
Eva: Efficient Privacy-Preserving Proof of
Authenticity for Lossily Encoded Videos

Chengru Zhang1, Xiao Yang2, David Oswald2, Mark Ryan2, and Philipp Jovanovic3

1The University of Hong Kong, Hong Kong
2University of Birmingham, UK
3University College London, UK

Abstract

With the increasing usage of fake videos in misinformation campaigns,
proving the provenance of an edited video becomes critical, in particular,
without revealing the original footage. We formalize the notion and security
model of proofs of video authenticity and give the first cryptographic video
authentication protocol Eva, which supports lossy codecs and arbitrary
edits and is proven secure under well-established cryptographic assumptions.
Compared to previous cryptographic methods for image authentication,
Eva is not only capable of handling significantly larger amounts of data
originating from the complex lossy video encoding but also achieves linear
prover time, constant RAM usage, and constant proof size with respect
to video size. These improvements have optimal theoretic complexity
and are enabled by our two new theoretical advancements of integrating
lookup arguments with folding-based incrementally verifiable computation
(IVC) and compressing IVC proof efficiently, which may be of independent
interest. For our implementation of Eva, we then integrate them with the
Nova folding scheme, which we call Loua. As for concrete performance, we
additionally utilize various optimizations such as tailored circuit design
and GPU acceleration to make Eva highly practical: for a 2-minute HD
(1280×720) video encoded in H.264 at 30 frames per second, Eva generates
a 448B proof in about 2.4 hours on consumer-grade hardware at 2.6µs
per pixel, surpassing state-of-the-art cryptographic image authentication
schemes by more than an order of magnitude in terms of prover time and
proof size.

1 Introduction

Disinformation campaigns frequently target visual multimedia content, like images
and videos, due to their popularity and ease of distribution on social media
platforms [67, 82]. This trend has been exacerbated recently by the rapid evolution
of (generative) AI tools [77, 29, 53] that enable the manipulation, generation,
and dissemination of (fake) multimedia content with a few clicks, presenting a
significant challenge to content moderation and fact-checking systems.

To combat maliciously generated multimedia content, the two primary de-
fenses include 1) the detection of fake content, by humans [81, 38] or automated

1

methods [62, 43], and 2) the authentication of genuine content in which a prover
tries to convince a verifier of the content’s provenance by providing some au-
thentication information [22, 23, 50]. Among authentication-based approaches,
the Coalition for Content Provenance and Authenticity (C2PA) standard [22]
is an industry-wide effort to authenticate multimedia content based on digital
signatures.

The issue with these existing approaches is that they either lack flexibility or
raise security and privacy concerns. In practice, raw multimedia content often
needs to be edited and encoded before publishing, but authentication-based meth-
ods [71, 23, 50] typically allow only a limited set of predefined transformations.
While C2PA permits arbitrary edits, it requires trusted editing software to sign
the transformations, introducing trust assumptions that are difficult to meet, as
an attacker may be able to extract the signing key from the software and generate
legitimate signatures for any edits. In addition, C2PA’s metadata may expose
sensitive information that is not intended for disclosure, such as the thumbnail
of the original footage. Furthermore, many methods based on detection [81, 38,
62, 65, 43] and authentication [71, 23, 50] are prone to false positives or false
negatives with a non-negligible probability, an issue which may be even worse in
the presence of active attackers who can bypass these mechanisms by exploiting
their vulnerabilities [46, 76]. Cryptographic solutions have been proposed for
image authentication [69, 52, 48, 26, 24, 25] tackling some of these challenges.
Still, the problem of video authentication remains largely unaddressed, as it is a
significantly harder task mainly due to the following two challenges:

• First, while lossless image encoding is common in practice, video encoding
is usually lossy. Consequently, a video prover has to support lossy encoding
that involves significant complexities. In particular, given a lossy-encoded
video, the verifier cannot recover the edited video that exactly matches
the prover’s claim because of the information loss caused by encoding.
In contrast, for lossless images, the prover can simply prove the honesty
of editing without considering encoding, as the edited images can be
reconstructed accurately by the verifier.

• Second, videos extend images by adding a time dimension, increasing data
sizes significantly. However, authenticating large amounts of (edited) data,
which is usually achieved through zkSNARKs, imposes heavy computational
and memory costs on the prover. For instance, it takes more than 1 day
for the state-of-the-art to prove 1800 HD lossless images (equivalent to a
1-minute HD video at 30 FPS), let alone lossy formats.

In this work, we introduce Eva, the first cryptographic protocol for authen-
tication of lossy-encoded videos. The core protocol works as follows: 1) After
recording a video footage V , the recorder signs its hash H(V) and produces
signature σ. 2) After the prover edits V and encodes the edited video V ′ to
obtain ζ, a proof π is generated, showing that σ is a valid signature on H(V)
and that V is honestly transformed into ζ. 3) When the verifier receives ζ and
π, it can verify the authenticity of ζ even without access to V .

To address the first challenge, a naive solution is to prove that the edited
video V ′ and the video Ṽ reconstructed from the encoded bitstream ζ are
“similar”, but it is difficult to define a metric to quantify such similarity without
introducing false positives or false negatives. Proving the honesty of video

2

encoding is thus inevitable to achieve negligible error rates. However, expressing
the highly complex encoding process in zkSNARK circuits is intricate and costly.
Our key insight is that, even though the video is encoded in a lossy format,
certain intermediate data remains identical between encoding and decoding.
Such data can be accurately recovered by the verifier when decoding, and thus
the prover no longer needs to prove its validity. In fact, by feeding such data as
public inputs during proof verification, we can skip proving the most complicated
parts of the encoding process (e.g., inter-frame prediction and entropy coding)
and instead focus on manageable components, thereby significantly reducing the
difficulty of circuit construction.

To address the second challenge, we exploit the highly repetitive structure of
videos and video processing algorithms: they are usually based on macroblocks,
i.e., small and fixed-size blocks of pixels that can be processed independently.
This allows us to leverage Incrementally Verifiable Computation (IVC) [83]
constructed from folding schemes [60, 59, 57, 11, 27] to reduce the circuit size
and memory requirements. In each IVC step, the prover only needs to 1) generate
an incoming proof of the honest editing and encoding for a few macroblocks, and
then 2) accumulate it into the running proof. Finally, we also leverage lookup
arguments [8, 32, 84, 80] to avoid expensive bit operations in the arithmetic
circuits for video processing.

1.1 Contribution

Below we summarize the contributions of our work.
Eva: Efficient Video Authentication. As the core contributions of our work,
we formalize the notion of proofs of video authenticity along with its security
model, and we propose a secure and efficient construction, Eva. Eva is not only
the first cryptographic protocol for videos, but also the first cryptographic scheme
that takes lossy codecs into account.

Due to the complexity of video codecs and the large size of videos, it is
unrealistic to naively prove video authenticity in-circuit. Eva makes it not only
feasible but also efficient, yielding linear prover time and constant prover RAM
and proof size in video size, and it is concretely performant even on consumer-
grade hardware.

• We avoid proving complex steps in the encoding process by leveraging
shared data between encoders and decoders, hence simplifying our circuits
for encoding.

• Taking advantage of the repetitive structure, videos are proven block-wise
with manageable costs per step using IVC. This makes Eva capable of
handling arbitrarily large video files with a constant memory footprint.

• To further reduce circuit size, we use both general techniques, e.g., lookup
arguments and non-deterministic advice, and tailored approaches, such as
efficient handling of branches-based on dynamic conditions.

In addition, Eva naturally supports lossless encoding as well, if we skip the
encoding circuits and only prove editing.

Moreover, Eva is proven secure in our model under well-established crypto-
graphic assumptions, providing soundness against attackers and zero-knowledge

3

of the original video except with negligible probability. By incorporating Eva into
the C2PA standard, we can not only improve the security of C2PA by eliminating
the trust assumptions on editing software but also provide better privacy by
hiding the original footage from the verifier.
Paradigms for improving folding-based IVC. As theoretical contribu-
tions that might be of independent interest, we present two general paradigms
to enhance folding-based IVC. The first paradigm integrates LogUp [42], an
efficient lookup argument [8], with arbitrary folding-based IVC. The second
paradigm constructs a decider that compresses the proof of folding-based IVC
into a constant-size and zero-knowledge one via commit-and-prove SNARKs
(CP-SNARKs) [17], without introducing vector-to-polynomial conversions or
evaluation arguments as in [60, 75].

By applying our paradigms to a popular folding scheme Nova [60], we in-
troduce a variant Loua (named after LogUp and Nova), which offers efficiency
improvements over both the original Nova and its design in the sonobe folding
library [75]. With Loua at the core of Eva, we achieve a significant reduction
in the number of constraints for video encoding and editing by substituting
expensive bitwise operations with cheap lookups.
Implementation and evaluation. We implement Eva and Loua upon the
sonobe library, with optimizations such as GPU computing. We show compati-
bility with H.264 [40] and employ a circuit-friendly hash function Griffin [35] and
Schnorr signature [78], but our modularized design allows one to choose different
schemes and support other lossy, or lossless formats (by omitting the encoding
circuit) for videos or images and to achieve full compliance with C2PA.

Even with larger data size and an additional encoding process, Eva yields >
10× improvements in prover time and proof size over state-of-the-art constructions
for images. For a 2-minute HD H.264 video at 30 frames per second, Eva generates
a proof in ∼ 2.4 hours on a consumer-grade desktop. During IVC proof generation,
the RAM usage is kept at a constant ∼ 10 GB, and IVC proof compression
requires 50 ∼ 60 GB of RAM. The final proofs have a constant size of 448
bytes and can be verified by resource-constrained devices like mobile phones or
blockchain validators.

1.2 Related Work

By regarding videos as a generalization of images, we summarize the comparison
of Eva to cryptographic protocols for image authentication in Table 1.

PhotoProof [69] is a pioneering work in this direction that uses Proof-Carrying
Data (PCD) [21] to offer authenticity of edited images. Due to the high com-
putational cost of proof generation, it only supports tiny images. In [52], Ko
et al. propose VIR, which utilizes CP-SNARKs [17] to generate constant-sized
proofs of redaction on images (masking secret parts with black tiles). VIR signifi-
cantly reduces the prover time while supporting much larger images. Built upon
halo2 [85], a more efficient proof system, ZK-IMG [48] also has faster prover than
PhotoProof while maintaining support for arbitrary editing operations.

More recent schemes include VIMz [26], VerITAS [24], and TilesProof [25]. We
note that these works share several common ideas with us, e.g., VIMz also employs
folding schemes to reduce prover RAM costs, and VerITAS as well utilizes lookup
arguments to improve prover time. Our work integrates these general techniques
with video processing algorithms, and also introduces customized IVC, tailored

4

Table 1: Comparison between Eva and cryptographic protocols for image authentication.a

Format Compression Editing Operations Prover time Prover RAM Proof size Max dimensionsb

O(P 3 logP) O(1) 128× 128

(< 18676 µs/px) (2.67 KB) <∞
O(P logP) O(1) 3840× 2160

(∼ 16 µs/px) (223 B) <∞
O(P logP) O(logP) 1280× 720

(> 355 µs/px (∼10 KB) <∞
O(P) O(log2N) 3840× 2160

(∼ 167 µs/px) (∼10 KB) <∞
O(P logP) O(log2 P) 6632× 4976

(∼ 95 µs/px) (∼100 KB) <∞
O(P log(P/T)) O(T) 6000× 4000

(∼ 62 µs/px) (∼10 KB) <∞
Eva Lossy (H.264) O(P) O(1) 1280× 720× 3600

(this work) Lossless (∼ 2.6 µs/px) (448 B) ∞

PhotoProof [69] Image Lossless Arbitrary O(P)

VIR [52] Image Lossless Masking O(P)

ZK-IMG [48] Image Lossless Arbitrary O(P)

VIMz [26] Image Lossless Arbitrary O(N)

VerITAS [24] Image Lossless Arbitrary O(P)

TilesProof [25] Image Lossless Arbitrary O(P/T)

Video Arbitrary O(1)

a Asymptotic complexity is measured w.r.t. the number of pixels P =MNL and the number of tiles T (required by [25]), where M is the
height, N is the width, and L is the time. Inside the parentheses is the concrete performance evaluated on our machine when possible. If
the source code is unavailable, we quote the original authors’ results and indicate the estimated results on our machine using > and <.

b Each cell displays the empirical (upper value) and theoretical (lower value) maximum dimensions. ∞ refers to unlimited dimensions, while
<∞ means that unlimited dimensions are unsupported (due to bounded RAM).

circuit design, and dedicated optimizations to maximize the efficiency of Eva.
Consequently, compared to all other protocols, Eva achieves optimal time and
space complexity and delivers the best concrete prover and verifier performance.
Further, all previous works are limited to lossless images, while our work supports
lossy video codecs, tackling a much greater challenge.

For details of performance evaluation, we refer the reader to Section 7. An
extended review of related work can be found in Appendix A.

1.3 Overview of Eva

We provide an overview of Eva with a motivating example and explain a video’s
life cycle in our scheme. Consider an on-site whistleblower Alice who wants to
record and publish a video to expose illegal activities. Before publishing the
video, Alice wishes to blurs her face for privacy concerns. At the same time, she
also aims to convince the viewers that blurring is the only edit that she has
made, and that this operation is done on an authentic footage.

Eva can prove the video’s provenance while preserving Alice’s privacy. This
is done by performing the steps below. An illustrated version can be found
in Figure 1.
Setup. At the beginning of Eva, device manufacturers generate keys for a
signature scheme and embed them into the hardware root-of-trust of recording
devices. Here, we assume that the manufacturers are able to obtain certificates
(e.g., from C2PA) for their keys. They also produce parameters for proving and
verifying the authenticity of videos.
Record and sign. With such a recording device, Alice now captures a video
(raw footage), after which the device creates a signature on the footage (along
with metadata such as timestamp, location, etc.) under the embedded signing

5

is the signature of under

after

becomes after

becomes

Recorder Encoding Software Verifier

Prover

Editing Software

Figure 1: Overview of the Eva protocol. The recorder produces a raw footage and signs it with its
embedded signing key. The footage is then edited and encoded into a video stream. The prover generates
a proof attesting to the authenticity of the video. The verifier can check the proof of authenticity against
the video stream.

key. The signature ensures that the footage is authentic, or more specifically, is
recorded by a C2PA-certified device.
Edit and prove. Alice then edits the footage and blurs her face. The video
processing software usually encodes the edited video and outputs a compressed
video stream with much smaller size, which is thus more suitable for publishing.
After that, Alice generates a succinct zero-knowledge proof through Eva, showing
that the final video stream is a blurred-then-encoded version of an authentic
video signed by a certified recording device. She can now upload the video stream
as well as the proof to her website, together with a claim that she only performed
the blurring operation.
Verify. Using the verification algorithm of Eva, a visitor of Alice’s website can
examine the video stream’s provenance by checking the proof against the video
and the claimed edits. If the proof holds, then the visitor is convinced that the
video is a blurred version of an authentic footage, which is taken by a certified
device at a specific time and location.

2 Preliminaries

2.1 Notations

In this paper, y := F (x) denotes the output of a deterministic algorithm F on
input x. For a randomized algorithm F , we write y ← F (x), or y := F (x; r) when
it is supplied with external randomness r. With security parameter λ (whose
unary representation is 1λ), a negligible function in λ is denoted by ε(λ).

Vectors and matrices are denoted by boldface italic lowercase (e.g., x = (x0,

x1, . . .)) and uppercase letters (e.g., X =

[
x0,0 · · ·
...

. . .

]
), respectively. x[i, j] is

the subvector of x from index i to j, and X[i, j; k, l] is the submatrix of X from
row i to j and column k to l, inclusive. When it is clear from the context, we
write x = (y, z) to indicate that x is the concatenation of y and z.

We consider a half-pairing cycle of elliptic curve groups (𝔾, �̂�,𝔾T),ℍ, where
𝔾 and ℍ form a 2-cycle. In this cycle, 𝔽q, the base field (i.e., the field over which

6

the curve is defined) of 𝔾, is also the scalar field (i.e., the prime field modulo
the order of the curve) of ℍ; and 𝔽p, the scalar field of 𝔾, is also the base field

of ℍ. Further, (𝔾, �̂�,𝔾T) is a pairing-friendly group, i.e., there is a bilinear map

e : 𝔾× �̂�→ 𝔾T .
Algorithms are written in pseudocode, and we distinguish between the opera-

tions inside and outside an arithmetic circuit by using “Circuit” and “Algorithm”
prefixes, respectively. Also, “Gadget” refers to a small circuit that performs
a specific operation, which is often used as a building block in larger circuits.
“cond ? x : y” is a conditional expression that evaluates to x if the condition cond
is true, and y otherwise. The notation “assert cond” represents an operation
that returns 0 if cond is not satisfied and does nothing otherwise. Its in-circuit
equivalent, “enforce x = y”, adds a constraint to the constraint system to en-
force equality between x and y. Additionally, hints refer to the non-deterministic
advice [6] provided by the prover to the circuit.

2.2 Cryptographic Primitives

We rely on three collision-resistant hash functions H, ρ, and ϱ, an EUF-CMA
secure signature scheme Sig = (Sig.K,Sig.S,Sig.V) under chosen-message attack,
and a commitment scheme CM = (CM.K,CM.C,CM.V) that is binding and
hiding, which we assume the reader is familiar with.

Here, we consider ρ as a random oracle in the random oracle model. Further,
we define ϱ(x; r) = ρ(x || r) as a hiding hash function. The signing key and
verification key in Sig are denoted by sk and vk, respectively. The commitment
key in CM is denoted by ck. For simplicity, we treat the randomness in ϱ, CM.C
and CM.V as implicit and omit it from the notation.

2.3 SNARKs, CP-SNARKs, and Lookup Arguments

Consider a relation R with an associated NP-language LR. For a statement x,
x ∈ LR if there exists a witness w such that x andw satisfy R (i.e.,R(x,w) = 1).
On the other hand, x /∈ LR if R(x,w) = 0 for all w.

An argument system Π for R is a protocol between a prover P and a verifier
V, where P convinces V that R(x,w) = 1. We say Π is interactive if it involves
interaction between P and V, while Π is non-interactive if P sends a single
message to V.

A SNARK [7] is a non-interactive argument system that produces short
proofs, as defined below.

Definition 1 (SNARK). A succinct non-interactive argument of knowledge
(SNARK) for relation R consists of a tuple of algorithms Π = (K,P,V):

• K(1λ, R)→ srs

On input security parameter 1λ and relation R, the key generation algorithm
outputs the structured reference string srs = (pk, vk), which includes a
proving key pk and a verification key vk. We also require the key generation
algorithm to output the secret trapdoor td, which is usually omitted from
the notation for simplicity.

• P(pk,x,w)→ π

7

On input proving key pk, statement x, and witness w, the proof generation
algorithm outputs a proof π.

• V(vk,x, π) =: b
On input verification key vk, statement x, and proof π, the verification
algorithm outputs a bit b, indicating whether the proof is valid.

A SNARK Π should be succinct, complete, knowledge-sound, and optionally,
zero-knowledge.
Succinctness. Succinctness holds if the size of any proof π satisfies

|π| = poly(λ) polylog(|x|+ |w|)

Completeness. Completeness holds if for every pair of (x,w) such that R(x,
w) = 1,

Pr
[
srs← K(1λ, R), π ← P(pk,x,w) : V(vk,x, π) = 1

]
= 1

Knowledge Soundness. Knowledge soundness holds if for every polynomial-
time adversary A, there exists a polynomial-time extractor Ext such that for all
input randomness r,

Pr


(srs, td)← K(1λ, R)
(x, π) := A(srs; r)
w := Ext(srs, td; r)
V(vk,x, π) = 1

: R(x,w) = 0

 ≤ ε(λ)
Zero-knowledge. Intuitively, Π is zero-knowledge (i.e., Π is a zkSNARK) if,
even without knowing the witness w, it is still possible to simulate a proof that
is indistinguishable from honestly generated ones.

Formally, statistical (or computational) zero-knowledge holds if there exists a
simulator Sim such that for every unbounded (or polynomial-time) distinguisher
A,

Pr

 (srs, td)← K(1λ, R)
(x,w)← A(srs)
π ← P(pk,x,w)

: A(π) = 1

 ≈ Pr

 (srs, td)← K(1λ, R)
(x,w)← A(srs)
π ← Sim(pk, td,x)

: A(π) = 1


Below we introduce two types of SNARKs that are going to be used in our

construction, namely, CP-SNARKs and lookup arguments.
It is desirable if a SNARK for R can be augmented in the following way: when

proving R (x,w) = 1, we can additionally demonstrate that the commitment to
some portion of w is c. CP-SNARKs [17, 18] are proposed to achieve this goal.

Generally, CP-SNARKs consider w = ((υi)
ℓ−1
i=0 ,ω) = (υ0, . . . ,υℓ−1,ω), and

c = (c0, . . . , cℓ−1), where the i-th ci is claimed to be the commitment to the i-th
vector υi. Now, the original relation we are interested in becomes R(x, ((υi)

ℓ−1
i=0 ,

ω)), and the augmented relation that we aim to prove is Rcp
(
(x, c), ((υi)

ℓ−1
i=0 ,ω)

)
,

which returns 1 if
(
x, ((υi)

ℓ−1
i=0 ,ω)

)
satisfies R and ci is indeed the commitment

to υi. Formally, Rcp
(
(x, c), ((υi)

ℓ−1
i=0 ,ω)

)
= 1 if and only if

R
(
x, ((υi)

ℓ−1
i=0 ,ω)

)
= 1 ∧

∧
i∈[0,ℓ−1]

CM.V(ck, ci,υi) = 1

8

Definition 2 (CP-SNARK). For a commitment scheme CM, a commitment key
ck← CM.K(1λ), and a relation R for statement x and witness w = ((υi)

ℓ−1
i=0 ,ω),

a commit-and-prove SNARK (CP-SNARK) for R is a SNARK for relation Rcp

(as defined above). A CP-SNARK consists of a tuple of algorithms CP = (K,P,
V):

• K(1λ, ck, R)→ (pk, vk)

On input the security parameter λ, a commitment key ck, and a relation
R, the key generation algorithm outputs a pair of proving and verification
key srs = (pk, vk).

• P(pk,x, c, (υi)
ℓ−1
i=0 ,ω)→ π

On input the proving key pk, the statement x, the commitments c = (ci)
ℓ−1
i=0 ,

and the witness (υi)
ℓ−1
i=0 ,ω, the proof generation algorithm outputs a proof

π.

• V(vk,x, c, π) =: b
On input the verification key vk, the statement x, the commitments c, and
a proof π, the verification algorithm outputs a bit b, indicating whether the
proof is valid.

If a CP-SNARK for R further satisfies zero-knowledge (i.e., if it is a zkSNARK
for Rcp), then we denote it by ZKCP = (K,P,V).

We are also interested in lookup arguments [8, 32, 84, 80], which prove that
all elements in a list of queries α = (αi)

µ−1
i=0 , are in a lookup table τ = (τj)

ν−1
j=0 .

Formally, we consider a lookup relation Rlookup(τ ,α), which returns 1 if and only
if

{αi}µ−1
i=0 ⊆ {τj}

ν−1
j=0

Definition 3 (Lookup Arguments). A lookup argument is a SNARK for relation
Rlookup (as defined above).

2.4 Folding Schemes

Intuitively, a non-interactive folding scheme [60] for relation R folds two instances
into a single instance such that the correctness of the folded instance implies
that of the original ones.

Definition 4 (NIFS). A non-interactive folding scheme (NIFS) consists of a
tuple of algorithms NIFS = (G,K,P,V):

• G(1λ)→ pp

On input security parameter 1λ, the setup algorithm outputs public param-
eters pp.

• K(pp, R) =: (pk, vk)
On input public parameters pp and a relation R, the key generation algo-
rithm outputs a pair of proving key pk and verification key vk.

9

• P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2))→ (𝕌,𝕎, T)

On input the proving key pk and two instance-witness pairs (𝕌1,𝕎1) and
(𝕌2,𝕎2), the proof generation algorithm outputs a folded instance-witness
pair (𝕌,𝕎) and a folding proof T .

• V(vk,𝕌1,𝕌2, T) =: 𝕌
On input of the verification key vk, two instances 𝕌1 and 𝕌2, and the folding
proof T , the verification algorithm outputs a folded instance 𝕌.

