
An extended abstract [BDRW24a] of this article appears in the proceedings of ASIACRYPT 2024. The
full version [BDRW24b] of this article is available in the IACR eprint archive.

Interval Key-Encapsulation Mechanism

Alexander Bienstock1 , Yevgeniy Dodis2 , Paul Rösler3 , and Daniel Wichs4

1 J.P. Morgan AI Research and J.P. Morgan AlgoCRYPT CoE
alex.bienstock@jpmchase.com

2 New York University dodis@cs.nyu.edu
3 FAU Erlangen-Nürnberg paul.roesler@fau.de

4 Northeastern University and NTT Research wichs@ccs.neu.edu

Abstract. Forward-Secure Key-Encapsulation Mechanism (FS-KEM;
Canetti et al. Eurocrypt 2003) allows Alice to encapsulate a key k to
Bob for some time t such that Bob can decapsulate it at any time t′ ≤ t.
Crucially, a corruption of Bob’s secret key after time t does not reveal k.

In this work, we generalize and extend this idea by also taking Post-
Compromise Security (PCS) into account and call it Interval Key-Encap-
sulation Mechanism (IKEM). Thus, we do not only protect confidential-
ity of previous keys against future corruptions but also confidentiality
of future keys against past corruptions. For this, Bob can regularly re-
new his secret key and inform others about the corresponding public
key. IKEM enables Bob to decapsulate keys sent to him over an interval
of time extending into the past, in case senders have not obtained his
latest public key; forward security only needs to hold with respect to
keys encapsulated before this interval. This basic IKEM variant can be
instantiated based on standard KEM, which we prove to be optimal in
terms of assumptions as well as ciphertext and key sizes.

We also extend this notion of IKEM for settings in which Bob de-
capsulates (much) later than Alice encapsulates (e.g., in high-latency or
segmented networks): if a third user Charlie forwards Alice’s ciphertext
to Bob and, additionally, knows a recently renewed public key of Bob’s,
Charlie could re-encrypt the ciphertext for better PCS. We call this ex-
tended notion IKEMR. Our first IKEMR construction based on trapdoor
permutations has (almost) constant sized ciphertexts in the number of
re-encryptions; and our second IKEMR construction based on FS-PKE
has constant sized public keys in the interval size.

Finally, to bypass our lower bound on the IKEM(R) secret key size,
which must be linear in the interval size, we develop a new Interval RAM
primitive with which Bob only stores a constant sized part of his secret
key locally, while outsourcing the rest to a (possibly adversarial) server.

For all our constructions, we achieve security against active adver-
saries. For this, we obtain new insights on Replayable CCA security for
KEM-type primitives, which might be of independent interest.

1 Introduction

Corruption of user secrets is an acknowledged threat in the cryptographic liter-
ature. Especially cryptographic protocols for secure long-term communication,

https://asiacrypt.iacr.org/2024/
https://eprint.iacr.org/
http://orcid.org/0000-0001-7640-4974
http://orcid.org/0000-0003-1013-6318
http://orcid.org/0000-0002-2324-5671
http://orcid.org/0000-0002-4981-1643

such as secure messaging, implement measures to mitigate the effect of tempo-
rary user corruptions. The traditional goal Forward Security (FS) requires that
prior communication remains secure even if user secrets are corrupted in the
future. Modern communication protocols additionally fulfill Post-Compromise
Security (PCS): users recover from earlier corruptions such that future com-
munication will be secure again. Intuitively, this means that a corruption only
reveals a (short) interval of secrets. To achieve these goals, protocols usually
combine two techniques: (1) evolving secrets with one-way functions and then
deleting the old secrets for FS, (2) randomly sampling fresh secrets and sharing
the corresponding public values for PCS.

Session-Based Interval Security. The most prominent instantiation of this
approach for two-party communication is the Double Ratchet Algorithm [PM16],
implemented in Signal, WhatsApp, and many other messaging apps. A gener-
alization based on tree-hierarchies for group communication is the Messaging
Layer Security (MLS) standard [BBR+23].

Remarkably, both protocols and all their variants (e.g., [PR18a, PR18b, JS18,
JMM19, RMS18, ACDT20, ACJM20, BDR20]) are session-based. This means
that each new conversation is established independent of existing ones such that
every user stores a separate collection of secrets for each session it participates
in. Due to this, evolving and deleting old secrets as well as sampling fresh se-
crets is conducted separately per session, which induces a linear communication
overhead in the number of sessions per user. For illustration, consider a user Bob
who is concerned that all secrets locally stored on his device were corrupted. To
recover from this corruption, Bob samples independent, fresh secrets and shares
corresponding public values in all his sessions.

To reduce this overhead, Alwen et al. [AAB+21] investigate how to merge
overlapping structures of session secrets in group communication protocols un-
derlying MLS. Intuitively, they exploit that the tree-hierarchy in MLS can unify
overlapping sets of members for multiple (independent) group sessions. Still,
their saving is modest for most hierarchy structures, and does not generally
result in sublinear storage in the number of sessions.

Interval Security with Single Key. In this work, we avoid any session
separation and instead let each user have a consolidated secret key with a cor-
responding public key, which basically describes the concept of public-key en-
cryption or, in our work, Key-Encapsulation Mechanism (KEM). Providing FS
for KEM with a static public key—via FS-KEM—has already been solved by
Canetti et al. [CHK03]. To also achieve PCS, the public key cannot remain static
but must be updated. Thus, we will allow the recipient Bob to periodically up-
date his public key. While this introduces some additional complexity in fetching
Bob’s latest key before sending him a message, we will see that this relaxation
has many benefits, even beyond achieving PCS: for example, it results in notice-
ably more efficient schemes, by considerably simplifying achieving the FS aspect
compared to the static public key model of [CHK03]. Additionally, our model

2

will be sufficiently flexible to allow Bob to still decapsulate ciphertexts in many
cases when the senders failed to obtain Bob’s latest public key.

More concretely, our new model is the following. Bob starts by generating
a key pair (sk0, pk0) and shares pk0 with all users who want to talk to him.
Whenever Bob thinks he was corrupted, he uses his current secret key ski−1 to
derive a new key pair (ski, pki) and shares the new pki again. Using ski, Bob can
still decapsulate keys encapsulated with pkj for j ≤ i. However, if he thinks that
all keys encapsulated with public keys pkj , j < i∗ were decapsulated already or
should not be decapsulatable any longer, Bob can shorten the secret key interval
from [0, i] to [i∗, i]. After this, Bob can only decapsulate ciphertexts encapsulated
to a public key pkj such that i∗ ≤ j ≤ i. Conversely, security requires that a
corruption of current secret key ski will not affect ciphertexts encapsulated to
pkj for j < i∗ or j > i. Since Bob can continuously renew his key pair to start
new epochs and shorten the interval of decapsulatable old epochs, we call this
primitive Interval KEM (IKEM).

KEM-Based IKEM. Our simple KEM-based IKEM construction almost nat-
urally follows the above described abstract syntax: whenever Bob (re-)generates
his IKEM key pair, he simply generates a fresh KEM key pair, shares the new
KEM public key, and adds the new KEM secret key to his IKEM secret key. To
shorten the decapsulation interval, Bob just removes old KEM secret keys from
his IKEM secret key. The full details of this construction and a formal security
analysis are in Section 3.2.

Secret Key Lower Bound. Notice, the extremely simple KEM-based IKEM
from above has ciphertexts and public keys of constant size. However, the secret
key grows linearly in the size of the current interval. One may wonder if this
dependence is inherent. Unfortunately, as our first result we give the affirmative
answer to this question: any IKEM secret key must be proportional to the size
of the decapsulation interval.

One way to show this lower bound would be to prove that IKEM implies
the simpler symmetric-key primitive called Self Encrypted Queue from Choi et
al. [CDV21]. This primitive also involves a secret state that can be updated for
PCS, however, it only allows the receiver to encrypt keys to itself for future
use (hence why it is symmetric-key). Self Encrypted Queue also requires the
newly updated states to be able to decrypt the keys encrypted to old states,
and thus the state of any construction seemingly needs to grow proportionally
to the number of epochs, just as with our IKEM construction. Indeed, [CDV21]
shows that this is inherent for Self Encrypted Queues, by proving a lower bound
showing that states need to be of size f · λ, where f is the number of epochs.

Instead, we choose to prove a direct lower bound to show that IKEM secret
keys need to grow with the size of the current interval, f , as we believe it more
directly elucidates why this is in fact the case. Indeed, we use an encoding argu-
ment in Appendix B to accomplish this, with intuition as follows: The encoder’s
goal is to succinctly encode and send a random bit string s to the decoder, who
then must obtain s. To this end, the encoder and decoder initially share public

3

randomness (independent of s) consisting of an initial IKEM key pair, as well
as two lists of f random bit strings each. To encode the ith bit of string s, the
encoder selects the ith random bit string of one of the two lists—the first list
iff si = 0. With each selected bit string, the encoder re-generates the current
IKEM key pair. The final IKEM secret key sk∗ is the code. The decoding algo-
rithm also starts with the initial IKEM key pair. For every bit, it re-generates
the current IKEM key pair twice: once with each next random bit string from
the two lists. Using the two resulting public keys, it encapsulates individual keys
and trial-decapsulates both resulting ciphertexts with the code sk∗. By correct-
ness, decapsulation of the right ciphertext yields the matching encapsulated key.
By security, decapsulation of the wrong ciphertext yields a random key (that
is independent of the encapsulated key). This procedure is repeated with the
right IKEM key pairs until string s is decoded entirely. The formal proof in Ap-
pendix B shows that the secret key size is linear in f · λ, where f is size of the
current decapsulation interval and λ is the security parameter.

Strengthening IKEM Security. While the lower bound on the secret key
size of IKEM is unfortunate, in many settings the receiver can afford the extra
storage, as this storage is local, and does not result in any increased network
latency. Moreover, we will shortly describe a method to reduce the secret key
storage by outsourcing. Yet, first we focus on extending the security of IKEM,
by considering several motivating application scenarios.

First, in settings with high-latency or a segmented network topology, recov-
ery by publishing a new public key for Bob may still be too slow: the new key
may reach Bob’s session partners only with a considerable delay. As an exam-
ple, consider a decentralized gossiping or mesh network in which client devices
exchange and forward traffic only with some contacts or with direct neighbors
in their physical range (e.g., via bluetooth protocols). Based on this, a cipher-
text from Alice to Bob is transmitted via multiple devices that span a delivery
route in the network between them. Bienstock et al. [BRT23] observe that this
topology allows contacts to cooperate with each other to strengthen the security
of forwarded ciphertexts: if a user Charlie processes a ciphertext c from Alice
to Bob after Charlie received the most recent public key for Bob, Charlie can
re-encrypt c using the information contained in Bob’s latest key. Thus, even if
Alice sent c when Bob was corrupted, Charlie’s re-encryption after Bob’s key
update protects c on the remaining delivery route from Charlie to Bob.

This form of contact cooperation can also strengthen security of encrypted
cloud storage, where the cloud provider acts as Charlie. Every user Alice and
Bob can upload encrypted data to Bob’s online folder. Bob can regularly re-new
his key material and share the latest public key with the provider. Without any
further interaction, the provider can re-encrypt all files in Bob’s folder such that
they remain secure even if Bob’s old secrets are ever corrupted. Note that this
is the simplest, essential form of one of the motivating examples for Proxy Re-

4

Encryption (PRE) [BBS98].5 We elaborate on the relation to PRE at the end of
this section.

More generally, contact cooperation can strengthen any high-latency delivery
or long-time storage during which ciphertexts are processed by intermediate
honest parties. For example, Alice can encapsulate a ciphertext c1 for Bob at
time t1, and leave it with an intermediary Charlie (e.g., a notary), instead of
immediately delivering it to Bob. Charlie is then instructed to deliver c1 to
Bob some time t2 in the future; e.g., if a certain condition is triggered. With
traditional encapsulation, the key in c1 would be compromised if Bob is corrupted
any time between t1 and t2. With IKEM syntax, however, it might be possible
for Charlie to update c1 into a “more secure variant” c′1, using Bob’s latest public
key at epoch t2 > t1, and then only keep c′1 until it is released to Bob.

Ciphertext Re-Encapsulation. Motivated by this form of contact cooper-
ation, we add re-encapsulation to IKEM and call it IKEMR. A ciphertext c1 en-
capsulated to Bob at time t1 and re-encapsulated in ciphertext c′1 at time t2 > t1
remains secure even if Bob was corrupted at any time t∗ < t2 as long as the ad-
versary only ever sees c′1. Furthermore, when Bob shortens the decapsulation
interval of his secret key to exclude time t1 for FS, future corruptions of Bob
will not affect c′1 either. Thereby, re-encapsulations do not extend the lifetime of
a ciphertext: if the epoch t1 at which a ciphertext was originally created falls out
of the decapsulation interval, it cannot be decapsulated anymore even if it was
re-encapsulated at later epochs t2 > t1. We illustrate this security requirement
with a simple example in Figure 1. Finally, a ciphertext can be re-encapsulated
multiple times such that the first ciphertext version observed by the adversary
determines the window of harmful and harmless corruptions, respectively. While
this form of re-encapsulation ostensibly is closely related to Proxy Re-Encryption
(PRE), we discuss the crucial differences at the end of this section.

Simple Extension Fails. Naively, one could add re-encapsulation to our
KEM-based IKEM construction from above as follows: to re-encapsulate ci-
phertext c1 from time t1 with the most recent public key pk2 from time t2 >
t1, one simply uses the KEM to encapsulate a key k′ in ciphertext c′KM and
then encrypts c1 symmetrically with key k′. Thus, c′1 = c′KM∥Ek′(c1) is the
re-encapsulated ciphertext, where (k′, c′KM) = KM.enc(pk2). To shorten the de-
capsulation interval, Bob still just removes the KEM secret keys of all abandoned
epochs from his IKEMR secret key.

Now consider the case that Alice creates two ciphertexts c1 and c2 to Bob,
one at time t1 with pk1 and one at time t2 > t1 with pk2. Additionally, Charlie
re-encapsulates c1 at time t2 in ciphertext c′1. When Bob shortens his decap-
sulation interval from [0, t2] to [t2, t2], correctness requires that c2 can still be
decapsulated. Furthermore, security requires that k1 in c′1 remains confidential
if the adversary only sees c′1 (but not c1), even if Bob is corrupted before time t2
and/or after he shortened his decapsulation interval to [t2, t2] (the reader can

5 It is also a naturally useful variant of Updatable Encryption [BLMR13] for the
public-key setting.

5

again refer to Figure 1 for an illustration of this security requirement). Yet, a
corruption at time t1 < t2 for the above KEM-based IKEMR construction re-
veals KEM secret key sk1; another corruption after the decapsulation interval
was shortened to [t2, t2] reveals KEM secret key sk2. Thus, the adversary can re-
move the re-encapsulation layer of c′1 using sk2 and then decapsulate the original
ciphertext c1 using sk1. Hence, this simple extension of our KEM-based IKEM
construction is insecure.

pk1
st1,1

IKMR.gen

pk2 IKMR.re-genc1

k IKMR.enc

c1'
IKMR.re-enc

k

st2,2

IKMR.del

IKMR.dec

st1,2

Fig. 1. Execution example for IKEMR: if the adversary only sees pk1, pk2, and c′
1, and

corrupts st1,1, and st2,2, key k is required to remain secure.

KEM-Based IKEMR. The core problem of the above IKEMR construction is
that it processes encapsulations and re-encapsulations at time t2 identically.
However, FS requires that Bob can shorten his decapsulation interval such
that only c2, originally created at time t2, can be decapsulated but not the
re-encapsulation c′1 from time t2 of earlier ciphertext c1, originally from time t1.

To solve this problem, Bob, instead, generates multiple extra KEM key pairs
at every IKEMR key re-generation: one KEM key pair for each epoch in his
current decapsulation interval of length f . The resulting re-generated IKEMR
public key pkt = (pkt,1, . . . , pkt,f) for time t consists of f fresh KEM public
keys. (Re-)Encapsulation with IKEMR public key pkt at time t then depends on
the initial encapsulation time of a ciphertext: for ciphertext c initially created
at time t∗ ≤ t (t∗ = t for an initial encapsulation), c is (re-)encapsulated using
KEM public key pkt,t−t∗+1. Whenever Bob shortens his decapsulation interval
to [t1, t2], he first removes all secret keys generated before time t1. Then, for
each epoch t′ with t1 ≤ t′ ≤ t2, he removes every secret key skt′,τ for which
τ > t′− t1 +1. Thus, intuitively, every epoch’s IKEMR public key contains extra
KEM public keys that are exclusively used for re-encapsulations of ciphertexts
initially created in prior epochs. As soon as such prior epochs are removed from

6

the decapsulation interval, all corresponding extra KEM secret keys are removed
from the IKEMR secret key.

By deriving the extra KEM secret keys at each IKEMR re-generation iter-
atively via a chain of Pseudo-Randomness Generators (PRGs), Bob only ever
needs to store one KEM secret key and one PRG seed for each epoch in his cur-
rent decapsulation interval. To shorten the decapsulation interval, Bob moves
the PRG-chain of each epoch in the interval forward, thereby derives new KEM
secret keys and deletes past KEM secret keys. Thus, the IKEMR secret key size
is optimal based on our lower bound.

IKEMR with Small Public Keys. The advantage of this secure IKEMR
construction is its mild underlying standard assumption: an ordinary KEM. Nev-
ertheless, the disadvantages are: ciphertexts grow linearly in the number of re-
encapsulations and public keys grow linearly in the decapsulation interval length.
Using FS-PKE instead of ordinary KEM, we can reduce the size of IKEMR pub-
lic keys. The intuition is that all extra KEM key pairs generated for one IKEMR
key re-generation are consolidated in a single FS-PKE key pair. This shrinks
the IKEMR public key to constant size but slightly increases the secret key to
size f log f (instead of f), where f is the current length of the decapsulation
interval. At (re-)encapsulation, instead of choosing the right extra KEM public
key from the current IKEMR public key, Alice indicates the ciphertext’s initial
creation time when encrypting to the corresponding epoch of the single FS-PKE
public key. When shortening the decapsulation interval, Bob simply updates all
FS-PKE secret keys that remain in his IKEMR secret key such that epochs out-
side the shortened interval cannot be (re-)decapsulated. The full details of this
construction are in Section 6.

IKEMR with Small Ciphertexts. Using Trapdoor Permutations (TDPs),
we build an IKEMR construction with (almost) constant sized ciphertexts. For
this, we begin with our KEM-based IKEMR construction from above that has
linear sized public keys in the decapsulation interval length. Then, instead of
using KEMs, we employ a family of TDPs with a common domain, where each
KEM public key is replaced with the public key of a TDP from that family and
each KEM secret key is replaced with the corresponding trapdoor. To encapsu-
late a key, this construction samples a random element from the TDP family’s
domain and evaluates the current epoch’s TDP on it, which yields the cipher-
text. The actual encapsulated key is derived by applying a randomness extractor
to the random input element. To re-encapsulate a ciphertext, another TDP from
the family is applied to this ciphertext. Since all permutations from the TDP
family share the same domain, the (cryptographic part of the) ciphertext has
constant size. Yet, for decapsulation, the receiver Bob needs to know which
trapdoors he should use. Thus, at each re-encapsulation, the index of the cur-
rent epoch is attached to the ciphertext, which increases the ciphertext linearly
in the number of re-encapsulations—however, note that each attached index has
only logarithmic size in the security parameter.

7

Reducing Ciphertext Size. To further reduce the IKEMR ciphertext size
for settings with frequent re-encapsulations, we add more TDPs to the IKEMR
public key in order to avoid attaching epoch indices to re-encapsulated cipher-
texts. Note that in our KEM-based IKEMR construction, each IKEMR public
key consists of one f -sized batch of KEM public keys. For our above TDP-based
IKEMR construction, these KEM public keys are replaced with TDP public
keys. Now, for this final construction, each IKEMR public key consists of ∆
batches of f TDP public keys. These additional batches are used when Charlie,
at time t2, wants to re-encapsulate a ciphertext originally created at time t1,
where d = t2− t1 ≤ ∆. In this case, instead of directly re-encapsulating with the
newest TDP public key and informing Bob about the re-encapsulation ‘jump’
from time t1 to time t2, Charlie continuously applies d TDP evaluations, one
after another: from t1 to t1 + 1 to t1 + 2, and so on until t2. Thus, when Bob
decapsulates, he can simply iterate over a continuous chain of trapdoor inver-
sions in reverse. Only for larger re-encapsulation jumps of size d > ∆, Charlie
attaches epoch indexes to the ciphertext. Intuitively, if f stays roughly the same
throughout the execution of the IKEMR, then public keys will be of size O(f ·∆)
and ciphertexts will be of size O(λ + log(λ) · f/∆), regardless of the number of
re-encapsulations; in particular, if ∆ = f , then ciphertexts will always be of size
O(λ), even after several re-encapsulations.

External Key Storage. Recall from above that the secret key of any IKEM
must have size f ·λ, where f is the size of the current decapsulation interval. For
long intervals or even intervals of dynamic size, this lower bound may induce an
impractical storage overhead. Thus, we propose to split the secret key into two
components—one small component and one larger component, of which only the
former needs to be securely stored. The latter component, on the other hand, can
be stored anywhere, and can even be publicly accessible. We furthermore desire
a generic interface such that reads and writes to the original (virtual) secret key
can still be efficiently performed. Indeed, such operations should only use the
small securely-stored component, as well as small downloads from and uploads
to the larger public component. Most importantly, we still want the security
properties of IKEM to hold if the small securely-stored component is corrupted
from time to time.

The notion of securely outsourcing a database with read- and write-access
with only FS is very well-studied (e.g., [BDT22, BDY21, BL96], and references
therein). Indeed, a construction for n-entry databases satisfying this notion is
known such that the secret state is size O(1) and the read/write overhead is
O(log n). However, the security models from these prior works do not require
secrecy of future writes if at any time the secret storage is corrupted. That is,
to the best of our knowledge, no notion of securely outsourcing a database with
PCS is known.

In Section 7, we introduce the notion of securely outsourcing a database with
read- and write-access with both FS and PCS, and call it Interval RAM (IRAM).
We then show that the construction mentioned above surprisingly satisfies this

8

stronger notion of security. IRAM can be combined with our IKEM constructions
to reduce the size of local secret storage, while maintaining security.

