ-signatures do not recommend to sign h(m).

In 1989, Even, Goldreich and Micali [20] introduced online/offline signatures,
which are desirable for low-power devices. The main idea of online/offline sig-
natures is to divide the signature into the online phase and the offline phase.
Generally, the online phase is required to be fast as possible, while the offline
phase can be connected to the power. In 2013, Yao and Zhao [38] proposed
Γ -protocols and a novel transformation method, known as Γ -transformation.
Unlike Σ-signatures, the signatures via Γ -transformation separate the hash of
the commitment a and that of the message m, by employing two secure hash
functions h1 and h2 to compute the hash values h1(a) and h2(m), respectively.
From the target one-way property of h1, the value h1(a) (or a set of values
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{h1(a1), h1(a2), · · · , h1(as)} with commitments a1, a2, · · · , as) can be public
or stored on the verifier’s side. Consequently, the verifier can precompute some
intermediate values that are relevant to the hash values of the commitment to
enhance the verification performance. Moreover, Γ -signatures allow the verifier
to compute h2(m) in advance without the knowledge of the commitment a.
When a trusted verifier would like to request the prover to sign a message m, it
can transfer the hash value h2(m) instead of the whole message to the prover,
thereby significantly reducing the communication cost and the computational
cost of hashing for the prover in the response phase. The specific construction of
Γ -signatures also benefits the online response of the prover, since all the inter-
mediate values irrelevant to the message and used to generate the response can
be computed offline. As a result, Γ -signatures offer an efficient online structure
and enjoy the advantage of application flexibility.
Contribution. In this paper, we propose a new structure for the SQIsign fam-
ily, which is illustrated in Figure 1. The new structure is constructed via Γ -
transformation. The main difference between the SQIsign family and our new
structure is that the latter contains an additional isogeny φcom : E1 → E2, which
is derived from the knowledge of the commitment. Besides, the challenge isogeny
φchl : EA → E3 is hashed from the knowledge of the message. Correspondingly,
the response isogeny is from E2 to E3.

E0

E1 EA

E2 E3

ψ τ

σ

φchlφcom

secret isogeny
commitment isogeny
hash of the commitment
challenge isogeny
response isogeny

Fig. 1: A sketch of our new structure
Obviously, our new structure can be easily applied to the SQIsign family.

To show the advantages of the new structure compared to the traditional struc-
ture, we take SQIsignHD as an instance and introduce Pentagon Isogeny-based
Signature in High Dimension (referred to as PIsignHD or Π-signHD). At first
glance, the efficiency of PIsignHD appears to be slightly inferior to SQIsignHD
due to the additional isogeny involved. But in normal cases, SQIsignHD and
PIsignHD have the same signature size. Furthermore, PIsignHD has the follow-
ing additional advantages, which are attractive in applications.

– Flexible challenge generation: In SQIsignHD, the challenge isogeny is
derived from the knowledge of the public key, the commitment and the
message. Benefiting from Γ -transformation, the generation of the challenge
isogeny in PIsignHD only requires the public key and the message. This fea-
ture tackles the applications as we mentioned above. In Applications 1 and 2,
the signature requester can directly transmit the hash value of the message,
which reduces transmission and computational requirements for the signer.
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– More compact signature in applications: The signature of SQIsignHD
involves the j-invariant of a supersingular curve. If the public storage is
available, PIsignHD avoids storing it, and the signature size can be reduced
from 6.5λ bits to around 3.5λ bits, where λ is the security parameter.

– Fast online signing computations: As previously mentioned, the verifier
can transfer the kernel of the challenge isogeny instead of the whole message,
saving the time for the prover to hash the message. Besides, the prover can
precompute intermediate values that are irrelevant to the message. In our
implementation, the online signature computations take only 4 ms.

– Storage saving: To adapt the online/offline technique in SQIsignHD, the
prover has to store all the intermediate values that are used to sign the mes-
sage. Conversely, PIsignHD allows some of the values to be public, or stored
on the verifier’s size. Therefore, PIsignHD reduces the storage requirements
for the prover, which is preferred in applications.

Related Work. Recently, Renan and Kutas proposed a quantum-resistant adap-
tor signature called SQIAsignHD [32]. This scheme underlies SQIsignHD and
utilizes the artificial orientation on SIDH [2]. We believe some techniques in this
work could also be beneficial for SQIAsignHD with further research. Very Re-
cently, several variants of SQIsignHD are proposed [1,28,17]. Our structure can
also be applied to these schemes. More technical details are left as future work.
Organization. The remainder of our paper is organized as follows. Section 2 re-
views the necessary preliminaries. In Section 3 we propose a high-level overview
of PIsignHD and the underlying identification protocol. The security proofs
are provided in Section 4. Section 5 introduces the concrete implementation
of PIsignHD, and presents the experimental results. Finally we conclude in Sec-
tion 6.

2 Preliminaries

In this section, we recall Γ -protocols and SQIsignHD. The necessary mathemat-
ical backgrounds are left in Appendix A, while the introductions of Σ-protocol
and Fiat–Shamir paradigm are left in Appendix B.

2.1 Γ -Protocol and Γ -Transformation

Assume that P and V are probabilistic polynomial time machines, and the advan-
tage of P over V is that P knows w with (x,w) ∈ R, where R is an N P-relation.
Then Γ -protocol proceeds as follows:

– P sends a commitment a and a random string d to V;
– V sends a random string e to P;
– P sends a reply z with respect to e, and V accepts or rejects based on

(x, a, d, e, z).
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Definition 1 ([38]). Γ -protocol is a three-round public-coin protocol ⟨P,V⟩ for
an N P-relation R that proceeds as above. Besides, Γ -protocols should satisfy the
following properties:

– Completeness: V always accepts if P and V follow the protocol.
– Knowledge extraction: Given two valid conversations (a, d, e, z) and (a, d′, e′, z′)

on any input x with (d, e) ̸= (d′, e′), one can recover the witness w such that
(x,w) ∈ R in polynomial time with respect to an N P-relation Re, referred
to as e-condition, that Re(d, d′, e, e′, z, z′) = 1. In particular, setting d = d′

implies that the protocol has the special soundness property 2.
– Special honest verifier zero-knowledge (SHVZK): There exists a prob-

abilistic polynomial-time simulator S, which takes as input x and outputs an
accepting conversation (a′, d′, e′, z′), with the same (or computationally in-
distinguishable) probability distribution as the conversation (a, d, e, z) of the
real protocol.

Γ -transformation can convey a Γ -protocol into a signature scheme. Different
from Fiat-Shamir transform, Γ -transformation adapts two hash functions h1, h2
to compute d = h1(a) and e = h2(m), respectively. The verifier accepts if d =
h1(a) and (a, d, e, z) is a valid conversation. To be precise, Γ -signatures are
demonstrated as follows:

– Key Generation: The signer generates x = F (w) such that (x,w) ∈ R
where F is a one-way and polynomial-time computable function. The public
key is x and the secret key is w.

– Signature: The signer randomly selects rP ∈ RP and computes a = fa(rP , x),
where fa is a polynomial-time computable function. Then, compute d =
h1(a) where h1 is a secure hash function. Given a message m, the signer
computes e = h2(m), where h2 is a secure hash function. From (w, a, d, e)
the signer generates z, and finally outputs (a, d, z) as the signature3.

– Verification: Given m, the verifier computes e = h2(m). The verifier ac-
cepts if d = h1(a) and (a, d, e, z) is a valid conversation, according to the
polynomial-time computable verification procedure for the underlying Γ -
protocol.

2.2 SQIsignHD
SQIsignHD is a compact and post-quantum signature scheme introduced by
Dartois, Leroux, Rebort and Wesolowski [11]. It is constructed from an iden-
tification protocol via Fiat-Shamir paradigm. Currently, there are two versions
of SQIsignHD: FastSQIsignHD and RigorousSQIsignHD. We only focus on con-
structing a fast online signature scheme based on FastSQIsignHD for efficiency.
The identification protocol underlying FastSQIsignHD proceeds as follows:
2 The definition here is slightly different from that of [38]. They limit that the knowl-

edge extracts when Re(d, d′, e, e′) = 1, where Re is an NP-condition. However,
Γ -protocol only requires that the e-condition holds with overwhelming probability.

3 In some specific signature schemes, such as Γ -signatures for DLP [38], the signature
can be compressed by (d, z) since a can be computed according to (d, z).
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– Setup: Select a prime p = c · ℓf · ℓ′f ′ − 1, where c is a small cofactor and
ℓf ≈ ℓ′f ′ ≈ 2λ with λ the security level. Define a supersingular elliptic curve
E0 whose endomorphism ring is known. Let g be an integer big enough but
smaller than f .

– Keygen: The prover generates a random isogeny walk τ : E0 → EA of
degree ℓ′• ≈ p and an equivalent isogeny τ ′ : E0 → EA of degree ℓ• ≈ p. The
public key is the elliptic curve EA and the secret key is (τ , τ ′).

