
Anamorphic Authenticated Key Exchange:
Double Key Distribution under Surveillance

Weihao Wang1,2

, Shuai Han1,2(�)

and Shengli Liu2,3(�)

1 School of Cyber Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
{dykler123,dalen17,slliu}@sjtu.edu.cn

Abstract. Anamorphic encryptions and anamorphic signatures assume
a double key pre-shared between two parties so as to enable the trans-
mission of covert messages. How to securely and efficiently distribute
a double key under the dictator’s surveillance is a central problem for
anamorphic cryptography, especially when the users are forced to sur-
render their long-term secret keys or even the randomness used in the
algorithms to the dictator.

In this paper, we propose Anamorphic Authentication Key Exchange
(AM-AKE) to solve the problem. Similar to anamorphic encryption, AM-
AKE contains a set of anamorphic algorithms besides the normal algo-
rithms. With the help of the anamorphic algorithms in AM-AKE, the
initiator and the responder are able to exchange not only a session key
but also a double key. We define robustness and security notions for AM-
AKE, and also prove some impossibility results on plain AM-AKE whose
anamorphic key generation algorithm only outputs a key-pair. To bypass
the impossibility results, we work on two sides.

– On the one side, for plain AM-AKE, the securities have to be relaxed
to resist only passive attacks from the dictator. Under this setting,
we propose a generic construction of two-pass plain AM-AKE from
a two-pass AKE with partially randomness-recoverable algorithms.

– On the other side, we consider (non-plain) AM-AKE whose key gen-
eration algorithm also outputs an auxiliary trapdoor besides the
key-pairs. We ask new properties from AKE: its key generation al-
gorithm has secret extractability and other algorithms have separa-
bility. Based on such a two-pass AKE, we propose a generic con-
struction of two-pass (non-plain) AM-AKE. The resulting AM-AKE
enjoys not only robustness but also the strong security against any
dictator knowing both users’ secret keys and even the internal ran-
domness of the AKE algorithms and implementing active attacks.

Finally, we present concrete AM-AKE schemes from the popular SIG+KEM
paradigm and three-KEM paradigm for constructing AKE.

https://orcid.org/0009-0005-6285-4049
https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-1366-8256

1 Introduction

Cryptography provides fundamental technical tools for achieving authenticity
and confidentiality in our daily electronic data communications. For a crypto-
graphic algorithm to work, it is critical that the underlying secret key is not
compromised by the adversary. However, an authority dictator may force cit-
izens to surrender their secret keys, and as a result, cryptographic algorithms
may completely lose their functionalities of authenticity and confidentiality.

To save cryptographic functionalities in face of dictator, the so-called anamor-
phic algorithms were introduced [22,15,26,1,5].
Anamorphic Algorithms Supported by Double Key. In [22], Persiano,
Phan, and Yung proposed the concept of anamorphic encryption (AME), which
is partitioned into receiver-AME and sender-AME depending on whether the
receivers are forced to surrender their secret keys or the senders are forced to send
designated messages. As for receiver-AME, it is a public-key encryption (PKE)
deployed either in normal model with (Gen,Enc,Dec) or in the anamorphic mode
with (aGen, aEnc, aDec). In the anamorphic mode, the receiver initially generates
an anamorphic key-pair (ask, apk) and a double key dk via aGen. Any sender
who shares dk with the receiver is able to use apk and dk to encrypt not only
a normal plaintext m but also a covert plaintext m̂. The anamorphic public
key apk and the resulting anamorphic ciphertext ĉ should be indistinguishable
from the normal public key pk and normal ciphertext c to the dictator who
also obtains the corresponding secret key. With the knowledge of secret key, the
dictator can always decrypt the ciphertext to learn m, but the covert message
m̂ remains hidden owing to the secrecy of the double key dk.

Later, Kutylowski et al. extended anamorphic encryption to anamorphic sig-
nature [15], where a signing party can use the anamorphic signing key ask and the
double key dk to send undetectable secure messages using signature tags which
are indistinguishable from regular tags for the dictator who sees the signing key
ask but not the double key dk.

The original anamorphic schemes bind dk to the anamorphic key pair (apk, ask).
Once the public key is deployed, it is not possible to associate the public key
with a double key. This limitation is lifted in [1] by allowing double keys to be
created independently of key-pairs, which makes it possible to create double keys
at anytime even after the public key is deployed.
Double Key Distribution. The double key dk is essential to anamorphic en-
cryption and anamorphic signature, whose security relies on the secrecy of dk
(to the dictator). Now the crucial problem is how to secretly distribute the dou-
ble key dk between sender and receiver in face of the dictator who may obtain
the secret key of all users. The offline physical delivery of dk is expensive and
even infeasible in the Internet era. In [22], a two-step bootstrap method in [12]
was suggested for distributing dk secretly: Superficially, two parties send to each
other abundant ciphertexts generated by a PKE scheme. Covertly, they imple-
ment a key-exchange (KE) protocol. Each ciphertext from PKE embeds a tiny
piece of the pseudo-random transcript of KE. If they can collect the complete

2

transcript of KE, they can compute a common dk. This method is very inefficient,
since its embedding rate is very low. Even worse, this method is too fragile to be
practical, since the parties have to collect all these ciphertexts (e.g., hundreds
or even thousands of ciphertexts) to recover the KE transcripts, and any active
attack or transmission disordering will ruin the distribution of dk. Another pos-
sible way for double key distribution might be via sender-AME [26]. However,
sender-AME does not allow the dictator to obtain the users’ secret keys, which is
not compatible to the security settings considered by other anamorphic schemes
like receiver-AME or anamorphic signature, and thus this method seems hardly
useful for distributing double keys for those anamorphic schemes. Therefore, a
natural and important question is:

How to distribute double keys dk in a secure and efficient way under
the surveillance of the dictator?

Our answer to the question is Anamorphic Authenticated Key Exchange.

1.1 Our Contributions

In this paper, we initiate the study of Anamorphic Authenticated Key Exchange
(AM-AKE) and formalize security requirements for it, including robustness, in-
distinguishability of working modes (IND-WM) and pseudo-randomness of double
keys (PR-DK). Then we provide impossibility results and possibility results on
achieving secure AM-AKE. In particular, we show that two popular paradigms
for constructing AKE are good candidates for obtaining AM-AKE: the first one
is the signed Diffie-Hellman paradigm [19] which uses a digital signature scheme
(SIG) and a key encapsulation mechanism (KEM), referred to as the SIG+KEM
paradigm in this paper, and the second one is the three-KEM paradigm [20]
which invokes KEM three times. Actually, many existing AKE schemes are
designed following these paradigms, such as the IKE protocol [11], the pro-
tocol used in TLS 1.3 [23], the 2KEM+Diffie-Hellman protocol [4] and more in
[13,17,10,21,27,8]. For efficiency consideration, we focus on two-pass AM-AKE.

Syntax, Robustness and Security Notions of AM-AKE. We define two-
pass AM-AKE with AKE’s normal algorithms and a set of anamorphic algo-
rithms. With the normal algorithms, a session key K is agreed between the
initiator and the responder. With the anamorphic ones, both a session key K
and a double key dk are agreed between the initiator and the responder.

To make AM-AKE useful, we define initiator-robustness (resp., responder-
robustness) as the initiator’s (resp., responder’s) capability of telling whether its
partner is working with the normal or anamorphic algorithms. The robustness
helps the party invalidate its double key when its partner works with normal
algorithms (i.e., its partner has no intention to share any double key).

As for security, we define indistinguishability between parties’ different work-
ing modes (IND-WM security) against the dictator who possesses the secret keys
of all the parties, the session keys, and even the states of the initiator in any

3

completed AKE sessions, and is permitted to conduct active attacks. This en-
sures that the dictator cannot realize that the parties are actually invoking
anamorphic algorithms to establish double keys. For such a dictator, we also
define pseudo-randomness of the double keys (PR-DK security) to capture that
the dictator learns no information about the double keys. This guarantees that
the pseudo-random double keys can be later used in anamorphic encryption or
signature schemes to transmit covert messages.

We also consider strong security notions of IND-WM and PR-DK, denoted by
sIND-WM and sPR-DK respectively. sIND-WM and sPR-DK are defined similar
to IND-WM and PR-DK, but they deal with a stronger dictator who not only
implements passive and active attacks, obtains secret keys of the parties, the
session keys and the internal states, but also forces the parties to surrender their
internal randomness used in AKE sessions.
Impossibility Results for Plain AM-AKE. For a plain AM-AKE where
the output of the anamorphic key generation algorithm aGen only contains an
anamorphic key-pair (apk, ask), we prove three impossibility results.

– It’s impossible for a two-pass plain AM-AKE to achieve responder-robustness.
– It’s impossible for a plain AM-AKE to achieve both initiator-robustness and
IND-WM security, due to the dictator’s active attacks of impersonating the
initiator with its secret key to test the working mode of its partner.

– It’s impossible for a plain AM-AKE to achieve PR-DK security under active
attacks, since the dictator can impersonate any party with its secret key to
agree on a double key.

Generic Construction of Plain AM-AKE with Relaxed Security. To
bypass the impossibility results, we relax the security requirements for plain
AM-AKE by restricting the active attacks by adversary. The relaxed IND-WM
security excludes the attacks of impersonating the initiator, while the relaxed
PR-DK security excludes the attacks of impersonating either the initiator or the
responder. Then we propose a generic construction of plain AM-AKE achieving
initiator-robustness, the relaxed IND-WM and PR-DK security from any AKE
with partially randomness-recoverable algorithms. We prove that those AKE
under the SIG+KEM paradigm and those under the three-KEM paradigm are
both good candidates, as long as the underlying SIG and/or KEM schemes are
randomness-recoverable.
Generic Construction of Robust AM-AKE with Strong Security. Re-
call that the impossibility results apply to plain AM-AKE, so another possible
way of bypassing the impossibility is designing non-plain AM-AKE, where the
anamorphic key generation algorithm (apk, ask, aux) ← aGen outputs a related
auxiliary trapdoor aux along with the anamorphic key-pair (apk, ask). We note
that aux is only kept by the party who generates it and does not need to share
it with others. In other words, we do not require the parties pre-share any prior
information anyway.

To construct such AM-AKE, we require secret extractability for aGen which
enables the initiator and the responder to agree on a common secret s computed

4

from the auxiliary trapdoor aux of one party and the public key apk′ of the
other party. Then we propose a generic construction of AM-AKE achieving the
strong IND-WM and strong PR-DK security from any AKE whose algorithm Gen
is secret extractable. We prove that those AKE under the SIG+KEM paradigm
and those under the three-KEM paradigm are both good candidates, as long as
the underlying SIG and/or KEM schemes have secret extractable key generation
algorithm.

1.2 Technique Overview
For a two-pass AKE scheme AKE = (Gen, Init,DerR,DerI), the key generation
algorithm Gen returns a key-pair (pk, sk), the initialization algorithm Init com-
putes the first-pass message msgi, the derivation algorithm DerR for responder
derives the second-pass message msgr and the session key Kr, and the derivation
algorithm DerI for initiator derives the session key Ki. For AM-AKE, it addition-
ally has a set of anamorphic algorithms (aGen, aInit, aDerR, aDerI) for deriving
double keys (and session keys as well). Let Pi and Pr denote the initiator and
responder respectively.
Impossibility Results for Plain AM-AKE. Roughly speaking, AM-AKE is
called a plain one, if the anamorphic key generation algorithm aGen only outputs
an anamorphic key-pair (apk, ask). For a plain AM-AKE, the parties will have
no advantage over the dictator who owns their key-pairs as well, leading to
the consequence that the dictator can impersonate any party to conduct active
attacks. So we have the following impossibility results on plain AM-AKE.

– It’s impossible for a two-pass plain AM-AKE to achieve responder-robustness.
The responder-robustness means that Pr can decide whether Pi invokes nor-
mal algorithms or anamorphic algorithms upon receiving the first-pass mes-
sage from Pi. Note that the adversary who obtains the secret key of Pr can
also make the same judgement, thus distinguishing the working mode of Pi

and breaking the security of AM-AKE.
– It’s impossible for a plain AM-AKE to achieve both initiator-robustness and
IND-WM security. With the secret key of Pi, the adversary can impersonate
Pi to generate an anamorphic message amsgi, send it to Pr, and receive
a second-pass message from Pr. Note that the initiator-robustness ensures
that the adversary who obtains the secret key of Pi can decide whether
Pr invokes normal algorithms or anamorphic algorithms, thus breaking the
IND-WM security of AM-AKE.

– It’s impossible for a plain AM-AKE to achieve the PR-DK security under ac-
tive attacks. Similarly, the adversary can impersonate Pi by sending amsgi
to Pr, and compute its double key dki upon receiving anamorphic message
amsgr from Pr. Note that the correctness of AM-AKE ensures the consis-
tency of double keys dki = dkr, and thus the adversary trivially knows Pr’s
double key dkr (= dki) and breaks the PR-DK security of AM-AKE.

Generic Construction of Plain AM-AKE with Relaxed Security. Let
AKE = (Gen, Init,DerR,DerI) be a two-pass AKE. Let KE be a two-pass key

5

exchange scheme, like the Diffie-Hellman protocol [6] with the first message ga
and the second message gb. In the main body of this paper, this KE is accom-
plished by a KEM scheme with the pseudo-random KEM public key p̃k as the
first message and the pseudo-random ciphertext ψ as the second message.

The anamorphic algorithms (aGen, aInit, aDerR, aDerI) of AM-AKE scheme
are almost the same as the normal ones, except that KE’s two messages ga and
gb are used for the (partial) randomnesses to generate AKE’s two anamorphic
messages amsgi, amsgr:

amsgi ← Init(ga| · · ·︸ ︷︷ ︸
randomness

), (amsgr,Kr)← DerR(amsgi; gb| · · ·︸ ︷︷ ︸
randomness

),

where the public key and secret key are omitted from the input for simplicity.
If Init and DerR are partially randomness-recoverable, which means there are

recovering algorithms for Pi and Pr to recover ga and gb from amsgi and amsgr,
respectively, then the double key dk := gab is shared between Pi and Pr.

For passive attacks from the dictator, the uniformity of ga and gb guarantees
the (statistical) indistinguishability between normal algorithm Init and anamor-
phic algorithm aInit, and the (statistical) indistinguishability between DerR and
aDerR. Meanwhile, the DDH assumption guarantees the pseudo-randomness of
dk, even if the dictator obtains both Pi and Pr’s secret key and even the under-
lying randomness (ga| · · ·) and (gb| · · ·).

The initiator-robustness can be achieved if we replace randomness (gb| · · ·)
with (gb|σ := PRF(gab, amsgi)| · · ·) and set dk := PRF(gab, amsgi|amsgr) with
the help of a PRF. In this case Pi is able to tell the working mode of Pr by
testing whether σ = PRF(gab, amsgi).

In fact, lots of AKE constructions support the partially randomness-recoverable
property. For example, in AKE under the SIG+KEM paradigm [19] and that un-
der the three-KEM paradigm [20], the underlying SIG and KEM have instanti-
ations with randomness-recoverable property [3,2,18,9]. Accordingly, such AKE
admits AM-AKE schemes with initiator-robustness and relaxed security.

Generic Construction of Robust AM-AKE with Strong Security. To
achieve (strong) IND-WM and PR-DK security and bypass the impossibility re-
sults, we allow the anamorphic key generation algorithm (apk, ask, aux)← aGen
of AM-AKE outputs a related auxiliary trapdoor aux along with the anamorphic
key-pair (apk, ask). The auxiliary message aux is only kept privately by the party
who generates it and does not need to share it with others.

To construct such AM-AKE, we require new properties for the two-pass AKE
scheme AKE = (Gen, Init,DerR,DerI), where Gen has secret extractability, and Init
and DerR have separable sub-algorithms.

Roughly speaking, secret extractability of Gen asks a simulating key genera-
tion algorithm SimGen and a secret extracting algorithm Extract satisfying the
following properties.

• SimGen outputs not only a key-pair (pk, sk) that is indistinguishable to the
output of Gen, but also a master key msk serving as the auxiliary trapdoor.

6

• Extract(mski, pkr) = s = Extract(mskr, pki) for all (pki, ski,mski) ← SimGen
and (pkr, skr,mskr) ← SimGen. The extracting algorithm can extract a se-
cret s from one party’s master key and the other party’s public key and make
sure that two parties can compute the same secret s = Extract(mski, pkr) =
Extract(mskr, pki). The extracted secret s is pseudo-random even in the pres-
ence of ski and skr.

Double Key Generation. Now let SimGen play the role of aGen to generate
the anamorphic key-pair (apk, ask) and the auxiliary trapdoor aux := msk. Then
Pi and Pr use their key-pairs to run the AKE protocol and obtain the two pass
messages (msgi,msgr). At the same time, they can use Extract to compute a
common secret s = Extract(mski, pkr) = Extract(mskr, pki), and then use s as
the seed of PRF to compute the double key

dki = PRF(s, (amsgi, amsgr)) = dkr.

Achieving Robustness. To achieve robustness, Pi and Pr need to decide the
working mode of each other. Our method is that the party invoking anamorphic
algorithms provides a proof and embeds the proof in the message, and the other
party extracts the proof from the message and verifies the proof. If the proof is
valid, then the other party validates its double key and achieves its robustness.

Let us work on responder-robustness first. We require that the normal algo-
rithm Init can be divided into three sub-algorithms (fI,1, fI,2, Init) which com-
putes the three parts of msgi = (mi,1,mi,2,mi,3) respectively. Here fI,1, fI,2
make use of independent randomness di,1, di,2 to compute mi,1 := fI,1(di,1)
and mi,2 := fI,2(di,2), and Init uses independently chosen randomness di,3 to
compute mi,3 := Init(di,1, di,2, di,3) together with di,1, di,2. This is captured by
the 3-separability of Init.

If Pi invokes anamorphic algorithm aInit, then Pi can prove it by embedding
the PRF value PRF(s,mi,1) in di,2. Then the anamorphic aInit works as follows.

• amsgi = (mi,1,mi,2,mi,3)← aInit : mi,1 := fI,1(di,1),

mi,2 := fI,2(di,2 = PRF(s,mi,1)), (mi,3, st)← Init(di,1, di,2, di,3).

Next, upon receiving amsgi, Pr can check whether mi,2 = fI,2(PRF(s,mi,1)). If
yes, Pi must have invoked anamorphic algorithm aInit, and Pr will invoke aDerR
to output amsgr and accept its double key dkr = PRF(s, (amsgi, amsgr)), other-
wise invalidate it with dkr := ⊥. Note that in the normal mode, a uniform di,2
hardly collides with PRF(s,mi,1). We further require that fI,2 returns different
outputs on different inputs, which is captured with entropy-preserving property.
Then mi,2 := fI,2(di,2) with uniform di,2 hardly collides with fI,2(PRF(s,mi,1)).
So Pr can always correctly decide whether Pr invokes normal algorithm Init or
anamorphic algorithm aInit, and hence achieve responder-robustness.

In the same way, we can achieve initiator-robustness by requiring that the
normal algorithm DerR has 3-separability with sub-algorithms (fR,1, fR,2,DerR)
computing msgr = (mr,1,mr,2,mr,3) and fR,2 has the property of entropy-
preserving. More precisely, if Pr invokes anamorphic algorithm aDerR, then Pr

7

can prove this fact by embedding the PRF value PRF(s, (mi,1,mr,1)) in dr,2.
Consequently, the anamorphic aDerR works as follows.

• amsgr = (mr,1,mr,2,mr,3)← aDerR(amsgi) : mr,1 := fR,1(dr,1),

mr,2 := fR,2(dr,2 = PRF(s, (mi,1,mr,1))), (mr,3,Kr)← DerR(amsgi, dr,1, dr,2, dr,3).

Then upon receiving amsgr, Pi can check whethermr,2 = fR,2(PRF(s, (mi,1,mr,1))).
If yes, Pr must work in anamorphic mode, and Pi will accept its double key
dki = PRF(s, (amsgi, amsgr)), otherwise invalidate it with dki := ⊥. Meanwhile,
Pi also computes the session key with Ki ← DerI(apkr, aski, amsgr, st). Here the
anamorphic aDerI is exactly the normal DerI. With a similar analysis as above,
we have initiator-robustness.
Achieving Strong Security of IND-WM and PR-DK. We note that the
dictator does not know the auxiliary trapdoors mski,mskr, and hence the ex-
tracted secret s is pseudo-random even if the dictator obtains the key-pairs
(apki, aski) and (apkr, askr).

Let us first consider strong IND-WM security. The difference between the
normal algorithm Init and the anamorphic aInit lies in that a random di,2 ←$ DI,2

is used in Init while a PRF value di,2 := PRF(s, fI,1(di,1)) with di,1 ←$ DI,1 is
used in aInit.

Now we require fI,1 have the property of entropy-preserving, so different in-
puts to fI,1 will lead to different outputs overwhelmingly. Accordingly, every in-
vocation of aInit will result in fresh di,1 and thus fresh fI,1(di,1). Furthermore, the
freshness of fI,1(di,1) makes sure that di,2 := PRF(s, fI,1(di,1)) is pseudo-random
and indistinguishable to di,2 ←$ DI,2 used in Init. Therefore, Pi’s invoking Init
or invoking aInit is indistinguishable to the dictator who knows the secret keys
aski, askr and even the randomness (di,1, di,2, di,3), and does active attacks with
aski, askr.

By requiring entropy-preserving property for fR,1, we have a similar argument
showing that Pr’s invoking DerR or invoking aDerR is indistinguishable to the
dictator. We stress that the extracted secret s is pseudo-random to the dictator
and the dictator’s active attacks with message m to aDerR does not help it to
distinguish whether dr,2 = PRF(s, fR,1(dr,1)) or dr,2 ←$ DR,2 due to the freshness
of fI,1(dr,1) and the security of PRF.

Together with the fact that DerI = aDerI, we know that the AM-AKE has
strong indistinguishability of working mode (strong IND-WM) against the dic-
tator. Here “strong” is reflected in that the dictator is able to implement active
attacks with secret keys aski, askr and also able to obtain the randomness like
(di,1, di,2, di,3) and (dr,1, dr,2, dr,3).

As for strong PR-DK security, we first consider the dictator’s passive attacks,
the pseudo-randomness dk = PRF(s, (amsgi, amsgr)) is indistinguishable to a
random key dk ←$ DK, thanks to the freshness of (amsgi, amsgr) from the
entropy-preserving property of fI,1, fI,2, fR,1, fR,2. Next we consider the dictator’s
active attacks with message m. There are two cases.
(1) This m leads to an invalid double key dk = ⊥ (but without s, the dictator

does not realize dk = ⊥) due to di,2 ̸= PRF(s,mi,1) or dr,2 ̸= PRF(s, (mi,1,mr,1)).

8

(2) If di,2 = PRF(s,mi,1), then dk = PRF(s, (m, amsgr)) is a valid one, but is still
pseudo-random due to the freshness of amsgr generated by aDerR. Similarly,
if dr,2 = PRF(s, (mi,1,mr,1)), then dk = PRF(s, (amsgi,m)) is a valid one,
but is still pseudo-random due to the freshness of amsgi generated by aInit.

Clearly, the pseudo-randomness of valid dk holds even if the dictator additionally
knows the randomness like (di,1, di,2, di,3) and (dr,1, dr,2, dr,3). This yields strong
PR-DK security.

1.3 Related Works
Anamorphic Cryptography. The notion of anamorphic encryption was pro-
posed in [22]. Later works in [15,1,16,26,5] improved and extended this notion in
different aspects. To be specific, more approaches to receiver-AME are provided
in [16,1]. The work in [1] decouples the generation of the anamorphic key-pair
and the double key, and also proposes the notion of robustness for AME. Sender-
AME was considered and specific constructions of robust sender-AME were pre-
sented in [26]. In [5], anamorphism is associated to homomorphic encryption,
and the double key is dismantled with a public part and a secret part. In [15],
anamorphism algorithms were extended to anamorphic signature.
Steganographic Key Exchange. Steganographic key exchange was firstly pro-
posed in [25]. It aims to share a pseudo-random covert key by exchanging a
sequence of seemingly normal messages. However, it only considered weak secu-
rity where the adversary only implements passive attacks. Later, [12] proposed
stronger requirement that permits the adversary to obtain the secret keys of
parties. Nevertheless, steganographic key exchange does not allow active attacks
in the security model, and hence much weaker than the security notions of AM-
AKE defined in our paper.

2 Preliminary

Let κ ∈ N denote the security parameter and let pp denote the public parameter
throughout the paper, and all algorithms, distributions, functions and adver-
saries take 1κ and pp as implicit inputs. For N ∈ N, define [N] = {1, 2, . . . , N}.
If x is defined by y or the value of y is assigned to x, we write x := y. For a set X ,
denote by |X | the number of elements in X , and denote by x←$ X the procedure
of sampling x from X uniformly at random. If D is distribution, x←$ D means
that x is sampled according to D. For an algorithm A, let y ← A(x; r) or simply
y ← A(x) denote running A with input x and randomness r and assigning the
output to y. “PPT” abbreviates probabilistic polynomial-time. Denote by poly
some polynomial function and negl some negligible function in κ. Let ⊥ denote
the empty string/set, and all variables in our experiments are initialized to ⊥.

Due to space limitations, we present the definitions of pseudo-random func-
tion (PRF), digital signature (SIG) and its EUF-CMA security, key encapsulation
mechanism (KEM) and its IND-CPA security, two-pass authenticated key ex-
change (AKE) and the DDH assumption in Appendix A.