A folding scheme NIFS satisfies the following properties.
Completeness. (Perfect) completeness holds if for every PPT adversary A,

Pr



pp← G(1λ)
(R, (𝕌1,𝕎1), (𝕌2,𝕎2))← A(pp)
R(𝕌1,𝕎1) = 1, R(𝕌2,𝕎2) = 1
(pk, vk) := K(pp, R)
(𝕌P ,𝕎, T)← P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2))
𝕌V := V(vk,𝕌1,𝕌2, T) :

𝕌P = 𝕌V ∧R(𝕌P ,𝕎) = 1


= 1

Knowledge Soundness. Knowledge soundness holds if, for every polynomial-
time adversary A, there exists a polynomial-time extractor Ext such that for all
input randomness r,

Pr



pp← G(1λ)
(R,𝕌1,𝕌2,𝕎, T) := A(pp; r)
(pk, vk) := K(pp, R)
𝕌 := V(vk,𝕌1,𝕌2, T)
R(𝕌,𝕎) = 1
(𝕎1,𝕎2) := Ext(pp; r) :

R(𝕌1,𝕎1) = 0 ∨R(𝕌2,𝕎2) = 0


≤ ε(λ)

Zero-knowledge. Statistical (or computational) zero-knowledge holds if there
exists a simulator Sim such that for every unbounded (or polynomial-time)
distinguisher A,

Pr


pp← G(1λ)
(R, (𝕌1,𝕎1), (𝕌2,𝕎2))← A(pp)
R(𝕌1,𝕎1) = 1 ∧R(𝕌2,𝕎2) = 1
(pk, vk) := K(pp, R)
(·, ·, T)← P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2)) :

A(T) = 1



≈Pr


pp← G(1λ)
(R, (𝕌1,𝕎1), (𝕌2,𝕎2))← A(pp)
R(𝕌1,𝕎1) = 1 ∧R(𝕌2,𝕎2) = 1
(pk, vk) := K(pp, R)
T ← Sim(pk, vk,𝕌1,𝕌2) :

A(T) = 1



10

2.5 Incrementally Verifiable Computation

Incrementally verifiable computation [83] allows one to verify the repeated
execution of a function F , dubbed step function. Specifically, the prover can
generate a proof πi demonstrating that the current state zi is the result of i
invocations of F starting from an initial state z0, given the proof πi−1 attesting
to zi−1. This notion is formalized as below.

Definition 5 (IVC). An incrementally verifiable computation (IVC) scheme is
composed of four algorithms IVC = (G,K,P,V):

• G(1λ)→ pp

On input security parameter 1λ, the setup algorithm G outputs the public
parameters pp.

• K(pp,F) =: (pk, vk)
On input public parameters pp and a polynomial-time computable function
F , the key generation algorithm K outputs a pair of proving key pk and
verification key vk.

• P(pk, (i, z0, zi), auxi, πi)→ πi+1

On input the proving key pk, an index i, an initial input z0, the claimed
output zi in the i-th iteration, the non-deterministic advice auxi, and a
proof πi attesting to zi, the proof generation algorithm P outputs a new
proof πi+1 that attests to zi+1 = F(zi; auxi).

• V(vk, (i, z0, zi), πi) =: b

On input the verification key vk, an index i, an initial input z0, the claimed
output zi in the i-th iteration, and a proof πi attesting to zi, the verification
algorithm V outputs a bit b, indicating whether the proof is valid.

An IVC scheme IVC satisfies the following properties.
Completeness. (Perfect) completeness holds if for any PPT adversary A,

Pr



pp← G(λ),
(F , i,z0, zi, auxi, πi)← A(pp)
(pk, vk) := K(pp,F)
zi+1 := F(zi; auxi)
V(vk, (i, z0, zi), πi) = 1
πi+1 ← P(pk, (i, z0, zi), auxi, πi) :
V(vk, (i+ 1, z0, zi+1), πi+1) = 1


= 1

Knowledge Soundness1. Knowledge soundness holds if, for every polynomial-
time adversary A, there exists a polynomial-time extractor Ext such that for all
input randomness r,

1We adopt [72]’s definition of knowledge soundness, which implies the notions in [60, 57,
11] that require Ext to extract all previous auxiliary values.

11

Pr



pp← G(λ),
(F , (i ≥ 1, z0, zi), πi) := A(pp; r)
(pk, vk) := K(pp,F)
V(vk, (i, z0, zi), πi) = 1
(zi−1, auxi−1, πi−1) := Ext(pp; r) :

zi = F(zi−1; auxi−1)
∧V(vk, (i− 1, z0, zi−1), πi−1) = 1


≥ 1− ε(λ)

Succinctness. Succinctness holds if the size of πi and the run time of P and V
are independent of the number of iterations.

Note that, unlike the definition of succinctness in SNARKs, a succinct IVC
may have proof size and verifier time that are linear in the size of F . In addition,
an IVC is not necessarily zero-knowledge.

To achieve a fully succinct and zero-knowledge IVC, one can include an
additional zkSNARK that compresses the proof while hiding the witnesses [60,
11]. This concept is formalized as decider.

In the decider, we are interested in a relation RDecider that encodes the IVC’s
verification algorithm. Formally, given statement x = (k,z0, zk) and witness
w = (πk), R

Decider(x,w) = 1 if and only if IVC.V(vkΦ, (k, z0, zk), πk) = 1, where
vkΦ is the IVC verification key. With this relation, we can define a decider as
follows, who has the same syntax and security properties as a zkSNARK.

Definition 6 (Decider). For an IVC scheme IVC whose verification algorithm
IVC.V is expressed as a relation RDecider (as defined above), a step function F ,
and a pair of proving and verification key (pkΦ, vkΦ)← IVC.K(pp,F), a decider
Decider = (K,P,V) is a zkSNARK for RDecider.

Note that in our definition, the decider requires circuit-specific setup, which
suffices for our application. That is, every structured reference string srs generated
by Decider.K is only for a specific F and vkΦ.

3 Proofs of Video Authenticity

In this section, we formalize proofs of video authenticity, a category of video
authentication protocols that are provably secure. We begin by describing the
data types and operations involved, followed by the algorithm definition as well
as the security properties.

3.1 Data Types and Operations

We first consider two forms of video data: the raw video V and the video stream
ζ.
Raw Video. A raw video is usually for being displayed on a screen or edited by
video processing software. It is composed of a series of frames ordered by time.
Each frame is a still image described as a two dimensional matrix of pixels.

A pixel consists of several components that carry the properties of the pixel’s
color or luminance. For instance, three color components R, G, and B that
respectively indicate the relative proportions of red, green, and blue make up
the RGB color space. It is more common to use the YCbCr color space in video
processing, where a pixel is represented by a luma component Y, a blue chroma

12

component Cb, and a red chroma component Cr, each of which is an 8-bit2

integer.
The chroma components are usually subsampled in practice to reduce the

data size, and we assume a 4 : 2 : 0 subsampling ratio, where both the horizontal
and vertical resolutions of Cb and Cr are halved. Hence, in a frame with M rows
and N columns, there are M ×N Y components, M/2×N/2 Cb components,
and M/2×N/2 Cr components.

The resolution of a frame with M rows and N columns of pixels is defined
as N ×M3, where N and M are also called the width and the height of the
frame. The frequency at which the frames in a video are displayed is dubbed the
frame rate, which is typically measured in frames per second (FPS). High image
resolution and frame rate typically appear as higher quality video.

Moreover, in video processing, a frame is usually partitioned into macroblocks
of size 16×16, which contains 16×16 bytes for Y and 8×8 bytes for both Cb and Cr,
due to subsampling. Formally, we define a macroblock as X := (XY,XCb,XCr) ∈
B, where B is the set of all possible macroblocks, i.e., B := ℤ16×16

28 ×ℤ8×8
28 ×ℤ

8×8
28 .

In consequence, for a video with L frames, each of which has M rows and N

columns, we write V := (Xi)
M/16×N/16×L−1
i=0 ∈ BM/16×N/16×L.

Video Stream. Due to the large size, a raw video is compressed into a sequence
of bits ζ, or formally, a video stream, when being transmitted over the network or
stored in a file to reduce communication and storage costs. As a more compact
form, a video stream is then encapsulated in a multimedia container such as
MP4, which may additionally include audio and subtitles. For simplicity, we
focus solely on the visual part in this work.
Encoding and Decoding. In video codecs, a raw video V is converted to
a video stream ζ by the encoder, whereas the decoder reconstructs a video Ṽ
from a video stream ζ. The codec is lossless if the decoder can reconstruct the
original video exactly, i.e., V = Ṽ , and lossy if some information is discarded,
exchanging quality for a smaller video stream.

Now we briefly review the general workflow of macroblock-based video codecs,
e.g., H.264/AVC [40], H.265/HEVC [41], and AOMedia Video 1 (AV1) [3], as
illustrated in Figure 2.

The encoder aims to reduce the file size by removing redundant and non-
essential information from V while maintaining as much visual quality as possible.
To this end, the encoder employs four stages for every macroblock X in V :
prediction, transform, quantization, and entropy coding, where only quantization
may introduce loss of information, while the other stages are lossless.

1. During prediction Pred, the encoder generates a prediction macroblock P
for X, so that the difference between the original macroblock and the
prediction macroblock is minimized. There are two types of prediction:
intra-frame prediction that removes spatial redundancy within a frame
(e.g., background areas with uniform colors or patterns), and inter-frame
prediction that avoids temporal redundancy among multiple frames (e.g.,
stationary areas with no motion or moving objects with simple patterns) by

2It is possible to have a higher bit depth (e.g., 10-bit) in video codecs, but we only discuss
8-bit color components for clarity.

3Note that while the frame resolution N ×M is column-first, the frame matrix is still
written in row-major order.

13

Figure 2: Block diagram of a macroblock-based video codec. Blue lines: data flow during encoding. Red lines:
data flow during decoding. Solid lines: forward paths. Dashed lines: feedback paths for updating the reference
information. Arrows with a vertical bar at the start: the data is extracted from the source. Arrows with a vertical
bar at the end: the data is appended to the destination.

leveraging motion estimation and motion compensation. Both prediction
modes rely on some reference information ref, which we will discuss later.

With all possible prediction results, we decide the final prediction mode by
selecting the best result P whose difference between X is minimal. The
final difference X − P is output as the residue macroblock R, and the
prediction parameters paramPred = (mode, · · ·) are also returned, where
mode is the selected prediction mode (“inter” or “intra”).

2. During transform Trans, the encoder further reduces the spatial redun-
dancy by transforming the pixel data in the residue macroblock R to the
frequency domain. In this way, we can obtain the low-frequency compo-
nents representing essential features and the high-frequency components
containing non-essential details.

This process usually involves Discrete Cosine Transform (DCT) and
Hadamard Transform, after which the transformed coefficients Y are for-
warded to the next stage.

3. During quantization Quant, the precision of transformed coefficients Y is
reduced, in order to discard non-essential information (e.g., perceptually
hard-to-notice details) in the coefficients.

Quantization is done by scaling and rounding the coefficients, obtaining the
quantized coefficients Z, where rounding is the main reason of information
loss.

4. Finally, entropy coding Entr minimizes statistical redundancy in quantized
coefficients Z by assigning shorter codes to more frequent elements, whereas
less frequent data is mapped to longer codes. The encoding parameters
paramE are also compressed by Entr, which contains parameters used in
the encoding process such as the prediction parameters paramPred.

14

Examples of entropy coding include Huffman coding and arithmetic coding.
The output of entropy coding is appended to the bitstream ζ.

Note that the reference information ref used for predicting subsequent mar-
coblocks needs to be computed by reconstructing from already encoded data.
This is generally done by reversing the encoding algorithm. Given the quantized
coefficients Z encoded from X and its prediction P , Z is first dequantized via
Quant−1, which returns the dequantized coefficients Ỹ . Due to the loss of infor-
mation during quantization, they are close but may not be equal to the original
transformed coefficients, i.e., Ỹ ≈ Y . Ỹ is then inverse transformed via Trans−1

to obtain the residual macroblock R̃ ≈ R. Next, we compute the sum of R̃ and
the prediction macroblock P , which is fed to an optional deblocking filter to get

the reconstructed macroblock X̃ ≈X.
Reconstruction is also the core subroutine of the decoding process. Before

reconstruction, the decoder extracts a subsequence from the bitstream ζ and
applies entropy decoding on the subsequence to get the quantized coefficients Z.
The decoder then reconstructs the macroblock X̃ in the same way as encoder,
where the prediction macroblock P used for reconstruction is generated by
performing the prediction operation Pred on input the previously reconstructed
reference information ref. Since the prediction mode mode is encoded in the
bitstream ζ, it is unnecesary to have X when choosing the prediction mode in
Pred.

Formally, we define a block-wise encoding operation E : B×{0, 1}∗×{0, 1}∗ →
B×{0, 1}∗, which takes a macroblockX, some reference information ref ∈ {0, 1}∗,
and some encoding parameters paramE as input, encodes X under paramE with
the help of ref, and outputs the reconstructed macroblock X ′ and the encoded
bitstream y ∈ {0, 1}∗. The encoding parameters paramE control the quality
and performance of the encoding process. In addition to prediction parameters
paramPred, we also include other configurations in paramE . For instance, in H.264,
paramE contains the quantization parameter qp, which determines the precision
of quantized coefficients.

Conversely, the block-wise decoding operation D : {0, 1}∗ × {0, 1}∗ × {0,
1}∗ → B takes the encoded bitstream y, the reference information ref, and the
encoding parameters paramE as input, decodes y under paramE with the help of
ref, and outputs the reconstructed macroblock X ′.

Abusing the notation slightly, we allow applying E to the entire video V to
obtain the encoded video stream ζ := E(V , paramE), and D to the encoded video
stream ζ to obtain the decoded video V ′ := D(ζ, paramE). Further, we assume
that one can extract intermediate data from E and D, such as the prediction
macroblock P and quantized coefficients Z.
Metadata. Metadata meta is a set of information associated with the video,
such as the author name, the recording device ID, the location and time of
recording. We assume that meta is immutable.
Editing. A block-wise editing operation ∆ is defined as ∆ : B × {0, 1}∗ → B,
which takes a macroblock X and some editing parameters param∆ ∈ {0, 1}∗
as input, edits X, and outputs the edited macroblock X ′. param∆ contains
configurations specific to the editing operation, such as the brightness level, the
position of an overlay mask, etc.

While one may also edit the metadata meta of a video in practice, we assume
that meta is immutable in our definition. This assumption does not invalidate

15

editing operations such as cropping and cutting, since the resolution and frame
rate are regarded as part of the encoded video stream ζ.

3.2 Algorithm and Security Definitions

A proof of video authenticity involves four parties: the trusted party, the recorder,
the prover, and the verifier.

• The trusted party (e.g., a manufacturer) runs the key generation algorithms
KΣ and KΠ, where KΣ generates signing keys for the recorders, and KΠ

produces necessary parameters for proof generation and verification. The
signing keys are then securely provisioned to the recorders and are safely
protected using mechanisms such as secure enclaves.

• The recorder (e.g., a camcorder) records a video (the raw footage), generates
the metadata, and runs the recording algorithm R, which signs the video
and the metadata under the signing key.

• The prover (e.g., a content creator) edits and encodes the original video,
publishes the processed video, and runs the proof generation algorithm P
to get a proof of authenticity.

• The verifier (e.g., a website visitor) checks if the proof is valid w.r.t. the
video by executing the verification algorithm V.

Now we formally define the algorithms discussed above in a proof of video
authenticity.

Definition 7 (Proof of Video Authenticity). A proof of video authenticity is
defined as VA = (KΣ,KΠ,R,P,V):

• KΣ(1
λ)→ (skΣ, vkΣ)

KΠ(1
λ)→ (pkΠ, vkΠ)

Both key generation algorithms KΣ and KΠ take as input security param-
eter 1λ. KΣ outputs a pair of secret signing key skΣ and public signature
verification key vkΣ, and KΠ outputs a pair of public proving key pkΠ and
public proof verification key vkΠ. KΠ also returns the secret trapdoor td,
which is omitted from the notation for simplicity but is used in security
definitions.

• R(skΣ,V ,meta)→ σ

The recording algorithm R takes as input signing key skΣ, video V and its
metadata meta, and outputs a signature σ on V and meta.

• P(pkΠ, vkΣ,V ,meta, param, σ)→ (ζ, π)

The proof generation algorithm P takes as input proving key pkΠ, signa-
ture verification key vkΣ, video V , metadata meta, editing and encoding
parameters param = (param∆, paramE), and signature σ. It outputs a video
stream ζ and a proof π that attests to 1) the honesty of the editing and
encoding process from V to ζ under param, and 2) the validity of σ on
(V ,meta) under vkΣ.

16

• V(vkΠ, vkΣ, ζ,meta, param, π) =: b

The verification algorithm V takes as input proof verification key vkΠ,
signature verification key vkΣ, processed video stream ζ and its metadata
meta′, editing and encoding parameters param, and proof π, and outputs a
bit b indicating if the proof is valid for ζ,meta and vkΣ.

Now we formalize the security of VA. Consider the relation RVA(x,w) for
the authenticity of a video, where x = (ζ,meta, param, vkΣ),w = (σ,V). For a
signature scheme Sig, an editing operation ∆, and an encoder E , RVA (x,w) = 1
if and only if

Sig.V(vkΣ, σ, (V ,meta)) = 1 ∧ ζ = E(∆(V , param∆), paramE)

The security of VA is defined below, which can be regarded as the security of
zkSNARKs for RVA.
Completeness. Completeness holds if for every video V , metadata meta, and
editing and encoding parameters param,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ)← KΠ(1

λ)
σ ← R(skΣ,V ,meta)
(ζ, π)← P(pkΠ, vkΣ,V ,meta, param, σ)
RVA((ζ,meta, param, vkΣ), (σ,V)) = 1 :

V(vkΠ, vkΣ, ζ,meta, param, π) = 1

 = 1

Knowledge Soundness. Knowledge soundness holds if for every p.p.t. ad-
versary A, there is a p.p.t. extractor Ext such that for all input randomness
r,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
(ζ,meta, param, π) := A(pkΠ, vkΠ, vkΣ; r)
(σ,V) := Ext(pkΠ, vkΠ, vkΣ, td; r)
V(vkΠ, vkΣ, ζ,meta, param, π) = 1 :

RVA((ζ,meta, param, vkΣ), (σ,V)) = 0

 ≤ ε(λ)

Zero-Knowledge. Optionally, VA may satisfy the zero-knowledge property,
which holds if there exists a simulator Sim such that for every p.p.t. distinguisher
A,

Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
((ζ,meta, param, vkΣ), (σ,V))← A(vkΣ, pkΠ, vkΠ)
(·, π)← P(pkΠ, vkΣ,V ,meta, param, σ) :

A(π) = 1



≈ Pr


(skΣ, vkΣ)← KΣ(1

λ)
(pkΠ, vkΠ, td)← KΠ(1

λ)
((ζ,meta, param, vkΣ), (σ,V))← A(vkΣ, pkΠ, vkΠ)
π ← Sim(td, pkΠ, vkΣ,meta, param, ζ) :

A(π) = 1


Succinctness. Optionally, VA may produce succinct proofs, if for every video V
of dimensionM×N×L, the proof π for V is of size |π| = poly(λ) polylog(MNL).

17

4 Improving Folding-Based IVC

What makes Eva an efficient and succinct zero-knowledge proof of video authen-
ticity is a folding-based IVC scheme that supports efficient lookups and proof
compression. These capabilities are enabled by our general, scheme-agnostic
paradigms for folding-based IVC. The first paradigm incorporates LogUp [42],
an efficient lookup argument, into any folding-based IVC scheme. The second
paradigm constructs a decider based on CP-SNARKs that compresses IVC proofs
into a fully succinct and zero-knowledge proof of constant size. In this section,
we discuss both paradigms, and then we provide a concrete instantiation Loua
by applying them to Nova [60]-based IVC.

4.1 Paradigm 1: IVC with Lookup Arguments

We first give the high-level idea behind our paradigm for supporting lookup argu-
ments in folding-based IVC, where we consider an IVC scheme IVC constructed
from a folding scheme NIFS. In each step of IVC, we first collect q, the queries to
the lookup table, from the execution of the step function F . Then, in addition
to folding the NIFS instances, we also fold Q, the commitment to q. Finally, we
create an augmented step circuit F̃ for F that additionally verifies the lookup
relation for q against the exact Q, thereby linking the folding scheme with the
lookup argument.
Existing folding-based IVC. To elaborate on the intuition above, we quickly
review the construction of folding-based IVC. Given a folding (accumulation)
scheme NIFS, the compilers proposed in [60, 16] are able to convert it to an IVC
scheme IVC. Both folding-to-IVC compilers are conceptually similar: to build an
IVC for a step circuit F , a “wrapper” (or formally, an augmented step circuit) F̃
is first defined, which 1) performs the current execution of F , and 2) verifies the

previous folding proof. The circuit F̃ is then encoded under a constraint system

as a relation C̃S between witness w and statement (public I/O) x. Without loss
of generality, we adopt the notations in [60] in the following, and we assume w
is contained in the folding witness, and x is in the folding instance. Finally, the
folding scheme NIFS is used to accumulate the folding witness and the folding
instance in each step of the IVC scheme IVC.

Formally, the incoming instance-witness pair that is associated with a single
execution of F̃ is denoted as (𝕦,𝕨), and the running instance-witness pair that is

associated with all previous executions of F̃ is denoted as (𝕌,𝕎). For instance, in
the i-th step, the incoming instance-witness pair (𝕦i,𝕨i) represents the execution

of F̃ in the (i− 1)-th step, while the running instance-witness pair (𝕌i,𝕎i) is
the accumulation of all previous (𝕦j ,𝕨j) for j ∈ [0, i− 2] and thus represents all

previous i− 1 invocations (from 0-th step to (i− 2)-th step) of F̃ .
In each step of recursive computation, the incoming instance-witness pair

is absorbed into the running instance-witness pair. More specifically, given (𝕦i,
𝕨i) and (𝕌i,𝕎i), the prover IVC.P folds both pairs, producing a new running
instance-witness pair (𝕌i+1,𝕎i+1) that represents all previous i invocations

(from 0-th step to (i − 1)-th step) of F̃ . Next, the prover performs the i-th

execution of F̃ , whose corresponding instance-witness pair (𝕦i+1,𝕨i+1) is stored
for the (i+ 1)-th step of IVC.P.

Here, the i-th execution of F̃ checks 1) F(zi; auxi) = zi+1, i.e., zi, the state of

18

F in step i, is correctly updated, 2) NIFS.V(vk,𝕌i,𝕦i, T) = 𝕌i+1, i.e., 𝕌i+1 is the
correct folding of 𝕌i,𝕦i, and 3) 𝕦i.x = ϱ(𝕌i, i,z0, zi), where 𝕦i.x is the statement

of F̃ in the (i− 1)-th step. Additionally, F̃ outputs h := ϱ(𝕌i+1, i+ 1, z0, zi+1),

which will be included in 𝕦i+1.x, i.e., the statement of F̃ in the i-th step.
Support lookup in folding-based IVC. Now we are ready to discuss how
to equip any IVC based on NIFS with lookup arguments. In our paradigm, we
consider τ = (τj)

ν−1
j=0 , a read-only lookup table with ν entries. We assume during

the execution of F , µ queries α = (αi)
µ−1
i=0 are made to the lookup table τ .

Further, for the j-th table entry τj , we count oj , the number of τj ’s occurrences
in the query vector α. The folding witness 𝕎 now contains an extra term
q = ((αi)

µ−1
i=0 , (oj)

ν−1
j=0), and its commitment Q = CM.C(ck, q) is included in the

folding instance 𝕌.
Having defined 𝕎 and 𝕌, we build NIFSLU, a lookup-friendly version of NIFS,

whose prover and verifier additionally computes the random linear combination
of 𝕌1.Q and 𝕌2.Q. The prover also folds 𝕎1.q and 𝕎2.q analogously. The
construction of NIFSLU is illustrated in Algorithm 1. Note that q does not affect
the computation of error terms and proofs in NIFS, because it is just a syntactic
sugar that denotes a special type of witness w to the relation R, and can be
regarded as a plain witness outside the context of lookup arguments. In fact, in
folding schemes where 𝕌 already contains the commitment to w (e.g., [60, 59,
57, 11, 27]), our approach can be viewed as the separation of q from w.