IKEMR vs. Proxy Re-Encryption. A primitive related to IKEMR is Proxy
Re-Encryption (PRE). PRE extends standard public-key encryption with a key-
based re-encryption mechanism: every secret key skA can compute a re-encryption
key rkA,B for re-encryption to another public key pkB . Using rkA,B , cipher-
text cA, previously (re-)encrypted to public key pkA, can be re-encrypted to cB

such that cB behaves as if it was encrypted to pkB without changing the payload.
PRE schemes can be bidirectional or unidirectional. With bidirectional PRE,

a re-encryption key rkA,B for epochs A and B can be used to re-encrypt from A
to B and vice versa. Thus, given skA and rkA,B , there are naturally no security
properties regarding ciphertexts encrypted to pkB . For unidirectional PRE, re-
encryption key rkA,B can only be used to re-encrypt from A to B, and given skA

and rkA,B , ciphertexts encrypted to pkB are still secure (see, e.g., [DDLM19,
FKKP19, MPW23]).

Bidirectional PRE is clearly insufficient for secure IKEMR. Yet, IKEMR
intuitively seems weaker than unidirectional PRE for three reasons (a formal
lower bound is a harder task, which we deem out of scope): (1) In unidirectional
PRE, re-encryption keys are only derived from the old secret key and the new
public key; in IKEMR, the public keys used for re-encapsulation are derived from
both old secret keys and the new secret key. (2) In IKEMR, ciphertexts can only
be re-encapsulated to newer public keys; in unidirectional PRE, re-encryption
keys can be derived for arbitrary public keys, which may even lead to full re-
encryption circles. (3) Unidirectional PRE offers additional security guarantees
if the re-encryption key remains secret—IKEMR public keys are, by definition,
always public.

Indeed, we achieve IKEMR with constant-size ciphertexts from TDPs, while
unidirectional PRE with constant-size ciphertexts can only be achieved from
(expensive) FHE or iO currently (see, e.g, [MPW23, p. 11]). Furthermore, even
unidirectional PRE seems unsuitable for building IKEMR with FS directly: an
unlimited chain of PRE re-encryption keys can be used to shift an old ciphertext
to a much newer, corrupted secret key, which undermines FS.

Further Related Primitives. Like IKEM, primitives such as Updatable
PKE (UPKE) [JMM19, DKW21, HPS23] and Key-Updatable KEM (KU-KEM)
[PR18b, BRV20, RSS23] continuously update both parts of the key pair. Yet,
these primitives only achieve FS and they are designed to work in a session-
based fashion between a fixed tuple of Alice and Bob. Thereby, since the public
keys in UPKE and KU-KEM are continuously updated by Alice, this would
require synchronization when multiple Alices want to talk to the same Bob.
IKEM overcomes this issue by letting all Alices use the newest public key they
are aware of.

An orthogonal security feature that we do not cover in this work is in-epoch
FS: the granularity of FS in IKEM is relatively coarse as only shrinking the
interval by deleting entire epochs yields FS with respect to these deleted, old

9

epochs. Using FS-KEM techniques—based on building blocks like identity-based
encryption—, each epoch could have internal sub-steps for which FS can be
achieved by updating Bob’s secret key without invalidating the corresponding
epoch entirely. We refrain from studying this aspect as it seems to be a simple,
straight forward extension.

Active Security. For all our constructions, we prove security against active
adversaries. Before we can do so, we develop a suitable security definition that
models Chosen Ciphertext Attacks (CCA) by giving adversaries access to a de-
capsulation oracle. Upon a queried ciphertext c, this oracle honestly decapsulates
the symmetric key k encapsulated in c using Bob’s current secret key, unless c
was posed as a challenge. Clearly, decapsulating the challenge ciphertext c∗ via
this oracle trivializes the adversary’s ability to win the security experiment.

Due to re-encapsulations, muting the decapsulation oracle upon challenge ci-
phertexts is, however, non-trivial: the adversary can re-encapsulate challenge c∗

using Bob’s newer public keys, which yields c∗∗. Thus, the decapsulation or-
acle has to reject c∗, all of its re-encapsulations c∗∗, and so on. The litera-
ture on PRE developed several approaches for identifying such re-encapsulated
challenges c∗∗ of which we consider only one suitable: employing a Replayable
CCA (RCCA) [CKN03] definition style. However, the RCCA definition style is
not directly applicable to KEM-type primitives. For this reason, we develop a
suitable variant of RCCA security that is implied by CCA security for KEM-type
primitives and can be used to build PKE that is RCCA-secure via standard hy-
brid encryption. We also show that our RCCA notion for IKEMR can be used to
build the natural extension of this primitive that captures encryption, which we
call Interval Public Key Encryption with Re-encryptions (IPKER). We elaborate
on our definitional choices in Appendix C. To add RCCA security to our con-
structions, we use standard techniques from the literature, which add minimal
overhead.

We also extend our IRAM security notion to withstand active adversaries.
Here, the receiver (with small local storage) must be able to detect if the adver-
sary provides them with incorrect parts of the (larger) public storage for a given
operation. To achieve this notion, we combine our original construction with
techniques from the Memory Checking literature ([BEG+91, DNRV09, BDY21]
and the references therein), while adding minimal overhead.

Contributions. In summary, we develop a natural notion of KEM that offers
FS and PCS guarantees against active adversaries. For this, we prove a lower
bound in Section 3 to show that the most basic construction is optimal. We
extend the initial notion of IKEM by adding re-encapsulation, which we call
IKEMR (see Section 4). Realizing IKEMR turns out to be more complicated: Our
first construction in Section 5 uses Trapdoor Permutations to keep ciphertexts
small. Our second construction in Section 6 uses FS-PKE to reduce the size of
public keys. Finally, in Section 7, we introduce Interval RAM with which secret
keys can be split into a locally stored part of constant size and a larger part that
can be outsourced to an insecure (and actively adversarial) external storage.

10

2 Preliminaries

In Appendix A, we provide some definitions for basic primitives used in our
IKEM constructions, as well as some standard definitions and lemmas from
information theory. Below, we present some notation we will use throughout this
work and then three important primitives which we will use in our constructions.

Notation We use x← y for assigning value y to variable x. We use x←$ X to
denote sampling x randomly from distribution X . Consider some algorithm A. If
A is deterministic, we use y ← A(x) to denote assigning to y the output of A(x).
If A is randomized, we use y ←$ A(x) to denote assigning to y the output of a
random run of A(x). Sometimes, we may explicitly specify the random coins r
that a randomized algorithm A uses; in this case, we use y ← A(x; r) to denote
assigning to y the output of a run of A(x) using coins r.

Family of Lossy Trapdoor Permutations with a Common Domain.
We now define families of lossy trapdoor permutations (TDPs), in which all
permutations in the family share a common domain X [AKPS19]. Lossy TDPs
can be instantiated in injective or lossy mode—in injective mode, every input
x ∈ X permuted to y ← P.eval(pk, x) can be inverted back to x← P.inv(sk, y);
in lossy mode, the image of P.eval(pk, ·) is much smaller than X (and therefore,
finding x from P.eval(pk, x) is statistically-hard). Furthermore, for any adversary
with just the public key pk, it is hard to distinguish whether pk was sampled in
injective or lossy mode.

Syntax A family of Lossy Trapdoor Permutations with Common Domain (TDP)
scheme P is a tuple of algorithms P = (P.gen, P.eval, P.inv) with the following
syntax:

– P.gen(1λ, b) →$ (sk, pk) generates a key-pair. Input b ∈ {0, 1} specifies
whether the generated instance is injective (b = 1) or lossy (b = 0).

– P.eval(pk, x)→ y takes in a public key pk and input x and permutes x to y.
– P.inv(sk, y)→ x takes in a secret key sk and permuted output y, and inverts

it to x (looking ahead, when in lossy mode, there are no properties required).

Correctness A family of lossy TDPs is correct if for any key pair sampled in
injective mode, inputs x permuted to y can always be inverted to x.

Definition 1. Scheme P is correct if for all (sk, pk)←$ P.gen(1λ, 1) and x ∈ X ,
x = P.inv(sk, P.eval(pk, x)).

Security For security of families of lossy TDPs, we require two properties. The
first property is that when in lossy mode, the size of the image of P.eval(pk, ·)
is much smaller than the domain X .

Definition 2. Scheme P is L-lossy if for all (sk, pk)←$ P.gen(1λ, 0), |P.eval(pk,
·)| ≤ |X |/L, where |P.eval(pk, ·)| is the number of unique outputs across x ∈ X .

11

The second property is that an adversary that is given some sampled pk should
not be able to tell if it was sampled in injective or lossy mode.

Definition 3. Scheme P is (T, εP)-secure if for all adversaries A running in
time T : Pr[b←$ A(pk) : b←$ {0, 1}; (sk, pk)←$ P.gen(1λ, b)] ≤ 1/2 + εP.

Auerbach et al. show how to construct families of Lossy TDPs with a common
domain X = {0, 1}n from many assumptions [AKPS19]. Of note for our purposes,
they construct such a Lossy TDP family with lossiness L = 2n/4 from the Phi-
Hiding Assumption.

All-But-One Trapdoor Functions. We now define families of all-but-one
(ABO) trapdoor functions, which are a generalization of lossy trapdoor func-
tions. In an ABO family, each function has several branches. All of the branches
are injective, except for one branch that is lossy. Moreover, an adversary with
the public key pk of the ABO cannot tell which of the branches is lossy.

Syntax A family of all-but-one trapdoor functions (ABO) scheme ABO is a tuple
of algorithms ABO = (ABO.gen, ABO.eval, ABO.inv) with the following syntax:

– ABO.gen(1λ, b) →$ (sk, pk) generates a key-pair. Input b ∈ {0, 1}v, for v ∈
poly(λ) specifies the branch that is lossy.

– ABO.eval(pk, b, x)→ y takes in a public key pk, branch b, and input x and
outputs y.

– ABO.inv(sk, b, y)→ x takes in a secret key sk, branch b, and output y, and
inverts it to x (for lossy branch b, there are no properties required).

Correctness A family of ABOs is correct if for any key pair, inputs x mapped to
y for any injective branch can always be inverted to x (under the same branch).

Definition 4. Scheme ABO is correct if for all b ̸= b′ ∈ {0, 1}v, (sk, pk) ←$
ABO.gen(1λ, b), and x ∈ X , x = ABO.inv(sk, b′, ABO.eval(pk, b′, x)).

Security For security of families of ABOs, we require two properties. The first
property is that for the lossy branch b of the function, the size of the image of
ABO.eval(pk, b, ·) is much smaller than the domain X .

Definition 5. Scheme ABO is L-lossy if for all b ∈ {0, 1}v and (sk, pk) ←$
ABO.gen(1λ, b), |ABO.eval(pk, b, ·)| ≤ |X |/L, where |ABO.eval(pk, b, ·)| is the
number of different outputs across all inputs x ∈ X .

The second property is that an adversary that is given some sampled pk should
not be able to tell which branch is lossy.

Definition 6. Scheme ABO is (T, εABO)-secure if for any b0, b1 ∈ {0, 1}v, for
all adversaries A running in time T : Pr[δ ←$ A(pk) : δ ←$ {0, 1}; (sk, pk) ←$
ABO.gen(1λ, bδ)] ≤ 1/2 + εABO.

Peikert and Waters, show how to construct a family of ABOs with domain
X = {0, 1}n and lossiness L = 2n/λ from the DDH assumption [PW08].

12

Forward-Secure Public-Key Encryption. We briefly define FS-PKE [CHK03],
which is close to our definition of f -Bounded Forward-Secure Lossy TDPs with
Common Domain in Section 5.

Syntax Forward-Secure Public-Key Encryption (FSE) is a tuple of algorithms
FSE = (FSE.gen, FSE.up, FSE.enc, FSE.dec) with the following syntax:

– FSE.gen(1λ, f)→$ (SK0, PK) on input f that specifies the maximal number
of update-epochs, outputs initial secret key SK0 and public key PK .

– FSE.up(SK t)→ SK t+1 updates input secret key SK t to SK t+1.
– FSE.enc(PK , t′, m) →$ c on input PK and epoch t′, encrypts m for epoch

t′ in c.
– FSE.dec(SK t, t′, c) → m on input SK t and t′, decrypts c for epoch t′ to

output m.

Note that t′ is an explicit input of FSE.dec(). For our usage of FSE.dec() within
our IKEMR construction, we will be able to extract the proper t′ from the rest
of the ciphertext.

Correctness Correctness requires that, for t0 ≤ t1, the receiver with SK t0 can
decrypt c← FSE.enc(PK , t1, m) to m.

Definition 7. Scheme FSE is correct if for all (SK0, PK)←$ FSE.gen(1λ, f),
for every t ∈ [f − 1], SK t ← FSE.up(SK t−1), all m ∈M and any 0 ≤ t0 ≤ t1 ≤
f − 1, m = FSE.dec(SK t0 , t1, FSE.enc(PK , t1, m)).

Security For any adversary with only the public key PK and any secret key SK t′

for t′ > t∗, we require that it is hard to tell which of two same-length messages
was encrypted to epoch t∗:

Definition 8. Scheme FSE is (T, εFSE)-secure if for all adversaries A running
in time T :

Pr[b←$ A
Dec ̸=t∗

̸=c∗ (SK t′) : b←$ {0, 1}; f←$A(); (SK0, PK)←$ FSE.gen(1λ, f);
(0 ≤ t∗ ≤ f − 1, m0, m1)←$ ADec(PK); |m0| = |m1|;

c∗←$ FSE.enc(PK , t∗, mb); (t∗ < t′ ≤ f)←$A
Dec ̸=t∗

̸=c∗ (c∗);
for t ∈ [f − 1], SK t ← FSE.up(SK t−1)] ≤ 1/2 + εFSE,

where decryption oracle Dec̸=t∗

̸=c∗ on input (t, t◦, c) outputs FSE.dec(SK t, t◦, c),
unless t ≤ t◦ = t∗ and c = c∗.

3 Basic Interval Key-Encapsulation Mechanism

In this section, we introduce our basic Interval Key-Encapsulation Mechanism
(IKEM) notion without re-encryptions. We provide a security definition with a

13

decryption oracle and CCA security, but also, by simply removing the decryption
oracle, provide a CPA security notion. Then, we show that the size of the secret
state of any IKEM protocol must be proportional to the interval size (following
from a lower bound of [CDV21] for a different, simpler, symmetric-key primi-
tive). Importantly, this lower bound also holds for any IKEMR scheme (because
any IKEMR without the re-encapsulation algorithm trivially implies an IKEM).
Finally, we present a simple and efficient IKEM protocol based on a generic
KEM, where CPA-(resp. CCA-)security is achieved if the KEM is CPA-(resp.
CCA-)secure. We begin by defining the IKEM primitive.

3.1 IKEM Definition

The syntax of IKEM is the same as IKEMR, except without the re-encapsulation
algorithm IKMR.re-enc().

Correctness An IKEM scheme is correct if secret state stt0,t1 , can decapsulate
correctly any ciphertext created in any epoch t ∈ [t0, t1]. More formally:

Definition 9. Given T ∈ N, and dictionary D s.t. D[i] = (ti, ℓi) for i ∈ [m]
containing items in [T] × [T] s.t. 0 < t1 ≤ · · · ≤ tm ≤ T and

∑i
j=1 ℓj ≤ ti for

every i ∈ [m]: let t0 ← 0; (st0,0, pk0) ←$ IKM.gen(1λ); and for all t1 ∈ [T],
(stt0,t1 , pkt1) ←$ IKM.re-gen(stt0,t1−1) and for every i ∈ [m] s.t. for (ti, ℓi) ←
D[i], ti = t1, stt0+ℓi,t1 ← IKM.del(stt0,t1 , ℓi). Scheme IKM is correct if for
every such T and D, as well as t ∈ [t0, t1] and (k, c) ←$ IKM.enc(pkt), k =
IKM.dec(stt0,t1 , c).

Security Now we define security for an IKEM scheme. At a high level, any
key encapsulated to the public key pkt for epoch t should be indistinguishable
from random, even if the adversary gets multiple states stt0,t1 such that t /∈
[t0, t1]. Additionally, for CCA security, the adversary can see decryptions of any
ciphertext besides the challenge ciphertext.

More formally, we define the security game for IKEM in Figure 2. For the
lower and upper bounds for IKEM that we will provide later in this section,
we will define a one-way notion OWIKM and an indistinguishability notion
IND-XIKM, respectively (in the same figure). The red text in Figure 2 only
applies to the indistinguishability notion. The security game starts by sampling
a key pair via IKM.gen and returning the public key to the adversary. It also
initializes a number of variables, including tX ← −∞, which will be used to store
the latest epoch in which the secret state has been exposed. Oracle Re-Gen()
executes IKM.re-gen on the current state and returns the new public key. Oracle
Del(ℓ) executes IKM.del on the current state and adversarially-chosen ℓ, only
if the updated interval would still be valid; i.e., t0 + ℓ ≤ t1. Oracle Chall first
checks that the newest state has not been exposed; i.e., t1 ̸= tX . If so, it executes
IKM.enc on the newest public key pkt1 to get key k0 and ciphertext c∗. Then,
for the indistinguishability game, the oracle samples key k1 and bit b, then re-
turns (kb, c∗). For the one-way game, the oracle just returns c∗. In both games,

14

Initialization: Set tX , t∗ ← −∞ and t0, t1 ← 0. Then compute (stt0,t1 , pkt1)←$

IKM.gen(1λ) and output pkt1 .

Re-Gen():

1. increment t1 ← t1 + 1
2. regenerate (stt0,t1 , pkt1)←$

IKM.re-gen(stt0,t1−1)
3. return pkt1

Dec(c):

1. return ⊥ if c = c∗

2. return IKM.dec(stt0,t1 , c)

Del(ℓ):

1. return ⊥ if t0 + ℓ > t1
2. increment t0 ← t0 + ℓ
3. compute stt0,t1 ←

IKM.del(stt0−ℓ,t1 , ℓ)

Chall():

1. return ⊥ if t1 = tX

2. set t∗ ← t1
3. encapsulate (k0, c∗)←$ IKM.enc(pkt1)
4. sample random k1 ←$ K
5. flip random coin b←$ {0, 1}
6. disable Chall() and return (kb, c∗)

Expose():

1. return ⊥ if t∗ ≥ t0
2. set tX ← t1
3. return stt0,t1

Fig. 2. IKEM security games IND-XIKM (indistinguishability) and OW-XIKM (one-
way). Red text is only for IND-XIKM. Green text is only for IND-CCA.

the Chall oracle is thereafter disabled. Finally, Expose() first checks that the
challenge epoch t∗ is less than the lower endpoint t0 of the interval. If so, it sets
tX ← t1 and returns stt0,t1 to the adversary.

For CCA security, there is also the Dec(c) oracle, written in green in Figure 2.
This oracle uses the current state stt0,t1 to decrypt c using IKMR.dec() and
returns the resulting key k only if c ̸= c∗.

Given this security game, we now formally define secure IKEM schemes:

Definition 10. For X ∈ {CPA, RCCA}, an IKEM scheme IKM is (T, εind-x
IKM)-

secure (resp. (T, εow
IKM)-secure) if for all adversaries A playing the security game

IND-XIKM (resp. INDOW) of Figure 2 and running in time T :

Pr[b←$ IND-XIKM(A)] ≤ 1/2 + εind-x
IKM (resp. Pr[k0 ←$ OWIKM(A)] ≤ εow

IKM).

Lower Bound on Secret State Size Unfortunately, we prove a lower bound
that shows the size of the secret state of any IKEM scheme must be proportional
to the current interval size, t1 − t0 (times the security parameter, λ). As we
write in Section 1, one way to show this would be to prove that IKEM implies
a different and simpler symmetric-key primitive, called Self Encrypted Queue
introduced by Choi et al. [CDV21], for which they also prove a corresponding
lower bound. Nevertheless, we provide in Theorem 6 of Appendix B a direct lower
bound proof showing that the IKEM secret state size must be Ω(λ · (t1 − t0)),

15

IKM.gen(1λ):

1. generate (sk, pk)←$ KM.gen(1λ)
2. set t0, t1 ← 0, ST [·]← ⊥
3. store ST [t1]← sk
4. return ((ST , t0, t1), (pk, t1))

IKM.re-gen((ST , t0, t1)):

1. generate (sk, pk)←$ KM.gen(1λ)
2. increment t1 ← t1 + 1
3. set ST [t1]← sk
4. return ((ST , t0, t1), (pk, t1))

IKM.del((ST , t0, t1), ℓ):

1. for t ∈ [t0, t0 + ℓ− 1]: delete ST [t]
2. set t0 ← t0 + ℓ
3. return (ST , t0, t1)

IKM.enc((pk, t1), m):

1. encapsulate (k, c)←$ KM.enc(pk)
2. return (k, (c, t1))

IKM.dec((ST , t0, t1), (c, t)):

1. decapsulate k ← KM.dec(ST [t], c)
2. return k

Fig. 3. Base IKEM construction.

as it more clearly illustrates the intuition behind why this is the case. Moreover,
the lower bound holds for the IKEM notion with re-encapsulations.

3.2 Optimal Construction from KEM

Given the lower bound of Appendix B, we now provide an IKM construction
with secret state size matching the lower bound. The construction is based on a
generic KEM scheme, KM and is presented in Figure 3. For each new epoch, the
scheme samples a new KM key pair (sk, pk), saves sk to its state, and outputs
pk. IKM.enc simply runs the KM encapsulation algorithm on the latest public
key pk, and returns the corresponding key k and ciphertext c (appended with
the current epoch t1). IKM.dec then finds the appropriate KM secret key sk,
runs the KM decapsulation algorithm and returns the key k.

Now, we show that the IKM scheme of Figure 3 is secure. Intuitively, this is
because any (allowed) exposure of the secret state will not leak the KM secret
key of the challenge epoch (as it will be deleted from the state), and thus security
will follow from that of KM. Moreover, CCA security will be trivially implied
by that of KM. The proof of the following Theorem is provided in Appendix D.

Theorem 1. Let X ∈ {CPA, CCA} and KM be a (T, εind-x
KM)-secure KEM scheme

in the IND-X KEM security game. Then the IKM construction of Figure 3 is
correct and (T ′, T · εind-x

KM)-secure, for T ′ ≈ T , in game IND-XIKM of Figure 2.

