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Abstract
In the past decade, tens of homomorphic encryption compilers have
been released, and there are good reasons for these compilers to
exist. Firstly, homomorphic encryption is a powerful secure com-
putation technique in that it is relatively easy for parties to switch
from plaintext computation to secure computations when com-
pared to techniques like secret sharing. However, the technique is
mathematically involved and requires expert knowledge to express
computations as homomorphic encryption operations. So, these
compilers support users who might otherwise not have the time or
expertise to optimize the computation manually. Another reason
is that homomorphic encryption is still computationally expen-
sive, so compilers allow users to optimize their secure computation
tasks. One major shortcoming of these compilers is that they often
do not allow users to use high-level primitives, such as equality
checks, comparisons, and AND and OR operations between many
operands. The compilers that do are either based on TFHE, requir-
ing large bootstrapping keys that must be sent to the evaluator, or
they only work in the Boolean domain, excluding many potentially
more performant circuits. Moreover, compilers must reduce the
multiplicative depth of the circuits they generate to minimize the
noise growth inherent to these homomorphic encryption schemes.
However, many compilers only consider reducing the depth as an
afterthought. We propose the Oraqle compiler, which solves both
problems at once by implementing depth-aware arithmetization,
a technique for expressing high-level primitives as arithmetic op-
erations that are executable by homomorphic encryption libraries.
Instead of generating one possible circuit, the compiler generates
multiple circuits that trade off the number of multiplications with
the multiplicative depth. If the depth of the resulting circuits is
low enough, they may be evaluated using a BFV or BGV library
that does not require bootstrapping keys. We demonstrate that our
compiler allows for significant performance gains.
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1 Introduction
In the past decade, the field of somewhat and fully homomorphic
encryption (FHE) has seen significant advancements, leading to
the development of tens of homomorphic encryption compilers.
These compilers are essential tools for enabling users who might
otherwise not have the time or expertise to transition from plaintext
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computations to secure computation, and they do so with relative
ease compared to other techniques like secret sharing.

Despite their utility, existing FHE compilers still have limita-
tions. A critical shortcoming is their limited support for high-level
primitives such as equality checks, comparisons, and AND and
OR operations involving multiple operands. This is because FHE
schemes compute circuits of additions and multiplications over
some algebra. For the schemes that we consider in this work, this
algebra is typically the commutative ring of integers modulo some𝑞.
In general, it is not straightforward to express high-level primitives
as arithmetic circuits in this algebra. However, it is a misconception
that generating these arithmetic circuits is impossible for every 𝑞.
When 𝑞 is a prime, the plaintext algebra is the finite field F𝑝 , in
which any function can be expressed as an arithmetic circuit.

Expressing high-level operations as arithmetic circuits is a pro-
cess called arithmetization. Some compilers do support the arith-
metization of high-level primitives, but they only allow doing so
for the plaintext algebra F2, thereby restricting the circuits to the
Boolean circuits. This is a significant restriction that potentially
ignores many more efficient circuits. For example, if we want to
compute an AND operation between 16 operands, we require many
more multiplications in Boolean circuits than in arithmetic circuits,
where 𝑞 can be larger. These multiplications are significantly more
expensive to compute than additions. Concretely, we require 15
multiplications in F2, and only 4 in F17 (see Section 4).

There are also compilers that provide arithmetization of high-
level primitives by relying on FHE schemes that support programmable
bootstrapping. Instead of computing circuits consisting of additions
and multiplications, these schemes compute circuits of additions
and programmable bootstrapping operations, which are essentially
lookup tables. A common example of such a scheme is TFHE [6].
While these schemes are typically computationally efficient, they
require every evaluator to have large bootstrapping keys, which
are in the order of tens to thousands of megabytes in size. Our work
focuses on BFV/BGV-type schemes [3, 4, 9], which do not require
the evaluator to have bootstrapping keys.