9

3 Anamorphic Authenticated Key Exchange

In this section, we present the syntax of anamorphic authenticated key exchange
(AM-AKE), propose its robustness requirements, and define its security models.
We also establish three impossibility results for plain AM-AKE, and define its
relaxed security models.

3.1 Syntax of AM-AKE

Definition 1 ((Plain) Anamorphic Authenticated Key Exchange). A
two-pass authenticated key exchange scheme AKE = (Gen, Init,DerR,DerI) is
called an AM-AKE scheme if there exists a corresponding anamorphic version
of algorithms (aGen, aInit, aDerR, aDerI) with syntax defined below.

• (apk, ask, aux)← aGen: The anamorphic key generation algorithm generates
a pair of anamorphic public/secret keys (apk, ask) as well as an auxiliary
message aux for storing extra secret information.

• (amsgi, st, aux
′
i) ← aInit(apkr, aski, auxi): The anamorphic initialization al-

gorithm takes an anamorphic public key apkr of a responder (say Pr), an
anamorphic secret key aski and an initiated auxiliary message auxi of an
initiator (say Pi) as input, and outputs a message amsgi, a state st and an
updated auxiliary message aux′i for Pi.

• (amsgr,Kr, dkr) ← aDerR(apki, askr, auxr, amsgi): The derivation algorithm
for the responder takes an anamorphic public key apki of the initiator Pi, an
anamorphic secret key askr and an initiated auxiliary message auxr of the
responder Pr, and a message amsgi as input, and outputs a message amsgr,
a session key Kr and a double key dkr for Pr.

• (Ki, dki)← aDerI(apkr, aski, aux
′
i, amsgr, st): The deterministic derivation al-

gorithm for the initiator takes an anamorphic public key apkr of the respon-
der Pr, an anamorphic secret key aski and an updated auxiliary message aux′i
of the initiator Pi, a message amsgr and a state st as input, and outputs a
session key Ki and a double key dki for Pi.

Then the AM-AKE scheme is denoted by AM-AKE = ((Gen, Init,DerR,DerI),
(aGen, aInit, aDerR, aDerI)) where (Gen, Init,DerR,DerI) are called normal algo-
rithms while (aGen, aInit, aDerR, aDerI) are called anamorphic algorithms.

If aux = ⊥ or aux is generated independent of (apk, ask) in (apk, ask, aux)←
aGen, we call AM-AKE is a plain AM-AKE.

An execution of an AM-AKE scheme AM-AKE is shown in Fig. 1. Any party
can choose normal or anamorphic algorithms to run the AKE protocol, resulting
in different working modes.

Working Modes of AM-AKE and Correctness Requirements. AM-AKE
may work in the following three modes.

10

Setup PhaseParty Pi Party Pr

(pki, ski)← Gen

(pki, ski, auxi)← aGen

apki := pki, aski := ski
publish apki

(pkr, skr)← Gen

(pkr, skr, auxr)← aGen

apkr := pkr, askr := skr
publish apkr

ExecutionParty Pi(apki, aski, auxi) Party Pr(apkr, askr, auxr)

(msgi, st)← Init(apkr, aski)

(amsgi, st, aux
′
i)← aInit(apkr, aski, auxi)

msgi amsgi

(msgr,Kr)← DerR(apki, askr,msgi)

(amsgr,Kr, dkr)← aDerR(apki, askr, auxr, amsgi)msgr amsgr

Ki ← DerI(apkr, aski,msgr, st)

(Ki, dki)← aDerI(apkr, aski, aux
′
i, amsgr, st)

st, aux′i

Fig. 1. The normal algorithms (with dotted boxes) and the anamorphic algorithms
(with gray boxes) of AM-AKE.

• Normal Mode. Both Pi and Pr invoke normal algorithms, i.e., executing
the AKE protocol with (Init,DerR,DerI). But in the protocol execution, Pi

may use either a normal key-pair (pki, ski) generated by Gen or an anamor-
phic key-pair (apki, aski) generated by aGen, and so does Pr.

• Anamorphic Mode. Both Pi and Pr invoke anamorphic algorithms, i.e.,
executing the protocol with (aInit, aDerR, aDerI), where both Pi and Pr have
anamorphic keys (apki, aski, auxi), (apkr, askr, auxr) generated by aGen.

• Half Mode. One party invokes normal algorithms while the other invokes
anamorphic algorithms. There are two cases described below.

– Case I. Pi invokes anamorphic algorithms (aInit, aDerI) with its anamor-
phic keys (apki, aski, auxi), while Pr invokes normal algorithm DerR with
either normal key-pair (pkr, skr) or anamorphic key-pair (apkr, askr). In
this case, Pi and Pr execute the protocol with (aInit,DerR, aDerI).

– Case II. Pi invokes normal algorithms (Init,DerI) with either normal
key-pair (pki, ski) or anamorphic key-pair (apki, aski), while Pr invokes
anamorphic algorithm aDerR with its anamorphic keys (apkr, askr, auxr).
In this case, Pi and Pr execute the protocol with (Init, aDerR,DerI).

For each of the above three working modes, Pi and Pr should derive the same
session key Ki = Kr. Meanwhile, in the anamorphic mode, they should also
derive the same double key dki = dkr besides the same session key.

Moreover, AM-AKE always considers adversaries(dictators) who has already
obtained secret keys ski/aski and skr/askr from users, the state st from the ini-
tiator, and the derived session keys Ki,Kr from both initiator and responder.
Therefore, an adversary can always invoke DerI to obtain a session key K′

i. To
avoid the detection of using anamorphic algorithms in AM-AKE, a basic re-
quirement is that DerI and aDerI results in the same session key K′

i = Ki. These
capture the correctness of AM-AKE. For completeness, we provide the formal

11

definition of correctness in Appendix B.1. We also refer to Table 1 for a summary
of correctness requirements in different working modes.

3.2 Robustness of AM-AKE

In practice, it is hard for Pi and Pr to agree on the working mode beforehand.
So it happens AM-AKE works in half mode: one party invokes normal algo-
rithms while the other invokes anamorphic algorithms. Accordingly, Pi and Pr

can hardly agree on consistent double keys, so it is desirable for a party P in-
voking anamorphic algorithms to detect this issue and invalidate its double key
by setting dk = ⊥. This is captured by robustness of AM-AKE.

Roughly speaking, robustness of AM-AKE requires that in the half mode,
except for the correctness of Ki = Kr, the party invoking anamorphic algorithms
can detect the half mode of AKE and hence set its double key dk := ⊥. According
to whether the party is the initiator or the responder, we respectively define
initiator-robustness and responder-robustness as follows.

Definition 2 (Initiator-Robustness). AM-AKE is called initiator-robust, if
for any (apki, aski, auxi) ← aGen, and for any (pkr, skr) := (pkr, skr) generated
by Gen or (pkr, skr) := (apkr, askr) generated by aGen, we have

Pr

dki = ⊥
∣∣∣∣∣∣
(amsgi, st, aux

′
i)← aInit(pkr, aski, auxi)

(msgr,Kr)← DerR(apki, skr, amsgi)

(Ki, dki)← aDerI(pkr, aski, aux
′
i,msgr, st)

 ≥ 1− negl(κ).

Definition 3 (Responder-Robustness). AM-AKE is called responder-robust,
if for any (apkr, askr, auxr)← aGen, and for any (pki, ski) := (pki, ski) generated
by Gen or (pki, ski) := (apki, aski) generated by aGen, we have

Pr

dkr = ⊥

∣∣∣∣∣∣
(msgi, st)← Init(apkr, ski)

(amsgr,Kr, dkr)← aDerR(pki, askr, auxr,msgi)

Ki ← DerI(apkr, ski, amsgr, st)

 ≥ 1− negl(κ).

We stress that robustness is important for an AM-AKE scheme, because it’s
meaningless for a party to derive an un-agreed double key without the other
party realizing it. Indeed, using un-agreed double key in the later anamorphic
encryption/signature schemes has no effect at all.

For better illustration, we list all working modes of AM-AKE and the corre-
sponding correctness and robustness requirements in Table 1.

3.3 Security Model for AM-AKE

In this subsection, we introduce the security models for AM-AKE. To this end,
we need to capture the dictator(government)’s demands and behaviors to for-
malize the adversary. We consider the setting of multiple parties. In practice, the
dictator may force every party involved in AM-AKE to surrender their secret

12

Working Mode Algorithms invoked by Correctness Robustness
of AM-AKE Pi Pr Init-Rob. Resp-Rob.

Normal Normal Normal Ki = Kr − −

Half Normal Anamorphic Ki = Kr − dkr = ⊥
Anamorphic Normal Ki = Kr = K′

i dki = ⊥ −
Anamorphic Anamorphic Anamorphic Ki = Kr = K′

i ∧ dki = dkr − −

Table 1. Working modes of AM-AKE and the corresponding correctness and robust-
ness requirements. In column Algorithms invoked by, it indicates the type of al-
gorithms invoked by Pi and Pr. In column Correctness, it shows the correctness
requirements, where Ki and dki (resp., Kr and dkr) denote the session key and double
key derived by Pi (resp., Pr), and K′

i denotes the session key derived from DerI when
Pi invokes anamorphic algorithms. In column Robustness, it shows the robustness
requirements, where Init-Rob./Resp-Rob. denotes Initiator-Robustness/Responder-
Robustness and “−” means no requirement.

keys, and reveal the session keys along with the state of the initiator in any
completed AM-AKE session. Moreover, the dictator may impersonate any party
and conduct active attacks because it owns the secret keys of all parties.

Intuitively, the security for AM-AKE requires that such a dictator cannot
tell whether AM-AKE is working in the normal mode or in other modes. This is
called Indistinguishability of Working Modes (IND-WM). Moreover, the double
keys dk derived from the anamorphic mode will be used later by the anamorphic
public-key primitives. To guarantee the security of the anamorphic public-key
primitives, we have to require Pseudo-Randomness of Double Keys (PR-DK).

We also define the corresponding strong version of IND-WM and PR-DK by
allowing the dictator additionally receive the internal randomness that all parties
used in the seemingly benign AKE sessions, i.e., receiving the true randomness
when normal algorithms are invoked while receiving simulated randomness when
anamorphic algorithms are used. Especially, we require that there exists PPT
simulator Sim = (SimI, SimR), where SimI can explain a randomness R′

i used by
aInit as a randomness Ri of Init, and similarly, SimR can explain a randomness
R′

r used by aDerR as a randomness Rr of DerR.4 These result in strong IND-WM
and strong PR-DK, denoted by sIND-WM and sPR-DK respectively.

More precisely, we define the formal security models with the IND-WM/sIND-WM
experiments ExpIND-WM

AM-AKE,A,N/ExpsIND-WM
AM-AKE,A,Sim,N in Fig. 2 and the PR-DK/sPR-DK

experiments ExpPR-DK
AM-AKE,A,N/ExpsPR-DK

AM-AKE,A,Sim,N in Fig. 3. To be clearer, we ex-
plain the local variables used in these security experiments.

• sID : The identifier of a specific AKE session.
• init[sID] : The initiator of session sID.
• resp[sID] : The responder of session sID.
• modeI[sID] : The working mode of the initiator in session sID.
• Mout

I [sID]/M in
I [sID] : The message sent and received by the initiator in session sID.

• Mout
R [sID]/M in

R [sID] : The message sent and received by the responder in session sID.
• S[sID]: The state of the initiator in session sID.

4 Note that the (anamorphic) derivation algorithms DerI and aDerI for the initiator
are typically deterministic without using any randomness.

13

• Aux[sID]: The updated auxiliary message generated by the initiator in session sID.
• KI[sID] (resp., KR[sID]): The session key generated by the initiator (resp., responder) in

session sID.
• DK[sID,P ∈ {I,R}] : The double key generated by the initiator when P = I or by the

responder when P = R in session sID.
• DK : The key space of double keys.
• ONew(i, r) : The oracle establishes a new session for initiator Pi and responder Pr.
• OInit(sID) : The oracle invokes the initialization algorithm for session sID.
• ODerR(sID,m) : The oracle invokes the derivation algorithm with input message m for the

responder of session sID .
• ODerI(sID,m) : The oracle invokes the derivation algorithm with input message m for the

initiator of session sID.
• OTestDK(sID,P ∈ {I,R}) : The oracle provides either the double key generated by P of

session sID or a random string. Note that this oracle can be invoked only once for each
session to avoid trivial attack.

ExpIND-WM
AM-AKE,A,N / ExpsIND-WM

AM-AKE,A,Sim,N /

Exprelaxed-IND-WM
AM-AKE,A,Sim,N / Exprelaxed-sIND-WM

AM-AKE,A,Sim,N :

b←$ {0, 1}
cnt := 0 //session counter
for n ∈ [N] : (apkn, askn, auxn)← aGen
b′ ← AOWM(apk1, . . . , apkN , ask1, ..., askN)
return b′ = b

ONew(i, r):
if i /∈ [N] or r /∈ [N] or i = r : return ⊥
cnt++
sID := cnt
init[sID] := i; resp[sID] := r
return sID

OInit(sID,wI ∈ {N,A}):
if init[sID] = ⊥ : return ⊥//session not established
if M out

I [sID] ̸= ⊥ : return ⊥ //no re-use
(i, r) := (init[sID], resp[sID])
if b = 0 : //normal working mode

(msgi, st)← Init(apkr, aski; Ri)

if b = 1 : //working mode specified by A
if wI = N :

(msgi, st)← Init(apkr, aski; Ri)

if wI = A :

(msgi, st, aux
′
i)← aInit(apkr, aski, auxi; R

′
i)

Aux[sID] := aux′i

Ri ← SimI(apkr, aski, auxi, R
′
i)

modeI[sID] := wI

M out
I [sID] := msgi

S[sID] := st

return (msgi, st, Ri)

ODerR(sID,m,wR ∈ {N,A}):
if M out

I [sID] = ⊥ : return ⊥ //initiator not invoked
if M out

R [sID] ̸= ⊥ : return ⊥ //no re-use
if m ̸=M out

I [sID] ∧ wR = A : return ⊥ //active attack
(i, r) := (init[sID], resp[sID])
if b = 0 : //normal working mode

(msgr,Kr)← DerR(apki, askr,m; Rr)

if b = 1 : //working mode specified by A
if wR = N :

(msgr,Kr)← DerR(apki, askr,m; Rr)

if wR = A :

(msgr,Kr, dkr)← aDerR(apki, askr, auxr,m; R′
r)

Rr ← SimR(apki, askr, auxr,m,R
′
r)

KR[sID] := Kr

M out
R [sID] := msgr

return (msgr,Kr, Rr)

ODerI(sID,m):
if M out

R [sID] = ⊥ : return ⊥ //responder not invoked
if KI[sID] ̸= ⊥ : return ⊥ //no re-use
(i, r) := (init[sID], resp[sID])
wI := modeI[sID]
st := S[sID]
if b = 0 : //normal working mode

Ki ← DerI(apkr, aski,m, st)
if b = 1 : //working mode specified by A

if wI = N :
Ki ← DerI(apkr, aski,m, st)

if wI = A :
aux′i := Aux[sID]
(Ki, dki)← aDerI(apkr, aski, aux

′
i,m, st)

KI[sID] := Ki

return Ki

Fig. 2. Security experiments for defining IND-WM (without gray and dotted boxes)
and sIND-WM (with gray boxes) of AM-AKE, and experiments for defining

relaxed IND-WM (with dotted boxes) and relaxed sIND-WM (with both gray and

dotted boxes) of plain AM-AKE, where OWM := {ONew,OInit,ODerR,ODerI}. Here Ri ,
R′

i , Rr and R′
r are uniformly sampled from the corresponding randomness spaces.

14

ExpPR-DK
AM-AKE,A,N / ExpsPR-DK

AM-AKE,A,Sim,N /

Exprelaxed-PR-DK
AM-AKE,A,Sim,N / Exprelaxed-sPR-DK

AM-AKE,A,Sim,N :

b←$ {0, 1}
cnt := 0 //session counter
for n ∈ [N] :

(apkn, askn, auxn)← aGen
b′ ← AOPRD(apk1, . . . , apkN , ask1, ..., askN)
return b′ = b

ONew(i, r):
if i /∈ [N] or r /∈ [N] or i = r :

return ⊥
cnt++
sID := cnt
init[sID] := i
resp[sID] := r
return sID

OInit(sID):
if init[sID] = ⊥ : //session not established

return ⊥
if M out

I [sID] ̸= ⊥ : //no re-use
return ⊥

(i, r) := (init[sID], resp[sID])
(amsgi, st, aux

′
i)← aInit(apkr, aski, auxi; R

′
i)

Ri ← SimI(apkr, aski, auxi, R
′
i)

M out
I [sID] := amsgi

S[sID] := st
Aux[sID] := aux′i
return (amsgi, st, Ri)

ODerR(sID,m):
if M out

I [sID] = ⊥ : return ⊥ //initiator not invoked
if M out

R [sID] ̸= ⊥ : return ⊥ //no re-use
if m ̸=M out

I [sID] : return ⊥ //active attack
(i, r) := (init[sID], resp[sID])
(amsgr,Kr, dkr)← aDerR(apki, askr, auxr,m; R′

r)

Rr ← SimR(apki, askr, auxr,m,R
′
r)

M in
R [sID] := m; M out

R [sID] := amsgr
DK[sID,R] := dkr

return (amsgr,Kr, Rr)

ODerI(sID,m):
if M out

R [sID] = ⊥ : return ⊥ //responder not invoked
if KI[sID] ̸= ⊥ : return ⊥ //no re-use
if m ̸=M out

R [sID] : return ⊥ //active attack
(i, r) := (init[sID], resp[sID])
st := S[sID]
aux′i := Aux[sID]
(Ki, dki)← aDerI(apkr, aski, aux

′
i,m, st)

M in
I [sID] := m

DK[sID, I] := dki
return Ki

OTestDK(sID,P ∈ {I,R}):
if DK[sID,P] = ⊥ : return ⊥ //dk not generated or invalid
if ∃(sID∗,P) ∈M[sID,P] and test[sID∗,P] = 1

return ⊥ //trivial attack
test[sID,P] := 1
if b = 1 :

return DK[sID,P]
else :

return d←$ DK

Fig. 3. Security experiments for defining PR-DK (without gray and dotted boxes) and
sPR-DK (with gray boxes) of AM-AKE, and experiments for defining relaxed PR-DK

(with dotted boxes) and relaxed sPR-DK (with both gray and dotted boxes) of plain

AM-AKE, where OPRD := {ONew,OInit,ODerR,ODerR,OTestDK}. Here R′
i and R′

r are
uniformly sampled from the corresponding randomness spaces.

Especially, to formalize the IND-WM/sIND-WM security, we first require that
the normal key-pair (pk, sk) generated by Gen and the anamorphic key-pair
(apk, ask) generated by aGen are computationally indistinguishable, and then
we can choose the keys of all parties via aGen. During the experiments (cf. Fig.
2), the adversary is allowed to designate the working modes of the initiator and
the responder by providing additionally variables wI,wR ∈ {N,A} to oraclesOInit

and ODerR, respectively. The adversary is asked to tell whether the oracles run
the protocols in the normal modes or in the modes specified by the adversary.

As for the PR-DK/sPR-DK security (cf. Fig. 3), all parties work in the
anamorphic modes, and the adversary is asked to distinguish real double keys
dk from uniformly chosen keys via a OTestDK oracle. To avoid trivial attacks,
we define the notion of matching sessions as follows, and we require that the
adversary cannot test the double keys of matching sessions.

Definition 4 (Matching Sessions). For two sessions sID, sID∗ and two par-
ties P,P ∈ {I,R}, we say (sID,P) and (sID∗,P) match, if the same parties are

15

involved (i.e., init[sID], resp[sID]) = (init[sID∗], resp[sID∗])), the messages sent
and received are the same (i.e., (M in

P [sID],Mout
P [sID]) = (Mout

P
[sID∗],M in

P
[sID∗])),

and the parties are of different type (i.e., P = {I,R}\P). In particular, we define

M[sID,P] :=

{
(sID∗,P)

∣∣∣∣ (init[sID], resp[sID]) = (init[sID∗], resp[sID∗]) ∧ P = {I,R} \ P
∧ (M in

P [sID],Mout
P [sID]) = (Mout

P
[sID∗],M in

P
[sID∗])

}
as the set of matching sessions with (sID,P).

Now we are ready to present the formal definition of the security of AM-AKE.

Definition 5 (Security of AM-AKE). The security of AM-AKE contains in-
distinguishability of working modes (IND-WM) and pseudo-randomness of double
keys (PR-DK).

– Indistinguishability of Working Modes (IND-WM). For any PPT ad-
versary A and any N = poly(κ), it holds that

∣∣Pr[A(pk, sk) = 1]−Pr[A(apk,
ask) = 1]

∣∣ ≤ negl(κ), where (pk, sk)← Gen and (apk, ask, aux)← aGen, and∣∣Pr [ExpIND-WM
AM-AKE,A,N = 1

]
− 1

2

∣∣ ≤ negl(κ). (1)

– Pseudo-Randomness of Double Keys (PR-DK). For any PPT adversary
A and any N = poly(κ), it holds that∣∣Pr [ExpPR-DK

AM-AKE,A,N = 1
]
− 1

2

∣∣ ≤ negl(κ). (2)

The strong security of AM-AKE includes strong indistinguishability of work-
ing modes (sIND-WM) and strong pseudo-randomness of double keys (sPR-DK),
which require that there exists PPT simulator Sim = (SimI, SimR) such that the
above (1) and (2) hold for ExpsIND-WM

AM-AKE,A,Sim,N and ExpsPR-DK
AM-AKE,A,Sim,N experiments.

3.4 Impossibility Results and Relaxed Security for Plain AM-AKE

In this subsection, we show three impossibility results for (two-pass) plain AM-
AKE, and then define proper relaxed security to circumvent the impossibility
results. More precisely, we show the impossibility results via the following three
theorems, whose formal proofs are postponed to Appendix B.2, and we refer to
Subsect. 1.2 for a high-level overview of the proofs. Roughly speaking, for a (two-
pass) plain AM-AKE, the adversary A holds both (apki, aski) and (apkr, askr),
and thus a null aux = ⊥ or independent aux does not offer any advantage to Pi

or Pr over A, and A is capable of doing whatever Pi or Pr can do.

Theorem 1. It is impossible for a two-pass plain AM-AKE scheme AM-AKE
to achieve responder-robustness.

Theorem 2. If a plain AM-AKE scheme AM-AKE is initiator-robust, then it
is impossible for AM-AKE to achieve the IND-WM/sIND-WM security.

16

Theorem 3. It is impossible for a plain AM-AKE scheme AM-AKE to achieve
the PR-DK/sPR-DK security.

To circumvent the above impossibility results for plain AM-AKE, we weaken
the IND-WM/sIND-WM security and PR-DK/sPR-DK security, by restricting
the active attacks by adversary. More precisely, we disallow the adversary to
query ODerR(sID,m,wR = A) with its own messages m when wR = A in the
IND-WM/sIND-WM experiments, and disallow the adversary to queryODerR(sID,m)
and ODerI(sID,m) with its own messages m in the PR-DK/sPR-DK experiments,
respectively. These yield relaxed IND-WM/sIND-WM and relaxed PR-DK/sPR-DK
securities, with experiments shown in Fig. 2 and Fig. 3 with dashed boxes .

Definition 6 (Relaxed Security of Plain AM-AKE). The relaxed security
of plain AM-AKE contains relaxed IND-WM/sIND-WM and relaxed PR-DK/sPR-DK,
which are defined the same as those (non-relaxed versions) of AM-AKE in Def. 5,
except that the experiments are replaced by the Exprelaxed-IND-WM

AM-AKE,A,Sim,N / Exprelaxed-sIND-WM
AM-AKE,A,Sim,N /

Exprelaxed-PR-DK
AM-AKE,A,Sim,N / Exprelaxed-sPR-DK

AM-AKE,A,Sim,N in Fig. 2 and Fig. 3, respectively.

In Appendix E, we present a generic construction of plain AM-AKE with
relaxed security, which not only achieves relaxed sIND-WM and relaxed sPR-DK
security, but also enjoys initiator-robustness. We also discuss how to achieve
responder-robustness by relying on more passes to evade the first impossibility
result. (See Subsect. 1.2 for a high-level overview of this plain AM-AKE construc-
tion and its security analysis.) Then in Appendix F, we show how to instantiate
the generic construction from the popular SIG+KEM and three-KEM paradigms
for constructing AKE and get the corresponding plain AM-AKE schemes.

4 Generic Construction of Robust & Strongly-Secure
AM-AKE from AKE

In this section, we present a generic construction of robust and strongly-secure
AM-AKE from a basic AKE with the help of a PRF. To make the construction
possible, the underlying AKE should be equipped with some new properties,
which are defined in Subsect. 4.1. We call such AKE as qualified AKE. Then we
show the generic construction in Subsect. 4.2 and present its security proof in
Subsect. 4.3.

4.1 New Properties for Functions and Algorithms

To characterize the conditions on the basic AKE scheme, in this subsection, we
first define three new properties for general functions and algorithms. Roughly
speaking, the entropy-preserving property of a function asks the function out-
put to have negligible guessing probability on uniformly random input. The η-
separable property of an algorithm means that the first η−1 parts of the output

17

can be computed publicly and in a way independent of the input. The secret ex-
tractability of a key generation algorithm Gen requires that the key-pair (pk, sk)
from Gen can be perfectly simulated by an algorithm SimGen which additionally
outputs a master key msk, and it enables the extraction of a pseudo-random
secret s from msk and pk′ of another party via an algorithm Extract.