4 Interval KEM with Re-Encapsulations

In this section, we introduce our extended Interval Key-Encapsulation Mecha-
nism with Re-Encapsulations (IKEMR) notion. We provide a security definition

16

with a decryption oracle and Replayable CCA-style security,6 but also, by simply
removing the decryption oracle, provide a CPA-style security notion. We again
note that the same lower bound which shows that the secret state of IKEM
must be large also applies to the secret state of IKEMR. Later, we will present
two different constructions for this IKEMR notion that provide incomparable
efficiency properties. We begin by defining the IKEMR notion:

Syntax An Interval Key-Encapsulation Mechanism with Re-Encapsulations (IKEMR)
scheme IKMR is a tuple of algorithms IKMR = (IKMR.gen, IKMR.enc, IKMR.dec,
IKMR.re-gen, IKMR.del, IKMR.re-enc) with the following syntax:

– IKMR.gen(1λ) →$ (st0,0, pk0) generates a secret state and a corresponding
public key for interval [t0, t1] with t0 = t1 = 0.

– IKMR.re-gen(stt0,t1)→$ (stt0,t1+1, pkt1+1) updates the secret state stt0,t1 to
stt0,t1+1, and outputs fresh public key pkt1+1; i.e., starting new epoch t1 + 1
and setting t1 ← t1 + 1.

– IKMR.del(stt0,t1 , ℓ) → stt0+ℓ,t1 on input secret state stt0,t1 , deletes from
the secret state the material needed to decapsulate keys encapsulated in the
epochs [t0, t0 + ℓ) and outputs stt0+ℓ,t1 ; i.e., setting t0 ← t0 + ℓ.

– IKMR.enc(pkt1) →$ (k, c) on input public key pkt1 , encapsulates key k in
ciphertext c.

– IKMR.dec(stt0,t1 , c) → k on input secret state stt0,t1 and ciphertext c, de-
capsulates key k.

– IKMR.re-enc(pkt1 , c) →$ c′ re-encapsulates input ciphertext c with respect
to the input public key pkt1 .

Correctness An IKEMR scheme is correct if secret state stt0,t1 can decapsulate
correctly any ciphertext that was originally created in any epoch t ∈ [t0, t1]. In
particular, even if some ciphertext is re-encapsulated during epoch t′ ∈ [t0, t1], if
the epoch in which the ciphertext was originally created (i.e., when IKMR.enc
was executed) is t < t0, then no correctness is required. In fact, as we will see
below, such ciphertexts must be secure even given stt0,t1 . More formally:

Definition 11. Given T ∈ N, and dictionary D s.t. D[i] = (ti, ℓi) for i ∈ [m]
containing items in [T] × [T] s.t. 0 < t1 ≤ · · · ≤ tm ≤ T and

∑i
j=1 ℓj ≤

ti for every i ∈ [m]: let t0 ← 0; (st0,0, pk0) ←$ IKMR.gen(1λ); and for all
t1 ∈ [T], (stt0,t1 , pkt1) ←$ IKMR.re-gen(stt0,t1−1) and for every i ∈ [m] s.t.
for (ti, ℓi) ← D[i], ti = t1, stt0+ℓi,t1 ← IKMR.del(stt0,t1 , ℓi). Scheme IKMR is
correct if for every such T and D, as well as r ≤ t1− t0 + 1, R = {t1

ρ, . . . , tr
ρ} ⊆

[t0, t1] s.t. t1
ρ < · · · < tr

ρ, (k, c1) ←$ IKMR.enc(pkt1
ρ
), and for i ∈ [2, r], ci ←$

IKMR.re-enc(pkti
ρ
, ci−1), k = IKMR.dec(stt0,t1 , cr).

6 See Section 1 and Appendix C for elaboration on this choice, mainly stemming from
the problem of handling decryptions of honest re-encapsulations of the challenge
ciphertext.

17

Initialization: Set t0
X , t1

X , tR, t∗ ← −∞, t0, t1 ← 0, and pub-chall ← 0. Then
compute (stt0,t1 , pkt1)←$ IKMR.gen(1λ) and output pkt1 .

Re-Gen():

1. increment t1 ← t1 + 1
2. regenerate (stt0,t1 , pkt1)←$

IKMR.re-gen(stt0,t1−1)
3. return pkt1

Chall(pub):

1. return ⊥ if pub = 1 and t1 = t1
X

2. set tR, t∗ ← t1
3. encapsulate (k0, c∗)←$

IKMR.enc(pkt1)
4. sample random k1 ←$ K
5. flip random coin b←$ {0, 1}
6. disable Chall()
7. if pub = 1 set pub-chall ← 1

and return ((kb, k1−b), c∗)

Expose():

1. return ⊥ if pub-chall = 1 and t∗ ≥ t0
2. if t1 > t1

X : set t0
X ← t0, t1

X ← t1
3. return stt0,t1

Re-Enc-Chall(pub):

1. return ⊥ if
(a) pub-chall = 1; or
(b) t∗ = −∞; or
(c) t1 = tR; or
(d) pub = 1, t1 = t1

X and t∗ ≥ t0
X

2. set tR ← t1
3. re-encapsulate c∗ ←$

IKMR.re-enc(pkt1 , c∗)
4. if pub = 1: set pub-chall ← 1

and return ((kb, k1−b), c∗)

Dec(c):

1. decapsulate k ← IKMR.dec(stt0,t1 , c)
2. return ⊥ if k ∈ {k0, k1}
3. return k

Del(ℓ):

1. return ⊥ if t0 + ℓ > t1
2. increment t0 ← t0 + ℓ
3. compute stt0,t1 ←

IKMR.del(stt0−ℓ,t1 , ℓ)

Fig. 4. IKEMR IND-XIKMR security game, for X ∈ {CPA, RCCA}. Components only
needed for the IND-RCCAIKMR security game are written in green.

Security Now we define security for an IKEMR scheme. At a high level, this
security (i) allows for the challenge ciphertext encrypted in epoch t∗ to not be
made public (i.e., unavailable to the adversary by setting pub = 0) immediately,
(ii) allows for re-encapsulations of the challenge ciphertext before it is made
public, and (iii) is required if and only if once the challenge ciphertext is made
public (via pub = 1) after a re-encapsulation in epoch t1, for every state stt′

0,t′
1

that the adversary had exposed before the time of publication, either t∗ < t′0
or t1 > t′1 (and also the adversary waits until t0 > t∗ before exposing the state
again). In particular, the last condition of the last item implies that even if the
adversary earlier exposed multiple states stt′

0,t′
1

such that t∗ ∈ [t′0, t′1], before the
challenge ciphertext was made public, then if the receiver re-generates its state
to output a fresh public key, is not exposed again until after t0 > t∗, and the
challenge ciphertext is re-encrypted with respect to the above public key, the
new ciphertext is required to be secure. Our indistinguishability notion is mildly

18

atypical as, once the challenge ciphertext is made public, the adversary is given
either (with equal probability 1/2) (i) the real key k0 encapsulated by the chal-
lenge ciphertext, followed by a random key k1, i.e., (k0, k1); or (ii) (k1, k0). The
adversary must guess if they are in world (i) or (ii). Additionally, for Replayable
CCA (RCCA) security, the adversary is allowed to see decryptions of ciphertexts
of its choosing, as long as they do not decrypt to k0 or k1. In Appendix C, we
provide justification for this slightly modified RCCA definition; e.g., it implies
RCCA-secure IPKER.

More formally, we define the IND-XIKMR (X ∈ {CPA, RCCA}) security game
for IKEMR in Figure 4. The security game starts by sampling a key pair via
IKMR.gen and returning the public key to the adversary. It also initializes a
number of variables, including t0

X , t1
X ← −∞, which will be used to store the

endpoints of the latest state stt0
X

,t1
X

that the adversary exposed (these endpoints
are only updated when t1 > t1

X). In addition, the game keeps track of the latest
epoch tR in which the challenge ciphertext was (re-)encapsulated, as well as
pub-chall which indicates if the challenge ciphertext has been made public (set
to 1 if so). Oracle Re-Gen() re-generates the state using IKMR.re-gen() and
returns the new public key. Del(ℓ) deletes old key material for the last ℓ epochs
from the state using IKMR.del(·, ℓ), only if the updated interval would still be
valid; i.e., t0 + ℓ ≤ t1. Oracle Chall(pub), if pub = 1, first checks if the receiver’s
state has not been exposed in the current epoch. If not, it runs IKMR.enc() to
obtain challenge ciphertext c∗ and encapsulated key k0, then samples random k1
and bit b, and finally returns ((kb, k1−b), c∗). If pub = 0, then no matter what,
Chall() runs IKMR.enc(), but does not output the challenge ciphertext c∗ or
keys (k0, k1); only stores them as well as the challenge epoch t∗ and tR ← t∗.
In both cases, the Chall oracle is thereafter disabled. Oracle Expose() always
returns the current state if the challenge ciphertext has not been made public
yet (pub-chall = 0). Otherwise, if the challenge ciphertext is public, Expose()
first checks that the challenge epoch t∗ is not at least t0, the lower endpoint for
which the current state remembers key material, since then the adversary can
trivially decapsulate the challenge ciphertext and win the game.

Finally, the re-encapsulation oracle: Re-Enc-Chall(pub). This oracle first re-
turns ⊥ if (i) the challenge ciphertext has already been made public (pub-chall =
1), (ii) the challenge ciphertext has not already been created (t∗ = −∞), or
(iii) Re-Gen() has not been queried since the last Chall() or Re-Enc-Chall()
query. Now, if pub = 0, and the above checks have passed, then Re-Enc-Chall()
runs c∗1 ←$ IKMR.re-enc(·, c∗0), stores the re-encapsulated ciphertext c∗1, and up-
dates tR ← t1 to the current epoch, but does not output anything. If pub = 1,
then in addition to the above checks, Re-Enc-Chall() aborts if for the lat-
est state stt0

X
,t1

X
that the adversary exposed, t1

X = t1 (the current epoch) and
original challenge epoch t∗ ≥ t0

X , since then the adversary could trivially decap-
sulate the challenge ciphertext and win the game. Once the checks have passed,
Re-Enc-Chall() runs c∗1 ←$ IKMR.re-enc(·, c∗0), sets pub-chall ← 1 and outputs
((kb, k1−b), c∗1), where k0, k1 are the real and random keys.

19

For RCCA security, there is also the Dec(c) oracle, written in green in Fig-
ure 4. This oracle uses the current state stt0,t1 to decrypt c using IKMR.dec()
and returns the resulting key k only if k /∈ {k0, k1}. Given this security game,
we now formally define secure IKEMR schemes:

Definition 12. For X ∈ {CPA, RCCA}, an IKEMR scheme IKMR is (T, εind-x
IKMR)-

secure if for all adversaries A playing the security game IND-XIKMR and running
in time T : Pr[b←$ IND-XIKMR(A)] ≤ 1/2 + εind-x

IKMR.

5 IKEMR Construction from Lossy TDPs with Common
Domain

We now present our IKEMR construction from Lossy TDPs with Common Do-
main that matches the lower bound on secret state size mentioned above. This
construction optimizes for small ciphertexts, as small as O(λ + log(T)) bits,
where T is the total number of epochs, even after many re-encryptions. We
provide a RCCA-secure construction that additionally makes use of all-but-one
trapdoor functions and one-time signatures (based on a technique of [PW08]).
We also demonstrate that by simply removing the ABO and OTS, we obtain a
construction that is CPA-secure.

As an intermediate building block, we first define f -Bounded Forward-Secure
Lossy Trapdoor Permutations with Common Domain and instantiate it using
Lossy TDPs with Common Domain.

5.1 f-Bounded Forward-Secure Lossy Trapdoor Permutation with
Common Domain.

We now introduce f -Bounded Forward-Secure Lossy TDPs (FS-TDPs) with
Common Domain. This primitive is similar to f -bounded Forward-Secure KEMs
[CHK03], except we require security properties corresponding to Lossy TDPs,
instead of KEMs.

Syntax A family of f -Bounded Forward-Secure Lossy TDPs with Common Do-
main (FSP) is a tuple of algorithms FSP = (FSP.gen, FSP.up, FSP.eval, FSP.inv)
with the following syntax:

– FSP.gen(1λ, f, b, t∗) →$ (SK0, PK) on inputs b ∈ {0, 1} and t∗ that specify
whether the generated instance is always-injective (b = 1) or lossy in epoch
t∗ (b = 0), outputs initial secret key SK0 and public key PK .

– FSP.up(SK t)→ SK t+1 updates input secret key SK t to SK t+1.
– FSP.eval(PK , t′, x) → y on input PK and epoch t′, evaluates the permuta-

tion for epoch t′ on x to give output y.
– FSP.inv(SK t, t′, y) → x on input SK t and t′, inverts the permutation for

epoch t′ on y to give x.

Note that t′ is an explicit input of FSP.inv(). For our use of FSP.inv() within our
IKEMR construction, we will be able to extract t′ from the rest of the ciphertext.

20

Correctness Correctness requires that in always-injective mode, for t0 ≤ t1, the
receiver with SK t0 can invert y ← FSP.eval(PK , t1, x) to x.

Definition 13. Scheme FSP is correct if for all (SK0, PK)←$ FSP.gen(1λ, f,
1, t∗), for every t ∈ [f − 1], SK t ← FSP.up(SK t−1), all x ∈ X and any 0 ≤ t0 ≤
t1 ≤ f − 1, x = FSP.inv(SK t0 , t1, FSP.eval(PK , t1, x)).

Security For lossy mode with respect to given epoch t∗ < f , we require that the
size of the image of the evaluation algorithm with respect to epoch t∗ is much
smaller than the domain X :

Definition 14. Scheme FSP is L-lossy if for all (SK0, PK)←$ FSP.gen(1λ, f,
0, t∗), |FSP.eval(PK , t∗, ·)| ≤ |X |/L, where |FSP.eval(PK , t∗, ·)| is the number
of different outputs across all inputs x ∈ X .

Furthermore, for any adversary with only the public key PK and any secret key
SK t′ for t′ > t∗, we require that it is hard to distinguish whether they were
sampled in always-injective mode or lossy mode with respect to t∗ (even with t∗

known to the adversary):

Definition 15. Scheme FSP is (T, εFSP)-secure if for all adversaries A running
in time T :

Pr[b←$ A(SK t′) : b←$ {0, 1}; (0 ≤ t∗ ≤ f − 1)←$ A();
(SK0, PK)←$ FSP.gen(1λ, f, b, t∗); (t∗ < t′ ≤ f)←$ A(PK);
for t ∈ [f − 1], SK t ← FSP.up(SK t−1)] ≤ 1/2 + εFSP

FSP Construction We now provide a simple construction based on a family
of Lossy TDPs with Common Domain P and PRG G. At a high level, FSP.gen
will generate f instantiations of P: for epoch t∗ and lossiness bit b, the t∗-th
instantiation of P will be generated with bit b; for all other epochs t, the t-th
instantiation of P will be generated with bit 1 (i.e., injective). The initial secret
key SK0 will store a PRG s0 which can be expanded deterministically (in a chain)
to sample f secret keys and the public key PK will store the f corresponding
public keys. To update secret key SK t, the receiver simply expands the seed st

and deletes the output secret key corresponding to the t-th instantiation of P
(while still st+1 can be expanded to compute all future secret keys). To evaluate
with respect to epoch t, the sender simply evaluates the t-th instantiation of P
on x. Finally, to invert using SK t on input y and epoch t′, the receiver simply
expands st iteratively to get sk ′t corresponding to the t′-th instantiation of P
and uses it to invert y. The scheme is as follows:

– FSP.gen(1λ, f, b, t∗): set t← 0 and sample random s0 ←$ S. For i ∈ [0, f −
1]\{t∗}, compute (si+1, ri)← G(si) and sample (ski, pki)←$ P.gen(1λ, 1; ri).
For t∗, compute (st∗+1, rt∗)← G(st∗) and sample (skt∗ , pkt∗)←$ P.gen(1λ, b;
rt∗). Set SK t ← (t, s0) and output PK ← {pk0, . . . , pkf−1}.

– FSP.up(SK t): Compute (st+1, ·)← G(st) and set t← t + 1.

21

– FSP.eval(PK , t, x): Compute and output y ← P.eval(pkt, x).
– FSP.inv(SK t, t′, y): For i from t to t′: compute (si+1, ri) ←$ G(si). Then

sample (skt′ , ·)←$ P.gen(1λ, 1; rt′) and output x← P.inv(skt′ , y).

We now show that the above FSP construction is correct, L-lossy, and secure.
The correctness and L-lossiness clearly follows from that of P. Furthermore, for
security, since the FSP secret key SK t′ that the adversary receives will not
contain the lossy epoch t∗’s secret key skt∗ of the lossy TDP family P (as it
will have been deleted), but only a random PRG seed past epoch t∗ in the
chain, security follows directly from that of P and G. The proof of the following
Theorem is provided in Appendix D.

Theorem 2. If P is correct, L-lossy, and (T, εP)-secure, and G is (T, εG)-secure
then the above FSP construction is correct, L-lossy, and (T ′, εP + T · εG)-secure,
for T ′ ≈ T .

5.2 IKMR Construction

Given the FSP primitive, we can now present our construction for IKEMR. The
construction IKMR∆ is formally presented in Figure 5. It is parameterized by
an (efficiently computable) function ∆ : N → N, such that for each input T ,
∆(T) ≤ T . Intuitively, if the size of the active interval t1 − t0 stays roughly the
same throughout, then the public key size will be proportional to ∆(t1 − t0)
and the size of any ciphertext (regardless of the number of times it’s been (re-
)encapsulated), will be proportional to λ + β · (t1 − t0)/∆(t1 − t0), where β =
O(log λ) is the number of bits needed to represent each epoch. In particular, if
∆(T) = T , then all ciphertexts (no matter how many re-encapsulations) will
be of size proportional to only λ (since β = O(log λ)). Moreover, even if ∆(T)
is small (even ∆(T) = 1), then the ciphertext grows with (almost) every re-
encapsulation, but only by a β factor, independent of λ.

In addition to the FSP primitive, our construction IKMR∆ utilizes a family
H of pairwise independent hash functions from {0, 1}n → {0, 1}ℓ. For RCCA
security, ℓ ≤ k− 2 log(1/εH), for some k = ω(log n) and negligible ϵH = negl(λ);
for CPA security, ℓ ≤ log(L) − 2 log(1/ϵH), where L the lossiness of FSP. Ad-
ditionally for RCCA security, we make use of an all-but-one trapdoor function
family ABO and one-time signature scheme OTS.

In IKMR∆.gen, the receiver samples random hash function h ←$ H, gener-
ates an FSP instance (sk1, pk1)←$ FSP.gen(1λ, t1− t0 +1, 1,⊥), sets t0, t1 ← 1,
and sets (SK [t1], PK [t1]) ← ((sk1, t0), (pk1, t0)). We will explain the choice of
instantiating FSP with f = t1 − t0 + 1 while explaining IKMR∆.re-gen and
IKMR∆.del below. Additionally, for RCCA security, the receiver samples an
ABO instance (·, pk) ←$ ABO.gen(1λ, 0v), where v is the bit-length of verifica-
tion keys generated by OTS (ABO is only needed for security and indeed the
secret key of the ABO is not used by the receiver). For each IKMR∆.re-gen
execution, the receiver increments t1 ← t1 + 1, samples a new FSP instance
(skt1 , pkt1)←$ FSP(1λ, t1−t0+1, 1,⊥), sets (SK [t1], PK [t1])← ((skt1 , t0), (pkt1 ,

22

IKMR∆.gen(1λ):

1. set t0, t1 ← 1, SK [·], PK [·]← ⊥
2. sample h←$ H
3. generate (sk, pk)←$

FSP.gen(1λ, 1, 1,⊥)
4. generate (·, pk′)←$

ABO.gen(1λ, 0v)
5. set (SK [1], PK [1])←

((sk, t0), (pk, t0))
6. return ((SK , PK , pk′, h, t0, t1),

(PK , pk′, h, t0, t1))

IKMR∆.del((SK , PK , pk′, h, t0, t1), ℓ):

1. for i ∈ [ℓ]:
(a) set SK [t0 + i− 1]← ⊥
(b) for t ∈ [t0 + ℓ, t1]:

set (sk, t′)← SK [t];
update sk′ ← FSP.up(sk);
store SK [t]← (sk′, t′)

2. increment t0 ← t0 + ℓ
3. return (SK , PK , pk′, h, t0, t1)

IKMR∆.re-enc((PK , pk′, h, t0, t1),
(c1, vk, c2, σ,

((t0,0, t0,1), . . . , (tl,0, tl,1)))):
1. if t0 > t0,0 return ⊥
2. if PK [tl,1 + 1] ̸= ⊥:

(a) for t′ from (tl,1 + 1) to t1:
let (pkt′ , t′

0)← PK [t′];
compute c1 ←
FSP.eval(pk, t0,0 − t′

0, c1)
(b) return (c1, vk, c2, σ,

((t0,0, t0,1), . . . , (tl,0, t1)))
3. else:

(a) compute c1 ←
FSP.eval(PK [t1], t0,0 − t0, c1)

(b) return (c1, vk, c2, σ,((t0,0, t0,1),
. . . , (tl,0, tl,1), (t1, t1)))

IKMR∆.re-gen((SK , PK , pk′, h, t0, t1))

1. increment t1 ← t1 + 1
2. generate (sk, pk)←$

FSP.gen(1λ, t1 − t0 + 1, 1,⊥)
3. set (SK [t1], PK [t1])←

((sk, t0), (pk, t0))
4. set

PK [≤ t1 −∆(t1 − t0)− 1]← ⊥
5. return ((SK , PK , pk′, h, t0, t1),

(PK , pk′, h, t0, t1))

IKMR∆.enc((PK , pk′, h, t0, t1)):

1. sample random x←$ X
2. compute c1 ←

FSP.eval(PK [t1], t1 − t0, x)
3. generate (sk, vk)←$ OTS.gen(1λ)
4. compute c2 ← ABO.eval(pk′, vk, x)
5. sign σ ← OTS.sign(sk, c2)
6. return (h(x), (c1, vk, c2, σ,((t1, t1))))

IKMR∆.dec((SK , PK , pk′, h, t0, t1),
(c1, vk, c2, σ,

((t0,0, t0,1), . . . , (tl,0, tl,1)))):

1. return ⊥ if OTS.ver(vk, c2, σ) = 0
2. set c′

1 ← c1
3. for i from l to 0:

(a) for t′ from ti,1 to ti,0: let
(skt′ , t′

0)← SK [t′]; invert
c′

1 ← FSP.inv(SK [t′], t0,0 − t′
0, c′

1)
4. set x← c′

1
5. for i from 0 to l

(a) for t′ from ti,0 to ti,1: let
(pkt′ , t′

0)← PK [t′];
compute c′

1 ←
FSP.eval(PK [t′], t0,0 − t′

0, c′
1)

6. return ⊥ if c′
1 ̸= c1

7. compute c′
2 ← ABO.eval(pk′, vk, x)

8. return ⊥ if c′
2 ̸= c2

9. compute and return h(x)

Fig. 5. TDP-based IKEM with Re-Encapsulations construction. Text written in green
is only needed for IND-RCCAIKMR security.