– Commitment: The prover generates a random (secret) isogeny walk ψ :
E0 → E1 of degree ℓ′• ≈ p. Afterwards, the prover sends E1 to the verifier.

– Challenge: The verifier generates a random isogeny walk φ : EA → E2 of
degree ℓ′f ′ and sends the description of φ to the prover.

– Response: From the knowledge of the secret key, the commitment and the
challenge, the prover generates a new isogeny σ : E1 → E2 of degree q such
that q is ℓg-good, i.e., ℓg − q is a prime congruent to 1 modulo 4. Then the
prover computes σ(P1) and σ(Q1) where {P1, Q1} is the canonical basis of
E1[ℓf ], and sends (q, σ(P1), σ(Q1)) to the verifier.

– Verify: the verifier generates the canonical basis {P1, Q1} of E1[ℓf ]. Then
the verifier accepts if (E1, E2, q, (P1, Q1), (σ(P1), σ(Q1))) correctly represents
a q-isogeny σ from E1 to E2.

E0 EA

E1 E2

τ

τ ′
ψ

σ

φ

secret key isogeny
commitment isogeny
challenge isogeny
response isogeny

Fig. 2: A sketch of the SQIsignHD identification protocol

Compared with SQIsign, SQIsignHD avoids the complex ideal-to-isogeny
translation. The main procedures are illustrated in Algorithm 1.
Algorithm 1 FastRespond [11, Algorithm 2]
Require: The isogenies τ, τ ′ : E0 → EA of degree ℓ′• and ℓ• respectively, the ideals

Iτ and Iτ ′ associated to τ and τ ′ respectively, the isogeny ψ : E0 → E1 of degree
ℓ′•, the ideal Iψ associated to ψ, the isogeny φ : EA → E2 of degree ℓ′f ′ .

Ensure: (σ(P1), σ(Q1), q) where (P1, Q1) is the canonically determined basis of E1[ℓf ]
and σ : E1 → E2 is an isogeny of ℓg-good degree q coprime to ℓ.

1: Iφ ← IsogenyToIdeal(ker(φ), τ ′, Iτ ′ ), J ← Iψ · Iτ · Iφ;
2: I ← RandomEquivalentIdealℓg (J) and compute the reduced norm q of I;
3: If q is not ℓg-good or gcd(q, ℓ′) ̸= 1, go back to Line 2;
4: Compute the canonical basis of {P1, Q1} of E1[ℓf ];
5: (σ(P1), σ(Q1))← EvalTorsionℓf (I, P1, Q1, ψ, φ ◦ τ, Iψ, Iτ · Iφ);
6: return (σ(P1), σ(Q1), q).

The following are the sub-algorithms applied in Algorithm 1:
– IsogenyToIdeal(ker(φ), τ ′, Iτ ′): Given the kernel of an isogeny φ: EA → E2,

an isogeny τ ′: E0 → EA of degree coprime to deg(φ) and the corresponding
ideal Iτ ′ ⊂ O, outputs the ideal Iφ associated to φ;
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– RandomEquivalentIdealℓg (J): Given an ideal J , outputs an equivalent
ideal I that is uniformly random among ideals of norm ≤ ℓg;

– EvalTorsionℓf (I, P1, Q1, ρ1, ρ2, Iρ1 , Iρ2): Given an ideal I, a basis {P1, Q1}
of E1[ℓf ], and two isogenies ρ1: E0 → E1 and ρ2: E0 → E2 and the corre-
sponding ideals Iρ1 , Iρ2 , outputs σ(P1) and σ(Q1), where σ is the isogeny
associated to I.

In the response phase, the prover should evaluate the isogeny σ on the basis
{P1, Q1}. Since the degree of σ is non-smooth in general, it is difficult to evaluate
the isogeny directly with Vélu’s formula [36,3]. However, note that the prover has
the knowledge of the smooth degree isogenies from E0 to E1 and E2, respectively,
i.e., ψ : E0 → E1 and φ ◦ τ : E0 → E2. Furthermore, the endomorphism ring of
E0 is known. Assuming Oγ = Iψ · Iσ · Iτ · Iφ, it is easy to prove that

σ = φ ◦ τ ◦ γ ◦ ψ̂
[deg(φ) deg(τ) deg(ψ)]

. (1)

Therefore, the prover can evaluate σ(P1) and σ(Q1) efficiently.
At first glance, the prover still has to evaluate several isogenies to generate

the response. Fortunately, the current implementation of SQIsignHD applies a
more elegant approach to eliminate almost all the isogeny computations. We
provide a detailed review of the current implementation in Appendix C.

3 PIsignHD

In this section we propose the PIsignHD identification protocol, and the PIsignHD
digital signature via Γ -transformation.

3.1 Identification protocol

Let λ be a security parameter. The PIsignHD identification protocol goes as
follows:

– Setup: Select a prime p = c · ℓf · ℓ′f ′ − 1, where c is a small cofactor and
ℓf ≈ ℓ′f ′ ≈ 2λ with λ the security level. Define a supersingular elliptic curve
E0 whose endomorphism ring is known. Let g be an integer big enough but
smaller than f .

– Keygen: The prover generates a random isogeny walk τ : E0 → EA of
degree ℓ′• ≈ p and an equivalent isogeny τ ′ : E0 → EA of degree ℓ• ≈ p. The
public key is the elliptic curve EA and the secret key is (τ , τ ′).

– Commitment: The prover generates a random isogeny walk ψ : E0 → E1
of degree ℓ′• ≈ p and an equivalent isogeny ψ′ : E0 → E1 of degree ℓ• ≈ p,
and then selects a random cyclic isogeny walk φcom : E1 → E2 of degree ℓ′f ′ .
Afterwards, the prover sends E1 and the description of φcom to the verifier.

– Challenge: The verifier generates a random isogeny walk φchl : EA → E3
of degree ℓ′f ′ and sends the description of φchl to the prover.
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– Response: From the knowledge of the secret key, the commitment and the
challenge, the prover generates a new isogeny σ : E2 → E3 of degree q
such that q is ℓg-good and coprime to ℓ′, and computes σ(P2) and σ(Q2)
where {P2, Q2} is the canonical basis of E2[ℓf ]. Then the prover sends R =
(q, σ(P2), σ(Q2)) to the verifier.

– Verify: the verifier generates the canonical basis {P2, Q2} of E2[ℓf ]. Then
the verifier accepts if (E2, E3, q, (P2, Q2), (σ(P2), σ(Q2))) correctly represents
a q-isogeny σ from E2 to E3.

E0

E1 EA

E2 E3

τ

τ ′ψ′

ψ

σ

φchlφcom

secret isogeny
commitment isogeny
hash of the commitment
challenge isogeny
response isogeny

Fig. 3: A sketch of PIsignHD

The completeness property of our Γ -protocol is obvious. The security proofs
of the knowledge extraction property and the zero-knowledge property are left
in Section 4.

3.2 Digital signature

Via Γ -transformation, PIsignHD is derived by the identification protocol in Sec-
tion 3.1. The setup and the key generation phases are identical to those of the
identification protocol. The signature and the verification proceed as follows:

– Sign: (sk,m) → Σ Pick a random (secret) isogeny ψ : E0 → E1 of degree
ℓ′• ≈ p and an equivalent isogeny ψ′ : E0 → E1 of degree ℓ• ≈ p. Then,
construct the cyclic isogeny φcom : E1 → E2 with respect to the hash of
E1. From the hash of m, construct the isogeny φchl : EA → E3. Finally,
generate a new isogeny σ : E2 → E3 and compute the corresponding pairs
R = (σ(P2), σ(Q2), q) with {P2, Q2} the canonical basis of E2[ℓf ] and q
coprime to ℓ′. The signature is (E1, R).

– Verify: (pk,m,Σ) → True or False Parse Σ as (E1, R), where R =
(σ(P2), σ(Q2), q). Firstly, compute the isogeny φcom : E1 → E2 which is
hashed from the knowledge of E1. From the message m, construct the isogeny
φchl : EA → E3. Generate the determined canonical basis {P2, Q2} of E2[ℓf ],
and accept if (E2, E3, q, (P2, Q2), (σ(P2), σ(Q2))) correctly represents a q-
isogeny σ : E2 → E3.
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In the signing and verifying procedures, the isogenies φcom and φchl are gen-
erated by hashing. To achieve this, we first define a secure hash function H :
{0, 1}∗ → [1, µ], where µ = ℓ′f ′−1(ℓ′ + 1). Same as SQIsign and SQIsignHD, we
use the secure hash function H′ defined in [16, Section 3.1], which is derived
from [8]. Taking a supersingular curve E and an integer as inputs, the hash
function H′ outputs a cyclic ℓ′f ′ -isogeny with domain E. In practice, we set
φcom = H′(E1,H(j(E1))) and φchl = H′(EA,H(m)).