Algorithm 1: NIFSLU

1 Fn NIFSLU.G(1λ):
2 return pp← NIFS.G(1λ)
3 Fn NIFSLU.K(pp, R):
4 return (pk, vk) := NIFS.K(pp, R)
5 Fn NIFSLU.P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2)):

6 (𝕌,𝕎, T)← NIFS.P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2))
7 r := ρ(tr) ▷ tr is the transcript between P and V
8 𝕌.Q := 𝕌1.Q+ r · 𝕌2.Q
9 𝕎.q := 𝕎1.q + r ·𝕎2.q

10 return (𝕌,𝕎, T)

11 Fn NIFSLU.V(vk,𝕌1,𝕌2, T):

12 𝕌 := NIFS.V(vk,𝕌1,𝕌2, T)
13 r := ρ(tr) ▷ tr is the transcript between P and V
14 𝕌.Q := 𝕌1.Q+ r · 𝕌2.Q
15 return 𝕌

Next, we construct IVCLU from NIFSLU. Recall that IVC for F internally
utilizes NIFS for an augmented step circuit F̃ . This is also the case in our
construction. Inspired by gnark [9], which incorporates LogUp into Groth16 [39]

and Plonk [33], our augmented step circuit F̃ (Circuit 2) additionally checks the
set inclusion identity of LogUp [42, Lemma 5] in-circuit.

Suppose F , during its execution, makes queries α = (αi)
µ−1
i=0 to a lookup table

with entries τ = (τj)
ν−1
j=0 . As per LogUp, {αi}µ−1

i=0 ⊆ {τj}
ν−1
j=0 (where α and τ are

both viewed as sets) if and only if there is a list of multiplicities o = (oj)
ν−1
j=0

19

such that the below identity for set inclusion holds:

µ−1∑
i=0

1

X − αi
=

ν−1∑
j=0

oj
X − τj

.

By Schwartz-Zippel Lemma, we can check this polynomial identity by evaluating
it at a random point X = c. Here, c can be the random message from the
verifier after receiving the commitment Q to q = ((αi)

µ−1
i=0 , (oj)

ν−1
j=0) from the

prover. Thanks to Fiat-Shamir transform [31], we can eliminate the interaction

and compute c := ρ(Q) instead. Consequently, the F̃ circuit needs to enforce 1)∑µ−1
i=0

1
c−αi

=
∑ν−1

j=0
oj

c−τj
, i.e., the set inclusion identity holds, and 2) c = ρ(Q),

i.e., c is honestly computed.
Check 1) can be done by collecting the queries (αi)

µ−1
i=0 from the execution of

F circuit and asking the prover to feed (oj)
ν−1
j=0 and c as hints to F̃ .

However, check 2) is more tricky. A naive yet problematic way is to let the
prover feed Q as a hint and check if its digest is c. Nevertheless, this approach
fails to guarantee soundness. Note that an honest Q should be the commitment
to the queries made by F in the i-th step of IVC, which should thus be a part
of the incoming instance 𝕦i+1, but the circuit is unable to verify this. In fact,

among the inputs to F̃ , we only have 𝕦i that represents the execution of F̃ in
the (i− 1)-th step, while 𝕦i+1 will be calculated after the current execution of

F̃ and is unknown to F̃ during its execution.
To address this circular dependency, we mark c as a public output and defer

the check to the next step. More specifically, 𝕦i+1.x, the statement of F̃ in the
i-th step, now contains ϱ(𝕌i+1, i+ 1, z0, zi+1) and c. With 𝕦i+1.Q and 𝕦i+1.x,

F̃ in the (i+ 1)-th step can now check the honesty of c from the i-th step by

comparing it with ρ(𝕦i+1.Q). Analogously, F̃ in the i-th step becomes responsible
for ensuring c from the (i− 1)-th step is derived from 𝕦i.Q.

Circuit 2: F̃(i, zi,𝕌i,𝕦i, T , auxi)→ (h, c)

Witness: i,zi,𝕌i, 𝕦i, T , auxi
Statement: h, c
Constant: (τj)

ν−1
j=0

1 zi+1 := F(zi; auxi) ▷ Let (αi)
µ−1
i=0 be queries made by F

2 Check 𝕦i:
enforce 𝕦i.x = (ϱ(𝕌i, i,z0,zi), ρ(𝕦i.Q))

3 𝕌i+1 := NIFSLU.V(vk,𝕌i, 𝕦i, T)
4 Check lookup queries:

o← Hint(α)
c← Hint(α,o)

enforce
∑µ−1

i=0
1

c−αi
=

∑ν−1
j=0

oj
c−τj

5 h := ϱ((i = 0) ? 𝕌⊥ : 𝕌i+1, i+ 1,z0,zi+1)
6 return h, c

With F̃ as the augmented step circuit, we construct IVCLU (Algorithm 3)
accordingly, also by leveraging the folding-to-IVC compiler described above.

Formally, the prover takes as input the previous proof πi = ((𝕌i,𝕎i), (𝕦i,𝕨i)),

folds (𝕌i,𝕎i) into (𝕦i,𝕨i) to obtain (𝕌i+1,𝕎i+1), and runs the F̃ circuit. When
asked for hint o w.r.t. α, the prover computes oj as the number of occurrences

20

of table entry τj in α for all j ∈ [0, ν − 1]. When asked for hint c w.r.t. α,o, the
prover computes Q← CM.C(ck, q) and c := ρ(Q). Finally, the incoming instance-

witness pair (𝕦i+1,𝕨i+1) corresponding to the i-th execution of F̃ is constructed,
and the updated proof πi+1 = ((𝕌i+1,𝕎i+1), (𝕦i+1,𝕨i+1)) is returned.

The verification of an IVC proof πi = ((𝕌i,𝕎i), (𝕦i,𝕨i)) is straightforward:
we simply check the digest h and challenge c in 𝕦i.x and ensure that 𝕨i,𝕎i

satisfy 𝕦i,𝕌i, respectively.

Algorithm 3: IVCLU

1 Fn IVCLU.G(1λ):
2 return pp← NIFSLU.G(1λ)
3 Fn IVCLU.K(pp,F):
4 Wrap F and build F̃
5 Encode F̃ as C̃S in the underlying constraint system

6 return (pk, vk) := NIFSLU.K(pp, C̃S)
7 Fn IVCLU.P(pk, (i,z0,zi), auxi, πi):
8 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i)) := πi

9 (𝕌i+1,𝕎i+1, T) := (i = 0) ? (𝕌⊥,𝕎⊥,⊥) : NIFSLU.P(pk, (𝕌i,𝕎i), (𝕦i,𝕨i))

10 (h, c)← F̃(i,zi,𝕌i, 𝕦i, T , auxi)
11 Construct 𝕦i+1,𝕨i+1 from the execution of F̃
12 return πi+1 := ((𝕌i+1,𝕎i+1), (𝕦i+1,𝕨i+1))

13 Fn IVCLU.V(vk, (i,z0,zi), πi):
14 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i)) := πi

15 assert 𝕦i.x = (ϱ(𝕌i, i, z0,zi), ρ(𝕦i.Q))
16 assert 𝕨i is a satisfying incoming witness to 𝕦i
17 assert 𝕎i is a satisfying running witness to 𝕌i

18 return 1

By applying this paradigm to Nova and relaxed R1CS [60], we obtain a
folding scheme and an IVC scheme, respectively named LouaFS and LouaIVC.
We additionally utilize CycleFold [56] to improve circuit efficiency. The full
constructions of LouaFS and LouaIVC, together with discussion on their security,
can be found in Appendices B.1 and B.2.
Comparison with other IVC that supports lookup. Several folding-based
IVC schemes [57, 11, 12, 58] also support lookup arguments. In HyperNova [57],
the authors build nlookup upon the sum-check protocol. Similar to our paradigm,
Protostar [11] and its subsequent work [12] utilizes LogUp as well. Very recently,
NeutronNova [58] integrates Lasso [80] with folding.

For the use cases where the lookup table size ν is large, [57, 11, 12] provide
more efficient solutions. However, our paradigm is optimal if the number of queries
µ is much larger than ν, which is the case for our video encoding and editing
circuits. In fact, the complexity of our paradigm is on par with existing schemes,
but it further has minimal constant factor. For instance, our prover only needs to
additionally commit to µ+ 2ν values, which is also the case for Protostar, while
NeutronNova requires 3µ+3ν. Moreover, we only add one additional commitment
Q to folding instances when integrating lookup arguments, whereas Protostar
and NeutronNova introduce two.

As a general and flexible approach, our paradigm supports any folding schemes
and constraint systems. In comparison, the technique in NeutronNova leads to

21

a dedicated folding scheme, and it is unclear how Protostar’s solution can be
combined with folding schemes that are not based on special-sound protocols [11].

4.2 Paradigm 2: Commit-and-Prove Decider

We introduce a decider Decider that compresses the final IVC proof πk into a
succinct zero-knowledge proof ϖ via a zkSNARK for the relation RIVC. Given
statement x = (k, z0, zk) and witness w = πk, R

IVC(x,w) = 1 if and only if
IVC.V(vk, (k, z0, zk), πk) = 1.
Existing deciders. Before diving into the details, we first review two different
methods for building Decider upon zkSNARKs [60, 75].

In Nova [60], the authors construct a dedicated Polynomial IOP [13] for relaxed
R1CS and compile it into a zkSNARK for RIVC using a polynomial commitment
scheme (PCS). Two choices of the PCS are presented: a Pedersen-based PCS
with Bulletproofs [14] as the IPA, and a two-tiered PCS (e.g., Dory-PC [61])

with Dory-IPA [61]. For an augmented step circuit F̃ with n constraints, the
former achieves O(log n) proof size and O(n) verification time, while the latter
makes both proof size and verification time logarithmic in n.

sonobe [75] instead expresses RIVC as a circuit and prove its satisfiability with
Groth16 [39], yielding constant proof size and verifier time. Nevertheless, sonobe’s
decider only supports compressing proofs that use KZG commitment [49], where
IVC.P in each step needs to interpolate the polynomial from the input vector,
resulting in an O(n log n) prover due to number-theoretic transforms (NTT).
Our construction.Our goal is to design a decider that improves both approaches.
Specifically, it should produce constant-size proofs that can be verified in constant
time w.r.t. n, while keeping the time of IVC.P linear in n. To this end, we also
express RIVC as a circuit FDecider and prove its satisfiability, similar to sonobe.
However, recall that RIVC checks a portion of 𝕎k (e.g., q in NIFSLU) against the
commitments in 𝕌k (e.g., Q). We neither perform this check directly in-circuit
(which is costly due to non-native elliptic curve operations), nor convert 𝕎k to
a polynomial and verify its evaluation against the polynomial commitments in
𝕌k (which requires polynomial interpolation during the conversion).

Our approach leverages CP-SNARKs [17], which allow one to demonstrate
that a subset of the witnesses in a SNARK indeed corresponds to a commit-
ment, without running CM.V in-circuit. Thus, the constraints for commitment
verification are completely eliminated, whereas vector-to-polynomial conversion
is also unnecessary because CP-SNARKs do not require polynomial commit-
ments. Concretely, we can use Pedersen commitment [73] as CM by choosing
LegoGro16 [17] as ZKCP, which establishes a bridge between Groth16 and Ped-
ersen commitments. As a result, the prover time in each iteration of incremental
proof generation is linear, and both the final compressed proof size and the
verifier time are constant.

In addition, we adopt the trick in [60, 75] to further save computation in
FDecider, where Decider.P is required to run NIFS.P once more to absorb (𝕦k,𝕨k)
into (𝕌k,𝕎k). Consequently, FDecider only needs to check the output (𝕌k+1,
𝕎k+1) instead of both inputs.

We present the general decider algorithm Decider in Algorithm 4. As discussed
above, Decider.P first runs NIFS.P to fold (𝕦k,𝕨k) into (𝕌k,𝕎k), and then
generates a proof ϖ with ZKCP.P, attesting that FDecider is satisfiable and that
the commitments in 𝕌k+1 are valid. The verifier Decider.V folds 𝕦k into 𝕌k as

22

well, checks the public inputs in 𝕦k.x, and then verifies the proof ϖ and the
commitments in 𝕌k+1 using ZKCP.V.

It is worth noting that, due to Groth16, Decider.P has O(n′ log n′) complexity,
where n′ is the number of constraints in FDecider and is linear in n. But we stress
that it is a one-time cost at the end of multiple steps of IVC.P, and it thus can
be relatively cheap in practice.

Algorithm 4: Decider

1 Fn Decider.K(1λ, (ck,CSDecider)):

2 return (pk, vk)← ZKCP.K(1λ, ck,CSDecider)

3 Fn Decider.P((pk, pkΦ), (k, z0,zk), πk):
4 Parse ((𝕌k,𝕎k), (𝕦k,𝕨k)) := πk

5 (𝕌k+1,𝕎k+1, T) := NIFS.P(pkΦ, (𝕌k,𝕎k), (𝕦k,𝕨k))
6 c := (commitments in 𝕌k+1),x := (other components of 𝕌k+1)
7 υ := (committed values in 𝕎k+1),ω := (other components of 𝕎k+1)
8 ϖ ← ZKCP.P(pk,x, c,υ,ω)

9 return (ϖ,𝕌k, 𝕦k, T)
10 Fn Decider.V((vk, vkΦ), (k, z0,zk), (ϖ,𝕌k, 𝕦k, T)):
11 𝕌k+1 := NIFS.V(vkΦ,𝕌k, 𝕦k, T)
12 assert 𝕦k.x = (ϱ(𝕌k, k,z0,zk), ρ(𝕦k.Q))
13 c := (commitments in 𝕌k+1),x := (other components of 𝕌k+1)
14 return ZKCP.V(vk,x, c, ϖ)

Loua’s decider LouaDecider can be constructed with LouaFS and LegoGro16,
and we provide its details in Appendix B.3, together with the construction of
the associated circuit FDecider and the security proof.

5 The Eva Protocol

In this section, we introduce the construction of Eva, our proof of video authen-
ticity based on IVC.

Recall that in a proof of video authenticity, P aims to convince V that the
processed video stream ζ is honestly edited and encoded from some original
video V , whose signature σ is valid with respect to the public key vkΣ. Due to
the nature of video processing algorithms, we can view the editing and encoding
operation as a sequence of sub-procedures on each macroblock of the video.

Thus, we first construct the gadgets for encoding and editing a single mac-
roblock. In Section 5.1, we elaborate on FE , the gadget for video encoding, as
well as its building blocks. In Section 5.2, we present instantiations of F∆ for
several video editing operations.

Then we provide the construction of our IVC step circuit FEva in Section 5.3,
where we discuss how to integrate the two key components FE and F∆ into
FEva, which, at the same time, checks the validity of signature σ.

Finally, in Section 5.4, we build upon FEva the full construction of Eva by
naturally extending the step circuit to handle the entire video V , with the help
of our folding-based IVC Loua. We end this section with the discussion on the
security of Eva.

23

5.1 Gadgets for Video Encoding

First, we construct FE , a gadget for encoding a single macroblock in a video.
Specifically, we focus on supporting H.264/AVC [40], but our methodology can
be extended to other block-based video codecs such as H.265/HEVC, AV1, etc.

Naively, one may translate the entire encoding algorithm E to the FE gadget.
However, due to the reasons below, this would require a prohibitive number of
constraints, which is infeasible in practice.

• The encoding process involves complex operations, such as motion estima-
tion, entropy coding, etc.

• The encoding of a macroblock may depend on other macroblocks in the
current frame (when the prediction mode is mode = “intra”) or even in
the neighboring frames (when mode = “inter”).

To address these challenges, we make extensive use of verifier’s knowledge.
Note that although video codecs are generally lossy, the decoder can still accu-
rately extract from ζ some information that appears in the encoding process
as well. In fact, the prediction macroblock P decoded by D is identical to the
original prediction macroblock computed by E , which is also the case for the
quantized coefficients Z.

Thus, we save the prover’s cost by treating P and Z as public inputs, which
can be recovered by V. Now, to prove the honest encoding of a macroblock X
with encoding parameters paramE , FE no longer runs the entire E . Instead, FE

only has to enforce the honest execution of differing, transform, and quantization,
as depicted in Figure 3, while it becomes unnecessary to prove prediction and
entropy coding.

X FTransFDiff FQuant

+

P

Z

−

Figure 3: Overview of in-circuit operations for video encoding

As summarized in Gadget 5, the encoding gadget FE takes as input the
current macroblock X, the current prediction macroblock P , and additionally
the encoding parameters paramE , and returns the quantized coefficients Z by
running the gadgets FDiff ,FTrans, and FQuant. Here, FDiff for residual macroblock
computation simply returns R := X − P , while details of FTrans and FQuant are
elaborated in the following sections.

Gadget 5: FE(X,P , paramE)

1 R := FDiff(X,P) ▷ Compute residual macroblock R

2 Y := FTrans(R) ▷ Compute transformed coefficients Y

3 Z ← FQuant(Y , paramE) ▷ Compute quantized coefficients Z
4 return Z

5.1.1 Transform

The transform operation in H.264 is based on 4 × 4 DCT (Discrete Cosine
Transform), but with slight difference for efficiency reasons: it only involves

24

integer operations, while the fractional part of the DCT coefficients is handled in
the quantization step. More specifically, with the core transform matrix C4 :=[
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

]
, the transform on a 4 × 4 block Λ is computed as Γ := C4ΛC⊺

4 .

Hence, the construction of the corresponding gadget FTrans is straightforward:
for a residual macroblock R with color components RY,RCb,RCr, we divide
them into blocks of 4× 4 and apply the transform operation on each block. Since
every entry ri,j in R is in [−255, 255], the matrix multiplication can be natively
performed in 𝔽p without overflow.

After the core transform, the DC (i.e., the first) coefficients of all blocks
from every color component are collected into a 4 × 4 matrix BY and two
2 × 2 matrices BCb,BCr, while the AC (i.e., the remaining) coefficients are
unchanged. These matrices are transformed again using the Hadamard matrices

H4 :=

[
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

]
and H2 :=

[
1 1
1 −1

]
, respectively. Finally, the transformed

DC coefficients DY,DCb,DCr as well as the AC coefficients (AY
i)

15
i=0, (A

Cb
i)4i=0,

(ACr
i)4i=0 are returned. The entire in-circuit transform process is depicted in

Gadget 6.

Gadget 6: FTrans(R)

1 C4 :=

[
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

]
,H4 :=

[
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

]
,H2 :=

[
1 1
1 −1

]
2 for k ∈ [0, 16) do
3 i := ⌊k/4⌋, j := k mod 4

4 AY
k := C4R

Y[4i, 4i+ 4; 4j, 4j + 4]C⊺
4

5 bYi,j := aYk,0,0

6 for k ∈ [0, 4) do
7 i := ⌊k/2⌋, j := k mod 2

8 ACb
k := C4R

Cb[4i, 4i+ 4; 4j, 4j + 4]C⊺
4

9 ACr
k := C4R

Cr[4i, 4i+ 4; 4j, 4j + 4]C⊺
4

10 bCbi,j := aCbk,0,0
11 bCri,j := aCrk,0,0

12 DY := H4B
YH⊺

4

13 DCb := H2B
CbH⊺

2

14 DCr := H2B
CrH⊺

2

15 Y := ((AY
i)

15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0,D

Y,DCb,DCr)
16 return Y

5.1.2 Quantization

The quantization step maps a coefficient v from the transform step to a quan-
tized value u. This process is lossy, and how much information is preserved is
controlled by the quantization parameter qp in H.264. A large qp leads to a
higher compression ratio but also more distortion, while a small qp results in
larger file sizes but better quality.

In general, the quantized coefficient is computed by u := ⌊v × ψ/2δ⌉, i.e., we
first scale the transformed coefficient v by ψ/2δ and then round the result to
the nearest integer. Here, ψ is the multiplication factor that takes the fractional

25

part of the DCT coefficients into account. The shift δ is 15 + ⌊qp/6⌋ for AC
coefficients and 16 + ⌊qp/6⌋ for DC coefficients.

In H.264, floating-point operations such as rounding are further replaced with
approximate integer operations, as the latter are more efficient in hardware. This
is also beneficial for reducing the circuit size: even with the state-of-the-art tech-
niques [28], the in-circuit floating-point operations are still expensive, e.g., a single
FP32 division would cost ∼ 76 constraints. Now, the absolute value and the sign

of the quantized coefficient u is computed as

{
abs(u) := (abs(v)× ψ + ϕ)>> δ

sign(u) := sign(v)
,

where v’s absolute value is scaled by the multiplication factor ψ, added with an
offset ϕ, and then right shifted by δ bits. The offset ϕ equals f for AC coefficients,

and is 2f for DC coefficients, where f := 24+⌊qp/6⌋ ×

{
682, mode = “intra”

342, mode = “inter”
.

The values 682 and 342 are taken from the H.264 JM reference software [68],
which are the approximate values of 211/3 and 211/6 respectively.

When dealing with scaling and rounding in-circuit, we leverage the efficient
gadgets FSignAbs and F>> in [28] for computing absolute values and shifting
operations. Both gadgets make queries to a lookup table, which can be efficiently
checked by our IVC with lookup arguments integrated. The constructions of these
gadgets are given in Appendix C. With these gadgets, we give the construction
of the FScaleRound gadget for scaling and rounding an input coefficient v in-place
in Gadget 7.

Gadget 7: FScaleRound(v, ψ, ϕ, δ)

1 (s, u)← FSignAbs(v)
2 t := F>>(u× ψ + ϕ, δ)
3 v := s ? t :−t

Now we are finally ready to present the quantization gadget FQuant. As per

JM, the matrix of multiplication factors is defined as Ψ :=

 13107 5243 8066
11916 4660 7490
10082 4194 6554
9362 3647 5825
8192 3355 5243
7282 2893 4559

. For
an AC coefficient ai,j , the multiplication factor is in the (qp mod 6)-th row and

the pi,j-th column of Ψ, where pi,j =


0, (i, j) ∈ {(0, 0), (0, 2), (2, 0), (2, 2)}
1, (i, j) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)}
2, otherwise

.

We use a matrix P to represent the mapping from (i, j) to pi,j . On the other
hand, the multiplication factor for DC coefficients are always ψ0,0. Then, for all
AC and DC blocks, we apply the FScaleRound gadget to quantize their coefficients
with the corresponding parameters, except that the DC coefficients for luma are
right shifted by 1 bit before quantization.

The entire quantization process is summarized in Gadget 8, with qp and
mode included in paramE .

5.2 Gadgets for Video Editing

We showcase various gadgets for video editing, including color manipulations
(e.g., conversion to grayscale, brightness adjustment, color inversion), spatial
operations (e.g., masking, cropping), and temporal operations (e.g., cutting).

26

Gadget 8: FQuant(Y , paramE)

1 Parse ((AY
i)

15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0,D

Y,DCb,DCr) := Y

2 Parse (qp,mode, ·) := paramE

3 q := ⌊qp/6⌋, r := qp mod 6
4 f := ((mode = “intra”) ? 682 : 342)× 24+q

5 Ψ :=

 13107 5243 8066
11916 4660 7490
10082 4194 6554
9362 3647 5825
8192 3355 5243
7282 2893 4559

,P :=

[
0 2 0 2
2 1 2 1
0 2 0 2
2 1 2 1

]
6 for A ∈ ((AY

i)
15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0) do

7 for i ∈ [0, 4), j ∈ [0, 4) do

8 FScaleRound(ai,j , ψr,pi,j , f, 15 + q)

9 for i ∈ [0, 4), j ∈ [0, 4) do

10 FScaleRound(F>>(dYi,j , 1), ψ0,0, 2f, 16 + q)

11 for D ∈ (DCb,DCr) do
12 for i ∈ [0, 2), j ∈ [0, 2) do

13 FScaleRound(di,j , ψ0,0, 2f, 16 + q)

14 Z := ((AY
i)

15
i=0, (A

Cb
i)4i=0, (A

Cr
i)4i=0,D

Y,DCb,DCr)
15 return Z

Additionally, we explain how to perform complex editing operations that involve
multiple macroblocks in-circuit.

5.2.1 Color Manipulations

Thanks to the use of the YCbCr color space, it is straightforward to perform
common color manipulations for videos encoded in H.264 or in many other video
codecs. In contrast, color operations on RGB often involve the conversion between
color spaces, demanding for in-circuit fixed-point or floating-point computation.