23

t0)), and deletes from PK all entries except those for the latest ∆(t1− t0) + 1 ≤
t1− t0 +1 epochs. The reason we instantiate the FSP with f = t1− t0 +1 is that
we will use the FSP epoch t′ ∈ [0, f − 1] to (re-)encapsulate IKEMR ciphertexts
originally created in IKEMR epoch t0 + t′ ∈ [t0, t1] (explanation continues after
IKMR∆.del below). Then in IKMR∆.del(ℓ), the receiver simply deletes from the
secret key SK the FSP keys skt0 , . . . , skt0+ℓ−1, and updates all other FSP keys
skt0+ℓ, . . . , skt1 , ℓ times each. Therefore, even if IKMR∆.del(ℓi) is called m times
such that

∑m
i=1 ℓi ≤ t′, the lower endpoint of the active interval is moved from t0

to at most t0 + t′. Thus, the FSP instance sampled when the lower endpoint was
t0, having been updated at most t′ times will still be able to decapsulate IKEMR
ciphertexts originally created in IKEMR epoch t0 + t′. However, if

∑m
i=1 ℓi > t′,

moving the lower endpoint of the active interval from t0 to after t0 + t′, then
the FSP instance sampled when the lower endpoint was t0, having been updated
more than t′ times will no longer be able to decapsulate IKEMR ciphertexts
originally created in IKEMR epoch t0 + t′, as required by security.

Thus, to encapsulate in epoch t1, IKMR∆.enc samples random x←$ {0, 1}n,
then evaluates the FSP for public key pkt1 on x and the FSP instantiation’s
epoch t1 − t0 to get output c1. For RCCA security, the encapsulator also (i)
samples OTS key pair (sk, vk); (ii) evaluates the ABO on branch vk and input x
to obtain output c2; and (iii) finally signs c2 using OTS with signing key sk to
obtain σ. The output key is h(x) and the ciphertext is (c1, vk, c2, σ) appended
with tuple (t1, t1). Note that in the RCCA-secure construction, vk, c2, σ will
remain untouched in the ciphertext even after re-encapsulations.

To re-encapsulate ciphertext (c1, vk, c2, σ, ((t0,0, t0,1), . . . , (tl−1,0, tl−1,1), (tl,0,
tl,1))) in epoch t1 on input public key with active interval [t0, t1], t0,0 is in-
terpreted as the epoch in which the ciphertext was originally created. Thus,
IKMR∆.re-enc first returns ⊥ if t0 > t0,0 since if this is the case, then the receiver
must not be able to decapsulate the ciphertext anyway, as required for security.
For the RCCA-secure construction, the re-encapsulator also keeps vk, c2, σ un-
touched in the eventually output ciphertext. Then, IKMR∆.re-enc checks if there
is an FSP public key in PK for epoch tl,1 + 1. If so, then for t′ from tl,1 + 1
to t1: IKMR∆.re-enc first retrieves (pkt′ , t′0) ← PK [t′], where t′0 was the lower
endpoint of the active interval when epoch t′ was created. Next IKMR∆.re-enc
evaluates the FSP for public key pkt′ on c1 and the FSP instantiation’s epoch
t0,0− t′0, as specified above, to get new output c′1. Then, IKMR∆.re-enc outputs
the same ciphertext as above, except c1 replaced by the final output c′1 and tl,1
of the final evaluation epoch tuple replaced with t1. The latter is because each
of these tuples represent the evaluation intervals of epochs t′ in which the FSP
for the corresponding public key pkt′ was evaluated on c.

If there is no FSP public key in PK for epoch tl,1 + 1, then IKMR∆.re-enc
just evaluates the FSP for public key pkt1 of epoch t1 on c1 and the FSP in-
stantiation’s epoch t0,0 − t0, as specified above, to get new output c′1. Then,
IKMR∆.re-enc outputs the same ciphertext as above, except c1 replaced by c′1
and (t1, t1) appended to the list of evaluation epoch tuples (because we have
started a new evaluation interval).

24

Finally, to decapsulate ciphertext (c1, vk, c2, σ, ((t0,0, t0,1), . . . , (tl−1,0, tl−1,1),
(tl,0, tl,1))), for each tuple (ti,0, ti,0) for i from l to 0, sequentially for t′ from
ti,1 to ti,0, the receiver first retrieves (skt′ , t′0)← SK [t′], where t′0 was the lower
endpoint of the active interval when epoch t′ was created. Then, IKMR∆.dec
inverts c1 using the FSP secret key skt′ with respect to the FSP instantiation’s
epoch t0,0− t′0 (the same epoch on which it was evaluated). For RCCA-security,
the receiver also verifies OTS.ver(vk, c2, σ) = 1 and recomputes c1 and c2 to check
well-formedness. Then, using the final inverse x ← c1 from above, IKMR.dec
outputs h(x) as the key.

Efficiency Before formally analyzing the security of IKMR∆ we will provide
some bounds on the efficiency of the construction. It is clear that the size of
every public key is proportional to ∆(t1 − t0). We will now attempt to bound
the size of every (even re-encapsulated) ciphertext. First, the components needed
for RCCA security, vk, c2, σ only add O(λ) bits and stay untouched even after
several re-encapsulations. Now, for each re-encapsulation during epoch t1, if
the last epoch tl,1 in which the ciphertext was (re-)encapsulated is such that
tl,1 + 1 ∈ [t1 − ∆(t1 − t0) − 1, t1] then PK contains FSP public keys pkt′ for
t′ ∈ [tl,1 + 1, t1]. Therefore, the c part of the ciphertext can be re-evaluated
sequentially using the FSP public keys pkt′ for all such t′, and the last epoch tl,1
of the last evaluation interval of the ciphertext can be replaced with t1. Observe
that in this case, the ciphertext does not grow, assuming that each epoch can
be represented using some fixed β = O(log λ) number of bits. Indeed, only if
tl,1 + 1 /∈ [t1 − ∆(t1 − t0) − 1, t1] and therefore PK does not contain a FSP
public key for tl,1, must the ciphertext grow. In this case, IKMR∆.re-enc skips
to evaluating the c part of the ciphertext on only pkt1 , and appends to the
ciphertext evaluation interval (t1, t1). Here, the ciphertext grows by O(β) bits.

Consider the case that some ciphertext is (re-)encapsulated in epochs t1 <
· · · < tr such that for each i ∈ [r], the active interval when epoch ti was created
was [ti

0, ti
1] (where ti

1 = ti). Then, it is clear that if for any i ∈ [r], ti
0 > t1,

the ciphertext size becomes 0, as the original creation epoch t1 is outside of the
active interval and thus the re-encryptor sets the ciphertext to ⊥. Otherwise, let
δi = ∆(ti

1 − ti
0) for i ∈ [n] and let δ∗1 , . . . , δ∗r be δ1, . . . , δr sorted in ascending

order. In Lemma 1 below, we in fact show that the number of times G the
ciphertext grows is bounded by

G ≤ argmaxg

{
t1 +

g∑
i=1

δ∗i ≤ tr

}
. (1)

Therefore, the ciphertext size is bounded by O(λ+G ·β), where β is the number
of bits used to represent each epoch.

Lemma 1. Given (re-)encapsulation epochs t1 < · · · < tr with active intervals
[ti

0, ti
1] when created, let δi = ∆(ti

1 − ti
0) for i ∈ [r]. Let δ∗1 , . . . , δ∗r be δ1, . . . , δr

sorted in ascending order. Then, the number of times G the ciphertext can grow
is bounded by Equation 1.

25

Proof. The ciphertext is first encapsulated at time t1 and last re-encapsulated at
time tr. Moreover, we know that the j-th re-encryption only grows the ciphertext
if tj

1 − δj > tj−1
1 , or tj

1 − tj−1
1 > δj . Thus, it must be that for those j s.t. the

above is true: t1 +
∑

j δj ≤ tr. Therefore, the maximum number G of such j

above corresponds to argmaxg{t1 +
∑g

i=1 δ∗i ≤ tr}. ⊓⊔

Corollary 1. G is bounded by (tr − t1)/ minj δj.

Corollary 2. If (t1
1 − t1

0) = · · · = (tr
1 − tr

0) = T1 − T0, then the number of times
G the ciphertext can grow is bounded by (tr − t1)/∆(T1 − T0).

Security Now, we show that construction IKMR∆ of Figure 5 is correct and se-
cure. Before formally stating the theorem, we give some intuition on the security
of the scheme. First, recall that the ABO secret key is not stored by the receiver.
Now, let t∗ be the epoch in which the challenge ciphertext is originally created
and let tpub be the epoch in which the (re-)encapsulated challenge ciphertext is
made public. By the definition of the security game, it cannot be the case that
any stt0,t1 with t0 ≤ t∗ ≤ tpub ≤ t1 is ever leaked to the adversary. Indeed, it
must be that either t1 < tpub or t∗ < t0. In the former case, it is easy to see
that no information about the FSP secret key sktpub generated for epoch tpub is
leaked to the adversary (beyond pktpub

). In the latter case, a version of sktpub may
be leaked to the adversary, but only a version that has been updated past (its
internal FSP epoch for corresponding IKMR∆) epoch t∗. Therefore, by the secu-
rity of FSP and ABO, the inverse of the final evaluations c1, c2 in the challenge
ciphertext can be many possible values, and thus the same can be said about the
original random x←$ {0, 1}n sampled for the challenge ciphertext. As a result,
from x, a key that is indistinguishable from random is extracted using the pair-
wise independent hash function h. Moreover, for the RCCA security proof, we
are able to always decrypt ciphertexts involving honest (re-)encapsulations using
the public key output in epoch tpub by first switching the ABO to lossy mode
on branch vk∗ before switching the FS-TDP to lossy mode, where vk∗ is the
sampled verification key for the challenge ciphertext, and then using the ABO
to decapsulate instead of the FS-TDP (in the hybrid worlds, the receiver keeps
the ABO secret key). Indeed, due to the unforgeability of the OTS scheme, the
ABO will never have to invert on branch vk∗, and thus this modified decapsula-
tion will always succeed. The proofs of the following Theorems are provided in
Appendix D.

Theorem 3. Let FSP be a family of correct, L-lossy, and (T, εFSP)-secure trap-
door permutations on common domain X = {0, 1}n; let H2 : {0, 1}n → {0, 1}ℓ

be a family of pairwise independent hash functions where ℓ ≤ k−2 log(1/εH), for
some k = ω(log n) and some negligible εH2 = negl(λ), where log(L) + log(L′) ≥
n + k; OTS be a strongly unforgeable one-time signature scheme where the ver-
ification keys are in {0, 1}v; and ABO be a family of correct, L′-lossy, and
(T, εABO)-secure all-but-one trapdoor functions on domain {0, 1}n. Then, for
T ′ ≈ T , the IKMR construction of Figure 5 is correct and ((T ′, T 2 · (O(1/2λ) +
εOTS + 2 · (εABO + εFSP) + εH2))-secure) in game IND-RCCAIKMR of Figure 4.

26

Note that given the Lossy TDP of [AKPS19] with L = 2n/4 and the ABO
of [PW08] with L′ = 2n/λ, we indeed have that log(L)+log(L′) = 5n/4−log λ ≥
n + ω(lg n).

6 IKEMR Construction from FS-PKE

While the advantage of our TDP-based IKEMR construction is the small cipher-
text size, a disadvantage is the public key size. Using Forward-Secure Public-Key
Encryption (FS-PKE), we can reduce the public key to an element of constant
size at the cost of increasing the ciphertext size; furthermore, also the secret key
size is slightly increased.

IKMR construction. Since, for our TDP-based IKEMR construction, we al-
ready introduce FS-TDP as an abstraction layer, the primary difference towards
our FS-PKE-based construction is the omission of parameter ∆. For security
against active adversaries, we use an additional collision-resistant hash function.
This simplifies the description of our construction from Figure 6 significantly.

Initial key generation via IKMR.gen generates an FS-PKE key pair with one
(update-)epoch for the FS-PKE secret key as well as a key for the hash function.
Re-generating a key pair via IKMR.re-gen for interval [t0, t1] generates an FS-
PKE key pair with at most t1 − t0 + 1 update-epochs; the generated FS-PKE
public key becomes the new IKEMR public key and the new FS-PKE secret
key is added to the decapsulation interval. Consequently, the IKEMR public
key always only consists of a single FS-PKE public key. Deleting l slots from
the decapsulation interval via IKMR.del removes the oldest l FS-PKE secret
keys entirely; all remaining t1 − t0 − l FS-PKE secret keys are updated l times
each. This mechanism as well as the underlying rationale resemble those of our
FS-TDP-based construction: only decapsulation of ciphertexts initially created
after the beginning of the current decapsulation interval should be possible; in
particular, ciphertexts encapsulated earlier but re-encapsulated later than that
must not be recoverable.

At encapsulation via IKMR.enc, a randomly sampled key k is FS-PKE en-
crypted to the last update-epoch t1 − t0 of the current public key; the resulting
ciphertext is appended with the current epoch index t1. For re-encapsulation of
ciphertext c with public key PK via IKMR.re-enc, c is FS-PKE encrypted to
update-epoch t◦0 − t0, where t◦0 is the time at which the first version of c was
initially created and t0 was the oldest slot of the decapsulation interval when
PK was most recently re-generated. For active security, the a hash of the his-
tory of (re-)encapsulation epochs is added to each encrypted payload. Due to the
FS-PKE re-encryption as well as the added hash value, the resulting IKEMR ci-
phertext grows with the number of IKEMR re-encapsulations by the encryption
overhead of the FS-PKE scheme as well as the hash length. Additionally, each
(re-)encapsulation attaches the current epoch index to the ciphertext, which is
used at decapsulation via IKMR.dec to execute the matching FS-PKE decryp-
tions; note this epoch list is only attached once to the outmost encryption layer.

27

IKMR.gen(1λ):

1. set t0, t1 ← 1, SK [·], PK ← ⊥
2. generate κ←$ {0, 1}λ

3. generate (sk, pk)←$
FSE.gen(1λ, 1)

4. set (SK [1], PK)←
((sk, t0), pk)

5. return ((κ, SK , t0, t1),
(κ, PK , t0, t1))

IKMR.re-gen((κ, SK , t0, t1))

1. increment t1 ← t1 + 1
2. generate (sk, pk)←$

FSE.gen(1λ, t1 − t0 + 1)
3. set (SK [t1], PK)←

((sk, t0), pk)
4. return ((κ, SK , t0, t1),

(κ, PK , t0, t1))

IKMR.enc((κ, PK , t0, t1)):

1. sample random k ←$ K
2. compute c←$

FSE.enc(PK , t1− t0, (k, Hκ(t1)))
3. return (k, (c, (t1)))

IKMR.del((κ, SK , t0, t1), ℓ):

1. for i ∈ [ℓ]:
(a) set SK [t0 + i− 1]← ⊥
(b) for t ∈ [t0 + ℓ, t1]:

set (sk, t′)← SK [t];
update sk′ ← FSE.up(sk);
store SK [t]← (sk′, t′)

2. increment t0 ← t0 + ℓ
3. return (κ, SK , t0, t1)

IKMR.re-enc((κ, PK , t0, t1), (c, (t◦
0, . . . , t◦

l))):

1. if t0 > t◦
0 return ⊥

2. compute h← Hκ((t◦
0, . . . , t◦

l , t1))
3. compute

c←$ FSE.enc(PK , t◦
0 − t0, (c, h))

4. return (c, (t◦
0, . . . , t◦

l , t1))

IKMR.dec((κ, SK , t0, t1), (c, (t◦
0, . . . , t◦

l))):

1. for i from l to 0:
(a) let (ski, t′

0)← SK [t◦
i]; decrypt

(c, h)← FSE.dec(ski, t◦
0 − t′

0, c)
(b) if h ̸= Hκ((t◦

0, . . . , t◦
i)): return ⊥

2. set k ← c
3. return k

Fig. 6. FS-PKE-based IKEM with Re-Encapsulations construction. Text written in
green is only needed for IND-RCCAIKMR security.

Efficiency Clearly, the public key size of this construction is constant for an
FS-PKE scheme with constant sized public keys. For clarity, we use the original
performance metric by Canetti et al. [CHK03] that is based on the Gentry-
Silverberg HIBE [GS02], where the public key is of constant size and the over-
head of secret and public key is logarithmic in the total number of update-epochs,
respectively. Based on this, our ciphertexts grow linearly in r, which is the num-
ber of re-encapsulations. This is increased by the ciphertext overhead of the
underlying FS-PKE as well as additional epoch indexes. In total, this yields a
ciphertext overhead of O(r · log(t1 − t0)). Finally, each secret key in the decap-
sulation interval is of size log(t1 − t0), which yields a total secret key size of
O((t1 − t0) · log(t1 − t0)).

Security Intuitively, almost the same argument works to prove security of the
FS-PKE-based IKEMR construction as for our TDP-based one. For a challenge
ciphertext c∗ published at time t∗, none of the states exposed at time t′ < t∗

28

contains the corresponding FS-PKE secret key. Furthermore, as soon as the
initial creation time t1 of the first version of c∗ is deleted from the decapsulation
interval, the FS-PKE secret key from time t∗ was updated at least t∗ − t1 + 1
times. Based on this, instead of embedding a lossy TDP in epoch t∗, we replace
the key, respectively ciphertext, that is FS-PKE (re-)encrypted at time t∗ with
a random string of the same length. Detecting this modification breaks the FS-
PKE scheme. For security against active adversaries, we additionally bind the
attached list of re-encapsulation epochs via the encrypted hash value. Intuitively,
this yields the following Theorem that we formally prove in Appendix D.

Theorem 4. Let H be a (TH, εH)-collision-resistant hash function and FSE be a
correct and (TFSE, εFSE)-secure FS-PKE. Then the IKMR construction of Fig-
ure 6 is correct and (T ′, εH + T 2 · εFSE)-secure in game IND-RCCAIKMR of
Figure 4, for T ′ ≈ TH + TFSE.

Alternative via FS-KEM and AEAD In Appendix E, Figure 9, we propose an
alternative construction based on FS-KEM and AEAD (instead of FS-PKE and
collision-resistant hash functions). Without a formal proof, we claim that the
security guarantees of both constructions are identical under suitable assump-
tions. The performance differences depend on the performance of the underlying
building blocks. As mentioned above, ciphertexts of the FS-PKE construction
in Figure 6 grow based on the FS-PKE’s encryption overhead oFSE and the
length of the hash lH: |c| = r ∗ (oFSE + lH) + |k|, where r is the number of re-
encryptions. Ciphertexts of the FS-KEM construction in Figure 9 grow based on
the AEAD’s encryption overhead oAE and the FS-KEM’s ciphertext length lFSK:
|c| = r ∗ (lFSK + oAE) + |k|. The decryption time for the FS-PKE based con-
struction is linear in the number of re-encryptions times the FS-PKE decryption
time. If FS-KEM decryptions can be parallelized, the decryption time for the
FS-KEM based construction is only linear in the number of re-encryptions times
the AEAD decryption time. We also note that (without assuming Random Ora-
cles) collision resistant hash functions can only be built from structured algebraic
assumptions (see e.g., [BD19]), while AEAD can be built from symmetric prim-
itives.

7 Minimizing Local State Size with External Storage

The lower bound of Theorem 6 shows that the secret state stt0,t1 of any IKEM(R)
scheme must be of size at least t1 − t0. Storing a secret state of such large size
may be cumbersome for the receiver. Therefore, in this section, we introduce the
IRAM primitive which the receiver may use to split stt0,t1 into a small secret
component stsec

t0,t1
(of size O(1) in our construction) and public component stpub

t0,t1
(still of size O(t1− t0) in our construction). Only the former needs to be securely
stored by the receiver, while the latter can be stored by a server. IRAM allows for
a generic interface to perform reads, writes, and deletions on the original state
stt0,t1 , with minimal overhead. Any data that is stored in stt0,t1 should remain

29

Initialization: Set i∗ ← −1 and D[·] ← ⊥. Then initialize (stsec, stpub) ←$
IRM.init(1λ) and output stpub.

Write(i, C̃, d):

1. execute (stpub, C)←
IRM.srvr-op(stpub, i, write)

2. C ← C̃
3. execute (stsec, C′)←$

IRM.write(stsec, C, i, d)
4. execute stpub ←

IRM.srvr-up(stpub, i, C′)
5. if C′ ̸= ⊥, set D[i]← d and if

(also) i = i∗, set i∗ ← −1
6. return C′

Read(i, C̃):

1. execute (stpub, C)←
IRM.srvr-op(stpub, i, read)

2. set att← 0
3. if C ̸= C̃, set C ← C̃ and att← 1
4. execute (stsec, d)←

IRM.read(stsec, C, i)
5. if (att = 0 and d ̸= D[i]) or

att = 1 and d /∈ {D[i],⊥}), win

Expose():

1. return ⊥ if i∗ ̸= −1
2. return stsec

Chall(i, C̃, d0, d1):

1. execute (stpub, C)←
IRM.srvr-op(stpub, i, write)

2. C ← C̃
3. flip random coin b←$ {0, 1}
4. execute (stsec, C′)←$

IRM.write(stsec, C, i, db)
5. execute stpub ←

IRM.srvr-up(stpub, i, C′)
6. if C′ ̸= ⊥, set D[i]← db and i∗ ← i
7. disable Chall and return C′

Del(i, C̃):

1. execute (stpub, C)←
IRM.srvr-op(stpub, i, del)

2. C ← C̃
3. execute (stsec, C′)←$

IRM.del(stsec, C, i)
4. execute stpub ←

IRM.srvr-up(stpub, i, C′)
5. if C′ ̸= ⊥, set D[i]← ⊥ and (also)

if i = i∗ set i∗ ← −1
6. return C′

Fig. 7. IRAM correctness and security game. Text written in green is only needed for
RINDIRM security.

secure even if the adversary obtains several of the secret states before the data is
written to stt0,t1 and after it is removed from stt0,t1 . We provide a definition that
allows the server holding stpub

t0,t1
to be actively corrupted (i.e., to deviate from

the protocol arbitrarily), and also a definition in which the server is honest-but-
curious). We call an IRAM that is secure even against an actively corrupted
server, robust. The IRAM primitive can easily be composed with IKEM(R) to
yield a secure IKEM(R) scheme with small secret state.