4 Security Proof

In this section we present the security proofs of PIsignHD. The proof of the com-
pleteness property is omitted as it is obvious. In the following, we focus on the
proofs of the knowledge extraction property and the zero-knowledge property.
The knowledge extraction proof is similar to the special soundness proof of the
SQIsignHD identification protocol, but we need to prove that the e-condition
holds with overwhelming probability as well. Several lemmas will be proposed
to adequately illustrate this issue. The zero-knowledge proof parallels that of the
SQIsignHD identification protocol, particularly we use the same oracle (Defini-
tion 2) to construct the simulator.

4.1 Knowledge extraction

Recall the knowledge extraction property of Γ -protocols: Given two pairs of valid
conversations (a, d, e, z) and (a, d′, e′, z′) on any input x with (d, e) ̸= (d′, e′), one
can recover the witness w such that (x,w) ∈ R in polynomial time with respect to
an N P-relation Re, referred to as the e-condition, that Re(d, d′, e, e′, z, z′) = 1.

In the PIsignHD identification protocol, the commitment is E1, while φcom
is a random isogeny starting from E1. The challenge corresponds to φchl : EA →
E3, and the response is of form R = (q, σ(P2), σ(Q2)), where q is the degree of
the response isogeny σ : E2 → E3 and (σ(P2), σ(Q2)) are the images of the tor-
sion basis {P2, Q2} of E2[ℓf ] by σ. The hard problem underlying the knowledge
extraction property is known as Supersingular Endomorphism Problem:

Problem 1 (Supersingular Endomorphism Problem). Given a prime p and a su-
persingular elliptic curve E over Fp2 , find a non-trivial endomorphism of E that
can be efficiently evaluated.

When φcom1 and φcom2 in the two pairs of valid conversations (E1, φcom1 , φchl1 , R1)
and (E1, φcom2 , φchl2 , R2) are equivalent, the knowledge extraction property is
reduced to the special soundness property. In this situation, the proof is almost
consistent with the special soundness proofs of the SQIsignHD identification pro-
tocol. Similarly, it is easy to prove the knowledge extraction property when the
challenges of the valid conversations are equivalent. When φcom1 ̸= φcom2 and
φchl1 ̸= φchl2 , one can also extract the knowledge under the e-condition that:
Re(φcom1 , φcom2 , φchl1 , φchl2 , σ1, σ2) = 1 iff there does not exist s ∈ Z such that
[s] = φ̂chl2 ◦ σ2 ◦ φcom2 ◦ φ̂com1 ◦ σ̂1 ◦ φchl1 .
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Proposition 1. Let (E1, φcom1 , φchl1 , R1) and (E1, φcom2 , φchl2 , R2) be two pairs
of accepting conversations, where R1 = (q1, σ1(P2), σ1(Q2)) and R2 = (q2, σ2(P ′

2), σ2(Q′
2))

with ⟨P2, Q2⟩ = E2[ℓf ] and ⟨P ′
2, Q

′
2⟩ = E′

2[ℓf ]. If (φcom1 , φchl1) ̸= (φcom2 , φchl2),
then one can compute a non-trivial endomorphism of EA that can be efficiently
evaluated with respect to the e-condition that: Re(φcom1 , φcom2 , φchl1 , φchl2 , σ1, σ2) =
1 iff there does not exist s ∈ Z such that [s] = φ̂chl2 ◦σ2 ◦φcom2 ◦φ̂com1 ◦σ̂1 ◦φchl1 .
If φcom1 = φcom2 or φchl1 = φchl2 , then the e-condition always holds. Especially,
the PIsignHD identification protocol has the special soundness property.

Proof. Since the two conversations are valid, one can obtain the knowledge of the
response isogenies σ1 : E2 → E3 and σ2 : E′

2 → E′
3. Note that φcom1 : E1 → E2,

φcom2 : E1 → E′
2, φchl1 : EA → E3 and φchl2 : EA → E′

3 are known. As
illustrated in Figure 4, α = φ̂chl2 ◦σ2◦φcom2 ◦φ̂com1 ◦σ̂1◦φchl1 is an endomorphism
of EA that can be efficiently evaluated.

E1

E2 E′
2

E0

E3 E′
3

EA

τ ′τ

ψ ψ′

σ2σ1

φchl2φchl1

φcom1 φcom2

secret isogeny
commitment isogeny
random isogeny
challenge isogeny
response isogeny

Fig. 4: Knowledge extraction

If the e-condition holds, then the endomorphism α = φ̂chl2 ◦ σ2 ◦ φcom2 ◦
φ̂com1 ◦ σ̂1 ◦φchl1 is non-trivial. Now we prove that the e-condition always holds
if φcom1 = φcom2 or φchl1 = φchl2 .

We first prove the endomorphism α is non-trivial if φcom1 = φcom2 . In this
case α = [ℓ′f ′ ]φ̂chl2 ◦ σ2 ◦ σ̂1 ◦ φchl1 . Suppose for contradiction that α′ = φ̂chl2 ◦
σ2 ◦ σ̂1 ◦ φchl1 = [s] with s ∈ Z. Therefore, we have q1q2ℓ

′2f ′ = s2. Then

[ℓ′f ′
q2] ◦ σ̂1 ◦ φchl1 = σ̂2 ◦ φchl2 ◦ α′ = [s] ◦ σ̂2 ◦ φchl2 .

Let s = ℓ′f ′ ·s′ with s′ coprime to ℓ′. Then we have [q2]◦σ̂1◦φchl1 = [s′]◦σ̂2◦φchl2 .
Since q1, q2 and s′ are coprime to ℓ′, it follows that ker(φchl1) = ker(φchl2). This
contradicts the fact that (φcom1 , φchl1) ̸= (φcom2 , φchl2) and φcom1 = φcom2 .
Therefore, the e-condition holds and the PIsignHD identification protocols has
the special soundness property.

Assume that φchl1 = φchl2 . We would like to prove that α is also non-
trivial. Clearly, the endomorphism β = φ̂com2 ◦ σ̂2 ◦ φchl2 ◦ φ̂chl1 ◦ σ1 ◦ φcom1 =
[ℓ′f ′ ]φ̂com2 ◦ σ̂2 ◦σ1 ◦φcom1 of E1 is trivial iff α is trivial. Suppose that β is trivial.
Similar to the previous proof, one can deduce that ker(φcom1) = ker(φcom2). This
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is a contradiction because (φcom1 , φchl1) ̸= (φcom2 , φchl2) and φchl1 = φchl2 .
Therefore, when φchl1 = φchl2 the endomorphism β must be non-trivial, i.e., the
endomorphism α is non-trivial, which completes the proof. ⊓⊔

It remains to prove the e-condition holds with overwhelming probability, i.e.,

Pr [Re(φcom1 , φcom2 , φchl1 , φchl2 , σ1, σ2) = 0] ≤ negl(λ),

where negl(·) is a negligible function. This confirms that even if φcom1 ̸= φcom2

and φchl1 ̸= φchl2 (which is the common scenario in practice), the secret key can
be extracted with overwhelming probability once the prover adapts the same
commitment. In the following, we present Proposition 2 to tackle this problem.
To prove Proposition 2, we first propose Lemmas 1, 2 and 3.
Lemma 1. Let Φ1 = [ℓ′t1 ]Φ′

1, Φ2 = [ℓ′t2 ]Φ′
2 be two isogenies of degree (ℓ′)2f ′ ,

where Φ′
1 : E1 → E2 and Φ′

2 : E3 → E4 are cyclic. Assume that σ : E2 → E3
and σ′ : E4 → E1 are a q1-isogeny and a q2-isogeny with gcd(q1, ℓ

′) = 1 and
gcd(q2, ℓ

′) = 1, respectively. If σ′ ◦ Φ2 ◦ σ ◦ Φ1 is a trivial endomorphism of E1,
i.e., there exists s ∈ Z such that [s] = σ′ ◦ Φ2 ◦ σ ◦ Φ1, then

– t1 = t2;
– [σ]∗Φ̂′

1 = Φ′
2, [σ′]∗Φ̂′

2 = Φ′
1;

E1 E4

E2 E3

Φ1

σ

Φ2

σ′

Fig. 5: A sketch of Lemma 1

Proof. From Φ1 = [ℓ′t1 ]Φ′
1, Φ2 = [ℓ′t2 ]Φ′

2, we have

[(ℓ′)2f ′−t1−t2s′] = σ′ ◦ Φ′
2 ◦ σ ◦ Φ′

1

for some s′ = √
q1q2 ∈ Z which is coprime to ℓ′.

We first prove t1 = t2. Without loss of generality, assume that t1 < t2. Since
Φ′

1 is cyclic, suppose that ker(Φ′
1) = ⟨P ⟩ where P ∈ E1[(ℓ′)2f ′−2t1 ]. Then, the

endomorphism [(ℓ′)2f ′−t1−t2s′] = σ′ ◦Φ′
2 ◦σ ◦Φ′

1 sends P to the point at infinity.
It implies that 2f ′ − t1 − t2 ≥ 2f ′ − 2t1, i.e., t1 ≥ t2, which is a contradiction.