Definition 7 (Entropy-Preserving Function). A function f : X → Y is
entropy-preserving, if for any y ∈ Y, it holds Pr [f(x) = y |x←$ X] ≤ negl(κ).

Definition 8 (η-Separable Algorithm). Let η ∈ N, and let (y, z) ← Alg(x)
be a PPT algorithm which inputs x and outputs (y, z). We say that Alg is η-
separable for generating y if Alg can be implemented with (f1, . . . , fη−1,Alg) as
follows, where fj : Dj → {0, 1}∗ is a publicly and efficiently computable function
for j ∈ [η − 1], and Alg is a PPT algorithm.

• (y, z)← Alg(x): For j ∈ [η− 1], sample dj ←$ Dj and compute mj := fj(dj);
invoke (mη, z)← Alg(x, d1, . . . , dη−1); output y := (m1, . . . ,mη) and z.

Definition 9 (Secret Extractability of Gen). Let Gen be a key generation
algorithm that outputs (pk, sk).5 We say Gen supports secret extractability if there
exist two PPT algorithms SimGen and Extract satisfying the following properties.

• (pk, sk,msk) ← SimGen : it is a simulated key generation algorithm that
outputs a simulated key-pair (pk, sk) together with a master key msk.

• s← Extract(mski, pkr) : it is a deterministic extracting algorithm that takes
a master key mski and a public key pkr as input, and outputs a secret s ∈ DE.

Identically Distributed Key-Pairs. The simulated key-pair has the same dis-
tribution as the normal pair, i.e., the following two distributions are identical:

{(pk, sk) | (pk, sk)← Gen} ≡ {(pk, sk) | (pk, sk,msk)← SimGen}.

Extracting Correctness. For any (pki, ski,mski)← SimGen and (pkr, skr,
mskr)← SimGen, it holds that Extract(mski, pkr) = Extract(mskr, pki).

Pseudo-Randomness of the Extracting. For any PPT adversary A, we have

AdvPR-Ext
Gen,A (κ) :=

∣∣Pr [A(pki, pkr, ski, skr, s0) = 1
]
− Pr

[
A(pki, pkr, ski, skr, s1) = 1

]∣∣ ≤ negl(κ),

where (pki, ski,mski)← SimGen, (pkr, skr,mskr)← SimGen, s0 := Extract(mski,
pkr), and s1 ←$ DE.

Based on the three new properties, we are ready to describe the requirements
on the basic AKE and present the generic construction of AM-AKE from it.
5 Gen can be the key generation algorithm of any public-key primitive, like AKE, SIG,

KEM, etc.

18

4.2 Construction of AM-AKE from AKE and PRF

Let AKE = (Gen, Init,DerR,DerI) be a two-pass AKE scheme that satisfies:

– Gen has secret extractability, supported by algorithms (SimGen,Extract) and
secret space DE as per Def. 9;

– Init is 3-separable for generating msgi, supported by (fI,1, fI,2, Init) as per
Def. 8, i.e., Init(pkr, ski) generates (msgi, st) by sampling di,1 ←$ DI,1, di,2 ←$

DI,2, computing mi,1 := fI,1(di,1), mi,2 := fI,2(di,2), invoking (mi,3, st) ←
Init(pkr, ski, di,1, di,2), and setting msgi := (mi,1,mi,2,mi,3);

– DerR is 3-separable for generating msgr, supported by (fR,1, fR,2,DerR) as
per Def. 8, i.e., DerR(pki, skr,msgi) generates (msgr,Kr) by sampling dr,1 ←$

DR,1,dr,2 ←$ DR,2, computing mr,1 := fR,1(dr,1), mr,2 := fR,2(dr,2), invoking
(mr,3,Kr)← DerR(pki, skr,msgi, dr,1, dr,2), and setting msgr := (mr,1,mr,2,mr,3);

– The functions fI,1, fI,2, fR,1, fR,2 associated with Init and DerR are entropy-
preserving as per Def. 7.

We call such AKE as qualified AKE, with requirements summarized in Table 2.
Moreover, let PRF : DE × {0, 1}∗ −→ DI,2 ×DR,2 × {0, 1}κ be a pseudo-random
function. For ease of exposition, we parse the output of PRF as three parts, i.e.,
PRFI/PRFR/PRFD : DE × {0, 1}∗ −→ DI,2/DR,2/{0, 1}κ, such that PRF(s,m) =
(PRFI(s,m), PRFR(s,m),PRFD(s,m)) for all s ∈ DE, m ∈ {0, 1}∗.

Qualified AKE Gen Init DerR

Requirements secret extractability 3-separable for msgi with 3-separable for msgr with
entropy-preserving fI,1, fI,2 entropy-preserving fR,1, fR,2

Supportive
Func./Alg. (SimGen,Extract) (fI,1, fI,2, Init) (fR,1, fR,2,DerR)

Table 2. Requirements for AKE = (Gen, Init,DerR,DerI) to be qualified for constructing
AM-AKE.

Now we convert AKE to an AM-AKE scheme AM-AKE = ((Gen, Init,DerR,DerI),
(aGen, aInit, aDerR, aDerI)) with the help of PRF, where the anamorphic algo-
rithms are described below. (See also Fig. 4 for an illustration of AM-AKE.)

• (apk, ask, aux)← aGen: it invokes the simulated key generation algorithm
(pk, sk,msk)← SimGen, and sets (apk, ask) := (pk, sk) and aux := msk.

• (amsgi, st, aux
′
i)← aInit(apkr, aski, auxi = mski): it first extracts a secret si :=

Extract(mski, apkr). Next it randomly chooses di,1 ←$ DI,1 and computes
mi,1 := fI,1(di,1). Then it computes di,2 := PRFI(si,mi,1) ∈ DI,2, mi,2 :=
fI,2(di,2), and invokes (mi,3, st)← Init(apkr, aski, di,1, di,2). Finally, it returns
(amsgi := (mi,1,mi,2,mi,3), st, aux

′
i := (si, amsgi)).

• (amsgr,Kr, dkr)← aDerR(apki, askr, auxr = mskr, amsgi = (mi,1,mi,2,mi,3)):
it first randomly chooses dr,1 ←$ DR,1 and computes mr,1 := fR,1(dr,1).
Next it extracts a secret sr := Extract(mskr, apki), and computes dr,2 :=
PRFR(sr, (mi,1,mr,1)) ∈ DR,2, mr,2 := fR,2(dr,2), invokes (mr,3,Kr)← DerR

19

(apki, askr, amsgi, dr,1, dr,2), and sets amsgr := (mr,1,mr,2,mr,3). Afterwards,
it checks whether mi,2 = fI,2(PRFI(sr,mi,1)) holds. If the check passes, then
it sets dkr := PRFD(sr, (amsgi, amsgr)) ∈ {0, 1}κ as the double key; other-
wise, it sets dkr := ⊥. Finally, it returns (amsgr,Kr, dkr).

• (Ki, dki)← aDerI(apkr, aski, aux
′
i = (si, amsgi), amsgr = (mr,1,mr,2,mr,3), st):

it first checks whether mr,2 = fR,2(PRFR(si, (mi,1,mr,1))) holds. If yes, it sets
dki := PRFD(si, (amsgi, amsgr)) ∈ {0, 1}κ as the double key; else, dki := ⊥.
Finally, it invokes Ki ← DerI(apkr, aski, amsgr, st), and returns (Ki, dki).

Setup PhaseParty Pi Party Pr

(pki, ski)← Gen

(pki, ski,mski)← SimGen

apki := pki, aski := ski

auxi := mski
publish apki

(pkr, skr)← Gen

(pkr, skr,mskr)← SimGen

apkr := pkr, askr := skr

auxr := mskr
publish apkr

ExecutionParty Pi(apki, aski, auxi = mski) Party Pr(apkr, askr, auxr = mskr)

di,1 ←$ DI,1; mi,1 := fI,1(di,1)

di,2 ←$ DI,2

si := Extract(mski, apkr)

di,2 := PRFI(si,mi,1) ∈ DI,2

mi,2 := fI,2(di,2)
(mi,3, st)← Init(apkr, aski, di,1, di,2)
amsgi := (mi,1,mi,2,mi,3)

amsgi = (mi,1,mi,2,mi,3)
dr,1 ←$ DR,1; mr,1 := fR,1(dr,1)

dr,2 ←$ DR,2

sr := Extract(mskr, apki)

dr,2 := PRFR(sr, (mi,1,mr,1)) ∈ DR,2

mr,2 := fR,2(dr,2)
(mr,3,Kr)← DerR(apki, askr, amsgi, dr,1, dr,2)
amsgr := (mr,1,mr,2,mr,3)

if mi,2 = fI,2(PRFI(sr,mi,1)) :

dkr := PRFD(sr, (amsgi, amsgr)) ∈ {0, 1}κ

else :
dkr := ⊥

amsgr = (mr,1,mr,2,mr,3)if mr,2 = fR,2(PRFR(si, (mi,1,mr,1))) :

dki := PRFD(si, (amsgi, amsgr)) ∈ {0, 1}κ

else :
dki := ⊥

Ki ← DerI(apkr, aski, amsgr, st)

st

aux′i := (si, amsgi = (mi,1,mi,2,mi,3))

Fig. 4. Generic construction of the AM-AKE scheme AM-AKE based on AKE and
PRF, where dotted boxes appear only in normal algorithms (Gen, Init,DerR,DerI),
and gray boxes appear only in anamorphic algorithms (aGen, aInit, aDerR, aDerI).

Let us compare the normal algorithms and the anamorphic ones.

– The anamorphic algorithm aGen invokes SimGen to produce a simulated key-
pair (apk, ask) := (pk, sk) as well as a master secret aux := msk. By the prop-
erty of secret extractability of the normal algorithm Gen, the anamorphic
key-pair has the same distribution as the normal key-pair generated by Gen.

– The normal algorithm Init makes use of random coins di,1 and di,2 for the
generation of msgi. The anamorphic algorithm aInit can be regarded as the
normal Init taking random coins di,1 and specific coins di,2 = PRFI(si,mi,1),
with si a secret extracted from the master secret mski of Pi and apkr of Pr.

– The normal algorithm DerR makes use of random coins dr,1, dr,2 for the gen-
eration of msgr and the session key Kr. The anamorphic algorithm aDerR

20

has two parts: one part can be regarded as the normal DerR taking ran-
dom coins dr,1 and specific coins dr,2 = PRFR(sr, (mi,1,mr,1)) to output
msgr and key Kr; the other part is in charge of generating the double
key dkr := PRFD(sr, (amsgi, amsgr)) or dkr := ⊥ depending on whether
mi,2 = fI,2(PRFI(sr,mi,1)) holds, with sr a secret derived from the master
secret mskr of Pr and apki of Pi.

– The normal algorithm DerI is deterministic and outputs the session key
Ki. The anamorphic algorithm aDerI functions identically as DerI for the
generation of key Ki, but it is also in charge of generating the double key
dki := PRFD(si, (amsgi, amsgr)) or dki := ⊥ depending on whether mr,2 =
fR,2(PRFR(si, (mi,1,mr,1))) holds.

Note that the correctness of the underlying AKE guarantees that Ki = Kr for
every possible choices of di,1, di,2, dr,1, dr,2. Thus even using specific coins in the
anamorphic algorithms, we also have Ki = Kr. This shows the correctness of
Ki = Kr in all working modes. Moreover, in the anamorphic mode, we have
dki = PRFD(si, (amsgi, amsgr)) = PRFD(sr, (amsgi, amsgr)) = dkr since si =
Extract(mski, apkr) = Extract(mskr, apki) = sr holds by the extracting correct-
ness of Gen’s secret extractability, and thus the correctness of double key holds.

Below we analyze the robustness of our AM-AKE.

Initiator-Robustness. Suppose that Pi invokes anamorphic algorithms aInit
and aDerI while Pr invokes normal algorithm DerR, then Pr computesmr,2 :=
fR,2(dr,2) by using a uniformly chosen dr,2 ←$ DR,2. When Pi invokes the
anamorphic algorithm aDerI to check whethermr,2 = fR,2(PRFR(si, (mi,1,mr,1)))
holds, we know that here fR,2(PRFR(si, (mi,1,mr,1))) is independent ofmr,2 :=
fR,2(dr,2) since dr,2 ←$ DR,2 is chosen independently of si,mi,1,mr,1 by Pr.
Thus for every possible value of fR,2(PRFR(si,
(mi,1,mr,1))), the check mr,2 := fR,2(dr,2) = fR,2(PRFR(si, (mi,1,mr,1))) can
pass with only a negligible probability by the entropy-preserving property of
fR,2 and due to the randomness of dr,2 ←$ DR,2, and consequently, Pi will
set dki := ⊥ with overwhelming probability.

Responder-Robustness. Suppose that Pi invokes normal algorithms Init and
DerI while Pr invokes anamorphic algorithm aDerR, then Pi computesmi,2 :=
fI,2(di,2) by using a uniformly chosen di,2 ←$ DI,2. When Pr invokes the
anamorphic algorithm aDerR to check whether mi,2 = fI,2(PRFI(sr,mi,1))
holds, we know that here fI,2(PRFI(sr,mi,1)) is independent of mi,2 :=
fI,2(di,2) since di,2 ←$ DI,2 is chosen independently of sr,mi,1 by Pi. Thus
for every possible value of fI,2(PRFI(sr,mi,1)), the check mi,2 := fI,2(di,2) =
fI,2(PRFI(sr,mi,1)) can pass with only a negligible probability by the entropy-
preserving property of fI,2 and due to the randomness of di,2 ←$ DI,2, and
consequently, Pr will set dkr := ⊥ overwhelmingly.

4.3 Security Proofs

We show the strong security of the AM-AKE proposed in Subsect. 4.2.

21

Theorem 4 (Strong Security of AM-AKE). Let AKE be a qualified two-
pass AKE scheme satisfying the requirements listed in Table 2, and let PRF be a
pseudo-random function. Then the AM-AKE constructed in Subsect. 4.2 achieves
both the sIND-WM and sPR-DK security.

The proof of Theorem 4 consists of two parts: the sIND-WM security follows
from Lemma 1 and Lemma 2, and the sPR-DK security follows from Lemma 3.

Lemma 1. For any adversary A, it holds that
∣∣Pr [A(pk, sk) = 1

]
−Pr

[
A(apk, ask) =

1
]∣∣ = 0, where (pk, sk)← Gen and (apk, ask, aux)← aGen.

Proof of Lemma 1. In AM-AKE, the anamorphic key-pair (apk, ask) is gen-
erated by SimGen, and thus has the same distribution as the norm pair (pk, sk)
generated by Gen, according to the secret extractability of Gen. ⊓⊔

Lemma 2. There exists PPT simulator Sim = (SimI, SimR), such that for any
PPT adversary A and N = poly(κ),

∣∣Pr [ExpsIND-WM
AM-AKE,A,Sim,N = 1

]
− 1

2

∣∣ ≤ negl(κ).

Lemma 3. There exists PPT simulator Sim = (SimI, SimR), such that for any
PPT adversary A and N = poly(κ),

∣∣Pr [ExpsPR-DK
AM-AKE,A,Sim,N = 1

]
− 1

2

∣∣ ≤ negl(κ).

Due to space limitations, the proofs of Lemma 2 and Lemma 3 are postponed
to Appendix C.1 and Appendix C.3, respectively. Here we only present the de-
scription of the simulator Sim = (SimI, SimR) used in these proofs, and we refer
to Subsect. 1.2 for an overview of the proofs.

• Ri ← SimI(apkr, aski, auxi = mski, R
′
i): Here R′

i is an internal randomness
used in aInit, and thus includes di,1 as well as the randomness used in Init,
denoted by di,3, i.e., R′

i = (di,1, di,3). This algorithm aims to explain R′
i as

a randomness Ri for Init. To this end, it computes si := Extract(mski, apkr),
mi,1 := fI,1(di,1), di,2 := PRFI(si,mi,1), and outputs Ri := (di,1, di,2, di,3).

• Rr ← SimR(apki, askr, auxr = mskr,m,R
′
r): Here R′

r is an internal random-
ness used in aDerR, and thus includes dr,1 as well as the randomness used in
DerR, denoted by dr,3, i.e., R′

r = (dr,1, dr,3). This algorithm aims to explain
R′

r as a randomness Rr for DerR. To this end, it parses m = (mi,1,mi,2,mi,3),
computes sr := Extract(mskr, apki),mr,1 := fR,1(dr,1), dr,2 := PRFR(sr, (mi,1,
mr,1)) and outputs Rr := (dr,1, dr,2, dr3).

5 Instantiations of Robust and Strongly-Secure AM-AKE

To instantiate the AM-AKE generic construction proposed in Sect. 4, we can
employ any pseudo-random function PRF, and thus we only need to instantiate
the underlying qualified AKE, i.e., AKE satisfying the requirements in Table 2.

In this section, we will show that the popular SIG+KEM paradigm [19] and
three-KEM paradigm [20] for constructing AKE yield qualified AKE schemes,

22

as long as the underlying SIG and/or KEM satisfy certain conditions. Then by
plugging them into the generic construction in Sect. 4, we immediately obtain
concrete AM-AKE schemes achieving initiator-robustness, responder-robustness
and strong security. More precisely, in Subsect. 5.1, we show how to obtain
qualified AKE and AM-AKE via the SIG+KEM paradigm, and in Subsect. 5.2,
we show how to obtain them via the three-KEM paradigm.

5.1 Instantiation from The SIG+KEM Paradigm

Qualified AKE via The SIG+KEM Paradigm. We first recall the SIG+KEM
paradigm of constructing two-pass AKE according to [19]. Let KEM = (GenKEM,
Encap,Decap) be a KEM scheme, SIG = (GenSIG, Sign,Vrfy) a signature scheme
and H a suitable hash function. The resulting AKEKS = (GenKS, InitKS,DerRKS,DerIKS)
is described as follows (see also Fig. 5 with dotted boxes for the paradigm).

• (pk, sk)← GenKS: Invoke (pk, sk)← GenSIG and return (pk, sk).
• (msgi, st)← InitKS(pkr, ski): Invoke (p̃k, s̃k) ← GenKEM, σi ← Sign(ski, p̃k),

and output msgi := (p̃k, σi) and the state st := (p̃k, s̃k).
• (msgr,Kr)← DerRKS(pki, skr,msgi = (p̃k, σi)): If Vrfy(pki, p̃k, σi) = 0: out-

put⊥; if Vrfy(pki, p̃k, σi) = 1, invoke (K,ψ)← Encap(p̃k), σr ← Sign(skr, (p̃k, ψ)),
and output msgr := (ψ, σr) and session key Kr := H(K, pki, pkr,msgi,msgr).

• Ki ← DerIKS(pkr, ski,msgr = (ψ, σr), st = (p̃k, s̃k)): If Vrfy(pkr, (p̃k, ψ), σr) =
0: output ⊥; if Vrfy(pkr, (p̃k, ψ), σr) = 1: invoke K ← Decap(s̃k, ψ) and
output Ki := H(K, pki, pkr,msgi,msgr).

Qualified AKEKS
SIG KEM

GenSIG Sign GenKEM Encap

Requirements secret extract. 2-separable with entropy-preserv. entropy-preserv.entropy-preserv. fS
Supportive
Func./Alg. (SimGen,Extract) (fS, Sign) pk := GenKEM(dG) ψ := Encap(dK)

Table 3. Requirements for the building blocks SIG = (GenSIG, Sign,Vrfy) and KEM =
(GenKEM,Encap,Decap) of the KEM-SIG paradigm in order to get a qualified AKEKS.

Below we will show that the AKEKS is qualified for constructing AM-AKE, if
the underlying SIG and KEM satisfy the following requirements (see also Table 3).

Requirements for SIG = (GenSIG, Sign,Vrfy):
– GenSIG has secret extractability, supported by (SimGen,Extract) as per Def. 9;
– Sign is 2-separable for generating σ, supported by (fS, Sign) as per Def. 8,

i.e., Sign(sk,m) generates σ by sampling dS ←$ DS, computing σ1 := fS(dS),
invoking σ2 ← Sign(sk,m, dS), and setting σ := (σ1, σ2);

– The function fS is entropy-preserving as per Def. 7.
Requirements for KEM = (GenKEM,Encap,Decap):

23

Party Pi(pki, ski, auxi = mski) Party Pr(pkr, skr, auxr = mskr)

(p̃k, s̃k)← GenKEM

σi ← Sign(ski, p̃k)

dG ←$ DG; (p̃k, s̃k) := GenKEM(dG)

si := Extract(mski, pkr)

dS,i := PRFI(si, p̃k)

σi,1 := fS(dS,i)

σi,2 ← Sign(ski, p̃k, dS,i)

σi := (σi,1, σi,2)

if Vrfy(pki, p̃k, σi) = 0 :
return ⊥

(K,ψ)← Encap(p̃k)

σr ← Sign(skr, (p̃k, ψ))

dK ←$ DK; (K,ψ) := Encap(p̃k; dK)

sr := Extract(mskr, pki)

dS,r := PRFR(sr, (p̃k, ψ))

σr,1 := fS(dS,r)

σr,2 ← Sign(skr, (p̃k, ψ), dS,r)

σr := (σr,1, σr,2)

parse σi = (σi,1, σi,2)

if σi,1 = fS(PRFI(sr, p̃k)) :

dkr := PRFD(sr, (p̃k, σi, ψ, σr))

else :
dkr := ⊥

Kr := H(K, pki, pkr,msgi,msgr)

if Vrfy(pkr, (p̃k, ψ), σr) = 0 :
return ⊥

parse σr = (σr,1, σr,2)

if σr,1 = fS(PRFR(si, (p̃k, ψ))) :

dki := PRFD(si, (p̃k, σi, ψ, σr))

else :
dki := ⊥

K ← Decap(s̃k, ψ)
Ki := H(K, pki, pkr,msgi,msgr)

st := (p̃k, s̃k)

aux′i := (si, σi)

msgi := (p̃k, σi)

msgr := (ψ, σr)

Fig. 5. The SIG+KEM paradigm for AKE (with dotted boxes) and the resulting
robust and strongly-secure AM-AKE via our generic construction in Sect. 4 (with
normal algorithms in dotted boxes and anamorphic ones in gray boxes).

– The function GenKEM(·) : DG −→ {0, 1}∗ is entropy-preserving, where GenKEM
functions the same as GenKEM that takes a randomness dG ∈ DG as input
but outputs only pk (and does not output sk).

– For any public key pk, the function Encap(pk; ·) : DK −→ {0, 1}∗ is entropy-
preserving, where Encap(pk; ·) functions the same as Encap(pk) that takes a
randomness dK ∈ DK as input but outputs only ψ (and does not output K).

With such SIG and KEM, we prove that the resulting AKEKS is a qualified
AKE via the following Lemma 4. Then by plugging the qualified AKEKS into our
generic construction in Sect. 4, we immediately get a robust and strongly-secure
two-pass AM-AKE scheme, as shown in Fig. 5 with gray boxes .

Lemma 4. If SIG and KEM meet the above requirements, then the AKEKS yielded
by the SIG+KEM paradigm is a qualified AKE for constructing AM-AKE.

Proof. To prove that AKEKS = (GenKS, InitKS,DerRKS,DerIKS) is a qualified one,
we show that all requirements listed in Table 2 are satisfied, i.e., GenKS has secret
extractability, InitKS is 3-separable with entropy-preserving functions (fI,1, fI,2),
and DerRKS is 3-separable with entropy-preserving functions (fR,1, fR,2).

• Since GenKS=GenSIG, the secret extract. of GenKS follows from that of GenSIG.
• The process of InitKS(pkr, ski) for generating (msgi = (p̃k, σi = (σi,1, σi,2)), st =

(p̃k, s̃k)) can be decomposed into three steps, since Sign is 2-separable:

24

1. dG ←$ DG and p̃k := GenKEM(dG). So we can define fI,1 := GenKEM, and
then the entropy-preserving property of fI,1 follows from that of GenKEM.

2. dS,i ←$ DS and σi,1 := fS(dS,i). So we can define fI,2 := fS, and then
the entropy-preserving property of fI,2 follows from that of fS.

3. (p̃k, s̃k) := GenKEM(dG), σi,2 ← Sign(ski, p̃k, dS,i), and set st := (p̃k, s̃k).
This process can be defined as (σi,2, st)← InitKS(pkr, ski, dG, dS,i).

Consequently, InitKS is 3-separable with two entropy-preserving functions
(fI,1 = GenKEM, fI,2 = fS) and an algorithm InitKS.

• Similarly, the process of DerRKS(pki, skr,msgi = (p̃k, σi)) for generating
(msgr = (ψ, σr = (σr,1, σr,2)),Kr) can be decomposed into three steps:
1. dK ←$ DK and ψ := Encap(p̃k; dK). So we can define fR,1 := Encap(p̃k; ·),

and then the entropy-preserving of fR,1 follows from that of Encap(p̃k; ·).
2. dS,r ←$ DS and σr,1 := fS(dS,r). So we can define fR,2 := fS, and then

the entropy-preserving property of fR,2 follows from that of fS.
3. If Vrfy(pki, p̃k, σi) = 1: (K,ψ) := Encap(p̃k; dK), σr,2 ← Sign(skr, (p̃k, ψ), dS,r),

and set Kr := H(K, pki, pkr,msgi,msgr). Otherwise output ⊥. This pro-
cess can be defined as (σr,2,Kr)← DerRKS(pki, skr,msgi = (p̃k, σi), dK, dS,r).

