LARMix+-+: Latency-Aware Routing in Mix
Networks with Free Routes Topology

Mahdi Rahimil [0009—0003—0223—9082]

COSIC (KU Leuven), Leuven, Belgium
mahdi.rahimi@esat.kuleuven.be

Abstract. Mix networks (mixnets) enhance anonymity by routing client
messages through multiple hops, intentionally delaying or reordering
these messages to ensure unlinkability. However, this process increases
end-to-end latency, potentially degrading the client experience. To ad-
dress this issue, LARMix (NDSS, 2024) proposed a low-latency routing
methodology specifically designed for stratified mixnet architectures. Our
paper extends this concept to Free Routes mixnet designs, where, unlike
stratified topologies, there are no restrictions on node connections. We
adapt several state-of-the-art low-latency routing strategies from both
mix and Tor networks to optimize the Free Routes topology. Despite
the benefits, low-latency routing can cause certain mixnodes to receive
disproportionate amounts of traffic. To overcome this challenge, we in-
troduce a novel load-balancing algorithm that evenly distributes traffic
among nodes without significantly compromising low-latency character-
istics. Our analytical and simulation experiments demonstrate a consid-
erable reduction in latency compared to uniform routing methods, with
negligible loss in message anonymity, defined as the confusion an ad-
versary experiences when correlating messages exiting the mixnet to an
initially targeted input message. Additionally, we provide an analysis of
adversarial strategies, revealing a balanced trade-off between low latency
and adversary advantages.

Keywords: Mix network - Anonymity - Latency.

1 Introduction

Anonymous communication systems, designed to conceal the identities of com-
municators within network infrastructures, can be implemented using various
methodologies [24]. Among the most prominent is the Tor overlay network [11],
which supports over two million daily users. In Tor, a client selects three in-
termediary nodes—termed Guard, Middle, and Exit relays—and sequentially
encrypts the message with the public keys of these relays. Each relay, upon
receiving the message, decrypts it with its private key and forwards it to the
next relay, with knowledge limited only to the identities of the adjacent relays
in the message path, thereby preserving anonymity. However, Tor’s architecture
has vulnerabilities to adversaries who observe both ends of the communication

2 M. Rahimi

channel—specifically, the interactions between the client and the Guard relay,
and between the Exit relay and the destination [27]. These vulnerabilities can
be exploited through compromised Guard and Exit relays or by controlling Au-
tonomous Systems (ASes) located between these communication points. Such
exposures allow adversaries to conduct effective correlation attacks that can po-
tentially deanonymize the communication endpoints [2].

The vulnerabilities of Tor to correlation attacks render it less secure and
suboptimal for scenarios requiring high anonymity guarantees. To address these
vulnerabilities and propose an anonymous system that not only mitigates Tor’s
weaknesses but is also immune to a global passive adversary (GPA) observing
all network communications, the concept of a mix network (mixnet) has been
followed in several studies [8,16,19,28]. Mixnets enhance the anonymity provided
by Tor through implementing traffic mixing at each intermediary node, known
as a mixnode, a concept pioneered by Chaum [5]. This mixing process ensures
that the output from each mixnode is not directly linkable to its input, thus
preserving anonymity. Consequently, as long as one mixnode correctly performs
this mixing along the message route, it can effectively thwart a GPA’s attempts
to correlate traffic [7].

This obfuscation (traffic mixing) provided by mixnodes can be achieved
through various methods. The first method involves threshold mixes [5], which
accumulate messages until a preset count is reached before forwarding them. The
second method employs pool mixnodes [10], requiring both a threshold number
of messages and a time limit before messages are forwarded. The third method,
stop-and-go mixes [14], introduces a random, exponentially distributed delay to
each message before release. Among these methods, stop-and-go mixing offers a
high degree of anonymity due to the memoryless property of the exponential dis-
tribution and has been recently put into practice due to its manageable average
latency [8].