Now we prove the second claim. Suppose that Q ∈ E1[(ℓ′)2f ′−2t1 ] such
that ⟨P,Q⟩ = E1[(ℓ′)2f ′−2t1 ]. Then ker(Φ̂′

1) = ⟨Φ′
1(Q)⟩. From t1 = t2, we

have [(ℓ′)2f ′−2t1s′] = σ′ ◦ Φ′
2 ◦ σ ◦ Φ′

1 and thus σ′ ◦ Φ′
2 ◦ σ ◦ Φ′

1(Q) = ∞E1 ,
i.e., ker(Φ̂′

1) ⊂ ker(σ′ ◦ Φ′
2 ◦ σ). Since σ and σ′ have degrees coprime to ℓ′,

σ(ker(Φ̂′
1)) ⊂ ker(Φ′

2). It follows from t1 = t2 that | ker(Φ′
2)| = |σ(ker(Φ̂′

1))|.
Therefore, ker(Φ′

2) = σ(ker(Φ̂′
1)), i.e., [σ]∗Φ̂′

1 = Φ′
2. Analogously, one can imply

the other deduction. This ends the proof. ⊓⊔
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Remark 2. Lemma 1 shows that if the e-condition does not hold, then φchl2 ◦
φ̂chl1 is the pushforward isogeny of φcom2 ◦ φ̂com1 through σ1. Conversely, from
[σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 . we cannot deduce that the endomorphism
α = φ̂chl2 ◦σ2◦φcom2 ◦φ̂com1 ◦σ̂1◦φchl1 is trivial. For example, if q1 = deg(σ1) and
q2 = deg(σ2) are coprime, then in the proof of Lemma 1 the value s′ = √

q1q2 /∈
Z. In this case the e-condition always holds. Therefore, the probability that the
e-condition does not hold is less than that of [σ1]∗(φcom2 ◦ φ̂com1) = φchl2 ◦ φ̂chl1 .

Lemma 2. Let ρ1, ρ2, ρ3, ρ4 be cyclic ℓ′f ′-isogenies chosen uniformly at ran-
dom, Φ1 = ρ2 ◦ ρ1 and Φ2 = ρ4 ◦ ρ3. If σ is a q-isogeny such that gcd(q, ℓ′) = 1,
then Pr[[σ]∗Φ1 = Φ2] < (f ′ + 1)(ℓ′)−2f ′ .

Proof. Suppose that Φ1 = ρ2 ◦ ρ1 = [ℓt1 ]Φ′
1 and Φ2 = ρ4 ◦ ρ3 = [ℓt2 ]Φ′

2 with Φ′
1

and Φ′
2 cyclic. To satisfy [σ]∗Φ1 = Φ2, we have t1 = t2 and σ(ker(Φ′

1)) = ker(Φ′
2).

Since ρ1, ρ2, ρ3, ρ4 are chosen uniformly at random,

Pr[ti = u] =



ℓ′

ℓ′ + 1
, if u = 0,

ℓ′ − 1
(ℓ′ + 1)(ℓ′)u

, if 0 < u < f ′,

(ℓ′)1−f ′

ℓ′ + 1
, if u = f ′.

where i = 1, 2. On the other hand, we have

Pr[[σ]∗Φ′
1 = Φ′

2|t1 = t2 = u] =


(ℓ′)−2f ′+2u+1

ℓ′ + 1
, if 0 ≤ u < f ′,

1, if u = f ′.

Therefore, the probability that [σ]∗Φ1 = Φ2 is

Pr[[σ]∗Φ1 = Φ2] =Σf ′

u=0Pr[t1 = u] · Pr[t2 = u] · Pr [[σ]∗Φ′
1 = Φ′

2| t1 = t2 = u]

=Σf ′

u=0Pr[t1 = u]2 · Pr [[σ]∗Φ′
1 = Φ′

2| t1 = t2 = u]

=(ℓ′)−2f ′+3

(ℓ′ + 1)3 +Σf ′−1
u=1

(ℓ′ − 1)2(ℓ′)−2f ′+1

(ℓ′ + 1)3 + (ℓ′)−2f ′+2

(ℓ′ + 1)2

<(ℓ′)−2f ′
+ (f ′ − 1)(ℓ′)−2f ′

+ (ℓ′)−2f ′

=(f ′ + 1)(ℓ′)−2f ′
,

which completes the proof. ⊓⊔

Lemma 3. Let P1 and P2 be points of order ℓ′f ′ defined on E1 and E2, respec-
tively. Assume that E1, E2 are supersingular and σ′ : E1 → E2 is an isogeny
whose degree is coprime to ℓ′. If the endomorphism ring of E2 is known, then one
can generate an endomorphism ω of E2 such that ω ◦ σ′(P1) = P2 in polynomial
time.
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Proof. Let End(E2) be the endomorphism ring of E2. Suppose that {θ1, θ2, θ3, θ4}
is a basis of End(E2) that can be evaluated at any point of E2 in polynomial time.
Since End(E2)⊗Z/ℓ′f ′Z is isomorphic to M2(Z/ℓ′f ′Z), there exist two endomor-
phisms in the basis {θ1, θ2, θ3, θ4}, mapping σ′(P1) to points that are linearly
independent. For simplicity we assume that ⟨θ1(σ′(P1)), θ2(σ′(P1))⟩ = E2[ℓ′f ′ ].
This implies the existence of coefficients s1, s2 ∈ Z/ℓ′f ′Z satisfying that

P2 = [s1]θ1(σ′(P1)) + [s2]θ2(σ′(P1)).

Let ω = s1θ1 + s2θ2. Then ω ◦ σ′ : E1 → E2 is the desired isogeny that sends P1
to P2. ⊓⊔

Proposition 2. Any prover P(τ, c) (where τ is the secret key and c is the
random coin) that can correctly execute the PIsignHD identification protocol and
interact with the verifier ensures the knowledge extraction of the protocol.
Proof. From Proposition 1, we only need to prove that the e-condition holds with
overwhelming probability. Suppose that P(τ, c) can break the e-condition with
non-negligible probability for contradiction. Consider Algorithm 2 as follows:
Algorithm 2 Interaction

Require: The prover P(τ ; c) that correctly executes the PIsignHD identification pro-
tocol.

Ensure: Uniformly randomly selected ℓ′f ′ -isogenies ϕ̂1, ϕ2, φ̂1, φ2, and q-isogenies σ
connecting the initial curves of ϕ̂1 and φ̂1 such that gcd(q, ℓ′) = 1.

1: Initialize a random coin c and a verifier V that correctly executes the PIsignHD
identification protocol, and select a private key τ ;

2: Run P(τ ; c) in interaction with V, and record (ψ, ϕ1, φ1, σ1);
3: Adjust the random coin to obtain c′ such that P(τ ; c′) uses the same commitment

isogeny as P(τ ; c);
4: Run P(τ ; c′) in interaction with V, and record (ψ, ϕ2, φ2, σ2);
5: return (ϕ̂1, ϕ2, φ̂1, φ2, σ1, σ2).

From the assumption, the endomorphism α = φ̂chl2 ◦σ2 ◦φcom2 ◦ φ̂com1 ◦ σ̂1 ◦
φchl1 is trivial with non-negligible probability. This deduces that Pr[[σ1]∗(ϕ2 ◦
ϕ̂1) = φ2 ◦ φ̂1] is also non-negligible.

Take an honest prover as input in Algorithm 2. From Lemmas 1 and 2,
we know that Pr[[σ1]∗(ϕ2 ◦ ϕ̂1) = φ2 ◦ φ̂1] < (f ′ + 1)(ℓ′−2f ) ≈ 2−2λ, where
ϕ1, ϕ2, φ1 and φ2 are chosen uniformly at random. This is a contradiction, as
Pr[[σ1]∗(ϕ2 ◦ ϕ̂1) = φ2 ◦ φ̂1] is non-negligible.

Take a malicious prover as input in Algorithm 2. Same as above, the malicious
prover has to ensure [σ1]∗(ϕ2 ◦ ϕ̂1) = φ2 ◦ φ̂1]. Note that [σ1]∗(ϕ̂1) = φ̂1 is a
necessary condition for [σ1]∗(ϕ2 ◦ ϕ̂1) = φ2 ◦ φ̂1. Adapting Lemma 3, ensuring
[σ1]∗(ϕ̂1) = φ̂1 is easy for the prover. However, since φ2 and ϕ2 are chosen
uniformly at random after σ1 is generated,

Pr
[
[σ1]∗(ϕ2 ◦ ϕ̂1) = φ2 ◦ φ̂1 | [σ1]∗(ϕ̂1) = φ̂1

]
= (ℓ′ + 1)−1(ℓ′)−f ′+1 ≈ 2−λ,

which is still negligible. This contradicts with the assumption. ⊓⊔
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4.2 Zero Knowledge

Same as the security proof for the SQIsignHD identification protocol, we use the
following oracle to prove the PIsignHD identification protocol is special honest
verifier zero-knowledge.
Definition 2 ([11, Definition 20]). A random uniform good degree isogeny
oracle (RUGDIO) is an oracle taking as input a supersingular curve E/Fp2

and returning an efficient representation (σ(P1), σ(Q1), q) of a random isogeny
σ : E → E′, where {P1, Q1} is a canonical basis of E[ℓf ] and q is the degree of
σ which is ℓg-good and coprime to ℓ′. Besides, the RUGDIO model satisfies that

– The distribution of E′ is uniform in the supersingular isogeny graph.
– The conditional distribution of σ given E is uniform among isogenies from
E to E′ of ℓg-good degree coprime to ℓ′.