Consequently, DerRKS is 3-separable with two entropy-preserving functions
(fR,1 = Encap(p̃k; ·), fR,2 = fS) and an algorithm DerRKS. ⊓⊔

Concrete Instantiations. To obtain concrete qualified AKE scheme via the
SIG+KEM paradigm, it remains to present concrete SIG and KEM schemes
satisfying the requirements described above (cf. Table 3). More precisely, we will
show that any IND-CPA secure KEM suffices, and then for SIG, we present a
concrete instantiation over asymmetric pairing groups.

Concrete KEM. In fact, any IND-CPA secure KEM has entropy-preserving GenKEM
and Encap, which output only pk and ψ respectively. Intuitively, if an indepen-
dently generated (p̃k, s̃k) ← Gen or (K̃, ψ̃) ← Encap(pk) leads to p̃k = pk or
ψ̃ = ψ with non-negligible probability for a target pk or ψ, an adversary can use
the accompanying s̃k or K̃ to break the IND-CPA security of KEM easily. More
precisely, we have the following lemma with proof postponed to Appendix D.1.

Lemma 5 (Any IND-CPA Secure KEM has Entropy-Preserving GenKEM
and Encap). If KEM = (GenKEM,Encap,Decap) is a IND-CPA secure KEM
scheme, then the function GenKEM(·) that outputs only pk and the function
Encap(pk; ·) that outputs only ψ are entropy-preserving.

Concrete SIG. Let pp = (G1,G2,GT , p, e, g1, g2, gT) be a description of asym-
metric pairing group, where G1,G2,GT are cyclic groups of prime order p,
e : G1 × G2 → GT is a non-degenerated bilinear pairing, and g1, g2, gT are
generators of G1,G2,GT respectively. Moreover, let H : {0, 1}∗ → Zp be a hash
function. We present a concrete scheme SIGDDH = (GenDDH, Sign,Vrfy) as follows.

• (pk, sk)← GenDDH : it picks x←$ Zp, and sets (pk := e(g1, g2)
x, sk := gx2).

25

• σ ← Sign(sk = gx2 ,m) : it chooses r ←$ Zp randomly, then computes σ1 :=

gr1, d := H(m,σ1) ∈ Zp, σ2 := g2
x·d+r, and outputs σ := (σ1, σ2).

• 0/1← Vrfy(pk = e(g1, g2)
x,m, σ = (σ1, σ2)) : it computes d := H(m,σ1) ∈

Zp, and outputs 1 if and only if e(g1, σ2) = e(g1, g2)
x·d · e(σ1, g2) holds.

Intuitively, the scheme SIGDDH can be viewed as a variant of the Schnorr
signature scheme [24], by lifting it from (Zp,G) of a cyclic group to (G2,GT) of
the asymmetric pairing group. It is routine to check the correctness of SIGDDH.
Next we show its EUF-CMA security with proof appeared in Appendix D.2, since
the proof is essentially the same as that for the Schnorr scheme.

Theorem 5 (Security of SIGDDH). If the DDH assumption holds over G1 and
H is a random oracle, then the proposed SIGDDH achieves EUF-CMA security.

Below we show that SIGDDH satisfies the requirements listed in Table 3 via
the following two lemmas.

Lemma 6 (Secret Extractability of GenDDH). The key generation algorithm
GenDDH has secret extractability based on the DDH assumption over G2.

Proof. We first describe the supportive algorithms SimGenDDH and ExtractDDH

as follows, which take pp as an implicit input, the same as GenDDH.

• (pk, sk,msk)← SimGenDDH: it picks x←$ Zp, and sets (pk := e(g1, g2)
x, sk :=

gx2 ,msk := x).
• s← ExtractDDH(mski = xi, pkr = e(g1, g2)

xr): it computes s := pkmski
r = e(g1, g2)

xrxi .

Next we show that the proposed (SimGenDDH,ExtractDDH) satisfy the require-
ments of secret extractability (cf. Def. 9). It is easy to see that the key-pair
(pk, sk) generated by SimGenDDH has the same distribution as the normal pair
generated by GenDDH, and check that the extraction correctness holds, i.e.,
ExtractDDH(mski, pkr) = e(g1, g2)

xixr = ExtractDDH(mskr, pki).
It remains to prove the pseudo-randomness of ExtractDDH(mski, pkr) = e(g1, g2)

xixr

conditioned on (pki = e(g1, g2)
xi , pkr = e(g1, g2)

xr , ski = gxi
2 , skr = gxr

2). More
precisely, for any adversary A against the pseudo-randomness of the extracting,
we construct an algorithm B against the DDH assumption over G2 as follows.

Given a DDH challenge (pp, gxi
2 , g

xr
2 , T), B wants to distinguish T = gxixr

2

from T ←$ G2, where xi, xr ←$ Zp. To this end, B sets ski := gxi
2 , skr := gxr

2 ,
computes pki := e(g1, g

xi
2) = e(g1, g2)

xi , pkr := e(g1, g
xr
2) = e(g1, g2)

xr , s∗ :=
e(g1, T), gives (pki, pkr, ski, skr, s∗) to A, and returns the output of A to its own
challenger. It is easy to see that B’s simulation of (pki, pkr, ski, skr) is perfect.
If T = gxixr

2 , then s∗ := e(g1, T) = e(g1, g2)
xixr = ExtractDDH(mski, pkr); if

T ←$ G2, then s∗ := e(g1, T) is uniformly distributed over GT . Consequently,
B is able to distinguish T = gxixr

2 from T ←$ G2, as long as A can distinguish
(pki, pkr, ski, skr, s

∗ = ExtractDDH(mski, pkr)) from (pki, pkr, ski, skr, s
∗ ←$ GT),

and we have AdvPR-Ext
GenDDH,A(κ) ≤ AdvDDH

G2,B(κ), which is negligible under the DDH
assumption over G2. This shows the pseudo-randomness of the extracting. ⊓⊔

26

Lemma 7 (2-Separability of SignDDH with Entropy-Preserving fS). SignDDH

is 2-separable for generating σ, and the supportive function fS is entropy-preserving.

Proof. It is easy to see that the process of Sign(sk = gx2 ,m) generating σ =
(σ1, σ2) can be decomposed into two parts: the first part includes r ←$ Zp and
σ1 := gr1, and the second part computes σ2 := g2

x·H(m,σ1)+r. Consequently, Sign
is 2-separable for generating σ = (σ1, σ2), supported by (fS, Sign), where fS is
defined by fS(r) := gr1 for r ∈ Zp and Sign is defined by Sign(sk = gx2 ,m, r) :=

g
x·H(m,gr

1)+r
2 . Moreover, fS is entropy-preserving since for any h ∈ G1, the prob-

ability Pr[fS(r) = gr1 = h|r ←$ Zp] = 1/p is negligible. ⊓⊔

5.2 Instantiation from The Three-KEM Paradigm

Qualified AKE via The Three-KEM Paradigm. We first recall the three-
KEM paradigm of constructing two-pass AKE according to [20]. Let KEM =
(GenKEM,Encap,Decap) and KEM0 = (GenKEM0

,Encap0,Decap0) be two KEM
schemes, and H a suitable hash function. The resulting AKE3K = (Gen3K, Init3K,
DerR3K,DerI3K) is described as follows (see also Fig. 6 with dotted boxes).

• (pk, sk)← Gen3K: Invoke (pk, sk)← GenKEM and return (pk, sk).
• (msgi, st)← Init3K(pkr, ski): Invoke (p̃k, s̃k)← GenKEM0

, (Ki, ψi)← Encap(pkr),
and output msgi := (p̃k, ψi) and the state st := (s̃k,Ki).

• (msgr,Kr)← DerR3K(pki, skr,msgi = (p̃k, ψi)): Invoke Ki ← Decap(skr, ψi),
(K̃, ψ̃) ← Encap0(p̃k) and (Kr, ψr) ← Encap(pki). Output msgr := (ψ̃, ψr)

and session key Kr := H(pki, pkr,msgi,msgr,Ki,Kr, K̃).
• Ki ← DerI3K(pkr, ski,msgr = (ψ̃, ψr), st = (s̃k,Ki)): Invoke K̃ ← Decap0(s̃k, ψ̃),
Kr ← Decap(ski, ψr), and output Ki := H(pki, pkr,msgi,msgr,Ki,Kr, K̃).

Qualified AKE3K
KEM KEM0

GenKEM Encap GenKEM0 Encap0

Requirements secret extract. entropy-preserv. entropy-preserv. entropy-preserv.

Supportive
Func./Alg. (SimGen,Extract) ψ := Encap(dK) p̃k := GenKEM(dG) ψ̃ := Encap(dK0)

Table 4. Requirements for the building blocks KEM = (GenKEM,Encap,Decap) and
KEM0 = (GenKEM0 ,Encap0,Decap0) of the three-KEM paradigm in order to get a qual-
ified AKE3K.

Below we will show that AKE3K is qualified for constructing AM-AKE, if the
underlying KEM and KEM0 satisfy the following requirements (see also Table 4).

Requirements for KEM = (GenKEM,Encap,Decap):
– GenKEM has secret extractability, supported by (SimGen,Extract) as per Def. 9;
– For any public key pk, the function Encap(pk; ·) : DK −→ {0, 1}∗ is entropy-

preserving, where Encap(pk; ·) functions the same as Encap(pk) that takes a
randomness dK ∈ DK as input but outputs only ψ (and does not output K).

27

Party Pi(pki, ski, auxi = mski) Party Pr(pkr, skr, auxr = mskr)

(p̃k, s̃k)← GenKEM0

(Ki, ψi)← Encap(pkr)

dG ←$ DG; (p̃k, s̃k) := GenKEM0(dG)

si := Extract(mski, pkr)

dK,i := PRFI(si, p̃k)

(Ki, ψi) := Encap(pkr; dK,i)

Ki ← Decap(skr, ψi)

(K̃, ψ̃)← Encap0(p̃k)

(Kr, ψr)← Encap(pki)

dK0 ←$ DK0 ; (K̃, ψ̃) := Encap0(p̃k; dK0)

sr := Extract(mskr, pki)

dK,r := PRFR(sr, (p̃k, ψ̃))

(Kr, ψr) := Encap(pki; dK,r)

if ψi = Encap(pkr;PRFI(sr, p̃k)) :

dkr := PRFD(sr, (p̃k, ψi, ψ̃, ψr))

else :
dkr := ⊥

Kr := H(pki, pkr,msgi,msgr,Ki,Kr, K̃)

K̃ ← Decap0(s̃k, ψ̃)
Kr ← Decap(ski, ψr)

Ki := H(pki, pkr,msgi,msgr,Ki,Kr, K̃)

if ψr = Encap(pki;PRFR(si, (p̃k, ψ̃))) :

dki := PRFD(si, (p̃k, ψi, ψ̃, ψr))

else :
dki := ⊥

st := (s̃k,Ki)

aux′i := (si, p̃k, ψi)

msgi := (p̃k, ψi)

msgr := (ψ̃, ψr)

Fig. 6. The three-KEM paradigm for AKE (with dotted boxes) and the resulting
robust and strongly-secure AM-AKE via our generic construction in Sect. 4 (with
normal algorithms in dotted boxes and anamorphic ones in gray boxes).

Requirements for KEM0 = (GenKEM0
,Encap0,Decap0):

– The function GenKEM0(·) : DG −→ {0, 1}∗ is entropy-preserving, where
GenKEM0 functions the same as GenKEM0 that takes a randomness dG ∈ DG

as input but outputs only p̃k (and does not output s̃k).
– For any public key p̃k, the function Encap0(p̃k; ·) : DK0

−→ {0, 1}∗ is entropy-
preserving, where Encap0(p̃k; ·) is the same as Encap0(p̃k) that takes a ran-
domness dK0

∈ DK0
as input but outputs only ψ̃ (and does not output K̃).

With such KEM and KEM0, we prove that the resulting AKE3K is a qualified
AKE via the following Lemma 8. The proof of Lemma 8 is quite similar to that
of Lemma 4 in Subsect. 5.1, and thus we postpone it to Appendix D.3.

Lemma 8. If KEM and KEM0 meet the above requirements, the AKE3K yielded
by the three-KEM paradigm is a qualified AKE for constructing AM-AKE.

Then by plugging the qualified AKE3K into our generic construction in Sect. 4,
we immediately get a robust and strongly-secure two-pass AM-AKE scheme, as
shown in Fig. 6 with gray boxes .

Concrete Instantiations. To obtain concrete qualified AKE scheme via the
three-KEM paradigm, it remains to present concrete KEM schemes KEM and
KEM0 satisfying the requirements described above (cf. Table 4). Specially, as
shown in Lemma 5 in Subsect. 5.1, any IND-CPA secure KEM has entropy-
preserving GenKEM and Encap, so we can instantiate KEM0 with any IND-CPA
secure KEM scheme. For KEM, we present a concrete instantiation over asym-
metric pairing groups.

28

Concrete KEM scheme KEM. Let pp = (G1,G2,GT , p, e, g1, g2, gT) be a de-
scription of asymmetric pairing group. We present a concrete KEM scheme
KEMDDH = (GenDDH,Encap,Decap) as follows:

• (pk, sk)← GenDDH : it picks x←$ Zp, and sets (pk := e(g1, g2)
x, sk := gx2).

• (K,ψ)← Encap(pk = e(g1, g2)
x) : it chooses r ←$ Zp randomly, then com-

putes ψ := gr1, K := (e(g1, g2)
x)r = e(g1, g2)

xr, and outputs (K,ψ).
• K ← Decap(sk = gx2 , ψ = gr1) : it computes K := e(gr1, g

x
2) and outputs K.

It is routine to check the correctness of KEMDDH. Next we show its IND-CPA
security based on the DDH assumption over G1 via the following theorem. The
proof is quite straightforward and thus we postpone it to Appendix D.4.

Theorem 6 (Security of KEMDDH). If the DDH assumption holds over G1,
then the proposed KEMDDH achieves IND-CPA security.

Below we show that KEMDDH satisfies the requirements listed in Table 4, i.e.,
its key generation algorithm GenDDH has secret extractability, and the function
Encap(pk; ·) that outputs only ψ is entropy-preserving. Since GenDDH is identical
to that of SIGDDH in Subsect. 5.1, as shown in Lemma 6, GenDDH has secret
extractability under the DDH assumption over G2. Moreover, by Lemma 5, the
function Encap(pk; ·) is entropy-preserving by the IND-CPA security of KEMDDH.

Acknowledgements. We would like to thank the reviewers for their valu-
able comments. The authors were partially supported by National Natural Sci-
ence Foundation of China (Grant Nos. 61925207, 62372292), Guangdong Major
Project of Basic and Applied Basic Research (2019B030302008), the National
Key R&D Program of China under Grant 2022YFB2701500, and Young Elite
Scientists Sponsorship Program by China Association for Science and Technol-
ogy (YESS20200185).

29

References

1. Banfi, F., Gegier, K., Hirt, M., Maurer, U., Rito, G.: Anamorphic encryption,
revisited. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT
2024. pp. 3–32. Springer Nature Switzerland, Cham (2024)

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.)
EUROCRYPT’94. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (May 1995).
https://doi.org/10.1007/BFb0053428

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (May 2004). https://doi.org/10.1007/978-3-540-24676-3_4

4. Boyd, C., Cliff, Y., González Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
08. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (Jul 2008)

5. Catalano, D., Giunta, E., Migliaro, F.: Anamorphic encryption: New construc-
tions and homomorphic realizations. In: Joye, M., Leander, G. (eds.) Advances in
Cryptology – EUROCRYPT 2024. pp. 33–62. Springer Nature Switzerland, Cham
(2024)

6. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.
1055638

7. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (Aug 1984)

8. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (Aug 2018). https:
//doi.org/10.1007/978-3-319-96881-0_4

9. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Com-
puter and System Sciences 28(2), 270–299 (1984). https://doi.org/https:
//doi.org/10.1016/0022-0000(84)90070-9, https://www.sciencedirect.com/
science/article/pii/0022000084900709

10. Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
cated key exchange and signatures with tight security in the standard model. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–
700. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84259-8_23

11. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). IETF RFC 2409 (Pro-
posed Standard) (1998)

12. Horel, T., Park, S., Richelson, S., Vaikuntanathan, V.: How to subvert backdoored
encryption: Security against adversaries that decrypt all ciphertexts. In: Blum, A.
(ed.) ITCS 2019. vol. 124, pp. 42:1–42:20. LIPIcs (Jan 2019). https://doi.org/
10.4230/LIPIcs.ITCS.2019.42

13. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key ex-
change, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (Oct 2021). https:
//doi.org/10.1007/978-3-030-77870-5_5

14. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press (2014)

30

https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/https://doi.org/10.1016/0022-0000(84)90070-9
https://www.sciencedirect.com/science/article/pii/0022000084900709
https://www.sciencedirect.com/science/article/pii/0022000084900709
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.4230/LIPIcs.ITCS.2019.42
https://doi.org/10.4230/LIPIcs.ITCS.2019.42
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5

15. Kutylowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M.: Anamor-
phic signatures: Secrecy from a dictator who only permits authentication! In:
Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part II. LNCS, vol.
14082, pp. 759–790. Springer, Heidelberg (Aug 2023). https://doi.org/10.1007/
978-3-031-38545-2_25

16. Kutylowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M.: The self-anti-
censorship nature of encryption: On the prevalence of anamorphic cryptography.
Proc. Priv. Enhancing Technol. 2023(4), 170–183 (2023). https://doi.org/10.
56553/POPETS-2023-0104, https://doi.org/10.56553/popets-2023-0104

17. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (Dec
2020). https://doi.org/10.1007/978-3-030-64834-3_27

18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (May 1999). https://doi.org/10.1007/3-540-48910-X_16

19. Pan, J., Qian, C., Ringerud, M.: Signed (group) Diffie-Hellman key exchange with
tight security. Journal of Cryptology 35(4), 26 (Oct 2022). https://doi.org/10.
1007/s00145-022-09438-y

20. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight
security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part V. LNCS,
vol. 14085, pp. 616–647. Springer, Heidelberg (Aug 2023). https://doi.org/10.
1007/978-3-031-38554-4_20

21. Pan, J., Wagner, B., Zeng, R.: Tighter security for generic authenticated key
exchange in the QROM. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023,
Part IV. LNCS, vol. 14441, pp. 401–433. Springer, Heidelberg (Dec 2023). https:
//doi.org/10.1007/978-981-99-8730-6_13

22. Persiano, G., Phan, D.H., Yung, M.: Anamorphic encryption: Private commu-
nication against a dictator. In: Dunkelman, O., Dziembowski, S. (eds.) EU-
ROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 34–63. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-07085-3_2

23. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018). https://doi.org/10.17487/RFC8446, https://www.rfc-editor.
org/info/rfc8446

24. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (Aug
1990). https://doi.org/10.1007/0-387-34805-0_22

25. von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Camenisch,
J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341. Springer, Heidelberg
(May 2004). https://doi.org/10.1007/978-3-540-24676-3_20

26. Wang, Y., Chen, R., Huang, X., Yung, M.: Sender-anamorphic encryption reformu-
lated: Achieving robust and generic constructions. In: Guo, J., Steinfeld, R. (eds.)
ASIACRYPT 2023, Part VI. LNCS, vol. 14443, pp. 135–167. Springer, Heidelberg
(Dec 2023). https://doi.org/10.1007/978-981-99-8736-8_5

27. Xiao, Y., Zhang, R., Ma, H.: Tightly secure two-pass authenticated key ex-
change protocol in the CK model. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol.
12006, pp. 171–198. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/
978-3-030-40186-3_9

31

https://doi.org/10.1007/978-3-031-38545-2_25
https://doi.org/10.1007/978-3-031-38545-2_25
https://doi.org/10.56553/POPETS-2023-0104
https://doi.org/10.56553/POPETS-2023-0104
https://doi.org/10.56553/popets-2023-0104
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-981-99-8730-6_13
https://doi.org/10.1007/978-981-99-8730-6_13
https://doi.org/10.1007/978-3-031-07085-3_2
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1007/978-981-99-8736-8_5
https://doi.org/10.1007/978-3-030-40186-3_9
https://doi.org/10.1007/978-3-030-40186-3_9

Supplementary Material
A Additional Preliminaries

Definition 10 (Pseudo-Random Function). A function PRF : K × X −→
Y is a pseudo-random function, if for any PPT adversary A, it holds that
AdvPRF,A(κ) := |Pr[APRF(k,·) = 1] − Pr[ATRF(·) = 1]| ≤ negl(κ), where k ←$ K
and TRF is truly random function from X to Y.

Definition 11 (Digital Signature). A digital signature scheme SIG = (GenSIG,
Sign,Vrfy) consists of three PPT algorithms:

• (pk, sk) ← GenSIG: The key generation algorithm generates a pair of public
key and secret key (pk, sk).

• σ ← Sign(sk,m): The signing algorithm takes a secret key sk and a message
m as input, and outputs a signature σ.

• 0/1 ← Vrfy(pk,m, σ): The verification algorithm takes a public key pk, a
message m and a signature σ as input, and outputs 1 (accepted) or 0 (re-
jected) indicating whether σ is a valid signature for m.

Correctness. For any (pk, sk)← GenSIG, any message m, and any σ ← Sign(sk,m),
it holds that Vrfy(pk,m, σ) = 1.

EUF-CMA Security. We consider the standard security of existential unforge-
ability against chosen message attacks (EUF-CMA) for SIG. More precisely,
for any PPT adversary A, it holds that

AdvEUF-CMA
SIG,A (κ) := Pr

[
m∗ /∈ Qsig ∧

Vrfy(pk,m∗, σ∗) = 1

∣∣∣∣ (pk, sk)← GenSIG,

(m∗, σ∗)← AOSign(·)(pk)

]
≤ negl(κ),

(3)
where the oracle OSign(m) computes σ ← Sign(sk,m) and returns σ to A,
and the set Qsig consists of all messages m that A queries to OSign(·).

Definition 12 (Key Encapsulation Mechanism). A key encapsulation mech-
anism KEM = (GenKEM,Encap,Decap) consists of three PPT algorithms:

• (pk, sk) ← GenKEM: The key generation algorithm generates a pair of public
key and secret key (pk, sk).

• (K,ψ) ← Encap(pk): The encapsulation algorithm takes a public key pk as
input, and outputs a symmetric key K and a ciphertext ψ.

• K ← Decap(sk, ψ): The decapsulation algorithm takes a secret key sk and a
ciphertext ψ as input, and outputs a symmetric key K.

Correctness. For any (pk, sk)← GenKEM and any (K,ψ)← Encap(pk), it holds
that Decap(sk, ψ) = K.

32

IND-CPA Security. We consider the standard indistinguishability under chosen-
plaintext attacks (IND-CPA) for KEM. More precisely, for any PPT adver-
sary A, it holds that

AdvIND-CPA
KEM,A (κ) :=

∣∣∣∣∣∣Pr
 b′ = b

∣∣∣∣∣∣
(pk, sk)← GenKEM,

(K∗
0 , ψ

∗)← Encap(pk), K∗
1 ←$ K

b←$ {0, 1}, b′ ← A(pk, ψ∗,K∗
b)

− 1

2

∣∣∣∣∣∣ ≤ negl(κ),

where K denotes the space of symmetric keys.

Definition 13 (Authenticated Key Exchange). A two-pass authenticated
key exchange protocol AKE = (Gen, Init,DerR,DerI) consists of four PPT algo-
rithms:

• (pk, sk)← Gen: The key generation algorithm generates a pair of public key
and secret key (pk, sk).

• (msgi, st)← Init(pkr, ski): The initialization algorithm takes a public key pkr
of a responder (say Pr) and a secret key ski of an initiator (say Pi) as input,
and outputs an initiated message msgi and a state st for Pi.

• (msgr,Kr) ← DerR(pki, skr,msgi): The derivation algorithm for the respon-
der takes a public key pki of the initiator Pi, a secret key skr of the responder
Pr and an initiated message msgi as input, and outputs a message msgr and
a session key Kr for Pr.

• Ki ← DerI(pkr, ski,msgr, st): The deterministic derivation algorithm for the
initiator takes a public key pkr of the responder Pr, a secret key ski of the
initiator Pi, a message msgr and a state st as input, and outputs a session
key Ki for Pi.

We illustrate an execution of a two-pass AKE protocol in Fig. 7, where the
key-pairs of Pi and Pr are generated at the beginning via (pki, ski) ← Gen and
(pkr, skr)← Gen. Note that the initiator Pi invokes two algorithms Init and DerI,
so Pi has to transmit a state st from Init to DerI. Correctness of AKE requires that
for any distinct parties Pi and Pr, they share the same session key Ki = Kr ̸= ⊥
after the execution of the AKE protocol according to Fig. 7.

Definition 14 (DDH Assumption). Let pp = (G1,G2,GT , p, e, g1, g2, gT)
be a description of asymmetric pairing group, and let s ∈ {1, 2}. The DDH
assumption holds over group Gs, if for any PPT adversary A, it holds that
AdvDDH

Gs,A(κ) :=
∣∣Pr[A(pp, gxs , gys , gxys) = 1] − Pr[A(pp, gxs , gys , gzs) = 1]

∣∣ ≤ negl(κ),
where the probability is over x, y, z ←$ Zp.

33

Setup PhaseParty Pi Party Pr

(pki, ski)← Gen
publish pki

(pkr, skr)← Gen
publish pkr

ExecutionParty Pi(pki, ski) Party Pr(pkr, skr)

(msgi, st)← Init(pkr, ski)

Ki ← DerI(pkr, ski,msgr, st)

(msgr,Kr)← DerR(pki, skr,msgi)st

msgi

msgr

Fig. 7. An execution of two-pass AKE.