A second problem in arithmetization for FHE is that a circuit’s
efficiency is relies strongly on the multiplicative depth of an arith-
metic circuit. This metric is defined as the highest number of multi-
plication on any path through the circuit. The reason is that FHE
ciphertexts contain some noise as part of the underlying cryp-
tographic hardness assumption. As FHE schemes perform more
homomorphic operations on ciphertexts, this noise grows. At some
point, the noise may become so large as to override the plaintext
that the ciphertext originally encrypted. Since the noise grows most
strongly during ciphertext multiplications, the multiplicative depth
is a useful metric for measuring noise growth. Knowing the multi-
plicative depth of the circuit that will be computed allows one to
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Figure 1: Typical pipeline in a homomorphic encryption compiler and the parts covered by our work.

choose parameters that are large enough to accommodate the ex-
pected amount of noise growth. However, larger parameters make
multiplications more expensive to compute. As a result, we have
two metrics that we want to minimize to increase the efficiency
of arithmetic circuits: the number of multiplications, which are
expensive to compute, and the multiplicative depth, which impacts
the cost of individual multiplications.

In this work, we propose a new compiler called Oraqle that
solves both the problem of arithmetizing high-level operations and
the problem of multiplicative depth reduction simultaneously. The
Oraqle compiler implements depth-aware arithmetization, a con-
cept recently introduced by Vos et al. [21]. By restring the plaintext
algebra to F𝑝 , where 𝑝 is prime, we can arithmetize any high-level
function. Unlike other compilers, the Oraqle compiler does not
focus on reducing either the number of multiplications or the multi-
plicative depth, but it reduces both. In doing so, it returns multiple
circuits that trade off these two metrics. To be precise, it generates
a front of circuits that trade off the multiplicative depth and the
multiplicative cost, which is a number that considers that squaring
operations are cheaper to compute than arbitrary multiplications.

Our work is not the first to trade off the multiplicative depth with
the number of multiplications. However, depth reduction has pre-
viously only been considered as an optimization stage that comes
after arithmetization [1, 5, 15, 22]. These works input any arith-
metic circuit, so they cannot exploit the knowledge of the high-level
operations that these circuits perform. Besides, it is possible to arith-
metize a high-level operation inmultiple ways, resulting in radically
different arithmetic circuits. These techniques cannot recover all
possible circuits generated using depth-aware arithmetization.

In Figure 1, we describe a typical pipeline for compiling high-
level circuits into homomorphic encryption circuits. Notice that the
Oraqle compiler considers depth reduction in the arithmetization
stage, whereas other compilers consider depth reduction in the opti-
mization stage. We note that our work only addresses the first parts
of the pipeline, and we rely on other work for the later parts. We
believe that this decoupling is a positive development. For example,
a user (or compiler) could use our compiler to generate arithmetic
circuits and another compiler to generate parameters and place
homomorphic encryption operations. In the Oraqle compiler, we
rely on fhegen [16] to select parameters and HElib [13] for the
placement of relinearization and modswitch operations, as well as
the final evaluation of the circuit using the BGV cryptosystem [4].

In short, while there are already many homomorphic encryption
compilers, the Oraqle compiler is unique in the sense that it:

• Arithmetizes any high-level operation in F𝑝 , supporting
equality checks, comparisons, and AND and OR operations
between many operands, among others.

• Minimizes both the number of multiplications and the multi-
plicative depth during arithmetization, generating multiple
circuits that trade off these two metrics.

• Considers the fact that squaring is often cheaper to compute
homomorphically than arbitrary ciphertext multiplications.

In this paper, we present the practical workings of the Oraqle
compiler.We demonstrate that our compiler produces more efficient
arithmetizations of comparison operations (𝑥 < 𝑦) than other work
for circuits over F𝑝 where 𝑝 is prime. Next to that, we use our
compiler to demonstrate that arithmetic circuits (i.e. where 𝑝 > 2)
can be more performant than Boolean circuits. We show this for
doing an equality check (𝑥 = 𝑦) between two 64-bit inputs.