With the help of the RUGDIO model, one can generate an efficient represen-
tation of an isogeny starting from a given supersingular elliptic curve E1, whose
degree is ℓg-good degree coprime to ℓ′. It has been argued in [11, Section 5.3]
that access to the oracle does not offer any advantage in reducing the hardness
of Supersingular Endomorphism Ring Problem (Problem 2), which can be re-
duced to Supersingular Endomorphism Problem (Problem 1) [18,30]. Same as
the SQIsignHD identification protocol, we also have a heuristic assumption on
the distribution of the commitment E1.

Problem 2 (Supersingular Endomorphism Ring Problem). Given a prime p and
a supersingular elliptic curve E defined over Fp2 , find four endomorphisms of E
that can be efficiently evaluated, to form a basis of the endomorphism ring of E.

Proposition 3. Assume that the commitment E1 is computationally indistin-
guishable from an elliptic curve chosen uniformly at random in the supersingular
isogeny graph. Then the PIsignHD identification protocol is special honest verifier
zero-knowledge in the RUGDIO model. In other words, there exists a simulator S
with access to RUGDIO, satisfying that the distribution of the accepting conver-
sation generated by S is computationally indistinguishable from the conversation
of the PIsignHD identification protocol.

Proof. We proceed similarly as the zero-knowledge proof of SQIsignHD [11, The-
orem 21]. The simulator S is constructed as follows: Firstly, the simulator S
selects an ℓ′f ′ -isogeny φ′

chl : EA → E′
3 uniformly at random. After that, the

simulator adapts the RUGDIO model to generate an efficient representation R′

of σ̂′ from E′
3 to E′

2, which is also an efficient representation of σ from E′
2 to E′

3.
Finally, the simulator S generates an ℓ′f ′ -isogeny φ̂′

com : E′
2 → E′

1 uniformly at
random. The conversation of S is of form (E′

1, φ
′
com, R

′, φ′
chl).

Assuming that the conversation of the PIsignHD identification protocol is of
form (E1, φcom, R, φchl), we aim to prove that the distribution of (E′

1, φ
′
com, R

′, φ′
chl)

is computationally indistinguishable from that of (E1, φcom, R, φchl). Applying
the RUGDIO model, the curve E′

2 is chosen uniformly at random in the su-
persingular isogeny graph. Since the isogeny φ̂′

com : E′
2 → E′

1 is also chosen
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uniformly at random, it follows that E′
1 is computationally indistinguishable

from an elliptic curve chosen uniformly at random in the supersingular isogeny
graph. Therefore, E1 and E′

1 have the same distribution. Furthermore, the isoge-
nies φcom and φ′

com start from elliptic curves chosen uniformly at random in the
supersingular isogeny graph and they are chosen uniformly at random, thus φcom
and φ′

com have the same distribution. Since φchl : EA → E3 and φ′
chl : EA → E′

3
are chosen uniformly at random, thus they are indistinguishable.

Now we prove the efficient representations of σ and σ′ are indistinguishable.
From the second property of the RUGDIO model, the conditional distribution
of σ̂′ given E′

3 is uniform among isogeny from E′
3 to E′

2, i.e., the conditional
distribution of σ′ given E′

2 is uniform among isogeny from E′
2 to E′

3. From [11,
Section 4.2], σ has the same distribution conditionally to E2 and E3. Notably, E2,
E′

2, E3, E′
3 are computationally indistinguishable from an elliptic curve chosen

uniformly at random in the supersingular isogeny graph. This ends the proof. ⊓⊔

5 Implementation and Comparison

In this section, we show how to further reduce the signature size of PIsignHD
thanks to the public storage (or the storage of the verifier’s size). Besides, we
explore how to implement PIsignHD with fast online signing via offline compu-
tations, and report the online/offline signature performance results of PIsignHD.
Comparisons between SQIsignHD and PIsignHD are also discussed in detail.

5.1 Signature compactness

Recall that the signature of PIsignHD is of the form (E1, R) where R =
(σ(P2), σ(Q2), q): the domain E1 of the isogeny φcom, the evaluation on the
canonical basis {P2, Q2} of E2[ℓf ] through σ and the degree of σ. The size is the
same as that of SQIsignHD.

Indeed, the signer can also transmit (E2, R, ker(φ̂com)) as the signature: the
codomain E2 of the isogeny φcom, the evaluation on the canonical basis {P2, Q2}
of E2[ℓf ] through σ, the degree of σ and the kernel of φ̂com. In this scenario, the
signature involves the additional information ker(φ̂com). Therefore, the signature
size is larger than that of SQIsignHD. In the following, we show how to compress
(E2, R, ker(φ̂com)), making it more compact than the SQIsignHD signature.

Similar to SQIsignHD, one can also compress the torsion basis information
utilizing the technique in Appendix C. Let {P0, Q0}, {P1, Q1}, {P2, Q2} and
{PA, QA} be the canonical bases of E0[ℓf ], E1[ℓf ], E2[ℓf ] and EA[ℓf ], respec-
tively. Assume that(

PA
QA

)
= Mτ

(
τ(P0)
τ(Q0)

)
, γ̂

(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
,

ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
, φcom

(
P1
Q1

)
= Mφcom

(
P2
Q2

)
.

(2)
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where Mτ ,Mγ̂ ,Mψ,Mφcom ∈ M2(Z/ℓfZ). Note that

σ = φchl ◦ τ ◦ γ ◦ ψ̂ ◦ φ̂com
[deg(φchl) deg(τ) deg(ψ) deg(φcom)]

.

Then

σ̂ ◦ φchl ◦ τ
(
P0
Q0

)
= φcom ◦ ψ ◦ γ̂ ◦ τ̂ ◦ φ̂chl ◦ φchl ◦ τ

[deg(φchl) deg(τ) deg(ψ) deg(φcom)]

(
P0
Q0

)
= φcom ◦ ψ ◦ γ̂

[deg(ψ) deg(φcom)]

(
P0
Q0

)

It follows from γ̂

(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
that

σ̂ ◦ φchl ◦ τ
(
P0
Q0

)
= Mγ̂

[deg(ψ) deg(φcom)]
· φcom ◦ ψ

(
P0
Q0

)
.

Further, from ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
and φcom

(
P1
Q1

)
= Mφcom

(
P2
Q2

)
,

σ̂ ◦ φchl ◦ τ
(
P0
Q0

)
= Mγ̂ ·Mψ

[deg(ψ) deg(φcom)]
· φcom

(
P1
Q1

)
= Mγ̂ ·Mψ ·Mφcom

[deg(ψ) deg(φcom)]

(
P2
Q2

)
.

Same as the deduction in Equation (4):

Mτ ·
(
σ̂ ◦ φchl(τ(P0))
σ̂ ◦ φchl(τ(Q0))

)
= σ̂ ◦ φchl

(
Mτ ·

(
τ(P0)
τ(Q0)

))
= σ̂ ◦ φchl

(
PA
QA

)
.

As a consequence,

σ̂ ◦ φchl
(
PA
QA

)
=Mτ ·Mγ̂ ·Mψ ·Mφcom

[deg(ψ) deg(φcom)]

(
P2
Q2

)
.

Therefore, the signature can be compressed into (E2,M, q, ker(φ̂com)), where

M = Mτ ·Mγ̂ ·Mψ ·Mφcom

[deg(ψ) deg(φcom)]
= Mτ ·Mγ̂ ·Mψ ·Mφcom

[deg(ψ)ℓ′f ′ ]
.

To store ker(φ̂com), we compress it by finding kφ̂com ∈ Z/ℓ′f ′Z such that
ker(φ̂com) can be represented by ⟨P ′

2 + [kφ̂com ]Q′
2⟩ or ⟨Q′

2 + [kφ̂com ]P ′
2⟩ where

{P ′
2, Q

′
2} is the canonical basis of E2[ℓ′f ′ ]. Note that {P ′

2, Q
′
2} can be recovered as

E2 is given. Therefore, one can transfer (kφ̂com , labelφ̂com) instead of a generator
of ker(φ̂com), where labelφ̂com is a bit used to distinguish the two cases mentioned
above. This reduces the storage cost of ker(φ̂com) to approximately λ bits.

As a Γ -signature, PIsignHD allows the signer to precompute all the inter-
mediate values which are irrelevant to the message. In particular, the signer can
precompute plenty of commitments, and store a list of codomains of the hash
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isogenies D = {E(1)
2 , E

(2)
2 , · · · , E(n)

2 } in public, or on the verifier’s side. Hence,
the signer can transfer the index indE in D instead of the codomain of the hash
isogeny. Generally, setting n = 232 is enough for practice.