Like mixnode types, mixnet topologies can also be implemented in several
distinct ways to enhance security and anonymity [9]. For a mixnet consisting
of L intermediary hops, a common configuration is the cascade topology, where
mixnodes are organized into cascades, each containing L mixnodes. Clients select
one of these cascades for message routing [4, 16, 28]. An alternative configura-
tion, known as Free Routes, involves clients randomly selecting L distinct nodes
from all available mixnodes to establish a message path [17].! Another approach
is the stratified topology, which organizes mixnodes into L different layers. A
message path is then formed by selecting one mixnode from each layer, ensuring
diversified routing and enhanced anonymity due to the many possible routing
paths compared to the cascade topology [8,19].2

These topological choices significantly influence the network’s anonymity and
its handling of cover traffic. Cover traffic consists of dummy messages introduced
by clients or mixnodes that do not have a designated destination and are eventu-

! The Tor network also employs a Free Routes topology for message routing.
2 However, the stratified topology provides less anonymity compared to the Free
Routes topology.

LARMix++ 3

Clients Mixnet Destinations

Fig. 1: Clients communicating through a Free Route mixnet.

ally dropped. Cover traffic strategies are often designed to mislead the GPA and
enhance anonymity. Typically, cover traffic is added based on the input traffic to
ensure that all mixnodes handle nearly the same amount of traffic. As a result,
when routing in the mixnet is more restricted, the input traffic for most nodes is
similar due to fewer diverse routes. In contrast, less restricted routing results in
mixnodes with diverse input traffic. Consequently, the cascade topology allows
for substantial integration of cover traffic but generally provides lower levels of
anonymity compared to other configurations. Free Routes offer the highest de-
gree of anonymity but are less effective at incorporating cover traffic. The strat-
ified topology, however, represents an optimal design that maximizes anonymity
while minimizing overhead [9]. Due to these advantageous characteristics, the
stratified network topology has recently gained in popularity [8].

Although the stratified topology is recognized as the optimal mixnet topology
for anonymizing communications, this type often requires decentralized parties
to decide on numerous aspects, such as the number of mixnodes at each layer,
the specific layer each mixnode should occupy, and the protocols for how, when,
and where cover traffic should be added and removed. This coordination is often
managed by external entities involved in mixnets, like NYM?, which necessitates
that clients wishing to join the network must subscribe and be verified by these
parties to ensure they are authorized to access the network [8]. Specifically, such
a design can become prohibitive in cost for a local group of clients with few
mixnodes that wish to establish a local mixnet. In these cases, the best option
is the Free Routes topology, which offers the highest level of anonymity with a
simpler structure, eliminating the need for an external party. However, as Free
Routes are less effective for incorporating cover traffic, it is crucial to ensure
sufficient traffic volume when using this structure.*

Design Goals. Despite the low-cost and easy deployment characteristics of
Free Routes mixnets, there has been limited effort to optimize message routing

3 https://nymtech.net

4 One pertinent example of this case is opportunistic social networks, where users
utilize mobile devices to communicate and share data without a centralized control
point. To achieve greater anonymity in these networks, the Free Routes topology of
mixnet is recommended [6].

https://nymtech.net

4 M. Rahimi

within this framework. This paper aims to provide optimized routing for Free
Routes mixnets, with a focus on reducing latency. Latency optimization is cru-
cial in mixnets as any configuration of mixnets inherently increases latency. This
is due to the forwarding of clients’ messages through multiple mixnodes before
reaching their final destinations, with additional delays incurred by mixnodes for
mixing purposes. For example, Fig. 1 illustrates a Free Routes mixnet topology
where clients first forward their messages to the mixnet, incurring client-mixnet
link delay. The messages are then forwarded through mixnodes, incurring both
mix-link delays and mixing delays. Finally, the messages are sent to the destina-
tion, leading to mix-destination link latency. To reduce latency in such scenarios,
the selection of mixnodes within the mixnet can be strategically biased towards
low-latency paths where most mixnodes are either close or at least not exces-
sively far apart, thus facilitating faster connections. Therefore, our goal is to
design a mixnet routing strategy that reduce link delays within mixnet while
preserving a high degree of anonymity and ensuring balanced load distribution
among mixnodes.