B Missing Details in Sect. 3

B.1 Correctness Requirements of AM-AKE

In this subsection, we define the correctness requirements of an AM-AKE scheme.
Different requirements serve for different working modes of AM-AKE.

Definition 15 (Correctness of AM-AKE). Let AM-AKE = ((Gen, Init,DerR,DerI),
(aGen, aInit, aDerR, aDerI)) be an AM-AKE scheme. We consider the correctness
for its three modes.

Correctness for the normal mode. If both Pi and Pr invoke normal algo-
rithms in the AKE protocol, then it results in the same session key Ki = Kr,
no matter Pi (and Pr) uses normal key-pair or anamorphic key-pair. More
precisely, for any (pki, ski) := (pki, ski) generated by Gen or (pki, ski) :=
(apki, aski) generated by aGen, and for any (pkr, skr) := (pkr, skr) generated
by Gen or (pkr, skr) := (apkr, askr) generated by aGen, we have

Pr

Ki = Kr ̸= ⊥

∣∣∣∣∣∣
(msgi, st)← Init(pkr, ski)

(msgr,Kr)← DerR(pki, skr,msgi)

Ki ← DerI(pkr, ski,msgr, st)

 = 1.

Correctness for the anamorphic mode. If both Pi and Pr invoke anamor-
phic algorithms in the AKE protocol, then it results in the same session
key Ki = Kr and the same double key dki = dkr. Meanwhile, the normal
derivation by DerI using aski should also result in the same session key
K′
i = Ki = Kr. More precisely, for any (apki, aski, auxi) ← aGen and any

(apkr, askr, auxr)← aGen, we have

Pr

Ki = Kr = K′
i ̸= ⊥

∧ dki = dkr ̸= ⊥

∣∣∣∣∣∣∣
(amsgi, st, aux

′
i)← aInit(apkr, aski, auxi)

(amsgr,Kr, dkr)← aDerR(apki, askr, auxr, amsgi)
(Ki, dki)← aDerI(apkr, aski, aux

′
i, amsgr, st)

K′
i ← DerI(apkr, aski, amsgr, st)

 = 1.

34

Correctness for the half mode. If one party invokes normal algorithms and
the other invokes anamorphic algorithms, then the half mode still results in
the same session key Ki = Kr. Moreover, the normal derivation DerI using
aski should also result in the same session key K′

i = Ki = Kr. More pre-
cisely, for any (apki, aski, auxi)← aGen, and for any (pkr, skr) := (pkr, skr)
generated by Gen or (pkr, skr) := (apkr, askr) generated by aGen, we have

Pr

Ki = Kr = K′
i ̸= ⊥

∣∣∣∣∣∣∣∣
(amsgi, st, aux

′
i)← aInit(pkr, aski, auxi)

(msgr,Kr)← DerR(apki, skr, amsgi)

(Ki, dki)← aDerI(pkr, aski, aux
′
i,msgr, st)

K′
i ← DerI(pkr, aski,msgr, st)

 = 1.

On the other hand, for any (apkr, askr, auxr)← aGen, and for any (pki, ski) :=
(pki, ski) generated by Gen or (pki, ski) := (apki, aski) generated by aGen, we
have

Pr

Ki = Kr ̸= ⊥

∣∣∣∣∣∣
(msgi, st)← Init(apkr, ski)

(amsgr,Kr, dkr)← aDerR(pki, askr, auxr,msgi)

Ki ← DerI(apkr, ski, amsgr, st)

 = 1.

B.2 Proof of Impossibility Results for Plain AM-AKE

In this subsection, we present the formal proofs of the three impossibility results
for (two-pass) plain AM-AKE.

Theorem 1 It is impossible for a two-pass plain AM-AKE scheme AM-AKE to
achieve responder-robustness.

Proof of Theorem 1. For a two-pass plain AM-AKE scheme AM-AKE, to
achieve responder-robustness, Pr has to make the decision whether dkr ̸= ⊥ or
dkr = ⊥ upon receiving the first pass message msgi from Pi.

We first claim that Pr cannot achieve robustness only with the help of
(apkr, askr). Note that the basic requirement for AM-AKE is that any adver-
sary obtaining secret keys of Pi and Pr and seeing the transcripts of AM-AKE
cannot tell whether AM-AKE works in the normal mode or in the anamorphic
mode or in the half mode6.

Suppose on the contradiction, with only (apkr, askr), Pr can output dkr ̸= ⊥
when msgi is an anamorphic first-pass message and output dkr = ⊥ when msgi
is a normal one, with overwhelming probability. Then the adversary who obtains
askr is also able to do that, and thus determine msgi is a normal one if dkr = ⊥
and an anamorphic one if dkr ̸= ⊥, breaking the security of AM-AKE.

Therefore, Pr must also resort to auxr for deciding dkr ̸= ⊥ or dkr = ⊥.
However, the generation of msgi does not involve auxr and is independent of
auxr when apkr is independent of auxr. If auxr can be generated independently
from (apkr, askr), then the adversary can generate an auxiliary message ãuxr

6 See the security requirements of AM-AKE formalized in Subsect. 3.3.

35

independently by itself and use ãuxr to decide dkr ̸= ⊥ or dkr = ⊥, which
breaks the security of AM-AKE as well.

In conclusion, it is impossible to achieve responder-robustness in a two-pass
plain AM-AKE where (apkr, askr) and auxr are generated independently. ⊓⊔
Remark. Theorem 1 does not apply for initiator-robustness, because Pi can
hide some information of auxi into msgi, from which msgr is computed, and thus
msgr may carry some information of auxi. In this way, Pi can use auxi to judge
whether msgr is a normal message or an anamorphic one, while an adversary
may not be able to use this method to detect the using of anamorphic algorithms,
thus initiator-robustness can be achieved. However, our next theorem shows that
it is impossible for a plain AM-AKE to achieve initiator-robustness and IND-WM
security simultaneously.

Theorem 2 If a plain AM-AKE scheme AM-AKE is initiator-robust, then it is
impossible for AM-AKE to achieve the IND-WM/sIND-WM security.

Proof of Theorem 2. For a (two-pass) plain AM-AKE scheme AM-AKE that
has initiator-robustness, we construct an adversaryA to break its IND-WM/sIND-WM
security as follows. At the beginning of the experiment, A receives public/secret
key-pairs of all parties (apki, aski) from the challenger. Then A chooses an arbi-
trary pair of parties (Pi, Pr) and generates the auxiliary message ãuxi of party
Pi by itself, since AM-AKE is a plain one. Next, A uses (apki, aski, ãuxi) to im-
personate Pi and interacts with Pr as follows:

– Firstly, A queries ONew(i, r) to start a session sID.
– Then A queries OInit(sID,wI = A) but discards the answer, and instead, A

generates another amsgi itself by invoking (amsgi, st, aux
′
i)← aInit(apkr, aski, ãuxi).

– Next, A queries ODerR(sID, amsgi,wR = A) and receives a message amsgr.
– Finally, A invokes (Ki, dki) ← aDerI(apkr, aski, aux

′
i, amsgr, st), and outputs

b′ = 1 to its own challenger if and only if dki ̸= ⊥ holds.

Note that in the IND-WM/sIND-WM experiment (cf. Fig. 2), if b = 1, then A will
receive an anamorphic message amsgr generated by aDerR from its ODerR query,
so both A (impersonating Pi) and Pr invoke anamorphic algorithms, and conse-
quently, dki ̸= ⊥ holds with probability 1 by the correctness of the anamorphic
mode of AM-AKE. If b = 0, then A will receive a normal message generated by
DerR from the ODerR query, so A (impersonating Pi) invokes anamorphic algo-
rithms while Pr invokes normal algorithm, and consequently, dki = ⊥ holds with
overwhelming probability according to the initiator-robustness of AM-AKE.

Overall, A guesses the value of b correctly with overwhelming probability by
checking whether dki ̸= ⊥, and thus breaks the IND-WM/sIND-WM security. ⊓⊔

Theorem 3 It is impossible for a plain AM-AKE scheme AM-AKE to achieve
the PR-DK/sPR-DK security.

Proof of Theorem 3. For a (two-pass) plain AM-AKE scheme AM-AKE, we
construct an adversary A to break its PR-DK/sPR-DK security as follows. At

36

the beginning of the experiment, A receives public/secret key-pairs of all parties
(apki, aski) from the challenger. Then A chooses an arbitrary pair of parties
(Pi, Pr) and generates the auxiliary message ãuxi of party Pi by itself, since
AM-AKE is a plain one. Next, A uses (apki, aski, ãuxi) to impersonate Pi and
interacts with Pr as follows:

– Firstly, A queries ONew(i, r) to start a session sID.
– Then A queries OInit(sID) but discards the answer, and instead, A generates

another amsgi itself by invoking (amsgi, st, aux
′
i)← aInit(apkr, aski, ãuxi).

– Next, A queries ODerR(sID, amsgi) and receives a message amsgr.
– Moreover, A queries OTestDK(sID,R) and receives a double key dk∗r , which is

either the real double key generated in the above ODerR(sID, amsgi) oracle or
a uniformly random double key.

– Finally, A invokes (Ki, dki) ← aDerI(apkr, aski, aux
′
i, amsgr, st), and outputs

b′ = 1 to its own challenger if and only if dki = dk∗r holds.

Note that in the PR-DK/sPR-DK experiment (cf. Fig. 3), the oracle ODerR gen-
erates amsgr by invoking aDerR, so both A (impersonating Pi) and Pr invoke
anamorphic algorithms. If b = 1, the dk∗r outputted by OTestDK is the real double
key generated in the above ODerR oracle, and then the dki derived by A satis-
fies dki = dk∗r with probability 1 by the correctness of the anamorphic mode of
AM-AKE. If b = 0, dk∗r is uniformly chosen from DK, then dki = dk∗r holds with
probability at most 1/|DK| where DK is the double key space.

Overall, A guesses the value of b correctly with probability at least 1
2 · (1 −

1/|DK|), which is non-negligible for |DK| ≥ 2, by checking whether dki = dk∗r ,
and thus breaks the PR-DK/sPR-DK security. ⊓⊔

C Missing Proofs in Sect. 4 (Generic Construction of AM-AKE)

C.1 Proof of Lemma 2 (sIND-WM Security of AM-AKE)

Lemma 2 There exists PPT simulator Sim = (SimI, SimR), such that for any
PPT adversary A and N = poly(κ),

∣∣Pr [ExpsIND-WM
AM-AKE,A,Sim,N = 1

]
− 1

2

∣∣ ≤ negl(κ).

Proof of Lemma 2. We first describe the simulator Sim = (SimI, SimR).

• Ri ← SimI(apkr, aski, auxi = mski, R
′
i): Here R′

i is an internal randomness
used in aInit, and thus includes di,1 as well as the randomness used in Init,
denoted by di,3, i.e., R′

i = (di,1, di,3). This algorithm aims to explain R′
i as

a randomness Ri for Init. To this end, it computes si := Extract(mski, apkr),
mi,1 := fI,1(di,1), di,2 := PRFI(si,mi,1), and outputs Ri := (di,1, di,2, di,3).

• Rr ← SimR(apki, askr, auxr = mskr,m,R
′
r): Here R′

r is an internal random-
ness used in aDerR, and thus includes dr,1 as well as the randomness used in
DerR, denoted by dr,3, i.e., R′

r = (dr,1, dr,3). This algorithm aims to explain
R′

r as a randomness Rr for DerR. To this end, it parses m = (mi,1,mi,2,mi,3),
computes sr := Extract(mskr, apki),mr,1 := fR,1(dr,1), dr,2 := PRFR(sr, (mi,1,
mr,1)) and outputs Rr := (dr,1, dr,2, dr3).

37

We prove the lemma via a sequence of games G0-G3, where the differences
between adjacent games are highlighted in gray boxes .

Game G0: This is the ExpsIND-WM
AM-AKE,A,Sim,N experiment (cf. Fig. 2). Then we have

Pr
[
ExpsIND-WM

AM-AKE,A,Sim,N = 1
]
= Pr[G0 = 1].

In this game, the challenger samples a challenge bit b←$ {0, 1}, and answers
the OInit,ODerR,ODerI queries for A in the following way:

– If b = 0, the challenger invokes the normal algorithms Init,DerR,DerI;
– If b = 1 and A designates normal mode (i.e., N), the challenger also invokes

the normal algorithms;
– If b = 1 and A designates anamorphic mode (i.e., A), the challenger invokes

the anamorphic algorithm aInit/aDerR/aDerI and the simulator SimI/SimR.

The adversary A succeeds if it guesses b correctly. Overall, there are differences
between b = 0 and b = 1 only if A designates anamorphic mode (i.e., A).

We note that the oraclesOInit,ODerR,ODerI output (msgi, st, Ri), (msgr,Kr, Rr)
and Ki, respectively, but do not output the double keys dki, dkr. The differences
between the normal algorithms and the anamorphic algorithms and simulator in
generating these values only lie in the distributions of di,2 and dr,2:

– The normal algorithms Init,DerR,DerI use uniformly chosen coins di,2 ←$

DI,2 and dr,2 ←$ DR,2.
– The anamorphic algorithms aInit, aDerR, aDerI and simulator Sim = (SimI, SimR)

involve specific coins di,2 := PRFI(si,mi,1) ∈ DI,2 and dr,2 := PRFR(sr, (mi,1,mr,1))
∈ DR,2, where si := Extract(mski, apkr), mi,1 := fI,1(di,1) for di,1 ←$ DI,1,
sr := Extract(mskr, apki), mr,1 := fR,1(dr,1) for dr,1 ←$ DR,1.

Game G1: It is the same as G0, except that at the beginning of the game,
the challenger samples s∗i,r = s∗r,i ←$ DE for each pair of parties (i, r) ∈ [N] ×
[N] with i ̸= r. Then in the case of b = 1 and the mode designated by A is
anamorphic (i.e., A), the challenger answers the oracle queries OInit(sID,wI =
A),ODerR(sID,m,wR = A),ODerI(sID,m) for A as follows:

– The challenger invokes anamorphic algorithms aInit, aDerR, aDerI and the
simulator Sim = (SimI, SimR), by using specific coins di,2 := PRFI(si,mi,1) ∈
DI,2 and dr,2 := PRFR(sr, (mi,1,mr,1)) ∈ DR,2, where si := s∗i,r , mi,1 :=

fI,1(di,1) for di,1 ←$ DI,1, sr := s∗r,i , mr,1 := fR,1(dr,1) for dr,1 ←$ DR,1.
Here (i, r) := (init[sID], resp[sID]) denote the initiator and responder of sID.

By the secret extractability of Gen (cf. Def. 9), the secrets si := Extract(mski, apkr)
and sr := Extract(mskr, apki) generated in G0 are computationally indistinguish-
able from the si := s∗i,r , sr := s∗r,i with s∗i,r = s∗r,i ←$ DE in G1. More pre-
cisely, we have the following claim via hybrid arguments over all pair of parties
(i, r) ∈ [N]× [N] with i ̸= r, and we postpone its formal proof to Appendix C.2.

Claim 1. By the secret extractability of Gen,
∣∣Pr[G0 = 1]−Pr[G1 = 1]

∣∣ ≤ negl(κ).

38

Game G2: It is the same as G1, except that the challenger replaces the pseudo-
random function PRF = (PRFI,PRFR,PRFD) with truly random function TRF =

(TRFI,TRFR,TRFD) , where TRFI/TRFR/TRFD : {0, 1}∗ −→ DI,2/DR,2/{0, 1}κ.
More precisely, when b = 1 and the mode designated by A is anamorphic (i.e.,
A), the challenger answers the oracle queriesOInit(sID,wI = A),ODerR(sID,m,wR =
A),ODerI(sID,m) for A as follows:

– The challenger invokes anamorphic algorithms aInit, aDerR, aDerI and the
simulator Sim = (SimI, SimR), by using specific coins di,2 := TRFI (s

∗
i,r,mi,1) ∈

DI,2 and dr,2 := TRFR (s∗r,i, (mi,1,mr,1)) ∈ DR,2, where mi,1 := fI,1(di,1) for
di,1 ←$ DI,1, mr,1 := fR,1(dr,1) for dr,1 ←$ DR,1.

Since PRF = (PRFI,PRFR,PRFD) is a pseudo-random function, its outputs
are computationally indistinguishable from the outputs of truly random function
TRF = (TRFI,TRFR,TRFD). Consequently, this change is unnoticeable to A, and
by a standard hybrid argument over the PRF keys s∗i,r, s∗r,i, we have

∣∣Pr[G1 =

1]− Pr[G2 = 1]
∣∣ ≤ negl(κ).

Game G3: It is the same as G2, except that in the case of b = 1 and the mode
designated byA is anamorphic (i.e., A), the challenger answers the oracle queries
OInit(sID,wI = A),ODerR(sID,m,wR = A),ODerI(sID,m) for A as follows:

– The challenger invokes anamorphic algorithms aInit, aDerR, aDerI and the
simulator Sim = (SimI, SimR), by using uniformly chosen coins di,2 ←$ DI,2

and dr,2 ←$ DR,2 .

Clearly, in G3, the anamorphic algorithms aInit, aDerR, aDerI and the simulator
Sim = (SimI, SimR) using uniformly chosen coins di,2 ←$ DI,2 and dr,2 ←$ DR,2

are essentially the same as the normal algorithms Init,DerR,DerI in generating
the responses (msgi, st, Ri), (msgr,Kr, Rr) and Ki, so the challenge bit b is per-
fectly hidden to A, and we have Pr[G3 = 1] = 1/2.

It remains to show that G2 and G3 are computationally indistinguishable for
A. Let EI denote the event that in G2, all invocations of di,2 := TRFI (s

∗
i,r,mi,1) ∈

DI,2 are on different inputs mi,1, and let ER denote the event that all invocations
of dr,2 := TRFR (s∗r,i, (mi,1,mr,1)) ∈ DR,2 are on different inputs (mi,1,mr,1).
If both EI and ER occur, then in G2, TRFI and TRFR are always computed
on different inputs, so their outputs di,2, dr,2 are uniformly and independently
distributed, the same as those in G3. Consequently, we have∣∣Pr[G2 = 1]− Pr[G3 = 1]

∣∣ ≤ Pr[¬EI ∨ ¬ER] ≤ Pr[¬EI] + Pr[¬ER].

On the other hand, in G2, each input mi,1 of TRFI is generated by mi,1 :=
fI,1(di,1) for di,1 ←$ DI,1, so the inputs can hardly collide by the entropy-
preserving property of fI,1 (cf. Def. 7), and we have Pr[¬EI] ≤ negl(κ). Similarly,
each input (mi,1,mr,1) of TRFR involves mr,1 := fR,1(dr,1) for dr,1 ←$ DR,1, so

39

the inputs can hardly collide by the entropy-preserving property of fR,1, and we
have Pr[¬ER] ≤ negl(κ). This shows that

∣∣Pr[G2 = 1]− Pr[G3 = 1]
∣∣ ≤ negl(κ).

Finally, by taking all things together, Lemma 2 follows. ⊓⊔

C.2 Proof of Claim 1

Claim 1. By the secret extractability of Gen,
∣∣Pr[G0 = 1]−Pr[G1 = 1]

∣∣ ≤ negl(κ).

Proof. We first define an intermediate hybrid game G0.5, where it makes the
same change as that from G0 to G1, except that the change is made only for
a single pair of parties (i, r) ∈ [N] × [N] with i ̸= r. We will show that G0.5

is indistinguishable from G0, and then by a hybrid argument over all pair of
parties, it follows that G1 is also indistinguishable from G0.

More precisely, let (i, r) ∈ [N]× [N] with i ̸= r be an arbitrary and fixed pair
of parties. In G0.5, we make the following changes:

– Sample s∗i,r = s∗r,i ←$ DE at the beginning of the game and store it.
– In the case of b = 1 and the mode designated by A is anamorphic (i.e., A),

the adversary queries the oracle OInit(sID,wI = A), ODerR(sID,m,wR = A) or
ODerI(sID,m) where (i, r) = (init[sID], resp[sID]), then the challenger answers
as follows:
• The challenger invokes anamorphic algorithms aInit,aDerR,aDerI and the

simulator Sim = (SimI, SimR) by using specific coins di,2 := PRFI(si,mi,1) ∈
DI,2 and dr,2 := PRFR(sr,mi,1,mr,1) ∈ DR,2, where si := s∗i,r, mi,1 :=
fI,1(di,1) for di,1 ←$ DI,1, sr := s∗r,i, mr,1 := fR,1(dr,1) for drk,1 ←$ DR,1.

Notice that the only difference between G0.5 and G0 lies in the choices of si
and sr, so we make the following analysis centered on the generation of si and
sr. Suppose there exists an adversary A who can distinguish G0.5 from G0, then
we construct an adversary B to break the secret extractability (specifically, the
property of the pseudo-random of the extracting) of Gen as per Definition 9.

At the beginning, B receives (pki, pkr, ski, skr, s
∗) from its challenger where

s∗ equals to either Extract(mski, pkr) or a random value from DE. To simulate for
A, B generates N−2 anamorphic key-pairs itself by (apkn, askn, auxn = mskn)←
aGen for n ∈ [N] \ {i, r}, and sets (apki, aski) := (pki, ski), (apkr, askr) :=
(pkr, skr), then sends theN anamorphic key-pairs toA. WhenA queriesONew(i, r)
, B can perfectly follow all the steps and simulate the response to A.

In the case of b = 1, suppose the mode designated by A is anamorphic
(i.e., A), and A queries the oracle OInit(sID,wI = A), ODerR(sID,m,wR = A)
or ODerI(sID,m), then let (i′, r′) := (init[sID], resp[sID]). We have the following
cases to consider.

– Suppose A queries oracle OInit(sID,wI = A) or ODerI(sID,m):
1. If i ̸= i′, then B can perfectly simulate the response, because it owns

mski, and successfully generates si := Extract(mski, apkr).

40

2. If i = i′ and r ̸= r′, then B follows the process except for setting si :=
Extract(mskr′ , apki). By the extracting correctness requirement of the
secret extractability of Gen, it always holds that Extract(mskr′ , apki) =
Extract(mski, apkr′), so this change is perfectly unknown to A.

3. If i = i′ and r = r′, then B follows the whole process except for setting
si := s∗.

– Suppose A queries oracle ODerR(sID,m,wR = A) :
1. If r ̸= r′, then B can perfectly simulate the response, because it owns

mskr, and successfully generates sr := Extract(mskr, apki).
2. If r = r′ and i ̸= i′, then B follows the process except for setting sr :=

Extract(mski′ , apkr). Still by the extracting correctness requirement of
the secret extractability of Gen, it always holds that Extract(mski′ , apkr) =
Extract(mskr, apki′), so this change is perfectly unknown to A.

3. If r = r′ and r = i′, then B follows the whole process except for setting
sr := s∗.

Now, if s∗ equals to Extract(mski, pkr), by the extracting correctness require-
ment of the secret extractability of Gen, s∗ also equals to Extract(mskr, pki), then
B simulates G0 for A. If s∗ equals to a random string, then B simulates G0.5 for
A. Therefore,∣∣∣Pr[G0 = 1]− Pr[G0.5 = 1]

∣∣∣
=
∣∣∣Pr[B(pki, pkr, ski, skr,Extract(mski, pkr)) = 1]− Pr[B(pki, pkr, ski, skr, s

∗ ←$ DE) = 1]
∣∣∣

≤negl(κ).

C.3 Proof of Lemma 3 (sPR-DK Security of AM-AKE)

Lemma 3 There exists PPT simulator Sim = (SimI, SimR), such that for any
PPT adversary A and N = poly(κ),

∣∣Pr [ExpsPR-DK
AM-AKE,A,Sim,N = 1

]
− 1

2

∣∣ ≤ negl(κ).

Proof of Lemma 3. We adopt the same simulator Sim = (SimI, SimR) defined
in the proof of Lemma 2. We prove the lemma via a sequence of games G′

0-G′
3,

which are defined similarly as those G0-G3 in the proof of Lemma 2.

Game G′
0: This is the ExpsPR-DK

AM-AKE,A,Sim,N experiment (cf. Fig. 3). Then we have
Pr

[
ExpsPR-DK

AM-AKE,A,Sim,N = 1
]
= Pr[G′

0 = 1].
In this game, the challenger samples a challenge bit b ←$ {0, 1}, and an-

swers the OInit,ODerR,ODerI queries for A by invoking the anamorphic algorithms
aInit, aDerR, aDerI and the simulator Sim = (SimI, SimR). Moreover, the chal-
lenger answers the OTestDK queries for A, by returning the real double keys dkr
(resp., dki) generated in ODerR (resp., ODerI) if b = 1 while returning uniformly
chosen dk ←$ {0, 1}κ if b = 0. Note that if the dkr (resp., dki) generated in
ODerR (resp., ODerI) is invalid (i.e., equals ⊥), then the challenger will output
⊥ directly for the OTestDK query regardless of the value of b. The adversary A
succeeds if it guesses b correctly.

41

We note that the oracles ODerR and ODerI generate the real valid double keys
dkr and dki according to aDerR and aDerI as follows:

– ODerR(sID,m) generates valid dkr by setting dkr := PRFD(sr, (m, amsgr)) ∈
{0, 1}κ, where sr := Extract(mskr, apki) and amsgr := (mr,1,mr,2,mr,3) with
mr,1 := fR,1(dr,1) for dr,1 ←$ DR,1.