Our paper is structured as follows. We start by reviewing other
general-purpose homomorphic encryption compilers for BFV/BGV-
type schemes in Section 2. After that, we proceed in the same order
as the pipeline diagram in Figure 1. So, in Section 3 we explain how
users can describe high-level circuits in Oraqle. In Section 4 we
explain how we implement depth-aware arithmetization. We also
explain some heuristics & approximations that can be used to speed
up circuit generation time. Next, in Section 5, we describe how
semantic common subexpression elimination can further optimize
the generated arithmetic circuits. After that, we describe in Section 6
howwe use fhegen andHElib to compile the circuits to an executable
binary. We present some results in Section 7, and finish with an
overview of limitations and a conclusion in Sections 8 & 9.

2 Homomorphic encryption compilers
We briefly discuss existing general-purpose homomorphic encryp-
tion compilers for Z𝑞 plaintext spaces. We exclude works that are
solely for TFHE, because these do not execute arithmetic circuits:
instead, they are comprised of additions and programmable boot-
strapping operations. We only consider works from 2020 and after.
We refer the reader to the work by Viand et al. [20] for prior works.

In Table 1, we provide an overview of the works described in
this section. We specify several properties in the same order as the
pipeline presented in Figure 1. Specifically, we consider each com-
piler’s circuit description interface, by stating their input language
and plaintext algebra. For arithmetization, we discuss whether they
support high-level operations, and whether they consider the multi-
plicative depth during arithmetization. Moreover, we state whether
the compilers implement common subexpression elimination (CSE)
to reduce the multiplicative size, or depth reduction techniques.
Finally, we state whether they automate parameter selection and
the placement of relinearization and modswitch operations, as well
as the library they use for evaluation.

A takeaway is that few of the previous compilers implement
arithmetization for plaintext spaces with 𝑝 > 2, so there is a large
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space of possible circuits they cannot generate. Moreover, none of
the compilers generate circuits in a depth-aware manner for 𝑝 > 2.

T2. The T2 cross-compiler [11] provides a DSL for describing
arithmetic circuits, allowing one to generate code for multiple li-
braries. If 𝑝 is a prime, the compiler implements arithmetization for
equality checks and comparisons, but it does not consider the depth-
cost trade-off. The compiler chooses parameters from a predefined
list, and places homomorphic encryption operations automatically.

HEIR. The HEIR compiler [10] is based on the multi-level inter-
mediate representation (MLIR) toolchain, which can be reused and
extended by other compilers. For this reason, it supports multiple
input formats and multiple FHE schemes. At the time of writing,
the compiler only translates arithmetic operations on secrets to
arithmetic operations on encrypted secrets, so it does not support
high-level arithmetization but it can be extended as such. Due to
its extensible nature, the compiler inherits common subexpression
elimination and tree balancing from MLIR.

Porcupine. The Porcupine compiler [8] focuses on automatic
vectorization of arithmetic circuits. It inputs circuits written in a
new DSL. While it does not arithmetize high-level operations, it
performs depth reduction due to vectorization. Parameters must be
selected manually and relinearization operations are placed naively.

HECO. Similar to the HEIR compiler, the HECO compiler [19]
relies on the MLIR toolchain. It supports a python front-end and a
SEAL backend. It does not implement the arithmetization of high-
level primitives, which is currently left to the user. It does perform
simple parameter selection and naive placement of relinearization
operations. Since it is based on MLIR, it can perform CSE, and it
supports a vectorization pass that reduces the multiplicative depth
of series of multiplications.

HElium. The HElium compiler is a compiler that focuses on proxy
re-encryption, allowing computations on data stored under different
keys. The main objective is reducing re-encryption operations. It
implements depth reduction in the form of tree rebalancing. As an
input language, it uses a new domain-specific language.

Our work: Oraqle. The Oraqle compiler. Strong form of CSE. For
the placement of homomorphic encryption operations, we rely on
the HElib library, which does so naively (i.e. it may scale down the
modulus only to scale it up before the next operation).

3 Programming interface
The programming interface defines the way in which users supply
input to the compiler. As shown in Table 1, several works provide
a domain-specific language for the user to do so. While this allows
one to tailor the language to the use case, it introduces a learning
curve. In the Oraqle compiler, we do not use a DSL, and instead
allow the user to express circuits in pure Python, supporting a
subset of Python functions by overloading operators. This means
that we also do not perform introspection or analysis of the abstract
syntax tree. While those approaches would allow one to be more
expressive, they make it harder for users to change the behavior of
the compiler to their needs. A downside is that in some cases, due
to language restrictions, the user cannot use a built-in function and
instead must resort to a function with a similar name. For example,
instead of calling sum, the user must call sum_. In this section, we

first describe how we go from the user’s inputs in Python to a high-
level circuit description. After that, we provide some examples of
Python code and the circuits they describe.