For instance, converting pixels in RGB to grayscale requires computing the
luminance from the RGB components, which is given by 0.299× R+ 0.587× G+
0.114 × B. In YCbCr, the luma component already represents the luminance,
and thus we can simply keep the luma component unchanged while setting the
chroma components to 128.

We depict the grayscale conversion gadget for a macroblock X in Gadget 9.

Gadget 9: F∆gray(X)

1 Parse (XY, ·) := X

2 return X ′ := (XY,128,128)

When adjusting the brightness, we only need to focus on the luma component,
which is scaled by a factor parambright and clamped to [0, 255], as shown in
Gadget 10. We support 65536 levels of brightness adjustment, with parambright ∈
{ 0
256 ,

1
256 , . . . ,

65535
256 }. Given a luma component xY and a parameter parambright =

β
256 , we handle the in-circuit scaling operation by first computing β × xY and
then right shifting the product by 8 bits. Next, in order to clamp the product to
[0, 255], we again shift the result to the right by 8 bits. If the remaining bits are
all 0, then the original result is returned as it is smaller than 256. Otherwise, we
return 255.

27

Gadget 10: F∆bright(X, parambright = β
256)

1 Parse (XY,XCb,XCr) := X
2 for i ∈ [0, 16), j ∈ [0, 16) do

3 u := F>>(xYi,j × β, 8)
4 v := F>>(u, 8)

5 xYi,j := (v = 0) ? u : 255

6 return X ′ := (XY,XCb,XCr)

Gadget 11 illustrates the gadget for color inversion, where we subtract all
components in each pixel value from 255.

Gadget 11: F∆inv(X)

1 Parse (XY,XCb,XCr) := X
2 for i ∈ [0, 16), j ∈ [0, 16) do

3 xYi,j := 255− xYi,j
4 for i ∈ [0, 8), j ∈ [0, 8) do

5 xCbi,j := 255− xCbi,j
6 xCri,j := 255− xCri,j
7 return X ′ := (XY,XCb,XCr)

5.2.2 Spatial and Temporal Operations

Now we present the gadgets for spatial and temporal operations.
To mask a macroblock X with a layer L, we additionally require a binary

matrix B, where each bit bi,j indicates whether we should replace the pixel in
X with the corresponding pixel in L. More specifically, if bi,j is true, then xi,j
is updated to li,j , while xi,j remains unchanged otherwise. With (B,L) as the
masking parameter parammask, the masking gadget F∆mask is given in Gadget 12.
Note that different macroblocks may have different parammask, which allows for
arbitrary overlays with dynamic content and position (e.g., subtitles) without
incurring additional costs.

Gadget 12: F∆mask(X, parammask = (B,L))

1 Parse (XY,XCb,XCr) := X

2 Parse (BY,BCb,BCr) := B

3 Parse (LY,LCb,LCr) := L
4 for i ∈ [0, 16), j ∈ [0, 16) do

5 xYi,j := bYi,j ? l
Y
i,j : x

Y
i,j

6 for i ∈ [0, 8), j ∈ [0, 8) do

7 xCbi,j := bCbi,j ? l
Cb
i,j : x

Cb
i,j

8 xCri,j := bCri,j ? l
Cr
i,j : x

Cr
i,j

9 return X ′ := (XY,XCb,XCr)

Cropping and cutting both work similarly to each other, where the former
removes data in the horizontal and vertical directions, while the latter removes
data in the temporal direction. We unify both cases via the removal parameter
paramremove, which consists of a boolean value b that indicates if the macroblocks

28

needs to be removed. By specifying b according to the operation type, we can
support both operations with the same gadget F∆remove . For instance, cropping
requires b = 1 for macroblocks outside the cropped region, while for cutting, all
macroblocks in removed frames have b = 1. The construction of F∆remove is shown
in Gadget 13, where ⊥ is a dummy macroblock. Although the process seems
straightforward, we omit an important detail in the description: how to handle
⊥ is in fact non-trivial, and we defer the discussion to Section 5.3.

Gadget 13: F∆remove(X, paramremove = b)

1 Parse (XY,XCb,XCr) := X

2 return X ′ := b ? (⊥,⊥,⊥) : (XY,XCb,XCr)

We also want to point out that while we require each macroblock to have its
own paramremove, we can avoid linear communication complexity when transmit-
ting the parameters from the prover P to the verifier V. In fact, P can simply
send the dimensions of the original video and the offset of the cropped or cut
video with respect to the original one, and V can recover the parameters from
these values.

5.2.3 More Complicated Operations

We discuss how to build gadgets for more complex editing operations that involve
multiple macroblocks, such as rotation. While F∆ handles macroblocks one-by-
one in our design, it still allows such advanced functionalities. To this end, we
can leverage vector commitment schemes [20] such as Merkle trees, where one
can commit to the entire vector of messages and later open the commitment to
the message at a specific position.

Now, F∆ additionally takes as input the vector commitment to the original
video V . For an editing operation that reads both the current macroblock Xi

and another macroblock Xj , the prover can feed Xj to F∆ as a hint, and F∆

enforces thatXj is indeed the j-th macroblock in the video by checking the vector
commitment against Xj and j. Similarly, we can also support operations that
update macroblocks in different positions by including the vector commitment to
the edited video V ′ as input. In this way, F∆ is able to access other macroblocks
in the video. without affecting its macroblock-wise design.

5.3 Building the Step Circuit

With the gadgets for video encoding and editing in place, we are now ready
to construct the step circuit FEva. We discuss how FEva achieves the proof of
correct editing and encoding and the proof of valid signature separately.
Proof of Editing and Encoding. First, we integrate F∆ and FE into FEva to
guarantee the honesty of editing and encoding. Since both gadgets extensively use
bitwise operations, we fill the lookup table τ with 28 entries in ℤ28 to maximize
the efficiency. Then, for a macroblockX,FEva runs F∆ on X to obtain the edited
macroblock X ′, and then invokes FE on X ′ to get the quantized coefficients Z.

We further extend FEva to handle b macroblocks (Xj)
b−1
j=0 in a batch, where

each Xj is associated with public inputs P j and Zj . As we will see in Section 6
and Section 7, with a reasonably large b, we can amortize the constraints for

29

folding verification in the augmented circuit, thereby enabling a more efficient
IVC prover.

Nevertheless, the naive combination of F∆ and FE is suboptimal. Recall that
in IVCLU (and hence LouaIVC), the circuit F̃ computes ϱ(𝕌i, ·) and ϱ(𝕌i+1, ·),
where 𝕌i.x and 𝕌i+1.x contain all the public inputs to the step circuit, which
are (P j)

b−1
j=0 and (Zj)

b−1
j=0 in our case. Thus, the circuit needs to hash these data

twice, which becomes expensive when b is large.
We tackle this problem by finding the balance point between the advantage of

utilizing verifier’s knowledge and the drawback of handling public inputs in IVC.
In fact, it is possible to avoid treating (P j)

b−1
j=0 and (Zj)

b−1
j=0 as public inputs while

enjoying the shared information between the encoder and the decoder. Instead,
we only treat them as witnesses, and the public input is now their digest ℏ. More
specifically, in the i-th step of IVC, we absorb (P bi+j)

b−1
j=0 and (Zbi+j)

b−1
j=0 into ℏi

via H, thereby obtaining the next state ℏi+1. In this way, P and Z are no longer

involved the digest computation ϱ(𝕌i, ·) and ϱ(𝕌i+1, ·) in F̃ . Instead, the prover
only needs to compute their digest once per step in IVC, which occurs in FEva.

The soundness is unaffected: the verifier can derive ℏi+1 from ℏi,P ,Z as
well and check the proof against ℏi+1, but the collision resistance of H prevents
a malicious prover from providing incorrect P ′ and Z ′ that lead to the same
ℏi+1.
Proof of Valid Signature. Then we discuss how to prove the validity of σ
in FEva. Due to the hash-and-sign paradigm, the signature σ is actually for the
digest of V and meta. By regarding the digest computation of V as an iterative
invocation of H on each macroblock in the video, we can extend FEva by hashing
the original macroblock X as well. On the other hand, the hash of meta and the
execution of Sig.V are deferred to the end of IVC, as we will see in Section 5.4.

Now, the i-th state of IVC zi not only contains the digest ℏi of prediction
macroblocks and quantized coefficients, but it also records hi, the hash of mac-
roblocks in the original video. In each step, FEva additionally updates the digest
hi+1 by absorbing the incoming macroblocks (Xbi+j)

b−1
j=0 into hi.

Furthermore, to increase parallelism, we compute the digests hi+1 and ℏi+1

in two steps: 1) calculate the partial digests h′bi+j := H(Xbi+j) and ℏ′bi+j :=
H(P bi+j ,Zbi+j , parambi+j) for all j ∈ [0, b − 1], and 2) derive the final digests

hi+1 and ℏi+1 by hashing the partial digests (h′bi+j)
b−1
j=0 and (ℏ′bi+j)

b−1
j=0.

The final construction of FEva is given in Circuit 14.
In addition to the points discussed above, we take extra care to handle

the possible removal of macroblocks due to the cropping or cutting operations
(F∆remove in Section 5.2). For a removed macroblock X ′, FE and subsequent
operations should not be performed, since X ′ is no longer encoded by E .

Such a design introduces different control flows depending on a dynamic
parameter paramremove, resulting in a non-uniform circuit that is not directly
supported by our IVC. A common technique to avoid this non-uniformity is to
run all possible control flows, and then select among the results based on the
dynamic branching condition: 1) Perform FE and H to derive ℏ′, as if X ′ is not
removed. We can use dummy values for X ′, P , Z, and paramE if they do not
exist. 2) Compute ℏ′ without P , Z, and paramE , i.e.,, ℏ′ := H(paramremove). We
further get rid of the hash and set ℏ′ := paramremove, as the parameter only has a
single bit. Later, we select between 1) and 2) based on the branching condition
paramremove.

30

Circuit 14: FEva

Witness: zi, (Xbi+j)
b−1
j=0, (parambi+j)

b−1
j=0

1 (hi, ℏi) := zi

2 for j ∈ [0, b− 1] do
3 X ′

bi+j ← F∆(Xbi+j , param
∆
bi+j)

4 P bi+j ← Hint(X ′
bi+j)

5 Zbi+j ← FE(X ′
bi+j ,P bi+j , param

E
bi+j)

6 h′
bi+j := H(Xbi+j)

7 ℏ′bi+j := H(P bi+j ,Zbi+j , parambi+j)

8 if ∆ = ∆remove then
9 ℏ′bi+j := paramremove

bi+j ? paramremove
bi+j : ℏ′bi+j

10 hi+1 := H(hi, (h
′
bi+j)

b−1
j=0)

11 ℏi+1 := H(ℏi, (ℏ′bi+j)
b−1
j=0)

12 if ∆ = ∆remove then
13 ℏi+1 := (

∧
j∈[0,b−1] param

remove
bi+j) ? ℏi : ℏi+1

14 return zi+1 := (hi+1, ℏi+1)

Nevertheless, this approach is still deficient. Recall that ℏ is a public input
computed by both P and V. Thus, for a very large original footage V , even
the cropped (or cut) video ζ is very small, V still needs to compute the hash of
dummy values for the non-existent P and Z. In fact, V’s costs are the same as
if nothing is removed.

To save verification cost, one may consider running all control flows in-

circuit when computing ℏi+1, i.e., computing H(ℏi, S) for all S ∈ 2(ℏ
′
bi+j)

b−1
j=0 ,

where 2(ℏ
′
bi+j)

b−1
j=0 is the power set of (ℏ′bi+j)

b−1
j=0, and then the correct result can be

selected. It is straightforward to see the downside of this approach: it significantly
increases the prover’s complexity.

We take a hybrid approach by reducing the number of branches to 2, depending
on whether all macroblocks in a batch of size b are discarded. If this is the case,
the circuit selects the previous digest ℏi as the next digest ℏi+1. Otherwise, the
circuit selects H(ℏi, (ℏ′bi+j)

b−1
j=0) as ℏi+1. As a result, P only needs to additionally

handle 3 constraints while making it unnecessary for V to hash all dummy values.
In fact, what V computes now is the hash of P and Z for a cropped (or cut)
video whose size is padded to a multiple of the batch size b, which is pretty close
to the actual size of ζ.

5.4 Final Protocol

Powered by the IVC scheme Loua that supports lookup arguments in Section 4
and the IVC step circuit in Section 5.3, we now present Eva, a succinct, efficient,
and secure proof of video authenticity.

In KΠ, the trusted party instantiates (pkΠ, vkΠ) with the proving and ver-
ification keys for the IVC scheme and the corresponding decider, and in KΣ,
(skΣ, vkΣ) is obtained by invoking Sig.K, where Sig is instantiated with Schnorr
signature [78]. Then, given the signing key skΣ, the recorder R computes the sig-
nature σ on the video V and its metadata meta as σ ← Sig.S(skΣ,H(V ,meta)).

Next, we dive into the details of our proverP and verifier V . P aims to convince
V of the satisfiability of FEva. To this end, P first instantiates the lookup table τ

31

with 28 entries {0, . . . , 255}. Then P prepares the inputs to FEva by transforming
V into V ′ via ∆, and using E to encode V ′, during which the quantized coefficients
and prediction macroblocks are extracted. Next, P incrementally proves the
satisfiability of FEva using LouaIVC. After k = (M/16×N/16× L)/b steps, the
final IVC state becomes zk = (hk, ℏk), where hk is the digest of (Xi)

bk−1
i=0 , and

ℏk is the digest of (P i)
bk−1
i=0 , (Zi)

bk−1
i=0 , and (parami)

bk−1
i=0 . Finally, P compresses

the IVC proof with a decider based on ZKCP and returns the compressed zero-
knowledge proof as well as the video stream ζ. These data are sent to V , together
with the metadata meta and editing and encoding parameters param.

As mentioned in Section 5.3, it is still left to compute H(hk,meta) and
run Sig.V on the digest. Since LouaDecider.V takes the final state as public
inputs, we can give V the hash hk and ask V to handle the rest of verification.
However, this approach is suboptimal because of the weak security guarantee:
hk leaks information about the original video V , leading to compromise of the
zero-knowledge property.

To achieve full zero-knowledge, we exploit the flexibility of the decider circuit
FDecider and hide hk from V . More specifically, we 1) verify σ on H(hk,meta) under
vkΣ in FDecider, and 2) move the computations related to 𝕦k.x from V to FDecider,
as hk is required to derive the first component of 𝕦k.x, i.e., ϱ(𝕌k, k, z0, zk).

In our adapted decider circuit FDeciderEva , the statement 𝕌′
k and 𝕦′k now no

longer include x. Instead, the prover provides hk and xk as witnesses, and the
circuit reconstructs 𝕌k by merging 𝕌′

k with xk, and 𝕦k by merging 𝕦′k with
(ϱ(𝕌k, k, z0, (hk, ℏk)), ϱ(𝕌cf

k , k), ρ(𝕦k.Q)). Then, the circuit computes 𝕌𝔽
k+1 using

the field-only operation LouaFS.V𝔽 (see Appendix B.2), and finally, checks 𝕎k+1

against 𝕌𝔽
k+1. The final construction of FDeciderEva is given in Circuit 15.

Circuit 15: FDeciderEva

Witness: hk, σ,xk,𝕎k+1,𝕌cf
k ,𝕎cf

k

Statement: vkΣ,meta, k,z0, ℏk, r, 𝕦′k,𝕌′
k, T

Constant: C̃S
Eva

= (A,B,C),CScf = (Acf ,Bcf ,Ccf), ckcf

1 enforce Sig.V(vkΣ, σ,H(hk,meta)) ▷ Verify σ
2 Reconstruct 𝕌k and 𝕦k:

𝕌k := 𝕌′
k

𝕌k.x := xk

𝕦k := 𝕦′k
𝕦k.x := (ϱ(𝕌k, k,z0, (hk, ℏk)), ϱ(𝕌cf

k , k), ρ(𝕦k.Q))

3 enforce r = ρ(𝕌k, 𝕦k, T) ▷ Check r

4 𝕌𝔽
k+1 := LouaFS.V𝔽(vkΦ,𝕌𝔽

k, 𝕦𝔽k, r) ▷ Compute 𝕌𝔽
k+1

5 Check 𝕎k+1 against 𝕌𝔽
k+1:

Parse (u,x) := 𝕌𝔽k+1, (q,w, e) := 𝕎k+1

v := (u,x, q,w)
enforce Av ◦Bv = u ·Cv + e

6 Check 𝕎cf
k against 𝕌cf

k :
Parse (u,x, Q,W,E) := 𝕌cf

k , (q,w, e) := 𝕎cf
k

v := (u,x, q,w)

enforce Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q)

enforce q = ∅ ∧Q = 0

enforce CM.V(ckcf ,w,W)

enforce CM.V(ckcf , e, E)

To verify the proof, V checks if the metadata meta and parameters param are

32

acceptable. Similar to P ,V runs the decoding algorithm D on ζ to obtain (P i)
bk−1
i=0

and (Zi)
bk−1
i=0 . After that, V computes ℏk by hashing (P i)

bk−1
i=0 , (Zi)

bk−1
i=0 , and

(parami)
bk−1
i=0 . It is also V’s task to check the commitments in 𝕌𝔾

k ,𝕦𝔾k and 𝕌𝔾
k+1,

which are not included in the decider circuit FDeciderEva due to the complexity
of non-native group operations. With the randomness r and the cross term
commitment T , V derives 𝕌𝔾

k+1 by calling LouaFS.V𝔾 (see Appendix B.2) on

𝕌𝔾
k ,𝕦𝔾k . The commitments Q,W,E in 𝕌𝔾

k+1 are linked to the in-circuit witnesses

q,w, e in 𝕎k+1 via ZKCP. Note that V cannot learn hk from r := ρ(𝕌k,𝕦k, T),
since 𝕌k.x, the random linear combination of all previous public inputs, is also
kept secret. Finally, by running ZKCP.V, the verifier can check the authenticity
of the video.

We summarize the complete Eva protocol in Algorithm 16.

5.5 Security

We formally capture the security properties of Eva in Theorem 1, whose proof is
deferred to Appendix D.

Theorem 1. Eva is a succinct and zero-knowledge proof of video authenticity.

6 Implementation and Optimization

We rely on the H.264 reference implementation JM [68] to encode and decode
videos with the H.264 Main profile. We modify its source code and hook the
encoding and decoding processes to extract the prediction macroblocks and
quantized coefficients, as they are necessary for proof generation and verification.

Then we develop Eva4 in Rust over the BN254/Grumpkin half-pairing cycle
of curves. The architecture of our implementation is illustrated in Figure 4,
where we highlight the efforts of our own and the improvements to existing work
with solid and dashed shapes. In the implementation, we make heavy use of the
arkworks library [2] for algebraic operations and circuit constructions. We build
Loua, our variant of Nova, upon the folding schemes implemented in sonobe [75],
but we add support for LogUp and introduce various improvements that we
will discuss soon. We also provide an alternative implementation of LegoGro16.
Unlike the original implementation [45], ours is more flexible and performant: it
allows for shared witnesses (υ)ℓ−1

i=0 with arbitrary length and supports increased
parallelism.

In addition, as elaborated below, a bunch of optimizations are applied to
maximize the efficiency of the prover.
GPU Acceleration. The prover’s cost in our construction is dominated by
the computation of commitments Q, W , and E, which involves a multi-scalar
multiplication (MSM) operation on 𝔾 in Pedersen commitment. Due to the
parallelizable nature of MSM, many existing works have investigated the acceler-
ation of MSM on hardware that supports a high degree of parallelism, such as
GPUs [63, 87], FPGAs [1], and ASICs [86].

We integrate icicle [47]’s GPU implementation of MSM with precompu-
tation into our prover, which provides a 6-7x speedup over the original CPU
implementation. While this optimization necessitates extra hardware, GPUs are

4The source code can be found here.

33

https://github.com/winderica/eva

Algorithm 16: Eva

1 Fn Eva.KΣ(1
λ):

2 return (skΣ, vkΣ)← Sig.K(1λ)
3 Fn Eva.KΠ(1

λ):

4 pp← LouaIVC.G(1λ) ▷ pp contains ck

5 (pkΦ, vkΦ) := LouaIVC.K(pp,FEva)

6 (pk, vk)← ZKCP.K(1λ, ck,F
DeciderEva

)
7 return (pkΠ := (pk, pkΦ), vkΠ := (vk, vkΦ))

8 Fn Eva.R(skΣ,V ,meta):
9 return σ ← Sig.S(skΣ,H(V ,meta))

10 Fn Eva.P(pkΠ, vkΣ,V ,meta, param, σ):

11 V ′ := ∆(V , (param∆
i)bk−1

i=0)

12 Encode V ′ and extract (P i)
bk−1
i=0 , (Zi)

bk−1
i=0 :

ζ := E(V ′, (paramE
i)

bk−1
i=0)

13 z0 := (0, 0), π0 := ((𝕌⊥,𝕎⊥), (𝕌⊥,𝕎⊥), (𝕌cf
⊥,𝕎cf

⊥))
14 for j ∈ [0, k) do

15 auxj := (Xi,P i,Zi, parami)
bj+b−1
i=bj

16 πj+1 ← LouaIVC.P(pkΦ, (j, z0,zj), auxj , πj)
17 zj+1 := F(zj ; auxj)

18 Parse (hk, ℏk) := zk, ((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf
k ,𝕎cf

k)) := πk

19 (𝕌k+1,𝕎k+1, T) := LouaFS.P(pkΦ, (𝕌k,𝕎k), (𝕦k,𝕨k))

20 r := ρ(𝕌k, 𝕦k, T)
21 x := (vkΣ,meta, k,z0, ℏk, r, 𝕦′k,𝕌′

k, T), c := (𝕌𝔾
k+1)

22 υ := (𝕎k+1),ω := (hk, σ,𝕌k.x,𝕌cf
k ,𝕎cf

k)
23 ϖ ← ZKCP.P(pk,x, c,υ,ω)

24 return ζ, π := (ϖ,𝕌′
k, 𝕦′k, T , r)

25 Fn Eva.V(vkΠ, vkΣ, ζ,meta, param, π):
26 Parse (ϖ,𝕌′

k, 𝕦′k, T , r) := π

27 Decode ζ and extract (P i)
bk−1
i=0 , (Zi)

bk−1
i=0 :

Ṽ := D(ζ, (paramE
i)

bk−1
i=0)

28 ℏ0 := 0
29 for j ∈ [0, k) do

30 ℏj+1 := H(ℏj , (H(P i,Zi, parami))
bj+b−1
i=bj)

31 𝕌𝔾
k+1 := LouaFS.V𝔾(vkΦ,𝕌𝔾

k , 𝕦𝔾k , r, T)
32 assert 𝕦′k.u = 1, 𝕦′k.E = 0 ▷ Check 𝕦′k
33 x := (vkΣ,meta, k, (0, 0), ℏk, r, 𝕦′k,𝕌′

k, T), c := (𝕌𝔾
k+1)

34 return ZKCP.V(vk,x, c, ϖ)

more accessible and cost-effective than FPGAs and ASICs, especially in our
setting where the prover already relies on powerful GPUs for video editing tasks.