With the help of the list D, the signature of PIsignHD can be compressed
into (indE ,M, q, (kφ̂com , labelφ̂com)). From Remark 4, the entire action matrix M
can be recovered once three entries of it are known, and its size can be further
halved by revealing the actions of σ on a 2⌈g/2⌉-torsion basis instead of {P2, Q2}.
Therefore, the total storage cost is approximately 32+(3·0.5λ+1)+λ+(λ+1) =
(3.5λ+ 34) bits. For comparison, the signature size of SQIsignHD is about 6.5λ
bits. For NIST-I security level (λ = 128), the signature size of PIsignHD is 519
bits, while the storage cost of SQIsignHD is 870 bits.

5.2 Offline/online signatures

As mentioned in Section 2.2, the isogeny φchl can be recovered by the verifier, and
the signer can avoid isogeny computations relevant to φchl. Besides, the isogenies
τ and τ ′ have been constructed in key generation. Therefore, the bottleneck of
the response in SQIsignHD is the isogeny computations of the commitment.

In PIsignHD, the signer not only computes the codomain of ψ but an equiv-
alent isogeny ψ′ of coprime degree, due to the translation from the isogeny φcom
to the associated ideal Iφcom . In addition, the signer has to construct and eval-
uate the isogeny φcom to obtain the codomain E2 and the action matrix Mψ

associated to ψ. Fortunately, by implementing online/offline computations, all
the above parts can be computed offline and thus they do not affect the efficiency
of the online response. Detailed descriptions of the offline/online signatures are
presented in Algorithms 3 and 4.

Remark 3. The signer can compute Mφcom◦ψ
deg(ψ)ℓ′f′ offline and store it instead of

Mφcom◦ψ to further improve the online signing (Step 6 of Algorithm 4).

The constructions of ψ and ψ′ are the efficiency bottlenecks of the offline com-
putations. There are mainly two methods to achieve this: One is to generate
ψ uniformly at random, then compute the associated ideal Iψ and apply the
KLPT algorithm [24] to obtain an equivalent ideal, and finally translate it to
the associated isogeny ψ′ (note that in this case the degree of ψ′ is approxi-
mately p3); the other is to generate both of them simultaneously by the ele-
gant techniques utilized in the key generation phase of SQIsignHD [11, Section
3.3]. Our implementation applies the latter one for efficiency reasons. To reduce
the storage cost for the ideal Iφcom ◦ Iψ, the signer can execute the algorithm
RandomEquivalentIdealℓg to generate an ideal I ∼ Iφcom ◦ Iψ with norm
Nrd(I) ≈ √

p. Note that the codomain E2 can be public or stored on the veri-
fier’s size, while the tuple (Mφcom◦ψ, I, kφ̂com , labelφ̂com) should be secret.

The online signature avoids the isogeny computations, thus all the operations
are over the quaternions and linear algebra. Particularly, the efficiency bottleneck
is the generation of the ideal associated to σ. Currently, the approach to obtain
the target ideal is somewhat primitive. Finding a more efficient method for the
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Algorithm 3 Offlinesignature
Require: The initial curve E0 with known Endomorphism ring.
Ensure: The curve E2, the action matrix Mφcom◦ψ = Mφcom ·Mψ with Mφcom and Mψ

defined in Equation (2), the ideal I associated to the isogeny φcom ◦ ψ : E0 → E2,
the integer kφ̂com and a bit labelφ̂com used to determine ker(φ̂com).

1: Generate a random isogeny walk ψ : E0 → E1 of degree ℓ′• ≈ p and an equivalent
isogeny ψ′ : E0 → E1 of degree ℓ• ≈ p;

2: Compute the ideals Iψ and Iψ′ associated to ψ and ψ′, respectively;
3: Compute the canonical bases {P0, Q0} and {P1, Q1}of E0[ℓf ] and E1[ℓf ], respec-

tively;
4: Compute the action matrix Mψ as defined in Equation (2);
5: φcom ← H′(E1,H(j(E1))) and compute φcom(P1) and φcom(Q1);
6: Compute ker(φ̂com), the kernel of φ̂com;
7: Iφcom ← IsogenyToIdeal(φcom, ψ′, Iψ′ );
8: Compute the canonical basis {P ′

2, Q
′
2} of E2[ℓ′f ′

];
9: Compute the action matrix Mφcom as defined in Equation (2);

10: Mφcom◦ψ ←Mφcom ·Mψ, I ← Iφcom · Iψ;
11: Find kφ̂com ∈ Z/ℓ′f ′

Z such that ker(φ̂com) = ⟨P ′
2 + [kφ̂com ]Q′

2⟩ or ker(φ̂com) =
⟨[kφ̂com ]P ′

2 +Q′
2⟩;

12: labelφ̂com ← 1 if ker(φ̂com) = ⟨P ′
2 + [kφ̂com ]Q′

2⟩, or labelφ̂com ← 0 otherwise;
13: I ← RandomEquivalentIdealℓg (I);
14: return E2 and (Mϕ◦ψ, I, kφ̂com , labelφ̂com).

ℓg-good equivalent ideal generation is essential to improve the performance of
the online signature. We leave it as future work.

We note that the online signing phase of SQIsignHD can also be acceler-
ated via precomputation. Precisely, the signer can precompute the isogeny ψ,
the codomain E1 and the action matrices such as Mψ in Equation (3). This
also avoids the isogeny computations in the online signing phase. However,
SQIsignHD has several disadvantages in applications compared with PIsignHD
when applying the offline/online computations:

– SQIsignHD requires larger storage requirements. To generate a signature
with respect to the commitment E1, the signer has to store Iψ, Mψ and
E1. Especially, since the commitment E1 cannot be public, the signer has
to store it before signing. For comparison, PIsignHD allows the list D =
{E(1)

2 , E
(2)
2 , · · · , E(s)

2 } to be public or be stored on the verifier’s side. As a
consequence, the signer only stores the information I ∼ Iφcom · Iψ, Mφcom◦ψ,
(kφ̂com , labelφ̂com) and a label indE instead when implementing PIsignHD,
reducing the storage cost by approximately 3λ bits for each commitment.

– SQIsignHD has larger signature size. As discussed previously, PIsignHD al-
lows the signer to further compress the signature thanks to the public list
D. On the other hand, in SQIsignHD the knowledge of E1 should be entirely
transferred as it is not allowed to be public in advance. Although the sig-
nature of PIsignHD also involves the knowledge of the hash isogeny φcom,
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Algorithm 4 Onlinesignature
Require: The isogeny τ ′ : E0 → EA of degree ℓ′• ≈ p, the ideals Iτ and Iτ ′ associated

to τ and τ ′ respectively, the ideal Iφcom◦ψ equivalent to Iφcom · Iψ, the isogeny
φchl : EA → E2 of degree ℓ′f ′ , and the action matrices Mτ and Mφcom◦ψ defined
in Equation (2).

Ensure: The matrix M such that (σ̂ ◦ φchl(PA), σ̂ ◦ φchl(QA))T = M · (P1, Q1)T and
the degree q of the isogeny σ : E1 → E2.

1: Iφchl ← IsogenyToIdeal(φchl, τ ′, Iτ ′ ), J ← Iφcom◦ψ · Iτ · Iφchl ;
2: I ← RandomEquivalentIdealℓg1 (J) and compute the reduced norm q of I;
3: If q is not ℓg-good or gcd(q, ℓ′) ̸= 1, go back to Line 2;
4: Compute γ ∈ O such that Oγ = Iψ · I · Iτ · Iφchl ;
5: Compute the action matrix Mγ̂ as defined in Equation (2);
6: M ← Mτ ·Mγ̂ ·Mφcom◦ψ

deg(ψ)ℓ′f′ ;
7: return (M, q).

it is still more compact than that of SQIsignHD due to the large storage
requirement of the curve coefficient.

– The challenge isogeny in SQIsignHD is generated from the knowledge of
both the commitment E1 and the message m. Therefore, the online phase
in SQIsignHD has to compute the hash of E1 and m, i.e., H(E1||m), and
then generates the challenge isogeny φ = H′(EA,H(E1||m)). Conversely, in
PIsignHD the challenge isogeny φchl = H′(EA,H(m)). This is preferred in
some specific applications. For example, the hash of the message m can be
hashed by a trusted party. In this case, the signer is able to use a low-power
device to generate the signature with respect to H(m), without handling
the entire message. When applying SQIsignHD, the signer has to compute
H(E1||m) or transmit E1 to the trusted party. The former enlarges the com-
munication cost and the computational cost of online signing, while the latter
requires an additional round of interaction.

– In PIsignHD, the verifier can precompute some intermediate values to fasten
the verification. More details are left in the next subsection.

5.3 Experimental Results

Based on the SQIsignHD code 1, we implement the online/offline signatures of
PIsignHD. We benchmark our code on Intel(R) Core(TM) i9-12900K 3.20 GHz
with TurboBoost and hyperthreading features disabled. The code is available at

https://github.com/Kaizhan-Lin/PIsignHD.

