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Abstract. Passive (leakage exploitation) and active (fault injection) physical attacks
pose a significant threat to cryptographic schemes. Although leakage-resistant cryp-
tography is well studied, there is little work on mode-level security in the presence of
joint faults and leakage exploiting adversaries. In this paper, we focus on integrity
for authenticated encryption (AE).
First, we point out that there is an inherent attack in the fault-resilience model
presented at ToSC 2023. This shows how fragile the freshness condition of a forgery
is when faults are injected into either the tag-generation or the encryption algorithm.
Therefore, we provide new integrity definitions for AE in the presence of leakage and
faults, and we follow the atomic model, in which the scheme is divided into atoms (or
components, e.g. a call to a block cipher) and allows the adversary to inject a fault
only into the inputs of an atom. We envision this model as a first step for leveled
implementations in the faults context, the granularity of atoms can be made finer or
coarser (for example, instead of considering a call to a block cipher, we can consider
atoms to be rounds of the block cipher). We hold the underlying belief that it would
be easier to protect smaller blocks than a full scheme. The proposed model is very
flexible and allows us to understand where to apply faults countermeasures (in some
very interesting cases this model can reduce faults inside atoms to faults on their
outputs, as we discuss).
We then show that an AE-scheme using a single call to a highly leakage-protected
(and thus very expensive) component, CONCRETE (presented at Africacrypt 2019),
maintains integrity in the presence of leakage in both encryption and decryption, and
faults only in decryption. On the other hand, a single fault in encryption is enough to
forge. Therefore, we first introduce a weaker definition (which restricts the meaning
of freshness), weak integrity, which CONCRETE achieves even if the adversary can
introduce faults in the encryption queries (with some restrictions on the number
and type of faults). Finally, we provide a variant, CONCRETE2, which is slightly
more computationally expensive, but still uses a single call to a strongly protected
component that provides integrity in the presence of leakage and faults.
Keywords: AE · Fault Injection · Fault-resistance · Integrity · Leakage-resistance
· Model-Level Security · Side Channels · SCA

1 Introduction
Classically, in the standard-model an adversary can attack a cryptographic scheme by
choosing its inputs and seeing its answer, the so-called black-box model [32]. However,
considering an adversary which has physical access to the device, she can perform more
powerful attacks, both passive and active: On the one hand, passively, she can measure the
physical quantities involved in the cryptographic computation, such as time, electromagnetic
radiation, power consumption, etc. [33, 34, 41]; on the other hand, she can actively inject
faults into the computation [18, 17, 2], obtaining critical information from the device’s
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answers, either to retrieve secret-material (e.g., the key) [25, 30, 49] or enough information
to forge it (e.g. by replacing the nonce [48]), see [47] for more details.

Finally, a combined attack can be performed and manifest a concrete threat [46, 45].
With respect to leakage-resistant symmetric cryptography, there is a large body of

work that provides achievable security definitions for privacy [40], integrity [12, 13], and
for AE [29, 3], and various constructions.

A particularly interesting line of research for construction is leveled implementation:
As any mode-of-operation (mode-level) symmetric scheme is based on primitives such as
block ciphers (BC) and hash functions (H), instead of protecting all primitives uniformly,
one can design a scheme using weakly protected implementation for all of primitives and a
very well protected for just one or a few [40, 24, 5]. Such an approach gained large interest
and acceptance in the community and found to be particularly efficient because strong
countermeasures against side-channel attacks are expensive, e.g. higher-order masking
can be thousands of times slower (or energy hungry) [19, 28, 31, 50]. There are many
examples, both based on (tweakable 1) block ciphers [12, 13, 8, 37] or sponges [22, 4]. In
all these constructions, the bulk of the construction is carried by the weakly protected
implementations, and they use ephemeral keys (i.e. keys generated in that particular query
and used only a few times), while the strongly protected implementations are reserved
for a few calls (usually one or two) where the master key of the scheme is used. To
study the integrity of a MAC (Message Authenticated Code) or a AE (Authenticated
Encryption) scheme, there is a leakage model that works well with leveled implementations:
the unbounded leakage model [12]. It assumes that all inputs (even the key) and outputs of
the weakly implemented components are leaked, while the strongly protected components
leak their inputs and their outputs, but not the secret-inputs (e.g., key): these components
are modeled either as leak-free [12], i.e. except of the inputs (not the key) or the outputs
of a block cipher (BC), no other information is obtained from the leakage, or strongly
unpredictable (SUP-L2) [7], i.e. given a leakage of a blockcipher Fk(·) and its inverse F−1(·),
it is hard to find an input/output pair (x, y) that is fresh (never received as an answer
before) and valid (y = Fk(x)). In the unbounded leakage model, it is possible to construct
a MAC that provides authenticity when the tag-generation algorithm leaks, for example
the well-known Hash-then-BC, i.e. τ = Fk(H(m)), assuming a single call to a leak-free
block cipher [40, 12]. On the other hand, decryption leakage is much more tricky, since
the correct tag is often recomputed (and thus can be leaked), i.e. Vrfyk(m, τ) accepts if
τ

?= Mack(m). To avoid this, it has been proposed to use the inverse in the verification,
by doing a check on a different value [13]: instead of comparing τ with the correct tag,
Vrfyk(m, τ) inverts the tag and checks if h̃ = F−1

k is equal to the digest h = H(m). The
idea is that h̃ cannot be used for forgery because it is random as the output of a leak-free
block cipher, and the adversary has to find a pre-image for this value (and we can assume
that the hash function is range-oriented pre-image resistant). In the random oracle model,
the previous MAC provides integrity in the presence of leakage in both tag-generation and
verification, even if we assume that F is SUP-L2 [7]. To avoid using the random oracle
model, which is undesirable and would be a too optimistic assumption, and security would
then be impossible to achieve [10] (Asiacrypt 2021), a MAC, LR-MAC1 was proposed which
uses a strongly unpredictable with leakage tweakable-BC: The idea is to use a fixed input,
0n, as the input and the message hash, h = H(m), as the tweak, i.e. τ = Fh

k(0n). This way,
if F−1,h

k (τ) ̸= 0n during verification, the adversary cannot use the output of F−1 to forge.
Not surprisingly, the idea of using the inverse in decryption has also been used to build

AE schemes, which provide authenticity with leakage in both encryption and decryption
in the unbounded leakage model [13, 8, 4, 37]. Most schemes use 2 calls to the strongly
protected implementation of a (tweakable) block cipher, one to authenticate either the

1A tweakable block cipher (TBC) is a block cipher which has an additional input, the tweak, for
flexibility [36]: Ftw

k (x) where tw is the tweak.
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message or the ciphertext, and another to generate a first ephemeral key which is used
to encrypt the message either with a rekeying-based encryption scheme (e.g. the one
proposed at CCS 2015 [40]) or with a sponge. At Africacrypt 2019, a leakage-resistant AE
scheme CONCRETE (see Fig. 1 and Alg. 6) using a single call to a strongly protected TBC.
CONCRETE provides integrity in the unbounded leakage model when both encryption and
decryption leak [15]. It picks a random ephemeral key k0, then computes a commitment
on that key, then uses that first ephemeral key to encrypt using PSV (a leakage-resistant
encryption scheme based on rekeying [40]) to obtain a ciphertext c, then it encrypts the
ephemeral key k0 with a TBC, where the tweak is the digest of the message, h = H(c),
cl+1 = Fh

k(k0). The adversary in the decryption first retrieves the key k0, checks if the
committing is correct, and then can retrieve m correctly from k0.

Similarly to the leakage resistant schemes, it is possible to withstand fault attacks with
specific countermeasures, see [6] for example. On the other hand, for leakage-resistant
schemes, it is possible to design schemes that are inherently more secure, when working at
the mode-level. However, regarding fault-resistance, the literature is much more scarce.
There are two relevant fault models discussed so far, as detailed next.

In the first model, the adversary can inject a fault on a value kept in memory when
it is used by the scheme, either setting it to a certain value or with a differential fault
(moreover, this fault can be permanent or transient) [27]. The authors have also provided a
fault-resilient signature-scheme and AE scheme which withstand fault in encryption. With
a similar model [1], the security of hedged Fiat-Shamir signatures has been assessed against
faults. In another model, equipped with fault injection and leakage collection capabilities,
the adversary accumulates information, the so-called accumulated interference [26]. In [47]
Saha et al. introduce the concept of fault-resilient PRF: the adversary can fault a real
PRF, then, after she has done all the faulted queries she has to distinguish the real PRF
from an ideal (clearly she is not allowed to repeat queries between the two different phases
of her game). From this notion, they define authenticity in the presence of faults for both
MAC and AE. In the fault resilience model [47], the adversary performs all the faulted
queries before making any query to distinguish queries to the real scheme (that is, either
to Mac and Vrfy, or to Enc and Dec in the AE case) from an ideal scheme (that is, either
to an oracle which outputs a random value and another which always outputs reject).
Moreover, the adversary can only inject faults in the direct queries (that is, to Mac or
to Enc). They also provide a probabilistic MAC and a probabilistic AE scheme achieving
the fault-resilience as defined. Finally, using the basic model developed in [27, 1], the
authors of [9] extended it with the so-called atomic model where for example it is possible
to divide a MAC into atoms (e.g. the hash, a call to BC) and assume that the adversary
can only inject faults in the input of the atoms. Surprisingly, protecting against faults in
verification is easier than in tag-generation: LR-MAC1 achieves this security without any
modification (even if the adversary obtains leakage in both tag-generation and verification
in the unbounded leakage model), even if the adversary can fault every input of every
atom (except the master key used by the leak-free TBC). However, if the adversary can
inject faults into the tag-generation, the adversary can easily forge because she can choose
the inputs to the leak-free TBC Fk and thus has oracle access to it.

To prevent such attacks, in [9], the authors either abandon the unbounded leakage
model with two calls to a leak-free TBC, assuming that the output of the first leak-free
TBC is not leaked, or they use a randomized version (there is an additional random input
to Mac, making internal values random), but it withstands only differential faults.

1.1 Our contribution
In this paper, we first study the theoretical aspect of integrity in the presence of faults. We
point out a subtle problem of the fault-resilient framework [47]: since one cannot prevent
the adversary from faulting the return function of any algorithm, for example if the fault
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is in τ ← Mack(m) by switching the first bit of τ , the resulted (m, τ) is considered fresh
(since we did not get τ , but τ ⊕ 10 . . . 0). This attack is clearly not significant since we
can view (m, τ) as not fresh, which is indeed the case. However, it illustrates that the
model should be studied carefully and precisely. In our perspective, this is an inherent
security consideration that highlights how difficult and delicate it is to model security
against faults and leakage attacks. Fortunately, in the atomic model, the previous attack
cannot occur because the adversary can only fault the input of the atoms, and output of
atoms only when they are also intermediate computations. For example, in LR-MAC1 the
output τ is the output of the Fk atom, while in CONCRETE, the adversary can inject a
fault in c when it is used as input to H, but as ciphertext, c is the output of the encryption
part. Combining these observations, we first extend the atomic model to the AE case: we
provide the integrity definition in the presence of faults and leakage. Moreover, we define
a weaker version by which we do not allow the adversary to forge with any of the values
that the ciphertext may take in encryption request owing to faults, denoted weak integrity.

Second, we study the integrity of CONCRETE in the unbounded leakage model in the
presence of faults. We choose CONCRETE because it is a probabilistic scheme (which helps
against leakage for direct queries) and uses only one leak-free call. Similar to LR-MAC1,
an adversary cannot forge with any fault in the decryption (except on the master key).
On the other hand, a single fault (even a differential) is enough for an adversary to forge.
However, if the adversary can only inject one set fault (and any differential fault she wants)
per encryption query, CONCRETE provides weak integrity as proven in this paper. This
is consistent with [9], which suggests that for authenticity, the direct queries (either Mac
or Enc) must be randomized, and the adversary should not be able to derandomize them
with faults (i.e. choosing all inputs for some critical computations, thus having oracle
access to those atoms). On the other hand, we do not have this requirement for the inverse
queries (either Vrfy or Dec), where by using the inverse of a (T)BC, F−1

k , we can prevent
the adversary from forging even if she has oracle access to F−1

k .
Third, we modify CONCRETE to withstand faults in encryption as well. We identify that

CONCRETE authenticates any ciphertext produced by the encryption part (independent of
the encrypted message), second, since ci = Eki

(pB)⊕mi, where ki is the ith ephemeral key,
where pB is a constant, thus an adversary can predict how modifying the message would
modify the corresponding ciphertext (i.e, c′

i = ci ⊕∆ encrypts m′
i = mi ⊕∆). Therefore,

in the proposed scheme we modify the encryption ci = Eki(mi) and in addition a value
obtained by a MAC of the message m is encrypted, deriving CONCRETE2 (Fig. 3), full
proofs and intuition are discussed in the paper. With these changes, CONCRETE2 can
provide integrity even in the unbounded leakage model, where the adversary can inject
any fault in decryption, and one set fault and any differential fault per encryption query
(note that with 2 set faults, the adversary obtains oracle access to F·

k(·) because she can
sets both inputs of Fk, therefore she can choose k0, compute the commitment, the MAC
and the encryption of m from k0, and the digest h of these values, then she forces, in an
encryption query with other inputs, to compute Fh

k(k0), so she can forge). Note that all
faults discussed here are variable faults, e.g., up to n-bit faults where n is the variable size
and previous constructions usually withstand a single fault per query (except [9]).

CONCRETE2 is a 2-pass scheme using a single call to a leak-free TBC, where these 2
passes cannot be done in parallel. However, notably CONCRETE2 may be very efficient
in terms of performance in encryption, as compared to a 1-pass scheme, because the
second pass may commence with a very small delay from the start of the first pass (quasi
1-pass). For example, the second pass, the one that computes h, digesting the ciphertext
blocks, may begin as soon as at least one of their blocks is produced (consider a round-
based or mode-of-operation based construction). Comparing with [47], their fault-resilient
AE-scheme, MEM is a 3-pass scheme (in encryption quasi 2-pass), and can withstand a
single fault per encryption query, and no fault in decryption. On the other, MEM provides
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privacy even if a single fault is injected in an encryption query, while, here we do not
focus on this problem (however, we do suspect that CONCRETE2 also provides privacy
in the presence of faults). Finally, another contribution we put forward is a variant of
CONCRETE2 using the popular sponge construction.

We show for the first time that it is possible to construct a scheme in the unbounded
leakage model that provides integrity even in the presence of faults, with modified and
meaningful definitions adapted to the faulted setting.

2 Background
Notations We denote with {0, 1}n the set of all the n-bit strings and {0, 1}∗ the set of all
finite strings, with x∥y the concatenation of the two strings x and y, and with |x| the length
of the string x. We denote with πn,l(x) the n leftmost bits of the string x, and πn,r(x) the n

rightmost bits. With x
$← S, we denote that x is picked uniformly at random from the set S,

with πl(x) we denote the l-left bits of x, and with 0n we denote a sequence of n zeros. When
we parse a string x in n-bits blocks, we divide x = (x1, . . . , xl) with |x1| = . . . = |xl−1| = n,
and |xl| ≤ n, where x = x1∥ . . . ∥xl. When we special parse(j) a string x in n-bits blocks,
we divide x = (x1, . . . , xl) with |x1| = . . . = |xj−1| = |xj+1| = . . . = |xl| = n, and |xj | ≤ n,
where x = x1∥ . . . ∥xl. A (q1, . . . , qd, t)-adversary A is a probabilistic algorithm, which is
allowed qi queries to oracle Oi and runs in time bounded by t. With y ← AO1,...,Od(x),
we denote that adversary A on input x, with access to oracles O1, . . . ,Od outputs y. Let
Alg be a probabilistic algorithm. With y ← Alg(x), we denote that we ran Alg on input
x obtaining y. If we want to explicitly denote the randomness r used in the previous
execution, we write y ← Alg(x; r).

2.1 Cryptographic primitives- Hash and (Tweakable) Block-ciphers
In our schemes, we will use hash functions and tweakable blockciphers (TBC).

We use hash functions to compress data. For an adversary, it should be difficult to
find a collision, (2 different inputs with the same output):
Definition 1. A hash function H : HK×{0, 1}∗ → {0, 1}n is (t, ϵ)-collision resistant (CR)
if ∀ t-adversaries A: Pr[ (m0, m1)← A(s) s.t. Hs(m0) = Hs(m1), m0 ̸= m1 | s

$← HK] ≤ ϵ.

We use (tweakable) block-ciphers to produce pseudorandom random values.
Definition 2 ([36]). A tweakable block-cipher (TBC) F : K×T W × {0, 1}n → {0, 1}n is a
family of permutations, where F(k, tw, ·) : {0, 1}n → {0, 1}n is a permutation ∀(k, tw) ∈
K × T W. For simplicity, we often denote Ftw

k (x), for F(k, tw, x). With F−1,tw
k , we denote

the inverse of Ftw
k .

A block-cipher (BC) is a TBC without any tweak, that is |T W| = 1.
Definition 3. A TBC F : K × T W × {0, 1}n → {0, 1}n is a (q, t, ϵsTPRP)-sTPRP (strong
Tweakable Pseudo Random Permutation) if for any (qE , qI , t)-adversary A

|Pr[1← AF·
k(·),F−1,·

k ]− Pr[1← Af·(·),f−1,·
] ≤ ϵ

where qE + qI ≤ q, k
$← K, and f $← T PERM, where T PERM is the set of the functions

with the same signature as Fk, that is the functions f : T W × {0, 1}n → {0, 1}n s.t.
∀tw ∈ T W ftw(·) : {0, 1}n → {0, 1}n is a permutation. If F is a BC, we have strong
PRP. If qI = 0, F is a TPRP if F is a TBC, and PRP if F is a BC (and PRF if we
remove the constraint that f is a permutation and f is picked from the set of functions
f : {0, 1}n → {0, 1}n).

In some cases, we need to model the block-cipher as an ideal -cipher
Definition 4 ([20]). A block-cipher E : K×{0, 1}n is an ideal cipher if it has been chosen
uniformly at random among all block-ciphers with the same signature.
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That is, an ideal cipher is a family of |K| independent permutations. When an ideal
cipher E is used, even only by the oracles, the adversary is always allowed to query directly
it choosing both the key and the input for each call she does.

2.2 MACs, and (Authenticated) Encryption Schemes
In the previous section, we have formally defined hash functions, and (tweakable) block-
ciphers. These are the building blocks of the MAC, encryption and AE primitives, which
we define here. We use a Message Authentication Code, MAC, to authenticate (see Def. 12,
App. A.1), while ivE schemes for encryption (see Def. 14, App. A.3).

The cryptographic primitive that provides privacy and authenticity is authenticated
encryption (AE). Following [15, 47] we use a probabilistic encryption scheme. The syntax
can be found in App. A.2. Note that, differently from the standard nAE definition,
see [42, 44], we allow AEnc to be probabilistic as in [47]. We leave the standard security
notion [39], in the black-box model (that is when the adversary can choose the inputs and
only sees the outputs of their oracles), Def. 15 to App. A.4.

2.3 Leakage
The previous definitions are black-box, because the adversary chooses the inputs of their
oracles and sees only their outputs. On the other hand, cryptographic algorithms are
usually implemented on electronic devices. Thus, an adversary can measure the physical
quantities involved during the computations, as instantaneous power consumption, time,
electromagnetic/ radio-frequency (RF) radiation etc. [33, 34, 41, 21]. This is the so-called
leakage which can give useful information to the adversaries.

Notations. We denote that an oracle O leaks, adding the suffix L, that is with OL. The
leakage of the implementation of the oracle Ok(x) on input (x) is given by the leakage
function LO(x; k). The leakage function represents the information that the adversary gets
via leakage from the computation of oracle on input x. When Ok(x) is a probabilistic
oracle, we assume that it has access to a random tape carrying the value r, the leakage
function takes also r as input. Similar definitions and notations may be found in [11].

2.4 Integrity in the presence of leakage.
When the adversary not only chooses the inputs of the oracles and sees their outputs,
but also has access to the leakage when they perform their computations, it is better not
to have a comprehensive security definition for both privacy and authenticity. In fact,
if we naively modify Eq. 2 for AE-security (Def. 15 in App. A), adding the leakage of
all the oracles, we should be able to compute a leakage for the ideal primitives ($ and
⊥), which is indistinguishable from the leakage of the real primitives (AEnc and ADec).
As discussed in [38] this is quite cumbersome and complex. Thus, it is possible to give
different definitions for authenticity and privacy in presence of leakage [12]. Note that
these two definitions and security goals are inherently different, for authenticity we need
that it would be difficult to produce a complete (fresh and) valid ciphertext, while for
privacy we require that the ciphertext will give no information about its plaintext (except
for the message length). Berti et al. [13] introduced a security definition for integrity
in the presence of leakage. We give the definition modified for the case of probabilistic
encryption [15]:
Definition 5. An AE-scheme Π = (Gen, AEnc, ADec) provides (qE , qD, t, ϵ)-ciphertext
integrity with leakage in encryption and decryption, CIL2, if for any (qE , qD, t)-adversary A

Pr[ (a, c)← AAEncLk(·,·),ADecLk(·,·) | s.t. (a, c) is fresh and valid] ≤ ϵ. (1)
With fresh we denote that c has never been obtained as an answer from a AEncLk(a, m)
query for any m, and with valid that ADeck(a, c) ̸=⊥. (CIL means that only AEnc leaks).
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Modelling leakage - the unbounded leakage model. The previous definition (Def. 5)
assumes that when the adversary asks a query to either the AEnck or ADeck oracle, she
receives the output and the leakage of its computation. As in all definitions involving
leakage, the leakage function must be realistic, to have a security definition that is relevant
in practice, but not too generous, (for example assuming that the key is leaked), otherwise
it is impossible to provide security.

For integrity, we use the unbounded leakage model [12] in which we assume that the
scheme uses a leveled implementation: the primitives (hash functions, TBC, BC) are divided
into two types: strongly protected primitives which are modeled as leak-free, that is, they
leak nothing about their internals, and weakly protected primitives. When a strongly
protected primitive is used, LO gives its inputs and output, while when a weakly protected
primitive is used, its inputs, output and its secret key. It can be schematically illustrated:
we use green color for the inputs and outputs of the scheme, orange for the internal value
computed and the key of the weakly protected primitives, and red for the keys of the
strongly protected primitives (see for example Fig. 1). In the unbounded leakage model,
LO gives all the orange values.

Note that strongly protected components are usually much slower than unprotected (or
slightly protected) components [28, 31, 50, 19], thus, when we desire to reduce their usage.

2.5 CONCRETE
Pereira et al. [40] proposed a scheme which is CPAL-secure, PSV (see Alg. 4 in App. J). It
used a leveled implementation. They use the master key k to create the first ephemeral
key k1 from a random value called iv via a strongly protected BC F (modeled as leak-free):
k1 = Fk(iv). This ephemeral key is used twice with a weakly protected BC, E, once to
create a new ephemeral key, k2 = Ek1(pA) (refreshing it), and the other time to create a
pseudo-random value which is XORed to the first message block m1 (we parse the message
in n-bit blocks, where n is the blocks-size of E), resulting in the first ciphertext block
c1 = Ek1(pB)⊕m1. Then, we iterate, creating new ephemeral keys, and encrypting new
blocks of the message until we have encrypted the last message block ml. The decryption
algorithm takes as input (iv, c1∥..., cl), recomputes the first ephemeral key k1 from iv, and,
then, it can correctly decrypt.

Berti et al. [13], based on PSV, proposed a scheme, EDT (Encrypt-then-Tag), which is
CIL2-secure in the unbounded leakage model 2. They started from PSV and, to authenticate
the ciphertext, they used the basic hash-then-MAC: they hash the ciphertext and reusing
the master key with a strongly protected TBC to compute the tag τ = F1

k(H(c1∥...∥cl))
where m = (m1, ..., ml). In decryption, instead of recomputing the tag τ̃ and checking
whether τ is correct (that is, τ

?= τ̃), to prevent leakage of τ̃ , they do not compute it, instead
they invert the TBC, computing h̃ = F−1,1

k (τ), and check if h̃
?= h, with h = H(c1∥...∥cl).

The idea is that to use a h̃, which is leaked, for a forgery, an adversary has to find a
pre-image for it, which should be difficult for a good hash function since h̃ is random (we
need to assume that H is range-oriented pre-image resistant [13]).

To reduce the number of times the strongly protected TBC is used Berti et al. [15, 14]
proposed a new AE-construction: CONCRETE (Commit-Encrypt-Send-the-Key) (see Fig. 1,
and Alg. 6, App. J). Instead of computing the first ephemeral key k0, they pick it randomly,
then, they do a commitment on the key, with c0 = Ek0(pB), and refresh it with k1 = Ek0(pA).
Then, to encrypt the message, they use PSV with k1 as the first ephemeral key. Finally,
to send the first ephemeral key k0, they used the strongly protected TBC and the master
key k, with cl+1 = Fh

k(k0), with h = H′(c0∥c1∥...∥cl, a) a multi-input collision resistant [23]
(see Def. 21, App. D.1. There, we also give a possible hash function). In decryption,
from the ciphertext c = (c0, c1, ..., cl, cl+1), the decryption algorithm, first, retrieves

2We give a simplified version, for the full details see the original paper.
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k0 = F−1,h
k (cl+1), with h = H′(c0∥c1∥...∥cl, a), checks correctness of the commitment, and

proceeds to decrypt. CONCRETE has been proved to be AE secure in the black-box model,
CIL2 in the unbounded leakage model assuming that F is leak-free and CPAL2 secure [15].
For completeness, we give the results in App. B.
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Figure 1: CONCRETE [15]. c = c0∥...∥cl.

2.6 Integrity in presence of faults and leakage
Here we present the two approaches for integrity (and leakage) in the presence of faults: [9]
and [45]. In both definitions, the key-generation algorithm is assumed to be leakage-
resistant (since it is done only once and/or can be protected 3).

Notations. We denote that an oracle can be faulted adding the suffix Fa to it. The fault
is seen as an additional input of the oracle. Finally, with AL,Fa we denote an adversary
which holds a leaky and faulty model.

2.6.1 Atomic model.

Berti et al. [9] aim to start from the standard black-box authenticity definition of a MAC
and add leakage and faults.

They assume that the adversary must choose all the faults before the start of the actual
computation. Thus, when the adversary wants to see the output (and the leakage) of a
faulted computation of the implementation of algorithm Algo, she chooses the inputs (the
leakage) and the fault FaAlgo at the same time 4.

3Since our adversary is very strong, some assumptions and security mechanisms will be required,
otherwise security will either be impossible with the proposed tools used or simply too expensive; we believe
these are standard scenarios and questions asked by security architects in the different implementation
levels. For example, taking the master key. We may assume that we implement the (T)BC with an
implementation where the key is either: (1) hard-coded, (2) partially hard coded (3) uses a secured memory
or derived from a secure primitive (perhaps with a TPM) (4) may be generated aided a PUF mechanism.

4They assume that the adversary cannot see the leakage of part of the computation and then chooses
the faults accordingly. This is a strong requirement. At a lower level, this requirement has not been asked
by Berndt et al. [6].
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To represent the fault Fa that the adversary wants to inject they introduce the de-
pendency matrix. If an algorithm Algo from inputs (x1, x2, ..., xn) outputs y, we can
reduce its implementation to a sequence of steps, called atoms: f1(x1, x2, ..., xn) =
z1, f2(x1, x2, ..., xn, z1) = z2, . . . , fN (x1, x2, ..., xn, z1, ..., zN1) = zN . where fi is any
deterministic function or the random picking. Note that this description is not unique. As
an example, we describe CONCRETE with these functions in Sec. 4.1, and of LR-MACr in
the following of this section. The output y is obtained from the outputs of the fis choosing
some of them (and eventually rearranging) via the function Select. This function depends
only on the length of the inputs. That is, y = Select(y1, ..., yN ) with y = yi1∥ . . . ∥yiL

with
L = g(|x1|, . . . , |xn|), where g : Nn → N, and i1, . . . , ih are in [N ] (we can see the indexes
i1, . . . iL as the output of a function gout : Nn → P([N ]), which takes as input only the
lengths of the inputs).

But, usually, we do not effectively use all the inputs for the fis. For example, in
CONCRETE when computing ki+1 = Eki

(pA), thus all inputs and all ephemeral values are
ineffective except for ki. The dependency matrix is built from the inputs of the fis, by
writing only the effective inputs5 and putting the string ϵ for all others. As an example,
we give the dependency matrix for CONCRETE in Eq. 3, 4 and of LR-MACr in App. E.

They assume that the adversary can only set faults between the atoms. Considering
leveled implementations in the faults context, the granularity of atoms can be made finer
or coarser as discussed below. We believe that it would be easier to protect smaller blocks
than a full scheme. This model is quite flexible and allows us to understand where faults
countermeasures are needed. Moreover, the adversary is not allowed to input any fault in
the selection function Select. That is, she can only fault the inputs of the atoms. Thus,
we can represent the fault FaAlgo with the fault matrix which shows how each input is
modified. That is, if in fi, the input xj is replaced with a stuck-at fault with x′

j , the fault
matrix represents this setting the i, j-th element to x′

j , if xj is faulted with the differential
fault ∆, we set the i, j-th element to · ⊕∆, or if there is no fault, we set it to ·.

Clearly, we cannot achieve security if we allow the adversary to fault all
inputs and outputs (for example, the adversary can set one bit of the key to 0
and see if it affects the output). Thus, there are inputs of certain atoms, which
cannot be faulted, and we assume that these inputs are protected3. When we
assume that the xi input of the jth atom is protected and cannot be faulted, we denote
this setting the (j, i)th element of the fault matrix to ⊥; if it can only be faulted with
differential faults, we use ⊥ /⊕. The set of all these protected inputs is denoted with I.
Additionally, we can bound the number and/or the type of faults the adversary can do.
The set of all admissible faults is denoted with F .

Finally, we do not allow the adversary to always replace an input xi, when it is
effectively used, with another input, x′

i (that is, if with the fault Fa we have turned the
computation of Mack(m) in the computation of Mack(m′) by replacing m with m′ every
time m is used, then, the output τ ← Mack(m′, Fa) is clearly s.t. Vrfyk(m′, τ) = ⊤, but
we consider (m′, τ) an invalid forgery).

Note that two different implementations of the same algorithm can be divided into
different atoms, thus there are two different fault matrices (capturing the dependency of
faults from the implementations) [9].

Having presented the model, we can give Berti et al.’ definition of security in the
presence of leakage and faults:
Definition 6. A (IMac, IVrfy)-protected implementation of MAC, with leaking function
pair L = (LMac, LVrfy) and fault admissible sets F = (FMac,FVrfy), is (qF L, qM , qV , t, ϵ)
strongly-existentially unforgeable against F-fault-then-leakage attacks in tag-generation
and verification (SUF-FL2) if for all (qF L, qM , qV , t)-adversaries AL,Fa we have

Pr[SUF-FL2MAC,F,L,A ⇒ 1] ≤ ϵ

5We say that the input y is ineffective for the function f(x, y), if ∀x, y, y′ f(x, y) = f(x, y′). All the
other inputs are effective.
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Table 1: The SUF-FL2 experiment. To simplify the description of the experiment, we have
omitted the checks that Fa ∈ FM (resp. FV ) during tag-generation (resp. verification)
queries and Fa ∈ FF for the output.

The SUF-FL2MAC,F,L,F,ALFa experiment
Initialization: Oracle MacLFak(m, Fa):

k ← Gen τ = Mack(m, Fa)
S ← ∅ S ← S ∪ (m, τ)

Return (τ, LM (Mack(m, Fa)))
Finalization:

(m, τ)← AL,Fa,MacLFak,VrfyLFak Oracle VrfyLFak(m, τ, Fa):
If (m, τ) ∈ S or Vrfyk(m, τ) =⊥ ans = Vrfyk(m, τ, Fa)

Return 0 ℓ = LV (Vrfyk(m, τ, Fa))
Return 1 Return (ans, ℓ)

where the SUF-FL2MAC,F,L,A-experiment is defined in Tab. 1.
In App. E, we give an example of application of the atomic model to a MAC [9].