The key way in which we construct high-level circuits that the
compiler can arithmetize, is to symbolically execute the Python
code by overriding the typical operators. For example, when the
user calls x - y, this will result in a symbolic Subtraction(x, y,
gf) node, rather than the interpreter trying to evaluate the expres-
sion. We provide several ways in which these symbolic nodes are
combined to create different symbolic nodes. For example, additions
are automatically flattened into one large Sum node. Moreover, if
all the inputs to an operation are constants, then the constant is
folded. In other words, the output is a constant too.

We capture the semantics of different high-level operations by
specifying different types of operations, such as:

• Fixed nodes, which have a fixed number of operands.
– Commutative binary nodes: E.g. addition and equality checks.
– Non-commutative binary nodes: E.g. comparisons.
– Univariate nodes: E.g. exponentiation by a constant.
– Leaf nodes: E.g. inputs and constants.

• Flexible nodes, which have an arbitrary number of operands.
– Commutative & associative reducible nodes with a set of
operands: E.g. AND and OR operations.

– Commutative & associative reducible nodes with a multiset
of operands: E.g. sums and products.

In the compiler, we ensure that, for common operations, there is
only one way to represent them. For example, we do not allow an
AND operation with one operand, or an addition between two con-
stants (this should simply be a constant). As a result, the only time
that a Constant node exists, is when the entire circuit evaluates to
a constant. Otherwise, the constant is part of an operation such as
a ConstantAddition.

Next, we showcase several examples of the conversions from
Python expressions to high-level circuits. These figures are gen-
erated by the compiler, which outputs DOT files. Note that these
high-level circuits are not yet arithmetized; they describe the func-
tion that the user wants to perform, split into common primitives.

Describing high-level circuits. We start with a simple example of
a program that a user might run. A user might wish to compute
[𝑥 < 𝑦]AND[𝑦 == 𝑧]. The Oraqle compiler requires the user to first
specify the plaintext algebra, prior to the defining the input node 𝑥 ,
𝑦, and 𝑧. In Listing 1, we use F31 as the plaintext algebra. As one can
see, after defining the inputs, the operations are expressed in the
same way as in regular Python functions. Finally, the user creates
a Circuit, which contains an arbitrary number of outputs.
In Figure 3, we show the high-level circuit as generated by the
compiler. For non-commutative nodes, the edges enter the node at
the correct side, indicating the direction of the operation (from left
to right). In commutative nodes, the edges enter the node anywhere.

Describing arithmetization in the compiler. While the Python in-
terface is useful for users to express the functions they want to
compute, it is also used within the compiler to implement transfor-
mations such as arithmetization. For example, if the scheme does
not support subtractions, the compiler implements a way to arith-
metize subtractions into an addition and constant multiplication as
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Table 1: An overview of homomorphic encryption compilers since 2020 and their compilation stages (see Figure 1).

Compiler Circuit description Arithmetization Optimization Parameter sel. Placing HE ops. Evaluation
Name Year Input Algebra High-level Depth-aware CSE Depth red. Automatic Automatic Library

Porcupine [8] 2021 Quill Z𝑞 - # #  # G# SEAL
HEIR [10] 2023 Multiple Z𝑞 - #  G#   Multiple
HECO [19] 2023 Python Z𝑞 - #   G# G# SEAL
T2 [11] 2023 C++ Z𝑞 Eq. & comp. # # # G#  Multiple
HElium [12] 2023 HEDSL - # # # G# G# G# Multiple
Oraqle 2024 Python F𝑝 Multiple   G# fhegen [16] G# HElib

x + -1 * y. Subtractions can in turn be used to arithmetize if-else
operations using the same interface.