As mentioned in this last subsection, SQIsignHD also benefits from the on-
line/offline computations. In Table 1 we give an efficiency comparison between
the offline/online responses of SQIsignHD and PIsignHD.
1 https://github.com/Pierrick-Dartois/SQISignHD-lib
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Table 1: Comparison of the SQIsignHD and PIsignHD signing implementations
targeting the NIST-I security level. For the performance results (expressed in
millions of clock cycles), we execute 1000 times for a 256-bit message and record
the average time.

Implementation SQIsignHD PIsignHD

Signature size (bits) Original 870 870
Compressed - 519

Clock cycles (cc×106 )

Original 70.1 89.8
Offline (Uncompressed) 57.9 77.8
Online (Uncompressed) 12.0 11.8
Offline (Compressed) - 89.6
Online (Compressed) - 11.8

As excepted, the online response of SQIsignHD and PIsignHD is very fast
and close. According to our experimental results, the online response takes only
4 ms. For comparison, the signature of SQIsignHD takes 22.4 ms on average.
Therefore, the online response of SQIsignHD/PIsignHD is over 5 times faster
than the entire signing procedure of SQIsignHD without offline precomputations.

While the implementation efficiency of online responses of PIsignHD remains
unchanged regardless of whether the signature compression is employed, the of-
fline computation is less efficient in the case when using the compression tech-
nique. The main reason is that the signer needs to compute the kernel of φ̂com
and compress it to (kφ̂com , labelφ̂com) by computing discrete logarithms during
the offline phase of compressed PIsignHD.

In our implementation, we improve the performance of discrete logarithms
in the signing phase by utilizing reduced Tate pairings [25]. Indeed, there are
some other techniques in the literature which can be utilized to improve the
implementation of the offline computations. For instance, one can employ in-
terleaved modular multiplication algorithms [26] to reduce considerable memory
loads and stores for multiplications in Fp2 . Very recently, faster approaches for
pairing computations in isogeny-based protocols are explored by [34,5], which
are particularly beneficial for the acceleration of the action matrix computa-
tions. We note that in the real-world applications, the offline computations can
be connected to the power. Hence, it is acceptable that the offline computations
of PIsignHD are not as efficient as that of SQIsignHD.

In summary, the online response performance of both signatures is very close,
while SQIsignHD has a faster implementation of the offline computations com-
pared to PIsignHD. However, regarding various advantages as discussed in Sec-
tion 5.2, PIsignHD appears more promising in practical applications.

Now we analyze the performance of other parts in PIsignHD.
The key generation phase of PIsignHD is identical to that of SQIsignHD, and

thus the performance is the same.
When we do not apply the online/offline technique, the verification in PIsignHD

needs to construct φcom : E1 → E2, which is the hash of E1. Since φcom is a
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power-smooth isogeny that can be efficiently constructed and evaluated, the
overhead is negligible as the isogeny computations in high dimension dominate
the computational cost. Therefore, the verification performance of PIsignHD is
very close to that of SQIsignHD.

When adapting the online/offline technique, PIsignHD has the potential to
achieve a better verification performance compared to SQIsignHD. In addition,
some intermediate values can also be precomputed to fasten the verification. For
example, the verifier can precompute the canonical basis of any supersingular
curve in the list D. Besides, as the challenge isogeny can be generated without
any interaction with the signer, the verifier can also compute the canonical basis
of the codomain E3 in advance. We are confident that the isogeny computation
in high dimension can be accelerated via precomputation with further research.

6 Conclusion

In this paper we introduced a new structure for the SQIsign family, and pro-
posed PIsignHD based on SQIsignHD. The flexible challenge generation benefits
the implementation of PIsignHD in the real-world applications. Furthermore,
PIsignHD has a shorter signature size compared with SQIsignHD. In addition,
PIsignHD achieves a fast online response via offline computations with cheaper
storage requirements. In our future work, we aim to further enhance the per-
formance of PIsignHD, including reducing the offline storage complexity for the
prover, improving the efficiency of offline/online signing and verification, etc. We
will also adapt the new structure to other efficient variants of SQIsign [10,1,28,17]
to make them more competitive in applications. Additionally, it is interesting to
develop practical Γ -signatures based on other isogeny-based protocols, such as
CSIDH [7] and SIDH-like schemes [22,2].
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A Mathematical Background

This section provides the necessary mathematical preliminaries, including elliptic
curves, isogenies, quaternion algebras, orders and ideals. We refer to [35,37] for
more details.
Elliptic Curves. Elliptic curves are nonsingular projective curves with genus
1. For applications, elliptic curves defined in this paper are over a finite field Fq,
denoted by E/Fq, where q = pn with prime p > 3 and n ∈ N∗. An isomorphism
class of elliptic curves can be entirely determined by its j-invariant. We use j(E)
to denote the j-invariant of E. All the rational points on the elliptic curve E and
the point at infinity ∞E

5 form an abelian group E(Fq) under point addition.
Let ℓ > 0, the ℓ-torsion of E is defined as E[ℓ] = {P ∈ E(Fq)|[ℓ]P = ∞E},
where [ℓ] is a multiplication-by-ℓ map. An elliptic curve E is supersingular if
E[p] = {∞E}, otherwise E is said to be ordinary.
Isogenies. An isogeny φ : E1 → E2 is a non-constant surjective morphism
that sends ∞E1 to ∞E2 . Denote deg(φ) the degree of φ as a rational map. Two
curves E1 and E2 are said to be isogenous over Fq if there exists an isogeny
connecting them over Fq. An isogeny φ is called cyclic if its kernel can be
generated by one single point P , and separable if the cardinality of the ker-
nel ker(φ) = {P ∈ E1(Fq)|φ(P ) = ∞E2} is equal to deg(φ). If deg(φ) is co-
prime to the characteristic of the finite field, then φ must be separable. We
abbreviate a separable isogeny of degree ℓ as an ℓ-isogeny. Furthermore, for any
isogeny φ : E1 → E2, there exists a unique isogeny φ̂ : E2 → E1 such that
φ̂ ◦ φ = [deg(φ)], i.e., the composition of the two isogenies is a multiplication-
by-deg(φ) map. In this case, we call φ̂ the dual isogeny of φ.

Let φ1 : E0 → E1 and φ2 : E0 → E2 be two separable isogenies with
gcd(deg(φ1),deg(φ2)) = 1. Then there exist two isogenies ψ1 : E2 → E3 and
ψ2 : E1 → E3 such that ker(ψ1) = φ2(ker(φ1)) and ker(ψ2) = φ1(ker(φ2)),
as illustrated in Figure 6. We denote ψ1 = [φ2]∗φ1 (resp. ψ2 = [φ1]∗φ2) as
the pushforward isogeny of φ1 (resp. φ2) through φ2 (resp. φ1). Conversely, the
isogeny φ1 (resp. φ2) is called the pullback isogeny of ψ1 (resp. ψ2) through φ2
(resp. φ1), denoted by φ1 = [φ2]∗ψ1 (resp. φ2 = [φ1]∗ψ2). Note that ψ1 and ψ2
are also separable. In addition, there exists an isogeny Φ : E0 → E3 such that
Φ = ψ2 ◦ φ1 = ψ1 ◦ φ2.

The supersingular ℓ-isogeny graph is a graph whose vertices represent the
supersingular Fp classes and edges represent the equivalent classes of ℓ-isogenies
connecting them. The graph is connected, essentially undirected and Ramanu-
jan [31]. Moreover, the graph is ℓ + 1-regular, meaning that there are exactly
ℓ+ 1 equivalent classes of isogenies starting from a given supersingular Fp class.
Endomorphism rings. An endomorphism of E is either an isogeny from E to
itself, or the constant morphism [0]. The set of all the endomorphisms forms a
ring under addition and composition, denoted by End(E). The endomorphism

5 The point at infinity of an elliptic curve is not necessarily the identity, but for
simplicity we suppose that it is the identity point.
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E1

E0 E3

E2

φ1

φ2

ψ2

ψ1

Φ

Fig. 6: A commutative isogeny diagram

ring End(E) is isomorphic to an order in a quaternion algebra if E is supersin-
gular, or an order in a quadratic imaginary field if E is ordinary.
Quaternion algebras, orders and ideals. A quaternion algebra over Q rami-
fied at p and ∞ has the form Bp,∞ = Q+Qi+Qj+Qk, where i2 = −q, j2 = −p
and k = ij = −ji with q ∈ Z. The quaternion algebra has a canonical involution,
mapping α = α1 + α2i+ α3j + α4k to its conjugate α = α1 − α2i− α3j − α4k.
The reduced trace and the reduced norm of α are defined as Trd(α) = 2α1 and
Nrd(α) = αα, respectively.

An order in Bp,∞ is a full-rank lattice and also a subring. An order is called
maximal if it is not contained in another order. A fractional ideal is a Z-lattice
of rank 4. Given an ideal I, its left order and right order are defined as

OL(I) = {α ∈ Bp,∞|αI ⊂ I},OR(I) = {α ∈ Bp,∞|Iα ⊂ I}.