Observations. First, we observe that the atoms could be finer or coarser (we can consider
atoms, for example, a call of a blockcipher, or its rounds or even the gates). Moreover, this
model covers both transient (faults which modify a value for a single computation) and
persistent (faults which modify a value for all subsequent computations) faults. In addition,
when all the inputs of a component are known before the start of the computation any
(deterministic) fault inside them can be seen as a fault on its output (e.g., considering the
well-known MAC Hash-then BC if we compute Mack(m) = Fk(H(m)), with F a BC and H
a hash function, if we consider H and F the atoms of this computation, since the adversary
chooses m, any faults in the computation of H(m) can be replaced by a correspondent
fault on h = H(m) in the computation of τ = Fk(m)). Finally, when the forgery of the
adversary is checked, no faults are allowed, because if the adversary can force the Vrfy
algorithm to output always ⊤, no cryptographic countermeasure can be useful.

2.6.2 Fault resilient PRF (frPRF), MAC, encryption scheme and frAE
Saha et al. [47] introduced the notion of fault-resilient PRF (frPRF). They assume first,
that every faulted query does not leak more than one correct couple (input/output), that
is, ni

pre ≤ 1 and after having done all faulted queries, for any fresh query, the outputs
from Fk are indistinguishable from random ones. We leave the formal definition (Def. 18)
to App. A.6. Similarly, they define a fault-resilient random oracle (which gives random
outputs for fresh inputs even if the adversary has faulted previous queries).

When we move from a PRF to a MAC, we have to consider that we have to forge
(that is, distinguishing if the last oracle is implemented with Vrfyk or ⊥) and we are not
interested in the randomness of the output of Mack. Thus, we have the frMAC definition:
Definition 7. A (qF a, qM , qD, t, ϵ)-fault resilient MAC (frMAC) if ∀ (qF a, qM , qV , t)-adversary
A

|Pr[AMacFak,Mack,Vrfyk ⇒ 1]− Pr[AMacFak,$,⊥ ⇒ 1]| ≤ ϵ,

where the adversary is not allowed to forward queries between different oracles. That is,
there is a list S which contains all the couples (m, τ), with m the queries asked to Mack

or $, and τ is the oracle’s answer, and a list Sflt of all queries to MacFak which for every
query on input m, contains the couple message (m′, τ), with m′ any value that m takes via
fault, such that Vrfyk(m′, τ) ̸=⊥; the adversary cannot ask to Vrfyk any query in S ∪ Sflt

and to the Mack/$ oracle a query on input m, if there is a couple (m, τ) in Sflt for any τ .
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Note that to MacFak oracle the adversary can ask queries with no faults. All the queries
to MackFa must be done before the first Mack/$ oracle query.

Similar definitions of fault-resilient encryption schemes (Def. 19), AE (Def. 20) can be
found in App. A.6; as well as a frMAC (frMAC) and a fault-resilient AE-scheme (MEM).

3 Integrity vs. faults
This section introduces our integrity framework and definition in the presence of faults
and leakage. To motivate it, we start by exposing a trivial fault attack that is not covered
by the frMAC and frAE security definitions (Sec. 2.6.2, and App. A.6).

3.1 A trivial attack on frMAC and frAE
In our opinion, the frMAC (and frAE) framework is not completely suited to provide
security because it does not cover a trivial attack (which depends solely on the framework,
and not, in our opinion, on the inherent security of a scheme). We exploit the fact that in
the frMAC security definition, for a faulted query on input (m, Fa), we do keep in memory
the couples (m′, τ), s.t. Vrfyk(m′, τ) = ⊤, with τ ← Mack(m, Fa) and m′ is any value that
m takes via fault (Sec. 2.6.2), but we do not keep in memory the couples (m′, τ ′), s.t.
Vrfyk(m′, τ ′) = ⊤, where m′ and τ ′ are any value that m and τ takes via fault.

This can easily be exploited: Let us query Mack on input (m, Fa), where Fa is the
flipping of the first bit of the tag τ when it is output (that is, we inject a fault in the
Return part of the algorithm). Thus, the faulted computation outputs τ ′ = τ ⊕ 1∥0|τ |−1

instead of the correct tag τ . Now, we forge Mac with (m, τ). Obviously, Vrfyk(m, τ) = ⊤,
thus our forgery is valid. Moreover, it is fresh, since we only deem not-fresh queries of the
type (m′, τ ′) s.t. Vrfy(m′, τ ′) ̸=⊥, with m′ any value that the variable assumes via faults.
In our case, there are no such couples. Note that the previous attack does not use any
information learned via leakage and can be done against any MAC scheme.

Crucial observations. The same attack can be done to a frAE-secure encryption scheme
when the tag (or any block of the ciphertext) is computed. The previous attack may be
deemed trivial, but nonetheless exposes a hole in the security model of [47]. In our opinion,
the previous attack does not pose any security problem, and it is completely acceptable to
consider the previous forgery not fresh, making the adversary unable to win with such a
forgery. But the model should cover such a situation.

This attack shows the complexity and subtility of modeling security against fault attacks
when the adversary can inject faults into the Mac or Enc algorithm. 6

The previous attack may not happen in the atomic model (Sec. 2.6.1), because we
assume that the output of the scheme is formed by rearranging (and dropping) the outputs
of the atoms via the Select function. In particular, for LR-MAC1, this cannot happen since
the tag is the output of the block-cipher F.

3.2 Security definitions for integrity in the presence of faults and
leakage

Here, we give our integrity definition for AE in the presence of faults and leakage. Our
model assumes that the key generation does not leak and cannot be faulted, as in all
leakage-resilient and fault-resilient models [40, 3, 12, 29, 27, 1, 9, 47].

In view of the attack explained in the previous section, we follow the Berti et al. [9]
framework (see Sec. 2.6). Adapting Def. 6 to the AE syntax we obtain:

6It is out of the paper’s scope, but modeling such attacks is challenging in defining security notions as
CCA with faults, when we want to prevent the adversary from forwarding queries between her oracles.
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Table 2: The CIL2F2 experiment. To simplify the description of the experiment we have
omitted the checks that Fa ∈ FE (resp. FD) during encryption (resp. decryption) queries
and Fa ∈ FF for the output.

The CIL2F2Π,F,L,F,ALFa experiment
Initialization: Oracle AEncLFak(m, Fa):

k ← Gen c = AEnck(a, m)
S ← ∅ (a′, c)← Faulted(a, m, Fa)

S ← {(a′, c)} ∪ S
Finalization: Return (c, LE(AEnck(a, m, Fa)))

(a∗, c∗)← AL,Fa,AEncLFak,ADecLFak

If (a∗, c∗) ∈ S or ADeck(a∗, c∗) =⊥ Oracle ADecLFak(a, c, Fa):
Return 0 ans = ADeck(a, c, Fa)

If invalid = 1 Return 1 ℓ = LV (Vrfyk(m, τ, Fa))
Return 1 Return (ans, ℓ)

Definition 8. A (IAEnc, IADec)-protected implementation of the AE-scheme
Π = (Gen, AEnc, ADec) with leaking function pair L = (LAEnc, LADec) and fault admissible
sets F = (FE ,FD) is (qF L, qE , qD, t, ϵ) ciphertext integrity in the presence of leakage and
faults against F-fault-then-leakage attacks in encryption and decryption (CIL2F2) if for all
(qF L, qE , qD, t)-adversaries AL,Fa we have: Pr[CIL2F2 F,L,A ⇒ 1] ≤ ϵ.
Where the CIL2F2Π,F,L,A-experiment is defined in Tab. 2, and Faulted is an algorithm that
takes as input all the values that a assumes during the encryption and outputs the couple
(a′, c) s.t. ADeck(a′, c) ̸=⊥. Moreover, if there is more than one valid couple Fa blocks the
execution and returns the flag invalid which makes the adversary wins the experiment.
We may add a suffix -de or -dd or d to denote that we allow only differential faults in
encryption or in decryption or in both, respectively.

The fact that the adversary can win, if she forces Faulted to output two valid couples
(a′, c), and (a′′, c′′) (where a′ and a′′ are two different values that a assumes due to the
faults), has been inspired by [27].

The qF L queries are for the adversary to model the leakage in the presence of faults.
Thus, as in [40], the adversary chooses all the inputs and the key. In the unbounded
leakage model, where the strongly protected components are modeled as leak-free, there is
nothing to model (because the adversary cannot obtain from leakage more than what we
assume she can obtain, that is all inputs and outputs of every component except for the
key of the leak-free), thus, we omit the qF L queries.

Looking ahead, since CONCRETE uses only once a. Thus, according to the atomic
model, the adversary cannot fault a, Faulted will always answer (a, c), and the adversary
cannot win making Faulted obtaining two different valid couples (a′, c), and (a′′, c). The
decoupling attack [45] is covered by the previous definition.

On the other hand, we may consider the previous security definition too strict. In fact,
an adversary could forge simply taking some values that the ciphertext assumes. That
is, let c = Select(y1, ..., ym), the forgery will be (a′, c′) with a′ be one of the values that a
assume during one encryption query, say the ith, and c′ = Select(y′

1, ..., y′
N ) with y′

j one of
the value that yj during the ith encryption query, as the decoupling attack does. We can
be satisfied with a scheme which is forgeable only with such forgeries, as long an adversary
is only able to find a single valid forgery per encryption query. Thus, we introduce the
weakly integrity in presence of faults and leakage.
Definition 9. A (IAEnc, IADec)-protected implementation of the AE-scheme Π =
(Gen, AEnc, ADec) with leaking function pair L = (LAEnc, LADec) and fault admissible sets
F = (FE ,FD) is (qF L, qE , qD, t, ϵ) weak ciphertext integrity in the presence of leakage and
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faults against F-fault-then-leakage attacks in encryption and decryption (wCILF2) if for all
(qF L, qE , qD, t)-adversaries AL,Fa we have

Pr[wCILF2 F,L,A ⇒ 1] ≤ ϵ

where the wCILF2Π,F,L,A-experiment is defined in Tab. 3 (App. J), and Faulted is an
algorithm that takes as input all the values that a, and c assume during the encryption
and outputs the couple (a′, c′) s.t. ADeck(a′.c′) ̸=⊥.

With respect to similar definitions (for example [27, 45]) we do not ask that for each
encryption query, there is only a valid decryption query that can be produced, but simply
that the adversary cannot find two valid forgeries. That is, we move from an existential
condition to a computational one. We believe that for security this is a sufficient condition,
since the problem is not if two such forgeries exist, but if an adversary can find them.

4 The integrity of CONCRETE
This section is devoted to study the integrity of CONCRETE in the presence of faults and
leakage. First, we apply the atomic model to CONCRETE. Second, we prove that in the
atomic model, if the adversary is not allowed to insert a fault in the key of the leak-free
TBC F, CONCRETE provides security in the presence of a leaking encryption and a leaking
and faulty decryption. Third, we prove that if the adversary can insert a single bit fault in
encryption she can forge, breaking integrity. Fourth, we prove that if the adversary is only
allowed differential (or random) faults CONCRETE provides weak-integrity with faults.

4.1 CONCRETE and its division in atoms
Here, we divide both the encryption and the decryption algorithm of CONCRETE in atoms
(and we give the dependency matrix in App. E.2).

To make the notation clearer, instead of indexing with a subset in N, we prefer to use an
indexation similar to the one used by subsections in Latex (e.g., 0.1, 0.2, . . . , 0.n, 1.1, . . .).

Division of CONCRETE into atoms. First, we observe that the associated data, a is
used only once by CONCRETE, thus, according to the atomic model (Sec. 2.6.1), it cannot
be faulted.

For the query on input (a, m), we define (x1, . . . , xl) = (m1, . . . , ml), the parsing of m
in n-bit long blocks, xl+1 = a. Similar to what done in [9], we assume that the master key
is hard coded into the implementation, thus, we consider F·

k(·) as an atom; moreover, we
consider the production of randomness as an additional atom. So, as atoms, we consider
F·

k(·), E·(pA), E·(pB) H′
s(·, ·), the XOR · ⊕ ·, and the random picking · $← {0, 1}n.

We define f0.1 = k0
$← {0, 1}n, f0.2 = Ek0(pB), then we iterate these three blocks

for i = 1, ..., l − 1: fi.1 = ki = Eki−1(pA), fi.2 = yi = Eki
(pB), fi.3 = ci = yi ⊕ mi;

after that, fl.1 = kl = Ekl−1(pA), fl.2 = yl = Ekl
(pB), fl.3 = cl = π|ml|(yl) ⊕ ml,

fl+1.1 = h = H′(c0∥ . . . ∥cl, a), fl+1.2 = cl+1 = Fh
k(k0).

We observe that f0.1 uses no input, while f0.2 only z0.1 = k0. For all i = 1, ..., l, fi.1 uses
only zi−1.1 = ki−1, fi.2 uses only zi.1 = ki, and fi.3 only zi.2 = yi and xi = mi. Finally,
fl+1.1 uses xl+1 = a, and z0.2 = c0, z1.3 = c1, . . . , zl.3 = cl, while fl+1.2 uses zl+1.1. The
output is (z0.2, z1.3, ..., zl.3, zl+1.2) = (c0, c1, ..., cl, cl+1), that is, Select(z0.0, . . . , zl+1.2) =
(z0.2, z1.3, ..., zl.3, zl+1.2).

The dependency matrix, which is straightforwardly obtained from these equations, can
be found in App. E.2, Eq. 3 for space reasons.

For decryption, the division is completely similar and can be found in App. E.2.
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4.2 Integrity of CONCRETE vs faults in decryption
In this section, we prove that CONCRETE does not lose integrity if the adversary can
inject any number or type of faults between the atoms in decryption. Before going into
the proof, we need to introduce a new security definition for hash function.

Pre-image resistance with chosen target and random n-prefix for hash functions. In
the proof, we need the following security property for a hash function H : {0, 1}∗ → TW:
given y ∈ T W chosen by the adversary and x′ $← {0, 1}n, it is difficult to find x′ ∈ {0, 1}n

s.t. x = x′∥x′′ and H(x) = y. Formally,
Definition 10. A hash function H : HK × {0, 1}∗ → TW is (t, ϵ)-pre-image resistant
with chosen target and random n-bit prefix input (n-PR-corpi) if for any t-adversary
A = (A1, A2)
Pr[Hs(x) = y ∧ πn(x) = x′ | x← A2(st, x′), x′ $← {0, 1}n, (st, y)← A1(s), s

$← HK] ≤ ϵ.

The links between this security notion and collision resistance and pre-image resistance
are discussed in App. D

Leakage function and faulty matrix. For the leakage function, assuming that F is imple-
mented in a strongly protected way that we model as leak-free, we use the usual functions
for the unbounded leakage model (see Sec. 2.5): for encryption, LAEnc(a, m, k0; k) := k0
(differently from CIML2, here, the adversary does not choose k0, so we will give it as
leakage); for decryption LADec(a, c; k) := k0. Regarding faults, the adversary is allowed to
set any fault she wants between the atoms in decryption, without any restriction and no
fault at all in encryption, that is all entries of IAEnc are ⊥, while for IADec we allow the
adversary to choose any entry different from ϵ of the matrix defined in Eq. 4, App. E.2, as
long as they are compliant with Sec. 2.6.1.
Theorem 1. Let F be a strongly protected (q, t1, ϵsTPRP)-sTPRP, let E be an ideal block-
cipher, let A be allowed qI queries to E, let H be a (t2, ϵCR)-collision resistant and
(t3, ϵPR-corpi)-n-PR-corpi hash function. Then, (IAEnc, IADec)-protected implementation of
the AE-scheme CONCRETEΠ = (Gen, AEnc, ADec), encoding messages at most Ln bits
long, with leaking function pair L = (LAEnc, LADec) and fault admissible sets F = (FE ,FD)
has (qI , qE , qD, t, ϵ)-ciphertext integrity in the presence of leakage and faults against F-
fault-then-leakage attacks in encryption and decryption (CIL2Fd), with

ϵ ≤ ϵsTPRP + ϵCR + (qD + 1)ϵPR-corpi+
(qD + 2)(qD + 1)

2n+1 + qD[(qE(L + 1) + 1)(qD + 1)/2 + qI ]
2n

.

Idea of the proof. First, we observe that any fault sent after the second atom will not
help any adversary. In fact, after k0 is obtained, the adversary can already compute on
his own if c0 is correct. Then, let (a∗, c∗) be a forgery and let h∗ = H′(c∗

0∥ . . . ∥c∗
l∗ , a∗) and

k∗
0 = F−1,h∗

k (c∗
l∗+1). Suppose that the adversary has already forced a decryption query to

compute k∗
0 = F−1,h∗

k (c∗
l∗+1). Let us suppose that this had been done for the first time in

the ith decryption query (the CIML2 proof is enough to prove that if cl∗+2 = Fh∗

k (k∗
0) in an

encryption query, then the adversary cannot use it [15]). Now, there are two possibilities:
1) the adversary has already forced a correct computation of H outputting h∗. Thus, to
forge the adversary either finds a collision for h∗ (but H is collision resistant) or the input
of this computation ci, ai is s.t. ci

0 = Eki
0
(pB) (but, ki

0 is random, thus, Eki
0
(pB) is random,

since E is a PRF). 2) the adversary has to find a pre-image of h∗ whose first n-bits are
Ek0(pB) (which are random), but H is PR-corpi. Instead, if the adversary has not forced
this computation before, then k0 is random, thus Ek0(pB) is random, thus, the probability
that c0 = c̃0 is 2−n.



Francesco Berti, Itamar Levi 15

The full proof requires that we compute the probability of collision between different
ephemeral keys; we leave it to App. I.1 with the time bounds.

On the need of the ideal block-cipher for E. In our security proof we need to prove the
following: given a random k0, and its direct leakage, c0 = Ek0(pB) remains random. This
seems straightforward to prove, but there is a problem: we need to give k0 to the CIL2F
adversary (as it is leaked). Thus, we cannot use the standard PRF-game, where a PRF
adversary A′ against Ek0 , with k0 picked uniformly at random, uses a CIL2F adversary A,
because A′ should need oracle access to Ek0 or a random function e, but she also needs to
give to A the leakage which is a function of k0. But if A′ knows k0, she wins easily
the PRF game. Moreover, if the adversary A has inserted a differential fault in k0, or she
has set to a fixed value some of its bits, A′ should be able to compute the required queries
correctly, and this is impossible without having access to k0

7

The use of the ideal cipher model in the presence of leakage seems arguable at first
glance. I.e., one may wonder how a block cipher could be ideal when it is instantiated
and the adversary receives leakage of its computations. On the other hand, note that we
are only using the ideal hypothesis to prove that given a random k0, leakage and fault
associated with Ek0(pB), Ek0(pB) remains random, and cannot be forecasted before. We
emphasize that the adversary receives only one such leakage instance under k0.
We feel confident that this assumption does not harm the concrete security of our scheme
and the use of the ideal cipher model even if it is paired with that leakage.

Faults inside the atoms. In the previous proof, we have never used the fact that E is
an ideal block-cipher except, during decryption queries, for the computation of Ek0(pB)
as discussed above, that the right commitment to the ephemeral key retrieved from F−1

k

(which we compute apart from the simulation of the decryption algorithm). Thus, if
any fault is inserted in the computation of E during a decryption query the adversary
should gain no advantage in forging. Moreover, injecting any fault in H (in decryption)
is not a problem: similarly to [9], an adversary can set the output of H when it is used,
which is easier and more powerful than faulting internal computation of H. Thus, our
construction will only require that there are no faults in F. That is, in the implementation
of CONCRETE only a single call to a single primitive must be protected against faults
and leakage to provide integrity in the presence of leakage and faults (in decryption). We
formalize this intuition in App. I.2, giving the model, the theorem and the proof.

4.3 CONCRETE is not secure vs fault(s) in encryption
Until now, we have not considered faults in encryption. In this section, we prove that
a single fault in encryption can break the CIL2F security of CONCRETE: it is simply
enough to perform the decoupling attack [45], that is, we flip a bit in c1, . . . , cl when
h = H′

s((c0∥ . . . ∥cl), a) is computed. Let us say that the fault replaces c1 with c′
1. Let

(c0, c1, . . . , cl, cl+1) be the output of AEnck with input (a, (m1, . . . , ml)) where the compu-
tation has been faulted with the fault previously described. Then, (a, c0, c′

1, c2, . . . , cl, cl+1)
is a valid forgery (encrypting m1⊕ c1⊕ c′

1, m2, . . . ml). Thus, CONCRETE does not provide
integrity if a fault is injected during encryption (either setting or flipping a bit).

4.4 Weakly integrity of CONCRETE vs fault(s) in encryption
In the previous attack, we observe that c1 takes the value c′

1 during the computation,
thus, the previous attack does not break the weak integrity of CONCRETE. Now, we

7For the latter problem, we may have thought of a PRF-game where the adversary can ask key-related
queries. Since this solution does not solve the first problem (the leakage of k0), we have not pursued it,
but we have used the ideal-cipher model.
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study the wCILF2-security of CONCRETE. First, we observe that if the adversary can
set k0 and h, the adversary can produce a forgery. In fact, she can simply precompute
the right c0, . . . , cl for the k0 she has chosen, which encrypts m1, . . . , ml. Then, she can
compute h = H′

s((c0∥ . . . ∥cl), a) for the cis she has already computed and for an a of
her choice. Setting the inputs of F to the h and k0 just obtained, she gets cl+1. So,
(a, (c0, c1, . . . , cl, cl+1)) is a valid forgery. Thus, there is no integrity if the adversary can
set two values in a single encryption query.

Note that for the previous attack, it is necessary for the adversary to set these two
values. She cannot succeed with a differential attack (because both k0 and h would be
random 8, thus, she cannot know in advance the offset to change from the k′

0 (and h′)
actually used in the computation to the one she wants. We prove that CONCRETE is
wCILF2 if the adversary injects only differential faults in encryption (and any faults she
wants in decryption) in App. I.3. The proof is the same with the difference that, for every
encryption query, we can keep in memory instead of c, c′ = (a, (c′

0, . . . , c′
l, cl+1)) where c′

i

is how ci is modified in the input of the H atom, that is, the computation fl+1.1.

5 CONCRETE2: a scheme cilf-secure
In this section, we present CONCRETE2 which achieves CIL2F2. We start by stating why
CONCRETE does not achieve CIL2F2, then we give the description and we prove its CIL2F
security. Finally, we propose a possible improvement using sponges, CONCRETESponge.

5.1 Design of CONCRETE2.
Why CONCRETE is not CIL2F2. The main reasons why CONCRETE does not achieve
CIL2F2 are two: first, every possible ciphertext block c1, . . . , cl produced is “authenti-
cated” 9, irrespective if this is the encryption of the required message; second, given a
ciphertext block ci, encrypting mi, an adversary can predict the encryption of m′

i (which
is c′

i = ci ⊕mi ⊕m′
i).

Designing CONCRETE2. To solve the first problem, it is enough to encrypt also the
commitment of the message. For example, we can hash the message, h′ = H(c0∥m), (c0 is
used to have something random,) and we compute a ciphertext block, cl+1 = Eki+1(pB)⊕h′,
with ki+1 = Eki

(pA). In decryption, we both check, if we have the correct commitment for
the retrieved key k0, and if we have encrypted the correct commitment of the message.

For the second problem, instead of XORing the message to a random value yi = Fki(pB),
we use yi as an ephemeral key, that is, ki,E = yi = Eki(pB) and we compute ci = Eki,E

(mi).
This way, the adversary, having ci, cannot predict c′

i which encrypts another message
(moreover, although the ephemeral key ki,E potentially may be leaked, this cannot give any
additional information than how to encrypt this particular block). We use a similar idea,
using the MAC proposed at CCS15 [40] (see Alg. 5, App. J), to compute the commitment.

Thus, we have obtained CONCRETE2 which we describe in Fig. 3, App. J, and in
Alg. 7, App. J.

We also provide a sponge-based construction, denoted CONCRETESponge, which uses
the duplex construction to produce the ephemeral keys, as we detail in App. C. Owing to
a lack of space.

With respect to MEM [47], our scheme uses the strongly protected component signif-
icantly less (once as compared to three times), and we provide authenticity even if the
adversary can inject any fault in decryption and has leakage (for more details, see App. F).

8If k0 is random, then, c0, . . . , cl are random. For the sake of the argument, we assume that
H′

s((c0, . . . , cl), a) is random, although this is not true if H is not assumed to be a random oracle.
However, for a reasonable hash function, if the inputs are random, the output should be similar to random.

9Technically speaking, CONCRETE does not authenticate these ciphertext blocks, but uses their hash
to send k0. Since there is a commitment on k0, this provides authenticity.
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5.2 Impossibility results for the CIL2F2-security of CONCRETE2
We start giving some impossibility results regarding the number of values set via faults (or
the number set per atom), then, we give the CIL2F2 security for CONCRETE2. Combining
everything, we obtain a tight security result in terms of faults that an adversary can set.

5.2.1 Setting 2 values.
An adversary can forge easily if she is allowed to set 2 values per encryption queries. She
can proceed as follows: she chooses k′

0 ,m′, and a′, then she computes c′
0, ..., c′

l+2, and
h′ = H(c′

0∥ . . . ∥c′
l+1, a′) as for an encryption query where the key picked is k′

0, the message
encrypted is m′ and the associated data is a′ (this can be done since the only value not
known to the adversary is k0 in a real encryption, but, here, the adversary chooses it). Then,
she does an encryption query on input (a, m). When cl+2 is computed, cl+2 = Fh

k(k0), she
simply replaces using faults h with h′ and k0 with k′

0. Since no message or associated data
is touched via faults, the fault chosen by the adversary is admissible. The encryption oracle
outputs (c0, . . . , cl+2). The adversary outputs as her forgery c∗ = (c′

0, . . . , c′
l+1, cl+2).

Clearly, c∗ is fresh. Moreover, c∗ is valid since hashing c′
0, . . . , c′

l+1 and a, we obtain h′

and F−1,h′

k (cl+2) = k′
0 and c′

0, . . . , c′
l+1 is the correct encryption for m′ (that is, c′

0 is the
correct committing for k′

0 and c′
l+1 is the correct committing for k′

0 and m′.
Thus, CONCRETE2 cannot be CIL2F2 secure when the adversary can set two values

via a fault. We discuss the theoretical reason behind this result and an additional attack
where the adversary can set one value per atom in App. G.

5.3 Pre-image resistance for a chosen image offset of a random value
Before stating the security result, we need to introduce a new hash security definition,
which involves finding a pre-image for h⊕∆ with h = H(x) where x is “random” enough.
Definition 11. Let H : HK × {0, 1}∗ → {0, 1}n be a hash function. We say that H is
(t, ϵ)-pre-image resistant for a chosen offset of the image of a random value (PR-coirv) if,
for any t-adversary, A = (A1, A2)

Pr[x← A2(st, x, h′) s.t. Hs(x) = h′ | h′ = h⊕∆,

h = Hs(x), x
D← {0, 1}∗ (st,D, ∆)← A1(s), s

$← HK] ≤ ϵ
where ∆ is any value in {0, 1}n ̸= 0n, and D is any distribution over {0, 1}∗ s.t.

max
x∈{0,1}∗

Pr[x D← {0, 1}∗] ≤ 2−n.

Substantially, the adversary, first, chooses a distribution D over {0, 1}∗ where no value
can be picked with probability larger than 2−n, which is the uniform probability on the
target space, and offset ∆, then, after receiving h = Hs(x) with x

D← {0, 1}∗, she has to
compute a pre-image for h⊕∆. For a good hash function, we expect that h is random
since D is a reasonably good random distribution, thus, it is perfectly equivalent to the
range-oriented pre-image resistance (Def. 22, App. D).

We require that ∆ ̸= 0n because, otherwise x is a pre-image, thus, an adversary trivially
wins (and, looking ahead, we have no interest in this case in our proof). Implicitly, we
require that the distribution D can be efficiently computed and described. This definition
cannot hold for any distribution with the required randomness condition (think of a
distribution that picks only the pre-images of a certain value x, which are infinite).

This definition is in the standard model, it is trivial to see that this property holds if
we model H as a random oracle.

5.4 The CIL2F2-security of CONCRETE2
This section is devoted to stating and proving the integrity in the presence of leakage and
faults of CONCRETE2. We start by giving the leakage functions and the faulty matrices
for CONCRETE2.
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Leakage function and faulty matrix. For the leakage function, we use the same leakage
function as for CONCRETE: LAEnc(a, m, k0; k) := k0, and LADec(a, c; k) := k0, because
from k0 the adversary can compute correctly all ephemeral values. Regarding faults, the
adversary is allowed to set any fault she wants between the atoms in decryption, without
any restriction; in encryption, she can use any differential fault she wants, moreover, she is
allowed to set a single value, that is all entries of IAEnc are either ϵ (when the corresponding
value in the dependency matrix is ϵ) or ⊥ /⊕ with the exception of a single value; while
IADec is empty, that is, we allow the adversary to choose any entry different from ϵ of the
matrix defined in Eq. ?? as long as they are compliant with Sec. 2.6.1. FE and FD are
defined accordingly. We leave the formal division in atoms to App. E.3 (it is very similar
to what we’ve done for CONCRETE).
Theorem 2. Let F be a strongly protected (q, t1, ϵsTPRP)-sTPRP, let E be an ideal block-
cipher, let A be allowed qI queries to E, let H be a (t1, ϵCR)-collision resistant, (t2, ϵPR-coirv)
pre-image resistant for a chosen offset of the image of a random value, and (t3, ϵPR-corpi) pre-
image resistant with chosen target and random n-bit prefix input. Then, the (IAEnc, IADec)-
protected implementation of the AE-scheme CONCRETE2 Π = (Gen, AEnc, ADec), encrypt-
ing messages at most Ln bits long, with leaking function pair L = (LAEnc, LADec) and fault
admissible sets F = (FE ,FD) has (qI , qE , qD, t, ϵ) provides ciphertext integrity in the
presence of leakage and faults against F-fault-then-leakage attacks in encryption and
decryption (CIL2F2− (de)) with

ϵ ≤ ϵsTPRP + ϵCR + qϵPR-corpi + 2qEϵPR-coirv+
a⃝{4qE + q(q + 1) + 1 + qD + qE(qE − 1

2 )qI(2 + 2qD + 5qE)+

b⃝(3L + 4)[6qEqD + 2qD + 2qD
qD + 1

2 + 2qE + 5qE
qE − 1

2 )]}2−n.

Note that the terms marked with a⃝ and b⃝ are due to the probability of collisions
between ephemeral keys (when faults do not set them).

Proof idea: First, we observe that CONCRETE2 is CIL2F2-de. An adversary cannot forge
using faults in decryption for the same reason as for CONCRETE. Regarding differential
faults in encryption, let (h, k0, cl+2) be the triple associated to F, for this encryption
query (i.e., the inputs and the output of the F atom). If h = H(c0∥ . . . ∥cl+1, a), thus,
to forge using this triple, the adversary has to find another pre-image for h (but H is
collision-resistant) or to use it in the forgery; instead, if this is not the case or (c0, . . . , cl+1)
is not a valid encryption, the adversary has to find a pre-image for h with a random prefix
(c0). But, we claim that (c0, . . . , cl+1) is a valid encryption10 using the key k0 for any
message m only if the adversary has injected no fault. Thus, the adversary cannot use
(c0, . . . , cl+1, cl+2) in the forgery.