Related Works. Despite investigating latency optimization of Free Route
mixnets in this work, significant efforts to reduce latency in anonymous com-
munications have predominantly focused within Tor networks [1,13,23|. These
studies, despite being centered on Tor, could potentially inform strategies for
Free Routes mixnets, although the differences in threat models between Tor net-
works and mixnets make them only indirectly applicable. For example, Lastor [1]
introduces low-latency methods that suggest partitioning the network into re-
gions where each contains a few Tor relays. Clients successively select the closest
region, and within it, they randomly choose their relay. However, this approach
has two main issues. First, partitioning the network in such a manner, assum-
ing dynamic changes, is not entirely realistic, especially for a mixnet where the
primary threat is considered to be a GPA rather than AS-level adversaries. Sec-
ondly, their method could lead to an imbalance of traffic distributions in the
mixnet, which should be addressed to maintain network efficiency.

In other research, ShorTor [13] investigates the inefficiencies of the Border
Gateway Protocol (BGP) in optimizing for the shortest or lowest latency paths,
suggesting that sometimes routing through intermediate nodes rather than di-
rect transmission can accelerate connections. This principle, similar to methods
used by Content Delivery Networks (CDNs) to reduce latency, implies forming a
multi-hop overlay network atop the Tor network. Although potentially useful for
mixnets, this approach would require significant infrastructure modifications for
adaptation to mixnets. Moreover, the paper does not thoroughly address load
balancing in such configurations.

Another particularly innovative approach, CLAPS [23], potentially can en-
hance location-aware schemes in Tor by employing linear programming to opti-
mize routing for reduced latency, targeted reduction in ASes correlation attacks,
or improved relay resilience against IP hijacking. While CLAPS can be adapted
to mixnet applications with some changes and also provides load balancing, it

LARMix++ 5

faces high computational costs due to the nature of linear programming. In the
best case, using Interior Point Methods, the complexity of linear programming
is O(n>b), where n represents the number of constraints, reaching up to a mil-
lion in the case of Tor, and b represents the number of bits needed to represent
numbers.”

Within mixnet research, LARMix [22] stands out as the only initiative that
has explicitly targeted reducing end-to-end latency. LARMix investigates a strat-
ified mixnet model and proposes a node selection scheme that ensures a diverse
assignment of mixnodes across network layers, incorporating a sufficient number
of nodes from varied jurisdictions. Additionally, their routing formula priori-
tizes proximity in node selection along the message paths, regulated by a tun-
able parameter 0 < 7 < 1, which strategically balances latency reduction with
anonymity and load balancing. However, this approach is specifically designed for
stratified mixnets and does not directly translate to Free Route mixnets. Build-
ing upon these findings, our research aims to extend the results of LARMix to
develop a low-latency Free Route mixnet, adapting the principles to fit a different
network structure.®

Our Contributions. To develop low-latency routing for mixnets with a Free
Routes topology, we consider a setup where there are IV available mixnodes, and
each client selects L distinct mixnodes to form message paths.” Building on this
framework, we first adapt the LASTor [1] and LARMix [22] routing equations to
our scenario, specifically by tuning the parameter 0 < 7 < 1 to manage latency
effectively. Applying these routing policies can result in some mixnodes receiving
a higher traffic rate than normal. To counteract this, we have developed the
Rebalancing Load Distribution (RLD) algorithm, which adjusts routing policies
in mixnets to ensure traffic is fairly distributed among mixnodes while minimally
impacting the low-latency property of the routing. Implementing RLD incurs a
computational expense of O(kN?) when k is usually much less than N. On the
other hand, it also curtails the advantage of adversaries who could potentially
exploit the routing strategies from LARMix or LASTor to corrupt mixnodes in
positions that receive a high proportion of traffic.®

Furthermore, we incorporate a linear programming approach inspired by the
CLAPS framework [23] to derive a routing policy that prioritizes low-latency
paths. We make this linear programming tunable with the parameter 7, intro-
ducing a tunable load balancing option for CLAPS. Here, 7 = 0 represents the

% Other location-aware Tor strategies [18,26,29] primarily focus on limiting the visi-
bility of ASes or ISPs, or strengthening the resilience of Tor relays against active IP
hijacking. These considerations are less relevant to mixnets, given the assumption of
a GPA and their non-applicability for low-latency routing in mixnets.