Interval RAM Definition The IRAM primitive splits the storage of a dynami-
cally-sized database into a secret component stored by the client and a public
component stored by the server. For each read, write, and deletion operation on

30

some virtual location i of the database, the server first executes a corresponding
algorithm on the public state which outputs those cells C of the new public
state that are relevant for the client-side operation. The server algorithm is
deterministic based on the virtual location i of the database on which the client
is operating.7 The client then uses C received from the server to perform the
operation and possibly uploads new cells C ′ with which the server should update
the public state. In the case of an actively corrupted server, the adversary may
send incorrect cells C̃ to the client for operations, while for honest-but-curious
server, the cells sent by the server are always the correct ones, C.

Syntax An Interval RAM (IRAM) scheme IRM is a tuple of algorithms IRM =
(IRM.init, IRM.srvr-op, IRM.read, IRM.write, IRM.del, IRM.srvr-up) with the fol-
lowing syntax:

– IRM.init(1λ)→$ (stsec, stpub) initializes the secret and public state of IRAM.
– IRM.srvr-op(stpub, i, op) → (stpub, C) the server executes operation op ∈
{read, write, del} on virtual cell i of the database, updating stpub, and returns
those locations of stpub that are needed by the client to execute op, via C.

– IRM.read(stsec, C, i) → (stsec, , d) using cells C of stpub provided by the
server, the client returns the i-th entry of the database, d.

– IRM.write(stsec, C, i, d)→$ (stsec, C ′) using cells C of stpub provided by the
server, the client writes data d to the i-th entry of the database. In doing
so, the client returns new public cells C ′ relevant to virtual cell i with which
the server will replace the corresponding cells in stpub.

– IRM.del(stsec, C, i) →$ (stsec, C ′) using cells C provided by the server, the
client deletes the i-th database entry. In doing so, the client returns new
public cells C ′ relevant to virtual cell i with which the server will replace the
corresponding cells in stpub.

– IRM.srvr-up(stpub, C)→ stpub the server places cells C in stpub (the location
of these cells in stpub are implicitly encoded in C).

Correctness and Security Now we define the correctness and security for an
IRAM scheme. Intuitively, correctness dictates that when reading the i-th vir-
tual location of the database, the data which was last written to the i-th virtual
location must be returned. In the case of actively corrupted server, if the ad-
versary does not honestly execute IRM.srvr-op() or IRM.srvr-up at some point,
then the scheme can reject by outputting ⊥. Security dictates that if any data
d is written to cell i of the database, then it should remain private even if the
adversary obtained several of the IRAM secret states before the write operation
and obtains several secret states after data d of cell i is overwritten or deleted.

More formally, we define the correctness and security games XIND, X ∈
{R, ϵ} for IRAM in Figure 7. The former is for Robust security, in which the
adversary may arbitrarily deviate from the protocol specification, and the latter
7 Deterministic server operations are common in outsourced database primitives, see

e.g., [BEG+91, DNRV09, BDY21, BDT22].

31

is for non-robust security, in which the adversary is assumed to be honest-but-
curious. The green text in Figure 7 is only for RINDIRM. The game starts by
initializing the IRAM via IRM.init, and outputting the public state stpub to the
adversary. It also stores variable i∗ ← −1, which indicates if there is an active
challenge, and if so the cell for which this challenge has been queried (i∗ = −1
means there is no active challenge). For each Write query, the adversary specifies
the virtual cell i and data d to write. The oracle first executes (stpub, C) ←
IRM.srvr-op(stpub, i, write) to perform the server-side write operation and obtain
the cells C necessary for the client-side operation; in the case of game RINDIRM,
the adversary actually inputs cells C̃ to be used for the client-side operation
(which is reflected by the oracle setting C ← C̃). The oracle then executes
IRM.write on input C, i, and d to obtain new secret state stsec and cells C ′

which it uses to update stpub via IRM.srvr-up. Then, the oracle stores data d in
its own dictionary D[i] ← d and checks if there is an active challenge for cell i
(i∗ = i), and if so resets i∗ ← −1, since this query will overwrite the challenge
data. This step is only applied in game RINDIRM if C ′ ̸= ⊥; i.e., only if the
IRM.write operation was successful. Finally, the oracle returns the updated C ′

to the adversary. Oracle Del is specified in exactly the same way as Write,
except instead of executing IRM.write, it executes IRM.del on virtual cell i.

For each query to Chall, the game acts similarly as to Write, except it sets
challenge cell i∗ ← i (if C ′ ̸= ⊥ in the case of RINDIRM; i.e., the IRM.write oper-
ation was successful), and flips a random coin b to determine on which of d0 or d1
IRM.write should be executed. Then, the game disables the oracle. Oracle Read
takes as input from the adversary virtual cell i to read. The oracle first executes
(stpub, C) ← IRM.srvr-op(stpub, i, read) to perform the server-side read opera-
tion and obtain the cells C necessary for the client-side operation; as with the
other oracles, in the case of game RINDIRM, the adversary actually inputs cells
C̃ to be used for the client-side operation. Also in the case of game RINDIRM,
if these adversarial cells do not match the cells from the honest IRM.srvr-op
operation, C̃ ̸= C, then the oracle sets att ← 1 to denote an active attack by
the adversary. Note that the deterministic nature of IRM.srvr-op, IRM.srvr-up
enables the game to detect active attacks in this way. Next, the oracle executes
IRM.read on input i and cells C to receive data d. In the case of RINDIRM, if
att = 0, the oracle checks that d is equal to D[i] which was last successfully
written to cell i of the database; if att = 1, the oracle checks that either d is
still equal to D[i] or d = ⊥ (indicating detection of the adversarial attack). For
whichever value of att, if the check fails, the adversary wins the game, denoted
by keyword win (in this case, the game just outputs the challenge bit b). In the
non-robust game INDIRM, the oracle only checks that d = D[i]. Finally, Expose
simply returns the current secret state stsec to the adversary, only if i∗ = −1,
i.e., only if there is not an active challenge.

Definition 16. For X ∈ {ϵ, R},8 an IRAM scheme IRM is (T, εxind
IRM)-secure if

for all adversaries A playing the security game XINDIRM and running in time
T : Pr[b←$ XINDIRM(A)] ≤ 1/2 + εxind

IRM.
8 ϵ indicates the ‘empty string’.

32

7.1 Interval RAM Construction

In this section, we present our IRM construction. It is based on the FS eRAM
of [BDY21, BDT22] and FS Memory Checker of [BDY21]. For n stored en-
tries, our construction has secret state size of O(1) and read/write overhead of
O(log n), which matches the lower bound of [BDY21] for FS encrypted RAM.
The construction utilizes a generic tree data structure, which we describe first
below. As shown in [BDT22] (c.f. Appendix A), such a tree data structure can
be efficiently instantiated using 2-3 trees or left-leaning red-black trees.

Tree Data Structure In this paragraph, we give a general description of a tree
data structure, τ . We denote by τ.r the root of tree τ . Every node v in τ has
associated data v.x and unique identifier ℓv. For each node v in τ , we denote
by deg(v) its number of children. The maximum degree of any node v of τ is
denoted as deg(τ). We call the children of a node v, v.cj , for j ∈ [deg(v)], and
its parent v.p. We say that a node w is an ancestor of some node v if w is on
the path from v to τ.r. A node v is a leaf if deg(v) = 0. Let the number of leafs
in τ be n. For each leaf i ∈ [0, n− 1] we denote by τ.path(i) the sequence of data
(x1, . . . , xd(i)) associated with the nodes on the path from τ.r to leaf i, excluding
τ.r; the depth d(i) of leaf i is the length of τ.path(i). The height h(τ) of τ is equal
to the maximum depth of its leaves, i.e., maxi∈[0,n−1] d(i). For most commonly
used efficient tree data structures, h(τ) = O(log n). This is indeed true for 2-3
trees and left-leaning red-black trees (see [BDT22]).

Let the co-path to some leaf i be the siblings of nodes on the path from
τ.r to leaf i. For i ∈ [0, n − 1], we denote by τ.copath(i) the sequence of data
(x2,1, . . . , x2,deg(τ.r), . . . , xd(i),1, . . . , xd(i),deg(i.p)) associated with the nodes on
the co-path to leaf i. We refer to a connected subtree of the tree that includes
the root as a skeleton skel of the tree.

Leaves of τ can be explicitly added or removed via the following algorithms.
A new leaf v can be added to tree τ via τ.add(v). Similarly, a leaf v can be
removed from tree τ via τ.remove(v). These operations return two skeletons:
(skel, skel ′). The former, skel, consists of any new nodes added to τ during the
operation, as well as any nodes in the original tree τ whose subtree was modified
(which by definition, includes the root τ.r). The latter, skel ′, consists of those
nodes in the original tree τ who share children with any nodes of skel, as well
as all of their ancestors, up to τ.r. For most commonly used efficient tree data
structures, the resulting skeletons (skel, skel ′) will consist of nodes only on the
path τ.path(v) and/or co-path τ.copath(v) of the added/removed leaf v. Indeed,
for 2-3 trees and left-leaning red-black trees, the size of (skel, skel ′) for add and
remove operations is O(log n) (see [BDT22]).

Construction We present our construction for IRM in Figure 8. Our construc-
tion makes use of a symmetric-key encryption scheme, SK. For security in the
robustness game, RINDIRM, we also use a UOWHF, H. We explain here our con-
struction secure in RINDIRM; the construction secure in INDIRM is obtained by
simply removing the hashing. At a high level, our construction is based on a tree

33

τ , where each node v in the tree, besides the leaves, has some SK key kv associ-
ated with it. The n leaves have the n current data elements in the database asso-
ciated with them. The key kv (resp. data dv) at each node v (resp. leaf), besides
the root τ.r, is encrypted by the key at its parent kv.p; cv ←$ SK.enc(kv.p, kv)
(resp. cv ←$ SK.enc(kv.p, dv)). Each node v also contains a hash function hv and
the hash yv under hv of the concatenated associated data of its children. These
ciphertexts, hash functions, and hashes are the actual associated data v.d← cv

of each node v of τ (along with some unique identifier), except the root. Then,
we have that stsec = kτ.r, hτ.r, yτ.r, where yτ.r is the hash of the children of the
root, under hτ .r, and stpub = τ (but without the root).

Based on this, reading entry i from the database is simple. The client fetches
from the server the ciphertexts and hashes along the path and copath from τ.r
to leaf i. Starting from the root, down to the leaf, the client checks at each node
v along the path that the hash value yv matches the hash of the associated data
at the children of v, under function hv, and aborts if not. Then, the client uses
kv to decrypt the ciphertext cv.c∗ at the child of v on the path to leaf i, v.c∗, to
obtain kv.c∗ . It continues this until it decrypts di from the ciphertext stored at
the leaf i.

For writing data d to entry i of the database in IRM.write, there is first
a server-side operation on τ , specified by IRM.srvr-op(τ, i, write). In this algo-
rithm, it is first checked whether the leaf with unique identifier i already exists in
the tree τ . If so, the server sets skel and skel ′ to be τ.path(i). Otherwise, the server
runs (skel, skel ′)← τ.add(i). The client-side operation then uses (skel, skel ′) sent
by the server to perform the rest of the write. Indeed, the client runs subroutine
skel-mod on input (skel, skel ′, i, d). This subroutine first initializes dictionary D
and sets D[i]← d. Next, similarly to IRM.read described above, starting at the
root it recursively checks the hashes at the nodes v in skel ′ and then decrypts
the ciphertexts at these nodes, along with the children v of skel ′ that are not in
skel ′, and sets D[v] to be the corresponding decrypted key/data. This is done
to retain knowledge of the keys/data at other nodes in the tree that are used
to obtain the data at other leaves in the tree (virtual cells of the IRAM). Next,
recursively for the nodes v in skel besides leaf i, starting at those nodes who
are parents of nodes that are either leaves or are not in skel, up to the root,
it samples new SK keys kv, which it uses to encrypt the data of the children
of v (obtained via D[v]). Observe that if the child of v is also in skel, then the
algorithm has the data of the child node (either a freshly sampled SK key, or
D[i] = d if the child is leaf i); otherwise, if the child v.c of v is not in skel,
then by the definition of skel ′, it must also be some child of a node v′ in skel ′,
and so in the recursive decryption above, the algorithm retrieved its data and
stored it in D[v.c]. The obtained ciphertexts are then used to replace what was
previously stored at those children in skel. It also samples new hash function hv

and uses it to compute the hash yv of the associated data of the children of v,
then replaces what was previously stored at v in skel with this hash and hash
function. The skel-mod subroutine finally returns root data (kτ.r, hτ.r, yτ.r) and

34

IRM.init(1λ):

1. sample kτ.r ←$ SK.gen(1λ)
2. set hτ.r, yτ.r ← ⊥
3. return ((kτ.r, hτ.r, yτ.r),⊥)

IRM.srvr-op(τ, i, op):

1. if op = read: return
(τ, (τ.path(i), τ.copath(i))

2. if op = write:
(a) if leaf i ∈ τ : return

(τ, (τ.path(i), τ.path(i))
(b) else: return (τ, τ.add(i))

3. else: return (τ, τ.remove(i))

IRM.write((kτ.r, hτ.r, yτ.r), C, i, d):

1. set (skel, skel ′)← C
2. run ((kτ.r, hτ.r, yτ.r), skel)←

skel-mod(skel, skel ′, i, d)
3. return ((kτ.r, hτ.r, yτ.r), skel)

IRM.read((kτ.r, hτ.r, yτ.r), C, i):

1. let (τ.path(i), τ.copath(i))← C
2. let (x1, . . . , xd(i))← τ.path(i)
3. let (x2,1, . . . , xd(i),deg(d(i)))←

τ.copath(i)
4. parse each xi and xi,j as (c, h, y)
5. if yτ.r ̸= h1(x1,1, . . . , x1,deg(τ.r)):

return ⊥
6. let k0 = kτ.r

7. For j ∈ [d(i)− 1]:
(a) if yj ̸=

hj(xj+1,1, . . . , xj+1,deg(j)) :
return ⊥

(b) decrypt kj ← SK.dec(kj−1, cj)
8. decrypt d← SK.dec(kd(i)−1, cd(i))
9. return ((kτ.r, hτ.r, yτ.r), d)

skel-mod(skel, skel ′, i, d):

1. set D[·]← ⊥, D[i]← d
2. for each v ∈ skel ∪ skel ′:

parse (cv, hv, yv)← v.x
3. starting with v ← τ.r ∈ skel ′:

(a) if yv ̸= hv(xv.c1 , . . . , xv.cdeg(v)):
return ⊥

(b) for each j ∈ [deg(v)]:
i. retrieve cv.cj from skel ′

ii. decrypt D[v.cj]←
SK.dec(kv, cv.cj)

iii. if v.cj ∈ skel ′ and deg(v.cj) > 0:
set kv.cj ← D[v.cj] and recurse

on v.cj

4. for each v ∈ skel s.t. deg(v) ̸= 0 and
∀j ∈ deg(v), deg(v.cj) = 0 or
v.cj /∈ skel:

(a) sample kv ←$ SK.gen(1λ)
(b) sample hv ←$ Hλ

(c) set D[v]← kv

(d) for each j ∈ [deg(v)]:
i. set m← D[v.cj]

ii. encrypt cv.cj ←$ SK.enc(kv, m)
iii. set cv.cj ← cv.cj in skel

(e) set (hv, yv)← (hv,
hv(xv.c1 , . . . , xv.cdeg(v))) in skel

5. recurse bottom-up on the parents of
the nodes just processed until τ.r

6. return (kτ.r, hτ.r, yτ.r), skel)

IRM.del((kτ.r, hτ.r, yτ.r), C, i):

1. set (skel, skel ′)← C
2. run ((kτ.r, hτ.r, yτ.r), skel)←

skel-mod(skel, skel ′,⊥,⊥)
3. return ((kτ.r, hτ.r, yτ.r), skel)

IRM.srvr-up(τ, skel):

1. replace the corresponding nodes in τ
with skel

2. return τ

Fig. 8. IRAM construction. The text written in green is only needed for the construc-
tion secure in RINDIRM.

35

skel to IRM.write. IRM.srvr-up(τ, skel) can then replace the relevant associated
data of nodes from this operation in τ .

For deleting entry i from the database, the server first runs (skel, skel ′) ←
τ.remove(i) in IRM.srvr-op(τ, i, del). Then similarly to IRM.write above, the
client runs skel-mod on input (skel, skel ′,⊥,⊥), and receives fresh root data
(kτ.r, hτ.r, yτ .r) and skel, the latter of which IRM.srvr-up uses to replace the
relevant associated data of nodes in τ .

Correctness and Security We now show that our IRM construction of Figure 8 is
correct and secure. It is easy to see why IRM.read((kτ.r, hτ.r, yτ.r), Cr, i) returns
the proper data d immediately after IRM.write((kτ.r, hτ.r, yτ.r), Cw, i, d) when
Cr, Cw are honestly computed by the server—leaf i is in the skeleton skel of the
latter operation and thus a path of encryptions and hashes from the root key
to the leaf will exist in τ . It is also easy to see that correctness of such a write
to cell i holds even after several executions of IRM.write((kτ.r, hτ.r, yτ.r), C, j, d)
and IRM.del((kτ.r, hτ.r, yτ.r), C, j, d), for j ̸= i, as long as if the cells C are
always honestly computed by the server. This is because both algorithms re-
encrypt/re-hash the keys/data of those children of nodes in skel that are not
in skel since by definition, these children must also be children of some nodes
in skel ′. Furthermore, these children must in fact be ancestors of the remaining
leaves l ̸= j ∈ τ , including leaf i, since by definition, each l will never be in skel.
Thus, there will always be a path of correct encryptions and hashes from the
root key to leaf i.

Security follows first from the fact that by UOWHF security, the adversary
will never be able to provide incorrect cells C to the client. Indeed, starting at
the root, for any node v in the tree, finding any associated data of the children
(which includes the hash at the children) that hashes to the same value as that
which is stored at v would break the UOWHF. Furthermore, regarding privacy,
for any execution of IRM.write or IRM.del, any ancestors of leaf i in τ before
the operation that remain in the tree after the operation (including the root)
must by definition be in skel. Thus their associated key must be re-sampled.
Therefore, even given the root key kτ.r afterwards, the old data d′ stored at
leaf i is secure. Conversely, any old root key exposed by the adversary before a
IRM.write operation will not give any information on the new data d′ stored at
leaf i, since each ancestor of leaf i receives a fresh key during the operation. We
prove the following Theorem in Appendix D.

Theorem 5. Let SK be a (T, εSK)-secure symmetric-key encryption scheme and
H be a (T, εH)-secure universal one-way hash function family. Then the IRM
construction of Figure 8 instantiated with tree τ is correct, (T ′, h(τ) ·εSK)-secure
in the INDIRM game of Figure 7, and (T ′, h(τ) · (εSK + T ′ · εH))-secure in the
RINDIRM game of Figure 7, for T ′ ≈ T .

Corollary 3. Let SK be a (T, εSK)-secure symmetric-key encryption scheme and
H be a (T, εH)-secure universal one-way hash function family. Then the IRM
construction of Figure 8 instantiated with either a 2-3 tree or a left-leaning red-
black tree τ is correct, (T ′, O(log N)·εSK)-secure in the INDIRM game of Figure 7,

36

and (T ′, O(log N) · (εSK + T ′ · εH))-secure in the RINDIRM game of Figure 7, for
T ′ ≈ T and N the maximum number of entries ever in the database.

Remark 1. As noted in [BDY21], in practice, a single CRHF can be used in place
of a UOWHF family so that there is no need to regenerate the hash functions at
the nodes of skel for each IRM.write and IRM.del operation, nor include them
in the hashes at each node. We use a UOWHF family since it is possible to
construct one given any OWF.

Acknowledgments

This paper was prepared in part for information purposes by the Artificial Intelli-
gence Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”),
and is not a product of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and disclaims all liability, for
the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or sale of any security,
financial instrument, financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and shall not constitute
a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful. 2024 JP Morgan Chase
& Co. All rights reserved.

References
AAB+21. Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval,

Karen Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak, and Michael
Walter. Grafting key trees: Efficient key management for overlapping
groups. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III,
volume 13044 of LNCS, pages 222–253. Springer, Heidelberg, November
2021.

ACDT20. Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Security analysis and improvements for the IETF MLS standard for
group messaging. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277. Springer,
Heidelberg, August 2020.

ACJM20. Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Con-
tinuous group key agreement with active security. In Rafael Pass and
Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 261–290. Springer, Heidelberg, November 2020.

AKPS19. Benedikt Auerbach, Eike Kiltz, Bertram Poettering, and Stefan Schoenen.
Lossy trapdoor permutations with improved lossiness. In Mitsuru Matsui,
editor, CT-RSA 2019, volume 11405 of LNCS, pages 230–250. Springer,
Heidelberg, March 2019.

BBR+23. Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican,
Emad Omara, and Katriel Cohn-Gordon. The Messaging Layer Security
(MLS) Protocol. RFC 9420, July 2023.

37

BBS98. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Kaisa Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 127–144. Springer, Heidelberg, May / June
1998.

BD19. Nir Bitansky and Akshay Degwekar. On the complexity of collision re-
sistant hash functions: New and old black-box separations. In Dennis
Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume 11891 of
LNCS, pages 422–450. Springer, Heidelberg, December 2019.

BDR20. Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of
concurrency in group ratcheting protocols. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 198–
228. Springer, Heidelberg, November 2020.

BDRW24a. Alexander Bienstock, Yevgeniy Dodis, Paul Rösler, and Daniel Wichs.
Interval key-encapsulation mechanism. In Advances in Cryptology - ASI-
ACRYPT 2024 - 30th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, 2024, Proceedings, Lecture
Notes in Computer Science, 2024.

BDRW24b. Alexander Bienstock, Yevgeniy Dodis, Paul Rösler, and Daniel Wichs.
Interval key-encapsulation mechanism. IACR Cryptol. ePrint Arch., 2024.
Full version of this article.

BDT22. Alexander Bienstock, Yevgeniy Dodis, and Yi Tang. Multicast key agree-
ment, revisited. In Steven D. Galbraith, editor, CT-RSA 2022, volume
13161 of LNCS, pages 1–25. Springer, Heidelberg, March 2022.