We also note that the computation of cross term t := Av1 ◦Bv2 +Av2 ◦
Bv1 − u1 ·Cv2 − u2 ·Cv1 in Loua (inherited from Nova) is another important
factor in prover time. Observing that the right hand side essentially requires
matrix and vector operations, we can further optimize the prover by leveraging
GPU-accelerated linear algebra. Since the R1CS matrices A,B,C are sparse,
we implement sparse matrix-vector multiplication (SpMVM) over prime fields
in CUDA. These matrices are represented in the compressed sparse row (CSR)

34

LouaFS
(sonobe)Griffin

GPU MSM
(icicle)

LegoGro16 FNonNative

LouaDecider
(sonobe)

LouaIVC
(sonobe)

LogUp

Eva

FEva

GPU SpMVM
Algebra

(arkworks)
Relations
(arkworks)

Figure 4: Architecture of Eva’s implementation. A box represents a building block, a straight
line from X to Y stands for “Y is built upon X”, and a waved line from X to Y denotes “Y
supports X”. Solid shapes are implemented by ourselves from scratch, dashed shapes are our
forks of third-party implementations but with significant modifications, and dotted shapes are
provided by existing libraries.

format, allowing for better memory access patterns. Further, we adopt a hybrid
approach to maximize performance: for each relatively dense row, we assign
multiple GPU threads that work together to compute the dot product between
the row and the vector, easing the burden of each thread; on the other hand, each
relatively sparse row is handled by a single thread to avoid the synchronization
costs between threads. With this strategy, workload is nearly evenly distributed
across threads, and consequently we improve the prover’s time for computing t
by 4x to 11x compared to the CPU implementation.
Choice of Hash Function. It is common to use circuit-friendly hash func-
tions [36, 10, 35, 37] in SNARKs, among which Poseidon [36] is a popular choice.
However, as we need to hash a large amount of data in our circuits for verify-
ing the signature and avoiding complex prediction operations, selecting a more
efficient one in our context would greatly reduce the circuit size. We choose
Griffin [35] as H, ρ, and ϱ, which, to our knowledge, is the most efficient hash
function in terms of the R1CS circuit size, thereby saving up to 50% of con-
straints compared to Poseidon. Concretely, we instantiate Griffin with degree
d = 5, state size t = 24, and the number of rounds R = 9. Note that a large
state size is necessary for improving the plain (i.e., bare-metal) performance of
Griffin. Otherwise, computing Griffin hashes outside the circuit would be slower
than Poseidon due to the high degree exponentiation x1/d.
Amortizing Constraints for Folding Verification. Compared with recursive
SNARKs [5], folding-based IVC reduces the prover’s overhead by avoiding the
in-circuit verification of a SNARK proof. However, in addition to the evaluation
of F , the prover still needs to prove the folding verification algorithm NIFS.V
in each step circuit F̃ . Existing techniques, such as cycle of curves [72] and
CycleFold [56], makes the folding verification circuit practically small (less than
105 constraints), but this additional cost is prohibitive for a small F .

For instance, with LouaFS as the folding scheme, we analyze two components
of Eva’s augmented circuit F̃Eva: the inner FEva circuit that handles b macroblocks
per step, and the gadget LouaFS.V for folding verification. When b = 1, the

35

former has ∼ 3500 constraints, while the latter requires ∼ 67000 constraints,
which is a 19x increase in the prover’s cost.

To minimize such overhead, we amortize the constraints for LouaFS.V by
processing multiple macroblocks in batch in each step, so that the prover only
needs to prove LouaFS.V once for every b macroblocks. The larger b is, the more
the prover can save on the cost of LouaFS.V. On the downside, a large b would
increase the circuit size of FEva, imposing a higher memory requirement on the
prover. As a trade-off between time and space, we set the batch size to b = 256 in
our implementation, thereby reducing the cost of LouaFS.V to ∼ 260 constraints
per macroblock, while FEva has a reasonable size (∼ 760000 constraints).
Parallel Circuit Synthesis. Another efficiency bottleneck in our implementa-
tion is the synthesis (i.e., creation) of the step circuit. As discussed above, the
prover now needs to process b = 256 macroblocks per step. Hence, the FEva circuit
essentially consists of b copies of the logic for processing a single macroblock,
which are sequentially converted into constraints when synthesizing the circuit in
arkworks. It is natural to ask whether we can parallelize the processing of these
b macroblocks, which would significantly reduce the time for circuit generation.
Unfortunately, arkworks does not support such parallelism, since a constraint
in general may depend on previously computed variables, although in our case,
the constraints for each macroblock are independent of each other.

As a workaround, we 1) synthesize a dummy circuit for a dummy macroblock,
2) create b partial circuits, each of which handles one macroblock in the video, and
then 3) merge the the partial circuits into the final circuit by concatenating the
variables and constraints. The indices of variables and constraints in each partial
circuit are offset by the number of variables and constraints in the dummy circuit,
in order to avoid overlapping variables and constraints in the final circuit. In this
way, we can parallelize 2), the most time-consuming step, without breaking the
internal sequential dependencies of variables and constraints in partial circuits.
Efficient Non-Native Field Operations. In FDecider (see Appendix B.3), we
need to check Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q) in a non-native field 𝔽q. To
this end, we can apply the in-circuit big integer arithmetic proposed in [55],
which allows for efficient operations with arbitrary precision. The high-level idea
behind [55] is to represent a big integer as a vector of limbs in the native field,
and then perform limb-wise arithmetic operations. Note that since the native
field cannot contain arbitrarily large limbs, we need to align the bitwidth of
each limb after a certain number of operations, which is done by performing the
expensive bit decomposition operation. Thus, when checking the equality of two
big integers that are not necessarily aligned, the circuit size would become very
large if we naively decompose and align the limbs before the actual comparison.
While [55] decreases the number of bit decompositions in equality checks, they
are still the most costly operation in the circuit.

Utilizing [55], a straightforward approach to emulation of field operations
in 𝔽q is to perform every operation modulo q. For instance, to multiply two
non-native field elements a, b, we need to compute c mod q after performing the
big integer multiplication c := a · b, so that the resulting big integer c is in 𝔽q.
The in-circuit modulo operation can be implemented by asking the prover to
provide the quotient s and the remainder r as hints, whose validity is checked
by enforcing c = sq + r, 0 ≤ s < c, and 0 ≤ r < q. Nevertheless, due to the
complexity of the equality check, the final circuit relying on modulo operations

36

would have ∼ 4× 107 constraints5 and require more than 200 GB of memory.
To further improve the efficiency, we defer the modulo operation to the

end of the circuit. That is, we avoid performing modulo operations during the
computation of LHS := Acfv ◦Bcfv and RHS := u ·Ccfv+ e. All intermediate
results are treated as big integers, and LHS and RHS are converted to elements
in 𝔽q only before the final equality check.

In addition, we observe that it is unnecessary to compute both LHS mod q
and RHS mod q when checking LHS ≡ RHS (mod q). Instead, we can compute
LHS −RHS as a big integer and check whether LHS −RHS is a multiple of q.

Now, we successfully get rid of all modulo operations in the circuit. Although
the intermediate values during the computation of LHS and RHS contain
more limbs, resulting in more expensive multiplication operations, the overall
cost is still much lower than the naive approach thanks to the elimination of
modulo operations. In fact, the number of constraints for checking Acfv ◦Bcfv ≡
u ·Ccfv+ e (mod q) is reduced to ∼ 2.5× 106, which is a 16x improvement over
the naive approach.

7 Evaluation

To evaluate our implementation of Eva, we compile it with multi-threading and
AVX2 enabled, and run it on a consumer-grade PC equipped with an Intel Core
i9-12900K CPU (16 cores, 24 threads) with 64 GB of RAM and an NVIDIA
GeForce RTX 3080 GPU with 12 GB of VRAM.

(a) foreman.yuv (b) bunny.yuv

Figure 5: Preview of original videos in the test dataset

(a) ∆gray (b) ∆bright

parambright = 416/256

(c) ∆inv (d) ∆mask

Mask of size 176× 144

(e) ∆remove (cropping)
352× 288→ 160× 128

(f) ∆remove (cutting)
256 frames → 128 frames

Figure 6: Preview of videos edited from “foreman.yuv”

For testing purposes, we utilize two raw video files that are widely used for
video codec benchmarking, as shown in Figure 5. The first video, “foreman.yuv,”
contains 256 frames of size 352×288, which is used to demonstrate Eva’s capability

5See https://hackmd.io/x82lTH5oTcKE3uPHniuefw.

37

https://hackmd.io/x82lTH5oTcKE3uPHniuefw

to handle a variety of editing operations. We apply several editing operations to
it, including grayscale conversion, brightness adjustment, color inversion, masking,
cropping, and cutting, and we give the preview of the edited videos in Figure 6.
In the second video “bunny.yuv,” each frame is of size 1280× 720. To showcase
the scalability and practicality of Eva, we test two clips, one has L = 1800 frames
(1 minute at 30 FPS), and the other has L = 3600 frames (2 minute at 30 FPS).

Table 2: Breakdown of the number of R1CS constraints in F̃Eva with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

42 42 42 42 426 43

0 0 1024 0 384 384

Y

U 320 0 320 320 320 320

V 320 0 320 320 320 320

612 612 612 612 918 613

5508 5508 5508 5508 5508 5511

760584 596744 1022728 760584 1035528 859403

594177 430337 790785 594177 692481 594177

668628 504788 865236 668628 766932 668628

1429212 1101532 1887964 1429212 1802460 1528031

F
E
va

P
ro
ce
ss
b
=

2
5
6
b
lo
ck
s

Create variables

×256

F∆

FE

FDiff 0

FTrans 0

FQuant

1328

H(X) 306

H(P ,Z, param)

H(hi, · · ·) 5508

H(ℏi, · · ·)
Subtotal

A
u
g
m
en
ta
ti
o
n Create variables 6865

Fold 𝕦𝔽i into 𝕌𝔽
i 13361

Fold 𝕦cfi into 𝕌cf
i 45108

Check lookup identity

Compute outputs 9117

Subtotal

Total

Subroutine Editing Op.









Table 3: Breakdown of the number of R1CS constraints in FDeciderEva with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

Create variables

Verify signature

Reconstruct instances

Check r

Fold 𝕦𝔽k into 𝕌𝔽
k

Check C̃S
Eva

satisfiability 2705351 2082759 3557319 2705351 3353543 2902732

Check CScf satisfiability

Verify commitments in 𝕌cf
k

Total 9539233 8916641 10391201 9539233 10187425 9736614

695968

4590

8173

5186

3

2575044

3544918

Subroutine Editing Op.

Circuit efficiency. An important metric for evaluating the performance of a
protocol based on general-purpose SNARKs is the efficiency of the arithmetic cir-
cuits. We measure the circuit efficiency of Eva by the number of R1CS constraints
in our augmented step circuit F̃Eva and decider circuit FDeciderEva .

We first report the number of constraints in F̃Eva in Table 2, where ∆id is an
identity function (i.e., no edits are performed). We can observe that the sizes of
FEva with all editing operations are between 600K and 1M constraints. When

38

augmenting the circuit for the use of IVC, the additional cost is dominated by
the check of lookup identity (500K to 860K constraints), as our FEva makes
heavy use of lookup tables for efficient in-circuit editing and encoding. In fact, if
we replace the lookup arguments with bit decompositions, the constraints for
the lookup identity check would increase by approximately eightfold (since our τ
contains 8-bit entries) in FEva, resulting in nearly an order of magnitude increase
in the overall circuit size.

Next, we also list the number of constraints in our decider circuit FDeciderEva ,
as shown in Table 3. The size of FDeciderEva also depends on the editing operation,

because we need to check the satisfiability of 𝕎k and 𝕌𝔽
k against C̃S

Eva
, which

has different dimensions for different ∆. The dominant parts of the circuit are
the checks of relaxed R1CS satisfiability and commitment verification, each of
which introduces ∼ 3M constraints, resulting in a total of ∼ 10M constraints for
FDeciderEva .

20 21 22 23 24 25 26 27 28 29
2−2

20

22

24

26

28

Batch size b

C
P
U

ti
m
e
(m

s)
G
P
U

ti
m
e
(m

s)

4

6

8

10

C
P
U
:G

P
U

Figure 7: Running time of cross term computation on CPU
and GPU w.r.t. the batch size b.

20 21 22 23 24 25 26 27 28 29

26

27

28

2−1

21

23

25

Batch size b

L
ou

aI
V
C
.P

ti
m
e
(m

s)

L
ou

aI
V
C
.P

ti
m
e
p
er

m
a
cr
o
b
lo
ck

(m
s)

Figure 8: Running time of LouaIVC.P w.r.t. the batch size
b, where the editing operation is fixed to ∆ = ∆id.

Microbenchmarks. We conduct microbenchmarks to evaluate the performance
of the prover in Eva.

First, we study the impact of GPU acceleration on the prover’s performance
by measuring the time for computing Nova’s cross term t on CPU and GPU.
Here, R1CS matrices A,B,C are generated from the augmented step circuit
F̃Eva for Eva, with batch size b ranging from 20 to 29. The results are shown
in Figure 7, from which we can observe that the GPU outperforms the CPU by
a factor of 4 ∼ 11.

Second, we evaluate the running time of LouaIVC.P with respect to the batch
size b. As we can see in Figure 8, when the batch size b is small, doubling b
nearly halves the average running time of LouaIVC.P for each macroblock. This
is because for a small b, the dominant part of the augmented step circuit is
still the in-circuit folding verification, thereby demonstrating the effectiveness of
amortizing the constraints for LouaFS.V through batching.

Finally, we fix the batch size b = 256 and study how the editing operation ∆

39

affects the prover performance in Eva. We report the running time and RAM
usage of LouaIVC.P and LouaDecider.P in Table 4. In order to illustrate how the
number of constraints affects prover time and RAM usage, we also include the
sizes of F̃Eva and FDeciderEva summarized in Table 2 and Table 3. Across different
operations, the running time of LouaIVC.P ranges from 145 to 206 ms, and the
peak RAM usage varies from 7 to 11 GB. LouaDecider.P takes much more time
(65 ∼ 80 s) and RAM (40 ∼ 50 GB) to compress an IVC proof, but it only
happens once at the end of Eva.P.

Table 4: Benchmarking results of LouaIVC.P and LouaDecider.P for different editing operation ∆ with b = 256.

∆id ∆gray ∆bright ∆inv ∆mask ∆remove

|F̃Eva| 1429212 1101532 1887964 1429212 1802460 1528031

Time (ms) 168.436 144.810 205.896 168.345 192.507 171.738

Peak RAM (GB) 8.493 6.845 9.644 8.566 11.084 8.694

|FDeciderEva | 9539233 8916641 10391201 9539233 10187425 9736614

Time (s) 69.233 65.017 73.499 69.274 80.391 70.630

Peak RAM (GB) 44.226 39.560 48.601 45.705 52.766 43.797

LouaIVC.P

LouaIVC.P

Table 5: End-to-end performance of Eva with b = 256.

H(s) Sig.S(µs) all IVC steps (s) ZKCP.P (s) H (s) ZKCP.V (ms)

∆id 63.709 101.260 1.271 92.204 66.701 69.233 1.803 2.995

∆gray 63.325 89.548 1.276 92.137 57.345 65.017 1.784 2.644

∆bright 63.402 115.164 1.283 92.921 81.535 73.499 1.794 2.750

∆inv 63.223 102.111 1.274 92.932 66.665 69.274 1.802 3.102

∆mask 63.481 118.741 1.308 92.538 76.233 80.391 2.347 2.941

∆remove 63.089 105.865 1.280 92.726 68.008 70.630
0.990 (crop)

0.883 (cut)
3.060

1800 ∆id 63.250 101.913 81.713 92.488 4297.587 69.835 114.301 3.222

3600 ∆id 63.675 101.401 166.202 92.935 8617.108 70.277 229.339 3.084

L ∆ KΣ (µs) KΠ (s)
R P V

foreman 256

bunny

End-to-end performance. The end-to-end performance of Eva is evaluated
based on the running time of each algorithm. We test Eva with b = 256 on both
videos in the dataset. For “foreman.yuv”, we apply various editing operations to
it, while for “bunny.yuv”, we consider different lengths. The results are presented
in Table 5.

In Eva.P, it takes 57 ∼ 82 seconds to finish all IVC steps for “foreman.yuv”.
Regarding “bunny.yuv”, the IVC proof generation in total necessitates 1.19
hours for the 1-minute clip and 2.39 hours for the 2-minute clip. Additional
65 ∼ 80 seconds are needed to make the proof fully succinct and zero-knowledge
by running ZKCP.P in our decider, which produces a constant-size proof of 448
bytes. The entire proof generation process is completed within 60 GB of RAM,
which is primarily due to the additional ZKCP.P step.

From the results, we conclude that the total IVC time scales linearly with
the video size. Specifically, the IVC time for any video of size M ×N × L can
be estimated by computing the number of IVC steps k = (M/16×N/16× L)/b
and scaling the single step time of LouaIVC.P in Table 4. This is confirmed by
the results for “foreman.yuv” and “bunny.yuv” under operation ∆id (and is also
applicable for any other ∆): for the former, it requires k = (352/16× 288/16×

40

256)/256 = 396 steps, and thus the estimated total time is 168.436 ms× 396 =
66.701 s, which equals the actual time in Table 5; similarly, for the 1-minute
and 2-minute clips of “bunny.yuv”, we can estimate that the total IVC time
is 4263.536 s and 8527.072 s respectively, both within a relative error of 1%
compared to the actual time.

Another conclusion is that the ZKCP.P time is constant with respect to
the number of IVC steps (and hence, the video size). Thus, although ZKCP.P
constitutes a significant portion of the prover time for small videos, this one-time
cost becomes less and less significant for larger videos.

The recorder R’s time is dominated by the computation of Griffin hash, whose
complexity is linear in the size of the original video V . Similarly, H is also the
bottleneck of V, but it depends on the size of prediction macroblocks P and
quantized coefficients Z of the edited video V ′. Thus, with ∆remove, the verifier
takes less time for computing H than other editing operations. In addition, V
needs to validate the ZKCP proof by running ZKCP.V , which always takes 2 ∼ 3
ms regardless of video size and editing operation.
Comparison with related work. Finally, we compare the performance of Eva
with related work on image authentication based on zkSNARKs [52, 48, 26, 24,
25], focusing specifically on the prover time. PhotoProof [69] is not included in
the comparison, as it only supports tiny images of size up to 128× 128. Due to
differences in image and video codecs, a common dataset cannot be used across
all protocols. Consequently, the prover time is evaluated based on the number of
pixels in the image or video.

217 222 227 232

102

103

104

105

106

217 222 227 232
101

102

103

104

105

106

VIR [52] ZK-IMG [48] VIMz [26] VerITAS [24] TilesProof [25] Eva

217 222 227 232

101

102

103

104

105

(a) Grayscale conversion (b) Cropping (c) Masking

Figure 9: Comparison of prover time (y-axis, in seconds) across different protocols w.r.t. the number of pixels (x-axis).

For protocols that support arbitrary editing operations [48, 26, 24, 25], we
select two representative operations for comparison: grayscale conversion, repre-
senting color manipulations, and cropping, representing spatial modifications.
The target resolution for the cropping operation is set to 640× 480. Since the
source code of ZK-IMG is not available, we rely on existing results for comparison.
Specifically, we adopt the prover time for operations “RGB2YCbCr” and “Crop
(HD → SD)” on HD (1280× 720) images reported in [48, Table 4]. Note that
ZK-IMG was evaluated on a powerful server with 64 CPU cores and 512 GB of
RAM, suggesting that the prover time would likely be slower on our machine.
All remaining protocols are evaluated on the same machine as Eva.

41

The results of prover time are given in Figure 9a and Figure 9b, respectively,
with a logarithmic scale on both axes.

In VIMz, VerITAS, TilesProof, and Eva, the prover time for both ∆gray and
∆crop increases nearly linearly with the number of pixels. We observe that Eva
is generally faster than ZK-IMG, VIMz, VerITAS, and TilesProof, except at low
resolutions (e.g., 640× 480), where VerITAS and TilesProof outperform Eva due
to our relatively long (but one-time) ZKCP.P time. This also explains why the
prover time for Eva does not appear as a straight line when the number of
pixels is small. However, as the resolution increases, the ZKCP-based decider
is no longer the dominant factor in our prover, allowing the advantages of our
efficient IVC.P to become apparent. In particular, for 4K resolution (3840×2160),
Eva is 5.8 ∼ 92 times faster than VIMz, VerITAS and TilesProof. Further, we
estimate that if we apply them to the 2-minute clip of “bunny.yuv” even without
considering memory constraints and lossy encoding, their proof generation would
be respectively 73 ∼ 262, 36 ∼ 69, and 24 ∼ 56 times longer than Eva, depending
on the editing operation ∆.

For VIR [52], their redaction operation is equivalent to our masking operation
with black tiles as the mask. Thus, we compare Eva with VIR in terms of ∆mask

and present the results in Figure 9c. To ensure a fair comparison, we set the
granularity of redaction (i.e., the minimum size of black tiles) in VIR to 1× 1,
matching the granularity of our masking operation. For relatively small number
of pixels, our prover takes longer than VIR due to the one-time cost of the decider.
However, when the data size increases, the prover time of VIR increases more
rapidly than ours, and Eva begin to outperform VIR for 4K and larger resolution.
We also estimate that, even with unlimited RAM, VIR is 5.5x slower than Eva
when proving the masking operation for the 2-minute “bunny.yuv”.

8 Discussion

We further explore practical considerations for deploying Eva in real-world
scenarios.
On-chain verification. It is possible to deploy Eva on blockchains to provide on-
chain verification of video authenticity. More specifically, with ℏk computed by the
user, the smart contract can check if the proof π is valid. This is practical because
π is on the BN254 curve, which is natively supported by Ethereum and its Layer
2 solutions. Also, thanks to our design of decider based on LegoGroth16 [17],
π is very small and only require 2 pairings for verification: one for Groth16
(3 Miller loops, 1 final exponentiation), and the other for the zkSNARK for
Linear Subspaces [51] (5 Miller loops, 1 final exponentiation). According to
EIP-1108 [19], we estimate that the cost of verifying π on EVM would be close
to 34000× (3 + 5) + 45000× (1 + 1) = 362000 gas, or equivalently ∼ 16 USD as
of August 2024.

In comparison, although Dziembowski et al. claim that VIMz [26] supports on-
chain verification, the concrete costs of their smart contracts are not provided in
their paper, which turn out to be prohibitively high. In fact, they choose Spartan
as the zkSNARK for decider and rely on the solidity-verifier library [64]
for verifying Spartan proofs on EVM, requiring ∼ 200M gas6 or ∼ 9000 USD.

6For details, see https://github.com/lurk-lab/solidity-verifier/issues/29.

42

https://github.com/lurk-lab/solidity-verifier/issues/29

Implementation of the recorder. Note that in Eva, both R and P take the
raw footage V as input. This implies that R should send to P the recorded
video V as is, in an uncompressed or losslessly encoded manner.

However, R is usually resource-constrained and only allows lossily encoded
videos in practice. In this case, P needs to decode Ṽ from the encoded video
stream ζ before editing and proving. But due to information loss, Ṽ is not
exactly the same as the original video V that R signs, leading to a mismatch
between the signed video and the video to be proven.

To address this mismatch, an intuitive solution is to require R to sign ζ.
Then, P needs to prove 1) Sig.V(vkΣ, ζ, σ), 2) honest editing and encoding on Ṽ ,

and additionally 3) Ṽ = D(ζ) to connect 1) with 2). Nevertheless, this approach
is impractical due to the complex decoding algorithm D.

We adopt a more strategic approach, where R takes an additional step of
decoding ζ and signs the decoded Ṽ instead of ζ. This ensures that the video that
R signs is exactly the one proven by P , thereby eliminating the need for proving
correct decoding. Here, R does not need to store the decoded Ṽ for signature
generation, since R can hash Ṽ on-the-fly: R maintains a short digest as the
accumulated hash, and once a new macroblock is populated by the decoder, R
absorbs it into the accumulated digest, which can then be discarded.

Acknowledgments

This research was partially funded by the Engineering and Physical Sciences
Research Council (EPSRC) under grant EP/R012598/1 and EP/S030867/1. The
authors would like to thank Yihua Cheng for the discussion on related work
based on detection, and the developers of sonobe for reviewing the pull request
for optimizing non-native field operations in the decider circuit. Chengru Zhang
was visiting UCL when working on this research.

References

[1] Kaveh Aasaraai et al. “FPGA acceleration of multi-scalar multiplication:
Cyclonemsm”. In: Cryptology ePrint Archive (2022).

[2] arkworks contributors. arkworks zkSNARK ecosystem. https://arkworks.
rs. 2022.

[3] AV1 Bitstream & Decoding Process Specification. 1st ed. Alliance for Open
Media. 2019. url: https://aomediacodec.github.io/av1-spec/av1-
spec.pdf.

[4] Eli Ben-Sasson et al. “Fast reed-solomon interactive oracle proofs of prox-
imity”. In: 45th international colloquium on automata, languages, and
programming (icalp 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik. 2018.

[5] Eli Ben-Sasson et al. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part II 34. Springer. 2014, pp. 276–294.