Now, we prove the claim: Let m be the message that the adversary wants to encrypt,
let c† = c†

0, . . . , c†
l+1 the correct (that is, without any faults injected) encryption of m using

the ephemeral key k0, and let k†
1, . . . , k†

l+1, k†
0,E , . . . , k†

l+1,E , k†
0,A, . . . , k†

l+1,A be the correct
ephemeral keys. All these values are random, due to k0 be random, and E be an ideal
cipher, thus, the probability that an adversary correctly guesses any of them is negligible.
Let us suppose ci ̸= c†

i , thus, since ki,E is random the message block ci encrypts, m′
i is

random (since m′
i = E−1

ki,E
(ci)), thus, the correct k′

i,A = Eki−1,A
(m′

i) is random and all
subsequent k′

j,A for j > i are random and consequently c′
l+1 is random too. Now, the

probability that the adversary can correct this chain with a fault is negligible because she
has to guess the right value (or the right offset) which is random.

So, we only need to consider what the adversary can do when she sets a value in
encryption. We classify encryption queries where the set value is injected in the computation

10It means that if in Enc encryption we use k0 and m, we obtain exactly those values.
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AEnc(a, m) where the key picked is k0, as listed next.
In the computation of F:

• changing k0 to k′
0: It implies that the adversary knows a valid triple for Fk (h, k′

0, cl+2).
She can use this information to forge if she can find c′

0, . . . , c′
l which correctly encrypts

m′ starting from k′
0, and a′ s.t. H(c′

0∥ . . . ∥c′
l+1, a′) = h. We have two cases regarding

the H atom in the encryption query:
– h is the actual output of the H atom: Again we have two possibilities:

∗ the inputs of the H atom are (c′
0∥ . . . ∥c′

l+1, a′): The probability that this
happens is negligible because c0 is random (since k0 is random and the
adversary can only use differential faults and E is an ideal cipher) and the
probability that the adversary with differential fault is able to arrive to c′

0
is negligible (which is equal to 2−n).

∗ the inputs of the H atom are not (c′
0∥ . . . ∥c′

l+1, a′): Thus, we have found a
collision for the hash function because both the actual input of the hash
during the encryption query and (c′

0∥ . . . ∥c′
l+1, a′) have the same output.

– the actual output of the hash function is h′ ̸= h: So we cannot use the previous
result because it is not given that a pre-image for h′ has been ever computed.
But, the ciphertext blocks c0, . . . , cl+1 are random, due to the fact that k0 is
random, E is an ideal cipher, and we are only using differential faults. She
only has the pre-image for h⊕∆ = h′ where ∆ is the offset added to h in the
computation of F due to the fault Fa. Thus, the adversary has to break the
PR-coirv-security of H 11

• changing h to h′: So the adversary knows a valid triple for Fk (h′, k0, cl+2). She can
use this information to forge if she can find c′

0, . . . , c′
l which correctly encrypts m′

starting from k′
0, and a′ s.t. H(c′

0∥ . . . ∥c′
l+1, a′) = h′. Now, k0 is random (because

it comes from a random value that is only affected by differential faults), thus
c0 = Ek0,E

(pB), with k0,E = Ek0(pA), is random. Therefore, to forge an adversary
has to break the PR-corpi-resistance of H.

Not in the computation of F: It implies that the adversary knows a valid triple for Fk

(h, k0, cl+2), with k0 random (because it is randomly picked and then the adversary can
only add differential faults). In particular, let c′

0 = EEk0 (pA)(pB), it is random due to the
fact that k0 is random. We have two possibilities for h:

• h is the actual output of the H atom: Now we consider the H atom, two possibilities:
– In the computation of H the c0 input is not c′

0 (obtained with faults). Thus, she
needs to find a pre-image for h with prefix c′

0 = EEk0 (pA)(pB). So, we can find
two pre-images for h, thus breaking the collision resistance of H.

– In the computation of H the c0 input is c′
0 (obtained with faults). Let ((c0, . . . , cl+1), a)

be the inputs of H atom12. We have two cases:
∗ (c0, . . . , cl+1) is a valid 13 encryption using the key k0 for any message m:

As we have already discussed before this cannot happen (even if she can set
one value). Thus, in this case, since the adversary has injected no fault in
this encryption query, since c0, . . . , cl+1 is the actual encryption of m using
k0 as a key, she has to find another valid encryption whose hash is equal h
(thus, she has found a collision).

∗ (c0, . . . , cl+1) is not a valid encryption using the key k0 for any message m:
Thus, the adversary has to find a valid encryption using the key k0 for any
message m, c′

0, . . . , c′
l+1 which is a valid encryption for any message m and

with ephemeral key k0 and a′ s.t. H((c′
0∥ . . . ∥c′

l+1), a′) = h, thus, we have

11Note that if the adversary can set k0, and can set additional values, she can invalidate the assumption
that h′ is random either setting it, or setting other values forcing the inputs of H not to be random
anymore, as we did with the attack presented in Sec. 5.2 and App. G.

12Note that the adversary cannot fault a since here it is the only time it is used
13It means that if in Enc encryption we use k0 and m, we obtain exactly those values.
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found a collision for the hash function
• h is not the actual output of the H atom: She can use this information to forge

if she can find c′
0, . . . , c′

l which correctly encrypts m′ starting from k0, and a′ s.t.
H(c′

0∥ . . . ∥c′
l+1, a′) = h′. Now, k0 is random (because it comes from a random value

that is only affected by differential faults), thus c0 = Ek0,E
(pB) with k0,E = Ek0(pA)

is random. Thus, to forge, an adversary has to break the PR-corpi-resistance of H.

The complete (long and cumbersome) proof can be found in App. I.4 for space reasons
with the time complexity bounds.

Faults inside the atoms. Similarly to CONCRETE, there shouldn’t be any problem if the
adversary can inject faults in any atom in decryption, except for F−1

k . On the other hand,
for encryption queries, if we allow the adversary to inject a fault inside an atom, except for
Fk, we have two challenges: First, we have to be sure that we do not set a value, but this
is prevented using only differential faults. Second, we have to be sure that the outputs of
E remain random. This is however a theoretical problem, but it is needed in the security
proof: if the adversary can assert a differential fault in the computation of Ek0(pB), we
do not know how to be sure that the real c0 is random. But, in the PR-corpi security
definition, we need to output the hash before obtaining the random prefix (and to output
the hash, we need to perform the faulted computation of Ek0(pB)). Thus, we need to be
sure that Ek0(pB) is random given the faulted Ek0(pB), or to find another assumption (for
example, perhaps it can be proven in the random oracle model). We strongly suspect that
an adversary cannot exploit this case with an attack, we leave this as an open discussion
and future challenge. There hash computation shouldn’t be a problem, and we believe
that, in practice, we have to protect against faults and leakage only a single TBC-call.

6 Conclusion
In this paper, we have given a model for integrity in the presence of leakage and faults
expanding the atomic model. We have also shown how it is delicate to model, exposing a
problem in the fault-resilience model.

We have also shown that it is possible to have an AE scheme providing integrity in the
presence of leakage and faults (only in decryption) when the adversary can do a powerful
leakage attack (unbounded leakage model) and fault attacks (unbounded faults between the
atoms) only assuming that a single call to a TBC is fault- and leak-free. We have also proven
that we can obtain a milder notion of security (hardening the requirement of freshness)
allowing the adversary to inject only differential faults in encryption queries. Modifying
CONCRETE, and proposing CONCRETE2 and CONCRETESponge we have proved that it
is possible to provide integrity in the presence of leakage and faults in both encryption
and decryption in a very generous fault model for the adversary, with a scheme that is
more efficient than the previously proposed scheme, MEM (see App. F). The complexity
of the proofs and the need to introduce new security assumptions show how difficult it is
to prove security in such a generous framework for an adversary.

For future works, first, we think, there is the whole problem of privacy in the presence
of faults and leakage, both to find good definitions (achievable and giving meaningful
security) and schemes achieving them. Second, we would like to remove the leak-free
requirement for the TBC replacing with strong-unpredictability with leakage, and to study
if there is a similar security notion in the presence of leakage and faults. Third, to study
the security when the adversary can inject faults inside the atoms, finding security notions
on which we can rely.
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A Additional definitions - fault resilient constructions
A.1 MAC
Here, we give the syntax definition for the cryptographic construction to authenticate:
Message Auhtentication Codes (MAC)

Definition 12. A Message Autentication Code (MAC) is a triple of algorithms Π =
(Gen, Mac, Vrfy) where

• The key-generation algorithm Gen generates a key from the sets of keys, K.
• The tag-generation algorithm Mac is a deterministic algorithm which takes as input

a key k ∈ K, and a message m ∈ M, and outputs a tag τ . We denote this with
τ ← Mack(m).

• The verification algorithm Vrfy is a deterministic algorithm which takes as input
a key k ∈ K, a message m ∈ M, and a tag τ , outputs either ⊤ (“valid”) or ⊥
(“invalid”). We denote this with ⊤/ ⊥= Vrfyk(m, τ).

We require correctness, that is ∀(k, m) ∈ K ×M, ⊤ = Vrfyk(m, Mack(m)).

Its security definition can be found easily, [32] (it can also be obtained from Def. 6
removing faults and leakage).

A.2 AE
Here, we give the standard syntax definition for AE.

Definition 13. An authenticated encryption (AE) scheme is a triple of algorithms Π =
(Gen, AEnc, ADec) where

• The key-generation algorithm Gen generates a key from the sets of keys, K.
• The encryption algorithm AEnc is a probabilistic algorithm which takes as input

a key k ∈ K, an associated data a ∈ AD and a message m ∈ M, and outputs a
ciphertext c ∈ C. We denote this with c← AEnck(a, m).

• The decryption algorithm ADec is a deterministic algorithm which takes as input
a key k ∈ K, an associated data a ∈ AD and a ciphertext c ∈ C, and outputs a
message m ∈M or ⊥ (“invalid”). We denote this with ⊥ /m = ADeck(a, c).

We require correctness, that is ∀(k, a, m) ∈ K × AD × M, m = ADeck(a, c) ∀c ←
AEnck(a, m). A nonce-based AE (nAE) is an AE with an additional input called the
nonce.

A.3 ivE - iv-based encryption schemes
For encryption, we use iv-based encryption schemes:

Definition 14. An iv-based encryption scheme (ivE) is a triple of algorithms Π =
(Gen, Enc, Dec) where

• The key-generation algorithm Gen generates a key from the sets of keys, K.
• The encryption algorithm Enc is a deterministic algorithm which takes as input a

key k ∈ K, an initialization vector iv ∈ IV, and a message m ∈ M, and outputs a
ciphertext c ∈ C. We denote this with c← Enck(iv, m).

• The decryption algorithm Dec is a deterministic algorithm which takes as input a
key k ∈ K, an iv ∈ IV, and a ciphertext c ∈ C, and outputs a message m ∈M or ⊥
(“invalid”). We denote this with ⊥ /m = Deck(iv, c).

In the security definitions, we assume that the iv is picked uniformly at random from
IV . Thus, we denote with Enc$

k(m), the fact that we pick iv $← IV , and, then, we compute
Enck(iv, m).
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A.4 Black-box security for AE
In the black-box model (that is when the adversary can choose the inputs and only sees
the outputs of their oracles), the standard security notion [39] for AE is the following:
Definition 15. An AE-scheme Π = (Gen, AEnc, ADec) is (qE , qD, t, ϵ)-AE-secure if for any
(qE , qD, t)-adversary A, the following advantage

|Pr[1← AAEnck(·,·),ADeck(·,·)]− Pr[1← A$(·,·),⊥(·,·)] ≤ ϵ, (2)
where $(·, ·) is an oracle which on input (a, m) outputs c

$← {0, 1}|AEnck(a,m)| and ⊥ is an
oracle which always output ⊥ (“invalid”). The adversary is not allowed to query his second
oracle on input (a, c), if she has received c as an answer from the first oracle on input (a, m)
for any m ∈M. For nAE-security, we adapt the previous definition to its syntax, and we
add the requirement that the nonce is not repeated between different AEnck/$-queries.

This security definition gives both privacy and authenticity.

A.5 Privacy in the presence of leakage.
We now move to define privacy in the presence of leakage. As already discussed, modifying
the standard real-or-ideal game, (that is, distinguishing AEnck from $), by adding leakage
to both members is very difficult, there are two possibilities:
Pereira et al. [40] started from the standard CPA-security (Chosen-Plaintext Attack) [32],
adding leakage to this. We modify this definition to make it coherent with the AE-syntax 14:
Definition 16. An AE-scheme Π = (Gen, AEnc, ADec) is (qL, qE , t, ϵ)-CPAL-secure (CPA
with leakage), if for any (qL, qE , t)-adversary A = (A1, A2)∣∣∣ Pr[b = b′ | b′ ← AL(·,·;·),AEncLk(·,·)

2 (c∗, ℓ∗, st), (c∗, ℓ∗) = AEncLk(a, mb),

(st, m0, m1)← AL(·,·;·),AEncLk(·,·)
1 s.t. |m0| = |m1|, b

$← {0, 1}]− 1
2

∣∣∣ ≤ ϵ

where L(·, ·; ·) is an oracle used to model the leakage, A1 is a (q1,L, q1,E , t1)-adversary, A2
is a (q2,L, q2,E , t2)-adversary, with q1,L + q2,L ≤ qL, q1,E + q2,E ≤ qE and t1 + t2 ≤ t. A
scheme is CPAL2 if in the previous definition the adversary receives not only ℓ∗, but also
ℓ∗

D which is the leakage of ADeck(a, c∗).
Note that the L(·, ·; ·) is an oracle that A uses to understand and model the leakage of

AEnc. For these queries, A chooses the inputs and the key, as suggested in [40].

Instead, Barwell et al. [3] started from the real-or-ideal game and gave the adversary
the ability to have access to leaking queries in both worlds
Definition 17. An AE-scheme Π = Gen, AEnc, ADec-scheme has (qE , qEL, t, ϵ)-encryption
security with leakage (IND-CLPA) if for any (qE , qEL, t)-adversary A

|Pr[1← AAEnck(·,·),AEncLk(·,·)]− Pr[1← A$(·,·),AEncLk(·,·)]| ≤ ϵ,

where ∀(a, m) $(a, m) picks c
$← {0, 1}|AEnck(|a,m)|. 15

Differences between these definitions. The IND-CLPA does not provide any security
for the message encrypted when there is leakage, because an implementation of a scheme
can be IND-CLPA-secure even if the leakage function leaks the full message, that is,
LAEnc(a, m; k) = m. IND-CLPA provides privacy only for encryption when there is no
leakage (thus, it provides at most leakage-resilience).

14The original definition [40] for encryption scheme, is obtained from ours replacing the AE scheme with
an encryption scheme.

15The original definition [3] is not quantitative and it is for nonce-based AE, and can be obtained from
ours, simply adding the nonce as input to AEnck. Moreover, the adversary is not allowed to repeat queries
between his oracles, because they are deterministic, and he cannot repeat the nonce.
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On the other hand, CPAL provides leakage-resistance, because it provides privacy for
encryption when there is leakage. But, to have a CPAL-secure scheme, we must restrict
more the possible leakage functions, since they cannot leak any bit of the message.

We will discuss the leakage functions for which we can give privacy when we prove the
security of our schemes.

A.6 Fault resilient PRF (frPRF), MAC, encryption scheme and frAE
Saha et al. [47] introduced the notion of fault-resilient PRF (frPRF). They assume first,
that every faulted query does not leak more than one correct couple (input/output), that
is, ni

pre ≤ 1 and after having done all faulted query, for any fresh query, the outputs from
Fk are indistinguishable from random ones. Formally:

Definition 18. Let F be a PRF. It is a (qF a, qF , t, ϵ)-fault resilient PRF (frPRF) if ∀
(qF a, qF , t)-adversary A

Pr[∃i ∈ [qF a] s.t. ni
pre(A) > 1] + |Pr[AFFak,Fk ⇒ 1]− Pr[AFFak,$ ⇒ 1]| ≤ ϵ.

Similarly, they define a fault-resilient random oracle (which gives random outputs for
fresh inputs even if the adversary has faulted previous queries).

When we pass from a PRF to an ivEv scheme, we have to consider that ivE schemes
takes a random input for encryption queries. Thus, we have the frivE-security notion:

Definition 19. A (qF a, qE , qD, t, ϵ)-fault resistant ivE-scheme (frivE) Π = (Gen, Enc, Dec)
if ∀ (qF a, qE , qD, t)-adversary A

|Pr[AEnc$Fak,Enc$
k ⇒ 1]− Pr[AEnc$Fak,$ ⇒ 1]| ≤ ϵ.

Combining together the frivE and frMAC security definitions, we have the security
notion for AE-schemes, frAE:

Definition 20. A (qF a, qE , qD, t, ϵ)-fault resilient AE-scheme (frAE) Π = (Gen, AEnc, ADec)
if ∀ (qF a, qE , qD, t)-adversary A

|Pr[AAEncFak,AEnck,ADeck ⇒ 1]− Pr[AAEncFak,$,⊥ ⇒ 1]| ≤ ϵ,

where the adversary is not allowed to forward queries between different oracles. That is,
there is a list S which for any query with input (a, m) contains the couple (a, c), with c the
answer of the AEnck or $ oracle, and a list Sflt of all queries to AEncFak which for every
query on input (a, m), contains the couple message (a′, c), with a′ any value that a takes
via fault, such that ADeck(a′, c) ̸=⊥; the adversary cannot ask to ADeck any query in
S ∪ Sflt. We can give the same definition for nAE-scheme, simply modifying the definition
for the nAE-syntax. In this latter case, the adversary cannot force to repeat nonces via
faults.

Again, to AEncFak oracle the adversary can ask queries with no faults. All the queries
to AEnckFa must be done before the first AEnck/$ oracle query.

A.6.1 A secure frMAC: Hash-then-frPRF

They start from the well-known Hash-then-MAC. As for LR-MACr, they use a random input
r. They hash the message and r, to obtain h = H(r∥m), and, they compute τ = Fk(h),
where F is a frPRF. We depict it in Alg. 1.

For security, they assume that the H is a fault-resilient random oracle (frRO), which
means that if the input is fresh and random, the internal states and outputs are unpre-
dictable [47].



Francesco Berti, Itamar Levi 29

frMAC-security. They prove the frMAC-security of frMAC [47]:

Theorem 3. If H : HK×{0, 1}∗ → {0, 1}n is a frRO, and Fk is a (qF a, qM + qV , t, ϵfrPRF)-
secure-frPRF, then, frMAC is a (qF a, qM , qV , qH , t, ϵ)-secure-frMAC against adversaries that
performs differential faults, with

ϵ ≤ ϵfrPRF +
(

qE

2
)

+ qEqH

2|r| + 2(qH + qE + qV )2 + 2(qE + qV + 1) + 2qF aqV

2|h| + qV

2|τ | ,

with qE = 2qF a + qM and qH is the number of queries made to the random oracle H.

Algorithm 1 The frMAC algorithm.
It uses a frPRF F : K × {0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}n → TW.

• Gen

– k
$← K

• Mack(m):

– r
$← {0, 1}n

– h = H(r∥m)
– τ = Fk(h)
– Return (r, τ)

• Vrfyk(m, r, τ):

– h = H(r∥m)

– If τ
?= Fk(h) Return ⊤

– Else Return ⊥

A.6.2 A secure frAE: MAC-then-Encrypt-then-MAC (MEM)

Saha et al. [47] observe that using a composition of an encryption scheme and a frMAC
(e.g, Enc-then-MAC) is insecure because the adversary can fault the input of frMAC and
enable the decoupling attack. Let us suppose that Enc outputs a ciphertext c which is the
input of frMAC. We inject a fault in c before frMAC processes it, thus, modifying it to c′.
Then (c′, τ) is a valid forgery, with τ the output of frMAC for the previous call.

To prevent such an attack, they propose an AE scheme MEM (MAC-then-Encrypt-then-
MAC) [47]. The idea is to first authenticate the message m (and the AD, a) along with a
random input r, with frMAC, obtaining the first tag τ1 Then, we use PSV (Sec. 2.5) to
encrypt both r and m, obtaining c, using τ1 as the iv. Finally, we authenticate τ1, c with
frMAC, obtaining τ2.
The idea is that the decoupling attack is prevented because if the adversary changes the
input of the second MAC, then, she changes either τ1 or c. In the first case, τ ′

1 is no more
correct, while if we change c into c′, the decryption of c′, (r′, m′) is no more ok with τ1
We depict MEM in Alg. 2.

frAE-security. The security relies on the security in the presence of faults and leakage of
MAC and ivE [47].
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Theorem 4. If MAC1 and MAC3 are two independent (qF a, qM , qV , qp, t, ϵfrMAC)-fault
resilient MACs, and Π2 = (Gen, Enc, Dec) be a (qF a, qE , t, ϵfrivE)-fault-resilient ivE-scheme,
which is built using a secure frPRF F, a pseudorandom key generator KG s.t. Enck2 =
KG(Fk2(iv))⊕m, then, randomized MAC-then-MAC (MEM) is a randomized
(qF a, qM , qV , t, ϵ)-frAE against adversaries which perform differential faults, with

ϵ ≤ 2ϵfrMAC + ϵfrivE + qEqV

2|r| +
(

qE

2
)

2|τ1| +
(

qE

2
)

2|r ,

with qE = 2qF a + qM and qp is the maximum number of queries made to either H1 and H2.

B Previous security results for CONCRETE
AE-security. For simplicity, in all the proofs, we omit the quantitative bounds for the
time (which can be found in [14]).
Theorem 5. Let F be a (qF, ϵsTPRP)-sTPRP with n-bit blocks, let E be a (2, ϵPRF)-PRF,
and let H be a (ϵCR)-collision resistant hash function, then, the mode CONCRETE, which
encrypts at most L-block long messages is (qE , qD, ϵ)-AE-secure with

ϵ ≤ ϵsTPRP + ϵCR + (qD + 1)(L + 1)(q + qE)
2n+1 + qD

2n
+

(qE(L + 1) + qD)ϵPRF + qE(L + 1)[qE(L + 1)− 1]
2n+1 + (qD + qE)(qD + qE − 1)

2n+1 .

We briefly explain the terms of the bound:
• ϵsTPRP + ϵCR + (qD+1)(L+1)(q+qE)

2n+1 + qD

2n + (qD + 1)ϵPRF is needed for authenticity. In
particular,

– ϵsTPRP + (qD+1)(qE)
2n+1 because we need that the output of F and F−1 are random;

– qDϵPRF because we are checking c0 and not k0. We assume c0 is random because
E is a PRF;

– (qD+1)(L+1)(q+qE)
2n+1 because we need that in every decryption query the k0 we

have obtained has never been used before (to use the PRF-security of E).
• (qE(L + 1) + qD)ϵPRF + qE(L+1)[qE(L+1)−1]

2n+1 + (qD+qE)(qD+qE−1)
2n+1 is for confidentiality

for PSV. In particular,
– qE(L+1)[qE(L+1)−1]

2n+1 to ensure that no keys used in the PSV part collides.
The idea of the proof is first to prove the integrity (see the following theorem for more
details, then, for an encryption query if k0 is random, all ciphertext blocks c0, . . . , cl are
random due to the PRF-security of E (except if there are two ephemeral keys which collide
in the whole story of the game). The last ciphertext block, cl is random due to the sTPRP
security of F and the collision resistance of H.

Integrity in the presence of leakage - CIL2 Now, we move to authenticity in the
presence of leakage (CIML2). In addition to the hypothesis for CIL2, we assume that the
adversary has taken control of the random source, that is, she can choose k0 for encryption
queries. In the unbounded leakage model, assuming that F is implemented in a leak-free
way, the leakage functions for CONCRETE are the following: for encryption the leakage
LAEnc(a, m, k0; r) := does not return anything, since choosing k0, she can determine all the
ephemeral values, except for Fh

k(k0), but this is cl+1, while LAEnc(a, c; r) := k0 since from
k0 the adversary can recompute all ephemeral values and the output.
Theorem 6. Let F be a leak-free (qF, ϵsTPRP)-sTPRP with n-bit blocks, let E be a (2, ϵPRF)-
PRF, and let H be a (ϵCR)-collision resistant hash function, then, in the unbounded leakage
model, the mode CONCRETE, which encrypts at most L-block long messages is (qE , qD, ϵ)-
CIML2-secure with

ϵ ≤ ϵsTPRP + ϵCR + (qD + 1)(L + 1)(q + qE)
2n+1 + qD + 1

2n
+ (qD + 1)ϵPRF.
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Algorithm 2 The MEM algorithm [47].
It uses a frPRF F : K × {0, 1}n → {0, 1}n with a strongly protected implementation, a
BC E : {0, 1}n × {0, 1}n → {0, 1}n with a weakly protected implementation and a hash
function H : {0, 1}∗ → TW which is modelled as a random oracle.

Gen:
• k1, k2, k3

$← K

• pA, pB
$← {0, 1}n

• Return k = (k1, k2, k3)
MEMEnck(a, m):

• Parse m in m1, ..., ml

• Parse k in k1, k2, k3

• (τ1, r)← Mack1(a∥m):

– r
$← {0, 1}n

– h1 = H(r∥a∥m)
– τ1 = Fk1(h1)

• c = Enck2(r∥m, τ1):

– k0Fk2(τ1)
– c0 = Ek0(pB)⊕ r

– k1 = Ek0(pA)
– For i = 1, ..., l − 1

∗ yi = Eki
(pB)

∗ ci = yi ⊕mi

∗ ki+1 = Eki(pA)
– yl = Ekl

(pB)
– cl = π|ml|(yl)⊕ml

– C = (c0, c1, ..., cl)

• τ2 ← Mack3(τ1∥C):

– h2 = H(τ1∥C)
– τ2 = Fk3(h2)

• Return c = (τ1, C, τ2)

MEMDeck(a, c):

• Parse c in τ1, C, τ2

• Parse k in k1, k2, k3

• Vrfyk3(τ1∥C, τ2):

– h2 = H(τ1∥C)
– τ̃2 = Fk3(h2)

• If τ2
?= τ̃2

– r∥m = Deck2(C, τ1):
∗ Parse C in c0, c1, ..., cl

∗ k0Fk2(τ1)
∗ r = Ek0(pB)⊕ c0

∗ k1 = Ek0(pA)
∗ For i = 1, ..., l − 1

· yi = Eki
(pB)

· mi = yi ⊕ ci

· ki+1 = Eki
(pA)

∗ yl = Ekl
(pB)

∗ ml = π|cl|(yl)⊕ cl

∗ m = (m1, ..., ml)
– Vrfyk3(a∥m, τ1):

∗ h2 = H(τ1∥C)
∗ τ̃2 = Fk3(h2)

– If τ2
?= τ̃2

∗ Return m

• Return ⊥
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The idea of the proof is that if the ciphertext is fresh, then, the key obtained by F−1,h
k

is fresh (if there are no collisions for the hash), thus the probability that c0 is a correct
commitment for the key is ≤ ϵPRF + 2−n because E is a good BC.

Privacy in the presence of leakage - CPAL2 When we move to privacy in the presence
of leakage, we start observing that we cannot allow the adversary to choose k0 and/or to
leak without bounds the outputs of E. Thus, we can give a security proof giving some
hypothesis on the leakage, which can be found in [15].
Theorem 7. Let F be a (qE + 1, ϵsTPRP)-sTPRP whose implementation is leak-free, let E be
a (2, ϵPRF)-PRF whose implementation has some leakage property, let PSVsI is (qL, ϵEavL2)-
EavL2-secure, then, the mode CONCRETE, if it encrypts at most L-blocks messages, is
(qE , ϵ)-CPAL2-secure with

ϵ ≤ ϵsTPRP + qE

2n
+ ϵ2-sim′ + (L + 1)ϵPRF + L(ϵ2-sim + ϵEavL2).

where PSVsI is a single-message block idealized version of PSV, where the random value
y and the new ephemeral key are picked uniformly at random, EavL2 is an eavesdropper
game where the adversary has to distinguish the encryption with leakage of two different
plaintexts of her choice (in addition as for CPAL2 she receives the leakage of the decryption
of the ciphertext obtained). We can see EavL2 as the CPAL2-game where qE = 0, that is,
with no encryption query. The definition of ϵ2-sim, ϵ2-sim′ and the leakage property of the
implementation of E are left to the original paper [14].

Roughly speaking, we have reduced the CPAL2-security of the full scheme to the EavL2
(a simpler definition) of a much simpler scheme that encrypts only n-bit long messages.

C CONCRETESponge
To have a more efficient scheme, we can use a duplex-construction based on a sponge to
do both the encryption and the pass to obtain cl+1.

Sponges. The sponge construction is based on a permutation P : {0, 1}N → {0, 1}N ,
where N is the width, thus, it has a state st of N bits [16].

Now, we explain how we can construct a sponge Sponge to hash a message m [16]. Let
r ≤ N , this is the rate and c = N − r is the capacity. At the start the state st0 of the
sponge state is set to a known value, and m is parsed in m-bit blocks (for simplicity, we
assume all of them are full) then, we proceed in two phases:

• absorbing phase: Sponge absorbs the message, that is, ∀i = 1, . . . , l st′
i−1 = sti−1 ⊕

mi∥0c, and then it applies the permutation P to compute the new state, that is,
sti = P(st′

i−1).
• squeezing phase: Sponge squeezes the state to obtain a λr-bit long string h, that is,

h = h1∥ . . . hλ, where ∀j = 1, . . . , λ hj = πr(stl+j−1), with stl+j = P(stl+j−1).
It has been proved that this construction cannot be differentiated from a random

oracle [16].
We can also use a sponge for an authenticated encryption scheme using the duplex

construction where the absorbing and squeezing are done at the same time [16]:
At the start, the state st0 of the sponge state is set to a certain value (for example the

key can be embedded here), and m is parsed in m-bit blocks (for simplicity, we assume all
of them are full) then, we proceed as follows:

• ∀i = 1, . . . , l, we absorb st′
i−1 = sti−1 ⊕ mi∥0c, sti = P(st′

i−1) and we squeeze
yi = πr(sti).

The output y = (y1, . . . , yr) is a random string because the security of the sponge con-
struction is related to the security of the standard sponge construction.

The sponge construction has been used many times for leakage-resilient cryptogra-
phy [26, 24, 4].
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Design of CONCRETESponge. The idea is to use the duplex construction, where we
put k0,A in the initial state, to use the value squeezed from the sponge as ephemeral keys
(the keys ki) and to absorb Eki,A

(mi). The full details can be found in Alg. 9 in App. J.8.

D Collision resistance, pre-image resistance and pre-image
resistant with chosen target and random n-bit prefix
input

Here, we present some additional properties for hash functions, and we discuss the
implications between them and the two new security definitions for hash functions (PR-corpi,
Def. 10 and PR-coirv, Def. 11).

D.1 Multi-input collision resistance
In CONCRETE we use a hash function that takes two inputs. We need to define collision
resistance for it, following [23]:

Definition 21. A hash function H : HK×X1 ×X2 → {0, 1}n is (t, ϵ)-multi-input collision
resistant (CR) if ∀ t-adversaries A
Pr[ ((x0, x1), (x′

0, x′
1))← A(s) s.t. Hs(x0, x1) = Hs(x′

0, x′
1), (x0, x1) ̸= (x′

0, x′
1) | s $← HK] ≤ ϵ.

The need for a multi-input collision resistance. In the hash we use for CONCRETE, we
need to distinguish the different inputs, and not trivially H′

s(c, a) := Hs(c∥a). In fact, if
c = c1∥c2, c′ = c1, a′ = c2∥a, then H′(c, a) = H(c1∥c2∥a) = H′(c′, a′).

Ideally, we would like that from a collision for H′
s that is, H′(c, a) = H′(c′, a′), to find

a collision for H. One such function, has been suggested with the original description of
CONCRETE [15]:

H′(c, a) := (c1∥0∥c2∥0∥...∥cl∥0∥a1∥1∥a2∥1...∥ala
∥1∥ala

∥1),
where a1, ..., ala

is a parsing of a and c1, ..., cl one of c in n-bit blocks.

D.2 Relations between PR-corpi, PR-coirv and the standard security
definitions for hash functions

First, we discuss the relation between PR-corpi and the well-known definition of collision-
resistance, then we move to PR-coirv and show its relations to the well-known definitions
of pre-image resistance.