Extending arithmetization in the compiler.We also use the Python
interface to implement arithmetization external to the compiler,
making it easy to comparewith other works, such as the comparison
circuits as proposed by Gouert et al. [11] for the T2 compiler. The
code for this is almost as simple as the equation used to describe
the arithmetization. We present this code in Listing 2.

The high-level circuit that the compiler generates from this code
can be seen in Figure 4. While it may seem that the compiler imple-
ments loop unrolling, this is not the case. The for-loop is executed
as is. Since the compiler flattens sums, there is only one addition
node at the end of the circuit. Operations like exponentiation by
6 will be arithmetized later, instead of turning them into multi-
plications at this stage. The reason is that exponentiation can be
arithmetized in different ways, trading off the multiplicative cost
and the multiplicative depth, as described by Vos et al. [21].

4 Depth-aware arithmetization
The Oraqle compiler implements the depth-aware arithmetization
techniques described by Vos et al. [21]. Specifically, they propose
how to arithmetize distinct products, exponentiations, polyno-
mial evaluations, and AND and OR operations between multiple
operands in a way that trades off the multiplicative cost and the
multiplicative depth. In this section, we do not discuss the theory
behind the techniques, but we discuss our practical implementation.
We begin by explaining our implementation and providing some
examples, after which we describe several ways in which the time
it takes to generate circuits can be reduced.

4.1 Arithmetization for 𝑝 ≥ 2
In the introduction, we gave an example of how AND operations
between multiple operands can be performed with fewer multi-
plications in an arithmetic circuit over F𝑝 with 𝑝 > 2, than in a
Boolean circuit where 𝑝 = 2. The reason is that a Boolean circuit
requires the operation 𝑥1 ∧ . . . 𝑥16 to be arithmetized as a product
𝑥1 × · · · × 𝑥16, whereas an arithmetic circuit over F17 allows for
many different kinds of circuits. The Oraqle compiler arithmetizes
this operation as (𝑥1 + · · · + 𝑥16)16, in which the exponentiation
only requires four multiplications.

While the Oraqle compiler implements depth-aware arithmeti-
zation, it also implements ‘regular’ arithmetization, in which the
compiler only outputs a single circuits. In this mode the compiler
seeks to minimize the multiplicative cost, and the multiplicative
depth secondarily. The compiler is significantly faster at performing

arithmetization in this way, because composition is straightforward:
the output of arithmetization of high-level operations is a single
arithmetic circuit rather than a Pareto front.

4.2 Depth-aware arithmetization for 𝑝 ≥ 2
When it comes to depth-aware arithmetization, the compiler out-
puts multiple arithmetic circuits for each high-level circuit if it can
find a trade-off between the multiplicative cost and the multiplica-
tive depth. We provide an example for performing equality checks
in F31, which is the smallest plaintext modulus for which a trade-
off occurs. Listing 3 shows the Python input for this function. The
Oraqle compiler allows the user to specify the cost of a squaring
operation relative to a ciphertext multiplication, which we denote
by 𝜎 . Calling arithmetize_depth_aware() defaults to 𝜎 = 1.0.

The compiler internally makes several calls to the MaxSAT com-
piler to generate multiple arithmetic circuits with different mul-
tiplicative depth. The results are in Figure 5. Here, red-colored
multiplications denote non-constant multiplications, which are ex-
pensive to compute. The compiler here generates one circuit with a
multiplicative depth of 5, and a multiplicative cost of 7, and another
with depth 6 and cost 6. It is not clear which circuit is more effi-
cient, especially under composition, until we evaluate them. One
limitation is that, in the current version of the compiler, we only
implement depth-aware arithmetization for circuits with a single
output.

4.3 Practical optimizations
We discuss three optimizations that reduce the times it takes to
generate these circuits without changing them.

The current bottleneck in our implementation is the MaxSAT
solver that we use to arithmetize exponentiation circuits. Our im-
plementation uses the RC2 solver [17] implemented in PySAT [14],
and defaults to the Glucose 4.2.1 SAT solver [2]. While it is not
always possible to reduce the number of exponentiations that we
must arithmetize, we employ caching to significantly reduce the
number of calls made to the MaxSAT solver.