5 CLAM [21] is another similar work to LARMix, designed to extend LARMix’s results
to include low-latency message forwarding from clients to the mixnet.

" Note that clients can generally choose more or fewer than L hops; however, in prac-
tice, to ensure that the load received by mixnodes is balanced and that anonymity
and latency are controlled, the number of hops is considered a fixed parameter.

8 This type of attack is known as Guard Replacement Attacks in Tor [29].

6 M. Rahimi

most biased routing with the least load balance, while 7 = 1 signifies a fully bal-
anced approach, less biased towards low-latency paths. Although this approach
is computationally demanding, it effectively reduces latency while maintaining
balanced load distribution across mixnodes.

We evaluate the developed routing strategies in two phases. Firstly, we per-
form an analytical assessment, similar to the approach taken by LARMix, by
measuring the entropy of the distinguishing likelihood of message paths as an in-
dicator of analytical anonymity, and by measuring the average link delay caused
by the mixnet as analytical latency. Secondly, we simulate a Free Route mixnet
using the discrete event simulator SimPy [20] in Python, where we measure the
end-to-end latency (caused by both link delays and mixing processes) and the
entropy of messages based on the algorithm in [3]. Our experiments, under the
constraint of a mixnet with 100 nodes and modeling the link delay between mixn-
odes using the RIPE Atlas dataset [25]|, show that using an adapted version of
LARMix routing can reduce the link delay latency by up to 61% compared to
uniform routing while compromising at most 1 bit of message entropy. Further,
applying the RLD algorithm to balance the mixnet results in a 40% reduction
of this latency while losing less than 0.5 bits of entropy and ensuring fair load
distribution among the mixnodes. Additionally, experiments suggest that using
CLAPS-based routing can achieve latency on par with LARMix while maintain-
ing load balance, albeit at the cost of high computational demands and reducing
anonymity dramatically.

Finally, we provide an analysis to ensure that our modifications do not sig-
nificantly enhance the capabilities of mixnode adversaries who corrupt (own)
some mixnodes in the mixnet and, in collaboration with GPA, attempt to de-
anonymize client connections. This analysis considers random corruption of mixn-
odes as well as corruption of mixnodes from a particular location, as suggested
by LARMix [22]. Furthermore, we have developed the Intelligent Corruption
algorithm (IC), which allows adversaries to strategically control mixnodes to
maximize their advantage, measured in terms of the fraction of fully corrupted
paths (FCP). Our findings reveal that in the worst-case scenario, while main-
taining a balanced mixnet, a mixnode adversary can corrupt paths at a rate
twice as high as that observed with uniform routing.

2 Approach

This section details routing strategies aimed at reducing latency within a Free
Routes mixnet. This involves a scenario where N mixnodes are available, and
for each message route, L must be selected. To better understand this, consider
an example depicted in Fig 2. In this example, N = 4 and L = 3. A client
willing to form a path for her message first picks the initial mixnode (1st hop)
uniformly at random as M;. Based on this choice, the client then selects the
next mixnode (2nd hop) by considering the latency from the first mixnode M;
to the unselected ones. If M3 is chosen for the 2nd hop, this process is repeated
for selecting the third mixnode (3rd hop) by evaluating the latency between Mj

LARMix++ 7

1%t hop 2" hop 3 hop

Fig. 2: Example of mixnode selection in a Free Routes mixnet.

and the two remaining mixnodes (M3 and My). Considering such scenarios, we
begin by adapting both LASTor [1] and LARMix [22] routing strategies for the
Free Routes topology. We then enhance these strategies with load balancing by
developing the RLD algorithm. Furthermore, we introduce a linear programming
approach inspired by CLAPS [23] to optimize low-latency routing.