PR-corpi and collision-resistance. We can prove that if a hash function is collision-
resistant (Def. 1) then, it is PR-corpi (Def. 10), with n-bit prefix, using the rewinding
technique [35]:

let A = (A1, A2) a PR-corpi adversary, we build a collision resistant adversary B as
follows: B sends s, the hash key she has received to A1. When A1 outputs (st, y), B picks
x′ $← {0, 1}n and gives x′ and st to A2 who outputs x s.t. πn(x) = x′ and Hs(x) = y.
Then, B rewinds A2 and she picks z′ $← {0, 1}n and she sends z′, st to A2 who outputs z s.t.
πn(z) = z′ and Hs(z) = y. If x′ ̸= z′ then, A has found a collision for the hash function. A
wins with probability less than ϵ2

PR-corpi, thus
ϵ2

PR-corpi ≤ ϵCR and ϵPR-corpi ≤
√

ϵCR.

We believe that for a good hash function the adversary can win with a much lower
success rate (for example, it is easy to see that in the random oracle model, PR-corpi = q/Y
where Y is target space for H and q the number of queries.
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PR-coirv and range-oriented pre-image resistance. First, we introduce one of the well-
known security definitions for hash functions: the range-oriented pre-image resistance. The
adversary has to find a pre-image for a value that is picked uniformly at random [43].
Definition 22. A hash function H : HK × {0, 1}∗ → {0, 1}N is (t, ϵ)-range oriented
pre-image resistant (PR) if ∀ t-adversaries A

Pr[m← A(s, y) s.t. Hs(m) = y | s
$← HK, y

$← {0, 1}N ] ≤ ϵ.

Now, we look to the PR-coirv definition, Def. 11.
In the random oracle model, with probability ≤ q2−n, the value picked by D has not

been previously evaluated by H (q is the number of evaluations the adversary is allowed).
Thus, the target h′ is random (if the previous bad event does not happen). We expect
that a similar situation will happen for reasonably good hash functions. Thus, if the
target obtained in the PR-coirv experiment is indistinguishable from a random one, the
probability that a PR-coirv adversary wins is the same as the probability a PR adversary
wins.

E Dependency matrices and division into atoms
In this section, we give the division into atoms of some MAC and AE schemes. First, we
give one of the MAC introduced at TosC 2023 [9], its division in atoms, and the security
result. Then, we divide into atoms CONCRETE, CONCRETE2.

E.1 Example of atomic model - LR-MACr - proving security in the
presence of faults

Berti et al. [9] proposed a scheme, LR-MACr (Alg. 3 and Fig. 2). This MAC is probabilistic.
It takes as input a random value which is used both in the hash and as input of the TBC.
In this way, the adversary cannot predict h.

F−1hHm

k

τ

x̃?
=r

FhHm

k

r

τ

Figure 2: LR-MACr [9]

Now, we move to its leakage functions in unbounded leakage model, and then, to the
divisions into atoms of the tag-generation and verification algorithms.
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Algorithm 3 The LR-MACr algorithm [9].
It uses a strongly protected TBC F : K × T W × {0, 1}n → {0, 1}n and a hash function
H : HK× {0, 1}n → TW.

• Gen

– k
$← K

– s
$← HK

• Mack(m):

– r
$← {0, 1}n

– h = Hs(r∥m)
– τ = Fh

k(r)
– Return (r, τ)

• Vrfyk(m, r, τ):

– h = Hs(r∥m)
– x̃ = Fh,−1

k (τ)

– If x̃
?= r Return ⊤

– Else Return ⊥

Leakage functions. Regarding the leakage functions, we have LMac = LF (the leakage of
the computation of F), while LVrfy = (x̃, LF−1).

Division into atoms of Mac. Since there is a random input r, we assume an atom,
denoted with f0, is dedicated to this picking. From now on, we consider the randomness r
as an additional input, thus, it cannot always be replaced with the same value. As the
key is protected against faults, we use as atoms the picking r

$← {0, 1}n, the hash function
Hs(), and the TBC Fk

16. In this way, we do not need to protect any input of our atoms,
thus, IMac = ∅.

For Mac, we have as inputs x1 = m, then f0 takes no input and outputs x2 = r picked
uniformly at random, y1 = h = Hs(r∥m) = Hs(x2∥x1), τ = y2 = Fh

k(r) = Fy1
k (x2). We

assume that the adversary can only insert differential faults. Thus, we can define the
dependency matrix for Mac and characterize the fault matrices: ϵ ϵ ϵ

x1 x2 ϵ
ϵ x2 y1

 and FaMac =

ϵ ϵ ϵ
˙ ⊕z2 ϵ
ϵ ⊕z3 ⊕z4

 .

Note that since x1 is used only once, then we cannot fault it (otherwise, we are computing
the Mac of m⊕ z1). Finally, z2 ̸= z3 (if both are not equal to 0n, that is, not injecting a
fault), because otherwise, we are always replacing the random input with another.

Division into atoms of Vrfy. For Vrfyk, the inputs are (x1, x2, x3) = (m, r, τ), the atoms
are Hs() and F−1

k , and the comparison: h = y1 = Hs(r∥m) = Hs(x2∥x1), x̃ = y2 =
F−1,h

k (τ) = F−1,y1
k (x3) and the output is the result of the comparison x̃

?= r, that is,

16Since the atom is Fk the protection of k is implicit, while if we use F as an atom we would have to
protect the k input for F.
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y2
?= x2. As before, IVrfy = ∅. Thus, we can define the dependency matrix for Vrfy and

characterize the faults, the adversary can inject (as before only differential faults):x1 x2 ϵ ϵ ϵ
ϵ ϵ x3 y1 ϵ
ϵ x2 ϵ ϵ y2

 and FaVrfy =

· ⊕z2 ϵ ϵ ϵ
ϵ ϵ · · ϵ
ϵ ⊕z5 ϵ ϵ ⊕z6

 . Note that x1 and and x3

are used only twice, moreover z2 ̸= z5 (if there is a fault).

SUF-FL2-security of LR-MACr. Finally, we move to the proof of the SUF-FL2-security
of LR-MACr.

To prove the SUF-FL2-security of LR-MACr, we model the TBC as strongly unpre-
dictable in the presence of leakage17 We assume that the key of the TBC is protected
against faults Now, we can state the SUF-FL-security of LR-MACr 18 in the unbounded
leakage model (with also leakage for the TBC):

Theorem 8. Let hash function H be (t1, ϵCR)-collision resistant and (t2, ϵPR)-preimage
resistant in the hash oracle model. Let F be a (qF L, qM , qV , t3), ϵSUP-L2)-SUP-L2 TBC with
fault immune long-term key. Then, for any (qF L, qM , qV , t)-adversary AL,Fa with leaking
function pair L = (LMac, LVrfy) and fault-injection pair Fa = (FaMac, FaVrfy). LR-MACr is
(qF L, qM , qV , t, ϵ)-strongly existentially unforgeable against unbounded differential fault-
then-leak attacks in tag-generation and verification with

ϵ ≤ ϵCR + (qV + 1)ϵSUP-L2 + ϵPR + q2
M

2n+1 + qM

2n
.

For technical reasons, the SUF-FL2-security of LR-MACr has been proved in the hash
oracle model19.

E.2 Divisions into atoms of CONCRETE
Encryption. Here, we give the dependency matrix of the encryption of CONCRETE:

ϵ · · · ϵ · · · ϵ ϵ ϵ · · · ϵ · · · ϵ ϵ ϵ · · · ϵ
ϵ · · · ϵ · · · ϵ z0.1 ϵ · · · ϵ · · · ϵ ϵ ϵ · · · ϵ
...

... . . . . . . ...
...

...
...

ϵ · · · ϵ · · · ϵ ϵ ϵ · · · zi−1.1 · · · ϵ ϵ ϵ · · · ϵ
ϵ · · · ϵ · · · ϵ ϵ ϵ · · · ϵ · · · zi.1 ϵ ϵ · · · ϵ
ϵ · · · xi · · · ϵ ϵ ϵ · · · ϵ · · · ϵ zi.2 ϵ · · · ϵ
...

...
...

...
...

... . . . . . . ...
ϵ · · · ϵ · · · xl+1 ϵ z0.2 · · · ϵ · · · ϵ ϵ zi.3 · · · ϵ
ϵ · · · ϵ · · · ϵ z0.1 ϵ · · · ϵ · · · ϵ ϵ ϵ · · · ϵ


(3)

where we have represented the lines corresponding to the computations 0.1,0.2,i.1,i.2,i.3,l +
1.1, and l + 1.2 (the columns correspond to the variables m1, mi, a, k0, c0, ki, yi, ci, and
h).

Decryption. We proceed similarly for decryption. For the query on input (a, c), we define
(x0, x1, . . . , xl+1) = (c0, . . . , cl+1), the parsing of c in n-bit long blocks, xl+2 = a. Moreover,
as atoms, we consider F−1,·

k (·), E·(pA), E·(pB), H′
s(·, ·) and the XOR · ⊕ ·. Additionally, as

17Strong unpredictability in the presence of leakage (SUP-L2), introduced in [7], models the security of
strongly protected (T)BC. It implies that finding a fresh and valid couple (input/output) for the BC even
with leakage is difficult. It is a falsifiable notion by an evaluation lab. It is less demanding than asking
that a BC is leak-free.

18For simplicity, we do not state the time bounds. They can be found in [9].
19In this model, we allow the adversary to choose any target for the hash Hs she wants (to find the

pre-image), as long as she has never seen y as output of a previous evaluation of H.
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in [9], we do not consider the comparison c0
?= c̃0 as an atom, because we assume that both

values are known by the adversary (one via leakage, and the other is part of the input).

We define f0.0 = h = H′(c0∥...∥cl, a), f0.1 = F−1,h
k (cl+1), f0.2 = Ek0(pB), then we

iterate these three blocks for i = 1, ..., l − 1: fi.1 = ki = Eki−1(pA), fi.2 = yi = Eki(pB),
fi.3 = mi = yi ⊕ ci.

We observe that f0.0 uses (x0, . . . , xl+1), and xl+2 as input (that is, (c0, . . . , cl), and
a), while f0.1 only z0.0 = k0. For all i = 1, ..., l, fi.1 uses only zi−1.1 = ki−1, fi.2 uses only
zi.1 = ki, and fi.3 only zi.2 = yi and xi = ci. The output is (z1.3, ..., zl.3) = (m1, ..., ml),
for a valid query, ⊥ otherwise. Thus, we can give the dependency matrix:



x0 · · · xi · · · xl+1 xl+2 ϵ ϵ · · · ϵ · · · ϵ ϵ ϵ · · ·
ϵ · · · ϵ · · · ϵ ϵ z0.0 ϵ · · · ϵ · · · ϵ ϵ ϵ · · ·
...

... . . . . . . ...
...

...
...

...
ϵ · · · ϵ · · · ϵ ϵ ϵ ϵ · · · zi−1.1 · · · ϵ ϵ ϵ · · ·
ϵ · · · ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ · · · zi.1 ϵ ϵ · · ·
ϵ · · · xi · · · ϵ ϵ ϵ ϵ · · · ϵ · · · ϵ zi.2 ϵ · · ·
...

...
...

...
...

... . . . . . . . . .


(4)

where we have represented the lines corresponding to the computations 0.0,0.1,i.1,i.2,i.3
(the columns correspond to the variables c0, ci, cl+1, a, k, k0, ki, yi, mi).

E.3 Divisions into atoms of CONCRETE2

Encryption. First, we observe that the associated data, a is used only once by CONCRETE2,
thus, according to the atomic model (Sec. 2.6.1), it cannot be faulted.

For the query on input (a, m), we define (x1, . . . , xl) = (m1, . . . , ml), the parsing of m
in n-bit long blocks, xl+1 = a. Similar to what done in [9], we assume that the master key
is hard coded into the implementation, thus, we consider F·

k(·) as an atom; moreover, we
consider the production of randomness as an additional atom. So, as atoms, we consider
F·

k(·), E·(pA), E·(pB), E·(·), H′
s(·, ·), and the random picking · $← {0, 1}n.

We define f0.1 = k0
$← {0, 1}n, f0.2 := k0,E = Ek0(pB), f0.3 := k0,A = Ek0(pA),

f0.4 := c0 = Ek0,E
(pB), f0.5 := k1 = Ek0,E

(pA); then we iterate these three blocks for
i = 1, ..., l: fi.1 := ki,E = Eki

(pB), fi.2 := ci = Eki,E
(mB), fi.3 := ki+1 = Eki

(pA), and
fi.4 := ki,A = Eki−1,A

(mi); after that, fl+1.1 := kl+1,E = Ekl+1(pB), fl+1.2 := cl+1 =
Ekl+1,E

(kl,A), fl+2.1 := h = H′(c0∥ . . . ∥cl+1, a), and fl+2.2 := cl+2 = Fh
k(k0).

We observe that f0.1 uses no input, mi is used only in the fi.2 and fi.4 atoms. The output
is (z0.4, z1.2, ..., zl.2, zl+1.2, zl+2.2) = (c0, c1, ..., cl, cl+1, cl+2), that is, Select(z0.0, . . . , zl+2.2) =
(z0.4, z1.2, ..., zl.2, zl+1.2, zl+2.2).

Here, we give the dependency matrix of the encryption of CONCRETE2:
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

· · · ϵ · · · ϵ ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ
· · · ϵ · · · ϵ z0.1 ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ
· · · ϵ · · · ϵ z0.1 ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ
· · · ϵ · · · ϵ ϵ z0.2 ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ
· · · ϵ · · · ϵ ϵ ϵ z0.3 ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ
...

... . . . . . . . . . . . . ...
...

...
· · · ϵ · · · ϵ ϵ ϵ ϵ ϵ · · · zi−1.3 ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ
· · · xi · · · ϵ ϵ ϵ ϵ ϵ · · · ϵ ϵ zi.1 ϵ · · · ϵ ϵ ϵ ϵ
· · · ϵ · · · ϵ ϵ ϵ ϵ ϵ · · · zi−1.3 ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ
· · · xi · · · ϵ ϵ ϵ ϵ ϵ · · · ϵ zi−1.4 ϵ ϵ · · · ϵ ϵ ϵ ϵ
...

...
... . . . . . . . . . ...

...
...

· · · ϵ · · · ϵ ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · zl.3 ϵ ϵ ϵ
· · · ϵ · · · ϵ ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ ϵ zl+1.1 ϵ
· · · ϵ · · · ϵ ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ zl.4 zl+1.1 ϵ
· · · ϵ · · · xl+1 ϵ ϵ ϵ z0.4 · · · ϵ ϵ ϵ zi.2 · · · ϵ ϵ zl+1.1 ϵ
· · · ϵ · · · ϵ z0.1 ϵ ϵ ϵ · · · ϵ ϵ ϵ ϵ · · · ϵ ϵ ϵ zl+2.1


(5)

where we have represented the lines corresponding to the computations 0.1,0.2,0.3,0.4,0.5,i.1,i.2,i.3,i.4,l+
1.1,l + 1.2,l + 2.1 and l + 2.2 (the columns correspond to the variables mi, a, k0, k0,E , k0,A,
c0, ki, ki−1,A, ki,E , ci, kl+1, kl,A, cl+1, and h).

Decryption. We proceed similarly for decryption. For the query on input (a, c), we define
(x0, x1, . . . , xl+2) = (c0, . . . , cl+1, cl+2), the parsing of c in n-bit long blocks, xl+3 = a
. Moreover, as atoms, we consider F−1,·

k (·), E·(pA), E·(pB), E−1
· (·), E·(·), and H′

s(·, ·).
Additionally, as in [9], we do not consider the comparisons c0

?= c̃0, kl,A
?= k̃l,A as an atom,

because we assume that both values are known by the adversary (one via leakage, and the
other is part of the input, or both via leakage).

We define f0.1 := h = H′(c0∥...∥cl+1, a), f0.2 := k0 = F−1,h
k (cl+2), f0.3 := k0,E =

Ek0(pA), f0.4 := k0,A = Ek0(pB), f0.5 := c̃0 = Ek0,E
(pB), f0.6 := k1 = Ek0,E

(pA). Then
we iterate these four blocks for i = 1, ..., l: fi.1 := ki,E = Eki

(pB), fi.2 := mi = E−1
ki,E

(ci),
fi.3 := ki+1 = Eki

(pA), fi.4 := ki+1 = Eki−1,A
(mi). Finally, we compute fl+1.1 := kl+1,E =

Ekl+1(pB), and fl+1.2 := k̃l,A = E−1
kl+1,E

(cl+1).
The output is (z1.2, ..., zl.2) = (m1, ..., ml), for a valid query, ⊥ otherwise. The depen-

dency matrix can be found in the full version of the paper.

F Comparison between CONCRETE2 and MEM
With respect to CONCRETE, MEM (Alg. 2, described in App. A.6.2) is generally a 3-pass
scheme, however in terms of performance it is quasi-2-pass, as the pass producing the
ciphertext blocks and the computation of the commitment of the message can be performed
in parallel. Moreover, per each message block, we use 4 calls to the block cipher E, while
CONCRETE uses only two. But, similarly to CONCRETE, we still use the master key only
once in the leak-free and fault-free component (which is used once). Since CONCRETE2
uses twice the message, for an adversary, via leakage, one may think it is easier to have
information about the message encrypted with respect to CONCRETE, but this, in our
opinion is inevitable since we believe that there must be a commitment on the plaintext to
avoid attacks that are not covered in the weak fault security model (this result is coherent
with [45]).

With respect to MEM [47], one of the main strengths is that we use significantly less
the strongly protected component (once as compared to three times), and we provide
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authenticity even if the adversary can inject any fault in decryption. On the other hand,
CONCRETE2 is a slightly more complex using 4 queries to E and one hash evaluation,
with respect to two queries to E and two hash evaluations. Moreover, CONCRETE2 can be
executed faster as the two passes can be done in parallel (quasi-1-pass), while for MEM,
we need to execute one pass after the previous is finished.

G Attack on CONCRETE2 setting more than one value
The attack represented in Sec. 5.2 is related to a theoretical result which we informally
state here:

Theorem 9. In the unbonded leakage model, if the adversary can set all the values of an
atom in the direct queries (i.e., Enc or Mac), then no CIL2F2 (or SUF-FL2) security is
achievable.

Proof. (Idea:) We consider only the atom when the key of the scheme is used (or part
of the key). Using a fault, an adversary can choose the inputs of this atom. Then, via
leakage, she obtains the output. Thus, she has oracle access to all atoms using the key.
Having this is easy to compute a forgery because she can compute all other atoms having
this oracle access (we have only to check that these faults are admissible).

This result cannot (luckily for us) be extended when the adversary can inject any
fault in the atom of inverse queries (that is, Dec and Vrfy) because, as Berti et al. do for
LR-MACr, in these queries it is possible to avoid using the atoms (using the master key)
which are used in the direct queries.

For simplicity, we have not used the dependency matrix and the faulty matrix since
they can be obtained straightforwardly.

G.0.1 Setting one value per atom.
In the previous attack, the adversary can forge simply by setting the two inputs of the
atom F·

k(·), so it is natural to see if it is possible to attack CONCRETE2 if the adversary
can set a single value per atom (thus, preventing the previous attack which gives to the
adversary oracle access to F·

k(·)).
Unfortunately, an attack is possible. The adversary can proceed as follows: she chooses

k′
0, then she computes the ephemeral keys k′

0,A, k′
1 and the ciphertext block c′

0 as for an
encryption query where the key picked is k′

0. Then, she does an encryption query on input
(a, m), where she inject these faults: in the computation of k1,A, she replaces k0,A with
k′

0,A, every time k1 is used, we replace it with k′
1, in the computation of h we replace c0

with c′
0. The output of this faulted query is c = (c0, . . . , cl+1, cl+2). The adversary outputs

(a, c∗) with c∗ = (c′
0, c1, . . . , cl+2).

Clearly, c∗ is fresh. Moreover, c∗ is valid since hashing c′
0, c1, . . . , c′

l+1 and a, we obtain
the same h used in the encryption query, and F−1,h

k (cl+2) = k′
0. c′

0 is the correct committing
for k′

0, and c′
1, . . . , c′

l is the correct encryption for m using k′
0 as via faults we have forced

to encrypt using k′
0 and c′

l+1 is the correct committing for m and k′
0 (due to the faults

when c′
l+1).

Thus, CONCRETE2 cannot be CIL2F2 secure when the adversary can set a value per
atom via a fault.

Note that in this attack we set 4 values (once c0, twice k1 and once k0,A).

H CONCRETE2 if the message is not full
In this section, we explain how we can modify CONCRETE2 if the last message block is
not full. The idea is to make this last block full appending as many 1 as needed. Moreover,
together with the ciphertext we send the length of the last message block. Moreover, this
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length is sent together with the ciphertext and is one of the input of the hash function.
Formally we proceed as for CONCRETE2 with these differences:

• instead of using ml, we use m′
l = ml∥1n−|ml|

• h = H(c, a, λ) with λ = |ml|
• The output is (c, λ)

In most of the security definitions, for example CPA, AE, CCA, the adversary is allowed to
know the length of the plaintext [32, 44, 39].

I Proofs
I.1 Proof of Thm. 1
Theorem 10. Let F be a strongly protected (q, t1, ϵsTPRP)-sTPRP, let E be an ideal
block-cipher, let A be allowed qI queries to E, let H be a (t2, ϵCR)-collision resistant and
(t3, ϵPR-corpi)-n-PR-corpi hash function. Then, (IAEnc, IADec)-protected implementation of
the AE-scheme CONCRETEΠ = (Gen, AEnc, ADec), encoding messages at most Ln bits
long, with leaking function pair L = (LAEnc, LADec) and fault admissible sets F = (FE ,FD)
has (qI , qE , qD, t, ϵ)-ciphertext integrity in the presence of leakage and faults against F-
fault-then-leakage attacks in encryption and decryption (CIL2Fd), with

ϵ ≤ ϵsTPRP + ϵCR + (qD + 1)ϵPR-corpi+
(qD + 2)(qD + 1)

2n+1 + qD[(qE(L + 1) + 1)(qD + 1)/2 + qI ]
2n

,

with qI the number of queries the adversary A is allowed to do to the ideal block-cipher
E, with q = qE + qD + 1, qI = t1 = t + qtH + (q(2L + 1) + 1)tE, t2 = t + q(tH) + (qE +
qD)[(2L + 2) + 1)tE] t3 = t + q(tH) + (qE + qD + 1)[(2L + 2) + 1)tE + tF]− tF − tE.

We assume that picking a value uniformly at random does not take time.

Proof. We use a sequence of games for the proofs. For simplicity, we consider the decryption
of the challenge associated data and ciphertext as the qD + 1th decryption query.
Game 0. It is the standard CIL2Fd F,L,AL, game. Let E0 be the event that A wins this
game.
Game 1. It is Game 0 except that we have replaced F with a random tweakable
permutation f. Let E1 be the event that A wins this game.
Transition between Game 0 and Game 1. Since Game 0 and Game 1 are the same
except for the replacement of F with f, we can build an adversary B to bound the difference.
She plays the sTPRP game, having to distinguish Fk from f, and simulates A’s oracles
using its own.

At the start of the game, B picks s in HK and gives it to A, and an ideal block-cipher
E. Moreover, he has a list S which is empty.

When A does an encryption query on input (a, m), B simply picks k0 uniformly at
random from {0, 1}n and after having parsed m in (m1, . . . , ml), computes c0, . . . , cl as
follows: c0 = Ek0(pB), and then, for all i = 1, . . . , l, ki = Eki−1(pA), yi = Eki

(pB) and
ci = yi ⊕mi (for i = l cl = π|ml|(yl) ⊕ml. Then, B computes h = H′

s(a, c0∥ . . . ∥cl) and
she queries her oracle on input (h, k0) receiving as answer cl+1. So, she can answer A
c = (c0∥ . . . ∥cl+1) and the leakage k0. Moreover, B adds (a, c) to the list S.

For this, B does one oracle query and needs time tH + (2l + 1)tE ≤ tH + (2L + 1)tE.
When A does a decryption query on input (a, c, Fa), B proceeds as follows: 1) she

computes h = H′
s(a, c0∥ . . . ∥cl) where a and c0, . . . , cl are modified according to the 0.0

row of Fa, 2) she queries her inverse oracle on input (h, cl+1) which are modified according
to 0.1 row of Fa, obtaining k0 as answer, 3) she computes c̃0 = fk0(pA) with k0 modified
according the 0.2 line of Fa, if c̃0 ̸= c0, she answers ⊥ and the leakage k0 to A; otherwise 4)
for i = 1, . . . , l, a) computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of
Fa, b) computes yi = Eki(pB) with ki modified according to the i.2 line of Fa c) computes
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mi = yi ⊕ ci (if i = l π|cl|(yl)⊕ cl) with yi and ci modified according to the i.3 line of Fa,
5) finally, B answers m = (m1, . . . , ml) and the leakage k0 to A.

For this, B does one oracle query and time tH + (2l + 1)tE ≤ tH + (2L + 1)tE.
When A outputs her output (a∗, c∗), B proceeds as follows: 1) she computes h∗ =

H′
s(a∗, c∗

0∥ . . . ∥c∗
l ), 2) she queries her inverse oracle on input (h∗, c∗

l+1), obtaining k∗
0 as

answer, 3) she computes c̃∗
0 = fk∗

0
(pA), if c̃∗0 = c∗0 and (a∗, c∗) /∈ S, she outputs 1;

otherwise 0.
For this, B does one oracle query and time tH + tE.
Thus, in total B does at most qE + qD + 1 = q queries to her oracle and runs in time

bounded by t + q(tH) + (q(2L + 1) + 1)tE = t1.
If her oracle is implemented with F, B correctly simulates Game 0 for A, otherwise

Game 1. Since F is a (q, t1, ϵsTPRP)-sTPRP,
|Pr[E1]− Pr[E0]| ≤ ϵsTPRP.

Game 2. It is Game 1, where in decryption instead of using f−1, where f is a random
tweakable permutation, we pick its answers uniformly at random (and we keep a list of all
queries already done to make the answers coherent). Let E2 be the event that A wins this
game.
Transition between Game 1 and Game 2. In Game 2, for decryption queries, we are
using a sTPRP, while in Game 3 a PRF. Due to the well-known birthday bound, we have
that

|Pr[E2]− Pr[E1]| ≤ (qD + 2)(qD + 1)
2n+1 .

Game 3. It is Game 3, where during decryption queries (not for the challenge one),
immediately after k0 is computed (via f−1) the decryption oracle computes cl+2 := Ek0(pB),
without any faults inserted, and appends this to its normal answer. Let E3 be the event
that the adversary wins this game.
Transition between Game 2 and Game 3. We build an adversary C. C behaves as
A for encryption queries. For decryption queries, C proceeds as follows: when A does a
decryption query on input (a, c), C simply forwards this query to her oracle. After having
received the answer and the leakage k0, C simply takes k0, calls the ideal cipher E on input
(k0, pB), obtains cl+2, and answer A with the oracle’s answer appended with cl+2. Thus, C
needs time t + qDtE and does qI + qD queries to the ideal cipher E. Thus, since

Pr[E2] = Pr[E3].
Game 4. It is Game 3, with the condition that the following event does not happen:
during a decryption query, when a new key k0 is picked, there exists no query to the ideal
cipher on input (k0, pB). Let E4 be the event that the adversary wins this game.
Transition between Game 3 and Game 4. The two games are identic except if the
following Bad1 event happens: there exists a decryption query s.t. it requires to pick a
new key ki

0 and there exists a previous query to the ideal cipher E on input (ki
0, pB). We

observe that during an encryption query there at most L + 1 queries to (·, pB) with at
most L + 1 different keys, while during a decryption query there at most L + 2 different
queries to the ideal block-cipher with input (ki, pB). The adversary can do at most qI

queries of its choice to the ideal block-cipher. Thus, during the jth decryption query there
at most qE(L + 1) + qI + (j − 1)(L + 2) different keys that, if picked, would trigger the
Bad1 event. Thus,

Pr[Bad1] ≤
qD∑

j=1

qE(L + 1) + qI + (j − 1)(L + 2)
2n

≤

qD[qE(L + 1) + qI ] + qD( qD+1
2 )

2n
= qD[qE(L + 1)qD + 1

2 + qI + qD + 1
2 ]2−n.

Thus, |Pr[E4]− Pr[E3]| ≤ qD[qE(L + 1)(qD + 1)/2 + qI + (qD + 1)/2]2−n.
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Game 5. It is Game 4, where the following event Bad2 does not happen: the hash queries
induced during encryption and decryption queries induce a collision for the hash function.
Let E5 be the event that the adversary wins this game.
Transition between Game 4 and Game 5. Since Game 4 and Game 5 are the same
except if event Bad2 happens, it is enough to bound Pr[Bad2] to bound the difference
|Pr[E4] − Pr[E5]|. To bound Pr[Bad2], we build an adversary D who wants to find a
collision for the hash function. At the start of the game, D receives a key for the hash
function s in HK and gives it to A. Moreover, she picks a random tweakable permutation
f. Finally, he has a list H which is empty.

When A does an encryption query on input (a, m), D simply picks k0 uniformly at
random from {0, 1}n and after having parsed m in (m1, . . . , ml), computes c0, . . . , cl as
follows: c0 = Ek0(pB), and then, for all i = 1, . . . , l, ki = Eki−1(pA), yi = Eki(pB) and
ci = yi ⊕mi (for i = l cl = π|ml|(yl)⊕ml. Then, D computes h = H′

s(a, c0∥ . . . ∥cl), she
adds ((a, c0∥ . . . ∥cl), h) to H and she computes cl+1 = f(h, k0). So, she can answer A
c = (c0∥ . . . ∥cl+1) and the leakage k0.(

For this, D needs time tH + (2l + 1)tE + tF ≤ tF + tH + (2L + 1)tE.
When A does a decryption query on input (a, c, Fa), D proceeds as follows: 1) she

computes h = H′
s(a, c0∥ . . . ∥cl) where a and c0, . . . , cl are modified according to the

0.0 row of Fa, and she adds ((a, c0∥ . . . ∥cl), h) to H, 2) she computes k0 = f−1(h, cl+1)
where the inputs are modified according to 0.1 row of Fa, obtaining k0 as answer, 3) she
computes c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa and cl+2 = Ek0(pB),
if c̃0 ̸= c0, she answers ⊥ and the leakage k0 to A; otherwise 4) for i = 1, . . . , l, a)
computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of Fa, b) computes
yi = Eki(pB) with ki modified according to the i.2 line of Fa c) computes mi = yi ⊕ ci (if
i = l π|cl|(yl) ⊕ cl) with yi and ci modified according to the i.3 line of Fa, 5) finally, D
answers m = (m1, . . . , ml) and the leakage k0 to A.

For this, D needs time tF + tH + (2l + 2)tE ≤ tF + tH + (2L + 2)tE.
When A outputs her output (a∗, c∗), D proceeds as follows: 1) she computes h∗ =

H′
s(a∗, c∗

0∥ . . . ∥c∗
l ) and she adds ((a∗, c∗

0∥ . . . ∥c∗
l ), h) to H, 2) she looks through H to see

if there is a collision. If it is the case, she outputs it, otherwise 0n, 1n. For this, D needs
time tH.

Thus, in total D runs in time bounded by t+q(tH)+(qE +qD)[(2L+2)+1)tE + tF] = t2.
D correctly simulates Game 4 for A. Moreover, D finds a collision for the hash function

H if event Bad2 happens. Thus, since H is a (t2, ϵCR)-collision resistant hash function,
|Pr[E5]− Pr[E4]| = Pr[Bad2] ≤ ϵCR.