BDY21. Alexander Bienstock, Yevgeniy Dodis, and Kevin Yeo. Forward secret
encrypted RAM: Lower bounds and applications. In Kobbi Nissim and
Brent Waters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages
62–93. Springer, Heidelberg, November 2021.

BEG+91. Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and
Moni Naor. Checking the correctness of memories. In 32nd FOCS, pages
90–99. IEEE Computer Society Press, October 1991.

BL96. Dan Boneh and Richard J Lipton. A revocable backup system. In USENIX
Security Symposium, pages 91–96, 1996.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghu-
nathan. Key homomorphic PRFs and their applications. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 410–428. Springer, Heidelberg, August 2013.

BRT23. Alexander Bienstock, Paul Rösler, and Yi Tang. Asmesh: Anonymous
and secure messaging in mesh networks using stronger, anonymous double
ratchet. In CCS ’23: 2023 ACM SIGSAC Conference on Computer and
Communications Security 2023. ACM, 2023.

BRV20. Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the core primi-
tive for optimally secure ratcheting. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 621–
650. Springer, Heidelberg, December 2020.

CDV21. Gwangbae Choi, F. Betül Durak, and Serge Vaudenay. Post-Compromise
Security in Self-Encryption. In Stefano Tessaro, editor, 2nd Conference
on Information-Theoretic Cryptography (ITC 2021), volume 199 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 25:1–25:23,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik.

38

CH07. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 2007, pages 185–194. ACM Press, October
2007.

CHK03. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-
key encryption scheme. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 255–271. Springer, Heidelberg, May 2003.

CKN03. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-
ciphertext security. In Dan Boneh, editor, CRYPTO 2003, volume 2729
of LNCS, pages 565–582. Springer, Heidelberg, August 2003.

DDLM19. Alex Davidson, Amit Deo, Ela Lee, and Keith Martin. Strong post-
compromise secure proxy re-encryption. In Julian Jang-Jaccard and
Fuchun Guo, editors, ACISP 19, volume 11547 of LNCS, pages 58–77.
Springer, Heidelberg, July 2019.

DKW21. Yevgeniy Dodis, Harish Karthikeyan, and Daniel Wichs. Updatable public
key encryption in the standard model. In Kobbi Nissim and Brent Wa-
ters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages 254–285.
Springer, Heidelberg, November 2021.

DNRV09. Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikun-
tanathan. How efficient can memory checking be? In Omer Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 503–520. Springer, Hei-
delberg, March 2009.

DRS04. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 523–540. Springer, Heidelberg, May 2004.

DY91. Alfredo De Santis and Moti Yung. On the design of provably secure cryp-
tographic hash functions. In Ivan Damgård, editor, EUROCRYPT’90,
volume 473 of LNCS, pages 412–431. Springer, Heidelberg, May 1991.

FKKP19. Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof
Pietrzak. Adaptively secure proxy re-encryption. In Dongdai Lin and
Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages
317–346. Springer, Heidelberg, April 2019.

GS02. Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography.
In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages
548–566. Springer, Heidelberg, December 2002.

HPS23. Calvin Abou Haidar, Alain Passelègue, and Damien Stehlé. Efficient up-
datable public-key encryption from lattices. In Advances in Cryptology
- ASIACRYPT 2023 - 29th International Conference on the Theory and
Application of Cryptology and Information Security, Guangzhou, China,
December 4-8, 2023, Proceedings, Part V, volume 14442 of Lecture Notes
in Computer Science, pages 342–373. Springer, 2023.

HWZ07. Qiong Huang, Duncan S. Wong, and Yiming Zhao. Generic transformation
to strongly unforgeable signatures. In Jonathan Katz and Moti Yung,
editors, ACNS 07, volume 4521 of LNCS, pages 1–17. Springer, Heidelberg,
June 2007.

JMM19. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting:
Almost-optimal guarantees for secure messaging. In Yuval Ishai and Vin-
cent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 159–188. Springer, Heidelberg, May 2019.

39

JS18. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-
grained state compromise: The safety of messaging. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991
of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

LV08. Benoît Libert and Damien Vergnaud. Unidirectional chosen-ciphertext
secure proxy re-encryption. In Ronald Cramer, editor, PKC 2008, volume
4939 of LNCS, pages 360–379. Springer, Heidelberg, March 2008.

MPW23. Peihan Miao, Sikhar Patranabis, and Gaven J. Watson. Unidirectional
updatable encryption and proxy re-encryption from DDH. In Alexandra
Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part II, volume
13941 of LNCS, pages 368–398. Springer, Heidelberg, May 2023.

NY89. Moni Naor and Moti Yung. Universal one-way hash functions and their
cryptographic applications. In 21st ACM STOC, pages 33–43. ACM Press,
May 1989.

Ode09. Goldreich Oded. Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge University Press, USA, 1st edition, 2009.

PM16. Trevor Perrin and Moxie Marlinspike. The double ratchet algorithm, 2016.
https://signal.org/docs/specifications/doubleratchet/.

PR18a. Bertram Poettering and Paul Rösler. Asynchronous ratcheted key ex-
change. Cryptology ePrint Archive, Report 2018/296, 2018. https:
//eprint.iacr.org/2018/296.

PR18b. Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted
key exchange. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 3–32. Springer,
Heidelberg, August 2018.

PW08. Chris Peikert and Brent Waters. Lossy trapdoor functions and their ap-
plications. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 187–196. ACM Press, May 2008.

RMS18. Paul Rösler, Christian Mainka, and Jörg Schwenk. More is less: On the
end-to-end security of group chats in signal, whatsapp, and threema. In
2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018, pages 415–429. IEEE, 2018.

RSS23. Paul Rösler, Daniel Slamanig, and Christoph Striecks. Unique-path iden-
tity based encryption with applications to strongly secure messaging. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 3–34. Springer, Heidelberg, April 2023.

SC09. Jun Shao and Zhenfu Cao. CCA-secure proxy re-encryption without pair-
ings. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume
5443 of LNCS, pages 357–376. Springer, Heidelberg, March 2009.

Sha02. Ronen Shaltiel. Recent developments in explicit constructions of extrac-
tors. Bulletin of the EATCS, 77:67–95, 01 2002.

A Additional Preliminaries

Universal One-Way Hash Function A Universal One-Way Hash Function
(UOWHF) family Hλ = {h : Xλ → Yλ}λ is a family of compressing functions
such that for every x ∈ Xλ, given random h ∈ Hλ, it is hard to find y ̸= x such
that h(x) = h(y).

40

https://signal.org/docs/specifications/doubleratchet/
https://eprint.iacr.org/2018/296
https://eprint.iacr.org/2018/296

Definition 17. A family of functions Hλ = {h : Xλ → Yλ}λ is (T, εH)-secure
if for every λ, |Yλ| < |Xλ|, and for all adversaries running in time T

Pr[y ←$ A(h, x) : x←$ A(1λ); h←$ Hλ; x ̸= y; h(x) = h(y)] ≤ εH.

UOWHFs can be built from OWFs [DY91, NY89].

Pseudorandom Generators A Pseudorandom Generator (PRG) is a function
G : S → R such that for random seed s ←$ S, G(s) is indistinguishable from
random r ← R.

Definition 18. PRG G is (T, εG)-secure if for all adversaries A running in
time T :

Pr[b←$ A(rb) : b←$ {0, 1}; s←$ S; r0 ← G(s); r1 ←$ R] ≤ 1/2 + εG.

Symmetric-Key Encryption

Syntax A Symmetric-Key Encryption (SKE) scheme SK is a tuple of algorithms
SK = (SK.gen, SK.enc, SK.dec) with the following syntax:

– SK.gen(1λ)→$ k generates random key k.
– SK.enc(k, m)→$ c encrypts message m to key k and outputs ciphertex t c.
– SK.dec(c, k)→ c decrypts ciphertext c to message m using key k.

Correctness

Definition 19. A SKE scheme SK is correct if for all SK.gen(1λ) →$ k, m ∈
M, and SK.enc(k, m)→$ c, SK.dec(k, c) = m.

Security

Definition 20. Scheme SK is (T, εSK)-secure if for all adversaries A running
in time T :

Pr[b←$ ASK.enc(k,·)(cb) : b←$ {0, 1}; k ←$ SK.gen(1λ);
(m0, m1)←$ ASK.enc(k,·); cb ←$ SK.enc(k, mb)] ≤ 1/2 + εSK,

where ASK.enc(k,·) denotes that A gets oracle access to SK.enc(k, ·).

Strongly Unforgeable One-Time Signature Scheme Now we define strongly
unforgeable one-time signature (OTS) schemes, which allows a signer to sign a
single message using its secret key, which can be verified by anyone using the
corresponding verification key.

41

Syntax A strongly unforgeable one-time signature scheme (OTS) scheme OTS
is a tuple of algorithms OTS = (OTS.gen, OTS.sign, OTS.ver) with the follwing
syntax:

– OTS.gen(1λ)→$ (sk, vk) generates a signing key and verification key.
– OTS.sign(sk, m) →$ σ signs message m using the signing key and outputs

signature σ.
– OTS.ver(vk, m, σ)→ b verifies the signature σ on message m using verifica-

tion key vk and outputs bit b ∈ {0, 1} indicating success or failure.

Correctness

Definition 21. A OTS scheme OTS is correct if for all OTS.gen(1λ)→$ (sk, vk)
and all m, OTS.ver(vk, m, OTS.sign(sk, m)) = 1.

Security Security of a OTS scheme requires that if an adversary sees a single
signature σ on a message m of its choice, then the adversary cannot output a
different pair (m′, σ′) ̸= (m, σ) that verifies correctly.

Definition 22. Scheme OTS is (T, εOTS)-secure if for all adversaries A run-
ning in time T :

Pr[1 = OTS.ver(vk, m′, σ′) : (sk, vk)←$ OTS.gen(1λ); m←$ A(vk);
σ ←$ OTS.sign(sk, m)
(m′, σ′)←$ A(vk, m, σ); (m′, σ′) ̸= (m, σ)] ≤ εOTS.

Such OTS schemes can be constructed from one-way functions [Ode09] and more
efficiently from collision-resistant hash functions [HWZ07] (which in turn can be
built from lossy trapdoor functions [PW08]).

Key-Encapsulation Mechanism Now we define the Key-Encapsulation Mech-
anism (KEM) primitive, which allows a receiver to generate a key-pair, to which
senders can send random keys.

Syntax A Key-Encapsulation Mechanism (KEM) scheme KM is a tuple of algo-
rithms KM = (KM.gen, KM.enc, KM.dec) with the following syntax:

– KM.gen(1λ)→$ (sk, pk) generates a key-pair.
– KM.enc(pk)→$ (k, c) takes as input a public key pk and outputs a ciphertext

c and the encapsulated key k.
– KM.dec(sk, c)→ k takes in a secret key sk and ciphertext c and outputs the

decapsulated key k.

Correctness

Definition 23. A KEM scheme KM is correct if for all KM.gen(1λ)→$ (sk, pk)
and KM.enc(pk)→$ (k, c), KM.dec(sk, c) = k.

42

Security A KEM scheme KM is secure if the key encapsulated to a public key
is indistinguishable from random to an attacker without the secret key.

Definition 24. Scheme KM is (T, εind
KM-cpa)-secure in the IND-CPA security

game if for all adversaries A running in time T :

Pr[b←$ A(pk, kb, c∗) : b←$ {0, 1}; (sk, pk)←$ KM.gen(1λ);
(k0, c∗)←$ KM.enc(pk); k1 ←$ K] ≤ 1/2 + εind

KM-cpa.

IND-CCA security is defined in the same way, except the adversary also gets
access to a decryption oracle Dec(c) that outputs KM.dec(sk, c) if c ̸= c∗.

Randomness Extraction We now define some concepts related to randomness
extraction that we will need for our IKEM construction. First, we define pairwise-
independent hash families.

Definition 25. A family of functions H = {h : X → Y} is pairwise-independent
if, for every x ̸= x′ ∈ X and y, y′ ∈ Y,

Pr[h(x) = y and h(x′) = y′ : h←$ H] = 1/|Y|2.

Now, we define some information-theoretic concepts. We start with the sta-
tistical distance between two random variables.

Definition 26. The statistical distance between two random variables X and
Y having the same (countable) domain X is ∆(X, Y) = 1

2
∑

v∈X |Pr[X = v] −
Pr[Y = v]|. Moreover, we say that X and Y are ε-close if ∆(X, Y) ≤ ε.

Next, we define min-entropy and average min-entropy, the latter introduced
by Dodis, Reyzin, and Smith [DRS04]. Average min-entropy captures the re-
maining unpredictability of X conditioned on the value of Y .

Definition 27. The min-entropy of a random variable X is

H∞(X) = − log(max
x

Pr[X = x]).

The average min-entropy of random variable X conditioned on random variable
Y is

H̃∞(X|Y) = − log
(
Ey←$Y

[
2−H∞(X|Y =y)

])
.

Now, we present a bound on average min-entropy that was proved in [DRS04]:

Lemma 2. If Y has 2r possible values and Z is any random variable, then
H̃∞(X|(Y, Z)) ≥ H̃∞(X|Z)− r.

In our IKEM construction, we need to derive truly uniform bits from a
weakly random source X. In general, this can be done using any strong random-
ness extractor [Sha02]. However, following [PW08], we use pairwise-independent
hash functions, which interact particularly well with the notion of average min-
entropy. We use the following lemma from [DRS04]:

43

Lemma 3. Let X, Y be random variables such that X ∈ {0, 1}n and H̃∞(X|Y) ≥
k. Let H be a family of pairwise-independent hash functions from {0, 1}n to
{0, 1}ℓ. Then for h←$ H, we have

∆((Y, h, h(X)), (Y, h, Uℓ)) ≤ εH,

as long as ℓ ≤ k − 2 log(1/εH), where Uℓ is the uniform distribution on {0, 1}ℓ.

B Lower Bound on State Size

In this section, we provide a lower bound showing that after T1 key regenerations
and deletions on inputs ℓ1, . . . , ℓd such that ℓ1 + · · · + ℓd = T0 ≤ T1, the size
of the secret state of any IKEM scheme must be Ω((T1 − T0) · λ), where λ is
the security parameter. Importantly, this also holds for the (stronger) IKMR
notion. Intuitively, the reason for this is that the T0-th execution of IKM.re-gen
must output a fresh, independent public key pkT0 and therefore also add fresh,
independent key material to the secret state stt0,T0 . Moreover, after IKM.re-gen
has been executed several more times (and perhaps IKM.del has been executed
some number of times), resulting in new state stT0,T1 , this state must still be
able to decapsulate ciphertexts created using pkT0 . Furthermore, again, the key
materials added to the state for epochs T0 + 1, . . . , T1 must be independent of
that which was added in epoch T0. In combination, the key material for epoch
T0 can not be combined with the key material for epochs T0 + 1, . . . , T1; also the
key material for epoch T0 + 1 can not be combined with that of T0 + 2, . . . , T1;
and so on. We now provide the formal theorem and proof.
Theorem 6. Let IKM be any IKEM scheme (T, εOW

IKM)-secure in the OWIKM
game of Figure 2. For any λ, α, T1, ℓ1, . . . , ℓd ∈ N, (stt0,t1 , pkt1)←$ IKM.gen(1λ)
with t0, t1 ← 0 initially, and any sequence of executions of (interspersed in any
order) (stt0,t1+1, pkt1+1) ←$ IKM.re-gen(stt0,t1) for t1 ∈ [T1] and stt0+ℓi,t1 ←
IKM.del(stt0,t1 , ℓi) for i ∈ [d] (incrementing t0, t1 appropriately each time), such
that it always holds that t0 + ℓi < t1 and

∑d
i=1 ℓi = T0, let stT0,T1 be the final

state. Then E[|stT0,T1 |] ≥ (T1 − T0) · (lg α− α · εOW
IKM).

Proof. To prove this theorem, we will use stT0,T1 to encode a random α-ary
string s ∈ [α]T1−T0 , along with a helper string h (defined below). By Shannon’s
Source Coding Theorem, if stT0,T1 and h are uniquely decodable to s, then
E[|stT0,T1 |] ≥ (T1 − T0) · log α− E[|h|].
Public Randomness. Let (st0,0, pk0) ←$ IKM.gen(1λ) and let stt0,T0 be the
state after the first T0 executions of (stt0,t1+1, pkt1+1)←$ IKM.re-gen(stt1) (with
the specified executions of stt0+ℓi,t1 ← IKM.del(stt0,t1 , ℓi) interspersed). Also, let

r1,0, r1,1, . . . , r1,α, r2,0, r2,1, . . . , r2,α, . . . , rT1−T0,0, rT1−T0,1, . . . , rT1−T0,α ←$ R

be re-generation randomness and ρ← R be encapsulation randomness.
Encoding. Alice receives as input random α-ary string s ←$ [α]T1−T0 . Let
st ∈ [α] be the t-th symbol of s for t ∈ [T1 − T0].

44

1. For t ∈ [T1 − T0]:
(a) For a ∈ [α]: Alice re-generates (sta

t0,T0+t, pka
t0,T0+t)←

IKM.re-gen(stt0,T0+t−1; rt,a), then runs the specified executions of
(sta

t0+ℓi,T0+t) ← IKM.del(sta
t0,T0+t, ℓi) in the sequence, before the next

regeneration.
(b) Alice sets stt0,T0+t ← stst

t0,T0+t.
2. Alice sets h← ϵ
3. For t ∈ [T1 − T0]:

(a) For a ∈ [α] \ {st} : Alice encrypts (ka, ca)← IKM.enc(pka
t0,T0+t; ρ)

(b) If for any a ∈ [α] \ {st}, ka = IKM.dec(stT0,T1 , ca), Alice appends h ←
(h, st) (representing st using log α bits).

4. Alice sends to Bob (stT0,T1 , h).

Decoding. Bob initializes s′ ← 0T1−T0 and j ← 1. For t ∈ [T1 − T0]:

1. For a ∈ [α]:
(a) Bob re-generates (sta

t0,T0+t, pka
t0,T0+t)← IKM.re-gen(stt0,T0+t−1; rt,a) and

runs the specified executions of (sta
t0+ℓi,T0+t)← IKM.del(sta

t0,T0+t, ℓi) in
the sequence, before the next regeneration.

(b) Next, Bob encapsulates (ka, ca)← IKM.enc(pka
t0,T0+t; ρ).

(c) Then, Bob tries to decrypt k′a ← IKM.dec(stT0,T1 , ca).
2. If ∃a1 ̸= a2 ∈ [α] s.t. k′a1

= ka1 and k′a2
= ka2 , Bob sets s′t ← hj and

increments j ← j + 1; otherwise Bob sets s′t ← a, for a s.t. k′a = ka.
3. Finally, Bob sets stt0,T0+t ← sts′

t

t0,T0+t.

Bob then outputs s′.

Analysis. It is clear that Bob will always output the correct string s′ = s. For
t ∈ [T1−T0 + 1], Alice accounts for the case in which there is some a ∈ [α]\{st}
such that decapsulated key k′a = ka, by in Step 3b of the encoding algorithm,
appending the correct symbol st to h, which is sent to Bob, who will then use
it to determine the correct symbol st. Otherwise, Bob will correctly set st to
be the bit a s.t. k′a = ka, which must exist by correctness since in the encoding
algorithm t1 starts out as t1 ≥ T0 and ends as T1.

Now, we will analyze how long h will be in expectation, which will tell us,
by Shannon’s Source Coding Theorem, how long stT0,T1 must be in expectation.
Fix some t ∈ [T1 − T0]. We will first bound the probability that for some given
a ∈ [α] \ {st}, kat = IKM.dec(stT0,T1 , ca) by presenting an attack against εOW

IKM-
secure scheme IKM by an adversary A described below:

– After receiving pk0 from the challenger, A queries Re-Gen() T0+t−1 times,
with the specified executions of Del(ℓi) interspersed.

– A then queries Expose() to receive stt0,T0+t−1 and again queries Re-Gen()
to receive pkT0+t, followed by the specified executions of Del(ℓi) in the se-
quence, before the next regeneration.

– Next, A queries Chall() and receives c∗.

45

– For t′ ∈ [T1 − (T0 + t − 1)], A samples random re-generation randomness
rt′ ← R and computes stt0,T0+t−1+t′ ← IKM.re-gen(stt0,t0+t−1+t′−1; rt′),
with the specified executions of Del(ℓi) interspersed.

– Finally, A computes k′ ← IKM.dec(stT0,T1 , c∗) and forwards k′ to its chal-
lenger.

Recall it must be that εOW
IKM ≥ Adv(A) = Pr[A → k]. Now, define Dt as the

event that given randomly generated pkT0+t, (k, c) ←$ IKM.enc(pkT0+t), and
stT0,T1 as above, k = IKM.dec(stT0,T1 , c). It is easy to see that Pr[A → k] =
Pr[Dt], and so Pr[Dt] ≤ εOW

IKM.
Now note that event Dt also corresponds exactly to the case in which during

Alice’s encoding algorithm, for some given a ∈ [α]\{st}, ka = IKM.dec(stT0,T1 , ca).
If we let Dany

t be the event in which for any a ∈ [α]\{st}, ka = IKM.dec(stT0,T1 , ca),
then taking the union bound, it can easily be seen that Pr[Dany

t] ≤ εOW
IKM ·α. So,

E[|h|] =
∑T1−T0

t=1 1Dany
t
·Pr[Dany

t] ≤ (T1−T0)·εOW
IKM·α, where 1Dany

t
is the indicator

random variable taking value 1 when Dany
t occurs and 0 otherwise. Therefore,

by Shannon’s Source Coding Theorem, E[|stT0,T1 |] ≥ (T1 − T0) · log α − (T1 −
T0) · εOW

IKM · α. ⊓⊔

Corollary 4. In the statement of Theorem 6, let α = 1/εOW
IKM. Then E[|stT0,T1 |] ≥

(T1 − T0) · (log(1/εOW
IKM) − 1). In particular, if εOW

IKM ≤ 2−λ, then E[|stT0,T1 |] ≥
(T1 − T0) · (λ− 1).

C Modified RCCA IKEMR Security

The main problem with defining active security for IKEMR is caused by re-
encapsulations: to model active security in the sense of Chosen Ciphertext At-
tacks (CCA), the security experiment provides a decapsulation oracle that de-
capsulates adversarial ciphertexts with the victim’s secret key. To define security
meaningfully and satisfiably, this decapsulation oracle must reject queries for the
challenge ciphertext—otherwise the challenge is trivially solvable; since the ad-
versary can re-encapsulate challenge ciphertexts with the victim’s (newer) public
keys, the decapsulation oracle also needs to reject such re-encapsulations of the
challenge.