– ODerI(sID,m) generates valid dki by setting dki := PRFD(si, (amsgi,m)) ∈
{0, 1}κ, where si := Extract(mski, apkr) and amsgi := (mi,1,mi,2,mi,3) with
mi,1 := fI,1(di,1) for di,1 ←$ DI,1, which are generated during the OInit(sID)
query and stored in Aux[sID] = aux′i = (si, amsgi).

Here (i, r) := (init[sID], resp[sID]) denote the initiator and responder of sID.

Game G′
1: It is the same as G′

0, except that at the beginning of the game, the
challenger samples s∗i,r = s∗r,i ←$ DE for each pair of parties (i, r) ∈ [N] × [N]

with i ̸= r. Then the challenger answers the oracle queries OInit,ODerR,ODerI by
using si := s∗i,r and sr := s∗r,i as the secrets, instead of si := Extract(mski, apkr)

and sr := Extract(mskr, apki). Especially, now the oracles ODerR and ODerI gen-
erate the real valid double keys dkr and dki as follows:

– ODerR(sID,m) generates valid dkr by setting dkr := PRFD(sr, (m, amsgr)),
where sr := s∗r,i and amsgr := (mr,1,mr,2,mr,3) with mr,1 := fR,1(dr,1) for
dr,1 ←$ DR,1.

– ODerI(sID,m) generates valid dki by setting dki := PRFD(si, (amsgi,m)),
where si := s∗i,r and amsgi := (mi,1,mi,2,mi,3) with mi,1 := fI,1(di,1) for
di,1 ←$ DI,1.

Similar to the game transition from G0 to G1 in the proof of Lemma 2, G′
0

and G′
1 are indistinguishable by the secret extractability of Gen, and we have the

following claim whose proof is essentially the same as that for Claim 1.

Claim 2. By the secret extractability of Gen,
∣∣Pr[G′

0 = 1]−Pr[G′
1 = 1]

∣∣ ≤ negl(κ).

Game G′
2: It is the same as G′

1, except that the challenger replaces the pseudo-
random function PRF = (PRFI,PRFR,PRFD) with truly random function TRF =

(TRFI,TRFR,TRFD) , where TRFI/TRFR/TRFD : {0, 1}∗ −→ DI,2/DR,2/{0, 1}κ.
Especially, now the oracles ODerR and ODerI generate the real valid double keys
dkr and dki as follows:

– ODerR(sID,m) generates valid dkr by setting dkr := TRFD (s∗r,i, (m, amsgr)),
where amsgr := (mr,1,mr,2,mr,3) with mr,1 := fR,1(dr,1) for dr,1 ←$ DR,1.

– ODerI(sID,m) generates valid dki by setting dki := TRFD (s∗i,r, (amsgi,m)),
where amsgi := (mi,1,mi,2,mi,3) with mi,1 := fI,1(di,1) for di,1 ←$ DI,1.

Similar to the game transition from G1 to G2 in the proof of Lemma 2, G′
1

and G′
2 are computationally indistinguishable since PRF = (PRFI,PRFR,PRFD)

is a pseudo-random function, and we have
∣∣Pr[G′

1 = 1]− Pr[G′
2 = 1]

∣∣ ≤ negl(κ).

42

Game G′
3: It is the same as G′

2, except that now the oracles ODerR and ODerI

generate the real valid double keys dkr and dki as follows:

– ODerR(sID,m) generates valid dkr by picking dkr ←$ {0, 1}κ uniformly.

– ODerI(sID,m) generates valid dki by picking dki ←$ {0, 1}κ uniformly.

Clearly, in G′
3, the real valid double keys dkr (resp., dki) are uniformly sampled,

so the challenge bit b is perfectly hidden to A, and we have Pr[G′
3 = 1] = 1/2.

It remains to show that G′
2 and G′

3 are computationally indistinguishable for
A. We define three events in G′

2 as follows:

• Let EDR denote the event that all invocations of dkr := TRFD (s∗r,i, (m, amsgr))
in ODerR(sID,m) are on different inputs (m, amsgr), where m is provided by
A and amsgr := (mr,1,mr,2,mr,3) has mr,1 := fR,1(dr,1) for dr,1 ←$ DR,1.

• Let EDI denote the event that all invocations of dki := TRFD (s∗i,r, (amsgi,m))
in ODerI(sID,m) are on different inputs (amsgi,m), where m is provided by
A and amsgi := (mi,1,mi,2,mi,3) has mi,1 := fI,1(di,1) for di,1 ←$ DR,1.

• Let EDM denote the event that there is no pair of invocations of dkr :=
TRFD (s∗r,i, (m, amsgr)) inODerR(sID,m) and dki := TRFD (s∗i,r, (amsgi,m

′))

in ODerI(sID
′,m′) on same key and same input, i.e., (s∗r,i, (m, amsgr)) =

(s∗i,r, (amsgi,m
′)).

If the above three events EDR, EDI and EDM occur simultaneously, then in G′
2,

TRFD is always computed on different inputs, so its outputs dkr, dki are uni-
formly and independently distributed, the same as those in G′

3. Besides, if EDM

does not happen, i.e., there exists a pair of invocations of dkr := TRFD (s∗r,i, (m, amsgr))

and dki := TRFD (s∗i,r, (amsgi,m
′)) with same key and same input (s∗r,i, (m, amsgr)) =

(s∗i,r, (amsgi,m
′)), then it implies that this pair of dkr and dki are double keys

of matching sessions, and thus A cannot test both of them (in order to avoid
trivial attacks, cf. Def. 4), and consequently, the behaviour of G′

2 and G′
3 are also

the same in this case. Overall, G′
2 is identical to G′

3 unless EDR or EDI does not
happen, and we have

∣∣Pr[G′
2 = 1]− Pr[G′

3 = 1]
∣∣ ≤ Pr[¬EDR ∨ ¬EDI] ≤ Pr[¬EDR] + Pr[¬EDI].

On the other hand, similar to the analysis in the proof of Lemma 2, we have
Pr[¬EDR] ≤ negl(κ) and Pr[¬EDI] ≤ negl(κ) since those mr,1 in amsgr (resp.,
those mi,1 in amsgi) can hardly collide according to the entropy-preserving prop-
erty of fR,1 (resp., fI,1). This shows that

∣∣Pr[G′
2 = 1]− Pr[G′

3 = 1]
∣∣ ≤ negl(κ).

Finally, by taking all things together, Lemma 3 follows. ⊓⊔

43

D Missing Proofs in Sect. 5 (Instantiations of AM-AKE)

D.1 Proof of Lemma 5 (Any IND-CPA Secure KEM has Entropy-
Preserving GenKEM and Encap)

Lemma 5 If KEM = (GenKEM,Encap,Decap) is a IND-CPA secure KEM scheme,
then the function GenKEM(·) that outputs only pk and the function Encap(pk; ·)
that outputs only ψ are entropy-preserving.

Proof of Lemma 5. We will construct two PPT algorithms A and B, such that
for any public key pk and any ciphertext ψ∗, it holds that

Pr[GenKEM(dG) = pk | dG ←$ DG] ≤ 4 · AdvIND-CPA
KEM,A (κ), (4)

Pr[Encap(pk; dK) = ψ∗ | dK ←$ DK] ≤ 4 · AdvIND-CPA
KEM,B (κ), (5)

both of which are negligible under the IND-CPA security of KEM, and conse-
quently, the entropy-preserving of GenKEM(·) and Encap(pk; ·) follows.

We first describe the construction of A. Given a challenge (pk, ψ∗,K∗
b), where

(pk, sk)← GenKEM, (K∗
0 , ψ

∗)← Encap(pk), K∗
1 ←$ K and b←$ {0, 1}, A aims to

guess the value of b. To this end, A invokes (p̃k, s̃k)← GenKEM(dG) by itself with
randomness dG ←$ DG to generate another key-pair (p̃k, s̃k), and checks whether
p̃k = pk. If the check passes, A uses s̃k to decrypt ψ∗, i.e., K̃ ← Decap(s̃k, ψ∗),
and returns b′ = 0 to its own challenger if and only if K̃ = K∗

b . Otherwise, A
returns a uniformly chosen b′ ←$ {0, 1} to its own challenger.

Let PKCol denote the event that p̃k = pk holds, where pk is the public key in
A’s input and (p̃k, s̃k) ← GenKEM(dG) with dG ←$ DG is generated by A. Since
GenKEM is the function that only outputs p̃k, we have that

Pr[PKCol] = Pr[p̃k = pk | dG ←$ DG, (p̃k, s̃k)← GenKEM(dG)]

= Pr[GenKEM(dG) = pk | dG ←$ DG]. (6)

On the other hand, when p̃k = pk holds, i.e., PKCol occurs, s̃k has the same func-
tionality with sk when decrypting ψ∗, and in this case, for K̃ ← Decap(s̃k, ψ∗),
K̃ = K∗

0 holds with probability 1 by the correctness of KEM, while K̃ = K∗
1

holds with probability 1/|K| since K∗
1 ←$ K. Consequently, we have

AdvIND-CPA
KEM,A (κ) = |Pr[b′ = b]− 1

2 |
= |Pr[PKCol] · Pr[b′ = b | PKCol] + Pr[¬PKCol] · Pr[b′ = b | ¬PKCol]− 1

2 |
= |Pr[PKCol] · Pr[b′ = b | PKCol] + (1− Pr[PKCol]) · 12 −

1
2 |

= Pr[PKCol] ·
∣∣Pr[b′ = b | PKCol]− 1

2

∣∣
= Pr[PKCol] ·

∣∣Pr[b = 0] · Pr[b′ = 0 | b = 0 ∧ PKCol]

+ Pr[b = 1] · Pr[b′ = 1 | b = 1 ∧ PKCol]− 1
2

∣∣
= Pr[PKCol] ·

∣∣ 1
2 · 1 +

1
2 · (1− 1/|K|)− 1

2

∣∣
= 1

2 · Pr[PKCol] · (1− 1/|K|) ≥ 1
4 · Pr[PKCol], (7)

44

where the last inequality holds for |K| ≥ 2. Then (4) follows from (6) and (7).
Next we describe the construction of B, which is similar to that of A. Given

a challenge (pk, ψ∗,K∗
b), where (pk, sk) ← GenKEM, (K∗

0 , ψ
∗) ← Encap(pk),

K∗
1 ←$ K and b ←$ {0, 1}, B also aims to guess the value of b. To this end,
B invokes (K̃, ψ̃) ← Encap(pk; dK) by itself with randomness dK ←$ DK, and
checks whether ψ̃ = ψ∗. If the check passes, then B returns b′ = 0 to its own
challenger if and only if K̃ = K∗

b . Otherwise, B returns a uniformly chosen
b′ ←$ {0, 1} to its own challenger.

Let CTCol denote the event that ψ̃ = ψ∗ holds, where ψ∗ is the ciphertext in
B’s input and (K̃, ψ̃) ← Encap(pk; dK) with dK ←$ DK is generated by B. Since
Encap is the function that only outputs ψ̃, we have that

Pr[CTCol] = Pr[ψ̃ = ψ∗ | dK ←$ DK, (K̃, ψ̃)← Encap(pk; dK)]

= Pr[Encap(pk; dK) = ψ∗ | dG ←$ DG]. (8)

On the other hand, when ψ̃ = ψ∗ holds, i.e., CTCol occurs, both K̃ and K∗
0 are

the symmetric keys encapsulated in ψ̃ = ψ∗, and in this case, K̃ = K∗
0 holds with

probability 1 by the correctness of KEM, while K = K∗
1 holds with probability

1/|K| since K∗
1 ←$ K. With a similar analysis to (7), we can get that

AdvIND-CPA
KEM,B (κ) ≥ 1

4 · Pr[CTCol]. (9)

Then (5) follows from (8) and (9).
Overall, (4) and (5) hold, and consequently, the entropy-preserving of GenKEM(·)

and Encap(pk; ·) follow from the IND-CPA security of KEM. ⊓⊔

D.2 Proof of Theorem 5 (Security of SIGDDH)

Theorem 5 If the DDH assumption holds over G1 and H is a random oracle,
then the proposed SIGDDH achieves EUF-CMA security.

Proof of Theorem 5. The proof is very similar to the security proof of the
Schnorr signature scheme [24] (see, e.g., [14, Subsect. 12.5], for a proof of the
Schnorr scheme). Here we provide a proof for completeness. More precisely, our
proof goes with two steps. We will first describe an identification protocol (de-
noted by IPDDH) derived from SIGDDH, and prove its security based on the DDH
assumption holds over G1. Then we will prove the EUF-CMA security of SIGDDH

based on the security of IPDDH in the random oracle model.

The Identification Protocol IPDDH and Its Security Definition. The
protocol is played between two parties, say Alice and Bob. Alice generates her
own key-pair via (pk = e(g1, g2)

x, sk = gx2)← GenDDH and publishes pk. Through
the protocol, Alice aims to prove to Bob that she owns the sk corresponding to
pk. To this end, Alice and Bob process in three steps:

1. Alice chooses a randomness r ←$ Zp, and sends σ1 := gr1 to Bob.

45

2. After receiving σ1, Bob sends a uniform d←$ Zp to Alice as a challenge.
3. After getting d, Alice computes σ2 := gx·d+r

2 with her sk = gx2 and the
randomness r chosen in step 1, and sends σ2 to Bob.

Finally, Bob checks whether e(g1, σ2) = e(g1, g2)
x·d · e(σ1, g2) holds, and outputs

1 if and only if the check passes.
The security of the protocol IPDDH asks the hardness to impersonate Alice,

even if an adversary gets pk and many transcripts of the protocol. More precisely,
it requires that for any stateful PPT adversaryA, the advantage AdvIPDDH,A(κ) :=

Pr

[
e(g1, σ

∗
2) =

e(g1, g2)
x·d∗
· e(σ∗

1 , g2)

∣∣∣∣ (pk, sk)← GenDDH, σ
∗
1 ← AOIP(pk)

d∗ ←$ Zp, σ
∗
2 ← AOIP(d∗)

]
≤ negl(κ), (10)

where the oracle OIP gets no input and returns a freshly generated transcript
(σ1, d, σ2) of the protocol to A, i.e., r ←$ Zp, σ1 := gr1, d←$ Zp, σ2 := gx·d+r

2 .
Next we will prove the following two claims, and then Theorem 5 directly

holds.

Claim 3. If the DDH assumption holds over G1, then the identification protocol
IPDDH is secure.

Claim 4. If the identification protocol IPDDH is secure, and H is a random oracle,
then the signature scheme SIGDDH achieves EUF-CMA security.

Proof of Claim 3. For any adversary A against the security of the identification
protocol IPDDH, we construct an algorithm B against the DDH assumption over
G1 as follows.

Given a DDH challenge (pp, gx1 , g
y
1 , T), B wants to compute distinguish T =

gxy1 from T ←$ G1, where x, y ←$ Zp. To this end, B simulates the security
experiment as described in (10) for A as follows as follows. B will sample a
randomness rA for A, and invoke A twice with the same randomness rA as
follows.

– B computes pk := e(gx1 , g2) = e(g1, g2)
x, sends pk to A. Then B answers the

OIP queries for A by sampling w ←$ Zp, d ←$ Zp, computing σ2 := gw2 ,
σ1 := gw1 · (gx1)−d = gw−x·d

1 , and returning (σ1, d, σ2). In particular, for each
OIP query made by A, B will use the same randomness to answer the query
for the two invocations.

– At some point A outputs σ∗
1 .

– B picks d∗ ←$ Zp and sends d∗ to A in the first invocation of A, while B
picks another d′∗ ←$ Zp and sends d′∗ to A in the second invocation of A.

– B continues to answer the OIP queries for A, the same as the above.
– At the end of the first invocation, A outputs σ∗

2 , while at the end of the
second invocation, A outputs σ′∗

2 .

Finally, if d∗ ̸= d′∗, then B computes h := (σ∗
2/σ

′∗
2)(d

∗−d′∗)−1 , uses h to check
whether e(gy1 , h) = e(T, g2) holds, and outputs 1 if and only if the check passes;
otherwise, B outputs 0.

46

Below we analyze the simulation by B. Clearly, B’s simulation of pk is perfect,
and B’s answers for OIP queries are also perfect, since the real transcripts (σ1 :=
gr1, d ←$ Zp, σ2 := gx·d+r

2) and the simulated transcripts (σ1 := gw−x·d
1 , d ←$

Zp, σ2 := gw2) are identically distributed for r, w ←$ Zp.
For each OIP query made by A, B will use the same randomness to answer

the query for the two invocations, so that A’s views in these two invocations are
the same. Consequently, A will output the same σ∗

1 in the two invocations.
Suppose that d∗ ̸= d′∗ and A succeeds in both of the two invocations,

i.e., both e(g1, σ
∗
2) = e(g1, g2)

x·d∗ · e(σ∗
1 , g2) and e(g1, σ

′∗
2) = e(g1, g2)

x·d′∗ ·
e(σ∗

1 , g2) hold. Then by dividing these two equations, we get that e(g1, σ∗
2/σ

′∗
2) =

e(g1, g2)
x·(d∗−d′∗), which implies that σ∗

2/σ
′∗
2 = g

x·(d∗−d′∗)
2 . Consequently, the h

computed by B is in fact h := (σ∗
2/σ

′∗
2)(d

∗−d′∗)−1

= gx2 , and it is clear to see
that the check of e(gy1 , h) = e(T, g2) passes if and only if T = gxy1 . Overall, B is
able to distinguish T = gxy1 from T ←$ G1, as long as d∗ ̸= d′∗ and A succeeds
in both of the two invocations. More precisely, let rexp denote all messages A
received in the experiment except d∗ and d′∗. As we explained above, rexp is the
same for the two invocations since B uses the same randomness. Then we have

AdvDDH
G1,B(κ) ≥ Pr[d∗ ̸= d′∗ ∧ A(rexp, d∗; rA) succeeds ∧ A(rexp, d′∗; rA) succeeds]

≥ Pr[A(rexp, d∗; rA) succeeds ∧ A(rexp, d′∗; rA) succeeds]− Pr[d∗ = d′∗]

=
∑
r0

∑
r1

Pr[rexp = r0] · Pr[rA = r1] · Pr[A(r0, d∗; r1) succeeds ∧ A(r0, d′∗; r1) succeeds]− 1
p

=
∑
r0

∑
r1

Pr[rexp = r0] · Pr[rA = r1] · Pr[A(r0, d∗; r1) succeeds] · Pr[A(r0, d′∗; r1) succeeds]− 1
p

=
∑
r0

∑
r1

Pr[rexp = r0] · Pr[rA = r1] · Pr[A(r0, d∗; r1) succeeds]2 − 1
p

= ErexpErA Pr[A(rexp, d∗; rA) succeeds]2 − 1
p

≥
(
ErexpErA Pr[A(rexp, d∗; rA) succeeds]

)2 − 1
p (11)

=
(∑

r0

∑
r1

Pr[rexp = r0] · Pr[rA = r1] · Pr[A(r0, d∗; r1) succeeds]
)2 − 1

p

= Pr[A(rexp, d∗; rA) succeeds]2 − 1
p = AdvIPDDH,A(κ)

2 − 1
p ,

where the summations
∑

r0
and

∑
r1

are over all possible values of rexp and rA,
respectively, E denotes the mathematical expectation, (11) follows from the fact
that E X2 ≥ (E X2) holds for any variable X. Putting differently, it holds that

AdvIPDDH,A(κ) ≤
√

AdvDDH
G1,B(κ) +

1
p ,

which is negligible under the DDH assumption over G1. This shows the security
of the identification protocol IPDDH.

Proof of Claim 4. For any adversary A against the EUF-CMA security of the
signature scheme SIGDDH, we construct an algorithm B against the security of the

47

identification protocol IPDDH as follows. The reduction is in the random oracle
model.
B is constructed by simulating the EUF-CMA security experiment as de-

scribed in (3) for A. Let Q denote the number of OSign queries made by A.
– Firstly, B receives pk = e(g1, g2)

x from its own challenger, and passes pk to
A. Moreover, B samples an index j∗ ←$ [Q] uniformly.

– Then B needs to answer the OSign(m) queries for A. To this end, B asks its
own OIP oracle to obtain a fresh transcript (σ1 = gr1, d, σ2 = gx·d+r

2) of the
protocol IPDDH, where r, d ←$ Zp, then sets the hash value H(m,σ1) := d,
and returns σ := (σ1, σ2) as a signature of m to A. It is clear to see that the
simulation of σ = (σ1, σ2) is perfect.

– Meanwhile, B needs to answer the random oracle queries H(m′, σ′
1) for A.

• If this is the j∗-th random oracle query made byA, denoted by (m′(j∗), σ
′(j∗)
1),

then B returns σ′(j∗)
1 to its own challenger and receives d∗ ←$ Zp from

its own challenger (cf. (10) for the security experiment of IPDDH). Then
B sets the hash value H(m′(j∗), σ

′(j∗)
1) := d∗, and returns d∗ to A.

• If H(m′, σ′
1) is already defined, B returns the value of H(m′, σ′

1) to A.
• Otherwise, B samples d′ ←$ Zp uniformly, sets the hash value H(m′, σ′

1) :=
d′, and returns d′ to A.

– Finally, B receives a forgery (m∗, σ∗ = (σ∗
1 , σ

∗
2)) from A, and outputs σ∗

2 to
its own challenger.

Clearly, B’s simulation of pk is perfect, and B’s answers for OSign and H
queries are perfect as well, since B always sets the hash values as uniformly
random elements.

We note that B breaks the security of the identification protocol IPDDH if the
following three events occur simultaneously:

– Event I: A made a random oracle query H(m∗, σ∗
1) to B.

– Event II: A’s random oracle query H(m∗, σ∗
1) happened to be the j∗-th query.

– Event III: A breaks the EUF-CMA security of SIGDDH by providing a fresh
and valid forgery (m∗, σ∗ = (σ∗

1 , σ
∗
2)), i.e., satisfying

e(g1, σ
∗
2) = e(g1, g2)

x·d′∗
· e(σ∗

1 , g2) (12)

for d′∗ := H(m∗, σ∗
1) ∈ Zp.

This is because that when A’s random oracle query H(m∗, σ∗
1) is the j∗-th query,

i.e., (m′(j∗), σ
′(j∗)
1) = (m∗, σ∗

1), then B actually returns σ′(j∗)
1 = σ∗

1 to its own
challenger and sets the hash value of H(m∗, σ∗

1) as the obtained d∗, i.e., d′∗ =
H(m∗, σ∗

1) = d∗, and thus B’s final output σ∗
2 breaks the security of IPDDH as

long as A’s forgery satisfies (12). Consequently, we get that

AdvIPDDH,B(κ) ≥ Pr[Event I ∧ Event II ∧ Event III]
= Pr[Event I ∧ Event III] · Pr[Event II | Event I ∧ Event III]
= (Pr[Event III]− Pr[¬Event I ∧ Event III]) · Pr[Event II | Event I ∧ Event III]
≥ (AdvEUF-CMA

SIGDDH,A (κ)− 1
p) ·

1
Q , (13)

48

where (13) follows from the three facts that Pr[Event III] = AdvEUF-CMA
SIGDDH,A (κ),

Pr[¬Event I ∧ Event III] ≤ 1
p (if A never queries H(m∗, σ∗

1), then the value of
d′∗ := H(m∗, σ∗

1) ∈ Zp is uniformly random to A, and thus A’s forgery can satisfy
(12) with probability at most 1

p), and Pr[Event II | Event I∧Event III] ≥ 1
Q (if A

made a random oracle query H(m∗, σ∗
1), then for j∗ ←$ [Q], the query happened

to be the j∗-th query with probability at least 1
Q).

Putting differently, it holds that

AdvEUF-CMA
SIGDDH,A (κ) ≤ Q · AdvIPDDH,B(κ) +

1
p ,

which is negligible assuming the security of the identification protocol IPDDH.
This shows the EUF-CMA security of the signature scheme SIGDDH.

Finally, by combining Claim 3 and Claim 4 together, Theorem 5 follows. ⊓⊔

D.3 Proof of Lemma 8 (Qualified AKE3K via The Three-KEM
Paradigm)

Lemma 8 If KEM and KEM0 meet the requirements listed in Table 2, then the
AKE3K yielded by the three-KEM paradigm is a qualified AKE for constructing
AM-AKE.

Proof of Lemma 8. To prove that AKE3K = (Gen3K, Init3K,DerR3K,DerI3K)
is a qualified one, we show that all requirements listed in Table 2 are satisfied,
i.e., Gen3K has secret extractability, Init3K is 3-separable with entropy-preserving
functions (fI,1, fI,2), and DerR3K is 3-separable with entropy-preserving functions
(fR,1, fR,2).

• Since Gen3K = GenKEM, the secret extractability of Gen3K follows directly
from that of GenKEM.

• The process of Init3K(pkr, ski) for generating (msgi = (p̃k, ψi), st = (s̃k,Ki))
can be decomposed into three steps:
1. dG ←$ DG and p̃k := GenKEM0(dG). So we can define fI,1 := GenKEM0 ,

and then the entropy-preserving of fI,1 follows from that of GenKEM0 .
2. dK,i ←$ DK and ψi := Encap(pkr; dK,i). So we can define fI,2 := Encap(pkr; ·),

and then the entropy-preserving of fI,2 follows from that of Encap(pkr; ·).
3. (p̃k, s̃k) := GenKEM0

(dG), (Ki, ψi) := Encap(pkr; dK,i), and set st :=

(s̃k,Ki). This process can be defined as (ε, st)← Init3K(pkr, ski, dG, dK,i).
Consequently, Init3K is 3-separable with two entropy-preserving functions
(fI,1 = GenKEM0 , fI,2 = Encap(pkr; ·)) and an algorithm Init3K.