Game 6. It is Game 5, where the following event Bad3 does not happen: for any tweak h
for f used only in decryption queries, (that is, used only in f−1) there exist two decryption
queries, which we call the ith and the jth s.t. h′ = H(aj , cj

0∥ . . . ∥cj
l ) (where aj and

cj
0, . . . , cj

l are modified according to the 0.0 line of Faj , s.t. the modified cj
0 is equal to ci

l+2
obtained in the ith decryption query, in which f−1(hi, τ i) is computed (modified according
to the 0.1 row of Fai) and the hi modified is equal to h′. Let E6 be the event that the
adversary wins this game.
Transition between Game 5 and Game 6. Since Game 5 and Game 6 are the same ex-
cept if event Bad3 happens, it is enough to bound Pr[Bad3] to bound the difference |Pr[E5]−
Pr[E6]|. To bound Pr[Bad3], we divide it in qD + 1 different events:Bad3.1, . . . , Bad3.qD+1,
where Bad3.ι is event Bad3 where ι = i. Clearly, Bad3 =

qD+1
∪

ι=1
Bad3.ι. To bound Pr[Bad3.ι]

we build an adversary EEι against the n-PR-corpi-security of the hash function H.
The n-PR-corpi-adversary EEι. At the start of the game, EEι receives a key for the hash
function s in HK and gives it to A. Moreover, she picks a random tweakable permutation
f. Finally, she has two lists H and CH which are empty.

When A does an encryption query on input (a, m), EEι (we use EEι) to identify
both EEι

1 and EEι
2) simply picks k0 uniformly at random from {0, 1}n and after having

parsed m in (m1, . . . , ml), computes c0, . . . , cl as follows: c0 = Ek0(pB), and then, for all
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i = 1, . . . , l, ki = Eki−1(pA), yi = Eki
(pB) and ci = yi ⊕mi (for i = l cl = π|ml|(yl)⊕ml.

Then, EEι computes h = H′
s(a, c0∥ . . . ∥cl), she adds ((a, c0, . . . , cl), h) to H, she computes

cl+1 = f(h, k0), and she adds (h, cl+1, c0) to CH. So, she can answer A c = (c0∥ . . . ∥cl+1)
and the leakage k0.(

For this, EEι needs time tH + (2l + 1)tE ≤ tH + (2L + 1)tE.
When A does the ith decryption query, i < ι on input (a, c, Fa), EEι

1 proceeds as follows:
1) she computes h = H′

s(c0∥ . . . ∥cl, a) where c0, . . . , cl and a are modified according to the
0.0 row of Fa, and she adds ((c0, . . . , cl, a), h) to H (with c0, . . . , cl and a modified according
to the 0.0 row of Fa), 2) she computes k0 = f−1(h, cl+1) where the inputs are modified
according to 0.1 row of Fa, obtaining k0, as answer; she sets ci

l+1 := cl+1, hi = h (where
cl+1 and h are modified according to the 0.1 row of Fa), 3) she computes c̃0 = fk0(pA) with
k0 modified according the 0.2 line of Fa, and cl+2 = Ek0(pB), and she adds (hi, ci

l+1, cl+2)
to CH, 4) she sees if c̃0 ̸= c0, she answers ⊥ and the leakage k0 to A; otherwise 5) for
i = 1, . . . , l, a) computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of
Fa, b) computes yi = Eki

(pB) with ki modified according to the i.2 line of Fa c) computes
mi = yi ⊕ ci (if i = l π|cl|(yl)⊕ cl) with yi and ci modified according to the i.3 line of Fa,
6) finally, EEι

1 answers m = (m1, . . . , ml) and the leakage k0 to A.
For this, EEι

1 needs time tH + (2l + 2)tE ≤ tH + (2L + 2)tE.
When A does the ι decryption query on input (a, c, Fa), EEι

1 proceeds as follows: 1) she
computes h = H′

s(a, c0∥ . . . ∥cl) where a and c0, . . . , cl are modified according to the 0.0
row of Fa, and she adds ((c0, . . . , cl, a), h) to H (with c0, . . . , cl and a modified according
to the 0.0 row of Fa), 2) she sets hι and cι

l+1, which are h and cl+1 modified according to
the 0.1 row of Fa and she checks if there is an entry in CH (hι, cι

l+1). If this is the case
EEι

1 aborts. Otherwise, EEι
1 outputs hι as her challenge and st = (hι, cι

l+1, CH,H, s, f).
Then, EEι

2(st), parses st in hι, cι
l+1, CH,H, s, f), and she computes k0 = f−1(hι, cι

l+1). 3)
after that, EEι

2 computes c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa, and
cl+2 = Ek0(pB), and she adds (hi, ci

l+1, cl+2) to CH, 4) she sees if c̃0 ̸= c0, she answers ⊥
and the leakage k0 to A; otherwise 5) for i = 1, . . . , l, a) computes ki = Eki−1(pA) with
ki−1 modified according to the i.1 line of Fa, b) computes yi = Eki

(pB) with ki modified
according to the i.2 line of Fa c) computes mi = yi ⊕ ci (if i = l π|cl|(yl) ⊕ cl) with yi

and ci modified according to the i.3 line of Fa, 6) finally, EEι
2 answers m = (m1, . . . , ml)

and the leakage k0 to A. (If ι = qD + 1 the decryption query associated to A output, EE
proceeds as as normal decryption query, simply assuming that there is no fault injected).

For this, EEι
1 needs time tH, while EEι

2 needs time (2l + 2)tE ≤ (2L + 2)tE. To be
polynomial, we assume that f is simulated via lazy sampling and EE1 puts in st the samples
she has already done.

When A does the ith decryption query, i > ι on input (a, c, Fa), EEι
2 proceeds as follows:

1) she computes h = H′
s(c0∥ . . . ∥cl, a) where c0, . . . , cl and a are modified according to

the 0.0 row of Fa, and she adds ((c0, . . . , cl, a), h) to H (with c0, . . . , cl and a modified
according to the 0.0 row of Fa), 2) she computes k0 = f−1(h, cl+1) where the inputs
are modified according to 0.1 row of Fa, obtaining k0, as answer; she sets ci

l+1 := cl+1,
hi = h (where cl+1 and h are modified according to the 0.1 row of Fa), 3) she computes
c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa, and cl+2 = Ek0(pB), 4) she
sees if c̃0 ≠ c0, she answers ⊥ and the leakage k0 to A; otherwise 5) for i = 1, . . . , l, a)
computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of Fa, b) computes
yi = Eki(pB) with ki modified according to the i.2 line of Fa c) computes mi = yi ⊕ ci (if
i = l π|cl|(yl)⊕ cl) with yi and ci modified according to the i.3 line of Fa, 6) finally, EEι

2
answers m = (m1, . . . , ml) and the leakage k0 to A.

For this, EEι
2 needs time tH + (2l + 2)tE ≤ tH + (2L + 2)tE.

When A outputs her output (a∗, c∗), EEι
2 proceeds as follows: 1) she computes h∗ =

H′
s(c∗

0∥ . . . ∥c∗
l , a∗) and she adds ((c∗

0∥ . . . ∥c∗
l , a∗), h) to H, 2) she computes k=

0 f−1(h, cl+1)
3) she computes c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa, and cl+2 =
Ek0(pB), 4) she sees if c̃∗0 ̸= c∗

0, she answers ⊥; otherwise 5) for i = 1, . . . , l, a) computes
k∗

i = Ek∗
i−1

(pA), b) computes y∗
i = Ek∗

i
(pB), c) computes m∗

i = y∗
i ⊕c∗

i (if i = l π|c∗
l

|(y∗
l )⊕c∗

l ,
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6) finally, EEι
2 observe that A has given a correct decryption query, and she looks through

H to see if there is an entry (c0∥ . . . ∥cl, a), h) s.t h = hι and c0 = cι
l+2. If it is the case,

she outputs it, otherwise 0n.
Thus, in total EE runs in time bounded by t + q(tH) + (qE + qD + 1)(2L + 2) + 1)tE = t′

3.
EE correctly simulates Game 5 for A.

Bounding Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1]. First, we observe that if EEι
1 aborts, it means

that there is a previous query for which hi = hι and ci
l+2 = cι

l+2, thus event Bad3.ι is event
Bad3.i, thus,

Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1] = 0.

Second, we observe that since kι
0 is picked randomly (and (kι

0, pB) has never been queried
before the ι decryption query to E), to pick the random prefix uniformly at random
or to pick a k0 uniformly at random and as a random prefix E(k0, pB) is indistinguish-
able for the n-PR-corpi game. We are doing the latter case for EEι. Thus, if event
Bad3.ι¬Bad3.1, . . . , Bad3.ι−1 happens, then, EE wins the n-PR-corpi game. Since EE is a
t′
3-adversary and H is (t3, ϵPR-corpi)-n-PR-corpi-secure (because we need to subtract the

time needed to compute the random pre-fix), then,
Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1] ≤ ϵPR-corpi.

Concluding the proof. First, we observe that

Pr[Bad3] ≤
qD+1∑
ι=1

Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1] ≤ ϵPR-corpi ≤ (qD + 1)ϵPR-corpi.

Second, we observe that Pr[E6] = 0, since the adversary in the final verification query
cannot have h∗ equal to an h of an encryption query, and if h∗ = h of a decryption query,
it cannot be the case that c̃∗0 = c∗

0 (EEι covers also the case of kι
0 random and cι

l+2 (which
is cι

0 correctly computed) equal to c0 which is computed to obtain hι). Thus,

Pr[E0] ≤
5∑

i=1
|Pr[Ei+1]− Pr[Ei]| ≤

ϵsTPRP + (qD + 2)(qD + 1)
2n+1 + qD[qE(L + 1)(qD + 1)/2 + qI + (qD + 1)/2]2−n+

ϵCR + (qD + 1)ϵPR-corpi = ϵ.

I.2 CONCRETE vs. any fault except in F in decryption
Formalizing faults inside the components. Before to state the theorem, we need to
formalize faults into the component. We will do this with the atom faults vector Faatom.
First, we enumerate all the calls to the atoms (and we consider only those for which a fault
is interesting, i.e., not the XOR). Let natom be the number of such calls. Faatom is a vector
of natom faults: (Fa1, . . . , Fanatom) where Fai is the description of the faults to be inserted
in the call of the atom corresponding to index i. For example, if the ith call correspond
to a block-cipher Fai explain how, when and which wires of E are modified during that
computation. If no fault is injected, we denote this with Fai = ϵ. For the decryption of
CONCRETE, the atoms whose fault are described by Faatom are H, F, and E, where the
index are: 1 for H′

s(c0∥ . . . ∥cl, a), 2 for F−1,h
k (cl+1), 3 for Ek0(pB), 2 + 2i (i = 1, . . . , l)

for Eki−1(pA), 2i + 3 (i = 1, . . . , l) for Eki−1(pB). Similarly to what is done to define I
(Sec. 2.6.1), we define Iatom with the set of protected calls and we denote with ⊥ in Faatom

that this call cannot be faulted. Let Ic = (I, Iatom) be the set of protected inputs and
atoms. In the next theorem, Ic

AEnc = (IAEnc, Iatom
AEnc) where all the entries of IAEnc are ϵ,

while all the entries of Iatom
AEnc are ⊥ (i.e., no fault is allowed); instead for decryption, we

use Ic
ADec = (IADec, Iatom

ADec) where all the entries of IADec are free (except those forced to
be equal to ϵ by the matrix defined in Eq. 4, while all the adversary can choose all the
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entries of Iatom
ADec except for the second one (corresponding to k0 = F−1,h

k (cl+1) which is ⊥
(i.e., no fault is allowed). Note that we are using the same IAEnc, and IADec as those used
for Thm. 1. Now, we can formally state this result:
Theorem 11. Let F be a strongly protected (q, t1, ϵsTPRP)-sTPRP, let E be an ideal
block-cipher, let A be allowed qI queries to E, let H be a (t2, ϵCR)-collision resistant and
(t3, ϵPR-corpi)-n-PR-corpi hash function. Then, (Ic

AEnc, Ic
ADec)-protected implementation of

the AE-scheme CONCRETEΠ = (Gen, AEnc, ADec), encoding messages at most Ln bits
long, with leaking function pair L = (LAEnc, LADec) and fault admissible sets F = (FE ,FD)
has (qI , qF L, qE , qD, t, ϵ)-ciphertext integrity in the presence of leakage and faults against
F-fault-then-leakage attacks in encryption and decryption (CIL2Fd), with

ϵ = ϵsTPRP+(qD + 2)(qD + 1)
2n+1 +(qD+1)[qE(L+1)+qI+(j−1)(L+2)]2−n+ϵCR+(qD+1)ϵPR-corpi

with qI the number of queries the adversary A is allowed to do to the ideal block-cipher
E, with q = qE + qD + 1, qI = t1 = t + qtH + (q(2L + 1) + 1)tE, t2 = t + q(tH) + (qE +
qD)[(2L + 2) + 1)tE + tF] t3 = t + q(tH) + (qE + qD + 1)[(2L + 2) + 1)tE + tF]− tF − tE. (we
assume that picking a value uniformly at random does not take time).

The proof is the same as for Thm. 1 and can be found in the full version of the paper.
Substantially, we have only to modify the description of all adversaries to apply the faults
described in Iatom

ADec.

I.3 wCILF2-security of CONCRETE with only differential faults in
encryption

Leakage function and faulty matrix. For the leakage function, we use the same leakage
function as for Thm. 1: LAEnc(a, m, k0; k) := ∅, and LADec(a, c; k) := k0. Regarding faults,
the adversary is allowed to set any fault she wants between the atoms in decryption,
without any restriction and only differential faults in encryption, that is all entries of IAEnc
are either ϵ (when the corresponding value in the dependency matrix is ϵ) or ⊥ /⊕; while
IADec is empty, that is, we allow the adversary to choose any entry different from ϵ of the
matrix defined in Eq. 4 as long as they are compliant with Sec. 2.6.1. FE and FD are
defined accordingly.
Theorem 12. Let F be a strongly protected (q, t1, ϵsTPRP)-sTPRP, let E be an ideal
block-cipher, let A be allowed qI queries to E, let H be a (t2, ϵCR)-collision resistant and
(t3, ϵPR-corpi)-n-PR-corpi hash function. Then, (IAEnc, IADec)-protected implementation of
the AE-scheme CONCRETEΠ = (Gen, AEnc, ADec), encoding messages at most Ln bits
long, with leaking function pair L = (LAEnc, LADec) and fault admissible sets F = (FE ,FD)
has (qI , qF L, qE , qD, t, ϵ) weakly ciphertext integrity in the presence of leakage and faults
against F-fault-then-leakage attacks in encryption and decryption (wCILF2− (de)) with

ϵsTPRP + (qD + 2)(qD + 1)
2n+1 + (qD + 1)[qE(L + 1) + qI + (j − 1)(L + 2)]

2n
+

ϵCR + (qD + 1)ϵPR-corpi

with qI the number of queries the adversary A is allowed to do to the ideal block-cipher
E, with q = qE + qD + 1, qI = t1 = t + qtH + (q(2L + 1) + 1)tE, t2 = t + q(tH) + (qE +
qD)[(2L + 2) + 1)tE + tF] t3 = t + q(tH) + (qE + qD + 1)[(2L + 2) + 1)tE + tF]− tF − tE. (we
assume that picking a value uniformly at random does not take time).

Proof. We use a sequence of games for the proofs. For simplicity, we consider the decryption
of the challenge associated data and ciphertext as the qD + 1th decryption query.
Game 0. It is the standard wCILF2CONCRETE,F,L,AL, game. Let E0 be the event that A
wins this game.
Game 1. It is Game 0, where we simply put (a′, c′, a, m, r) in S where a′ is a modified
according to the l + 1.1 row of Fa and c′ = (c′

0, . . . , c′
l, cl+1) with c′

i (i = 0, . . . , l) is ci
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modified according to the l + 1.1 row of Fa. (That is, we take the actual input of H). Let
E1 be the event that A wins this game. So Pr[E0] ≤ Pr[E1].
Game 2. It is Game 1 except that we have replaced F with a random tweakable
permutation f. Let E2 be the event that A wins this game.
Transition between Game 1 and Game 2. Since Game 1 and Game 2 are the same
except for the replacement of F with f, we can build an adversary B to bound the difference.
She plays the sTPRP game, having to distinguish Fk from f, and simulates A’s oracles
using its own.

At the start of the game, B picks s in HK and gives it to A. Moreover, he has a list S
which is empty.

When A does an encryption query on input (a, m), B simply picks k0 uniformly at
random from {0, 1}n. Moreover, she has L + 1 lists S0,S1, . . . ,SL which are empty. After
having parsed m in (m1, . . . , ml), she proceeds as follows: 1) she computes c0 = Ek0(pB),
where k0 is modified according to the 0.2 row of Fa, and she adds c0 to S0; 2) for i = 1, . . . , l,
a) computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of Fa, b) computes
yi = Eki

(pB) with ki modified according to the i.2 line of Fa c) computes ci = yi ⊕ ci (if
i = l π|cl|(yl)⊕ cl) with yi and ci modified according to the i.3 line of Fa, and adds ci to
Si; 3) she computes h = H′

s(c0∥ . . . ∥cl, a) where c0, . . . , cl, and a are modified according to
the l + 1.1 row of Fa; moreover, she adds c′

i to Ci, for i = 0, . . . , l, where c′
i is ci modified

according to the element of the l + 1.1th row corresponding to ci. 4) she queries her oracle
on input (h, k0) which are modified according to l + 1.2 row of Fa, obtaining cl+1 as answer;
5) finally, B answers c = (c0, . . . , cl) and the leakage k0 to A. Moreover, if there is no fault
inserted and in the 0.2 row and in the l + 1.2 row of fault (or the same fault for k0 in
both rows), she adds c′ = (c′

0, . . . , c′
l, cl+1, a′) to S (where a′ is a modified according to the

l + 1.1th row of Fa), otherwise nothing. Moreover, B adds (a′, c′) to the list S, where a′ is
a modified according to the l + 1.1 row of Fa and c′ = (c′

0, . . . , c′
l, cl+1) with c′

i (i = 0, . . . , l)
is ci modified according to the l + 1.1 row of Fa.

For this, B does one oracle query and needs time tH + (2l + 1)tE ≤ tH + (2L + 1)tE.
When A does a decryption query on input (a, c, Fa), B proceeds as follows: 1) she

computes h = H′
s(a, c0∥ . . . ∥cl) where a and c0, . . . , cl are modified according to the 0.0

row of Fa, 2) she queries her inverse oracle on input (h, cl+1) which are modified according
to 0.1 row of Fa, obtaining k0 as answer, 3) she computes c̃0 = fk0(pA) with k0 modified
according the 0.2 line of Fa, if c̃0 ̸= c0, she answers ⊥ and the leakage k0 to A; otherwise 4)
for i = 1, . . . , l, a) computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of
Fa, b) computes yi = Eki(pB) with ki modified according to the i.2 line of Fa c) computes
mi = yi ⊕ ci (if i = l π|cl|(yl)⊕ cl) with yi and ci modified according to the i.3 line of Fa,
5) finally, B answers m = (m1, . . . , ml) and the leakage k0 to A.

For this, B does one oracle query and time tH + (2l + 1)tE ≤ tH + (2L + 1)tE.
When A outputs her output (a∗, c∗), B proceeds as follows: 1) she computes h∗ =

H′
s(a∗, c∗

0∥ . . . ∥c∗
l ), 2) she queries her inverse oracle on input (h∗, c∗

l+1), obtaining k∗
0 as

answer, 3) she computes c̃∗
0 = fk∗

0
(pA), if c̃∗0 = c∗0 and (a∗, c∗) /∈ S, she outputs 1;

otherwise 0.
For this, B does one oracle query and time tH + tE.
Thus, in total B does at most qE + qD + 1 = q queries to her oracle and runs in time

bounded by t + q(tH) + (q(2L + 1) + 1)tE = t1.
If her oracle is implemented with F, B correctly simulates Game 1 for A, otherwise

Game 2. Since F is a (q, t1, ϵsTPRP)-sTPRP,
|Pr[E2]− Pr[E1]| ≤ ϵsTPRP.

Game 3. It is Game 3, where in decryption instead of using f−1, where f is a random
tweakable permutation, we pick its answers uniformly at random (and we keep a list of all
queries already done to make the answer coherent). Let E3 be the event that A wins this
game.
Transition between Game 2 and Game 3. In Game 3, for decryption queries, we are
using a sTPRP, while in Game 3 a PRF. Due to the well-known birthday bound, we have
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that
|Pr[E3]− Pr[E2]| ≤ (qD + 2)(qD + 1)

2n+1 .

Game 4. It is Game 3, where during decryption queries (not for the challenge one),
immediately after k0 is computed (via f−1) the decryption oracle computes cl+2 := Ek0(pB),
without any faults inserted, and appends this to its normal answer. Let E4 be the event
that the adversary wins this game.
Transition between Game 3 and Game 4. We build an adversary C. C behaves as
A for encryption queries. For decryption queries, C proceeds as follows: when A does a
decryption query on input (a, c), C simply forwards this query to her oracle. After having
received the answer and the leakage k0, C simply takes k0, calls the ideal cipher E on input
(k0, pB), obtains cl+2, and answer A with the oracle’s answer appended with cl+2. Thus, C
needs time t + qDtE and does qI + qD queries to the ideal cipher E. Thus, since

Pr[E3] = Pr[E4].
Game 5. It is Game 4, with the condition that the following event does not happen:
during a decryption query, when a new key k0 is picked, there exists no query to the ideal
cipher on input (k0, pB). Let E5 be the event that the adversary wins this game.
Transition between Game 4 and Game 5. The two games are identical except if the
following Bad1 event happens: there exists a decryption query s.t. it requires to pick a
new key ki

0 and there exists a previous query to the ideal cipher E on input (ki
0, pB). We

observe that during an encryption query there at most L + 1 queries to (ki, pB) with at
most L + 1 different keys, while during a decryption query there at most L + 2 different
query to the ideal block-cipher with input (ki, pB). The adversary can do at most qI

queries of its choice to the ideal block-cipher. Thus, during the jth decryption query there
at most qE(L + 1) + qI + (j − 1)(L + 2) different keys that, if picked, would trigger the
Bad1 event. Thus,

Pr[Bad1] ≤
qD∑
i=1

qE(L + 1) + qI + (j − 1)(L + 2)
2n

≤ (qD + 1)[qE(L + 1) + qI + (j − 1)(L + 2)]
2n

.

Thus,
|Pr[E5]− Pr[E4]| ≤ (qD + 1)[qE(L + 1) + qI + (j − 1)(L + 2)]2−n.

Game 6. It is Game 6, where the following event Bad2 does not happen: the hash queries
induced during encryption and decryption queries induce a collision for the hash function.
Let E5 be the event that the adversary wins this game.
Transition between Game 5 and Game 6. Since Game 5 and Game 6 are the same
except if event Bad2 happens, it is enough to bound Pr[Bad2] to bound the difference
|Pr[E5] − Pr[E6]|. To bound Pr[Bad2], we build an adversary D who wants to find a
collision for the hash function. At the start of the game, D receives a key for the hash
function s in HK and gives it to A. Moreover, she picks a random tweakable permutation
f. Finally, he has a list H which is empty.

When A does an encryption query on input (a, m), D simply picks k0 uniformly at
random from {0, 1}n. Moreover, she has L + 1 lists S0,S1, . . . ,SL which are empty. After
having parsed m in (m1, . . . , ml), she proceeds as follows: 1) she computes c0 = Ek0(pB),
where k0 is modified according to the 0.2 row of Fa, and she adds c0 to S0; 2) for i = 1, . . . , l,
a) computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of Fa, b) computes
yi = Eki(pB) with ki modified according to the i.2 line of Fa c) computes ci = yi⊕ci (if i = l
π|cl|(yl)⊕cl) with yi and ci modified according to the i.3 line of Fa, and adds ci to Si; 3) she
computes h = H′

s(c0∥ . . . ∥cl, a) where c0, . . . , cl, and a are modified according to the l + 1.1
row of Fa; moreover, she adds c′

i to Ci, for i = 0, . . . , l, where c′
i is ci modified according to

the element of the l + 1.1th row corresponding to ci, and she adds ((c′
0∥ . . . ∥c′

l, a), h) to
H. 4) she queries her oracle on input (h, k0) which are modified according to l + 1.2 row
of Fa, obtaining cl+1 as answer; 5) finally, D answers c = (c0, . . . , cl) and the leakage k0
to A. Moreover, if there is no fault inserted and in the 0.2 row and in the l + 1.2 row of
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fault (or the same fault for k0 in both rows), she adds c′ = (c′
0, . . . , c′

l, cl+1, a′) to S (where
a′ is a modified according to the l + 1.1th row of Fa), otherwise nothing. Moreover, D
adds (a′, c′) to the list S, where a′ is a modified according to the l + 1.1 row of Fa and
c′ = (c′

0, . . . , c′
l, cl+1) with c′

i (i = 0, . . . , l) is ci modified according to the l + 1.1 row of Fa.
For this, D needs time tH + (2l + 1)tE + tF ≤ tF + tH + (2L + 1)tE.
When A does a decryption query on input (a, c, Fa), D proceeds as follows: 1) she

computes h = H′
s(a, c0∥ . . . ∥cl) where a and c0, . . . , cl are modified according to the

0.0 row of Fa, and she adds ((a, c0∥ . . . ∥cl), h) to H, 2) she computes k0 = f−1(h, cl+1)
where the inputs are modified according to 0.1 row of Fa, obtaining k0 as answer, 3) she
computes c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa and cl+2 = Ek0(pB),
if c̃0 ̸= c0, she answers ⊥ and the leakage k0 to A; otherwise 4) for i = 1, . . . , l, a)
computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of Fa, b) computes
yi = Eki(pB) with ki modified according to the i.2 line of Fa c) computes mi = yi ⊕ ci (if
i = l π|cl|(yl) ⊕ cl) with yi and ci modified according to the i.3 line of Fa, 5) finally, D
answers m = (m1, . . . , ml) and the leakage k0 to A.

For this, D needs time tF + tH + (2l + 2)tE ≤ tF + tH + (2L + 2)tE.
When A outputs her output (a∗, c∗), D proceeds as follows: 1) she computes h∗ =

H′
s(a∗, c∗

0∥ . . . ∥c∗
l ) and she adds ((a∗, c∗

0∥ . . . ∥c∗
l ), h) to H, 2) she looks through H to see

if there is a collision. If it is the case, she outputs it, otherwise 0n, 1n. For this, D needs
time tH.

Thus, in total, D runs in time bounded by t+q(tH)+(qE +qD)[(2L+2)+1)tE + tF] = t2.
D correctly simulates Game 6 for A. D finds a collision for the hash function H if event

Bad2 happens. Thus, since H is a (t2, ϵCR)-collision resistant hash function,
|Pr[E6]− Pr[E5]| = Pr[Bad2] ≤ ϵCR.

Game 7. It is Game 6, where the following event Bad3 does not happen: for any tweak h
for f used only in decryption queries, (that is, used only in f−1) there exist two decryption
queries, which we call the ith and the jth s.t. h′ = H(aj , cj

0∥ . . . ∥cj
l ) (where aj and

cj
0, . . . , cj

l are modified according to the 0.0 line of Faj), s.t. the modified cj
0 is equal to ci

l+2
obtained in the ith decryption query, in which f−1(hi, τ i) is computed (modified according
to the 0.1 row of Fai) and the hi modified is equal to h′. Let E7 be the event that the
adversary wins this game.
Transition between Game 6 and Game 7. Since Game 6 and Game 7 are the same ex-
cept if event Bad3 happens, it is enough to bound Pr[Bad3] to bound the difference |Pr[E6]−
Pr[E7]|. To bound Pr[Bad3], we divide it in qD + 1 different events:Bad3.1, . . . , Bad3.qD+1,
where Bad3.ι is event Bad3 where ι = i. Clearly, Bad3 =

qD+1
∪

ι=1
Bad3.ι. To bound Pr[Bad3.ι]

we build an adversary EEι against the n-PR-corpi-security of the hash function H.
The n-PR-corpi-adversary EEι. At the start of the game, EEι receives a key for the hash
function s in HK and gives it to A. Moreover, she picks a random tweakable permutation
f. Finally, she has two lists H and CH which are empty.

When A does an encryption query on input (a, m), EEι (we use EEι) to identify both
EEι

1 and EEι
2) simply picks k0 uniformly at random from {0, 1}n. Moreover, she has

L + 1 lists S0,S1, . . . ,SL which are empty. After having parsed m in (m1, . . . , ml), she
proceeds as follows: 1) she computes c0 = Ek0(pB), where k0 is modified according to
the 0.2 row of Fa, and she adds c0 to S0; 2) for i = 1, . . . , l, a) computes ki = Eki−1(pA)
with ki−1 modified according to the i.1 line of Fa, b) computes yi = Eki

(pB) with ki

modified according to the i.2 line of Fa c) computes ci = yi ⊕ ci (if i = l π|cl|(yl) ⊕ cl)
with yi and ci modified according to the i.3 line of Fa, and adds ci to Si; 3) she computes
h = H′

s(c0∥ . . . ∥cl, a) where c0, . . . , cl, and a are modified according to the l + 1.1 row of
Fa; moreover, she adds c′

i to Ci, for i = 0, . . . , l, where c′
i is ci modified according to the

element of the l + 1.1th row corresponding to ci, and she adds ((c′
0∥ . . . ∥c′

l, a), h) to H.
4) she queries her oracle on input (h, k0) which are modified according to l + 1.2 row of
Fa, obtaining cl+1 as answer; 5) finally, EEι answers c = (c0, . . . , cl) and the leakage k0
to A. Moreover, if there is no fault inserted and in the 0.2 row and in the l + 1.2 row of
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fault (or the same fault for k0 in both rows), she adds c′ = (c′
0, . . . , c′

l, cl+1, a′) to S (where
a′ is a modified according to the l + 1.1th row of Fa), otherwise nothing. Moreover, EEι

adds (a′, c′) to the list S, where a′ is a modified according to the l + 1.1 row of Fa and
c′ = (c′

0, . . . , c′
l, cl+1) with c′

i (i = 0, . . . , l) is ci modified according to the l + 1.1 row of Fa.
For this, EEι needs time tH + (2l + 1)tE + tF ≤ tF + tH + (2L + 1)tE.
When A does the ith decryption query, i < ι on input (a, c, Fa), EEι

1 proceeds as follows:
1) she computes h = H′

s(c0∥ . . . ∥cl, a) where c0, . . . , cl and a are modified according to the
0.0 row of Fa, and she adds ((c0, . . . , cl, a), h) to H (with c0, . . . , cl and a modified according
to the 0.0 row of Fa), 2) she computes k0 = f−1(h, cl+1) where the inputs are modified
according to 0.1 row of Fa, obtaining k0, as answer; she sets ci

l+1 := cl+1, hi = h (where
cl+1 and h are modified according to the 0.1 row of Fa), 3) she computes c̃0 = fk0(pA) with
k0 modified according the 0.2 line of Fa, and cl+2 = Ek0(pB), and she adds (hi, ci

l+1, cl+2)
to CH, 4) she sees if c̃0 ̸= c0, she answers ⊥ and the leakage k0 to A; otherwise 5) for
i = 1, . . . , l, a) computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of
Fa, b) computes yi = Eki

(pB) with ki modified according to the i.2 line of Fa c) computes
mi = yi ⊕ ci (if i = l π|cl|(yl)⊕ cl) with yi and ci modified according to the i.3 line of Fa,
6) finally, EEι

1 answers m = (m1, . . . , ml) and the leakage k0 to A.
For this, EEι

1 needs time tF + tH + (2l + 2)tE ≤ tF + tH + (2L + 2)tE.
When A does the ι decryption query on input (a, c, Fa), EEι

1 proceeds as follows: 1) she
computes h = H′

s(a, c0∥ . . . ∥cl) where a and c0, . . . , cl are modified according to the 0.0
row of Fa, and she adds ((c0, . . . , cl, a), h) to H (with c0, . . . , cl and a modified according
to the 0.0 row of Fa), 2) she sets hι and cι

l+1, which are h and cl+1 modified according to
the 0.1 row of Fa and she checks if there is an entry in CH (hι, cι

l+1). If this is the case
EEι

1 aborts. Otherwise, EEι
1 outputs hι as her challenge and st = (hι, cι

l+1, CH,H, s, f).
Then, EEι

2(st), parses st in hι, cι
l+1, CH,H, s, f), and she computes k0 = f−1(hι, cι

l+1). 3)
after that, EEι

2 computes c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa, and
cl+2 = Ek0(pB), and she adds (hi, ci

l+1, cl+2) to CH, 4) she sees if c̃0 ̸= c0, she answers ⊥
and the leakage k0 to A; otherwise 5) for i = 1, . . . , l, a) computes ki = Eki−1(pA) with
ki−1 modified according to the i.1 line of Fa, b) computes yi = Eki

(pB) with ki modified
according to the i.2 line of Fa c) computes mi = yi ⊕ ci (if i = l π|cl|(yl) ⊕ cl) with yi

and ci modified according to the i.3 line of Fa, 6) finally, EEι
2 answers m = (m1, . . . , ml)

and the leakage k0 to A. (If ι = qD + 1 the decryption query associated to A output, EE
proceeds as as normal decryption query, simply assuming that there is no fault injected).