2.1 LASTor Routing

We adapt LASTor routing as shown in Eq. (1), defining the routing strategy
from node 7 at hop k£ to any node j at hop k£ + 1. This formula specifically ties
the selection of the next mixnode to the inverse of its latency (l;; represents the
latency between node ¢ and j), implying that the closer the node, the higher
the probability it will be selected. In other words, Eq. (1) specifies Rfj as the
probability of forwarding a message from mixnode i at the £ hop to mixnode j
at the (k + 1) hop, given that j belongs to Sy, where Sy, is the set of available
mixnodes for selection at hop k+1, excluding any mixnodes that were previously
chosen for hop 1 to k.

In Eq. (1), the parameter 7 moderates the level of bias: when 7 = 0, the rout-
ing is fully biased towards the inverse of latency, whereas increasing 7 makes the
routing more uniform. Specifically, when 7 = 1, the routing becomes uniformly
random among all mixnodes that can be selected as the next hop. For instance,
as depicted in Fig. 2, consider the latency between M3 and M, is 10 ms, and
between M3 and My is 5 ms; when 7 = 0, M, will be chosen twice as often as
My on average with LASTor routing.

1 (1-7)
I

%. (1)

Rk
ij T
ZjGSk lij

8 M. Rahimi

2.2 LARMix Routing

LARMix routing formula can also be adapted for Free Routes mixnets as de-
scribed in Eq. (2), showing Rfj for choosing mixnode j at hop k 4 1. Similar
to LASTor, LARMix prioritizes mixnodes with lower latency by considering the
inverse of latency raised to the power of 1 — 7. Additionally, LARMix introduces
a ranking function f;;, which receives nodes 7 and j and assigns a rank indicat-
ing the closeness of j to 4, starting from 0 for the closest mixnode to |Si| — 1
for the farthest mixnode. This ranking mechanism ensures that as 7 approaches
0, the selection of the closest mixnode occurs with a probability approaching
1, effectively tuning the routing from a fully deterministic choice of the closest
mixnode to a uniform routing when 7 = 1. This flexibility allows for tuning bias
in the network design according to specific requirements. For example, consider
the scenario of routing from the 2nd to the 3rd hop in Fig 2. If 7 = 0 and f34 = 0,
M, would be selected with a probability of 1 as the 3rd hop.

i (1:7) (1—7)
®" ()

R}, = : (2)
v o (a-7 (1-7)
fij ==
Sies (DT ()

2.3 Rebalancing Load Distributions (RLD)

After biasing the routing using either the LASTor or LARMix formulas in a
mixnet, some mixnodes receive loads greater than those typically experienced
under a uniform routing policy. If not addressed, this imbalance can confer
an advantage to adversaries by allowing them to deploy high-capacity mixn-
odes capable of handling significant traffic, potentially leading to substantial
de-anonymization of network traffic. This type of threat in the Tor network is
known as Guard Replacement Attacks [29]. To mitigate this, the load distribu-
tion must be rebalanced.

The concept of balancing loads was first introduced in LARMix [22], using a
Greedy approach to ensure network rebalancing while considering the prioritiza-
tion of low-latency paths. However, this approach is specific to stratified mixnets
and is not applicable to Free Routes mixnets. In this context, we introduce a Re-
balancing Load Distributions (RLD) algorithm that effectively balances network
load while still prioritizing low-latency routings.

Before explaining the RLD, it is important to note that clients are sup-
posed to pick the first hop uniformly at random, similar to the assumption in
LARMix [22]. Additionally, we suppose each node is equally likely to be in each
position (each hop). Based on this, we balance the received load from each posi-
tion by the mix nodes. To this end, we define R* as the routing matrix from hop
k to hop k+1, where RF = [Rfj] Initially, we start with balancing R!. For R!,
as each mixnode should be used once in a message-route, we set R;; = 0if i = j.
To rebalance this matrix, we begin by summing up each column, which shows
the received loads by mixnodes at the second hop. Columns with a summation

LARMix++ 9

greater than 1 are considered overloaded, those with a summation less than 1
are underloaded, and those with a summation of 1 are balanced.