Another optimization is that constant folding allows us to some-
times skip arithmetization altogether. For example, if the a subcir-
cuit in a Product node evaluates to 0, we can output a constant.
The same applies to other nodes with multiple operands.

Finally, commutative & associative reducible nodes with a set of
operands (see Section 3), the inputs are actually modeled as a set.
This means that if during arithmetization, an AND operation re-
ceives the same operand twice (or one that is equivalent), it ignores
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the second. We discuss equivalence in the context of semantic
subexpression elimination in Section 5.

4.4 Heuristics & approximations
We propose several ways in which the user may speed up circuit
generation time at the cost of a potentially worse circuit. This is
necessary for larger circuits and larger plaintext moduli, which
increase the duration of arithmetization. The reason is that the
depth-aware arithmetization techniques proposed by Vos et al. [21]
in some cases perform exhaustive searches.

One context in which we can avoid exhaustive search, is in
polynomial evaluation. All the polynomial evaluation methods
described in [21] require the compiler to choose a parameter 𝑘 ,
which affects both the multiplicative depth and cost of the circuits
that are generated. Vos et al. propose to try all values 1 ≤ 𝑘 < 𝑝

but this requires a significant amount of computation and many
calls to the MaxSAT solver. Paterson & Stockmeyer [18] instead
analytically derive a single value for 𝑘 , but Vos et al. show that this
is not always optimal in practice. We propose a heuristic, where
we only evaluate several values for 𝑘 around the value derived
by Paterson & Stockmeyer. In our experiments, we find that the
optimal 𝑘 is typically only 1 value away. The compiler only searches
for values up to twice the size of the analytically-optimal 𝑘 , which
makes circuit generation approximately twice as fast in practice.

5 Optimization of arithmetic circuits
After generating arithmetic circuits, different compilers perform
different forms of post-processing in an attempt to reduce the multi-
plicative cost or the multiplicative depth. These are transformations
from arithmetic circuits to other arithmetic circuits. The Oraqle
compiler currently implements one optimization in the form of
semantic common subexpression elimination, which is similar to
that implemented by the EVA compiler [7] for a different kind of
homomorphic cryptosystem.

Common subexpression elimination is a technique that has been
applied to many homomorphic encryption compilers and many
regular compilers alike. The simple idea is to never compute the
same thing twice. While this seems obvious, it is not uncommon for
arithmetization (or compilation) to introduce common subexpres-
sions. In our work, we implement semantic common subexpression
elimination, meaning that the compiler can also recognize two
subexpressions to be equivalent but not identical. We give an ex-
ample in Figures 6a & 6b of two circuits that the compiler can tell
to be equivalent.

The way we implement these equivalence checks efficiently, is to
ensure that equivalent expressions have the same hash. This is not
always possible, but it is easy to do for properties such as commuta-
tivity. The Oraqle compiler computes the hash for commutative &
associative nodes by sorting the hashes of all the operands before
computing the hash, making the order of operands irrelevant. It can
also be done for high-level operations that are non-commutative
but each others inverses. For example, 𝑥 < 𝑦 is equivalent to 𝑦 > 𝑥 .

6 Code generation
Since the Oraqle compiler currently focuses on arithmetization,
it does not perform parameter selection, placement of homomor-
phic encryption operations, or evaluation. Instead, it relies on fhe-
gen [16] and HElib [13]. In this section, we describe the steps from
an arithmetic circuit to an executable binary chronologically. We
note that one might also use other tools to finish compiling the
arithmetic circuits generated by the Oraqle compiler.

Register allocation. To reduce the memory footprint of the final
binary, we implement a register allocation step, which determines
at any time throughout the computation how many ciphertexts
must be stored. We note that these are logical registers containing
FHE ciphertexts, and not actual hardware registers. We do so using
a topological graph traversal of the arithmetic circuits. After this
step, each node in the arithmetic circuit knows to which register it
can assign the result of its computation.

Translation into instructions. At this point, we can compile the
arithmetic circuit with register allocation to what is essentially
assembly for FHE operations. That is, input nodes are translated
to instructions that place a named input into a register, arithmetic
nodes perform operations on several registers, placing the result
in a (possibly overlapping) register, and output nodes instruct are
translated to instructions that output a given register. Importantly,
the compiler traverses the graph in the same way that it did before.