For this, EEι
1 needs time tH, while EEι

2 needs time tF + (2l + 2)tE ≤ tF + (2L + 2)tE. To
be polynomial, we assume that f is simulated via lazy sampling and EE1 puts in st the
samples she has already done.

When A does the ith decryption query, i > ι on input (a, c, Fa), EEι
2 proceeds as follows:

1) she computes h = H′
s(c0∥ . . . ∥cl, a) where c0, . . . , cl and a are modified according to

the 0.0 row of Fa, and she adds ((c0, . . . , cl, a), h) to H (with c0, . . . , cl and a modified
according to the 0.0 row of Fa), 2) she computes k0 = f−1(h, cl+1) where the inputs
are modified according to 0.1 row of Fa, obtaining k0, as answer; she sets ci

l+1 := cl+1,
hi = h (where cl+1 and h are modified according to the 0.1 row of Fa), 3) she computes
c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa, and cl+2 = Ek0(pB), 4) she
sees if c̃0 ≠ c0, she answers ⊥ and the leakage k0 to A; otherwise 5) for i = 1, . . . , l, a)
computes ki = Eki−1(pA) with ki−1 modified according to the i.1 line of Fa, b) computes
yi = Eki(pB) with ki modified according to the i.2 line of Fa c) computes mi = yi ⊕ ci (if
i = l π|cl|(yl)⊕ cl) with yi and ci modified according to the i.3 line of Fa, 6) finally, EEι

2
answers m = (m1, . . . , ml) and the leakage k0 to A.

For this, EEι
2 needs time tF + tH + (2l + 2)tE ≤ tF + tH + (2L + 2)tE.

When A outputs her output (a∗, c∗), EEι
2 proceeds as follows: 1) she computes h∗ =

H′
s(c∗

0∥ . . . ∥c∗
l , a∗) and she adds ((c∗

0∥ . . . ∥c∗
l , a∗), h) to H, 2) she computes k=

0 f−1(h, cl+1)
3) she computes c̃0 = fk0(pA) with k0 modified according the 0.2 line of Fa, and cl+2 =
Ek0(pB), 4) she sees if c̃∗0 ̸= c∗

0, she answers ⊥; otherwise 5) for i = 1, . . . , l, a) computes
k∗

i = Ek∗
i−1

(pA), b) computes y∗
i = Ek∗

i
(pB), c) computes m∗

i = y∗
i ⊕c∗

i (if i = l π|c∗
l

|(y∗
l )⊕c∗

l ,
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6) finally, EEι
2 observe that A has given a correct decryption query, and she looks through

H to see if there is an entry (c0∥ . . . ∥cl, a), h) s.t h = hι and c0 = cι
l+2. If it is the case,

she outputs it, otherwise 0n.
Thus, in total EE runs in time bounded by t+q(tH)+(qE+qD+1)[(2L+2)+1)tE+tF] = t′

3.
EE correctly simulates Game 6 for A, except for the computation of Fa.

Bounding Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1]. First, we observe that if EEι
1 aborts, it means

that there is a previous query for which hi = hι and ci
l+2 = cι

l+2, thus event Bad3.ι is event
3.i, thus,

Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1] = 0.

Second, we observe that since kι
0 is picked randomly (and (kι

0, pB) has never been queried
before the ι decryption query to E), to pick the random prefix uniformly at random
or to pick a k0 uniformly at random and as a random prefix E(k0, pB) is indistinguish-
able for the n-PR-corpi game. We are doing the latter case for EEι. Thus, if event
Bad3.ι¬Bad3.1, . . . , Bad3.ι−1 happens, then, EE wins the n-PR-corpi game. Since EE is a
t′
3-adversary and H is (t3, ϵPR-corpi)-n-PR-corpi-secure (because we need to subtract the

time needed to compute the random pre-fix), then,
Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1] ≤ ϵPR-corpi.

Note that as it happened for D the fact that she does not compute correctly Fa it is not a
problem, because the correct computation of Fa is only needed to compute the output of
the game and the output of EEι is produced before the effect of Fa enters into play.
Concluding the proof First, we observe that

Pr[Bad3] ≤
qD+1∑
ι=1

Pr[Bad3.ι|¬Bad3.1, . . . , Bad3.ι−1] ≤ ϵPR-corpi ≤ (qD + 1)ϵPR-corpi.

Second, we observe that Pr[E6] = 0, since the adversary in the final verification query
cannot have h∗ equal to an h of an encryption query, and if h∗ = h of a decryption query,
it cannot be the case that c̃∗0 = c∗

0 (EEι covers also the case of kι
0 random and cι

l+2 (which
is cι

0 correctly computed) equal to c0 which is computed to obtain hι). Moreover, if during
the ith encryption query, there is another possible combination of the ciphertext blocks
c0, . . . , cl, (c′′

0 , . . . , c′′
l ) different from c′

0, . . . , c′
l (which are the inputs of Hf during the

encryption query due to faults) s.t. h = H′
s((c′′

0 , . . . , c′′
l ), a′′), a collision for H would have

been found. But we have ruled out this possibility with event Bad2. Thus,

Pr[E0] ≤ Pr[E1] ≤
7∑

i=1
|Pr[Ei+1]− Pr[Ei]| ≤

ϵsTPRP + (qD + 2)(qD + 1)
2n+1 + (qD + 1)[qE(L + 1) + qI + (j − 1)(L + 2)]

2n
+

ϵCR + (qD + 1)ϵPR-corpi.

If in the wCILF2 definition we had asked that for each encryption queries there exists
only one couple (a′, c′) s.t. ADeck(a′c′) ̸=⊥ (with a′ and c′ one of the various values that a
and c takes during the proof), the proof would have been much more complex because we
would have to check all these couples. Instead, with our definition, we make the adversary
“do” all the work, because to win she can output 2 such couples, thus, she has to find
them (and, thus, she has to use her time). We could have proved the existential version
of wCILF, but we would have to check that all hash does not collide and every ciphertext
(except at most one), when decrypted are deemed to be invalid (thus, we would have to
compute all possible k0, check if the hash is equal to the hash of another call, etc).
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CONCRETE is not wCILF2 if the adversary can set 2 values. It is clear that the
decoupling attack does not affect the wCILF2 security, thus, we may wonder if CONCRETE
is wCILF2 secure if the adversary can set values. Unfortunately, this is not the case. Consider
the following attack: 1) the adversary chooses k0, m, and a. Then, she computes c0, . . . , cl

as follows: c0 = Ek0(pB), and then, for all i = 1, . . . , l, ki = Eki−1(pA), yi = Eki(pB) and
ci = yi ⊕mi (for i = l cl = π|ml|(yl) ⊕ml. Finally, she computes h = H′

s(a, c0∥ . . . ∥cl).
2) The adversary does an encryption query on input (a′, m′). In the computation she
injects the following fault: in the computation of cl+1 she replaces the k0 and h obtained
in during the computation with the k0 and h obtained in 1). She obtains a ciphertext c′.
3) The forgery is (a, (c0, . . . , cl, . . . c′

l+1)).
The reason why we cannot have security in this model is that with faults we can force

the strongly protected TBC to output what we want. On the other hand, we have devised
the decryption algorithm in a way that even if the adversary has unlimited access to F−1

k ,
she cannot forge. We conjecture that in the unbounded leakage model, we can have no
security if the adversary is allowed to set all the inputs of a strongly protected component
in encryption.

But if the adversary is only allowed to set one value (and put all the differential faults
she wants), CONCRETE remains wCILF.
Theorem 13. Let F be a strongly protected (q, t1, ϵsTPRP)-sTPRP, let E be an ideal
block-cipher, let A be allowed qI queries to E, let H be a (t2, ϵCR)-collision resistant and
(t3, ϵPR-corpi)-n-PR-corpi hash function. Then, (IAEnc, IADec)-protected implementation of
the AE-scheme CONCRETEΠ = (Gen, AEnc, ADec), encoding messages at most Ln bits
long, with leaking function pair L = (LAEnc, LADec) and fault admissible sets F = (FE ,FD)
has (qI , qF L, qE , qD, t, ϵ) weakly ciphertext integrity in the presence of leakage and faults
against F-fault-then-leakage attacks in encryption and decryption (wCILF2)) as long the
adversary sets a single fault per encryption query with

ϵsTPRP + (qD + 2)(qD + 1)
2n+1 + (qD + 1)[qE(L + 1) + qI + (j − 1)(L + 2)]

2n
+

ϵCR + (qD + 1)ϵPR-corpi
with qI the number of queries the adversary A is allowed to do to the ideal block-cipher
E, with q = qE + qD + 1, qI = t1 = t + qtH + (q(2L + 1) + 1)tE, t2 = t + q(tH) + (qE +
qD)[(2L + 2) + 1)tE + tF] t3 = t + q(tH) + (qE + qD + 1)[(2L + 2) + 1)tE + tF]− tF − tE. (we
assume that picking a value uniformly at random does not take time).

The proof which is the same as the previous proof can be found in the full version of
the paper.

I.4 CIL2F2-security of CONCRETE2
First, we give the statement of Thm. 2 complete with the quantitative bounds:
Theorem 14. Let F be a strongly protected (q, t1, ϵsTPRP)-sTPRP, let E be an ideal block-
cipher, let A be allowed qI queries to E, let H be a (t1, ϵCR)-collision resistant, (t2, ϵPR-coirv)
pre-image resistant for a chosen offset of the image of a random value, and (t3, ϵPR-corpi) pre-
image resistant with chosen target and random n-bit prefix input. Then, the (IAEnc, IADec)-
protected implementation of the AE-scheme CONCRETE2 Π = (Gen, AEnc, ADec), encrypt-
ing messages at most Ln bits long, with leaking function pair L = (LAEnc, LADec) and fault
admissible sets F = (FE ,FD) has (qI , qE , qD, t, ϵ) provides ciphertext integrity in the
presence of leakage and faults against F-fault-then-leakage attacks in encryption and
decryption (CIL2F2− (de)) with

ϵ ≤ ϵsTPRP + ϵCR + qϵPR-corpi + 2qEϵPR-coirv+

{4qE + q(q + 1) + 1 + qD + qE(qE − 1
2 )qI(2 + 2qD + 5qE)+

(3L + 4)[6qEqD + 2qD + 2qD
qD + 1

2 + 2qE + 5qE
qE − 1

2 )]}2−n,
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with qI the number of queries the adversary A is allowed to do to the ideal block-cipher E,
with q = qE + qD + 1, t1 = t + q[tH) + (4(L + 1) + 2)tE], t2 = t + qtH + [(q − 1)4(L + 4)]tE,
t3 = t + qtH + [(q − 1)(4L + 6) + 2qD]tE, tE the time needed to compute once E, and tH to
compute once H (we assume that picking a value uniformly at random does not take time).

In the proof, to simplify it, we use the following lemma:

Lemma 1. Let E be an ideal cipher. Let (a, m, Fa) be an encryption query to CONCRETE2
where the fault inserted is Fa. For any possible adversarial choice of a, m and fault Fa,
provided that the adversary does not set k0 in both the computation of k0,E and k0,A and
she sets at most a single value (and use any differential fault she wants), then there exists
at least a ciphertext block c0, . . . , cl+1 which is uniformly random.

Proof. It is enough to prove that ∀(a, m, Fa) with m = (c0, . . . , cl+1) there exists i s.t. ci

is uniformly at random, that is, for any x ∈ {0, 1}n,
Pr[ci = x|(c0, . . . , ci, . . . , ck+1 ← AEnck(a, m, Fa, k0), k0

$← {0, 1}n] = 2−n,

where with (c0, . . . , ci, . . . , ck+1 ← AEnck(a, m, Fa, k0) we denote that we computing
AEnck(a, m) picking k0 and with the faults injected specified by Fa.

We start assuming that there is no set fault injected in the computation of k0,E =
Ek0(pA). Thus, k′

0, the key used in the previous computation is uniformly at random
because k′

0 = k0 ⊕∆0,1 with ∆0.1 a differential fault chosen by the adversary before k0 is
picked uniformly at random. Thus, since E is an ideal cipher and k′

0 is uniformly random,
the output of the computation k0,E = Ek′

0
(pA) is uniformly random.

Now let us assume that no set fault is injected in the computation c0 = Ek0,E
(pB), thus,

in the computation we use k′
0,E = k0,E ⊕∆0.3 a differential fault chosen by the adversary

before k0 is picked uniformly at random. Thus, c0 = Ek′
0
(pB) is uniformly random.

Now, we have to consider the missing cases. Let us suppose that the adversary set
k0 to k′

0 in the computation of k0,E = Ek0(pA) (or she sets k0,E in the computation of
c0 = Ek0,E

(pB)), thus in the computation of k0,A = Ek0(pB) we use k′′
0 = k0 ⊕∆0.2 with

∆0.2 a differential fault chosen by the adversary before k0 is picked uniformly at random
(the adversary has already used her only set fault). Thus, since E is an ideal cipher and k′′

0
is uniformly random, the output of the computation k0,A = Ek′′

0
(pB) is uniformly random.

Then, we observe that for all i = 1, . . . , l, in the computation of ki,A = Eki−1,A
(mi) we

use k′
i−1,A = ki,A ⊕∆i.4,0 and m′

i = mi ⊕∆i.4,1 with both differential faults chosen before
k0 is picked. By induction we assume that ki−1,A is uniformly random (we have already
proved that for k0,A), thus k′

i−1,A is uniformly random. Consequently, since E is an ideal
cipher the output of that computation is random, thus ki,A is random.

Iterating we arrive to prove that kl+1,A is uniformly random. Now, we consider the
computation of cl+1 = Ekl+1,E

(kl,A). Since the adversary has already used her set fault,
then k′

l,A = kl,A ⊕∆l+1.2,1 is uniformly random since ∆l+1.2,1 has been chosen before k0
is picked. Thus, since E is an ideal block-cipher, cl+1 is uniformly random.

We end by observing that it is irrelevant if the adversary has done any previous query
to E that is the same as one query that is done in the execution of the proof because we
do not claim that at least one block indistinguishable from one randomly picked, but only
that given a k0 picked uniformly at random at least one block is uniformly at random.

Now, we give the formal proof:

Proof. As usual, we use a sequence of games. Let Ei be the event that the adversary wins
Game i, that she outputs a fresh and valid forgery.
Game 0. It is the standard CIL2F2 against CONCRETE2.
Game 1. It is Game 0 where we replace F with a tweakable random permutation f.
Transition between Game 0 and Game 1. Since Game 0 and Game 1 are the same
except for the replacement of F with f, we can build an adversary B to bound the difference.
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She plays the sTPRP game, having to distinguish Fk from f, and simulates A’s oracles
using its own.

At the start of the game, B picks s in HK and gives it to A, and an ideal block-cipher
E. Moreover, he has a list S which is empty.

When A does an encryption query on input (a, m, Fa), B simply picks k0 uniformly at
random from {0, 1}n and after having parsed m in (m1, . . . , ml), computes c0, . . . , cl+1 as
follows: 1i) 20 k0,E = Ek′

0
(pA), where k′

0 is how k0 is modified according to the fault Fa
for this computation 21, 1ii) k0,A = Ek′′

0
(pB), where k′′

0 is how k0 is modified according to
the fault Fa for this computation, 1iii) c0 = Ek′

0,E
(pB), where k′

0,E is how k0,E is modified
according to the fault Fa for this computation, and 1iv) k1 = Ek′′

0,E
(pB), where k′′

0,E is how
k0,E is modified according to the fault Fa for this computation. Then, for all i = 1, . . . , l,
2i) B computes ki,E = Ek′

i
(pB), where k′

i is how ki is modified according to the fault Fa for
this computation, 2ii) ci = Ek′′

i,E
(m′

i), where k′′
i,E and m′

i are how ki,E and mi are modified
according to the fault Fa for this computation, 2iii) ki+1 = Ek′′

i
(pA), where k′′

i is how ki

is modified according to the fault Fa for this computation, and 2iv) ki,A = Ek′
i−1,A

(m′′
i ),

where k′
i−1,A and m′′

i are how ki−1,A and mi are modified according to the fault Fa for
this computation. After that, 3i) B computes kl+1,E = Ek′

l+1
(pB), where k′

l+1 is how kl+1

is modified according to the fault Fa for this computation, and 3ii) cl+1 = Ek′
l+1,E

(k′
l,A),

where k′
l+1,E and k′

l,A are how kl+1,E and kl,A are modified according to the fault Fa for
this computation. Finally, 4i) B computes h = H′

s(c′
0∥ . . . ∥c′

l+1, a), where c′
i is how ci is

modified according to fault Fa, and 4ii) she queries her oracle on input (h′, k′′′
0 ), where

h′ and k′′′
0 are how h and k0 are modified according to Fa in this computation, receiving

as answer cl+2. So, she can answer A c = (c0∥ . . . ∥cl+2) and the leakage k0. Moreover, B
adds (a, c) to the list S.

For this, B does one oracle query and needs time tH+(4(l+1)+2)tE ≤ tH+(4(L+1)+2)tE.
When A does a decryption query on input (a, c, Fa), B parses c = (c0, . . . , cl+2), and

she proceeds as follows: 1i) B computes h = H′
s(c′

0∥ . . . ∥c′
l+1, a), where c′

i is how ci is
modified according to fault Fa, and 1ii) she queries her inverse oracle on input (h′, cl+2),
where h′ is how h is modified according to Fa in this computation 22, receiving as answer
k0. Then, 2i) k0,E = Ek′

0
(pA), where k′

0 is how k0 is modified according to the fault Fa
for this computation, 2ii) k0,A = Ek′′

0
(pB), where k′′

0 is how k0 is modified according to
the fault Fa for this computation, 2iii) c̃0 = Ek′

0,E
(pB), where k′

0,E is how k0,E is modified

according to the fault Fa for this computation, and she checks if c0
?= c̃0, if it is not the

case she answers ⊥ to A and the leakage k0; otherwise 2iv) she computes k1 = Ek′′
0,E

(pB),
where k′′

0,E is how k0,E is modified according to the fault Fa for this computation. After
that B computes for all i = 1, . . . , l, 3i) B computes ki,E = Ek′

i
(pB), where k′

i is how ki is
modified according to the fault Fa for this computation, 3ii) mi = E−1

k′′
i,E

(c′′
i ), where k′′

i,E

and c′′
i are how ki,E and ci are modified according to the fault Fa for this computation,

3iii) ki+1 = Ek′′
i
(pA), where k′′

i is how ki is modified according to the fault Fa for this
computation, and 3iv) ki,A = Ek′

i−1,A
(m′

i), where k′
i−1,A and m′

i are how ki−1,A and mi

are modified according to the fault Fa for this computation. Finally, B computes 4i) B
computes kl+1,E = Ek′

l+1
(pB), where k′

l+1 is how kl+1 is modified according to the fault Fa
for this computation, and 4ii) c̃l+1 = Ek′

l+1,E
(k′

l,A), where k′
l+1,E and k′

l,A are how kl+1,E

and kl,A are modified according to the fault Fa for this computation. 4iii) if c̃l+1 is equal
to cl+1, B answers m = (m1, . . . , ml) and the leakage k0 to A; otherwise ⊥ and the leakage
k0.

For this, B does one oracle query and needs time tH+(4(l+1)+2)tE ≤ tH+(4(L+1)+2)tE.
20Note that each of the steps, which we divide this computation in, corresponds to an atom (see Sec. 2.6).
21That is, she calls the ideal cipher E on input (k′

0, pA), we use compute to simplify the writing. Moreover,
in this transition it is irrelevant the fact that E is an ideal block-cipher.

22Since this is the only time, we use cl+2, the adversary cannot modify it via a fault.
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When A outputs her output (a∗, c∗), B proceeds as for a normal decryption query with
the following differences: 1) there are no faults involved, 2) in step 4iii) if c̃l+1 is equal to
cl+1 and (a∗, c∗) /∈ S, B outputs 1, otherwise 0.

For this, B does one oracle query and needs time tH+(4(l+1)+2)tE ≤ tH+(4(L+1)+2)tE.
Thus, in total B does at most qE + qD + 1 = q queries to her oracle and runs in time

bounded by t + q[tH) + (4(L + 1) + 2)tE] = t1.
If her oracle is implemented with F, B correctly simulates Game 0 for A, otherwise

Game 1. Since F is a (q, t1, ϵsTPRP)-sTPRP,
|Pr[E1]− Pr[E0]| ≤ ϵsTPRP.

Game 2. It is Game 1, where instead of using f and f−1, we use two tweakable random
functions f and g (but, if we have obtained cl+2 = f(h, k0) we define gk(h, cl+2) := k0 (and
vice-versa).
Transition between Game 1 and Game 2. In Game 2, for decryption queries, we are
using a sTPRP, while in Game 3 a PRF. Due to the well-known birthday bound, we have
that

|Pr[E1]− Pr[E2]| ≤ 2q(q + 1)
2n+1 ,

because in addition to switching two PRPs with two PRFs (but since these functions are
correlated we do a single switch), we have to consider the probability that we cannot do
the simulation correctly, that is, when there exists a tweak h and two inputs x, x′ s.t.
f(h, x) = f(h, x′) (in this case, we cannot compute the inverse correctly) and vice-versa.
New sampling of f and g. From now on, when we say that an adversary computes f
and g we mean that we have a list L, and every time we have to compute f(x, y) (resp.
g(x, z)) we look into L to see if there is a triple (x, y, z). If it is the case, we output z

(resp.y); otherwise, we pick z
$← {0, 1}n (resp. y

$← {0, 1}n) and we output z (resp. x) and
we add (x, y, z) to L.

We have already covered the case that we cannot correctly simulate the game.
Game 3. It is Game 2 where we assume that during the execution of the game, there are
no collisions in the hash function.
Transition between Game 2 and Game 3. Since Game 2 and Game 3 are the same
except if the following event Bad1 happens: there is a collision for the hash function.

To bound Pr[Bad1] we build adversary C.
She plays the CR game against the hash function H, using the adversary A.
At the start of the game, C receives a key s in HK and gives it to A, and an ideal

block-cipher E. Moreover, he has two lists S and H which are empty.
When A does an encryption query on input (a, m, Fa), C simply picks k0 uniformly at

random from {0, 1}n and after having parsed m in (m1, . . . , ml), computes c0, . . . , cl+1 as
follows: 1i) k0,E = Ek′

0
(pA), where k′

0 is how k0 is modified according to the fault Fa for
this computation 23, 1ii) k0,A = Ek′′

0
(pB), where k′′

0 is how k0 is modified according to the
fault Fa for this computation, 1iii) c0 = Ek′

0,E
(pA), where k′

0,E is how k0,E is modified
according to the fault Fa for this computation, and 1iv) k1 = Ek′′

0,E
(pB), where k′′

0,E is how
k0,E is modified according to the fault Fa for this computation. Then, for all i = 1, . . . , l,
2i) C computes ki,E = Ek′

i
(pB), where k′

i is how ki is modified according to the fault Fa for
this computation, 2ii) ci = Ek′′

i,E
(m′

i), where k′′
i,E and m′

i are how ki,E and mi are modified
according to the fault Fa for this computation, 2iii) ki+1 = Ek′′

i
(pA), where k′′

i is how ki

is modified according to the fault Fa for this computation, and 2iv) ki,A = Ek′
i−1,A

(m′′
i ),

where k′
i−1,A and m′′

i are how ki−1,A and mi are modified according to the fault Fa for
this computation. After that, 3i) C computes kl+1,E = Ek′

l+1
(pB), where k′

l+1 is how kl+1

23That is, she calls the ideal cipher E on input (k′
0, pA), we use compute to simplify the writing. Moreover,

in this transition it is irrelevant the fact that E is an ideal block-cipher.
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is modified according to the fault Fa for this computation, and 3ii) cl+1 = Ek′
l+1,E

(k′
l,A),

where k′
l+1,E and k′

l,A are how kl+1,E and kl,A are modified according to the fault Fa for
this computation. Finally, 4i) C computes h = H′

s(c′
0∥ . . . ∥c′

l+1, a), where c′
i is how ci is

modified according to fault Fa, and she adds ((c′
0∥ . . . ∥c′

l+1, a), h) to H, and 4ii) she queries
her oracle on input (h′, k′′′

0 ), where h′ and k′′′
0 are how h and k0 are modified according to

Fa in this computation, receiving as answer cl+2. So, she can answer A c = (c0∥ . . . ∥cl+2)
and the leakage k0. Moreover, C adds (a, c) to the list S.

For this, C needs time tH + (4(l + 1) + 2)tE ≤ tH + (4(L + 1) + 2)tE.
When A does a decryption query on input (a, c, Fa), C parses c = (c0, . . . , cl+2), and she

proceeds as follows: 1i) C computes h = H′
s(a, c′

0∥ . . . ∥c′
l+1), where c′

i is how ci is modified
according to fault Fa, and she adds ((c′

0∥ . . . ∥c′
l+1, a), h) to H, and 1ii) she queries her

inverse oracle on input (h′, cl+2), where h′ is how h is modified according to Fa in this
computation, receiving as answer k0. Then, 2i) k0,E = Ek′

0
(pA), where k′

0 is how k0 is
modified according to the fault Fa for this computation, 2ii) k0,A = Ek′′

0
(pB), where k′′

0 is
how k0 is modified according to the fault Fa for this computation, 2iii) c̃0 = Ek′

0,E
(pB),

where k′
0,E is how k0,E is modified according to the fault Fa for this computation, and she

checks if c0
?= c̃0, if it is not the case she answers ⊥ to A and the leakage k0; otherwise

2iv) she computes k1 = Ek′′
0,E

(pB), where k′′
0,E is how k0,E is modified according to the

fault Fa for this computation. After that C computes for all i = 1, . . . , l, 3i) C computes
ki,E = Ek′

i
(pB), where k′

i is how ki is modified according to the fault Fa for this computation,
3ii) mi = E−1

k′′
i,E

(c′′
i ), where k′′

i,E and c′′
i are how ki,E and ci are modified according to

the fault Fa for this computation, 3iii) ki+1 = Ek′′
i
(pA), where k′′

i is how ki is modified
according to the fault Fa for this computation, and 3iv) ki,A = Ek′

i−1,A
(m′

i), where k′
i−1,A

and m′
i are how ki−1,A and mi are modified according to the fault Fa for this computation.

Finally, C computes 4i) C computes kl+1,E = Ek′
l+1

(pB), where k′
l+1 is how kl+1 is modified

according to the fault Fa for this computation, and 4ii) c̃l+1 = Ek′
l+1,E

(k′
l,A), where k′

l+1,E

and k′
l,A are how kl+1,E and kl,A are modified according to the fault Fa for this computation.

4iii) if c̃l+1 is equal to cl+1, C answers m = (m1, . . . , ml) and the leakage k0 to A; otherwise
⊥ and the leakage k0.

For this, C needs time tH + (4(l + 1) + 2)tE ≤ tH + (4(L + 1) + 2)tE.
When A outputs her output (a∗, c∗), C proceeds as for a normal decryption query with

the following differences: 1) there are no faults involved, 2) C does not answer A anything
3) after having computed this decryption query, C looks into her list H if she finds a
collision: if it is the case, she outputs it, otherwise (0n, 1n).

For this, C needs time tH + (4(l + 1) + 2)tE ≤ tH + (4(L + 1) + 2)tE.
Thus, in total C runs in time bounded by t + q[tH) + (4(L + 1) + 2)tE] = t1.
C correctly simulate Game 2 for A. Since Game 2 and Game 3 are the same, except if

event Bad1 happens, and C wins her CR-game if event Bad1 happens, and C is a t1-adversary
and H is a (t1, ϵCR)-collision-resistant hash function,

|Pr[E2]− Pr[E3]| = Pr[Bad1] ≤ ϵCR.

Game 4. It is Game 3, where in every decryption query (not the challenge one), immedi-
ately after k0 is computed (via g), the decryption oracle computes kl+3,E = Ek0(pA) and
cl+3 = Ekl+3,E

(pB) and it is appended to the leakage.
Transition between Game 3 and Game 4. These games are the same except for these
two additional calls per decryption query that any adversary can do. Thus, it is easy to
build an adversary A′ which when she receives the answer of a decryption query computes
kl+3,E = Ek0(pA) and cl+3 = Ek0,E(pB), appends them to the leakage and forwards them
to the adversary.

Such an adversary needs 2qD calls to the ideal blockcipher. Thus,

Pr[E3] = Pr[E4].



56
Providing Integrity for Authenticated Encryption in the Presence of Joint Faults and

Leakage

Game 5. It is Game 4, with the condition that the following event does not happen:
during a decryption query, when a new key k0 is picked by g 24, there exists no query to
the ideal cipher on input (k0, pA).
Transition between Game 4 and Game 5. The two games are the same except if the
following Bad2 event happens: there exists a decryption query s.t. it requires to pick a
new key ki

0 and there exists a previous query to the ideal cipher E on input (ki
0, pA). We

observe that during an encryption query there at most L + 2 queries to E(·, pA) with at
most L + 2 different keys, and 2L + 1 queries with (·, ·) where the key is either kj,E or kj,A

for a certain j and the input is a message mj or kl,A (which can be equal to pA
25), while

during a decryption query there at most L + 2 different queries to the ideal block-cipher
with input E(·, pA) and 2L + 1 to E(·, ·). In addition, due to the change we have introduced
in Game 4, there are two additional queries, one of which is to E(·, pA) The adversary
can do at most qI queries of its choice to the ideal block-cipher. Thus, during the jth
decryption query there at most qE(3L + 4) + qI + (j − 1)(3L + 4) different keys that, if
picked, would trigger the Bad2 event. Thus,

Pr[Bad2] ≤
qD∑

j=1

qE(3L + 4) + qI + (j − 1)(3L + 4)]
2n

≤

qD[qE(3L + 4) + qI ] + qD( qD+1
2 )(3L + 4)]

2n
= qD[(3L + 4)(qE + qD + 1

2 ) + qI ]2−n.

Thus, |Pr[E4]− Pr[E5]| ≤ Pr[Bad2] = qD[(3L + 4)(qE + qD + 1
2 ) + qI ]2−n.

Game 6. It is Game 5, with the condition that the following event does not happen: during
a decryption query, when a new key k0 is picked by g, and the associated k0,E = Ek0(pB)
is computed, there exists no query to the ideal cipher on input (k0,E , pB).
Transition between Game 5 and Game 6. The two games are the same except
if the following Bad3 event happens: there exists a decryption query s.t. it requires to
pick a new key ki

0, and s.t., given ki
0,E = Eki

0
(pA) its associated key (which is randomly

picked due to the fact that event Bad2 has not happened), there exists a previous query
to the ideal cipher E on input (ki

0,E , pB). As before, we have to consider 3L + 3 possible
problematic ideal cipher queries per encryption query, and 3L + 5 per previous decryption
query (considering the additional query due to the change introduced in Game 4) 26, and
the qI adversarial query to the ideal block-cipher. Thus, during the jth decryption query
there at most qE(3L + 4) + qI + (j − 1)[3(L + 1) + 2] different keys that, if picked, would
trigger the Bad3 event. Thus,

Pr[Bad3] ≤
qD∑

j=1

qE(3L + 4) + qI + (j − 1)[(3L + 4) + 1]
2n

≤

qD[qE(3L + 4) + qI ] + qD( qD+1
2 )[(3L + 4) + 1]

2n
= qD[(3L + 4)(qE + qD + 1

2 ) + qI + 1]2−n.