The RLD algorithm begins by addressing the overloaded columns, attempt-
ing to balance them by multiplying each entry in those columns by the inverse
of the column’s total summation. The surplus load from these columns is then
redistributed to underloaded columns. This redistribution takes into account
each entry individually and considers the proximity of overloaded mixnodes to
underloaded ones. This ensures that the surplus load is distributed based on
the probability of message forwarding from overloaded nodes to underloaded
nodes. The process is iteratively repeated for all overloaded mixnodes until all
columns sum to 1, achieving balanced routing from the first hop to the second
hop. However, an exception to this process arises when there is only one un-
derloaded mixnode remaining. In such scenarios, the rebalancing is adjusted to
avoid loops or redundant paths. For example, consider that we have only the
jth node underloaded at the second hop, while the ith node is overloaded. In
this situation, any excess traffic from node i should not be redirected to node j
if node j initially transferred this traffic to node 7 at the first hop, even if j is
underloaded. This precaution prevents considering a node multiple times in the
same message route, thereby preserving the integrity of the routing paths and
avoiding loops.

As an example, consider Fig 2, where we have four mixnodes at the first
hop. Suppose after applying the low-latency formula, the initial routing matrix
is described as:

0 020404
0.1 0 0.60.3
0505 0 O
030304 0

R' =

The summation of columns in this matrix is [0.9, 1, 1.4, 0.7], indicating that
the second mixnode in the second hop is balanced, the third is overloaded, and
the first and fourth are underloaded. To begin balancing the matrix, we address
the overloaded third column by multiplying each entry by ﬁ, adjusting the
entries to 0.29,0.43,0, and 0.29 respectively.

Now, we have an excess of 0.4 from the third column that should be dis-
tributed over the first and fourth columns. Starting with the first entry of the
third column, which has a surplus of 0.11 (i.e., 0.4 — 0.29), it cannot be trans-
ferred to the first column due to the diagonal constraint R;; = 0 for ¢ = j, so it
is allocated to the fourth column. As for the second entry of the third column,
it has a surplus of 0.18 (i.e., 0.6 — 0.42), which will be distributed between the
first and fourth columns, with the fourth column receiving three times more (
% = 3) due to its higher probability. The third column’s third entry has no sur-
plus as it is a diagonal entry, and the fourth entry has a surplus of 0.11, which
is allocated totally to the first column, also because of the diagonal constraint.

After first iteration of rebalancing, the matrix looks as follows:

10 M. Rahimi

0 0.20.29 0.51
0.145 0 0.42 0.435
05 05 0 0
0.41 0.30.29 O

R' =

However, in the new matrix, the first column is slightly overloaded, and the
fourth column is slightly underloaded. To further balance this, we note that the
sum of the first column is 1.055. The elements of this column should be multiplied
by ng)g), but since we have only one underloaded column, we avoid distributing
the surplus to the diagonal element of the fourth column. Instead, we do not
touch the 0.41 entry, and we balance the other entries of the first column by
a new balancing condition, which should be 1 — 0.41 = 0.59. Therefore, all the
other entries, except for the 0.41 entry, will be multiplied by m, and
their leftovers will be transferred to the corresponding underloaded entries to

achieve a fully balanced matrix.

0 0.20.29 0.51
0.133 0 0.42 0.457
0.4570.5 0 0.033
0.41 0.30.29 O

R! =

Furthermore, we note that a similar process can be applied to R* beyond
the first hop. However, there are additional considerations for these subsequent
matrices. For example, when balancing R? (the same scenario as in Fig. 2), we
must consider that there were four choices for the first hop. Thus, balancing the
matrix R? should take this into account. That is, if the first hop is M;, then
R?, the matrix that indicates probability distribution from the 2nd to the 3rd
hop, should reflect this by having both diagonal and one additional entry at
each row set to zero. This means that if M; is the first hop, the second, third,
or fourth entries will be zeroed to prevent the repetition of sending messages
through the same mixnodes multiple times, and the remaining balancing will
proceed as before.