• Similarly, the process of DerR3K(pki, skr,msgi = (p̃k, ψi)) for generating
(msgr = (ψ̃, ψr),Kr) can be decomposed into three steps:
1. dK0 ←$ DK0 and ψ̃ := Encap0(p̃k; dK0). So we can define fR,1 := Encap0(p̃k; ·),

and then the entropy-preserving of fR,1 follows from that of Encap0(p̃k; ·).
2. dK,r ←$ DK and ψr := Encap(pki; dK,r). So we can define fR,2 := Encap(pki; ·),

and then the entropy-preserving of fR,2 follows from that of Encap(pki; ·).

49

3. Ki ← Decap(skr, ψi), (K̃, ψ̃) := Encap0(p̃k; dK0), (Kr, ψr) := Encap(pki; dK,r),
and sets Kr := H(pki, pkr,msgi,msgr,Ki,Kr, K̃). This process can be
defined as (ε,Kr) ← DerRKS(pki, skr,msgi = (p̃k, ψi), dK0 , dK,r), with ε
denoting the empty string.

Consequently, DerR3K is 3-separable with two entropy-preserving functions
(fR,1 = Encap0(p̃k; ·), fR,2 = Encap(pki; ·)) and an algorithm DerR3K. ⊓⊔

D.4 Proof of Theorem 6 (Security of KEMDDH)

Theorem 6 If the DDH assumption holds over G1, then the proposed KEMDDH

achieves IND-CPA security.

Proof of Theorem 6. The proof is quite straightforward. For any adversary A
against the IND-CPA security of KEMDDH, we construct an algorithm B against
the DDH assumption over G1 as follows.

Given a DDH challenge (pp, gx1 , g
r
1, T), B wants to distinguish T = gxr1 from

T ←$ G1, where x, r ←$ Zp. To this end, B computes pk := e(gx1 , g2) =
e(g1, g2)

x, ψ∗ := gr1, K∗ := e(T, g2), gives (pk, ψ∗,K∗) to A, and returns the
output of A to its own challenger. It is easy to see that B’s simulation of (pk, ψ∗)
is perfect. If T = gxr1 , then K∗ = e(T, g2) = e(g1, g2)

xr, which is the real
symmetric key encapsulated in ψ∗ = gr1; if T ←$ G1, then K∗ = e(T, g2) is
uniformly distributed over GT . Consequently, B is able to distinguish T = gxr1
from T ←$ G1, as long as A can distinguish the real symmetric key K∗ =
e(g1, g2)

xr encapsulated in ψ∗ from a uniformly chosen K∗ ←$ GT , and we have
AdvIND-CPA

KEMDDH,A(κ) ≤ AdvDDH
G1,B(κ), which is negligible under the DDH assumption

over G1. This shows the IND-CPA security of KEMDDH. ⊓⊔

E Generic Construction of Plain AM-AKE with Relaxed
Security from AKE

As shown in Subsect. 3.4, it is impossible for a plain (two-pass) AM-AKE scheme
to achieve responder-robustness, achieve IND-WM/sIND-WM if it is initiator-
robust, and achieve PR-DK/sPR-DK. The best security for it is the relaxed se-
curity notions defined in Def. 6 in Subsect. 3.4.

In this section, we propose a generic construction of plain AM-AKE with
relaxed security from a basic AKE, with the help of a KEM and a PRF. The
resulting plain AM-AKE achieves initiator-robust, relaxed sIND-WM security
and relaxed sPR-DK security, simultaneously. To make the construction possible,
we require the underlying AKE and KEM to meet some new requirements, which
are defined in Appendix E.1. Then we will show the generic construction in
Appendix E.2, and prove its security in Appendix E.3. Finally, in Appendix E.4,
we discuss how to achieve responder-robustness for plain AM-AKE by relying
on more passes.

50

E.1 Requirements for The Underlying AKE and KEM

To construct a plain AM-AKE scheme from AKE and KEM, we require the
underlying AKE have partially randomness-recoverable algorithms Init and DerR,
and the underlying KEM have pseudo-random public keys, encapsulated keys
and ciphertexts, which are defined as follows.

Definition 16 (AKE with Partially Randomness-Recoverable Init and
DerR). Let AKE = (Gen, Init,DerR,DerI) be a two-pass AKE scheme, with D∗

I ×DI

the randomness space of Init and D∗
R × DR the randomness space of DerR. We

say that the algorithms Init and DerR are partially randomness-recoverable, if
there exist PPT algorithms RecInit and RecDerR, such that for any (pki, ski) ←
Gen, (pkr, skr) ← Gen, d∗i ∈ D∗

I , di ∈ DI, d∗r ∈ D∗
R, dr ∈ DR, (msgi, st) ←

Init(pkr, ski; (d
∗
i , di)), (msgr,Kr)← DerR(pki, skr,msgi; (d

∗
r , dr)), it holds that

d∗i = RecInit(pki, skr,msgi) and d∗r = RecDerR(pkr, ski,msgr, st).

Definition 17 (Fully Pseudo-Random KEM). Let KEM = (GenKEM,Encap,
Decap) be a KEM scheme with public key space PK, encapsulated key space K
and ciphertext space CT . We say that KEM is fully pseudo-random, if for any
PPT adversary A, it holds that∣∣∣Pr[A(pk,K, ψ) = 1]− Pr[A(pk′,K ′, ψ′) = 1]

∣∣∣ ≤ negl(κ)

where (pk, sk) ← GenKEM, (K,ψ) ← Encap(pk), pk′ ←$ PK, K ′ ←$ K and
ψ′ ←$ CT .

Based on the properties defined above, we are ready to present the generic
construction of plain AM-AKE.

E.2 Construction of Plain AM-AKE from AKE, KEM and PRF

Let KEM = (GenKEM,Encap,Decap) be a fully pseudo-random KEM as per
Def. 17, with public key space PK, encapsulated key space K and ciphertext
space CT . Let AKE = (Gen, Init,DerR,DerI) be a two-pass AKE scheme with
partially randomness-recoverable (Init,DerR) supported by (RecInit,RecDerR) as
per Def. 16, where the randomness space of Init is D∗

I ×DI with D∗
I = PK, and

the randomness space of DerR is D∗
R × DR with D∗

R = CT × {0, 1}κ. Moreover,
let PRF : K × {0, 1}∗ −→ {0, 1}2κ. For ease of exposition, we parse the out-
put of PRF as two parts, i.e., PRFR/PRFD : K × {0, 1}∗ −→ {0, 1}κ, such that
PRF(K,m) = (PRFR(K,m),PRFD(K,m)) for all K ∈ K and m ∈ {0, 1}∗.

Now we convert AKE to a plain AM-AKE scheme AM-AKE = ((Gen, Init,DerR,
DerI), (aGen, aInit, aDerR, aDerI)) with the help of KEM and PRF, where the
anamorphic algorithms are described below. (See also Fig. 8 for an illustration
of the resulting plain AM-AKE.)

• (apk, ask, aux)← aGen: it invokes AKE’s key generation algorithm (pk, sk)←
Gen, and sets (apk, ask, aux) := (pk, sk,⊥).

51

• (amsgi, st, aux
′
i)← aInit(apkr, aski, auxi = ⊥): it invokes (p̃k, s̃k) ← GenKEM,

sets d∗i := p̃k, chooses di ←$ DI, and invokes (msgi, st)← Init(apkr, aski; (d
∗
i , di)).

Then, it returns (amsgi := msgi, st, aux
′
i := (s̃k, amsgi)).

• (amsgr,Kr, dkr)← aDerR(apki, askr, auxr = ⊥, amsgi): it first recovers the
partial randomness used by Init via computing p̃k := RecInit(apki, askr, amsgi).
Then it invokes (K̃, ψ̃) ← Encap(p̃k) and computes h := PRFR(K̃, amsgi).
Next it sets d∗r := (ψ̃, h), chooses dr ←$ DR, invokes (msgr,Kr)← DerR(apki, askr,

amsgi; (d
∗
r , dr)), and sets amsgr := msgr. Finally, it computes dkr := PRFD(K̃,

(amsgi, amsgr)) as the double key, and returns (amsgr,Kr, dkr).
• (Ki, dki)← aDerI(apkr, aski, aux

′
i = (s̃k, amsgi), amsgr, st): it first recovers the

partial randomness used by DerR via computing d∗r := RecDerR(apkr, aski, amsgr, st),
and parses d∗r = (ψ̃, h). Then it decrypts ψ̃ to obtain K̃ ← Decap(s̃k, ψ̃),
and checks whether h = PRFR(K̃, amsgi) holds. If the check passes, it sets
dki := PRFD(K̃, (amsgi, amsgr)) as the double key; otherwise, dki := ⊥.
Finally, it invokes Ki ← DerI(apkr, aski, amsgr, st), and returns (Ki, dki).

Party Pi(apki, aski, auxi = ⊥) Party Pr(apkr, askr, auxr = ⊥)

d∗i ←$ D∗
I

(p̃k, s̃k)← GenKEM; d
∗
i := p̃k

di ←$ DI

(amsgi, st)← Init(apkr, aski; (d
∗
i , di))

amsgi
d∗r ←$ D∗

R

p̃k := RecInit(apki, askr, amsgi)

(K̃, ψ̃)← Encap(p̃k)

d∗r := (ψ̃,PRFR(K̃, amsgi))

dr ←$ DR

(amsgr,Kr)← DerR(apki, askr, amsgi; (d
∗
r ; dr))

dkr := PRFD(K̃, (amsgi, amsgr)) ∈ {0, 1}κ
amsgr

(ψ̃, h) := RecDerR(apkr, aski, amsgr, st)

K̃ ← Decap(s̃k, ψ̃)

if h = PRFR(K̃, amsgi) :

dki := PRFD(K̃, (amsgi, amsgr)) ∈ {0, 1}κ

else :
dki := ⊥

Ki ← DerI(apkr, aski, amsgr, st)

st

aux′i := (s̃k, amsgi)

Fig. 8. Generic construction of the plain AM-AKE scheme AM-AKE based on
AKE, KEM and PRF, where dotted boxes appear only in normal algorithms
(Gen, Init,DerR,DerI), and gray boxes appear only in anamorphic algorithms
(aGen, aInit, aDerR, aDerI).

Let us compare the normal algorithms and the anamorphic ones.
– The anamorphic algorithm aGen is identical to the normal algorithm Gen,

so are the key-pairs (apk, ask) and (pk, sk) they generate.
– The normal algorithm Init makes use of random coins d∗i and di for the

generation of msgi and st. The anamorphic algorithm aInit can be regarded
as the normal Init taking specific coins d∗i = p̃k and random coins di, with
p̃k an ephemeral public key of KEM.

52

– The normal algorithm DerR makes use of random coins d∗r and dr for the
generation of msgr and Kr. The anamorphic algorithm aDerR has two parts:
one part can be regarded as the normal DerR taking specific coins d∗r = (ψ̃, h)

and random coins dr to output msgr and Kr, where (K̃, ψ̃)← Encap(p̃k) and
h = PRFR(K̃, amsgi); the other part is in charge of generating the double
key dkr := PRFD(K̃, (amsgi, amsgr)).

– The normal algorithm DerI is deterministic and outputs Ki. The anamorphic
algorithm aDerI functions identically as DerI for the generation of Ki, but it is
also in charge of generating the double key dki := PRFD(K̃, (amsgi, amsgr))

or dki := ⊥ depending on whether h = PRFR(K̃, amsgi).

Below we analyze the correctness and robustness of our plain AM-AKE.

Correctness. It is easy to see that the correctness of plain AM-AKE follows from
the correctness of AKE, the partially randomness-recoverable property of
(Init,DerR) and the correctness of KEM. In particular, the correctness of AKE
guarantees Ki = Kr for every possible choices of d∗i , di, d∗r , dr, so even using
specific coins in the anamorphic algorithms, we also have Ki = Kr. Moreover,
by the correctness of KEM, we have dki = PRFD(K̃, (amsgi, amsgr)) = dkr.

Initiator-Robustness. Suppose that Pi invokes anamorphic algorithms aInit
and aDerI while Pr invokes normal algorithm DerR, then the randomness
d∗r ←$ D∗

R used in DerR is uniformly chosen. When Pi invokes the anamorphic
algorithm aDerI to recover the partial randomness d∗r and parse d∗r = (ψ̃, h),
we know that ψ̃ and h are independently and uniformly distributed. There-
fore for K̃ ← Decap(s̃k, ψ̃), the check h = PRFR(K̃, amsgi) can pass with only
a negligible probability 1/2κ due to the uniformity of h, and consequently,
Pi will set dki := ⊥ with overwhelming probability.

E.3 Security Proofs

We show the relaxed security of the plain AM-AKE proposed in Appendix E.2.

Theorem 7 (Relaxed Security of Plain AM-AKE). Let AKE be a two-pass
AKE scheme with partially randomness-recoverable algorithms (Init,DerR), let
KEM be a fully pseudo-random KEM, and let PRF be a pseudo-random function.
Then the plain AM-AKE scheme AM-AKE constructed in Appendix E.2 achieves
relaxed sIND-WM and relaxed sPR-DK security.

The proof of Theorem 7 consists of two parts: the relaxed sIND-WM security
follows from Lemma 9 and Lemma 10, while the relaxed sPR-DK security follows
from Lemma 11.

Lemma 9. For any adversary A, it holds that
∣∣Pr [A(pk, sk) = 1

]
−Pr

[
A(apk, ask) =

1
]∣∣ = 0, where (pk, sk)← Gen and (apk, ask, aux)← aGen.

Proof of Lemma 9. Since both the anamorphic key-pair (apk, ask) and the
normal key-pair (pk, sk) are generated by Gen, they have the same distribution.

⊓⊔

53

Lemma 10. There exists PPT simulator Sim = (SimI, SimR), such that for any
PPT adversary A and N = poly(κ),

∣∣Pr [Exprelaxed-sIND-WM
AM-AKE,A,Sim,N = 1

]
− 1

2

∣∣ ≤ negl(κ).

Proof of Lemma 10. We first describe the simulator Sim = (SimI, SimR).

• Ri ← SimI(apkr, aski, auxi = ⊥, R′
i): Here R′

i is an internal randomness used
in aInit, and thus includes the randomness used in GenKEM which is denoted
by dG, as well as di used in Init, i.e., R′

i = (dG, di). This algorithm aims to
explain R′

i as a randomness Ri for Init. To this end, it computes (p̃k, s̃k) :=

GenKEM(dG), sets d∗i := p̃k, and outputs Ri := (d∗i , di).
• Rr ← SimR(apki, askr, auxr = ⊥,m,R′

r): Here R′
r is an internal randomness

used in aDerR, and thus includes the randomness used in Encap denoted by
dK, as well as dr used in DerR, i.e., R′

r = (dK, dr). This algorithm aims to
explain R′

r as a randomness Rr for DerR. To this end, it computes (K̃, ψ̃) :=
Encap(p̃k; dK), sets d∗r := (ψ̃,PRFR(K̃,m)), and outputs Rr := (d∗r , dr).

We prove the lemma via a sequence of games G0-G3, where the differences
between adjacent games are highlighted in gray boxes.

Game G0: This is the Exprelaxed-sIND-WM
AM-AKE,A,Sim,N experiment (cf. Fig. 2). Then we have

Pr
[
Exprelaxed-sIND-WM

AM-AKE,A,Sim,N = 1
]
= Pr[G0 = 1].

In this game, the challenger samples a challenge bit b←$ {0, 1}, and answers
the OInit,ODerR,ODerI queries for A in the following way:

– If b = 0, the challenger invokes the normal algorithms Init,DerR,DerI;
– If b = 1 and A designates normal mode (i.e., N), the challenger also invokes

the normal algorithms;
– If b = 1 and A designates anamorphic mode (i.e., A), the challenger invokes

the anamorphic algorithm aInit/aDerR/aDerI and the simulator SimI/SimR.

The adversary A succeeds if it guesses b correctly. Overall, there are differences
between b = 0 and b = 1 only if A designates anamorphic mode (i.e., A).

We note that the oraclesOInit,ODerR,ODerI output (msgi, st, Ri), (msgr,Kr, Rr)
and Ki, respectively, but do not output the double keys dki, dkr. The differences
between the normal algorithms and the anamorphic algorithms and simulator in
generating these values only lie in the distributions of d∗i and d∗r :

– The normal algorithms Init,DerR,DerI use uniformly chosen coins d∗i ←$ D∗
I

and d∗r ←$ D∗
R.

– The anamorphic algorithms aInit, aDerR, aDerI and simulator Sim = (SimI, SimR)

involve specific coins d∗i := p̃k ∈ D∗
I and d∗r := (ψ̃′,PRFR(K̃

′,m)) ∈ D∗
R,

where (p̃k, s̃k) := GenKEM, p̃k
′
:= RecInit(apki, askr,m), (K̃, ψ̃) := Encap(p̃k

′
),

and m is chosen by A as the input of ODerR.

Notice that for any session sID, A always queries ODerR(sID,m) with m =
amsgi to obtain valid result where amsgi is outputted by OInit(sID), otherwise

54

ODerR will return ⊥. In this case, p̃k = p̃k
′

because Init is partially randomness-
recoverable.

Game G1: It is the same as G0, except that at the beginning of the game, the

challenger samples p̃kj ←$ PK = D∗
I , K̃j ←$ K , ψ̃j ←$ CT for every j ∈

QNew where QNew is the maximum number of the queries for ONew by A. Then
in the case of b = 1 and the mode designated by A is anamorphic (i.e., A),
the challenger answers the oracle queries OInit(sID,wI = A),ODerR(sID,m,wR =
A),ODerI(sID,m) for A as follows:

– Let j := sID. The challenger invokes anamorphic algorithms aInit, aDerR, aDerI
and the simulator Sim = (SimI, SimR), by using specific coins d∗i := p̃k ∈ D∗

I

and d∗r := (ψ̃,PRFR(K̃,m)) ∈ D∗
R, where p̃k := p̃kj , K̃ := K̃j , ψ̃ := ψ̃j .

By the fully pseudo-random property of KEM (cf. Def. 17), for every j ∈ QNew,
the j-th tuple (p̃k, K̃, ψ̃) generated in G0 with (p̃k, s̃k) ← GenKEM, (K̃, ψ̃) ←
Encap(p̃k) is computationally indistinguishable from (p̃kj , K̃j , ψ̃j) with p̃k := p̃kj ,

K̃ := K̃j , ψ̃ := ψ̃j in G1, which is unknown to A. By a standard hybrid argu-

ment, we conclude that
∣∣∣Pr[G1 = 1]− Pr[G0 = 1]

∣∣∣ ≤ negl(κ).

Game G2: It is the same as G1, except that the challenger replaces the pseudo-
random function PRF = (PRFR,PRFD) with truly random function TRF = (TRFR,TRFD) ,
where TRFR/TRFD : {0, 1}∗ −→ D∗

R/{0, 1}κ. More precisely, when b = 1 and the
mode designated by A is anamorphic (i.e., A), the challenger answers the oracle
queries ODerR(sID,m,wR = A),ODerI(sID,m) for A as follows:

– Let j := sID. The challenger invokes anamorphic algorithms aDerR, aDerI and
the simulator SimR, by using specific coins d∗r := (ψ̃j , TRFR (K̃j ,m)) ∈ D∗

R.

Since PRF = (PRFR,PRFD) is a pseudo-random function, its outputs are
computationally indistinguishable from the outputs of truly random function
TRF = (TRFR,TRFD). Consequently, this change is unnoticeable to A, and by a
standard hybrid argument over the PRF keys K̃j , we have

∣∣Pr[G1 = 1]−Pr[G2 =

1]
∣∣ ≤ negl(κ).

Game G3: It is the same as G2, except that in the case of b = 1 and the mode
designated byA is anamorphic (i.e., A), the challenger answers the oracle queries
OInit(sID,wI = A),ODerR(sID,m,wR = A),ODerI(sID,m) for A as follows:

– The challenger invokes anamorphic algorithms aDerR, aDerI and the simula-
tor SimR, by using uniformly chosen coins d∗r ←$ D∗

R .

Clearly, in G3, the anamorphic algorithms aInit, aDerR, aDerI and the simulator
Sim = (SimI, SimR) using uniformly chosen coins d∗i ←$ D∗

I and d∗r ←$ D∗
R ,

55

which are essentially the same as the normal algorithms Init,DerR,DerI in gen-
erating the responses (msgi, st, Ri), (msgr,Kr, Rr) and Ki, so the challenge bit b
is perfectly hidden to A, and we have Pr[G3 = 1] = 1/2.

It remains to show that G2 and G3 are computationally indistinguishable
for A. Notice that every invocation of TRFR (K̃j , amsgi) uses a different input
instance K̃j , then d∗r := (ψ̃j , TRFR (K̃j , amsgi)) ∈ D∗

R is always mapped to
a uniformly random value in CT × {0, 1}κ = D∗

R. This shows that
∣∣Pr[G2 =

1]− Pr[G3 = 1]
∣∣ ≤ negl(κ).

Finally, by taking all things together, Lemma 10 follows. ⊓⊔

Lemma 11. There exists PPT simulator Sim = (SimI, SimR), such that for any
PPT adversary A and N = poly(κ),

∣∣Pr [Exprelaxed-sPR-DK
AM-AKE,A,Sim,N = 1

]
− 1

2

∣∣ ≤ negl(κ).

Proof of Lemma 11. We adopt the same simulator Sim = (SimI, SimR) defined
in the proof of Lemma 10. We prove the lemma via a sequence of games G′

0-G′
3,

which are defined similarly as those G0-G3 in the proof of Lemma 10.

Game G′
0: This is the Exprelaxed-sPR-DK

AM-AKE,A,Sim,N experiment (cf. Fig. 3). Then we have
Pr

[
Exprelaxed-sPR-DK

AM-AKE,A,Sim,N = 1
]
= Pr[G′

0 = 1].
In this game, the challenger samples a challenge bit b ←$ {0, 1}, and an-

swers the OInit,ODerR,ODerI queries for A by invoking the anamorphic algorithms
aInit, aDerR, aDerI and the simulator Sim = (SimI, SimR). Moreover, the chal-
lenger answers the OTestDK queries for A, by returning the real double keys dkr
(resp., dki) generated in ODerR (resp., ODerI) if b = 1 while returning uniformly
chosen dk ←$ {0, 1}κ if b = 0. Note that if the dkr (resp., dki) generated in
ODerR (resp., ODerI) is invalid (i.e., equals ⊥), then the challenger will output
⊥ directly for the OTestDK query regardless of the value of b. The adversary A
succeeds if it guesses b correctly.

We note that the oracles ODerR and ODerI generate the real valid double keys
dkr and dki according to aDerR and aDerI as follows:

– ODerR(sID,m) generates valid dkr by setting dkr := PRFD(K̃, (m, amsgr)) ∈
{0, 1}κ where p̃k

′
:= RecInit(apki, askr,m), (K̃, ψ̃)← Encap(p̃k

′
), and amsgr :=

DerR(apki, askr,m; (d∗r , dr)) with d∗r := (ψ̃,PRFR(K̃,m)) and dr ←$ DR.
– ODerI(sID,m) generates valid dki by setting dki := PRFD(K̃

′, (amsgi,m)) ∈
{0, 1}κ, where (ψ̃′, h) := RecDerR(apkr, aski,m, st := S[sID]), K̃ ′ ← Decap(s̃k, ψ̃′)

and amsgi := Init(apkr, aski; (d
∗
i , di)) with d∗i := p̃k for (p̃k, s̃k) ← GenKEM

and di ←$ DI. Notice that s̃k is generated during the OInit(sID) query and
stored in Aux[sID] = aux′i = (s̃k, amsgi).

Here (i, r) := (init[sID], resp[sID]) denote the initiator and responder of sID.
Notice that for any session sID, A always queries ODerR(sID,m) with m =

amsgi to obtain valid result where amsgi is outputted by OInit(sID), otherwise
ODerR(sID,m) will return ⊥. Similarly, A always queries ODerI(sID,m

′) with
m′ = amsgr to obtain valid result where amsgr is outputted by ODerR(sID,m),

56

otherwise ODerI(sID,m
′) will return ⊥. In this case, we have p̃k

′
= p̃k because

Init is partially randomness-recoverable, and (K̃ ′, ψ̃′) = (K̃, ψ̃) because DerR is
partially randomness-recoverable.

Game G′
1: It is the same as G′

0, except that at the beginning of the game,

the challenger samples p̃kj ←$ PK , K̃j ←$ K , ψ̃j ←$ CT for every j ∈ QNew

where QNew is the maximum number of the queries for ONew by A. When A
queries the oracles OInit,ODerR,ODerI, the challenger answers as follows:

– For OInit(j := sID), use p̃k := p̃kj instead of p̃k := p̃k
′

where (p̃k
′
, s̃k

′
) ←

GenKEM.
– For ODerR(j := sID,m =Mout

I [sID]): Set K̃ := K̃j and ψ̃ := ψ̃j . Especially,
nowODerR(sID,m) generates valid dkr by dkr := PRFD(K̃j , (m, amsgr)) where
amsgr := (apki, askr,m; (d∗r , dr)) with d∗r := (ψ̃j ,PRFR(K̃j ,m)), dr ←$ DR.
Set Mout

R [sID] := amsgr and DK[sID,R] := dkr.
– For ODerI(j := sID,m =Mout

R [sID]): Set K̃ := K̃j and ψ̃ := ψ̃j . Especially,
nowODerI(sID,m) generates valid dki by setting dki := PRFD(K̃j , (amsgi,m))

where amsgi := Init(apkr, aski; (d
∗
i , di)) with d∗i := p̃kj , di ←$ DI. SetDK[sID, I]

:= dki.