Thus, |Pr[E5]− Pr[E6]| ≤ Pr[Bad3] = qD[(3L + 4)(qE + qD + 1
2 ) + qI + 1]2−n.

Game 7. It is Game 6, where the following event Bad4 does not happen: for any tweak h
used by g only in decryption queries, there exist two decryption queries, which we call
the ith and the jth s.t. h′ = H(cj

0∥ . . . ∥cj
l+1, aj) (where cj

0, . . . , cj
l and aj are modified

24that is, there is no entry in the list used for f and g containing (h′, k0, cl+2), with h′ hash h obtained
in step 1i) and modified according to what fault Fa specifies for the step 1ii).

25If instead of using a block-cipher E, we use a tweakable blockcipher, we can avoid this situation and
significantly improve the number of possible calls to E, see Alg. 8 in the appendix.

26Since here we consider queries E(·, pB), while in the previous transition we consider queries E(·, pA), it
is enough to observe that for every query E(kj , pA) (or E(k0,E , pA) there exists one query E(kj , pB) (or
E(k0,E , pB)). In addition, there is a final query E(kl+1, pB) which does not correspond to any E(kl+1, PA).
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according to the fault Faj for the 1i) step, s.t. the modified cj
0 is equal to ci

l+2 obtained in
the ith decryption query, in which f−1(hi, τ i) is computed (modified according to the Fai

for step 1ii)) and the hi modified is equal to h′.
Transition between Game 6 and Game 7. Since Game 6 and Game 7 are the same ex-
cept if event Bad4 happens, it is enough to bound Pr[Bad4] to bound the difference |Pr[E6]−
Pr[E7]|. To bound Pr[Bad4], we divide it in qD + 1 different events:Bad4.1, . . . , Bad4.qD+1,
where Bad4.ι is event Bad4 where ι = i. Clearly, Bad4 =

qD+1
∪

ι=1
Bad4.ι.

To bound Pr[Bad4.ι] we build an adversary Dι against the n-PR-corpi-security of the
hash function H.
The n-PR-corpi-adversary Dι. At the start of the game, Dι receives a key for the hash
function s in HK and gives it to A. Moreover, she picks two random tweakable functions f
and g as discussed before. Finally, she has a list H which is empty.

When A does an encryption query on input (a, m), Dι (we use Dι) to identify both Dι
1

and Dι
2) behaves as C. For this, Dι needs time tH + [4(l + 1) + 2]tE ≤ tH + [4(L + 1) + 2]tE.

When A does the ith decryption query, i < ι on input (a, c, Fa), Dι
1 proceeds as C

with the following differences: after step 1ii), and before to step 2i), she 1iii) computes
kl+3,E = Ek0(pA) and 1iv) cl+3 = Ek0,E

(pB).
For this, Dι

1 needs time tH + 4(l + 2)tE ≤ tH + 4(L + 2)tE.
When A does the ι decryption query on input (a, c, Fa), Dι

1 proceeds as follows: she
performs 1i), then she checks if she has to sample g or not, that is, if there is an entry
in the list L containing (·, hι, cι

l+2) with h the actual input used. If this is the case she
aborts, otherwise, she outputs hι as her challenge, and the state st = (hι, cι

l+2,H, s, f, g).
Dι

2 receives cl+3 which is a random value. Dι
2 parses st in (hι, cι

l+2,H, s, f, g), she picks
k0,A and k1. From then, she proceeds as C from step 2i). For this Dι

1 needs time tH, while
Dι

2 needs time (4l + 2)tE ≤ (4L + 2)tE.
When A does the ith decryption query, i > ι on input (a, c, Fa), Dι

2 proceeds as Dι
1 for

the ith decryption query (i > ι), thus she needs time tH + 4(l + 2)tE ≤ tH + 4(L + 2)tE.
When A outputs her output (a∗, c∗), Dι

2 proceeds as follows: she computes h∗ =
H′

s(c∗
0∥ . . . ∥c∗

l+1, a∗) and she adds ((c∗
0∥ . . . ∥c∗

l+1, a∗), h) to H, and then, she looks through
H to see if there is an entry (c0∥ . . . ∥cl+1, a), h) s.t h = hι and c0 = cι

l+3. If it is the case,
she outputs it, otherwise 0n. This takes time tH.

Thus, in total D runs in time bounded by
t + qE [tH + (4(L + 1) + 2)tE] + (ι− 1)[tH + (4(L + 2))tE]+

tH + (4L + 2)tE + (qD − ι)[tH + (4(L + 2))tE] + tH

t + qtH + [(q − 1)(4L + 6) + 2qD]tE ≤ t3.

Bounding Pr[Bad4.ι|¬Bad4.1, . . . , Bad4.ι−1]. First, we observe that if Dι
1 aborts, it means

that there is a previous query for which hi = hι and ci
l+3 = cι

l+3, thus event Bad4.ι is event
Bad4.i, thus,

Pr[Bad4.ι|¬Bad4.1, . . . , Bad4.ι−1] = 0.

Second, we observe that since kι
0, and kι

l+3,E are picked randomly (and (kι
0, pA) and

(kι
l+3,E , pB) have never been queried before the ι decryption query to E due to the events

Bad2 and Bad3 not happening), to pick the random prefix uniformly at random or to pick a
k0 uniformly at random, to compute kl+3,E = Ek0(pA) and as a random prefix E(kl+3, pB)
is indistinguishable for the n-PR-corpi game. We are doing the latter case for Dι. Thus, if
event Bad4.ι¬Bad4.1, . . . , Bad4.ι−1 happens, then, D wins the n-PR-corpi game. Since D is
a t3-adversary and H is (t3, ϵPR-corpi)-n-PR-corpi-secure, then,

Pr[Bad4.ι|¬Bad4.1, . . . , Bad4.ι−1] ≤ ϵPR-corpi.

Bounding |Pr[E6]− Pr[E7]|. We observe that

Pr[Bad4] ≤
qD+1∑
ι=1

Pr[Bad4.ι|¬Bad4.1, . . . , Bad4.ι−1] ≤ ϵPR-corpi ≤ (qD + 1)ϵPR-corpi.
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Thus, Pr[E6]− Pr[E7] ≤ Pr[Bad4] ≤ (qD + 1)ϵPR-corpi.

Having proved that no triple (h, k0, cl+2) associated to a decryption query can be used
to forge, we pass to the triples associated to encryption queries.

Game 8. It is Game 7, where the following event Bad5 does not happen: for every
encryption query, if the adversary has not set k0 in the input of the f computation,
then, there is no previous query to E(k′

0, pA), where k′
0 is how k0 is modified for step 4ii)

according to the fault Fa.

Transition between Game 7 and Game 8. The two games are the same except if the
following Bad5 event happens: there exists an encryption query (aj , mj , Faj), the jth, s.t.
1) Faj does not set the k0 input for the computation considered in Step 4ii) (the call to f),
2) let kj

0 the key picked, and let k†,j
0 be how kj

0 is modified for the computation of Step
4ii, then there is no previous query to the ideal cipher on input (k†,j

0 , pA).
Now, note that since the fault is predetermined, a challenger can compute k†,j

0 before
having to do any computation for the jth encryption query.

We observe that during an encryption query there at most L + 2 queries to E(·, pA)
with at most L + 2 different keys, and 2L + 1 queries with (·, ·) where the key is either kι,E

or kι,A for a certain ι and the input is a message mι (which can be equal to pA), while
during a decryption query there at most L + 2 different queries to the ideal block-cipher
with input E(·, pA) and 2L + 1 to E(·, ·). In addition, due to the change we have introduced
in Game 4, there are two additional queries, one of which is to E(·, pA) The adversary
can do at most qI queries of its choice to the ideal block-cipher. Thus, during the jth
encryption query there at most (j − 1)(3L + 3) + qD(3L + 4) + qI different keys that, if
picked, would trigger the Bad5 event. Thus,

Pr[Bad5] ≤
qE∑

j=1

(j − 1)(3L + 3) + qD(3L + 4) + qI

2n
≤

[qE(3L + 3)(qE − 1)/2 + qEqI + qEqD(3L + 4)]2−n =
qE [3(qE − 1)(L + 1)/2 + qI + qD(3L + 4)]2−n.

Thus, |Pr[E7]− Pr[E8]| ≤ Pr[Bad5] = qE [3(qE − 1)(L + 1)/2 + qI + qD(3L + 4)]2−n.

Game 9. It is Game 8, where the following event Bad6 does not happen: for every
encryption query, if the adversary has not set k0 in the input of the f computation, then,
there is no previous query to E(k′

0,E , pB), where k′
0,E = Ek′

0
(pB), and k′

0 is how k0 is
modified for step 4ii) according to the fault Fa.

Transition between Game 8 and Game 9. The two games are the same except if the
following Bad6 event happens: there exists an encryption query (aj , mj , Faj), the jth, s.t.
1) Faj does not set the k0 input for the computation considered in Step 4ii) (the call to f),
2) let kj

0 the key picked, and let k†,j
0 be how kj

0 is modified for the computation of Step
4ii, and k†,j

0,E then there is no previous query to the ideal cipher on input (k†,j
0,E , pB).

Now, note that since the fault is predetermined, a challenger can compute k†,j
0 and k†,j

0,E

(which is random due to the previous transition), before having to do any computation for
the jth encryption query.

We observe that during an encryption query there at most L + 3 queries to E(·, pB)
with at most L + 3 different keys, and 2L + 1 queries with (·, ·) where the key is either kι,E

or kι,A for a certain ι and the input is a message mι (which can be equal to pB), while
during a decryption query there at most L + 3 different queries to the ideal block-cipher
with input E(·, pB) and 2L + 1 to E(·, ·). In addition, due to the change we have introduced
in Game 4, there are two additional queries, one of which is to E(·, pB) The adversary
can do at most qI queries of its choice to the ideal block-cipher. Thus, during the jth
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encryption query there at most (j − 1)(3L + 4) + qD(3L + 4) + qI different keys that, if
picked, would trigger the Bad6 event. Thus,

Pr[Bad6] ≤
qE∑

j=1

(j − 1)(3L + 4) + qD(3L + 4) + qI

2n
≤

[qE(3L + 4)(qE − 1)/2 + qEqI + qEqD(3L + 4)]2−n =
qE [(qE − 1)(3L + 4)/2 + qI + qD(3L + 4)]2−n.

Thus, |Pr[E8]− Pr[E9]| ≤ Pr[Bad6] = qE [(qE − 1)(3L + 4)/2 + qI + qD(3L + 4)]2−n.

Game 10. It is Game 9, where in every encryption query, immediately after Step 4ii),
after k†

0 is computed (where k†
0 is k0 modified for the computation of Step 4ii according to

fault Fa), the encryption oracle computes kl+3,E = Ek†
0
(pA) and cl+3 = Ekl+3,E(pB) and it

is appended to the leakage.
Transition between Game 9 and Game 10. These games are the same except for these
two additional calls per encryption query that any adversary can do. Thus, it is easy to
build an adversary A′ which when she receives the answer of a encryption query computes
kl+3,E = Ek0(pA) and cl+3 = Ek0,E(pB), appends them to the leakage and forwards them
to the adversary.

Such an adversary needs 2qE calls to the ideal blockcipher. Thus,

Pr[E9] = Pr[E10].
Game 11. It is Game 10, here the following event Bad7 does not happen: there is an
encryption query, the jth, s.t. all these conditions holds: 1) the adversary does not use a
set fault for kj

0 in Step 1i) during the the jth encryption query 2) there exists a previous
ideal cipher query on input (kj,†

0 , pA) (where kj,†
0 is how kj

0 is modified according to the
fault Faj for the 1i) step).
Transition between Game 10 and Game 11. The two games are the same except if
even Bad7 happens. Since A is not setting kj

0 in Step 1i) via a fault, thus, kj,†
0 is random,

where kj,†
0 = kj

0 ⊕∆ with kj
0 randomly picked and ∆, the offset specified by the fault Faj

which is chosen before kj
0 is picked.

Similar to what we have done before, we observe that during an encryption query there
at most L + 3 queries to E(·, pA) with at most L + 3 different keys (we have an additional
query due to Game 10), and 2L + 1 queries with (·, ·) where the key is either kι,E or kι,A

for a certain ι and the input is a message mι (which can be equal to pA), while during a
decryption query there at most L + 2 different queries to the ideal block-cipher with input
E(·, pA) and 2L + 1 to E(·, ·). In addition, due to the change we have introduced in Game
4, there are two additional queries, one of which is to E(·, pA) The adversary can do at
most qI queries of its choice to the ideal block-cipher. Thus, during the jth encryption
query there at most (j − 1)(3L + 4) + qD(3L + 4) + qI different keys that, if picked, would
trigger the Bad5 event. Thus,

Pr[Bad7] ≤
qE∑

j=1

(j − 1)(3L + 4) + qD(3L + 4) + qI

2n
≤

[qE(3L + 4)(qE − 1)/2 + qEqI + qEqD(3L + 4)]2−n =
qE [(3L + 4)[qD + (qE − 1)/2] + qI ]2−n.

Thus, |Pr[E10]− Pr[E11]| ≤ Pr[Bad7] = qE [(3L + 4)[qD + (qE − 1)/2] + qI ]2−n.

Game 12. It is Game 11, here the following event Bad8 does not happen: there is an
encryption query, the jth, s.t. all these conditions holds: 1) the adversary does not use
a set fault for kj

0 in Step 1i) during the the jth encryption query, 2) the adversary does
not use a set fault for kj

0,E in Step 1iii) during the the jth encryption query 3) there
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exists a previous ideal cipher query on input (kj,†
0,E , pA) (where kj,†

0,E is how kj
0,E is modified

according to the fault Faj for the 1iii) step).

Transition between Game 11 and Game 12. The two games are the same except
if even Bad8 happens. The previous transition has assured that kj

0,E is random, if the
condition 1) of event Bad8 happens. Since A is not setting both kj

0 in Step 1i) and kj
0,E in

Step 1iii) via a fault, thus, kj,†
0,E is random, where kj,†

0,E = kj
0,E ⊕∆ with kj

0,E randomly
picked and ∆, the offset specified by the fault Faj which is chosen before kj

0,E is picked.
Similar to what we have done before, we observe that during an encryption query there

at most L + 4 queries to E(·, pB) with at most L + 4 different keys (we have an additional
query due to Game 10), and 2L + 1 queries with (·, ·) where the key is either kι,E or kι,A

for a certain ι and the input is a message mι (which can be equal to pB), while during a
decryption query there at most L + 3 different queries to the ideal block-cipher with input
E(·, pA) and 2L + 1 to E(·, ·). In addition, due to the change we have introduced in Game
4, there are two additional queries, one of which is to E(·, pB) The adversary can do at
most qI queries of its choice to the ideal block-cipher. Thus, during the jth encryption
query there at most (j − 1)(3L + 5) + qD(3L + 4) + qI different keys that, if picked, would
trigger the Bad8 event. Thus,

Pr[Bad8] ≤
qE∑

j=1

(j − 1)(3L + 5) + qD(3L + 4) + qI

2n
≤

[qE(3L + 5)(qE − 1)/2 + qEqI + qEqD(3L + 4)]2−n =
qE [(3L + 4)[qD + (qE − 1)/2] + (qE − 1)/2 + qI ]2−n.

Thus, |Pr[E11]− Pr[E12]| ≤ Pr[Bad8] =
qE [(3L + 4)[qD + (qE − 1)/2] + (qE − 1)/2 + qI ]2−n.

Game 13. It is Game 12, where the following event Bad9 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l∗+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g used
in the decryption), there exists an encryption query, the jth for which all these conditions
hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the jth encryption

query, 2) the adversary sets k∗
0 in the jth encryption query (that is, she modifies kj

0 in k∗
0

with a set fault) for the computation of step 4ii), 3) h∗ is the actual output of the H atom
of the jth encryption query, 4) ((c∗

0 . . . , c∗
l+1, a∗) is the actual input of the H atom the jth

encryption query.

Transition between Game 12 and Game 13. Since Game 12 and 13 are the same
except if event Bad9 happens, to bound the difference between these two games, we need
to bound Bad9. Let Bad9.j be the event that Bad9 happens and the 4 conditions holds for
the jth encryption query. Clearly Bad9 = ∪

qE
j=1

Bad9.j . Now, we bound Pr[Bad9.j ]. Since the

ciphertext is valid, this means that Ek∗
0,E

(pB) = c∗
0 = Ekj,†

0,E
(pB), where k∗

0,E = Ek∗
0
(pA), kj,†

0.E

is how kj
0,E is modified according to the fault Faj for the 1iii) step, and kj

0,E = Ekj,†
0

(pA)
(with kj,†

0 is how kj
0 is modified according to the fault Faj for the 1i) step. Now, due to

the fact that events Bad7 and Bad8 do not happen, then, kj,†
0,E is random, and also cj

0,E is
random. Moreover, the actual input of the H atom (step 4i)) of the jth encryption uses
cj

0,E and can only modify with a fault. Thus, in step 4i) we use cj,†
0,E = cj

0,E ⊕∆ with ∆
the offset specified by the fault Faj (which is chosen before all kj

0, kj
0,E , cj

0,E are picked.
So, the probability that cj,†

0,E = Ek∗
0,E

(pB) is 2−n which gives the bound for event Bad9:
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Pr[Bad9] ≤
∑
qE
j=1

Pr[Bad9.j ] = qE2−n.

Game 14. It is Game 13, where the following event Bad10 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l∗+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g used
in the decryption), there exists an encryption query, the jth for which all these conditions
hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the jth encryption

query, 2) the adversary sets kj
0 to k∗

0 with fault Faj in the jth encryption query for Step
4ii), 3) h∗ is the actual output of the H atom (Step 4i)) in the jth encryption query, 4)
((c∗

0 . . . , c∗
l+1, a∗) is not the actual input of the H atom (Step 4i)) in the jth encryption

query.
Transition between Game 13 and Game 14. Since Game 13 and 14 are the same
except if event Bad10 happens, to bound the difference between these two games, we need
to bound Bad10. Let Bad10.j be the event that Bad10 happens and the 4 conditions holds
for the jth encryption query. Clearly Bad10 = ∪

qE
j=1

Bad10.j . Now, we bound Pr[Bad10.j ].

We observe that in the jth, it is computed hj = Hs(cj,†
0 ∥ . . . ∥cj,†

lj+1, aj) (where cj,†
i is how

cj
i is modified according to fault Faj for step 4i), while for the forgery, it is computed

h∗ = Hs(c∗
0∥ . . . c∗

l∗+1, a∗). Due to condition 3) hj = h∗, while due to the condition 4)
(cj,†

0 ∥ . . . ∥cj,†
lj+1, aj) ̸= ((c∗

0 . . . , c∗
l+1, a∗), thus, a collision for the hash function has occurred,

which is impossible since we have assumed that event Bad1 (that is, no collision), thus
Pr[Bad10.j ] = 0 and

Pr[Bad10] =
qE∑

j=1
Pr[Bad10.j ] = 0. So, Pr[E13] = Pr[E14].

Game 15. It is Game 14, where the following event Bad11 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g used
in the decryption), there exists an encryption query, the jth, for which all these conditions
hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the jth encryption

query, 2) the adversary sets kj
0 to k∗

0 with fault Faj in the jth encryption query for Step
4ii), 3) h∗ is not the actual output of the H atom (Step 4i)) in the jth encryption query.
Transition between Game 14 and Game 15. Since Game 14 and 15 are the same
except if event Bad11 happens, to bound the difference between these two games, we need
to bound Bad11. Let Bad11.ι be the event that Bad11 happens and the 3 conditions holds
for the ιth encryption query. Clearly Bad11 = ∪

qE
ι=1

Bad11.ι. Now, we bound Pr[Bad11.ι]. For
this, we build a t2-PR-coirv adversary EEι.
The PR-coirv-adversary EEι. At the start of the game, EEι receives a key for the hash
function s in HK and gives it to A. Moreover, she picks two random tweakable functions f
and g as discussed before.

When A does the ith encryption query, i < ι, on input (ai, mi, Fai), EEι
1 proceeds as C

with the following exceptions: after step 4iii) she computes ki
l+3 = Eki,†

0
(pA) where ki,†

0 is
how ki

0 is modified in step 4ii) according to fault Fai, and 4iv) cl+3 = Ekl+3(pB). For this,
EEι

1 needs time tH + [4(l + 1) + 4]tE ≤ tH + [4(L + 2)]tE.
When A does the ι encryption query on input (aι, cι, Faι), EEι

1 proceeds as follows: she
outputs (st,D, ∆) where st = (s,H,L,D), ∆ is the offset specified by the fault Faι for step
4ii) for the h input (since we are considering event Bad11.ι it means that the adversary has
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already been spent her only set fault for the kι
0 for step 4ii), and she uses a fault here, thus,

it is a differential fault, and we call ∆ the difference XORed to h in this computation, and
D is this distribution for the input of the hash function: 1) pick kι

0
$← {0, 1}n 1i) compute

k0,E = Ekι,†
0

(pB), where kι,†
0 is how kι

0 is modified according to the fault Faι, for this
computation, 1ii) compute kι

0,A = Ekι,‡
0

(pB), where kι,‡
0 is how k0 is modified according to

the fault Faι for this computation, 1iii) compute c0 = Ekι,†
0,E

(pA), where kι,†
0,E is how kι

0,E is
modified according to the fault Faι for this computation, and 1iv) compute k1 = Ekι,‡

0,E
(pB),

where kι,‡
0,E is how kι

0,E is modified according to the fault Faι for this computation. Then,
for all i = 1, . . . , lι, 2i) compute kι

i,E = Ekι,†
i

(pB), where kι,†
i is how kι

i is modified according
to the fault Faι for this computation, 2ii) compute cι

i = Ekι,‡
i,E

(mι,†
i ), where kι,‡

i,E and mι,†
i

are how kι
i,E and mι

i are modified according to the fault Faι for this computation, 2iii)
compute kι

i+1 = Ekι,‡
i

(pA), where kι,‡
i is how kι

i is modified according to the fault Faι for
this computation, and 2iv) compute kι

i,A = Ekι,†
i−1,A

(mι,‡
i ), where kι,†

i−1,A and mι,‡
i are how

kι
i−1,A and mι

i are modified according to the fault Faι for this computation. After that, 3i)
compute kι

lι+1,E = Ekι,†
lι+1

(pB), where kι,†
lι+1 is how klι+1 is modified according to the fault

Faι for this computation, and 3ii) compute cι
lι+1 = Ekι,†

lι+1,E
(kι,†

lι,A), where kι,†
lι+1,E and kι,†

lι,A

are how kι
lι+1,E and kι

lι,A are modified according to the fault Faι for this computation.
The inputs of H are (cι,†

0 ∥ . . . ∥clι,†+1, aι), where cι,†
i is how cι

i is modified according to fault
Faι for step 4i).

Now, EEι
2 receiving st, samples (cι

0∥ . . . ∥clι+1, aι) according to the distribution D, then
she computes 4i) hι = Hs(cι

0∥ . . . ∥clι+1, aι), where cι,†
i is how cι

i is modified according
to fault Faι for this computation, 4ii) cι

lι+2 = f(hι,†, kι,††
0 ), where hι,†

i and kι,††
0 are how

hι
i and kι

0 are modified according to fault Faι for this computation (note that if Event
Bad.ι11 happens, by the condition 2) the adversary sets kι

0 to k∗
0). 4iii) she computes

kι
lι+3 = Ekι,††

0
(pA) where kι,††

0 is how kι
0 is modified in step 4ii) according to fault Faι, and

4iv) clι+3 = Ekι
l+3

(pB). For EE2 x = (cι
0∥ . . . ∥clι+1, aι) and h′ = hι

i = hι ⊕∆.
Thus, EEι

2 needs time tH + [4(l + 1) + 4]tE ≤ tH + [4(L + 2)]tE.
When A does the ith encryption query, i > ι, on input (ai, mi, Fai), EEι

2 proceeds as
EEι

1 for the jth encryption query with j < ι. Thus, EEι
2 needs time tH + [4(l + 1) + 4]tE ≤

tH + [4(L + 2)]tE.
When A does the ι decryption query on input (a, c, Fa), EEι (we use EEι) to identify

both EEι
1 and EEι

2) behaves as C with the following exceptions: after step 1ii), before
doing step 2i, EEι computes 1iii) kι

lι+3 = Ekι
0
(pA), and 1iv) cι

lι+3 = Eklι+3(pB).
Thus, EEι needs time tH + [4(l + 1) + 4]tE ≤ tH + [4(L + 2)]tE.
When A outputs her output (a∗, c∗), EEι

2 proceeds as follows: she computes h∗ =
H′

s(c∗
0∥ . . . ∥c∗

l+1, a∗) and she adds ((c∗
0∥ . . . ∥c∗

l+1, a∗), h) to H, and then, she looks through
H to see if there is an entry (c0∥ . . . ∥cl+1, a), h) s.t h = h′. If it is the case, she outputs it,
otherwise 0n. This takes time tH.

Thus, in total EE runs in time bounded by
t + qE [tH + (4(L + 2))tE] + (qD)[tH + (4(L + 2))tE] + tH

t + qtH + [(q − 1)4(L + 4)]tE ≤ t2.
Bounding Pr[Bad11]. First, we observe that EEι simulates perfectly Game 14 for A. As
already discussed, to bound Pr[Bad11], it is enough to bound Pr[Bad11.ι ∀ι. First, we
observe that EEι samples correctly according to D the input for the hash function (in
the PR-coirv game (Def. 11) it is irrelevant who samples the input for H, as long as, it
is sampled according to D). Moreover, due to the fact that if event Bad11.ι happens, in
the ι encryption query the adversary A uses her set fault for k0 in Step 4ii), we can use
Lemma 1 which assures that D has the property required by the PR-coirv definition (for
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the randomness). Clearly, if event Bad11.ι happens, the adversary has chosen an offset
for h. Thus, if event Bad11.ι happens, then EEι can find a pre-image for h′, where h′ is
obtained by adding an offset chosen in advance to the hash of a “random enough” input.
Since H is a (t2, ϵPR-coirv)-PR-coirv-secure hash function and EEι is a t2-adversary, then

Pr[Bad11.ι] ≤ ϵPR-coirv, and

|Pr[E14]− Pr[E15] ≤ Pr[Bad11] ≤
qE∑
ι=1

Pr[Bad11.ι] = qEϵPR-coirv.

Game 16. It is Game 15, where the following event Bad12 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g
used in the decryption), there exists an encryption query, the jth, for which all these
conditions hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the

jth encryption query, 2) the adversary sets hj to h∗ with fault Faj in the jth encryption
query for Step 4ii).
Transition between Game 15 and Game 16. Since Game 15 and 16 are the same
except if event Bad12 happens, to bound the difference between these two games, we need
to bound Bad12. Let Bad12.ι be the event that Bad12 happens and the 2 conditions holds
for the ιth encryption query. Clearly Bad12 = ∪

qE
ι=1

Bad12.ι. Now, we bound Pr[Bad12.ι]. For
this, we build a t3-PR-corpi adversary GGι.
The n-PR-corpi-adversary GGι. At the start of the game, GGι receives a key for the
hash function s in HK and gives it to A. Moreover, she picks two random tweakable
functions f and g as discussed before.

When A does the ith encryption query, i < ι, on input (ai, mi, Fai), GGι
1 proceeds as C

with the following exceptions: after step 4iii) she computes ki
li+3 = Eki,†

0
(pA) where ki,†

0 is
how ki

0 is modified in step 4ii) according to fault Fai, and 4iv) cli+3 = Ekli+3
(pB). For

this, GGι
1 needs time tH + [4(li + 1) + 4]tE ≤ tH + [4(L + 2)]tE.

When A does the ι encryption query on input (aι, mι, Faι), GGι
1 proceeds as follows:

from Faι she sees if the adversary sets h in step 4ii) to hι,†: if it is the case she outputs hι,†

as her target; in addition, she outputs st = (s,H,L, aι,, mι, Faι) ; otherwise, she aborts.
GGι

2 receiving st, she proceeds as C for a encryption query on input (aι, mι, Faι) with the
following exceptions: after step 4iii) she computes kι

li+3 = Ekι,†
0

(pA) where ki,†
0 is how kι

0

is modified in step 4ii) according to fault Fai, and 4iv) clι+3 = Eklι+3(pB). For this, GGι
1

and GGι
2 need in total time tH + [4(lι + 1) + 4]tE ≤ tH + [4(L + 2)]tE. Finally GGι

2 takes
cι

lι+3 as her random prefix for the pre-image of hι,†.
When A does the ith encryption query, i > ι, on input (ai, mi, Fai), GGι

2 proceeds as C
with the following exceptions: after step 4iii) she computes ki

li+3 = Eki,†
0

(pA) where ki,†
0 is

how ki
0 is modified in step 4ii) according to fault Fai, and 4iv) cli+3 = Ekli+3

(pB).
For this, GGι

2 needs time tH + [4(li + 1) + 4]tE ≤ tH + [4(L + 2)]tE.
When A does the ι decryption query on input (a, c, Fa), GGι (we use GGι) to identify

both GGι
1 and GGι

2) behaves as C with the following exceptions: after step 1ii), before
doing step 2i, GGι computes 1iii) kι

lι+3 = Ekι
0
(pA), and 1iv) cι

lι+3 = Eklι+3(pB).
Thus, GGι needs time tH + [4(l + 1) + 4]tE ≤ tH + [4(L + 2)]tE.
When A outputs her output (a∗, c∗), GGι

2 proceeds as follows: she computes h∗ =
H′

s(c∗
0∥ . . . ∥c∗

l+1, a∗) and she adds ((c∗
0∥ . . . ∥c∗

l+1, a∗), h) to H, and then, she looks through
H to see if there is an entry (c0∥ . . . ∥cl+1, a), h) s.t h = hι,† and c0 = cι

lι+3. If this is the
case, she outputs it, otherwise 0n. This takes time tH.

Thus, in total GG runs in time bounded by
t + qE [tH + (4(L + 2))tE] + (qD)[tH + (4(L + 2))tE] + tH

t + qtH + [(q − 1)4(L + 4)]tE ≤ t′
3.
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Bounding Pr[Bad12]. First, we observe that GGι simulates perfectly Game 15 for A. Thus,
it is equivalent to pick the random prefix as we do or uniformly at random from {0, 1}∗.
As already discussed, to bound Pr[Bad12], it is enough to bound Pr[Bad12.ι ∀ι. First, if
event Bad12.ι happens, in the ι encryption query the adversary A uses her set fault for h in
Step 4ii) setting it in hι,†; moreover, we observe that cι

lι+3 is random due to the fact that
we have assumed that both event Bad7 and Bad8 do not happen. Thus, if event Bad12.ι

happens, then GGι can find a pre-image for hι,†, of her choice whose prefix is random, and
it is equal to cι

lι+3. Since H is a (t3, ϵPR-corpi)-PR-corpi-secure hash function and GGι is a
t3-adversary, then

Pr[Bad12.ι] ≤ ϵPR-corpi, and

|Pr[E15]− Pr[E16] ≤ Pr[Bad12] ≤
qE∑
ι=1

Pr[Bad12.ι] = qEϵPR-corpi.