Detecting Trivial Attacks As security definitions for Proxy Re-Encryption (PRE)
[BBS98] have to solve the exact same problem, we provide a list of known ap-
proaches for detecting and rejecting challenge re-encapsulations in the decapsu-
lation oracle:

1. Only permitting decapsulations of non-challenge ciphertexts that were cre-
ated by the security experiment itself via a (re-)encapsulation oracle and,
thus, directly tracing all relevant re-encapsulations.
Problem: Since, thereby, the adversary can never query the decapsulation or-
acle on self-created ciphertexts, this approach limits the strength of modeled
active attacks significantly.

46

2. Requiring that constructions offer a predicate for ciphertexts that reveal
their re-encapsulation history.
Problem: Adding such a strong requirement for constructions only to model
active attacks limits the applicability of the definition to a reduced selection
of constructions.

3. The security experiment detects deterministic re-encapsulations with expo-
nential-runtime algorithms [SC09].
Problem: Security proofs with exponential-runtime reductions are meaning-
less. This notion also reduces the selection of constructions to those with
deterministic re-encapsulation algorithms.

4. Instead of tracing re-encapsulations of the ciphertexts, the security experi-
ment detects and rejects decapsulations of (re-encapsulated) challenges based
on their plaintext [CH07, LV08]. This follows the idea of Replayable CCA
(RCCA) [CKN03] security.
Problem: Not only decapsulation queries for re-encapsulations of the chal-
lenge ciphertext are rejected, but also other adversarial ciphertext modifica-
tions that may not change the underlying plaintext.

Since variant (4) captures the strongest and most natural notion of active attacks
for our setting, our security definition is based on the RCCA idea. See also
motivation for the RCCA notion in [CKN03], which explains that standard CCA-
security is often too strong and rules out constructions that intuitively are secure
yet cannot achieve CCA-security. Such constructions on the other hand can
achieve RCCA-security.

RCCA for KEM-Type Primitives As far as we are aware, RCCA security for
KEM-type primitives has not been defined before. When defining RCCA secu-
rity for a KEM-type primitive, it reasonable to test the validity of this notion by
ensuring that it is, indeed, implied by the corresponding CCA security definition
and can be used to build IND-RCCA public key encryption (PKE) via standard
hybrid encryption. For this, we recall that for IND-RCCA security of PKE, the
adversary chooses two challenge messages; the decryption oracle then decrypts
queried ciphertexts, unless the decrypted message equals either of the two ad-
versarially chosen challenge messages. This condition for rejecting decryption
queries is strictly broader than the one for IND-CCA security.

For indistinguishability definitions of KEM-type primitives, the adversary
never chooses (or influences) the challenge; instead, the security experiment
poses the challenge by either outputting the real encapsulated key or a ran-
domly sampled one. Based on this, it is a priori unclear how an IND-RCCA
security definition for a KEM-type primitive would permit and reject decapsu-
lation queries; we see the following options:

1. Reject all decapsulation queries for which the decapsulated key equals the
(single) challenge key.
Problem: This limitation is insufficient because in the random world, the
adversary can forward the challenge ciphertext to the decapsulation oracle,

47

which outputs the real key. Thus, the adversary can trivially distinguish the
real from the random world.

2. Reject all decapsulation queries for which the decapsulated key equals the
real encapsulated key.
Problem: It is unclear how to simulate the decapsulation oracle with this
condition in a reduction to CCA security, where the reduction has only access
to the decapsulation oracle of the CCA security experiment—in particular in
the random world, since the reduction should not know the real key. Thus,
it seems as if this variant of RCCA security is not implied by CCA security.

3. Instead of only adapting the decapsulation oracle, we change the form of
the posed challenge: as opposed to only either giving the real key k0 or a
random key k1 as a challenge to the adversary, the adversary receives both
keys in two different orders (real world: (k0, k1); random world: (k1, k0)).
The decapsulation oracle is then identical to the PKE setting: all queries are
permitted except for those that yield one of the two challenge keys.
As we will prove next, this notion of IND-RCCA′ is implied by IND-CCA
security and can also be used to build IND-RCCA-secure PKE via standard
hybrid encryption. Furthermore, we show that such a modified challenge
format for CCA security, which we call IND-CCA′, is equivalent to standard
IND-CCA.

Formal Consideration We now give some formal justification for this kind of
RCCA for KEM-type primitives; in particular by examining our RCCA IKEMR
security notion, which in this section we call IND-RCCA′IKMR. First, for a cor-
responding notion of CCA security for IKEM, IND-CCA′IKM, we show that
IND-CCA′IKM ⇔ IND-CCAIKM and IND-CCA′IKM ⇒ IND-RCCA′IKM. These
first two results also show in particular that IND-CCA′KM ⇔ IND-CCAKM
and IND-CCA′KM ⇒ IND-RCCA′KM, for basic KEMs. Thus, formally speaking,
the modified CCA definition is equivalent to the normal definition for IKEM
and basic KEM, and moreover, as is desired, modified RCCA is weaker than
modified CCA for the same. Finally, we also show that IND-RCCA′IKMR +
IND-RCCASK ⇒ IND-RCCAIPKR, where IND-RCCASK is RCCA security for
symmetric-key encryption and IPKR is an encryption analogue of IKMR. Thus, a
primary use case, RCCA-secure interval public key encryption with re-encryptions,
can be built from RCCA′-secure IKEMR. This also shows that IND-RCCA′KM +
IND-RCCASK ⇒ IND-RCCAPK.

C.1 CCA′ Security is Equivalent to CCA Security for IKEM

We show that IND-CCA′IKM ⇔ IND-CCAIKM. The IND-CCA′ security game
is the same as the IND-CCA game in Figure 2 except that Chall() outputs
((kb, k1−b), c∗) instead of just (kb, c∗).

Theorem 7. IKEM construction IKM is (T, O(ε))-secure in game IND-CCA′IKM
if and only if it is (T, O(ε))-secure in game IND-CCAIKM.

48

Proof (sketch). We start by showing the only if direction. A reduction from
IND-CCA security to IND-CCA′ security, simply forwards all queries from the
IND-CCA adversary to the IND-CCA′ challenger and forwards the responses
back to the adversary exactly the same except for the Chall() responses. For
Chall() responses, the reduction only forwards the first key it receives to the
IND-CCA attacker (i.e., kb). It is clear to see that this simulates exactly the
IND-CCA game.

Now we show the if direction. For this we proceed in hybrids. In the first
hybrid, the challenge bit of the IND-CCA′ game is b = 0; thus, the first key
output by Chall() is the real encapsulated key, and the second key is a random
key. We then proceed to the second hybrid in which both keys output by Chall
are random. A simple reduction to IND-CCA security showing that these hy-
brids are indistinguishable simply forwards all queries from the adversary to the
IND-CCA challenger and forwards the responses back to the adversary exactly
the same except for the Chall() responses. For Chall() responses, the reduction
sets k0 to be the returned key from the IND-CCA challenger, samples random
key k1, and finally forwards (k0, k1) to the adversary. If the challenge bit b of
the IND-CCA game is b = 0 it is clear that this reduction simulates exactly the
first hybrid; if b = 1 it is clear that this reduction simulates exactly the second
hybrid.

In the third hybrid, the first key output by Chall() is random, and the second
key is the real encapsulated key. A similar reduction to above shows that these
hybrids are indistinguishable. Moreover, this third hybrid corresponds exactly to
the IND-CCA′ game in which the challenge bit is b = 1. Thus we are done. ⊓⊔

C.2 CCA′ Security Implies RCCA′ Security for IKEM

We now show that IND-CCA′IKM ⇒ IND-RCCA′IKM. The IND-RCCA′IKM secu-
rity game is the same as the IND-CCA′IKM security game, except that Dec(c)
outputs k ← IKM.dec(sk, c) unless k ∈ {k0, k1}.

Theorem 8. If IKEM construction IKM is (T, ε)-secure in game IND-CCA′IKM
then it is (T, ε)-secure in game IND-RCCA′IKM.

Proof (sketch). A reduction from IND-RCCA′ security to IND-CCA′ security
simply forwards all queries from the IND-RCCA′ adversary to the IND-CCA′
challenger and forwards the responses back to the adversary exactly the same
except for the Dec(c) responses. For Dec(c) responses, the reduction only for-
wards the key k it receives to the challenger if k /∈ {k0, k1}. It is clear to see that
this simulates exactly the IND-RCCA′ game. ⊓⊔

C.3 RCCA′-secure IKEMR and RCCA-secure SKE implies
RCCA-secure IPKER

Finally, we show that IND-RCCA′IKMR + IND-RCCASK ⇒ IND-RCCAIPKR us-
ing standard hybrid encryption. IPKR and IND-RCCAIPKR security are defined

49

in the natural way: (i) There is an encryption algorithm that encrypts a mes-
sage m instead of encapsulating a key k, a decryption algorithm that decrypts
a ciphertext to message m instead of decrypting it to key k, and all other al-
gorithms are unchanged from IKMR; (ii) The Chall(pub, m0, m1) oracle takes
in two messages and chooses a random one to encrypt, and only outputs the
challenge ciphertext c∗ if pub = 1 (similarly for Re-Enc-Chall), the Dec(c)
oracle decrypts c to m and outputs it only if it is not m0 or m1, and all other
oracles are unchanged from IND-RCCA′IKMR.

Hybrid construction We build the hybrid construction for IPKR in the standard
way. IPKR.gen and IPKR.re-gen are equivalent to that of IKMR. IPKR.enc(pk, m)
computes IKMR.enc(pk)→$ (k, c1) then uses k to compute SK.enc(k, m)→$ c2
and outputs (c1, c2). IPKR.re-enc(pk, (c1, c2)) simply computes IKMR.re-enc(pk,
c1) →$ c′1 and outputs (c′1, c2). Finally, IPKR.dec(sk, (c1, c2)) simply computes
IKMR.dec(sk, c1) → k and outputs SK.dec(k, c2). Correctness of this scheme
follows directly from that of IKMR and SK . For security, we prove the following
theorem.

Theorem 9. If IKEMR construction IKMR is (T, εIKMR)-secure in game
IND-RCCA′IKMR and SKE construction SK is (T, εSK)-secure in game IND-RCCASK,
then the hybrid construction above is (T ′, εIKMR + εSK + (q + 1) · 1/2λ)-secure
for T ′ ≈ T , where q is the number of queries to the Dec() oracle.

Proof (sketch). For this proof, we briefly sketch a proof similar to that of [CKN03,
Theorem 21]. Given an adversary A attacking the hybrid scheme, we build a re-
duction to the IND-RCCA′ security of IKMR. This reduction forwards all queries
between the adversary and the IKMR challenger unchanged for all oracles except
Chall, Re-Enc-Chall, Dec. For Chall(pub, m0, m1) and Re-Enc-Chall(pub)
queries, the reduction queries its own oracles with the same pub; if pub = 1, it
receives back ((kb, k1−b), c∗1). Then, it flips its own coin δ ←$ {0, 1} and uses
always kb to encrypt SK.enc(kb, mδ) →$ c∗2 and sends (c∗1, c∗2) to A. Finally, for
Dec((c1, c2)) queries, the reduction queries its own oracle on c1 to receive back
k; if k = ⊥, the reduction returns SK.dec(kb, c2)→ m to A, otherwise, it returns
SK.dec(k, c2) → m (in both cases, if m is not m1 or m2). When the adversary
returns bit δ′, the reduction outputs 0 if δ′ = δ and 1 otherwise.

The proof concludes with two claims. In the first claim, we argue that if
the IKMR challenge ciphertext c∗1 encapsulates kb, then the reduction simulates
a statistically-close world to the real IPKR game for A. Indeed, the only way
the reduction differs from the real game is if A queries Dec((c1, c2)), where c1
encapsulates k1−b. In this case, the reduction responds with SK.dec(kb, c2), but
the real game responds with SK.dec(k1−b, c2). However, this event only happens
with probability 1/2λ for each Dec query, since k1−b is random and independent
of the view of A.

In the second claim, we argue that if the IKMR challenge ciphertext c∗1
encapsulates k1−b, then the advantage of A is bounded by εSK. Intuitively, this
is because the key used to encrypt c∗2, kb, is independent of everything else, as

50

long as kb ̸= k1−b, which only happens with probability 1/2λ. Thus, we can
directly reduce to the security of SK.

Finally, the theorem statement follows from these two claims by observing
that the advantage of A in these two worlds must be negligibly-close. Indeed,
since the advantage in the first world is negligibly-close to the advantage of A
against the IND-RCCAIPKR security of the hybrid scheme, and the advantage
in the second world is negligibly small, it must be that the advantage of A
against the IND-RCCAIPKR security of the hybrid scheme is negligibly small.
See [CKN03, Theorem 21] for more details. ⊓⊔

D Missing Proofs

Theorem 10 (Theorem 1, restated). Let X ∈ {CPA, CCA} and KM be a
(T, εind-x

KM)-secure KEM scheme in the IND-X KEM security game. Then the IKM
construction of Figure 3 is correct and (T ′, T ·εind-x

KM)-secure, for T ′ ≈ T , in game
IND-XIKM of Figure 2.

Proof. Correctness is immediate since the receiver will store the KEM secret keys
for all of the epochs between t0 and t1 in ST . For security, we reduce directly
to that of the KM scheme. For the epoch in which A queries Chall(), it is clear
that the corresponding KEM secret key sk will be deleted from ST before the
next (successful) Expose() query, since Expose is only permitted if t∗ ≥ t0. So,
A learns nothing about sk and thus the challenge ciphertext must be secure.

More formally, we define our reduction algorithm R attacking scheme KM
as follows. We prove more challenging CCA security first. First, R receives from
its challenger (pk∗, k∗, c∗). Then, R guesses the challenge epoch t∗ ←$ [0, T] in
which A will query Chall(). For (possibly) initialization and every Re-Gen()
query for epoch t1 ̸= t∗, R samples its own KM key pair (sk, pk)←$ KM.gen(1λ)
and follows the steps of IKM.gen() or IKM.re-gen() as specified, then outputs
(pk, t1). For initialization if t∗ = 0 or the Re-Gen() query for epoch t∗, R uses
the public key pk∗ received from its challenger, sets sk ← ⊥ and otherwise follows
IKM.gen() or IKM.re-gen() as specified, then outputs (pk∗, t∗). For every Del(ℓ)
query, R follows the steps of IKM.del(ℓ) as specified.

For the Chall() query, if it comes during an epoch t ̸= t∗, R simply outputs
random bit b′ to its challenger. Otherwise, (if it is a valid challenge) R simply
returns the challenge key k∗ and ciphertext c∗ (from its challenger), appended
with t∗ to A. For Expose() queries, if Chall has not been queried yet or t0 > t∗,
R directly outputs (ST , t0, t1); otherwise outputs ⊥.

Finally, R answers Dec((c, t)) queries from A as follows. If t = t∗ then R
forwards c to its challenger and forwards the response back to A. Otherwise, if
t ∈ [t0, t1], R returns IKM.dec(ST [t], c) to A; else, it returns ⊥

Ultimately (if R has not already output its own random guess bit to its
challenger), R forwards the bit b′ received from A to its challenger.

If R guesses t∗ correctly, it is clear that R simulates the real IKM security
game exactly, where the challenge bit b of the KM security game decides the

51

challenge bit of the IKM security game. Indeed, all public keys and the challenge
ciphertext are generated identically and for Expose(), since if t∗ ≥ t0 the state
is never output, the dictionary entry with sk = ⊥ will never be returned to A.
Furthermore, decryptions for all ciphertexts (c, t), t ̸= t∗, are directly handled by
R. For those in which t = t∗, if c = c∗, the challenger, and thus R, will output
⊥ as in the IKM game; otherwise, decryption will will be simulated perfectly.

Thus, IKM from Figure 3 is correct and (T ′, T · εind-cca
KM)-secure in game

IND-CCAIKM of Figure 2. IND-CPA security from (T, εind-cpa
KM)-secure KM fol-

lows directly from reduction R above, by simply removing the handling of Dec
queries. ⊓⊔

Theorem 11 (Theorem 2 re-stated). If P is correct, L-lossy, and (T, εP)-
secure, and G is (T, εG)-secure then the above FSP construction is correct, L-
lossy, and (T ′, εP + T · εG)-secure, for T ′ ≈ T .

Proof. Correctness is clear since for any t0 ≤ t1, SK t0 will still store st0 which
can be exapnded to skt1 , and the P for each epoch is in injective mode (b = 1),
so the computation of P.inv(skt1 , y) will be successful. FSP is L-lossy since when
b = 0, the P for epoch t∗ is in lossy mode, and is thus L-lossy.

For security, we first reduce to the security of G. Indeed, consider hybrids Hi

for i ∈ [0, T] in which when computing the seed st∗+1 from which the seed st′

that is given to the adversary for SK t′ is computed, we sample the j-th seed for
j = min{i, t∗+ 1}, sj ←$ S randomly (and continue computing the future seeds
as normal, using G). Thus, H0 is the real security game. It is clear that for any
adversary A, the differences of advantage of A between hybrids Hi−1 and Hi for
i ∈ [T] is at most εG; namely T · εG between H0 and HT .

Next, we reduce directly to the security of P to show that the adversary’s
advantage in hybrid HT is at most εP. If A is given SK t′ and t′ > t∗, then SK t′

only contains st′ that is computed from random seed st∗+1, which is indepen-
dent from skt∗ and so we get security directly from that of the t∗-th trapdoor
permutation. More formally, we define reduction algorithm R as follows. R first
samples (skt, pkt)←$ P.gen(1λ) for all t ∈ [t′−1]\{t∗} and random st∗+1 ←$ S,
then computes (skt, pkt) for t ∈ [t∗ + 1, f − 1] as normal in the FSP construc-
tion, using G iteratively on st∗+1. Then, it receives pk from its challenger, sets
pkt∗ ← pk and sends to A: ({pk0, . . . , pkf−1}). Upon reception of t∗ < t′ ≤ f
from A, R sends to A: (t′, st′). R then forwards the bit b′ received from A to its
challenger. It is clear thatR simulates HT perfectly for A and so (T ′, εP)-security
of HT follows from that of P.

Therefore, (T ′, εP +T ·εG)-security of FSP follows from that of P and G. ⊓⊔

Theorem 12 (Theorem 3 re-stated). Let FSP be a family of correct, L-lossy,
and (T, εFSP)-secure trapdoor permutations on common domain X = {0, 1}n;
let H2 : {0, 1}n → {0, 1}ℓ be a family of pairwise independent hash functions
where ℓ ≤ k − 2 log(1/εH), for some k = ω(log n) and some negligible εH2 =
negl(λ), where log(L) + log(L′) ≥ n + k; OTS be a strongly unforgeable one-
time signature scheme where the verification keys are in {0, 1}v; and ABO be a
family of correct, L′-lossy, and (T, εABO)-secure all-but-one trapdoor functions

52

on domain {0, 1}n. Then, for T ′ ≈ T , the IKMR construction of Figure 5 is
correct and ((T ′, T 2 · (εOTS + 2 · (O(1/2λ) + εABO + εFSP) + εH2))-secure) in
game IND-RCCAIKMR of Figure 4.

Proof. Correctness is immediate from that of the FSP family and the OTS
scheme, and since ABO is deterministic, as well as the facts that (i) the receiver
stores the secret keys of epochs t′ ∈ [t0, t1] in SK with remaining FSP epochs
corresponding to t0, t0 +1, . . . , t′, respectively, and also (ii) that ciphertexts label
the intervals of epochs whose public keys were used to permute c. Indeed, these
secret keys and intervals can then be used by the receiver to correspondingly
invert c and hash the last inverted element x to get the key k = h(x).

For security, we will proceed by a sequence of hybrids. Let HA
0 be the real

(adaptive) game of Figure 4. HS
0 is the selective version of the same. That is, at

the beginning of the game, the adversary A specifies the epoch t∗ in which it
will query Chall() and the epoch tpub in which it queries either Chall(pub) or
Re-Enc-Chall(pub) with pub = 1 (all other queries can be made adaptively).
We show first that for any adversary A against game HA

0 , there exists reduction
R against game HS

0 such that Pr[b←$ HS
0 (R)] ≥ 1

T 2 ·Pr[b←$ HA
0 (A)]+ T 2−1

2T 2 . R
proceeds simply as follows, emulating HA

0 for A. At the beginning of the game,
R guesses t∗ ≤ tpub ←$ [T]2, and sends them to HS

0 . Then, for every query sent
from A, R forwards it to HS

0 . However, if A does not query Chall() in epoch
t∗, or the epoch in which A queries Chall(pub) or Re-Enc-Chall(pub) with
pub = 1 is not tpub, R outputs random bit b′ to the challenger. At the end of the
game, R forwards the guess bit b′ from A to HS

0 . It can easily be seen that the
probability that R guesses t∗, tpub correctly is at least 1/T 2 and when it does,
it has the same probability of guessing the challenge bit b as A; otherwise it
guesses b with probability 1/2.

Now, hybrid HS
0,1 is the same as HS

0 , except at the beginning of initialization,
the hybrid samples (sk∗, vk∗)← OTS.gen(1λ) and during the Chall() query, the
hybrid changes IKMR.enc() by using (sk∗, vk∗) instead of sampling them on its
own. It is clear that the view of the adversary in these two hybrids is the same,
since Chall is only queried once, and thus the probability that the adversary
outputs the challenge bit is unchanged.