A left (resp. right) O-ideal I is a Z-lattice of rank 4 satisfying that O ⊂ OL(I)
(resp. O ⊂ ORI) and OL(I) and OR(I) are maximal. An fractional ideal I is
integral if I ⊂ OL(I), which implies that I ⊂ OR(I). Henceforth, we only focus
on integral ideals and refer to them as ideals.

An ideal I is said to be invertible, if there exists an ideal I−1 such that
II−1 = OL(I) or I−1I = OR(I). Denote Nrd(I) = gcd{Nrd(α)|α ∈ I} the
reduced norm of I, and I = {α|α ∈ I} the conjugate of I. If I is invertible, then
II = Nrd(I)OL(I) and II = Nrd(I)OR(I). An ideal I of integer reduced norm
can be represented by I = OL(I)α + OL(I)Nrd(I), where α ∈ OL(I). Two left
O-ideals I and J are equivalent if there exists β ∈ Bp,∞ such that I = Jβ ,
denoted by I ∼ J .
Deuring correspondence. The Deuring correspondence provides a link be-
tween the world of supersingular elliptic curves and the world of quaternion
algebras.

Let E be a supersingular curve, and suppose that the endomorphism ring
End(E) is isomorphic to a maximal order O of Bp,∞. Then an isogeny φI :
E → E′ corresponds to a kernel ideal I = {α ∈ O|α(P ) = ∞E for all P ∈
ker(φI)}, and deg(φI) = Nrd(I). Besides, the left order is isomorphic to O,
while the right order is isomorphic to End(E′). In particular, an endomorphism
of E corresponds to a principal ideal. Conversely, given a left O-ideal I, the
kernel E[I] = {P ∈ E(Fp)|α(P ) = ∞E for all α ∈ I} determines an isogeny
φI with ker(φI) = E[I] and deg(φI) = Nrd(I). The conjugation I associates to
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the dual isogeny φ̂I . The multiplication of ideals I · J defines the composition
φJ ◦ φI , where φI and φJ are two isogenies associated to I and J , respectively.
Note that in this case OR(I) ∼= OL(J). In addition, two left O-ideals I and J
are equivalent if and only if the isogenies φI and φJ have the same domain and
codomain up to isomorphism.

B Σ-Protocol and Fiat–Shamir Paradigm

Assume that P and V are probabilistic polynomial time machines, and the advan-
tage of P over V is that P knows w with (x,w) ∈ R, where R is an N P-relation.
Now concern the protocol that proceeds as follows:

– P sends a commitment a to V;
– V sends a random string e to P;
– P sends a reply z with respect to e, and V accepts or rejects based on

(x, a, e, z).

Definition 3. Σ-protocol is a three-round public-coin protocol ⟨P,V⟩ for an
N P-relation R that proceeds as above. Besides, Σ-protocols should satisfy the
following properties:

– Completeness: V always accepts if P and V follow the protocol.
– Special soundness: Given two pairs of valid conversations (a, e, z) and

(a, e′, z′) on any input x with e ̸= e′, one can recover the witness w such that
(x,w) ∈ R in polynomial time with overwhelming probability.

– Special honest verifier zero-knowledge (SHVZK): There exists a prob-
abilistic polynomial-time simulator S, which takes as input x, and outputs an
accepting conversation (a′, e′, z′), with the same (or computationally indis-
tinguishable) probability distribution as the conversation (a, e, z) of the real
protocol.

Given a Σ-protocol, Fiat–Shamir paradigm [21] can convert it to a signature
scheme. The main idea is to set e = h(a||m), where h is a hash function and m
is the message. The modification allows the signer to sign the message without
interacting with the verifier. The verifier accepts if (a, z) is a valid signature for
m 1.

C Current Response Implementation of SQIsignHD

Suppose that {P0, Q0}, {P1, Q1} and {PA, QA} are the canonical bases of E0[ℓf ],
E1[ℓf ] and EA[ℓf ], respectively. Then assume(

PA
QA

)
= Mτ

(
τ(P0)
τ(Q0)

)
, γ̂

(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
, ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
, (3)

1 In some specific signature schemes, such as SQIsign [9], the signature can be of form
(e, z) since a can be recovered from (e, z).
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where Mτ ,Mγ̂ ,Mψ ∈ M2(Z/ℓfZ). Recall from Equation (1) that σ = φ ◦ τ ◦ γ ◦
ψ̂/[deg(φ) deg(τ) deg(ψ)]. Therefore, the prover can compute σ̂ ◦ φ ◦ τ(P0) and
σ̂ ◦ φ ◦ τ(Q0) by the following:

σ̂ ◦ φ ◦ τ
(
P0
Q0

)
= ψ ◦ γ̂ ◦ τ̂ ◦ φ̂ ◦ φ ◦ τ

[deg(φ) deg(τ) deg(ψ)]

(
P0
Q0

)
= ψ ◦ γ̂ ◦ τ̂ ◦ τ

[deg(τ) deg(ψ)]

(
P0
Q0

)
= ψ ◦ γ̂

[deg(ψ)]

(
P0
Q0

)
.

Since γ̂
(
P0
Q0

)
= Mγ̂

(
P0
Q0

)
, one can deduce

σ̂ ◦ φ ◦ τ
(
P0
Q0

)
= Mγ̂

[deg(ψ)]
· ψ

(
P0
Q0

)
.

It follows from ψ

(
P0
Q0

)
= Mψ

(
P1
Q1

)
that

σ̂ ◦ φ ◦ τ
(
P0
Q0

)
= Mγ̂ ·Mψ

[deg(ψ)]

(
P1
Q1

)
.

Note that

Mτ ·
(
σ̂ ◦ φ(τ(P0))
σ̂ ◦ φ(τ(Q0))

)
= σ̂ ◦ φ

(
Mτ ·

(
τ(P0)
τ(Q0)

))
= σ̂ ◦ φ

(
PA
QA

)
. (4)

Therefore,
σ̂ ◦ φ

(
PA
QA

)
= Mτ ·Mγ̂ ·Mψ

[deg(ψ)]

(
P1
Q1

)
.

Algorithm 5 summarizes the fast response using the above techniques. The
signature is (E1, q,M), where q is the degree of τ and M = Mτ ·Mγ̂ ·Mψ

[deg(ψ)] . Since φ
can be derived from E1 and the message, the verifier has access to E2, φ(PA) and
φ(QA). The verifier accepts if (E2, E1, q, (φ(PA), φ(QA)), (PM1 , QM1 )) correctly
represents an isogeny from E2 to E1, where (PM1 , QM1 )T = M · (P1, Q1)T . This
is equivalent to prove that σ is an isogeny from E1 to E2.

As shown above, the curve coefficient of E2 is not required for the response
generation. Therefore, the prover does not need to construct or evaluate the
challenge isogeny φ. Furthermore, the information related to the secret isogeny
τ (such as the action matrix Mτ ) can be computed during key generation. As a
result, the prover only needs to compute the commitment isogeny in the signing
phase. All the other computations, such as the generation of the action matrix
Mγ̂ , are executed over quaternions and linear algebra.

Remark 4. It should be noted that the signature size can be further compressed.
For example, the verifier can recover the entire matrix M with only three entries
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Algorithm 5 FasterRespond
Require: The isogeny τ ′ : E0 → EA of degree ℓ′•, the ideals Iτ and Iτ ′ associated to

τ and τ ′ respectively, the ideal Iψ associated to ψ, the isogeny φ : EA → E2 of
degree ℓf , and the action matrices Mτ and Mψ defined in Equation (3).

Ensure: The matrix M such that (σ̂ ◦ φ(PA), σ̂ ◦ φ(QA))T = M · (P1, Q1)T and the
degree q of the isogeny σ : E1 → E2.

1: Iφ ← IsogenyToIdeal(ker(φ), τ ′, Iτ ′ ), J ← Iψ · Iτ · Iφ;
2: I ← RandomEquivalentIdealℓg1 (J) and compute the reduced norm q of I;
3: If q is not ℓg-good or gcd(q, ℓ′) ̸= 1, go back to Line 2;
4: Compute γ ∈ O such that Oγ = Iψ · I · Iτ · Iφ;
5: Compute the action matrix Mγ̂ as defined in Equation (3);
6: M ← Mτ ·Mγ̂ ·Mψ

[deg(ψ)] ;
7: return (M, q).

of the action matrix M according to the techniques in [11, Section 6.1]. Further-
more, to verify the validity of the representation the prover can only reveal the
actions of the response isogeny on an ℓ⌈g/2⌉-torsion basis. This halves the storage
cost of M . In the meantime, one can set g ≤ 2f instead of g ≤ f when utilizing
RandomEquivalentIdealℓg to generate Iσ.6

6 For efficiency, it is best to set 2f ≥ g + 4. See [11, Section 4.3, Section 4.4] for more
details.
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