Now similar to the game transition from G0 to G1 in the proof of Lemma 10,
G′
0 and G′

1 are computationally indistinguishable by the fully pseudo-random
property of KEM, and we have

∣∣Pr[G′
0 = 1]− Pr[G′

1 = 1]
∣∣ ≤ negl(κ).

Game G′
2: It is the same as G′

1, except that the challenger replaces the pseudo-
random function PRF = (PRFR,PRFD) with truly random function TRF = (TRFR,

TRFD) , where TRFR/TRFD : {0, 1}∗ −→ {0, 1}κ. Especially, now the oracles
ODerR and ODerI work as follows:

– ODerR(j := sID,m) generates valid dkr by setting dkr := TRFD (K̃, (m, amsgr))

= TRFD (K̃, (amsgi, amsgr)), where K̃ := K̃j , amsgr := (apki, askr,m; (d∗r , dr))

with d∗r := TRFR(K̃j ,m) and dr ←$ DR. Set Mout
R [sID] := amsgr and

DK[sID,R] := dkr.
– ODerI(j := sID,m) generates valid dki by setting dki := TRFD (K̃, (amsgi,m))

= TRFD (K̃, (amsgi, amsgr)), where K̃ := K̃j , amsgi := Init(apkr, aski; (d
∗
i , di))

with d∗i := p̃kj and di ←$ DI. Set DK[sID, I] := dki.

Similar to the game transition from G1 to G2 in the proof of Lemma 10, G′
1

and G′
2 are computationally indistinguishable since PRF = (PRFR,PRFD) is a

pseudo-random function, and we have
∣∣Pr[G′

1 = 1]− Pr[G′
2 = 1]

∣∣ ≤ negl(κ).

Game G′
3: It is the same as G′

2, except that now the oracles ODerR and ODerI

generate the real valid double keys dkr and dki as follows:

57

– ODerR(sID,m) generates valid dkr by picking dkr ←$ {0, 1}κ uniformly. Set
DK[sID,R] := dkr.

– ODerI(sID,m) generates valid dki by picking dki := DK[sID,R] uniformly.

Clearly, in G′
3, for the same session, only one of dkr and dki is tested, so the real

valid double keys dkr (resp., dki) are uniformly sampled, and then the challenge
bit b is perfectly hidden to A, and we have Pr[G′

3 = 1] = 1/2.
It remains to show that G′

2 and G′
3 are computationally indistinguishable for

A. Note that for each sID, the underlying K̃sID is chosen uniformly and inde-
pendently. Then for all sID, DK[sID,R] := dkr = TRFD (K̃sID, (amsgi, amsgr))
is uniformly distributed and independent of each other.

This shows that
∣∣Pr[G′

2 = 1]− Pr[G′
3 = 1]

∣∣ = 0.

Finally, by taking all things together, Lemma 11 follows. ⊓⊔

E.4 On Achieving Responder-Robustness for Plain AM-AKE

As shown by the first impossibility result (i.e., Theorem 1) in Subsect. 3.4, it
is impossible for two-pass plain AM-AKE to achieve responder-robustness. To
evade this impossibility result and achieve responder-robustness for the plain
AM-AKE constructed in Appendix E.2, we have to rely on more passes.

For example, we can conduct an additional execution of AM-AKE, where we
make some changes for the aInit and aDerR algorithms (denoted by aInit∗ and
aDerR∗ in the following description), and the second execution of AM-AKE is
conducted by (aInit∗, aDerR∗,DerI).

Now for the second execution, the aInit∗ and aDerR∗ algorithms can take
auxi := (dki, amsg

(1)
i , amsg

(1)
r) and auxr := (dkr, amsg

(1)
i , amsg

(1)
r) as auxiliary

inputs, respectively, where dki (resp., dkr) is the double key computed by Pi

(resp., Pr) in the first execution of AM-AKE, and amsg
(1)
i (resp., amsg

(1)
r) is the

message sent by Pi (resp., Pr) in the first execution of AM-AKE. Moreover, we
need another pseudo-random function PRFI : {0, 1}κ×{0, 1}∗ −→ D∗

I as building
block. The algorithms aInit∗ and aDerR∗ are described as follows.

• (amsg
(2)
i , st)← aInit∗(apkr, aski, auxi = (dki, amsg

(1)
i , amsg

(1)
r)): it first com-

putes d∗i := PRFI(dki, (amsg
(1)
i , amsg

(1)
r)), then randomly picks di ←$ DI, and

invokes (msgi, st) ← Init(apkr, aski; (d
∗
i , di)). Finally, it returns (amsg

(2)
i :=

msgi, st).
• (amsg

(2)
r ,Kr, dk

′
r)← aDerR∗(apki, askr, amsg

(2)
i , auxr = (dkr, amsg

(1)
i , amsg

(1)
r)):

it first computes d := PRFI(dkr, (amsg
(1)
i , amsg

(1)
r)), and recovers the partial

randomness used by Init via computing d∗i := RecInit(apki, askr, amsg
(2)
i).

Next, it checks whether d∗i = d holds. If the check passes, it sets dk′r := dkr;
otherwise, it sets dk′r := ⊥. Finally, it invokes (msgr,Kr)← DerR(apki, askr,

amsg
(2)
i), and returns (amsg

(2)
r := msgr,Kr, dk

′
r).

See Fig. 9 for an illustration of twice executions of the plain AM-AKE.

58

Execution 1Party Pi(apki, aski, auxi = ⊥) Party Pr(apkr, askr, auxr = ⊥)

d∗i ←$ D∗
I

(p̃k, s̃k)← GenKEM; d
∗
i := p̃k

di ←$ DI

(amsg
(1)
i , st)← Init(apkr, aski; (d

∗
i , di))

amsg
(1)
i

d∗r ←$ D∗
R

p̃k := RecInit(apki, askr, amsg
(1)
i)

(K̃, ψ̃)← Encap(p̃k)

d∗r := (ψ̃,PRFR(K̃, amsg
(1)
i))

dr ←$ DR

(amsg(1)r ,Kr)← DerR(apki, askr, amsg
(1)
i ; (d∗r ; dr))

dkr := PRFD(K̃, (amsg
(1)
i , amsg(1)r)) ∈ {0, 1}κ

amsg(1)r

(ψ̃, h) := RecDerR(apkr, aski, amsg(1)r , st)

K̃ ← Decap(s̃k, ψ̃)

if h = PRFR(K̃, amsg
(1)
i) :

dki := PRFD(K̃, (amsg
(1)
i , amsg(1)r)) ∈ {0, 1}κ

else :
dki := ⊥

Ki ← DerI(apkr, aski, amsg(1)r , st)

st

aux′i := (s̃k, amsg
(1)
i)

aux′′i := (dki, (amsg
(1)
i , amsg(1)r))

aux′′r := (dkr, amsg
(1)
i , amsg(1)r)

Execution 2Party Pi(apki, aski, aux
′′
i = (dki, amsg

(1)
i , amsg(1)r)) Party Pr(apkr, askr, aux

′′
r = (dkr, amsg

(1)
i , amsg(1)r))

d∗i ←$ D∗
I

d∗i := PRFI(dki, (amsg
(1)
i , amsg(1)r))

di ←$ DI

(amsgi, st)← Init(apkr, aski; (d
∗
i , di))

amsg
(2)
i

d := PRFI(dkr, (amsg
(1)
i , amsg(1)r))

d∗i := RecInit(apki, askr, amsg
(2)
i)

if d∗i = d :

dk′r := dkr
else :

dk′r := ⊥
(amsg(2)r ,Kr)← DerR(apki, askr, amsg

(2)
i)

amsg(2)r
Ki ← DerI(apkr, aski, amsg(2)r , st)

st

Fig. 9. Generic construction of the plain AM-AKE scheme AM-AKE based on
AKE, KEM and PRF, where dotted boxes appear only in normal algorithms
(Gen, Init,DerR,DerI), and gray boxes appear only in anamorphic algorithms
(aGen, aInit, aDerR, aDerI) for the first execution and (aInit∗, aDerR∗) for the second
execution.

It is easy to check the correctness for the second execution of AM-AKE.
Now we can show responder-robustness of the plain AM-AKE with twice exe-

cutions. Suppose that Pi invokes normal algorithm Init in the second execution,
while Pr invokes anamorphic algorithm aDerR∗. We know that Pi invokes Init
with uniformly chosen randomness (d∗i , di), and Pr can recover d∗i by invoking
RecInit. Since d∗i is uniformly distributed over D∗

I , and in particular, it is inde-
pendent of d := PRFI(dkr, (amsg

(1)
i , amsg

(1)
r)), thus the check d∗i = d can pass

with only a negligible probability, and consequently, Pr will set dk′r := ⊥ with
overwhelming probability.

Nevertheless, we note that the plain AM-AKE cannot achieve (non-relaxed)
IND-WM/sIND-WM security or PR-DK/sPR-DK security even if it is executed
twice. This is because the (initial) auxiliary message is aux = ⊥, and the adver-
sary owning (apki, aski) and (apkr, askr) is capable of doing whatever Pi or Pr

can do. Indeed, the second and third impossibility results (i.e., Theorem 2 and
Theorem 3) in Subsect. 3.4 apply to plain AM-AKE even with more passes.

59

F Instantiation of Plain AM-AKE with Relaxed Security

To instantiate the generic construction of plain AM-AKE proposed in Appendix E,
we can employ any pseudo-random function PRF, and thus we only need to in-
stantiate the underlying AKE and KEM, i.e., AKE with partially randomness-
recoverable Init and DerR (cf. Def. 16) and fully pseudo-random KEM (cf. Def. 17).

In this section, we will show that the popular SIG+KEM paradigm [19]
and three-KEM paradigm [20] for constructing AKE yield the desired AKE
with partially randomness-recoverable Init and DerR, as long as the underlying
SIG and/or KEM are randomness-recoverable. Moreover, the ElGamal-KEM
[7] turns out to be fully pseudo-random under the DDH assumption. Then by
plugging them into the generic construction in Appendix E, we immediately
obtain concrete plain AM-AKE schemes with initiator-robustness and relaxed
security.

More precisely, in Appendix F.1, we show that the ElGamal-KEM is fully
pseudo-random. Then in Appendix F.2, we show how to instantiate AKE with
partially randomness-recoverable Init and DerR via the SIG+KEM paradigm,
and in Appendix F.3, we show how to instantiate it via the three-KEM paradigm.

F.1 Concrete KEM with Fully Pseudo-Random Property

In this subsection, we recall the ElGamal-KEM [7] and show that it is a fully
pseudo-random KEM under the DDH assumption.

Let pp = (G, p, g) be a description of cyclic group, where G is a cyclic group of
prime order p and generator g. The ElGamal-KEM KEMElG = (GenElG,EncapElG,
DecapElG) is described as follows.

– (pk, sk)← GenElG: it randomly picks x←$ Zp, and sets (pk := gx, sk := x).
– (K,ψ)← EncapElG(pk = gx): it randomly picks r ←$ Zp and outputs (K :=
(gx)r = gxr, ψ := gr).

– K ← DecapElG(sk = x, ψ = gr): it computes K := (gr)x = gxr.

It is straightforward to prove the full pseudo-randomness of KEMElG. Note
that the honestly generated (pk,K, ψ) = (gx, gxr, gr) with x, r ←$ Zp is exactly
a DDH tuple, and thus it is computationally indistinguishable from a random
tuple (pk′,K ′, ψ′)←$ G3 under the DDH assumption.

F.2 Concrete AKE via The SIG+KEM Paradigm

AKE with Partially Randomness-Recoverable Init and DerR via The
SIG+KEM Paradigm. We first recall the SIG+KEM paradigm of construct-
ing two-pass AKE according to [19]. Let KEM = (GenKEM,Encap,Decap) be a key
encapsulation mechanism, SIG = (GenSIG, Sign,Vrfy) a signature scheme and H a
suitable hash function. The resulting AKEKS = (GenKS, InitKS,DerRKS,DerIKS) is
described as follows (see also Fig. 10 without gray boxes).

• (pk, sk)← GenKS: Invoke (pk, sk)← GenSIG and return (pk, sk).

60

• (msgi, st)← InitKS(pkr, ski): Invoke (p̃k, s̃k) ← GenKEM, σi ← Sign(ski, p̃k),
and output msgi := (p̃k, σi) and the state st := (p̃k, s̃k).

• (msgr,Kr)← DerRKS(pki, skr,msgi = (p̃k, σi)): If Vrfy(pki, p̃k, σi) = 0: out-
put⊥; if Vrfy(pki, p̃k, σi) = 1, invoke (K,ψ)← Encap(p̃k), σr ← Sign(skr, (p̃k, ψ)),
and output msgr := (ψ, σr) and session key Kr := H(K, pki, pkr,msgi,msgr).

• Ki ← DerIKS(pkr, ski,msgr = (ψ, σr), st = (p̃k, s̃k)): If Vrfy(pkr, (p̃k, ψ), σr) =
0: output ⊥; if Vrfy(pkr, (p̃k, ψ), σr) = 1: invoke K ← Decap(s̃k, ψ) and
output Ki := H(K, pki, pkr,msgi,msgr).

Party Pi(pki, ski, auxi = ⊥) Party Pr(pkr, skr, auxr = ⊥)

(p̃k, s̃k)← GenKEM

(pk∗, sk∗)← GenElG

σi ← Sign(ski, p̃k; d
∗
i := pk∗)

if Vrfy(pki, p̃k, σi) = 0 :
return ⊥

pk∗ := RecSIG(pki, p̃k, σi)

(K∗, ψ∗)← EncapElG(pk
∗)

d∗r := (ψ∗,PRFR(K
∗,msgi))

(K,ψ)← Encap(p̃k)

σr ← Sign(skr, (p̃k, ψ); d
∗
r)

msgr := (ψ, σr)
Kr := H(K, (pki, pkr,msgi,msgr))

dkr := PRFD(K
∗, (msgi,msgr))

if Vrfy(pkr, (p̃k, ψ), σr) = 0 :
return ⊥

K ← Decap(s̃k, ψ)
Ki := H(K, pki, pkr,msgi,msgr)

d∗r := RecSIG(pkr, (p̃k, ψ), σr)

parse d∗r = (ψ∗, h)

K∗ ← DecapElG(sk
∗, ψ∗)

if h = PRFR(K
∗,msgi) :

dki := PRFD(K
∗, (msgi,msgr))

else :
dki := ⊥

st := (p̃k, s̃k)

aux′i := (sk∗,msgi)

msgi := (p̃k, σi)

msgr := (ψ, σr)

Fig. 10. The SIG+KEM paradigm for AKE (without gray boxes) and the resulting
plain AM-AKE with initiator-robustness and relaxed security via our generic construc-
tion in Appendix E (with anamorphic algorithms in gray boxes).

Remark 1. In Fig. 10, d∗i and d∗r can be padded to a same length, so that they
are compatible with the same space (i.e., the randomness space of the signing
algorithm Sign).

Below we will show that the AKEKS has partially randomness-recoverable Init
and DerR, if the underlying SIG is publicly randomness-recoverable.

Definition 18 (Publicly Randomness-Recoverable SIG). We say that a
signature scheme SIG = (GenSIG, Sign,Vrfy) is publicly randomness-recoverable,
if there exists a PPT algorithm RecSIG, such that for any (pk, sk)← GenSIG, any
message m and any σ ← Sign(sk,m; r), it holds that

r = RecSIG(pk,m, σ).

61

With such SIG, it is easy to check that the Init and DerR algorithms of
AKEKS are partially randomness-recoverable, supported by the following RecInit
and RecDerR as per Def. 16.

• d∗i ← RecInit(pki, skr,msgi = (p̃k, σi)): it sets d∗i := RecSIG(pki, p̃k, σi).
• d∗r ← RecDerR(pkr, ski,msgr = (ψ, σr), st = (p̃k, s̃k)): it sets d∗r := RecSIG(pkr,

(p̃k, ψ), σr).

The correctness of RecInit and RecDerR directly follows from the property of pub-
licly randomness-recoverable SIG.

Then by plugging the AKEKS and the ElGamal-KEM KEMElG into our generic
construction in Appendix E, we immediately get a plain AM-AKE scheme with
initiator-robustness and relaxed security, as shown in Fig. 10 with gray boxes .

Concrete SIG. Finally, it remains to present concrete publicly randomness-
recoverable SIG scheme. Here we use the Boneh-Boyen signature scheme [3],
which is publicly randomness-recoverable as noted in [15].

Let pp = (G1,G2,GT , p, e, g1, g2, gT) be a description of asymmetric pairing
group, where G1,G2,GT are cyclic groups of prime order p, e : G1 × G2 → GT

is a non-degenerated bilinear pairing, and g1, g2, gT are generators of G1,G2,GT

respectively. The Boneh-Boyen signature scheme SIGBB = (GenBB, Sign,Vrfy) is
recalled as follows.

– (pk, sk)← GenBB : it randomly picks x ←$ Zp, y ←$ Zp, sets sk := (x, y),
pk := (gx2 , g

y
2), and outputs (pk, sk).

– σ ← Sign(sk = (x, y),m ∈ Zp): it randomly selects r ←$ Zp. If r = −(x +

m)/y, then it re-samples r; otherwise, it computes s := g
1/(x+yr+m)
1 , and

outputs σ := (r, s).
– 0/1← Vrfy(pk = (gx2 , g

y
2),m, σ = (r, s)): it checks whether e(s, gx2 ·gm2 ·(g

y
2)

r) =

e(g1, g2) holds. If the check passes, then return 1; otherwise return 0.

It is easy to check that the Boneh-Boyen scheme is publicly randomness-recoverable,
because the signature σ already contains the randomness r, which is trivially re-
coverable.

F.3 Concrete AKE via The Three-KEM Paradigm

AKE with Partially Randomness-Recoverable Init and DerR via The
Three-KEM Paradigm. We first recall the three-KEM paradigm of con-
structing two-pass AKE according to [20]. Let KEM = (GenKEM,Encap,Decap)
and KEM0 = (GenKEM0 ,Encap0,Decap0) be two KEM schemes, and H a suitable
hash function. The resulting AKE3K = (Gen3K, Init3K,DerR3K,DerI3K) is described
as follows (see also Fig. 11 without gray boxes).

• (pk, sk)← Gen3K: Invoke (pk, sk)← GenKEM and return (pk, sk).
• (msgi, st)← Init3K(pkr, ski): Invoke (p̃k, s̃k)← GenKEM0

, (Ki, ψi)← Encap(pkr),
and output msgi := (p̃k, ψi) and the state st := (s̃k,Ki).

62

• (msgr,Kr)← DerR3K(pki, skr,msgi = (p̃k, ψi)): Invoke Ki ← Decap(skr, ψi),
(K̃, ψ̃) ← Encap0(p̃k) and (Kr, ψr) ← Encap(pki). Output msgr := (ψ̃, ψr)

and session key Kr := H(pki, pkr,msgi,msgr,Ki,Kr, K̃).
• Ki ← DerI3K(pkr, ski,msgr = (ψ̃, ψr), st = (s̃k,Ki)): Invoke K̃ ← Decap0(s̃k, ψ̃),
Kr ← Decap(ski, ψr), and output Ki := H(pki, pkr,msgi,msgr,Ki,Kr, K̃).

Party Pi(pki, ski, auxi = ⊥) Party Pr(pkr, skr, auxr = ⊥)

(p̃k, s̃k)← GenKEM0

(pk∗, sk∗)← GenElG

(Ki, ψi)← Encap(pkr; pk∗)
pk∗ := RecKEM(skr, ψi)

(K∗, ψ∗)← EncapElG(pk
∗)

d∗r := (ψ∗,PRFR(K
∗,msgi))

Ki ← Decap(skr, ψi)

(K̃, ψ̃)← Encap0(p̃k)

(Kr, ψr)← Encap(pki; d
∗
r)

Kr := H(pki, pkr,msgi,msgr,Ki,Kr, K̃)

dkr := PRFD(K
∗, (msgi,msgr))

K̃ ← Decap0(s̃k, ψ̃)
Kr ← Decap(ski, ψr)

Ki := H(pki, pkr,msgi,msgr,Ki,Kr, K̃)

d∗r := RecKEM(ski, ψr)

parse d∗r = (ψ∗, h)

K∗ ← DecapElG(sk
∗, ψ∗)

if h = PRFR(K
∗,msgi) :

dki := PRFD(K
∗, (msgi,msgr))

else :
dki := ⊥

st := (s̃k,Ki)

aux′i := (sk∗,msgi)

msgi := (p̃k, ψi)

msgr := (ψ̃, ψr)

Fig. 11. The three-KEM paradigm for AKE (without gray boxes) and the resulting
plain AM-AKE with initiator-robustness and relaxed security via our generic construc-
tion in Appendix E (with anamorphic algorithms in gray boxes).

Below we will show that the AKE3K has partially randomness-recoverable Init
and DerR, if the underlying KEM is randomness-recoverable.

Definition 19 (Randomness-Recoverable KEM). We say that a KEM scheme
KEM = (Gen,Encap,Decap) is randomness-recoverable, if there exists a PPT al-
gorithm RecKEM, such that for any (pk, sk)← GenKEM and (K,ψ)← Encap(pk; r),
it holds that

r = RecKEM(sk, ψ).

With such KEM, it is easy to check that the Init and DerR algorithms of
AKE3K are partially randomness-recoverable, supported by the following RecInit
and RecDerR as per Def. 16.

• d∗i ← RecInit(pki, skr,msgi = (p̃k, ψi)): it sets d∗i := RecKEM(skr, ψi).
• d∗r ← RecDerR(pkr, ski,msgr = (ψ̃, ψr), st = (s̃k,Ki)): it sets d∗r := RecKEM(ski, ψr).

63

The correctness of RecInit and RecDerR directly follows from the property of
randomness-recoverable KEM.

Then by plugging the AKE3K and the ElGamal-KEM KEMElG into our generic
construction in Appendix E, we immediately get a plain AM-AKE scheme with
initiator-robustness and relaxed security, as shown in Fig. 11 with gray boxes .
Concrete KEM. Finally, it remains to present concrete randomness-recoverable
KEM scheme. Randomness-recoverable KEM can be constructed from randomness-
recoverable PKE by setting the message to be uniformly chosen encapsulated key.
In fact, there are many existing randomness-recoverable PKE schemes [2,18,9],
where the randomness-recoverable property are proved in [16].

64

Table of Contents

Anamorphic Authenticated Key Exchange: Double Key Distribution
under Surveillance . 1

Weihao Wang1,2

, Shuai Han1,2(�)

and Shengli Liu2,3(�)

1 Introduction . 2
1.1 Our Contributions . 3
1.2 Technique Overview . 5
1.3 Related Works . 9

2 Preliminary . 9
3 Anamorphic Authenticated Key Exchange . 10

3.1 Syntax of AM-AKE . 10
3.2 Robustness of AM-AKE . 12
3.3 Security Model for AM-AKE. 12
3.4 Impossibility Results and Relaxed Security for Plain AM-AKE . . 16

4 Generic Construction of Robust & Strongly-Secure AM-AKE from
AKE . 17
4.1 New Properties for Functions and Algorithms 17
4.2 Construction of AM-AKE from AKE and PRF 19
4.3 Security Proofs . 21

5 Instantiations of Robust and Strongly-Secure AM-AKE 22
5.1 Instantiation from The SIG+KEM Paradigm 23
5.2 Instantiation from The Three-KEM Paradigm. 27

A Additional Preliminaries . 32
B Missing Details in Sect. 3 . 34

B.1 Correctness Requirements of AM-AKE . 34
B.2 Proof of Impossibility Results for Plain AM-AKE 35

C Missing Proofs in Sect. 4 (Generic Construction of AM-AKE) 37
C.1 Proof of Lemma 2 (sIND-WM Security of AM-AKE) 37
C.2 Proof of Claim 1 . 40
C.3 Proof of Lemma 3 (sPR-DK Security of AM-AKE) 41

D Missing Proofs in Sect. 5 (Instantiations of AM-AKE) 44
D.1 Proof of Lemma 5 (Any IND-CPA Secure KEM has Entropy-

Preserving GenKEM and Encap) . 44
D.2 Proof of Theorem 5 (Security of SIGDDH) . 45
D.3 Proof of Lemma 8 (Qualified AKE3K via The Three-KEM

Paradigm) . 49
D.4 Proof of Theorem 6 (Security of KEMDDH) . 50

E Generic Construction of Plain AM-AKE with Relaxed Security
from AKE . 50
E.1 Requirements for The Underlying AKE and KEM 51
E.2 Construction of Plain AM-AKE from AKE, KEM and PRF 51
E.3 Security Proofs . 53

E.4 On Achieving Responder-Robustness for Plain AM-AKE 58
F Instantiation of Plain AM-AKE with Relaxed Security 60

F.1 Concrete KEM with Fully Pseudo-Random Property 60
F.2 Concrete AKE via The SIG+KEM Paradigm 60
F.3 Concrete AKE via The Three-KEM Paradigm 62

66

	Anamorphic Authenticated Key Exchange: Double Key Distribution under Surveillance