Translation to a program. Finally, we generate C++ code that
can be compiled into an actual binary. This takes two steps, as the
code includes both the parameters with which the FHE schemes
will be instantiated, as well as the actual circuit evaluation. We use
the methods provided by fhegen [16] to generate parameters for
the default settings in HElib using the OpenFHE cost model. To
do so, we derive several metrics from the arithmetic circuit. We
make one modification to support 𝑝 = 2, which is to decrement the
polynomial degree𝑚 by 1, as 𝑝 may not divide𝑚. After this step,
code generation is a direct translation from the FHE instructions to
the functions implemented in HElib for performing homomorphic
operations. The resulting code can be compiled using any C++ com-
piler. HElib here performs two stages of the pipeline as presented
in Figure 1: it places and performs relinearization and modswitch
operations, and it evaluates the homomorphic operations.

7 Results
In this section, we provide two results using the Oraqle compiler.1
We first show that choosing 𝑝 > 2 does lead to circuits with better
practical performance than fixing 𝑝 = 2. Next, we show that an
optimistic implementation of the arithmetization technique used in
the T2 compiler produces circuits with worse practical performance
than the Oraqle compiler does. We execute our experiments on a
strong computer with a Threadripper 7970X CPU. The CPU has 64
threads, but we only use a single thread to compile and evaluate
the circuits. When it comes to memory, it has 4x64GB DDR5 RAM.

Arithmetic versus Boolean circuits. Since the Oraqle compiler
allows compiling any function into an arithmetic circuit for any
plaintext modulus 𝑝 that is prime, we can evaluate the performance
of different 𝑝 for the same operation. We consider here the function

1Our compiler is open source and can be found at: https://github.com/jellevos/oraqle

https://github.com/jellevos/oraqle
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that checks whether two 64-bit inputs are equal and provide the
results in Table 2 and we set 𝜎 = 0.75. Choosing 𝑝 > 2 allows
circuits with lower multiplicative cost at the expense of a higher
depth. Moreover, 𝑝 = 2 does not allow the ring dimension 𝑚 to
be a power of two. This choice of 𝑚 means that homomorphic
operations are slower, even though𝑚 can be smaller. We see that
choosing 𝑝 = 5 leads to an arithmetic circuit that is almost twice as
fast to compute as the Boolean circuit.

Table 2: Run time for a circuit checking whether two 64-bit
integers are equal. We consider the front of solutions across
all 2 ≤ 𝑝 ≤ 257 that are prime.

Circuits Parameters Results
Modulus 𝑝 Depth Cost Ring dimension𝑚 𝑟 Bits 𝑐 Run time (s)

2 6 63 16385 1 142 1 3.28
5 7 58 32768 1 178 1 1.67
17 8 51 32768 1 217 1 1.96

Arithmetization in other compilers. While there are many homo-
morphic encryption compilers, they typically target the earlier or
later stages of the compilation pipeline. To still facilitate a compari-
son, we compare the less-than circuits generated by our compiler
with those generated by the T2 compiler as described in the paper by
Gouert et al. [11]. While the techniques described by Vos et al. [21]
and Gouert et al. only perform comparisons between half of the ele-
ments in F𝑝 , we propose a new arithmetization that performs three
calls to the half-comparisons. We denote these half-comparisons by
≺. We precompute 𝑥small = [𝑥 ≺ 𝑝−1

2 ] and𝑦small = [𝑦 ≺ 𝑝−1
2 ]. Our

arithmetization for both works is as follows, where 𝑥 represents
negation of a Boolean variable:

[𝑥 < 𝑦] = 𝑥small ⊕ 𝑦small [𝑥 ≺ 𝑦] + (𝑥small ∧ 𝑦small) . (1)

In Figure 2 we compare the actual run time of the T2 circuits with
the circuits generated by the Oraqle compiler for a growing plain-
text modulus. Our circuits consistently outperform the T2 circuits,
often by an order of magnitude, even though these sometimes have
a lower multiplicative depth. The reason is that these circuits have
a significantly higher multiplicative cost.
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Figure 2: Arithmetization of a less-than operation in T2 and
in Oraqle for 𝜎 = 1.0. In some cases the Oraqle compiler
outputs multiple circuits but they perform similarly.