43

https://arkworks.rs
https://arkworks.rs
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://aomediacodec.github.io/av1-spec/av1-spec.pdf

[6] Eli Ben-Sasson et al. “SNARKs for C: Verifying program executions suc-
cinctly and in zero knowledge”. In: Annual cryptology conference. Springer.
2013, pp. 90–108.

[7] Nir Bitansky et al. “From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again”. In: Proceedings of the
3rd innovations in theoretical computer science conference. 2012, pp. 326–
349.

[8] Jonathan Bootle et al. “Arya: Nearly linear-time zero-knowledge proofs for
correct program execution”. In: International Conference on the Theory
and Application of Cryptology and Information Security. Springer. 2018,
pp. 595–626.

[9] Gautam Botrel et al. gnark is a fast zk-SNARK library that offers a high-
level API to design circuits. https://github.com/Consensys/gnark.
2023.

[10] Clémence Bouvier et al. “New design techniques for efficient arithmetization-
oriented hash functions: anemoi permutations and jive compression mode”.
In: Annual International Cryptology Conference. Springer. 2023, pp. 507–
539.

[11] Benedikt Bünz and Binyi Chen. “Protostar: generic efficient accumula-
tion/folding for special-sound protocols”. In: International Conference
on the Theory and Application of Cryptology and Information Security.
Springer. 2023, pp. 77–110.

[12] Benedikt Bünz and Jessica Chen. “Proofs for Deep Thought: Accumulation
for large memories and deterministic computations”. In: Cryptology ePrint
Archive (2024).

[13] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs
from DARK compilers”. In: Advances in Cryptology–EUROCRYPT 2020:
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings,
Part I 39. Springer. 2020, pp. 677–706.

[14] Benedikt Bünz et al. “Bulletproofs: Short proofs for confidential transac-
tions and more”. In: 2018 IEEE symposium on security and privacy (SP).
IEEE. 2018, pp. 315–334.

[15] Benedikt Bünz et al. “Proof-Carrying Data from Accumulation Schemes”.
In: (2020).

[16] Benedikt Bünz et al. “Proof-carrying data without succinct arguments”.
In: Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part I 41. Springer. 2021, pp. 681–710.

[17] Matteo Campanelli, Dario Fiore, and Anäıs Querol. “Legosnark: Modular
design and composition of succinct zero-knowledge proofs”. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 2019, pp. 2075–2092.

44

https://github.com/Consensys/gnark

[18] Matteo Campanelli et al. “Lunar: a toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions”. In: Advances
in Cryptology–ASIACRYPT 2021: 27th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore,
December 6–10, 2021, Proceedings, Part III 27. Springer. 2021, pp. 3–33.

[19] Antonio Salazar Cardozo and Zachary Williamson. EIP-1108: Reduce
alt bn128 precompile gas costs. https://eips.ethereum.org/EIPS/eip-
1108. May 21, 2018.

[20] Dario Catalano and Dario Fiore. “Vector commitments and their applica-
tions”. In: Public-Key Cryptography–PKC 2013: 16th International Con-
ference on Practice and Theory in Public-Key Cryptography, Nara, Japan,
February 26–March 1, 2013. Proceedings 16. Springer. 2013, pp. 55–72.

[21] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay
Arguments from Signature Cards.” In: Innovations in Computer Science -
ICS 2010. Vol. 10. 2010, pp. 310–331.

[22] Content Credentials: C2PA Technical Specification. 2.0. Coalition for Con-
tent Provenance and Authenticity. 2024. url: https : / / c2pa . org /

specifications/specifications/2.0/specs/C2PA_Specification.

html.

[23] Baris Coskun, Bulent Sankur, and Nasir Memon. “Spatio–temporal trans-
form based video hashing”. In: ieee Transactions on Multimedia 8.6 (2006),
pp. 1190–1208.

[24] Trisha Datta, Binyi Chen, and Dan Boneh. “VerITAS: Verifying Image
Transformations at Scale”. In: 2025 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society. 2024, pp. 97–97.

[25] Pierpaolo Della Monica et al. “Trust Nobody: Privacy-Preserving Proofs for
Edited Photos with Your Laptop”. In: 2025 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society. 2024, pp. 14–14.

[26] Stefan Dziembowski, Shahriar Ebrahimi, and Parisa Hassanizadeh. “VIMz:
Private proofs of image manipulation using folding-based zkSNARKs”. In:
Proceedings on Privacy Enhancing Technologies (2025).

[27] Liam Eagen and Ariel Gabizon. “ProtoGalaxy: Efficient ProtoStar-style
folding of multiple instances”. In: Cryptology ePrint Archive (2023).

[28] Jens Ernstberger et al. “ Zero-Knowledge Location Privacy via Accurate
Floating-Point SNARKs ”. In: 2025 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, 2025,
pp. 57–57.

[29] Zach Evans et al. “Fast Timing-Conditioned Latent Audio Diffusion”. In:
Forty-first International Conference on Machine Learning. 2024.

[30] Mahmoud E Farfoura et al. “Low complexity semi-fragile watermark-
ing scheme for H. 264/AVC authentication”. In: Multimedia Tools and
Applications 75 (2016), pp. 7465–7493.

[31] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to
identification and signature problems”. In: Conference on the theory and
application of cryptographic techniques. Springer. 1986, pp. 186–194.

45

https://eips.ethereum.org/EIPS/eip-1108
https://eips.ethereum.org/EIPS/eip-1108
https://c2pa.org/specifications/specifications/2.0/specs/C2PA_Specification.html
https://c2pa.org/specifications/specifications/2.0/specs/C2PA_Specification.html
https://c2pa.org/specifications/specifications/2.0/specs/C2PA_Specification.html

[32] Ariel Gabizon and Zachary J Williamson. “plookup: A simplified polyno-
mial protocol for lookup tables”. In: Cryptology ePrint Archive (2020).

[33] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. “Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge”. In: Cryptology ePrint Archive (2019).

[34] Rosario Gennaro et al. “Quadratic span programs and succinct NIZKs
without PCPs”. In: Advances in Cryptology–EUROCRYPT 2013: 32nd
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings 32.
Springer. 2013, pp. 626–645.

[35] Lorenzo Grassi et al. “Horst meets fluid-spn: Griffin for zero-knowledge
applications”. In: Annual International Cryptology Conference. Springer.
2023, pp. 573–606.

[36] Lorenzo Grassi et al. “Poseidon: A new hash function for Zero-Knowledge
proof systems”. In: 30th USENIX Security Symposium (USENIX Security
21). 2021, pp. 519–535.

[37] Lorenzo Grassi et al. “Reinforced concrete: a fast hash function for verifiable
computation”. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 2022, pp. 1323–1335.

[38] Matthew Groh et al. “Deepfake detection by human crowds, machines,
and machine-informed crowds”. In: Proceedings of the National Academy
of Sciences 119.1 (2022), e2110013119.

[39] Jens Groth. “On the size of pairing-based non-interactive arguments”. In:
Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35. Springer. 2016,
pp. 305–326.

[40] H.264: Advanced video coding for generic audiovisual services. 14th ed.
ITU Telecommunication Standardization Sector. 2021. url: https://www.
itu.int/rec/T-REC-H.264-202108-I/en.

[41] H.265: High efficiency video coding. 9th ed. ITU Telecommunication Stan-
dardization Sector. 2023. url: https://www.itu.int/rec/T-REC-H.265-
202309-I/en.

[42] Ulrich Haböck. “Multivariate lookups based on logarithmic derivatives”.
In: Cryptology ePrint Archive (2022).

[43] Alexandros Haliassos et al. “Lips don’t lie: A generalisable and robust
approach to face forgery detection”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2021, pp. 5039–5049.

[44] Qingying Hao et al. “It’s not what it looks like: Manipulating perceptual
hashing based applications”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 2021, pp. 69–85.

[45] Lovesh Harchandani. legogro16: LegoGroth16 implementation on top of
Zexe. https://github.com/lovesh/legogro16. 2023.

46

https://www.itu.int/rec/T-REC-H.264-202108-I/en
https://www.itu.int/rec/T-REC-H.264-202108-I/en
https://www.itu.int/rec/T-REC-H.265-202309-I/en
https://www.itu.int/rec/T-REC-H.265-202309-I/en
https://github.com/lovesh/legogro16

[46] Shehzeen Hussain et al. “Adversarial deepfakes: Evaluating vulnerability
of deepfake detectors to adversarial examples”. In: Proceedings of the
IEEE/CVF winter conference on applications of computer vision. 2021,
pp. 3348–3357.

[47] Ingonyama. icicle: a GPU Library for Zero-Knowledge Acceleration. https:
//github.com/ingonyama-zk/icicle. 2023.

[48] Daniel Kang et al. “ZK-IMG: Attested Images via Zero-Knowledge Proofs
to Fight Disinformation”. In: arXiv preprint arXiv:2211.04775 (2022).

[49] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. “Constant-size
commitments to polynomials and their applications”. In: Advances in
Cryptology-ASIACRYPT 2010: 16th International Conference on the The-
ory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings 16. Springer. 2010, pp. 177–194.

[50] Fouad Khelifi and Ahmed Bouridane. “Perceptual video hashing for content
identification and authentication”. In: IEEE Transactions on Circuits and
Systems for Video Technology 29.1 (2017), pp. 50–67.

[51] Eike Kiltz and Hoeteck Wee. “Quasi-adaptive NIZK for linear subspaces
revisited”. In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Springer. 2015, pp. 101–128.

[52] Hankyung Ko et al. “Efficient verifiable image redacting based on zk-
SNARKs”. In: Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security. 2021, pp. 213–226.

[53] Dan Kondratyuk et al. “VideoPoet: A Large Language Model for Zero-Shot
Video Generation”. In: Forty-first International Conference on Machine
Learning. 2024.

[54] Pavel Korshunov and Sébastien Marcel. “Subjective and objective eval-
uation of deepfake videos”. In: ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2021, pp. 2510–2514.

[55] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. “xJsnark: A
framework for efficient verifiable computation”. In: 2018 IEEE Symposium
on Security and Privacy (SP). IEEE. 2018, pp. 944–961.

[56] Abhiram Kothapalli and Srinath Setty. “CycleFold: Folding-scheme-based
recursive arguments over a cycle of elliptic curves”. In: Cryptology ePrint
Archive (2023).

[57] Abhiram Kothapalli and Srinath Setty. “HyperNova: Recursive arguments
for customizable constraint systems”. In: Annual International Cryptology
Conference. Springer. 2024, pp. 345–379.

[58] Abhiram Kothapalli and Srinath Setty. “NeutronNova: Folding everything
that reduces to zero-check”. In: Cryptology ePrint Archive (2024).

[59] Abhiram Kothapalli and Srinath Setty. “SuperNova: Proving universal
machine executions without universal circuits”. In: Cryptology ePrint
Archive (2022).

[60] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive
zero-knowledge arguments from folding schemes”. In: Annual International
Cryptology Conference. Springer. 2022, pp. 359–388.

47

https://github.com/ingonyama-zk/icicle
https://github.com/ingonyama-zk/icicle

[61] Jonathan Lee. “Dory: Efficient, transparent arguments for generalised
inner products and polynomial commitments”. In: Theory of Cryptography
Conference. Springer. 2021, pp. 1–34.

[62] Yuezun Li et al. “Celeb-df: A large-scale challenging dataset for deepfake
forensics”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020, pp. 3207–3216.

[63] Tao Lu et al. “cuZK: Accelerating zero-knowledge proof with a faster
parallel multi-scalar multiplication algorithm on GPUs”. In: Cryptology
ePrint Archive (2022).

[64] Lurk Lab. solidity-verifier: Solidity implementation of Nova proving system
verifier. https://github.com/lurk-lab/solidity-verifier. 2023.

[65] Iacopo Masi et al. “Two-branch recurrent network for isolating deepfakes
in videos”. In: Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16. Springer.
2020, pp. 667–684.

[66] Microsoft. PhotoDNA. https://www.microsoft.com/en-us/photodna.

[67] Dan Milmo. YouTube is major conduit of fake news, factcheckers say.
https://www.theguardian.com/technology/2022/jan/12/youtube-

is-major-conduit-of-fake-news-factcheckers-say. Jan. 12, 2022.

[68] MPEG & VCEG Joint Video Team. H.264/AVC JM reference software.
https://vcgit.hhi.fraunhofer.de/jvet/JM. 2019.

[69] Assa Naveh and Eran Tromer. “Photoproof: Cryptographic image au-
thentication for any set of permissible transformations”. In: 2016 IEEE
Symposium on Security and Privacy (SP). IEEE. 2016, pp. 255–271.

[70] Paarth Neekhara et al. “Adversarial threats to deepfake detection: A
practical perspective”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2021, pp. 923–932.

[71] Paarth Neekhara et al. “FaceSigns: Semi-Fragile Watermarks for Media
Authentication”. In: ACM Transactions on Multimedia Computing, Com-
munications and Applications (2024).

[72] Wilson Nguyen, Dan Boneh, and Srinath Setty. “Revisiting the Nova proof
system on a cycle of curves”. In: Cryptology ePrint Archive (2023).

[73] Torben Pryds Pedersen. “Non-interactive and information-theoretic secure
verifiable secret sharing”. In: Annual international cryptology conference.
Springer. 1991, pp. 129–140.

[74] Polygon Zero. Plonky2: a SNARK implementation based on techniques
from PLONK and FRI. https://github.com/0xPolygonZero/plonky2.
2021.

[75] Privacy & Scaling Explorations. sonobe: Experimental folding schemes
library. https://github.com/privacy-scaling-explorations/sonobe.
2023.

[76] Jonathan Prokos et al. “Squint hard enough: Attacking perceptual hashing
with adversarial machine learning”. In: 32nd USENIX Security Symposium
(USENIX Security 23). 2023, pp. 211–228.

48

https://github.com/lurk-lab/solidity-verifier
https://www.microsoft.com/en-us/photodna
https://www.theguardian.com/technology/2022/jan/12/youtube-is-major-conduit-of-fake-news-factcheckers-say
https://www.theguardian.com/technology/2022/jan/12/youtube-is-major-conduit-of-fake-news-factcheckers-say
https://vcgit.hhi.fraunhofer.de/jvet/JM
https://github.com/0xPolygonZero/plonky2
https://github.com/privacy-scaling-explorations/sonobe

[77] Robin Rombach et al. “High-resolution image synthesis with latent diffusion
models”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2022, pp. 10684–10695.

[78] Claus-Peter Schnorr. “Efficient identification and signatures for smart
cards”. In: Advances in Cryptology—CRYPTO’89 Proceedings 9. Springer.
1990, pp. 239–252.

[79] Srinath Setty. “Spartan: Efficient and general-purpose zkSNARKs without
trusted setup”. In: Annual International Cryptology Conference. Springer.
2020, pp. 704–737.

[80] Srinath Setty, Justin Thaler, and Riad Wahby. “Unlocking the lookup
singularity with Lasso”. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 2024, pp. 180–209.

[81] Rashid Tahir et al. “Seeing is believing: Exploring perceptual differences
in deepfake videos”. In: Proceedings of the 2021 CHI conference on human
factors in computing systems. 2021, pp. 1–16.

[82] Emma Tucker. TikTok’s search engine repeatedly delivers misinformation
to its majority-young user base, report says. https://edition.cnn.

com/2022/09/18/business/tiktok-search-engine-misinformation/

index.html. Sept. 18, 2022.

[83] Paul Valiant. “Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency”. In: Theory of Cryptography: Fifth Theory of
Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.
Proceedings 5. Springer. 2008, pp. 1–18.

[84] Arantxa Zapico et al. “Caulk: Lookup arguments in sublinear time”. In:
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. 2022, pp. 3121–3134.

[85] Zcash. The Halo2 zero-knowledge proving system. https://github.com/
zcash/halo2. 2022.

[86] Ye Zhang et al. “Pipezk: Accelerating zero-knowledge proof with a pipelined
architecture”. In: 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE. 2021, pp. 416–428.

[87] Xudong Zhu et al. “Elastic MSM: A Fast, Elastic and Modular Prepro-
cessing Technique for Multi-Scalar Multiplication Algorithm on GPUs”.
In: Cryptology ePrint Archive (2024).

Appendix A Additional Related Work

In the following, we provide a detailed overview of related work. First, we
examine cryptographic protocols for image authentication since they have a close
relationship to video authentication and rely heavily on cryptographic proofs as
well. Second, we discuss non-cryptographic methods for authenticating genuine
videos and detecting fake videos.

Image authentication based on cryptographic proofs. The advance of
succinct proof systems like zkSNARKs has made it possible to prove statements
previously deemed infeasible, enabling the development of cryptographic protocols

49

https://edition.cnn.com/2022/09/18/business/tiktok-search-engine-misinformation/index.html
https://edition.cnn.com/2022/09/18/business/tiktok-search-engine-misinformation/index.html
https://edition.cnn.com/2022/09/18/business/tiktok-search-engine-misinformation/index.html
https://github.com/zcash/halo2
https://github.com/zcash/halo2

for image authentication. The pioneering work in this direction, PhotoProof [69],
uses Proof-Carrying Data (PCD) [21] to prove the authenticity of edited images.
Specifically, the proof demonstrates that the edited image m′ is derived from the
original image m, and the signature on the hash of m is valid. Due to the high
computational cost of the proof generation, the authors only evaluate PhotoProof
on images with a maximum resolution of 128 × 128 pixel. In [52], Ko et al.
propose VIR, a verifiable image redacting protocol based on CP-SNARKs [17].
By focusing solely on the operation of redacting images (masking secret parts
with black tiles), VIR significantly reduces prover time (∼ 300x smaller) and
supports much larger images, up to 3840× 2160 resolution. Built upon a more
efficient proof system halo2 [85], ZK-IMG [48] also has ∼ 100x faster prover than
PhotoProof, while maintaining support for arbitrary editing operations.

Concurrent with our work, Dziembowski et al. introduce VIMz [26], Datta
et al. propose VerITAS [24], and Della Monica et al. present TilesProof [25], which
share several common ideas with Eva. For instance, VIMz also employs folding
schemes to reduce prover RAM costs; VerITAS utilizes lookup arguments as well
to improve prover time; similar to our approach, VIMz and TilesProof save prover
RAM by splitting the image into blocks (rows in VIMz and tiles in TilesProof)
and proving each block separately. However, alongside these general techniques,
Eva incorporates a range of tailored optimizations to minimize prover time,
resulting in better performance than all these protocols. In terms of image size,
all concurrent schemes support high-resolution images, among which VerITAS
and TilesProof even showcases proof generation for images with ∼ 30M pixels.
VerITAS makes this practical thanks to its custom proof system for proving
pre-image of lattice-based hash functions, while TilesProof addresses this by
proving the transformation on each small tile separately.

Considering that videos can be seen as a generalization of images, we provide
a comparison between Eva and cryptographic image authentication protocols
in Table 1, in terms of supported format and compression modes, allowed editing
operations, prover time and RAM usage, proof size, and maximum dimensions
of the input data.

Performance. We compare the prover time complexity w.r.t. P , the number of
pixels of the image or video. For TilesProof, an additional adjustable parameter
T is introduced to denote the number of tiles. Furthermore, we evaluate the per-
pixel prover time of all protocols for an editing operation with average complexity.
If source code is available, we ran experiments ourselves and provide the concrete
prover time on our machine. Otherwise, we refer to the authors’ evaluation.

As discussed above, the prover performance in PhotoProof is suboptimal. With
a time complexity of O(P 3 logP), PhotoProof takes ∼ 18676 µs/px based on the
authors’ evaluation on a lower-spec machine compared to ours. In contrast, VIR
demonstrates significant improvement in prover time due to its use of dedicated
proof systems for specific editing operations, resulting in a per-pixel prover
time of ∼ 16 µs and O(P logP) time complexity. While ZK-IMG also achieves
performance gain over PhotoProof, the proof generation still takes a considerable
amount of time, especially when proof of hash is involved (> 355 µs, where > is
used because this was evaluated on a very high-performance server). Compared to
ZK-IMG, VIMz further reduces prover time by 2 ∼ 3x, averaging around 167 µs/px
with a linear complexity. Similarly, VerITAS offers fast prover performance at
about 95 µs/px by optimizing the time for proof of hash, although its complexity

50

is still O(P logP) due to polynomial interpolation. By proving the transformation
on each tile separately, TilesProof achieves a per-pixel prover time of 62.308 µs.
Since TilesProof uses Groth16 [39] as the proof system, which relies on NTT
to convert R1CS witnesses to QAP witnesses, the prover time for each tile is
O(P/T log(P/T)) and the total prover time is O(P log(P/T)). Eva, due to the
combination of customized folding scheme, tailored circuit design, and various
optimizations in our implementation, achieves optimal time complexity (O(P))
and the fastest prover time (∼ 5 µs/px) among all the protocols.

Thanks to the macroblock-based structure of video encoding,Eva only needs to
handle a fixed number of macroblocks in each incremental step of IVC, controlled
by a constant batch size b. In comparison, most of prior works [69, 52, 48, 24]
require RAM proportional to the image size. This is because they either load the
entire image into the arithmetic circuit or, in the case of VIR, use a structured
reference string srs containing commitment keys for the entire image. While
VIMz achieves lower memory costs through folding schemes, its memory usage
remains linear in the image width N , because of its row-by-row proof generation
process. The memory required by TilesProof depends on the number of tiles T ,
and for T = P/c with constant c, the memory usage could become a constant
O(c), at the cost of proof size linear in P .

Regarding proof size, both [69, 52] generate proofs of constant size (2.67 KB
and 223 B, respectively). This is also the case for Eva, which produces proofs of
size 448 B. In contrast, the proofs in ZK-IMG [48] have a size of O(logP). This is
due to ZK-IMG utilizing Halo2 [85], which is based on the inner-product argument
from [15] that generates proofs of size O(log n) in the number of constraints
n. Here, n is linear in the number of pixels P , according to the circuit design
described in [48, Section 7]. Meanwhile, both VIMz and VerITAS produce proofs
of size O(log2 n), because the former leverages Spartan [79] as the decider, and
the latter is powered by Plonky2 [74] with FRI [4] as the commitment scheme.
For VIMz, n is linear in the image width N , while for VerITAS, n is proportional
to P . Concretely, the proofs from ZK-IMG, VIMz, and VerITAS are at least 20
times larger than those of Eva. As mentioned earlier, TilesProof makes a trade-off
between proof size and memory usage. While it is able to generate constant-size
proofs, the RAM consumption will be linear in P in this case.

Functionality. Unlike existing protocols that only support lossless editing opera-
tions on images, Eva is the first to provide authenticity for lossily encoded videos,
addressing challenges of complex compression algorithms and large data sizes.

In terms of supported editing operations, the design of VIR only allows
redaction, which can be seen as a special case of masking, whereas protocols
based on general-purpose zkSNARKs [69, 48, 26, 24, 25] support arbitrary editing
operations, and this is also the case for Eva. However, previous protocols have
their own limitations.

• In PhotoProof, only predefined permissible edits are considered legitimate
transformations, while all others are rejected. In contrast, Eva does not
require predefined permissible edits. The prover can demonstrate any
editing operation, and it is up to the verifier to decide if they are happy
with the claimed transformation.

• When performing cropping operations, VIMz requires cropped images to
have fixed dimensions, and we observe that VerITAS and TilesProof also

51

have similar restrictions in their implementations. This is not desirable in
practice, as trusted setup is required for each possible crop size. Eva, on
the other hand, supports cropping sizes parameterized by a dynamic value
(see Sections 5.2.2 and 5.3 for details), thereby eliminating the need for
multiple trusted setups for different sizes.

• Due to the design of TilesProof, only transformations that can be applied
locally to each tile are supported, while the authors regard global trans-
formations like rotation and flipping as out of scope. Although the prover
in Eva also processes the video in a block-wise manner, it is able to han-
dle global transformations by leveraging vector commitment schemes, as
explained in Section 5.2.3.

Furthermore, due to its constant RAM consumption, Eva supports videos with
unlimited resolution and frame count, while the other protocols cannot achieve
infinite resolution, because their RAM usage scales with image dimensions, but
the prover only has bounded RAM in practice.

Prior video authentication protocols. In video authentication, the prover
generates authentication information for a claimed video, which can later be
verified either publicly or privately. Existing work regarding video authentication
follows two technique routes. The first is based on robust hash [23, 50] (sometimes
referred to as perceptual hash [66, 50]), a digest extraction algorithm whose
output is robust against benign transformations (e.g., resizing, (re-)encoding,
cropping) but fragile to malicious manipulations (e.g., object replacement). After
the robust hash is extracted, the prover generates authentication information by
feeding the resulting hash value to, e.g., signing and watermarking.