Game 17. It is Game 16, where the following event Bad13 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g used
in the decryption), there exists an encryption query, the jth, for which all these conditions
hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the jth encryption

query, 2) in step 4ii) of the jth encryption query there is no set fault, 3) hj the output of
step 4i) is the h input for step 4ii), that is, there is no differential faultput applied to it.
4) in the input of step 4i), cj,†

0 ̸= cj
lj+3, where cj,†

0 is how c0 is modified according to fault
Faj for step 4i) and cj

lj+3 = Ek∗
0,E

(pB), with k∗
0,E = Ek∗

0
(pA).

Transition between Game 16 and Game 17. Since Game 16 and 17 are the same
except if event Bad13 happens, to bound the difference between these two games, we need
to bound Bad13. Let Bad13.ι be the event that Bad13 happens and the 2 conditions holds
for the ιth encryption query. Clearly Bad13 = ∪

qE
ι=1

Bad13.ι. Now, we bound Pr[Bad13.ι].
We observe that if event Bad13.ι happens, it means that for hι there are two pre-images,

one computed in the jth encryption query and the other in the forgery. These two pre-
images are different because one uses cj,†

0 , the other is associated with the forgery, thus,
c∗

0 = cι
lι+3 because in the forgery we use k∗

0 (since we use the triple mentioned in the
condition 1) of event Bad13), thus, we need that c∗

0 = cι
lι+3 (due to how we have defined

cι
lι+3 in Game 10). But, because event Bad1 does not happen, it is impossible that there

are two pre-images for the same value of the hash functions. Thus, Pr[Bad13.ι] = 0, and

|Pr[E16]− Pr[E17]| = Pr[Bad13] ≤
qE∑
ι=1

Pr[Bad13.ι] = 0.

Game 18. It is Game 17, where the following event Bad14 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g used
in the decryption), there exists an encryption query, the jth, for which all these conditions
hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the jth encryption

query, 2) in step 4ii) of the jth encryption query there is no set fault, 3) hj the output of
step 4i) is the h input for step 4ii), that is, there is no differential fault applied to it. 4) in
the input of step 4i), cj,†

0 = cj
lj+3, where cj,†

0 is how c0 is modified according to fault Faj

for step 4i) and cj
lj+3 = Ek∗

0,E
(pB), with k∗

0,E = Ek∗
0
(pA) ( so cj,†

0 = c∗
0), 5) the input for

Step 4i) in the jth encryption query, (cj,†
0 ∥ . . . ∥cj,†

lj+1, aj), where cj,†
i is how cj

i is modified
according to the fault Faj for step 4i), is a “ valid encryption” for k∗

0 , that is, there exists
a message mj,‡ s.t. given k∗

0 and mj,‡ applying all the encryption steps from 1i) till 3ii)
without any fault, the result is cj,†

0 , . . . , cj,†
lj+1.
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Transition between Game 17 and Game 18. Since Game 17 and 18 are the same
except if event Bad14 happens, to bound the difference between these two games, we need
to bound Bad14. Let Bad14.ι be the event that Bad14 happens and the 5 conditions holds
for the ιth encryption query. Clearly Bad14 = ∪

qE
ι=1

Bad14.ι. Now, we bound Pr[Bad14.ι]. To
bound it, we divide event Bad14.ι in two:

• Bad14.ι.1: the adversary injects any effective fault (that is, any fault which modifies
the output) in the jth encryption query.

• Bad14.ι.2: the adversary injects no effective fault in the jth encryption query.
Bounding Pr[Bad14.ι.1]. We have two possibilities: the adversary has injected a fault in
step 4i) or in step 1ii) or not. If this is the case, since due to events Bad6 and Bad7 not
happening cj

lj+3 is random, thus, the probability that cj,†
0 = cj

lj+3 is ≤ 2−n if there is an
effective fault in step 1i) or 1ii) or 4ii) (due to conditions 2 and 3 of event Bad14, in step
4ii), A can only inject a differential fault the k0 input). First, we assume that the adversary
injects a fault in step 1i), or in the k0 input of step 4ii): thus, if the fault is effective,
that is, step 1i) is not Ek∗

0
(pA), the probability that the output of step 1i) is klj+3 is 2−n.

Again, if in step 1ii), we do not inject an effective fault (or we have put an effective fault in
1i) not obtaining kj

lj+3, if we are not computing Eklj +3
(pB), the probability that c∗

0, which
is computed after due to event Bad7 not happening, is equal to this output is c∗

0 is 2−n.
Now, we can use Lemma 1, to cover the case that the adversary has not injected a fault in
Step 1i), 1ii) and 4i). Thus, we can observe that the last block is uniformly random, thus,
the probability it is the correct one is 2−n, because there is only one correct 27. Thus,
Pr[Bad14.ι.1] ≤ 3/2n.
Bounding Pr[Bad14.ι.2]. Due to the condition 1) of event Bad14, in the forgery we use the
triple (h∗, k∗

0 , c∗
l+2) associated to the jth encryption query. Moreover, since we consider

event Bad14.ι.2, in the jth encryption query there are no faults. Thus, the adversary has
to find another pre-image for hj , which means that the adversary has found a collision for
the hash function. But this is impossible because we have assumed that event Bad1 does
not happen. Thus, Pr[Bad14.ι.2] = 0 and

Pr[Bad14.ι] ≤ Pr[Bad14.ι.1] + Pr[Bad14.ι.2] = 3/2−n.

Finally, we can bound

|Pr[E17]− Pr[E18]| = Pr[Bad14] ≤
qE∑
ι=1

Pr[Bad14.ι] = 3qE2−n.

Game 19. It is Game 18, where the following event Bad15 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g
used in the decryption), there exists an encryption query, the jth, for which all these
conditions hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the jth

encryption query, 2) in step 4ii) of the jth encryption query there is no set fault, 3) hj the
output of step 4i) is the h input for step 4ii), that is, there is no differential fault applied
to it. 4) in the input of step 4i), cj,†

0 = cj
lj+3, where cj,†

0 is how c0 is modified according to
fault Faj for step 4i) and cj

lj+3 = Ek∗
0,E

(pB), with k∗
0,E = Ek∗

0
(pA) ( so cj,†

0 = c∗
0), 5) the

input for Step 4i) in the jth encryption query, (cj,†
0 ∥ . . . ∥cj,†

lj+1, aj), where cj,†
i is how cj

i is
modified according to the fault Faj for step 4i), is not “ valid encryption” for k∗

0 , that is,
there exists no message mj,‡ s.t. given k∗

0 and mj,‡ applying all the encryption steps from
1i) till 3ii) without any fault, the result is cj,†

0 , . . . , cj,†
lj+1.

27For CONCRETE any ciphertext with the correct c0 is valid. This is one reason why CONCRETE2
achieves this security, differently from CONCRETE.
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Transition between Game 18 and Game 19. Since Game 18 and 19 are the same
except if event Bad15 happens, to bound the difference between these two games, we need
to bound Bad15. Let Bad15.ι be the event that Bad15 happens and the 5 conditions holds
for the ιth encryption query. Clearly Bad15 = ∪

qE
ι=1

Bad15.ι. Now, we bound Pr[Bad15.ι].
Due to the condition 1) of event Bad15, in the forgery we use the triple (h∗, k∗

0 , c∗
l+2)

associated to the jth encryption query. Moreover, since we consider event Bad15, in the
jth the input of the hash does not correspond to a “valid” encryption for k∗

0 . Thus, the
adversary has to find another pre-image for hj , which means that the adversary has found
a collision for the hash function. But this is impossible because we have assumed that
event Bad1 does not happen. Thus, Pr[Bad15.ι] = 0 and

|Pr[E18]− Pr[E19]| = Pr[Bad15] ≤
qE∑
ι=1

Pr[Bad15.ι] = 0.

Game 20. It is Game 19, where the following event Bad16 does not happen: the adversarial
output (a∗, (c∗

0, . . . , c∗
l+2)) is fresh and valid (thus, we call it a forgery), and let (h∗, k∗

0 , c∗
l+2)

be the triple associated to the forgery, (that is, the inputs and output of the call to g
used in the decryption), there exists an encryption query, the jth, for which all these
conditions hold: 1) (h∗, k∗

0 , c∗
l+2) is the triple associated to the call to f done during the

jth encryption query, 2) in step 4ii) of the jth encryption query there is no set fault, 3)
hj , the output of step 4i), is not the h input for step 4ii). Note that we have ruled out
the possibility that A injects a set fault in 4ii) because this case was covered in Game 16,
thus, the only possibility is that A injects a differential fault in h in step 4ii).
Transition between Game 19 and Game 20. Since Game 19 and 20 are the same
except if event Bad16 happens, to bound the difference between these two games, we need
to bound Bad16. Let Bad16.ι be the event that Bad16 happens and the 3 conditions holds
for the ιth encryption query. Clearly Bad16 = ∪

qE
ι=1

Bad16.ι. Now, we bound Pr[Bad16.ι]. For
this, we build a t2-PR-coirv adversary HHι.
The PR-coirv-adversary HHι. At the start of the game, HHι receives a key for the hash
function s in HK and gives it to A. Moreover, she picks two random tweakable functions f
and g as discussed before.

When A does the ith encryption query, i < ι, on input (ai, mi, Fai), HHι
1 proceeds as

C with the following exceptions: after step 4iii) she computes ki
l+3 = Eki,†

0
(pA) where ki,†

0

is how ki
0 is modified in step 4ii) according to fault Fai, and 4iv) cl+3 = Ekl+3(pB). For

this, HHι
1 needs time tH + [4(l + 1) + 4]tE ≤ tH + [4(L + 2)]tE.

When A does the ι encryption query on input (aι, cι, Faι), HHι
1 proceeds as follows:

she outputs (st,D, ∆) where st = (s,H,L,D), ∆ is the offset specified by the fault Faι

for step 4ii) for the h input (since we are considering event Bad16.ι it means that in
step 4ii) the adversary uses no set fault, and she uses a differential fault for the h input.
Let ∆ be the difference XORed to h in this computation, and D is this distribution
for the input of the hash function: 1) pick kι

0
$← {0, 1}n 1i) compute k0,E = Ekι,†

0
(pB),

where kι,†
0 is how kι

0 is modified according to the fault Faι, for this computation, 1ii)
compute kι

0,A = Ekι,‡
0

(pB), where kι,‡
0 is how k0 is modified according to the fault Faι

for this computation, 1iii) compute c0 = Ekι,†
0,E

(pA), where kι,†
0,E is how kι

0,E is modified
according to the fault Faι for this computation, and 1iv) compute k1 = Ekι,‡

0,E
(pB), where

kι,‡
0,E is how kι

0,E is modified according to the fault Faι for this computation. Then, for
all i = 1, . . . , lι, 2i) compute kι

i,E = Ekι,†
i

(pB), where kι,†
i is how kι

i is modified according
to the fault Faι for this computation, 2ii) compute cι

i = Ekι,‡
i,E

(mι,†
i ), where kι,‡

i,E and mι,†
i
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are how kι
i,E and mι

i are modified according to the fault Faι for this computation, 2iii)
compute kι

i+1 = Ekι,‡
i

(pA), where kι,‡
i is how kι

i is modified according to the fault Faι for
this computation, and 2iv) compute kι

i,A = Ekι,†
i−1,A

(mι,‡
i ), where kι,†

i−1,A and mι,‡
i are how

kι
i−1,A and mι

i are modified according to the fault Faι for this computation. After that, 3i)
compute kι

lι+1,E = Ekι,†
lι+1

(pB), where kι,†
lι+1 is how klι+1 is modified according to the fault

Faι for this computation, and 3ii) compute cι
lι+1 = Ekι,†

lι+1,E
(kι,†

lι,A), where kι,†
lι+1,E and kι,†

lι,A

are how kι
lι+1,E and kι

lι,A are modified according to the fault Faι for this computation.
The inputs of H are (cι,†

0 ∥ . . . ∥clι,†+1, aι), where cι,†
i is how cι

i is modified according to fault
Faι for step 4i).

Now, HHι
2 receiving st, samples (cι

0∥ . . . ∥clι+1, aι) according to the distribution D, then
she computes 4i) hι = Hs(cι

0∥ . . . ∥clι+1, aι), where cι,†
i is how cι

i is modified according
to fault Faι for this computation, 4ii) cι

lι+2 = f(hι,†, kι,††
0 ), where hι,†

i and kι,††
0 are how

hι
i and kι

0 are modified according to fault Faι for this computation (note that if Event
Bad.ι11 happens, by the condition 2) the adversary sets kι

0 to k∗
0). 4iii) she computes

kι
lι+3 = Ekι,††

0
(pA) where kι,††

0 is how kι
0 is modified in step 4ii) according to fault Faι, and

4iv) clι+3 = Ekι
l+3

(pB). For HH2 x = (cι
0∥ . . . ∥clι+1, aι) and h′ = hι

i = hι ⊕∆.
Thus, HHι

2 needs time tH + [4(l + 1) + 4]tE ≤ tH + [4(L + 2)]tE.
When A does the ith encryption query, i > ι, on input (ai, mi, Fai), HHι

2 proceeds as
HHι

1 for the jth encryption query with j < ι. Thus, HHι
2 needs time tH + [4(l + 1) + 4]tE ≤

tH + [4(L + 2)]tE.
When A does the ι decryption query on input (a, c, Fa), HHι (we use HHι) to identify

both HHι
1 and HHι

2) behaves as C with the following exceptions: after step 1ii), before
doing step 2i, HHι computes 1iii) kι

lι+3 = Ekι
0
(pA), and 1iv) cι

lι+3 = Eklι+3(pB).
Thus, HHι needs time tH + [4(l + 1) + 4]tE ≤ tH + [4(L + 2)]tE.
When A outputs her output (a∗, c∗), HHι

2 proceeds as follows: she computes h∗ =
H′

s(c∗
0∥ . . . ∥c∗

l+1, a∗) and she adds ((c∗
0∥ . . . ∥c∗

l+1, a∗), h) to H, and then, she looks through
H to see if there is an entry (c0∥ . . . ∥cl+1, a), h) s.t h = h′. If this is the case, she outputs
it, otherwise 0n. This takes time tH.

Thus, in total HH runs in time bounded by
t + qE [tH + (4(L + 2))tE] + (qD)[tH + (4(L + 2))tE] + tH

t + qtH + [(q − 1)4(L + 4)]tE ≤ t2.

Bounding Pr[Bad16]. First, we observe that HHι simulates perfectly Game 19 for A. As
already discussed, to bound Pr[Bad16], it is enough to bound Pr[Bad11.ι ∀ι. First, we
observe that HHι samples correctly according to D the input for the hash function (in
the PR-coirv game (Def. 11) it is irrelevant who samples the input for H, as long as, it
is sampled according to D). Moreover, due to the fact that if event Bad16.ι happens, in
the ι encryption query the adversary A uses her set fault for k0 in Step 4ii), we can use
Lemma 1 which assures that D has the property required by the PR-coirv definition (for
the randomness). Clearly, if event Bad16.ι happens, the adversary has chosen an offset
for h. Thus, if event Bad16.ι happens, then HHι can find a pre-image for h′, where h′ is
obtained by adding an offset chosen in advance to the hash of a “random enough” input.
Since H is a (t2, ϵPR-coirv)-PR-coirv-secure hash function and HHι is a t2-adversary, then

Pr[Bad16.ι] ≤ ϵPR-coirv, and

|Pr[E19]− Pr[E20] ≤ Pr[Bad16] ≤
qE∑
ι=1

Pr[Bad16.ι] = qEϵPR-coirv.

Studying event E20. Since we have covered all cases where the adversary has already
seen the triple (h∗, k∗

0 , c∗
l∗ + 2) for f and g, the only possibility is that g(h∗, c∗

l∗+2) has never
been computed before. So, we define event Bad17: 1) g(h∗, c∗

l∗+2) has never been defined
before (thus k∗

0 is random), 2) there exists a previous query to E(k∗
0 , pA). Additionally,
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we define event Bad18: 1) g(h∗, c∗
l∗+2) has never been defined before, 2) there exists no

previous query to E(k∗
0 , pA) (thus, k∗

0,E = Ek∗
0
(pA) is random). 3) there exists a previous

query to E(k∗
0,E , pB).

Bounding Pr[Bad17]. Since g(h∗, c∗
l∗+2) has never been computed before, so k∗

0 is picked
uniformly at random.

Now, we want to compute how many “bad keys” are there, that is, keys for which
E(·, pA) has been computed before in the execution of the game. Similar to what we have
done before, we observe that during an encryption query there at most L + 3 queries to
E(·, pA) with at most L + 3 different keys (we have an additional query due to Game 10),
and 2L + 1 queries with (·, ·) where the key is either kι,E or kι,A for a certain ι and the
input is a message mι (which can be equal to pA), while during a decryption query there
at most L + 2 different queries to the ideal block-cipher with input E(·, pA) and 2L + 1
to E(·, ·). In addition, due to the change we have introduced in Game 4, there are two
additional queries, one of which is to E(·, pA) The adversary can do at most qI queries of
its choice to the ideal block-cipher. Thus, there are (qE + qD)(3L + 4) + qI different keys
that, if picked, would trigger the Bad17 event. Thus,

Pr[Bad17] ≤ [(qE + qD)(3L + 4) + qI ]2−n.

Bounding Pr[Bad17]. Since g(h∗, c∗
l∗+2) has never been computed before, so k∗

0 is picked
uniformly at random.

Now, we want to compute how many “bad keys” are there, that is, keys for which
E(·, pB) has been computed before in the execution of the game. Similar to what we have
done before, we observe that during an encryption query there at most L + 3 queries to
E(·, pB) with at most L + 3 different keys (we have an additional query due to Game 11),
and 2L + 1 queries with (·, ·) where the key is either kι,E or kι,A for a certain ι and the
input is a message mι (which can be equal to pB), while during a decryption query there
at most L + 2 different queries to the ideal block-cipher with input E(·, pB) and 2L + 1
to E(·, ·). In addition, due to the change we have introduced in Game 4, there are two
additional queries, one of which is to E(·, pB) The adversary can do at most qI queries of
its choice to the ideal block-cipher. Thus, there are (qE + qD)(3L + 4) + qI different keys
that, if picked, would trigger the Bad18 event. Thus,

Pr[Bad18] ≤ [(qE + qD)(3L + 4) + qI ]2−n.

Bounding Pr[E20]. If both event Bad17 and Bad18 don not happen, c̃∗
0 is uniformly at

random, thus, the probability that c∗
0 = c̃∗

0 is 2−n. Putting everything together, we obtain
that

Pr[E20] ≤ Pr[Bad17] + Pr[Bad18] + Pr[E20|(¬Bad17) ∧ (¬Bad18)] ≤
2[(qE + qD)(3L + 4) + qI ] + 2−n.
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Table 3: The wCILF2 experiment. If AEnc is a probabilistic scheme, c = AEnck(a, m; r)
denotes that the randomness r is used. Faulted returns all possible values that a and c can
take during the encryption query (according to the atomic model, Sec. 3.2). We denote
with (a∗, c∗) /∈ S that there exists no entry (x, y, z, w, u) ∈ S s.t. (a∗, c∗) = (x, y)

The wCILF2Π,F,L,F,ALFa experiment
Initialization: Oracle AEncLFak(m, Fa):

k ← Gen c = AEnck(a, m; r)
S ← ∅ For (a′, c′)← Faulted(a, m, Fa; r)

S ← {(a′, c′, a, m, r)} ∪ S
Finalization: Return (c, LE(AEnck(a, m, Fa)))

(a∗, c∗, a†, c†)← AL,Fa,AEncLFak,ADecLFak

If ADeck(a∗, c∗) ̸=⊥ ∧ (a∗, c∗) /∈ S Oracle ADecLFak(a, c, Fa):
Return 1 ans = ADeck(a, c, Fa)

If ADeck(a∗, c∗) ̸=⊥ ∧ ADeck(a†, c†) ̸=⊥ ℓ = LV (Vrfyk(m, τ, Fa))
If ∃(a, m, r) s.t. Return (ans, ℓ)

(a∗, c∗, a, m, r), (a†, c†, a, m, r) ∈ S
Return 0

Return 1
Return 0

Completing the proof. Now, putting all our bounds together we can conclude the proof:

Pr[E0] ≤ Pr[E20] +
19∑

i=0
|Pr[Ei]− Pr[Ei+1]| =

2[(qE + qD)(3L + 4) + qI ]2−n + 2−n + ϵsTPRP + 2q(q + 1)
2n+1 +

ϵCR + 0 + qD[(3L + 4)(qE + qD + 1
2 ) + qI ]2−n+

qD[(3L + 4)(qE + qD + 1
2 ) + qI + 1]2−n + (qD + 1)ϵPR-corpi+

qE [3(qE − 1)(L + 1)/2 + qI + qD(3L + 4)]2−n+
qE [(qE − 1)(3L + 4)/2 + qI + qD(3L + 4)]2−n+
qE [(qE − 1)(3L + 4)/2 + qI + qD(3L + 4)]2−n+

0 + qE [(3L + 4)[qD + (qE − 1)/2] + qI ]2−n+
qE [(3L + 4)[qD + (qE − 1)/2] + (qE − 1)/2 + qI ]2−n + qE2−n + 0 + qEϵPR-coirv+

qEϵPR-corpi + 0 + 3qE2−n + 0 + qEϵPR-coirv ≤
ϵsTPRP + ϵCR + qϵPR-corpi + 2qEϵPR-coirv+

{4qE + q(q + 1) + 1 + qD + qE(qE − 1
2 )qI(2 + 2qD + 5qE)+

(3L + 4)[6qEqD + 2qD + 2qD
qD + 1

2 + 2qE + 5qE
qE − 1

2 )]}2−n,

which concludes the proof.
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Figure 3: CONCRETE2.
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Algorithm 4 The leakage-resistant encryption scheme PSV [40].
It uses a leak-free BC F : K × {0, 1}n → {0, 1}n, and a weakly protected BC E : {0, 1}n ×
{0, 1}n → {0, 1}n.

Gen:
• k

$← K

• pA, pB
$← {0, 1}n

Enck(m):
• Parse m in m1, ..., ml

• IV $← {0, 1}n

• k1 = Fk(iv)

• For i = 1, ..., l

– yi = Eki
(pB)

– ci = π|mi|(yi)⊕mi

– ki+1 = Eki
(pA)

• c = (c1, . . . , cl)

• Return (iv, c)

Deck(m, (iv, c)):

• Parse c in c1, ..., cl

• k1 = Fk(iv)

• For i = 1, ..., l

– yi = Eki(pB)

– mi = π|ci|(yi)⊕mi

– ki+1 = Eki(pA)

• Return m = (m1, . . . , ml)

Algorithm 5 The leakage-resistant PSV-MAC [40].
It uses a leak-free BC F : K × {0, 1}n → {0, 1}n, and a weakly protected BC E : {0, 1}n ×
{0, 1}n → {0, 1}n.

Gen:
• k

$← K
Mack(m):

• Parse m in m1, ..., ml

• IV $← {0, 1}n

• k1 = Fk(iv)

• For i = 1, ..., l

– ki+1 = Eki
(mi)

• τ = kl+1

• Return (iv, τ)

Vrfyk(m, (iv, τ)):

• Parse m in m1, ..., ml

• k1 = Fk(iv)

• For i = 1, ..., l

– ki+1 = Eki
(mi)

• τ̃ = kl+1

• If τ̃ = τ

– Return ⊤

• Return ⊥
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Algorithm 6 The CONCRETE algorithm [15, 14].
It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with a strongly protected implementation,
a BC E : {0, 1}n × {0, 1}n → {0, 1}n with a weakly protected implementation and a hash
function H : HK × {0, 1}∗ → TW. H′ : HK × {0, 1}∗ → TW is a multi-input collision
resistant hash function based on H.

Gen:

• k
$← K, s

$← HK

• pA, pB
$← {0, 1}n

AEnck(a, m):

• Parse m in m1, ..., ml

• k0
$← {0, 1}n

• c0 = Ek0(pB)

• k1 = Ek0(pA)

• For i = 1, ..., l − 1

– yi = Eki(pB)

– ci = yi ⊕mi

– ki+1 = Eki
(pA)

• yl = Ekl
(pB)

• cl = π|ml|(yl)⊕ml

• h = H′
s(c0∥...∥cl, a)

• cl+1 = Fh
k(k0)

• Return c = c0∥...∥cl∥cl+1

ADeck(a, c):

• Special Parse (l) c in c0, ..., cl, cl+1

• h = H′
s(c0∥...∥cl, a)

• k0 = F−1,h
k (cl+1)

• c̃0 = Ek0(pB)

• If c0 ̸= c̃0

– Return ⊥

• Else k1 = Ek0(pA)

• For i = 1, ..., l − 1

– yi = Eki
(pB)

– mi = yi ⊕ ci

– ki+1 = Eki
(pA)

• yl = Ekl
(pB)

• ml = π|cl|(yl)⊕ cl

• Return m = m1∥...∥ml

H′
s(c, a)

• Parse a and c

• a′ = a1∥1∥a2∥1∥...∥1∥ala
∥1n−la−1

• c′ = c1∥0∥c2∥0∥...∥0∥clc
∥0n−lc−1

• h = Hs(c′∥a′)
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Algorithm 7 The CONCRETE2 algorithm. The changes from CONCRETE (Alg. 6) are
highlighted.
It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with a strongly protected implementation,
a BC E : {0, 1}n × {0, 1}n → {0, 1}n with a weakly protected implementation and a hash
function H : HK × {0, 1}∗ → TW. H′ : HK × {0, 1}∗ → TW is a multi-input collision
resistant hash function based on H. For simplicity, we assume that all message blocks are
full, that is, |ml| = n. If they are not full, see App. H.

Gen:

• k
$← K, s

$← HK

• pA, pB
$← {0, 1}n

AEnck(a, m):

• Parse m in m1, ..., ml

• k0
$← {0, 1}n

• k0,E = Ek0(pA)

• k0,A = Ek0(pB)

• c0 = Ek0,E
(pB)

• k1 = Ek0,E
(pA)

• For i = 1, ..., l

– ki,E = Eki(pB)
– ci = Eki,E

(mi)
– ki+1 = Eki

(pA)
– ki,A = Eki−1,A

(mi)

• kl+1,E = Ekl+1(pB)

• cl+1 = Ekl+1,E
(kl,A)

• h = H′
s(c0∥...∥cl+1, a)

• cl+2 = Fh
k(k0)

• Return c = c0∥...∥cl∥cl+1∥cl+2

ADeck(a, c):

• Special parse (l) c in c0, ..., cl, cl+1, cl+2

• h = H′
s(c0∥...∥cl∥cl+1, a)

• k0 = F−1,h
k (cl+1)

• k0,E = Ek0(pA)

• k0,A = Ek0(pB)

• c̃0 = Ek0,E
(pB)

• If c0 ̸= c̃0

– Return ⊥

• Else k1 = Ek0,E
(pA)

• For i = 1, ..., l

– ki,E = Eki
(pB)

– mi = E−1
ki,E(ci)

– ki+1 = Eki(pA)
– ki,A = Eki−1,A

(mi)

• kl+1,E = Ekl+1(pB)

• k̃l,A = E−1
kl+1,E

(cl+1)

• If kl,A ̸= k̃l,A

– Return ⊥

• Return m = m1∥...∥ml
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Algorithm 8 The CONCRETE2-TBC algorithm. The changes from CONCRETE2 (Alg. 7)
are highlighted.
It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with a strongly protected implementation,
a TBC E : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n with a weakly protected implementation
and a hash function H : HK× {0, 1}∗ → TW . H′ : HK× {0, 1}∗ → TW is a a multi-input
collision resistant hash function based on H. For simplicity, we assume that all message
blocks are full, that is, |ml| = n, otherwise, see App. H. With JiK we denote that we write
the number i with n− 2 bits.

Gen:

• k
$← K, s

$← HK

• pA, pB
$← {0, 1}n

AEnck(a, m):

• Parse m in m1, ..., ml

• k0
$← {0, 1}n

• k0,E = EJ0K∥00
k0

(pA)

• k0,A = EJ0K∥01
k0

(pB)

• c0 = EJ0K∥10
k0,E

(pB)

• k1 = EJ0K∥11
k0,E

(pA)

• For i = 1, ..., l

– ki,E = EJiK∥00
ki

(pB)

– ci = EJiK∥01
ki,E

(mi)

– ki+1 = EJiK∥10
ki

(pA)

– ki,A = EJiK∥11
ki−1,A(mi)

• kl+1,E = EJl+1K∥00
kl+1

(pB)

• cl+1 = EJl+1K∥01
kl+1,E

(kl,A)

• h = H′
s(c0∥...∥cl+1, a)

• cl+2 = Fh
k(k0)

• Return c = c0∥...∥cl∥cl+1∥cl+2

ADeck(a, c):

• Special parse (l) c in c0, ..., cl, cl+1, cl+2

• h = H′
s(c0∥...∥cl∥cl+1, a)

• k0 = F−1,h
k (cl+1)

• k0,E = EJ0K∥00
k0

(pA)

• k0,A = EJ0K∥01
k0

(pB)

• c̃0 = EJ0K∥10
k0,E

(pB)

• If c0 ̸= c̃0

– Return ⊥

• Else k1 = EJiK∥11
k0,E

(pA)

• For i = 1, ..., l

– ki,E = EJiK∥00
ki

(pB)

– mi = E−1,JiK∥01
ki,E (ci)

– ki+1 = EJiK∥10
ki

(pA)

– ki,A = EJiK∥11
ki−1,A

(mi)

• kl+1,E = EJl+1K∥00
kl+1

(pB)

• k̃l,A = E−1,Jl+1K∥01
kl+1,E

(cl+1)

• If kl,A ̸= k̃l,A

– Return ⊥

• Return m = m1∥...∥ml
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Algorithm 9 The CONCRETESponge algorithm. The changes from CONCRETE2 (Alg. 7)
are highlighted.
It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with a strongly protected implementation,
a BC E : {0, 1}n × {0, 1}n → {0, 1}n with a weakly protected implementation, a sponge Sp
based on a random permutation P : {0, 1}P → {0, 1}P with P ≫ n, and a hash function
H : HK × {0, 1}∗ → TW. H′ : HK × {0, 1}∗ → TW is a multi-input collision resistant
hash function based on H. For simplicity, we assume that all message blocks are full, that
is, |ml| = n. If they are not full, see App. H.

Gen:

• k
$← K, s

$← HK

• pA, pB
$← {0, 1}n

AEnck(a, m):

• Parse m in m1, ..., ml

• k0
$← {0, 1}n

• k0,E = Ek0(pA)

• k0,A = Ek0(pB)

• c0 = Ek0,E
(pB)

• st0 = k0,A∥c0∥0P −2n

• sto
1 = P(st0)

• k1 = πn,l(sto
1)

• For i = 1, ..., l

– ki,E = Eki(pB)
– ci = Eki,E

(mi)
– ki,A = Eki

(pA)
– xi = Eki,A

(mi)
– sti

i = xi∥0P −N ⊕ sto
i−1

– sto
i+1 = P(sti

i)
– ki+1 = πn,l(sto

i+1)

• cl+1 = kl+1

• h = H′
s(c0∥...∥cl+1, a)

• cl+2 = Fh
k(k0)

• Return c = c0∥...∥cl∥cl+1∥cl+2

ADeck(a, c):

• Parse c in c0, ..., cl, cl+1, cl+2

• h = H′
s(c0∥...∥cl, cl+1, a)

• k0 = F−1,h
k (cl+1)

• k0,E = Ek0(pA)

• k0,A = Ek0(pB)

• c̃0 = Ek0,E
(pB)

• If c0 ̸= c̃0

– Return ⊥

• Else st0 = k0,A∥0P −n

• sto
1 = P(st0)

• k1 = πn,l(sto
1)

• For i = 1, ..., l

– ki,E = Eki
(pB)

– mi = E−1
ki,E

(ci)

– ki,A = Eki(pA)
– xi = Eki,A

(mi)
– sti

i = xi∥0P −N ⊕ sto
i−1

– sto
i+1 = P(sti

i)
– ki+1 = πn,l(sto

i+1)

• If kl+1 ̸= cl+1

– Return ⊥

• Return m = m1∥...∥ml
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