8 Limitations
Packing and rotations would allow for the number of multiplica-
tions to be reduced. Since we do not consider packing, we con-
sider plaintext moduli that are not necessarily NTT-friendly, which
would allow constant additions and multiplications with arbitrary
vectors. This is also the reason why we currently only support
code generation for HElib: other libraries do not support plaintext
moduli that are not NTT-friendly.

The compiler does not yet take common inputs into account.
E.g. when performing multiple polynomial evaluations, we could
reuse the precomputations. The same applies to computing multiple
products with the same operands.

The compiler also does not provide a layer of abstraction for
integers (or e.g. real numbers) that exceed the plaintext space. In
this stage, the user would have to implement this logic by hand.

We currently only perform depth-aware arithmetization on cir-
cuits with a single output. We argue that this is mostly a practical
limitation and not a theoretical limitation.

As seen from our experiments, the cost of FHE cannot be com-
pletely described by the multiplicative depth and cost. These merely
serve as metrics. There are other factors, such as the polynomial
degree𝑚 being a power or two of not. Moreover, it matters how
and when homomorphic encryption ‘maintenance’ operations are
placed such as relinearizations and modswitches. Some circuits are
more amenable to reducing the number of maintenance operations
than others. Another example is that multiplications at the end of
the circuit become slightly cheaper to compute as the ciphertext
modulus shrinks.

9 Conclusion
In conclusion, while previous homomorphic encryption compilers
play a crucial role in enabling users to transition from plaintext to se-
cure computations, they typically only implement automatic arith-
metization for Boolean circuits, or they require large bootstrapping
keys. The Oraqle compiler addresses these issues by implement-
ing depth-aware arithmetization for BFV/BGV-type cryptosystems
with prime plaintext moduli, allowing it to express high-level primi-
tives as arithmetic operations suitable for homomorphic encryption
libraries. This allows one to find more efficient circuits than when
considering depth reduction only as an afterthought.

Future work might focus on the following enhancements:
• Incorporating SIMD,whichwill require handling larger plain-
text modulus for arbitrary plaintext vectors.

• Implementing multi-threading, accelerating compilation.
• Optimizing addition chain generation.
• Integrating sorting networks and other complex structures.
• Implementing early stopping, e.g. using a maximum depth.
• Extending the compiler’s capability to handle nodes with an
arbitrary number of outputs.

A Circuit visualizations
We present several circuits generated by the Oraqle compiler in
Figures 3, 4, 5, and 6.
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Figure 4: High-level circuit of a comparison operation as
proposed by Gouert et al. [11] when 𝑝 = 7.

+

Output

×

×

×

×

×

×

+

×

y 30

x

×

×

30

1

(a) Depth-5 circuit

+

Output

×

×

×

×

×

×

+

×

y 30

x

×

30

1

(b) Depth-6 circuit

Figure 5: Depth-aware arithmetization of 𝑥 = 𝑦 in F31.
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Figure 6: Two circuits that are not identical but equivalent.
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B Code samples
We present several code samples used to generate these circuits.

gf = GF(31)
x = Input("x", gf)
y = Input("y", gf)
z = Input("z", gf)

comparison = x < y
equality = y == z
both = comparison & equality

circuit = Circuit([both])

Listing 1: A simple example of a three-input function using
high-level operations.

gf = GF(p)
x = Input("x", gf)
y = Input("y", gf)

comparison = 0

for a in range((p + 1) // 2, p):
comparison += 1 - (x - y - a) ** (p - 1)

circuit = Circuit([comparison])

Listing 2: Implementation of a comparison operation as pro-
posed by Gouert et al. [11] in the Oraqle compiler.

gf = GF(31)
x = Input("x", gf)
y = Input("y", gf)

equality = x == y

circuit = Circuit([equality])
arithmetic_circuits = circuit.arithmetize_depth_aware()

Listing 3: Implementation of an equality operation over F31.
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