Hybrid HS
0,2 is the same as HS

0,1, except that if Dec(c) is queried with
c = (c1, vk, c2, σ, ((t0,0, t0,1), . . . , (tl,0, tl,1)), where vk = vk∗, then ⊥ is out-
put. Otherwise Dec(c) queries are processed as usual. First, observe that HS

0,1
and HS

0,2 behave the same unless event E occurs, where A makes a Dec(c)
query in which the included verification key vk = vk∗ and the included ABO
output c2 ̸= c∗2, and OTS.ver(vk∗, c2, σ) = 1, where σ is the included signa-
ture. Indeed, if vk = vk∗ and c2 = c∗2, then HS

0,1 will output ⊥ since the
decapsulated key will be the real challenge key, or c is malformed. This is
because ABO is initialized with lossy branch 0v ̸= vk∗ except with probabil-
ity O(1/2λ), thus there is a unique x such that ABO.eval(pk ′, vk∗, x) = c∗2,
and since the IKMR.dec algorithm checks that the found value x′ satisfies
ABO.eval(pk ′, vk∗, x′) = c∗2, it must be that x′ = x and h(x′) = h(x). We
show that the above event, E, happens only with probability εOTS, and thus

53

for any adversary A, Pr[b ←$ HS
0,1(A)] ≤ O(1/2λ) + εOTS + Pr[b ←$ HS

0,2(A)],
by constructing reduction R against the security game of OTS. In particular,
R first receives from A: t∗, tpub; and samples the challenge bit for the IKMR
game b←$ {0, 1}. R also receives from the OTS challenger verification key vk∗,
instead of sampling (sk∗, vk∗) ← OTS.gen(1λ) itself. R emulates HS

0,1 exactly,
until the Chall query. For this query, R proceeds as in IKMR.enc(), except
queries the OTS challenger on message c∗2 (the output of ABO) and receives
back the signature σ∗ that it includes in the challenge ciphertext. Then for any
subsequent Dec(c) query in which vk∗ is included as the verification key, c2 ̸= c∗2
is included as the output of ABO, and σ is included as the signature on c2, if
OTS.ver(vk∗, c2, σ) = 1, then R sends (c2, σ) to its challenger; otherwise, it out-
puts ⊥. It is clear that R simulates HS

0,1 and HS
0,2 perfectly, up until the point in

which it receives a Dec(c) query in which vk∗ is included as the verification key,
c2 ̸= c∗2 is included as the ABO output, and the included signature σ successfully
verifies. At this point, R wins the game. Therefore, event E only happens with
probability εOTS.

Hybrid HS
0,3 is the same as HS

0,2, except that during computation of IKMR.gen
in initialization, the ABO function is chosen to have a lossy branch b∗ = vk∗
rather than b∗ = 0v; i.e., (·, pk ′)←$ ABO.gen(1λ, 0v) is replaced with (·, pk ′)←$
ABO.gen(1λ, vk∗). We show that for any adversary A, Pr[b ←$ HS

0,2(A)] ≤
2 · εABO + Pr[b ←$ HS

0,3(A)], by constructing reduction R against the security
game of ABO. In particular, during initialization, R sends 0v and vk∗ to its
challenger, which returns pk ′, and R uses this as the ABO public key thereafter.
Otherwise, R simulates exactly as H0,2 sampling challenge bit for the IKMR
game b ←$ {0, 1} during the Chall query. When R receives bit b′ from A, if
b′ = b,R sends to its challenger 0; otherwiseR sends 1. Let δ be the challenge bit
of the ABO security game. It is clear that if δ = 0, then R perfectly simulates
HS

0,2; otherwise, R perfectly simulates HS
0,3. Therefore, we have that Pr[b ←$

HS
0,2(A)] = Prb[A → b|δ = 0] and Pr[b ←$ HS

0,3(A)] = Prb[A → b|δ = 1]. Thus,
1/2 ·(Pr[b←$ HS

0,2(A)]−Pr[b←$ HS
0,3(A)]) = 1/2 ·(Prb[R → 0|δ = 0]−Prb[R →

0]|δ = 1]) = Pr[R → δ : δ ←$ {0, 1}]− 1/2 ≤ εABO, by the security of ABO.
Hybrid HS

0,4 is the same as HS
0,3, except that the hybrid keeps the ABO

secret key when sampling (sk ′, pk ′) ←$ ABO.gen(1λ, vk∗) during initialization,
and for Dec(c) queries with c = (c1, vk, c2, σ, ((t0,0, t0,1), . . . , (tl,0, tl,1)), we com-
pute x ← ABO.inv(sk ′, vk, c2) instead of using FSP to compute x (the signa-
ture verification and well-formedness checks for both the ABO and FSP com-
ponents are kept). Note that Dec(c) queries in which vk = vk∗ are still re-
jected. We now show that the two hybrids are perfectly equivalent. We can first
assume vk ̸= vk∗ by definition of the hybrids. Now, both hybrids check that
c2 = ABO.eval(pk ′, vk, x) and that c1 is equal to the output of the FSP eval-
uations specified by (t0,0, t0,1), . . . , (tl,0, tl,1), on input x, for some x that they
compute (in different ways), and output ⊥ if not. Thus, some x exists, and it
suffices to show that this x is unique, and both hybrids find it. In both hybrids,
each FSP is initialized in injective mode and ABO is initialized with lossy branch
vk∗. Therefore, there is a unique x such that c2 = ABO.eval(pk ′, vk, x). Addi-

54

tionally, for every i from l to 0 and every t′ from ti,1 to ti,0, there is a unique ct′−1
1

such that ct′

1 = FSP.eval(PK [t′], t0,0 − t′0, ct′−1
1), where c

tl,1
1 = c1. Thus, there is

a unique x that results in c1 when the FSP evaluations specified by (ti,0, ti,1)
for i ∈ [0, l] are applied to it. In hybrid HS

0,3, x is found by computing the FSP
inversions specified by the (ti,0, ti,1); in hybrid Hs

0,4, x is found by computing
x← ABO.inv(sk ′, vk, c2).

Now, hybrid HS
1 is the same as HS

0,4, except when Re-Gen() is queried for
the tpub-th time, the execution of FSP.gen is replaced with FSP.gen(1λ, tpub −
t0 + 1, 0, t∗ − t0) (i.e., the lossy mode for epoch t∗ − t0). We show that for any
adversary A, Pr[b ←$ HS

0,4(A)] ≤ 2 · εFSP + Pr[b ←$ HS
1 (A)]), by constructing

reduction R against the security game of FSP. In particular, R first receives
from A: t∗, tpub; and samples the challenge bit for the IKMR game b←$ {0, 1}.
R emulates HS

0 exactly, until the tpub-th query of Re-Gen(). For this query, let
t∗0 be the given the value of t0 at the time. R then forwards to its challenger
lossy epoch t∗FSP = t∗ − t0 and f = tpub − t0 + 1, and for this tpub-th query of
Re-Gen(), R forwards the PK output by the FSP security game to A. Then, R
continues emulating HS

0 exactly, until the next Expose() query, at which point
(if it is valid) for t0 corresponding to current active interval [t0, t1], R sends to
the FSP security game exposure epoch t′ ← t0 − t∗0 + 1. R receives back SK t′ ,
and sets ST [tpub]← SK t′ , before returning ST . R then emulates HS

0 for the rest
of the game, until A sends it a guess bit b′. If b′ = b, R sends to its challenger
1; otherwise R sends 0. (Note: all Dec(c) queries are answered without using
FSP.inv.)

Let δ be the challenge bit of the FSP security game. Then Pr[b←$ HS
0,4(A)] =

Prb[A → b|δ = 1] and Pr[b ←$ HS
1 (A)] = Prb[A → b|δ = 0]. Therefore, 1/2 ·

(Pr[b←$ HS
0,4(A)]− Pr[b←$ HS

1 (A)]) = 1/2 · (Pr[R → 1|δ = 1]− Pr[R → 1|δ =
0]) = Pr[R → δ : δ ←$ {0, 1}]− 1/2 ≤ εFSP, by the security of FSP.

Finally, we show that in HS
1 , any A (even unbounded) can guess challenge bit

b with probability at most 1/2 + εH2 advantage, unconditionally. Consider the
random variable x sampled for the challenge encapsulation, which is chosen inde-
pendently of the view V of A. Since pktpub

is sampled in lossy mode for the chal-
lenge epoch in HS

1 , |FSP.eval(pk, t∗− t0, ·)| ≤ 2n/L. Additionally, pk ′ is sampled
with lossy branch vk∗, which means that |ABO.eval(pk ′, vk∗, ·)| ≤ 2n/L′. There-
fore, the random variable (c∗1, c∗2) = (FSP.eval(pk, t∗−t0, x), ABO.eval(pk ′, vk∗, x))
can take on at most 22n/(L · L′) ≤ 2n−k values by assumption that log(L) +
log(L′) ≥ n+k. Thus, by Lemma 2, given the output c∗1 ← FSP.eval(pk, t∗−t0, x)
and c∗2 ← ABO.eval(pk ′, vk∗, x) of the public challenge ciphertext, H̃∞(x|c∗1, c∗2,V) ≥
H̃∞(x|V) − n + k = k. Therefore, by Lemma 3 and the hypothesis that ℓ ≤
k − 2 log(1/εH2), we have that h(x) is εH2-close to uniform (conditioned on the
rest of A’s view). This means that the output of Chall in this hybrid is εH2 -
close to (kb, k1−b) for both kb, k1−b random, and thus A can only guess b with
advantage εH2 .

Thus to conclude, we have shown that for any A, Pr[b ←$ HA
0 (A)] ≤ 1/2 +

T 2 · (O(1/2λ) + εOTS + 2 · (εABO + εFSP) + εH). ⊓⊔

55

We also show a Theorem for CPA security.

Theorem 13. Let FSP be a family of correct, L-lossy, and (T, εFSP)-secure
trapdoor permutations on common domain X = {0, 1}n; and H1 : {0, 1}n →
{0, 1}ℓ be a family of pairwise independent hash functions where ℓ ≤ log(L) −
2 log(1/εH), for some negligible εH1 = negl(λ). Then, for T ′ ≈ T , the IKMR
construction of Figure 5 is correct and (T ′, T 2 · (2εFSP + εH1))-secure in game
IND-CPAIKMR of Figure 4.

Proof. This follows from the proof of Theorem 3, by simply skipping directly
from hybrid HS

0 to hybrid HS
1 via a similar reduction to the security of FSP, and

accounting for the different output length of the hash function family. ⊓⊔

Theorem 14 (Theorem 4 re-stated). Let H be a correct and (TH, εH)-collision-
resistant hash function and FSE be a correct and (TFSE, εFSE)-secure FS-PKE.
Then the IKMR construction of Figure 6 is correct and (T ′, εH+T 2 ·εFSE)-secure
in game IND-RCCAIKMR of Figure 4, for T ′ ≈ TH + TFSE.

Proof. Correctness is immediate from that of the FSE as well as the facts that
(i) the receiver stores the secret keys of epochs t′ ∈ [t0, t1] in SK with remaining
FSE epochs corresponding to t0, t0 + 1, . . . , t′, respectively, and also (ii) that
ciphertexts label the epochs for each public key that was used to re-encrypt c.
Indeed, these secret keys can then be used by the receiver to correspondingly
decrypt c to get the key k.

For security, we will first use the hash function’s collision resistance and then
proceed by a sequence of hybrids.

In our first game hop we abort if oracles Chall, Re-Enc-Chall, or Dec
ever take as input or produce as output ciphertexts that, at any re-encryption
level, contain the same hash value for a different list of re-encapsulation epochs.
Detecting this modification implies producing a hash collision, which, via a direct
reduction, breaks the collision-resistance of the hash function.

Let HA
0 be the real (adaptive) game of Figure 4. HS

0 is the selective version
of the same. That is, at the beginning of the game, the adversary A specifies the
epoch t∗ in which it will query Chall() and the epoch tpub in which it queries
either Chall(pub) or Re-Enc-Chall(pub) with pub = 1. Using the same steps as
in the proof of Theorem 3, we can show that for any adversary A against game
HA

0 , there exists reduction R against game HS
0 such that Pr[b ←$ HS

0 (R)] ≥
1

T 2 · Pr[b←$ HA
0 (A)] + T 2−1

2T 2 .
Now, hybrid HS

1 is the same as HS
0 , except in epoch tpub when Chall(1)

or Re-Enc-Chall(1), the execution of FSE.enc replaces input k, resp. c, with a
random bit string of the same length. We show that for any adversary A, Pr[b←$
HS

0 (A)] ≤ εFSE + Pr[b ←$ HS
1 (A)], by constructing reduction R against the

security game of FSE. In particular, R first receives from A: t∗, tpub. R emulates
HS

0 exactly, until Chall(1) or Re-Enc-Chall(1) are queried at time tpub. For
this query, let t∗0 be the given the value of t0 at the time. R then forwards to
its challenger epoch t∗FSE = t∗ − t0 as well as the real input k, resp. c, and a
randomly sampled string of the same length, and for this query, R forwards

56

the resulting c output by the FSE security game to A (after adding the list of
encryption layers (t◦0, . . . , t◦l)).

Once A queries oracle Dec(c′), reduction R honestly decrypts all layers of
FSE encryptions until it reaches a layer c′tpub

that is encrypted to epoch tpub; if
ciphertext c′ contains no layer encrypted to epoch tpub, the entire query to oracle
Dec is simulated honestly by reduction R. For ciphertext c′tpub

, reduction R
behaves as follows: (1) if c ̸= c′tpub

(i.e., the published challenge ciphertext c

differs from the layer queried for decryption c′tpub
), FSE security game’s oracle

Dec is queried for c′tpub
to obtain the encrypted payload m′tpub

; the decryption
of m′tpub

for the remaining layers is again simulated by R. (2) if c = c′tpub
but

the encryption layers (t◦0, . . . , t◦l) of the two ciphertexts differ (i.e., the inner
encryption layer structure of the published challenge ciphertext c differs from the
one that is queried for decryption of c′tpub

, but the actual ciphertexts are equal),
R rejects this query based on the first game hop: as the two ciphertexts are the
same but the list of encryption layers differ, either the encrypted hash value is a
collision (upon which the first game hops rejects already), or the encrypted hash
value is not the same as the hash of the actual list of encryption layers. (3) if
c = c′tpub

and the encryption layers (t◦0, . . . , t◦l) of the two ciphertexts are the
same, R rejects this query as it will leak the challenge key, which is forbidden
by the RCCA game.
R continues emulating HS

0 exactly, until the next Expose() query, at which
point (if it is valid) for t0 corresponding to current active interval [t0, t1], R sends
to the FSE security game exposure epoch t′ ← t0− t∗0 + 1. R receives back SK t′ ,
and sets ST [tpub]← SK t′ , before returning ST . R then emulates HS

0 for the rest
of the game, until A sends it a guess bit b′, which R forwards to its challenger
1.

Finally, we show that in HS
1 , A can guess challenge bit b with probability

at most 1/2. This is true because the random key k sampled for the challenge
encapsulation, is now independent of the published ciphertext seen by A.

Thus to conclude, we have shown that for A, Pr[b←$ HA
0 (A)] ≤ 1/2 + εH +

T 2 · (εFSE). ⊓⊔

Theorem 15 (Theorem 5, restated). Let SK be a (T, εSK)-secure symmetric-
key encryption scheme and H be a (T, εH)-secure universal one-way hash func-
tion family. Then the IRM construction of Figure 8 instantiated with tree τ is
correct, (T ′, h(τ) · εSK)-secure in the INDIRM game of Figure 7, and (T ′, h(τ) ·
(εSK + T ′ · εH))-secure in the RINDIRM game of Figure 7, for T ′ ≈ T .

Proof. We will prove (more challenging) correctness and security of the ro-
bust scheme first. Correctness is clear since when any IRM.write(stsec, C, i, d)
is performed, τ.path(i) is replaced with a chain of encryptions that is used by
IRM.read(stsec, C, i) to, starting with root key kτ.r, decrypt d. Moreover, when-
ever any other IRM.write(stsec, C, i′, ·) or IRM.del(stsec, C, i′) for i′ ̸= i is per-
formed before the next time IRM.write(stsec, C, i, ·) or IRM.del(stsec, C, i, ·) is
performed, the encrypted keys/data at the nodes of children of the skeleton skel
before the operation are still encrypted by the new keys at their parents in skel

57

after the operation. Thus, IRM.read(stsec, C, i) will still correctly return d. It
is also clear that if the correct cells C are provided in all oracle queries by the
adversary, then the hashes will always be accepted.

For an attacker A to win the security game, they must either
– Make some oracle query Read(i, C̃, d), Write(i, C̃, d), Chall(i, C̃, d0, d1), or

Del(i, C̃) with malicious cells C̃ ̸= C , where (·, C)← IRM.srvr-op(stpub, i, op),
that with non-negligible probability does not result in the challenger out-
putting ⊥. Moreover, this query must cause the game to output win after
some Read() query, or enable A to guess the challenge bit b correctly at the
end of the game; or

– Provide the correct cells C̃ = C for each such query, but still guess the
challenge bit b correctly at the end of the game.

In the first case, we will reduce to the security of the underlying UOWHF family,
H. IfA can provide malicious cells C̃ ̸= C without IRM outputting ⊥, this means
that A found an input to some hash h that is different than what IRM input to
it, but still evaluates to the same value, thus breaking the UOWHF security.

More formally, we define reduction R attacking UOWHF family H. R first
guesses the query in which the hash corresponding to the node closest to the
root that will eventually be broken by A when it provides C̃ ̸= C in some future
query, is computed. It also guesses that node, v. It simulates IRM exactly up until
that query. For that query, it simulates IRM exactly, except when computing the
hash function and hash, (hv, yv) to be stored at v, it instead sends the computed
input x to the hash to its challenger, and receives back (hv, yv). R continues
simulating IRM exactly, until the query in which A provides incorrect C̃ ̸= C.
At this point, if R guessed correctly, it finds the input x′ ̸= x to the hash hv

which evaluates to hv(x′v)→ yv, and sends it to its challenger, winning the game.
If it incorrectly guesses the query and node, R simply aborts. Thus, it is clear
that Pr[R →$ x′ ̸= x : hv(x) = hv(x′)] = 1/T ′ · 1/h(τ) · Pr[A wins INDIRM(A)].

In the second case, we will reduce to the security of the underlying symmetric
key encryption scheme, SK. Note that in our scheme, every time IRM.write(stsec,
C, i, d) is performed, all of the keys on τ.path(i) (and τ.r) are deleted or replaced.
Additionally, in the security game, after a query to Chall(i, d0, d1), the adversary
must again query Write(i, d) or Del(i) before querying Expose(). Therefore,
A never learns anything (beyond the ciphertexts) about the key kid(i)−1 that
directly encrypts db, nor keys kij

for j ∈ [0, d(i) − 2], that encrypt kij+1 . So,
from the security of SK, A cannot distinguish whether d0 or d1 was written to
cell i.

More formally, let hybrid H0 be the world in which IRM.write(stsec, C, i, d0)
is performed when Chall(i, d0, d1) is queried, and hybrid Hj for j ∈ [h(τ) − 1]
be defined exactly as Hj−1, except that cij

←$ SK.enc(kij−1 , kij
) in the al-

gorithm is replaced with SK.enc(kij−1 , 0λ). Similarly, hybrid Hh(τ) is defined
exactly as Hh(τ)−1, except that cih(τ) ←$ SK.enc(kij−1 , d0) is replaced with
SK.enc(kij−1 , d1).

We define reduction Rj for j ∈ [h(τ) − 1] attacking scheme SK to first
initialize IRM.init(1λ, n) and output stpub to A. It then simulates all queries to

58

Write(i, d), Read(i), Del(i), Expose() honestly. For the query to Chall(i, d0, d1),
Rj executes as Hj−1 does, except when creating cij

. Instead, Rj queries the
oracle of the SK security game SK.enc(kij−1 , ·, ·) on (0λ, k′ij

). Rh(τ) is defined
similarly.

It is easy to see that for any j ∈ [log n], Rj simulates exactly Hj−1 and Hj ,
except for when creating cij . For cij , depending on the challenge bit b′ of the
SK security game, Rj simulates Hj−b′ . Therefore, A cannot distinguish between
Hj−1 and Hj . A similar hybrid argument can be used to transform from Hh(τ)
to the world in which IRM.write(stsec, stpub, i, d1) is performed.

Thus, IRM from Figure 8 is correct and (T ′, h(τ)·(εSK+T ′ ·εH))-secure in the
RINDIRM game. It is easy to see its security in the INDIRM game by removing
the first type of attacker and the reduction to the UOWHF family H. ⊓⊔

E Alternative via FS-KEM and AEAD

In Figure 9, we propose an alternative construction based on FS-KEM and
AEAD (instead of FS-PKE and collision-resistant hash functions) that offers
similar performance guarantees as our construction from Section 6.

59

IKMR.gen(1λ):

1. set t0, t1 ← 1, SK [·], PK ← ⊥
2. generate (sk, pk)←$

FSK.gen(1λ, 1)
3. set (SK [1], PK)←

((sk, t0), pk)
4. return ((SK , t0, t1),

(PK , t0, t1))

IKMR.re-gen((SK , t0, t1))

1. increment t1 ← t1 + 1
2. generate (sk, pk)←$

FSK.gen(1λ, t1 − t0 + 1)
3. set (SK [t1], PK)←

((sk, t0), pk)
4. return ((SK , t0, t1),

(PK , t0, t1))

IKMR.del((SK , t0, t1), ℓ):

1. for i ∈ [ℓ]:
(a) set SK [t0 + i− 1]← ⊥
(b) for t ∈ [t0 + ℓ, t1]:

set (sk, t′)← SK [t];
update sk′ ← FSK.up(sk);
store SK [t]← (sk′, t′)

2. increment t0 ← t0 + ℓ
3. return (SK , t0, t1)

IKMR.enc((PK , t0, t1)):

1. sample random k ←$ K
2. compute (kAE, cFSK)←$

FSK.enc(PK , t1 − t0)
3. compute cAE ←$

AE.enc(kAE, k, (cFSK, t1))
4. return (k, ((cFSK), cAE, (t1)))

IKMR.re-enc((PK , t0, t1), (C, cAE, T)):

1. (c◦
0, . . . , c◦

l)← C; (t◦
0, . . . , t◦

l)← T
2. if t0 > t◦

0 return ⊥
3. compute (kAE, c1)←$

FSK.enc(PK , t◦
0 − t0)

4. C′←(c◦
0, . . . , c◦

l , c1); T ′←(t◦
0, . . . , t◦

l , t1)
5. compute cAE ←$

AE.enc(kAE, cAE, (C′, T ′))
6. return (C′, cAE, T ′)

IKMR.dec((SK , t0, t1), (C, cAE, T)):

1. (c◦
0, . . . , c◦

l)← C; (t◦
0, . . . , t◦

l)← T
2. Ci ← (c◦

0, . . . , c◦
i); Ti ← (t◦

0, . . . , t◦
i)

3. for i from l to 0:
(a) let (ski, t′

0)← SK [t◦
i]; decrypt

kAE ← FSK.dec(ski, t◦
0 − t′

0, c◦
i)

cAE ← AE.dec(kAE, cAE, (Ci, Ti))
4. set k ← cAE
5. return k

Fig. 9. FS-KEM-based IKEM with Re-Encapsulations construction.

60

	Interval Key-Encapsulation Mechanism