However, it is challenging to define transformations that achieve the balance
between robustness and fragility. Consider a toy example: if fragility is determined
by the number of altered pixels, then minor but malicious edits (e.g., changing a
number on a banknote) might pass as acceptable, while significant but benign
edits (e.g., cropping to remove a person) might be rejected. In fact, these protocols
experience non-negligible false positive or false negative rates [30, 71, 23, 50]
and active attackers can bypass some of these mechanisms [44, 76]. Additionally,
having predefined legal transformations may not be practical, because whether a
transformation is benign or malicious can be subjective and context-dependent.

The second is adopted by Coalition for Content Provenance and Authenticity
(C2PA) [22], an industry standard for multimedia authentication based on digital
signatures. C2PA requires that recording devices, such as mobile phones or
cameras, have built-in signing keys certified by the device manufacturer. When
multimedia content is recorded, the device generates a signature for both the
content and its metadata, which may include thumbnails, capture date, location,
etc. The multimedia content can later be edited by trusted editing software,
which also has signing keys embedded. Analogously, the editing software signs
the processed content, the metadata, and the editing operations performed. Upon
publishing the processed content along with these signatures, the verifier (e.g., a
news consumer) can check the provenance and authenticity of the content by
verifying the associated signatures.

The trust model of C2PA assumes that both recording devices and edit-
ing software are trustworthy. However, the trust assumption regarding editing
software is problematic in practice: while recording devices may utilize trusted

52

execution environments (TEEs) or hardware security module (HSMs) to protect
the signing keys, these mechanisms are not available for editing software. Conse-
quently, attackers could potentially extract signing keys via reverse engineering,
enabling them to generate valid signatures for malicious content.

Furthermore, C2PA may inadvertently leak sensitive information. For instance,
during the editing process, the thumbnail of the original content might be signed
by the editing software and published along with the processed content for
verification. This may expose data that was not intended for disclosure, such
as the faces of individuals that were blurred in the processed content, thereby
raising privacy concerns.
Detection of fake videos. Another direction to fight misinformation is detecting
fake videos. Human eyes are not always reliable in distinguishing real videos
from fake ones, especially with the rise of deepfake technology [81, 54, 38].
Focusing on the detection of AI-generated videos, machine learning models have
been developed [62, 65, 43], achieving promising results. However, the inherent
characteristics of human eyes and neural networks inevitably produce false
positives and false negatives with non-negligible probability. This is especially
evident when active attackers manipulate videos to exploit some vulnerabilities
in a specific detection method. For instance, it is demonstrated in [70, 46] that
several existing deepfake detectors can be bypassed by adversarial examples.

Appendix B Full Construction of Loua

Now we provide a concrete example by applying our paradigms to Nova [60]
and its implementation in the sonobe library [75]. The resulting scheme, Loua,
supports LogUp and achieves linear time prover, all while maintaining the constant
proof size and verifier time in sonobe.

B.1 LouaFS

Overview of Nova. In Nova, we consider committed relaxed R1CS, which is
a variant of the Rank-1 Constraint System (R1CS) [34]. Similar to R1CS, a
committed relaxed R1CS over 𝔽 with n constraints and m variables (among
which 1 variable is constant and l variables are public inputs) is defined by
three matrices CS = (A,B,C) ∈ (𝔽n×m,𝔽n×m,𝔽n×m). A witness 𝕎 to CS not
only consists of the witness w ∈ 𝔽m−l−1 to the original R1CS relation, but also
includes an error term e ∈ 𝔽n. The instance 𝕌 corresponding to 𝕎 is a tuple
(u,x,W ,E), where u ∈ 𝔽 is a scalar for absorbing constant terms, x ∈ 𝔽l is the
public input, and W,E are the commitments to w, e respectively. We say (𝕌,𝕎)
satisfies CS if CM.V(ck,w,W) = 1, CM.V(ck, e, E) = 1, andAv◦Bv = u·Cv+e,
where v = (u,x,w).

To fold (𝕌1,𝕎1) and (𝕌2,𝕎2), the Nova prover first computes the cross term
t and sends the commitment T to the verifier, who samples and sends back
a challenge r. Then, both parties output the folded instance 𝕌 by computing
the random linear combinations of all components (i.e., u,x,W ,E) in 𝕌1 and
𝕌2, with r as the randomness. The prover further output the folded witness
𝕎, whose components w and e are also random linear combinations of their
counterparts in 𝕎1 and 𝕎2. One can apply the Fiat-Shamir transform [31] to
obtain the non-interactive construction.

53

Algorithm 17: LouaFS

1 Fn LouaFS.G(1λ):
2 return pp← CM.K(1λ)
3 Fn LouaFS.K(pp,CS):
4 return pk := (pp,CS), vk := ⊥
5 Fn LouaFS.P(pk, (𝕌1,𝕎1), (𝕌2,𝕎2)):
6 Parse (ck, (A,B,C)) := pk
7 for i ∈ {1, 2} do
8 Parse (ui,xi, Qi,W i, Ei) := 𝕌i, (qi,wi, ei) := 𝕎i

9 vi := (ui,xi, qi,wi)

10 t := Av1 ◦Bv2 +Av2 ◦Bv1 − u1 ·Cv2 − u2 ·Cv1

11 T ← CM.C(ck, t)
12 r := ρ(𝕌1,𝕌2, T) ▷ Compute challenge
13 Fold instances:

u := u1 + ru2,x := x1 + rx2

Q := Q1 + rQ2,W := W 1 + rW 2, E := E1 + rT + r2E2

14 Fold witnesses:
q := q1 + rq2,w := w1 + rw2, e := e1 + rt+ r2e2

15 return 𝕌 := (u,x, Q,W,E),𝕎 := (q,w, e), T

16 Fn LouaFS.V(vk,𝕌1,𝕌2, T):
17 for i ∈ {1, 2} do
18 Parse (ui,xi, Qi,W i, Ei) := 𝕌i

19 r := ρ(𝕌1,𝕌2, T) ▷ Compute challenge
20 Fold instances:

u := u1 + ru2,x := x1 + rx2

Q := Q1 + rQ2,W := W 1 + rW 2, E := E1 + rT + r2E2

21 return 𝕌 := (u,x, Q,W,E)

Construction of LouaFS. Recall that in our first paradigm, the lookup-friendly
folding scheme NIFSLU (Algorithm 1) separates queries (and multiplicities) q from
witnessesw. Consequently, LouaFS extends Nova by redefining the folding witness
as 𝕎 = (q,w, e), where q = ((αi)

µ−1
i=0 , (oj)

ν−1
j=0) ∈ 𝔽µ+ν , w ∈ 𝔽m−µ−ν−l−1, and

e ∈ 𝔽n. The corresponding instance becomes 𝕌 = (u,x, Q,W,E), where the
additional term Q is the commitment to q. When checking satisfiability of CS,
the vector of variables in the constraint system is now v = (u,x, q,w). For
notational convenience, we write the part of field elements in 𝕌 as 𝕌𝔽 = (u,x),
and the part of group elements (commitments) as 𝕌𝔾 = (Q,W,E). With the
adapted𝕎 and 𝕌, LouaFS additionally computes the random linear combinations
of q in folding witnesses and Q in folding instances, and the full construction is
given in Algorithm 17.

Security of LouaFS. We provide the intuition to prove the security of LouaFS
in terms of completeness, knowledge soundness, and zero-knowledge.

Essentially, LouaFS modifies Nova by splitting the vector of witnesses into q
andw. Thus, the core step in our proof is the conversion from the instance-witness
pair𝕌,𝕎 in LouaFS to the one 𝕌′,𝕎′ in Nova, where 𝕌′ := (𝕌.u,𝕌.x,𝕌.Q+𝕌.W ,
𝕌.E), 𝕎′ := (𝕎.q ∪𝕎.w,𝕎.e).

54

Proof of completeness. Given an adversary A who breaks the completeness of
LouaFS, we can construct an adversary A′ who breaks the completeness of Nova.
Whenever A outputs R, (𝕌1,𝕎1), (𝕌2,𝕎2), A′ constructs the corresponding
instances and witnesses (𝕌′

1,𝕎′
1), (𝕌′

2,𝕎′
2) for Nova. Then, A′ outputs R, (𝕌′

1,
𝕎′

1), (𝕌′
2,𝕎′

2), thereby breaking the completeness of Nova.

Proof of knowledge soundness. With Nova’s extractor Ext, we build an extractor
Ext′ for LouaFS. Provided R,𝕌1,𝕌2,𝕎, T , which are the output of A, Ext′ con-
verts 𝕌1,𝕌2,𝕎 to Nova’s instances and witness 𝕌′

1,𝕌′
2,𝕎′, feeds R,𝕌′

1,𝕌′
2,𝕎′, T

to Ext, converts the returned 𝕎′
1,𝕎′

2 back to 𝕎1,𝕎2, and outputs 𝕎1,𝕎2.

Proof of zero-knowledge. Intuitively, LouaFS is zero-knowledge because the com-
mitment T in the transcript is hiding. Formally, the simulator Sim uniformly
samples a random value rt and computes T ← CM.C(ck, rt). T is indistinguish-
able from honestly generated commitments, because CM is a hiding commitment
scheme.

B.2 LouaIVC

Construction of LouaIVC. The IVC scheme LouaIVC is then constructed by
plugging Nova into IVCLU (Algorithm 3). To further reduce the cost of recursive
prover, CycleFold [56] is utilized in LouaIVC.

Observe that if we naively instantiate NIFSLU.V as LouaFS.V in the augmented
circuit F̃ (Algorithm 2), then we need to compute in-circuit the random linear
combination of commitments, i.e.,X := X1+rX2, whereX’s coordinates are over
the base field of 𝔾. On the other hand, the circuit is defined over the scalar field
of 𝔾, meaning that expensive non-native operations are necessary to compute X
in-circuit. A common solution [72] is to deploy two augmented step circuits on a
cycle of curves (𝔾,ℍ), where the circuit on one curve is responsible for folding
instances from the other curve. Nevertheless, this approach is suboptimal, as it
requires additional costs for encoding the folding verification algorithm on the
secondary curve ℍ as well.

CycleFold [56] aims to minimize the costs on ℍ by offloading the heavy lifting
of non-native operations on the primary curve 𝔾 to a lightweight circuit on ℍ,
which can handle them natively, thereby avoiding the need for duplicating the
entire folding verification algorithm.

With CycleFold, our LouaFS.V is split into two parts:

• LouaFS.V𝔽 folds field elements in 𝕌𝔽
1 and 𝕌𝔽

2.

On input vk, 𝕌𝔽
1 = (u1,x1), 𝕌𝔽

2 = (u2,x2) and r, it computes u := u1+ru2,
x := x1 + rx2 and returns 𝕌𝔽 := (u,x).

• LouaFS.V𝔾 folds group elements in 𝕌𝔾
1 and 𝕌𝔾

2 .

On input vk, 𝕌𝔾
1 = (Q1,W 1, E1), 𝕌𝔾

2 = (Q2,W 2, E2), r and T , it computes
Q := Q1 + rQ2,W := W 1 + rW 2, E := E1 + rT + r2E2 and returns
𝕌𝔾 := (Q,W,E).

Then, we construct a CycleFold circuit F cf on ℍ (see Circuit 18) that performs
the check LouaFS.V𝔾 natively, which requires only ∼ 4500 constraints7. Denote

7In sonobe, Fcf is split into three sub-circuits, each with ∼ 1500 constraints, and this is
also the case for our variant. We omit this detail for clarify.

55

(𝕌cf ,𝕎cf) and (𝕦cf ,𝕨cf) respectively as the running and incoming instance-witness
pairs for F cf .

Circuit 18: F cf(r,𝕌𝔾
i ,𝕦𝔾i , T)→ 𝕌𝔾

i+1

Statement: r,𝕌𝔾
i , 𝕦𝔾i ,𝕌𝔾

i+1, T
1 return 𝕌𝔾

i+1 := LouaFS.V𝔾(vk,𝕌𝔾
i , 𝕦𝔾i , r, T)

Circuit 19: F̃(i, zi,𝕌i,𝕦i,𝕌𝔾
i+1, T ,𝕌cf

i ,𝕦cfi , T
cf
, auxi)→ (h1, h2, c)

Witness: i,zi,𝕌i, 𝕦i,𝕌𝔾
i+1, T ,𝕌cf

i , 𝕦cfi , T
cf
, auxi

Statement: h1, h2, c
Constant: (τj)

ν−1
j=0

1 zi+1 := F(zi; auxi) ▷ Let (αi)
µ−1
i=0 be queries made by F

2 Check 𝕦i:
enforce 𝕦i.u = 1

enforce 𝕦i.x = (ϱ(𝕌i, i,z0,zi), ϱ(𝕌cf
i , i), ρ(𝕦i.Q))

enforce 𝕦i.E = 0

3 r := ρ(𝕌i, 𝕦i, T)
4 𝕌𝔽

i+1 := LouaFS.V𝔽(vk,𝕌𝔽
i , 𝕦𝔽i , r)

5 Check 𝕦cfi :
enforce 𝕦cfi .u = 1

enforce 𝕦cfi .x = (r,𝕌𝔾i , 𝕦
𝔾
i ,𝕌

𝔾
i+1, T)

enforce 𝕦cfi .E = 0

6 𝕌cf
i+1 := LouaFS.V(vkcf ,𝕌cf

i , 𝕦cfi , T
cf
)

7 Check lookup queries:
o← Hint(α)
c← Hint(α,o)

enforce
∑µ−1

i=0
1

c−αi
=

∑ν−1
j=0

oj
c−τj

8 Compute public outputs:
h1 := ϱ((i = 0) ? 𝕌⊥ : 𝕌i+1, i+ 1,z0,zi+1)

h2 := ϱ((i = 0) ? 𝕌cf
⊥ : 𝕌cf

i+1, i+ 1)

9 return h1, h2, c

With the help of F cf , the augmented circuit F̃ only needs to fold the field
parts of primary instances. As a trade-off, F̃ becomes responsible for enforcing
the correct folding of CycleFold instances 𝕌cf

i ,𝕦cfi using LouaFS.V . Since 𝕌cf
i ,𝕦cfi

are over ℍ, the group operations in LouaFS.V can be handled natively by F̃ over
𝔾. Although the field elements in 𝕌cf

i ,𝕦cfi become non-native, emulating non-
native field operations is much cheaper than non-native group operations, thanks
to the techniques in [55]. To summarize, we present the details of LouaIVC’s F̃
in Circuit 19.

Having constructed F̃ , we illustrate LouaIVC in Algorithm 20. In the setup
algorithm LouaIVC.G, two commitment keys ck and ckcf are generated, one for
primary instances, and the other for CycleFold instances. The key generation
algorithm LouaIVC.K takes a step function F as input, creates the augmented

function F̃ for F , and converts F̃ and F cf to R1CS matrices C̃S and CScf . Then,
LouaFS.K is invoked for both matrices to obtain the proving and verification
keys.

Before the proof generation LouaIVC.P starts, the prover first prepares two
empty running instance-witness pairs (𝕌0 := 𝕌⊥,𝕎0 := 𝕎⊥) and (𝕌cf

0 := 𝕌cf
⊥,

56

Algorithm 20: LouaIVC

1 Fn LouaIVC.G(1λ):
2 return (ck← LouaFS.G(1λ), ckcf ← LouaFS.G(1λ))
3 Fn LouaIVC.K((ck, ckcf),F):
4 Wrap F and build F̃ and F cf

5 Encode F̃ and F cf as C̃S and CScf in R1CS

6 (pk, vk) := LouaFS.K(ck, C̃S)
7 (pkcf , vkcf) := LouaFS.K(ckcf ,CScf)

8 return (pk, pkcf), (vk, vkcf)

9 Fn LouaIVC.P((pk, pkcf), (i,z0,zi), auxi, πi):

10 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i), (𝕌cf
i ,𝕎cf

i)) := πi

11 (𝕌i+1,𝕎i+1, T) := (i = 0) ? (𝕌⊥,𝕎⊥, 0) : LouaFS.P(pk, (𝕌i,𝕎i), (𝕦i,𝕨i))

12 r := ρ(𝕌i, 𝕦i, T)
13 𝕌𝔾

i+1 ← F cf(r,𝕌𝔾
i , 𝕦𝔾i , T)

14 Construct 𝕦cfi ,𝕨cf
i :

Extract variables vcf = (u,x, q,w) in Fcf , where u = 1, q = ∅,x = (r,𝕌𝔾i , 𝕦
𝔾
i ,𝕌

𝔾
i+1)

𝕨cf
i := (q,w,∅), 𝕦cfi ← (u,x, 0,CM.C(ckcf ,w), 0)

15 (𝕌cf
i+1,𝕎cf

i+1, T
cf
) := (i = 0) ? (𝕌cf

⊥,𝕎cf
⊥, 0) : LouaFS.P(pkcf , (𝕌cf

i ,𝕎cf
i), (𝕦cfi ,𝕨cf

i))

16 (h1, h2, c)← F̃(i,zi,𝕌i, 𝕦i,𝕌𝔾
i+1, T ,𝕌cf

i , 𝕦cfi , T
cf
, auxi)

17 Construct 𝕦i+1,𝕨i+1:
Extract variables v = (u,x, q,w) in F̃ , where u = 1,x = (h1, h2, c)

𝕨i+1 := (q,w,∅), 𝕦i+1 ← (u,x,CM.C(ck, q),CM.C(ck,w), 0)

18 return πi+1 := ((𝕌i+1,𝕎i+1), (𝕦i+1,𝕨i+1), (𝕌cf
i+1,𝕎cf

i+1))

19 Fn LouaIVC.V((vk, vkcf), (i,z0,zi), πi):

20 Parse ((𝕌i,𝕎i), (𝕦i,𝕨i), (𝕌cf
i ,𝕎cf

i)) := πi

21 Check 𝕦i:
assert 𝕦i.u = 1 ∧ 𝕦i.E = 0

assert 𝕦i.x = (ϱ(𝕌i, i,z0,zi), ϱ(𝕌cf
i , i), ρ(𝕦i.Q))

22 Check 𝕨i against 𝕦i:
Parse (u,x, Q,W,E) := 𝕦i, (q,w, e) := 𝕨i

v := (u,x, q,w)
assert Av ◦Bv = Cv

assert CM.V(ck, q, Q) ∧ CM.V(ck,w,W) ∧ CM.V(ck, e, E)

23 Check 𝕎i against 𝕌i:
Parse (u,x, Q,W,E) := 𝕌i, (q,w, e) := 𝕎i

v := (u,x, q,w)
assert Av ◦Bv = u ·Cv + e

assert CM.V(ck, q, Q) ∧ CM.V(ck,w,W) ∧ CM.V(ck, e, E)

24 Check 𝕎cf
i against 𝕌cf

i :
Parse (u,x, Q,W,E) := 𝕌cf

i , (q,w, e) := 𝕎cf
i

v := (u,x, q,w)

assert Acfv ◦Bcfv = u ·Ccfv + e

assert q = ∅ ∧Q = 0 ∧ CM.V(ckcf ,w,W) ∧ CM.V(ckcf , e, E)

25 return 1

𝕎cf
0 := 𝕎cf

⊥). The incoming instance-witness pair in the 0-th step is also (𝕦0 :=
𝕌⊥,𝕨0 := 𝕎⊥). The prover and verifier then proceed to the incremental proof
generation and verification, in the same way as the generic ones in Section 4.1,

57

but with additional logic to handle CycleFold circuits and instance-witness pairs.

Security of LouaIVC. Below we provide proofs of the security of LouaIVC.

Proof of succinctness. LouaIVC is succinct, because πi only consists of two run-
ning instance-witness pairs and one incoming instance-witness pair, whose sizes
are independent of the number of steps.

Proof of completeness. Now we prove the completeness of LouaIVC. We focus on
the non-base case where i > 0 but omit the base case i = 0, where the proof is
trivial.

Recall that LouaIVC is knowledge sound, if for (F , i,z0, zi, auxi, πi) output
by any efficient adversary A that satisfies V(vk, (i, z0, zi), πi) = 1, the prover
can always output a proof πi+1 that satisfies V(vk, (i+ 1, z0, zi+1), πi+1) = 1.

By the condition V(vk, (i, z0, zi), πi) = 1 and the construction of LouaIVC.V ,
we learn that:

• 𝕦i is a valid incoming instance with 𝕦i.x = (ϱ(𝕌i, i,z0, zi), ϱ(𝕌cf
i , i),

ρ(𝕦i.Q)),

• 𝕨i and 𝕦i satisfy C̃S,

• 𝕎i and 𝕌i satisfy C̃S, and

• 𝕎cf
i and 𝕌cf

i satisfy CScf

Our goal is to show that V(vk, (i+ 1, z0, zi+1), πi+1) = 1. According to the
construction of LouaIVC.P, 𝕌i+1 and 𝕎i+1 are obtained by folding 𝕦i,𝕨i into

𝕌i,𝕎i. Since LouaFS is complete, 𝕌i+1 and 𝕎i+1 also satisfy C̃S.
Moreover, when running F cf in LouaIVC.P, the check in Circuit 18 passes

due to the completeness of LouaFS. Therefore, 𝕦cfi and 𝕨cf
i , constructed from the

variables in F cf , satisfy CScf . As a result, both (𝕦cfi ,𝕨cf
i) and (𝕌cf

i ,𝕎cf
i) satisfy

CScf . Again, by the completeness of LouaFS, 𝕌cf
i+1 and 𝕎cf

i+1 also satisfy CScf .

To complete the proof, we demonstrate that 𝕦i+1 and 𝕨i+1 satisfy C̃S as
well, where 𝕦i+1 is a valid incoming instance. Consider the checks in Circuit 19.
First, Line 2 passes because 𝕦i is known to be valid. In addition, according to
the construction of 𝕦cfi , Line 6 is also satisfied. Line 7 checks the equation for
set inclusion, which holds since the queries α are supposed to be a subset of the
lookup table τ . Moreover, Line 8 ensures that the statements h1 and h2 match
the in-circuit variables calculated via LouaFS.V and ϱ, which is guaranteed by the
completeness of LouaFS. Consequently, the vector of variables z is valid for F̃ ,
implying that 𝕦i+1 and 𝕨i+1 satisfy C̃S. Since c is computed as c := ρ(𝕦i+1.Q),
it follows that 𝕦i+1.x = (h1, h2, c) is well-formed.

Proof of knowledge soundness. Below we show that LouaIVC satisfies knowledge
soundness. Again, we only consider the non-base case with i > 1.

Recall that LouaIVC is knowledge sound, if for (F , (i ≥ 1, z0, zi), πi) output
by any efficient adversary A that satisfies V(vk, (i, z0, zi), πi) = 1, there is an
efficient extractor Ext who can output (zi−1, auxi−1, πi−1) that satisfies the two
checks below:

• zi = F(zi−1; auxi−1)

58

• V(vk, (i− 1, z0, zi−1), πi−1) = 1

By the condition V(vk, (i, z0, zi), πi) = 1 and the construction of LouaIVC.V ,
we learn that:

• 𝕦i is a valid incoming instance with 𝕦i.x = (ϱ(𝕌i, i,z0, zi), ϱ(𝕌cf
i , i),

ρ(𝕦i.Q)),

• 𝕨i and 𝕦i satisfy C̃S,

• 𝕎i and 𝕌i satisfy C̃S, and

• 𝕎cf
i and 𝕌cf

i satisfy CScf

Consequently, we can construct an Ext who works as below:

1. Reconstruct v from 𝕨i and 𝕦i by computing v := (𝕦i.u,𝕦i.x,𝕨i.q,𝕨i.w).

Because 𝕨i and 𝕦i satisfy C̃S, v is a satisfying vector of variables for F̃ .

2. Obtain the witnesses j,zj ,𝕌j ,𝕦j ,𝕌𝔾
j+1, T j ,𝕌cf

j ,𝕦cfj , T
cf
j from v.

• By the checks in Line 8 of Circuit 19, we have h1 = ϱ(𝕌j+1, j + 1,
z0, zj+1), and h2 = ϱ(𝕌cf

j+1, j + 1). Also, since h1, h2 are parts of

𝕦i.x = (ϱ(𝕌i, i,z0, zi), ϱ(𝕌cf
i , i), ρ(𝕦i.Q)) and ϱ is collision-resistant,

we can deduce that the two preimages are equal, except with negligible
probability, i.e.,

– j + 1 = i.

– 𝕌cf
j+1 = 𝕌cf

i .

Combining with Line 6 of Circuit 19, we have 𝕌cf
i = 𝕌cf

j+1 =

LouaFS.V(vkcf ,𝕌cf
j ,𝕦cfj , T

cf
j).

– 𝕌j+1 = 𝕌i.

– zj+1 = zi.
Combining with Line 1 of Circuit 19, we have zi = zj+1 =
F(zj ; auxj).

• By the checks in Line 2 of Circuit 19, we know that 𝕦j is an incoming
instance, and that 𝕦j .x = (ϱ(𝕌j , j, z0, zj), ϱ(𝕌cf

j , j), ρ(𝕦j .Q)).

• By the checks in Line 7 of Circuit 19, LogUp’s identity for set inclusion
holds, given a uniform challenge c := ρ(𝕦i.Q). According to [42, Lemma
5], the queries are hence in the lookup table, i.e., α ⊆ τ .

3. Invoke the extractor of LouaFS with input CScf ,𝕌cf
j ,𝕦cfj ,𝕎cf

i , T
cf
j .

Due to the knowledge soundness of LouaFS as well as the facts that 𝕌cf
i =

LouaFS.V(vkcf ,𝕌cf
j ,𝕦cfj , T

cf
j) and (𝕌cf

i ,𝕎cf
i) satisfy CScf , LouaFS’s extractor

is able to return 𝕎cf
j and 𝕨cf

j such that both (𝕌cf
j ,𝕎cf

j) and (𝕦cfj ,𝕨cf
j) satisfy

CScf , except with negligible probability.

4. Reconstruct vcf from 𝕨cf
i and 𝕦cfi by computing vcf := (𝕦cfi .u,𝕦cfi .x,𝕨cf

i .q,
𝕨i.w).

Because 𝕨cf
i and 𝕦cfi satisfy CScf , vcf is a satisfying vector of variables for

F cf .

59

Due to the checks in Line 5 of Circuit 19, the statement in vcf is 𝕦cfj .x =

(rj ,𝕌𝔾
j ,𝕦𝔾j ,𝕌𝔾

j+1, T j). Combining this with the check in Circuit 18, we

can conclude that 𝕌𝔾
j+1 = NIFS.V𝔾(vk,𝕌𝔾

j ,𝕦𝔾j , rj , T j). Also, Lines 3-4 of

Circuit 19 ensure that 𝕌𝔽
j+1 = LouaFS.V𝔽(vk,𝕌𝔽

j ,𝕦𝔽j , rj) and rj = ρ(𝕌j ,𝕦j ,
T j).

Thus, 𝕌j+1 = LouaFS.V(vk,𝕌j ,𝕦j , T j). Note that we already have 𝕌i =
𝕌j+1, we can deduce that 𝕌i = LouaFS.V(vk,𝕌j ,𝕦j , T j).

5. Invoke the extractor of LouaFS with input C̃S,𝕌j ,𝕦j ,𝕎i, T j .

Due to the knowledge soundness of LouaFS as well as the facts that 𝕌i =

LouaFS.V(vk,𝕌j ,𝕦j , T j) and (𝕌i,𝕎i) satisfy C̃S, LouaFS’s extractor is able

to return𝕎j and 𝕨j such that both (𝕌j ,𝕎j) and (𝕦j ,𝕨j) satisfy C̃S, except
with negligible probability.

6. Compute πj := ((𝕌j ,𝕎j), (𝕦j ,𝕨j), (𝕌cf
j ,𝕎cf

j)) and output zj , auxj , πj as
well as α.

We can observe from the analysis above that the outputs of Ext satisfy the
checks in IVC’s knowledge soundness definition and the lookup relation Rlookup,
thereby concluding the proof.

B.3 LouaDecider

Construction of LouaDecider. Finally, we introduce the decider LouaDecider
and its associated circuit FDecider for Loua. Recall that the paradigm in Section 4.2
requires the decider circuit to run the verification algorithm of IVC, but without
verifying the commitments in-circuit. In our case, FDecider needs to check the
primary instance-witness pair (𝕌k+1,𝕎k+1) and the CycleFold instance-witness
pair (𝕌cf

k ,𝕎cf
k).

Since 𝕌cf
k and𝕎cf

k are over the secondary curve ℍ, the commitment verification
becomes native operations for circuits over 𝔾, while the satisfiability check
Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q) requires non-native field operations. This
is not covered in Section 4.2, which focuses on eliminating non-native group
operations. However, we observe that 1) non-native field operations are relatively
cheap in comparison to non-native group operations, and 2) the size of F cf (and
thus CScf) is constant and small. Thus, checking the CScf satisfiability in-circuit is
still feasible, and we further apply several optimizations to improve the efficiency,
whose details are presented in Section 6.

We summarize the construction of the decider circuit FDecider in Circuit 21,
and the corresponding decider LouaDecider in Algorithm 22.

Security of LouaDecider. We show that LouaDecider is a zkSNARK for RIVC.
For completeness, knowledge soundness, and zero-knowledge, we refer the reader
to [60, Appendix D]. Due to the similar design, these security properties can
be demonstrated in the same way as Nova’s decider. In a nutshell, we can use
straightforward reductions to show that ifA is able to break these properties, then
the corresponding properties of LegoGro16 and LouaFS would also be broken. Plus,
LouaDecider is succinct because both the LegoGro16 proof ϖ and the Pedersen
commitments in committed instances are of constant size.

60

Circuit 21: FDecider(𝕎k+1,𝕎cf
k ,𝕌𝔽

k+1,𝕌cf
k)

Witness: 𝕎k+1,𝕎cf
k

Statement: 𝕌𝔽
k+1,𝕌cf

k

Constant: C̃S = (A,B,C),CScf = (Acf ,Bcf ,Ccf), ckcf

1 Check 𝕎k+1 against 𝕌𝔽
k+1:

Parse (u,x) := 𝕌𝔽k+1, (q,w, e) := 𝕎k+1

v := (u,x, q,w)
enforce Av ◦Bv = u ·Cv + e

2 Check 𝕎cf
k against 𝕌cf

k :
Parse (u,x, Q,W,E) := 𝕌cf

k , (q,w, e) := 𝕎cf
k

v := (u,x, q,w)

enforce Acfv ◦Bcfv ≡ u ·Ccfv + e (mod q)

enforce q = ∅ ∧Q = 0

enforce CM.V(ckcf ,w,W)

enforce CM.V(ckcf , e, E)

Algorithm 22: LouaDecider

1 Fn LouaDecider.K(1λ, (ck,CSLouaDecider)):

2 return (pk, vk)← LegoGro16.K(1λ, ck,CSLouaDecider)

3 Fn LouaDecider.P((pk, pkΦ), (k, z0,zk), πk):

4 Parse ((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf
k ,𝕎cf

k)) := πk

5 (𝕌k+1,𝕎k+1, T) := LouaFS.P(pkΦ, (𝕌k,𝕎k), (𝕦k,𝕨k))

6 x := (𝕌𝔽
k+1,𝕌cf

k), c := (𝕌𝔾
k+1)

7 υ := (𝕎k+1),ω := (𝕎cf
k)

8 ϖ ← LegoGro16.P(pk,x, c,υ,ω)

9 return (ϖ,𝕌k, 𝕦k,𝕌cf
k , T)

10 Fn LouaDecider.V((vk, vkΦ), (k, z0,zk), (ϖ,𝕌k, 𝕦k,𝕌cf
k , T)):

11 𝕌k+1 := LouaFS.V(vkΦ,𝕌k, 𝕦k, T)
12 Check 𝕦k:

assert 𝕦k.u = 1, 𝕦k.E = 0

assert 𝕦k.x = (ϱ(𝕌k, k,z0,zk), ϱ(𝕌cf
k , k), ρ(𝕦k.Q))

13 x := (𝕌𝔽
k+1,𝕌cf

k), c := (𝕌𝔾
k+1)

14 return LegoGro16.V(vk,x, c, ϖ)

Appendix C Gadgets for Integer Operations

We review the gadgets in [28] for the computation of sign and absolute value as
well as the right shifting operation.
Sign and absolute value.We cannot directly compute the sign and the absolute
value of a variable x in an arithmetic circuit over 𝔽p. Intuitively, a number is
positive if it is greater than 0, and is negative otherwise. However, as the field 𝔽p

is not ordered, we cannot compare between its elements. Therefore, we manually
define elements in the set {1, 2, . . . , (p− 1)/2} as positive, and those in the set
{(p+ 1)/2, . . . , p− 2, p− 1} as negative.

Before explaining the computation of sign and absolute value under this
definition, we introduce FEnforceBitLen, a gadget for ensuring the bit length of a
variable x is at most W , i.e., x ∈ [0, 2W − 1]. Powered by lookup arguments,
FEnforceBitLen is the key to efficiency of the in-circuit operations in quantization.

61

As depicted in Gadget 23, on input a variable x and a constant W , the gadget

first asks the prover to provide (xi)
W/ log ν−1
i=0 , the limbs of x in base-ν (recall

that ν is the size of the lookup table). Here, we assume ν is a power of 2. Then,
the gadget enforces x indeed decomposes into these limbs by comparing their

concatenation, expressed as
∑W/ log ν−1

i=0 2i log νxi, with x. Finally, the limbs of x
are appended to α, the list of queries, to make sure every limb is in base-ν. We
reemphasize that lookup argument is critical to the performance of FEnforceBitLen:
without the lookup table, circuits in R1CS can only handle the range check
bit-by-bit (instead of limb-by-limb), which is done by enforcing xi(1−xi) = 0 for
each claimed bit xi. Consequently, FEnforceBitLen would cost W + 1 constraints,
which is much more expensive than the W/ log ν + 1 constraints with the lookup
table.

Gadget 23: FEnforceBitLen(x,W)

1 (xi)
W/ log ν−1
i=0 ← Hint(x)

2 enforce
∑W/ log ν−1

i=0 2i log νxi = x

3 α := (α, (xi)
W/ log ν−1
i=0)

Now, as long as the upper bound of x’s absolute value satisfies x < 2W <
(p − 1)/2, we can extract the sign and the absolute value of x using FSignAbs,
as depicted in Gadget 24. The gadget first asks the prover to determine if x is
positive. The prover checks which set x belongs to, and provides s as a hint. The
gadget enforces that s is boolean, and computes x’s absolute value y := s ?x :−x.
Finally, the gadget enforces that y has at mostW bits by invoking FEnforceBitLen(y,
W) and returns s and y. Soundness holds because if an adversary feeds the
incorrect s to the gadget, then y’s value belongs to the negative set and is hence
greater than (p− 1)/2, but FEnforceBitLen guarantees that 0 ≤ y < 2W < (p− 1)/2.

Gadget 24: FSignAbs(x ∈ [−2W + 1, 2W − 1])

1 s← Hint(x)
2 y := s ? x :−x
3 enforce s(1− s) = 0

4 FEnforceBitLen(y,W)
5 return s, y

Right shift. It is also non-trivial to implement the gadget F>>(x, δ) for shifting
x to the right by δ bits. Here, we assume that x ∈ [0, 2W − 1], δ ∈ [U, V], and
2W+V−U < p. Intuitively, we could treat the right shift operation as integer
division, i.e., x>>δ = x/2δ. The prover computes the quotient q and the remainder
r such that x = q · 2δ + r, and feeds q, r as hints to the gadget. Then the gadget
enforces x = q · 2δ + r. In addition, it is also required to check that q ∈ [0,
2W−U − 1], r ∈ [0, 2δ− 1] to ensure q and r are well-formed. Here, since δ is not a
constant, it requires two FEnforceBitLen calls to enforce r’s range, one for checking
r ∈ [0, 2V − 1] and another for checking 2δ − 1 − r ∈ [0, 2V − 1], introducing
2V/ log ν queries to the lookup table. We are convinced that r ∈ [0, 2δ − 1] only
when both conditions are satisfied.

However, it is possible to eliminate one FEnforceBitLen call. As presented in
Gadget 25, F>> first computes x′ := x << (V − δ) = x · 2V−δ. Since δ ∈ [U, V],
we have V − δ ∈ [0, V − U], and thus x · 2V−δ < 2W+V−U < (p− 1)/2 does not
overflow. Then we handle x′>>V analogously: the prover provides the quotient q

62

and the remainder r for x′/2V as hints, and the gadget checks if q ∈ [0, 2W−U−1],
r ∈ [0, 2V − 1], and x′ = q · 2V + r. This optimized approach only adds V/ log ν
queries to the lookup table for checking r, thereby saving V/ log ν constraints
compared to the naive construction.

Gadget 25: F>>(x ∈ [0, 2W − 1], δ ∈ [U, V])

1 x′ := x · 2V −δ

2 q, r ← Hint(x′)

3 enforce x′ = q · 2V + r

4 FEnforceBitLen(q,W − U)

5 FEnforceBitLen(r, V)

Appendix D Security of Eva

We prove Theorem 1 and show that Eva is succinct, complete, knowledge sound,
and zero-knowledge.

Proof of succinctness. Eva satisfy succinctness because its proofs are of constant
size. Specifically, the LegoGro16 proof ϖ has 4 𝔾 elements and 1 �̂� element,
the partial running instance 𝕌′

k has 3 𝔾 elements and 1 𝔽p element, the partial
incoming instance 𝕦′k has 2 𝔾 elements, T is in 𝔾, and r is in 𝔽p. In total, the

proof π consists of 10 𝔾 elements, 1 �̂� element, and 2 𝔽p elements.

Proof of completeness. We omit the proof of completeness for Eva, as it is straight-
forward to see from the design of our circuits and the completeness of LouaFS,
LouaIVC, and ZKCP.

Proof of knowledge soundness. We prove the knowledge soundness of Eva by
constructing an efficient extractor Ext. Given public parameters pkΠ, vkΠ, vkΣ,
the trapdoor td, and A’s output (ζ,meta, param, π), we have V(vkΠ, vkΣ, ζ,meta,
param, π) = 1 by condition. Hence, ZKCP.V(vk,x, c, ϖ) = 1, for x := (vkΣ,meta,
k, z0, ℏk, r,𝕦′k,𝕌′

k, T), c := (𝕌𝔾
k+1). With this condition, Ext works as below:

1. Invoke the extractor of ZKCP on input x, c, ϖ. Except with negligible
probability, Ext can obtain υ := (𝕎k+1),ω := (hk, σ,𝕌k.x,𝕌cf

k ,𝕎cf
k), such

that (x, c) and (υ,ω) satisfy FDeciderEva , and υ = 𝕎k+1 opens c = 𝕌𝔾
k+1.

2. Reconstruct 𝕌k from 𝕌′
k and 𝕌k.x.

3. Reconstruct 𝕦k from 𝕦′k and 𝕦k.x := (ϱ(𝕌k, k, z0, (hk, ℏk)), ϱ(𝕌cf
k , k), ρ(𝕦k.Q)).

4. Lines 3-4 of Circuit 15 enforce that 𝕌𝔽
k+1 := LouaFS.V𝔽(vkΦ,𝕌𝔽

k,𝕦𝔽k, r) and
r = ρ(𝕌k,𝕦k, T). Also, we have 𝕌𝔾

k+1 := LouaFS.V𝔾(vkΦ,𝕌𝔾
k ,𝕦𝔾k , r, T), due

to the construction of Eva’s verifier V. Thus, 𝕌k+1 := LouaFS.V(vkΦ,𝕌k,
𝕦k, T).
Moreover, Line 5 of Circuit 15 and the commit-and-prove relation w.r.t.

υ = 𝕎k+1 and c = 𝕌𝔾
k+1 imply that 𝕎k+1 and 𝕌k+1 satisfy C̃S

Eva
.

Consequently, except with negligible probability, Ext can invoke the extrac-
tor of LouaFS on input 𝕌k,𝕦k,𝕎k+1, T and obtain 𝕎k,𝕨k such that both

(𝕌k,𝕎k) and (𝕦k,𝕨k) satisfy C̃S
Eva

.

63

5. By the checks in Line 6 of Circuit 15, we can deduce that 𝕌cf
k and𝕎cf

k satisfy

CScf . At this point, Ext can recover πk := ((𝕌k,𝕎k), (𝕦k,𝕨k), (𝕌cf
k ,𝕎cf

k))
such that all checks in LouaIVC.V(vkΦ, (k,z0, zk), πk) = 1 pass.

Consequently, except with negligible probability, Ext can invoke the ex-
tractor of LouaIVC with input F̃Eva, k, z0, zk, πk and obtain the state and
proof at k − 1-th step.

6. Repeatedly invoke the extractor of LouaIVC on the last state and proof,
and obtain the previous state and proof, until reaching the initial step.

7. Parse the original video V from all the auxiliary states (auxi) and return
σ,V .

By the satisfiability of F̃Eva, we can conclude that, with param, (Zi) is the
correct encoding of an video V ′ edited from the original video V whose digest
is hk. Also, by construction of ZKCP.V, ζ is the entropy coded bitstream of
(Zi). Furthermore, by Line 1 of Circuit 15, σ is a valid signature on H(hk,meta).
Thus, Ext successfully extracts V and σ such that RVA((ζ,meta, param, vkΣ), (σ,
V)) = 1, except with negligible probability, thereby completing the proof.

Proof of zero-knowledge. For zero-knowledge, we leverage the technique in [60,
Appendix D] to construct a simulator Sim who can produce 𝕌k,𝕦k that are
indistinguishable from the outputs of the honest prover, if ϱ and CM are hiding.

First, Sim uniformly samples several random values r1, r2, rq, rw, and initiates
𝕌1,𝕦1, where 𝕌1 = 𝕌⊥, 𝕦1.u = 1, 𝕦1.Q = CM.C(ck, rq), 𝕦1.W = CM.C(ck, rw),
𝕦1.E = 0, 𝕦1.x = (ϱ(r1), ϱ(r2), ρ(𝕦1.Q)). Here, 𝕌1, 𝕦1.u, and 𝕦1.E are equal to
real ones. Also, since we assume ϱ and CM are hiding, 𝕦1.Q, 𝕦i.W , and 𝕦1.x are
indistinguishable from real ones.

Next, we show that for every i, if 𝕌i and 𝕦i are indistinguishable from real ones,
then Sim can generate 𝕌i+1 and 𝕦i+1 that are also indistinguishable from real ones.
To this end, Sim uniformly samples randomness r1, r2, rq, rw, rt and computes
T := CM.C(ck, rt), which is indistinguishable from real commitments since CM
is hiding. Then, Sim computes 𝕌i+1 := LouaFS.V(vkΦ,𝕌i,𝕦i, T). Further, 𝕦i+1

is derived in the same way as the base case. In this way, both 𝕌i+1 and 𝕦i+1 are
indistinguishable from real instances.

After k steps, 𝕌k,𝕦k are indistinguishable from the honestly generated ones.
Again, Sim computes T := CM.C(ck, rt) for a random rt and r := ρ(𝕌k,𝕦k, T),
which are indistinguishable from real ones.

Sim then computes ℏk by hashing the prediction macroblocks and quantized
coefficients decoded from ζ, and derives 𝕌𝔾

k+1 := LouaFS.V𝔾(vkΦ,𝕌𝔾
k ,𝕦𝔾k , r, T).

Finally, Sim invokes the ZKCP simulator on input x and c, where x :=
(vkΣ,meta, k, z0, ℏk, r,𝕦′k,𝕌′

k, T), c := (𝕌𝔾
k+1). The ZKCP simulator returns a

simulated proof ϖ that is indistinguishable from the honestly generated ones, and
the proof π := (ϖ,𝕌′

k,𝕦′k, T , r) that Sim returns is therefore also indistinguishable
from the honest proofs.

Discussion. For a raw video V signed by the recorder and an encoded video
stream ζ, our current security model guarantees that ζ = E(∆(V), paramE),
where ∆ is the editing operation, and paramE is the encoding parameters. Below
we discuss two potential issues with our current security model and possible
solutions.

64

First, our model does not ensure paramPred to be the best prediction parame-
ters for encoding V ′ := ∆(V). Recall that, in order to reduce the circuit size,
the prediction process is removed from our FE , and thus the choice of prediction
parameters paramPred is not enforced.

Consequently, for an original macroblock X ∈ V and two editing operations
∆ and ∆̂, a malicious prover A may produce P and Z by encoding X ′ := ∆(X),

but later prove that Z is encoded from X̂
′
:= ∆̂(X). This is possible if A can

find some prediction parameters p̂aram
Pred

such that the prediction macroblock

for X̂
′
becomes P̂ = X̂

′
−X ′ + P . By feeding P̂ to the circuit, the residual

macroblock is now computed as X̂
′
− P̂ = X ′ − P = R, and the final output

becomes Z. In this way, A’s claimed editing operation is ∆̃ = ∆̂, and the claimed

encoding parameters are p̃aram
Pred

= p̂aram
Pred

, but Z is actually the encoding
of ∆(X) under paramPred.

Our model allows for such an “attack”, because both ∆, paramPred and ∆̂,

p̂aram
Pred

are valid configurations for encoding X as Z. A stronger security
model might require the claimed editing operation ∆̃ to closely resemble the
actual one ∆ (as we will discuss soon, it is impossible to guarantee exactly

equality between ∆̃ and ∆).
To achieve security under this enhanced model, we propose the following

approaches:

• If the video codec generates similar predictions for different prediction
parameters, or if we can restrict the prover to use prediction parameters
with similar effects, then A can no longer find a prediction macroblock
that balances the large difference between the claimed ∆̃ and the actual
∆. This would ensure that ∆̃ ≈ ∆.

• If the above conditions are not met, it is still possible to mitigate this issue.
Observe that while lossy encoding reduces the video quality, the encoded
video ζ is still similar to the original V ′. Thus, with the correct prediction

parameters p̃aram
Pred

= paramPred for V ′, encoding ζ under paramPred again
will produce a video that resembles ζ. On the other hand, with cheating

prediction parameters p̃aram
Pred ̸≈ paramPred, the re-encoded video will

significantly differ from ζ.

Therefore, to detect if A is cheating, the verifier can re-encode ζ with the
claimed prediction parameters and inspect if the re-encoded video is close to
the encoded video. By rejecting significantly different videos, V can ensure

that the claimed prediction parameters satisfy p̃aram
Pred ≈ paramPred,

thereby guaranteeing ∆̃ ≈ ∆.

• The most robust solution is to extend Eva and generate proofs of best
encoding. Intuitively, one can achieve this by incorporating the prediction
process into the circuit. However, designing a more efficient approach
remains an open problem.

The second issue is that the quantization parameter qp may enable a malicious
prover A to find two editing operations ∆ and ∆̃ that produce the same video
stream ζ after quantization.

65

We regard the design of a stronger security model that guarantees the strict
equality between ∆ and ∆̃ as out of scope. The reason is that, due to the inherent
loss of information in lossy encoding, it is always possible for A to find two
modifications on the original video that have the same encoded stream, even qp
is fixed to some small values. In some scenarios such as the detection of fake news,
the verifier can simply reject low-quality videos with large qp (e.g., qp ≥ 50), as
we expect videos published by news agencies to have more reasonable qp values
(e.g., qp ≈ 30).

66

	Introduction
	Contribution
	Related Work
	Overview of Eva

	Preliminaries
	Notations
	Cryptographic Primitives
	SNARKs, CP-SNARKs, and Lookup Arguments
	Folding Schemes
	Incrementally Verifiable Computation

	Proofs of Video Authenticity
	Data Types and Operations
	Algorithm and Security Definitions

	Improving Folding-Based IVC
	Paradigm 1: IVC with Lookup Arguments
	Paradigm 2: Commit-and-Prove Decider

	The Eva Protocol
	Gadgets for Video Encoding
	Transform
	Quantization

	Gadgets for Video Editing
	Color Manipulations
	Spatial and Temporal Operations
	More Complicated Operations

	Building the Step Circuit
	Final Protocol
	Security

	Implementation and Optimization
	Evaluation
	Discussion
	Additional Related Work
	Full Construction of Loua
	LouaFS
	LouaIVC
	LouaDecider

	Gadgets for Integer Operations
	Security of Eva