2.4 CLAPS Mix Routing

In this section, we introduce a linear programming approach tailored for de-
signing low-latency routing in Free Routes mixnets. This methodology draws
inspiration from the CLAPS framework, originally developed to enhance the
resilience of Tor relays against attacks by malicious ASes [23]. Unlike CLAPS,
our primary objective is to minimize end-to-end latency rather than improve
resilience. Thus, we focus on minimizing the average latency between successive
mixnodes, starting with the initial routing matrix, R! (shown in Eq. (3)).

To achieve the low-latency routing, we iteratively optimize subsequent rout-
ing matrices, such as R?, enforcing constraints that ensure each matrix preserves
the probability of node selection across the first and second hops. Additionally,
we incorporate constraints to ensure that diagonal elements of R¥ are zero (to

LARMix++ 11

prevent routing loops), and that the mixnet maintains balanced loading, mod-
ulated by the parameter 7. At 7 = 1, the routing within the mixnet achieves
balance,” although not necessarily uniformity, diverging from approaches like
LARMix and LASTor. Conversely, at 7 = 0, the routing is least balanced but
potentially most optimized.'°

| NN
Ce . 1
Minimize i E 1 E 1Rijlij, (3)
=1 j—

subject to Vi,j, 0<Rj; <1,
Vi,j, R =0ifi=j,

N
Vi, > Rl=1,
j=1
N
Vj, 7<) Ry <N-7(N-1).
1=1

Finally, we note that the mentioned linear programming problem can be
solved using Interior Point Methods, which operate in O(n3b), where b is the
number of bits required for the representation of the numbers and n is the number
of constraints. Based on Eq. (3), n = N?42N, leading to a complexity of O(N°b).
However, the RLD algorithm is much more efficient than linear programming.
In this algorithm, for each overloaded node, we need at most O(N) operations
to balance it, which should be done in the worst case for at most N — 1 nodes
when only one node is underloaded. This process must be repeated K times,
where K is generally much less than N, leading to a complexity of O(N2K).

Furthermore, we note that clients executing routing algorithms and the RLD
do not need to rely on a third party. Instead, through a decentralized and re-
liable approach proposed in Verloc [15], mixnodes measure their latency from
one another. This data is collected and made publicly available, ensuring that
clients only need to trust the majority of honest mixnodes. With these reliable
latency measurements, clients with sufficient computational resources can run
routing algorithms to derive the routing matrix.!! However, in cases where the
computational load exceeds the client’s resources, the client can outsource the
computations. In this scenario, a third party or a group of third parties, such as
the network provider (like NYM) or some of the mixnodes themselves, compute
the routing matrix and provide proof by employing a SNARK like Groth16 [12].
This is based on a circuit that receives the latency measurements as input and
outputs the routing matrix. This ensures that the calculations derived by the

9 Setting T = 1 actually obviates the need for using RLD algorithm.

10Tt is important to acknowledge that linear programming approaches are compu-
tationally intensive. However, investigating whether this computational effort can
effectively reduce latency can be useful.

11 Note that Verloc is deployed in NYM.

12 M. Rahimi

designated parties are valid. Importantly, this SNARK can be optimized since
achieving zero-knowledge property is unnecessary; only the succinctness of proofs
is required.

3 Evaluation

In this section, we evaluate the average link delay within a mixnet, which is
promised to be reduced with the introduced routing methodologies discussed
in Section 2. Additionally, we assess how much anonymity is compromised in
terms of increasing the advantage of a GPA while employing low-latency routing
methods.

3.1 Experimental Setup

We consider a Free Route mixnet topology with N = 100 mixnodes, where each
client selects L = 3 mixnodes to form their message routes.'? To model the link
delay between network mixnodes, we utilize the RIPE Atlas dataset [25], as its
globally scattered endpoints offer a representative model of latency.

To measure the average latency, we first compute all possible paths in the
mixnet, which total N(N — 1)(N — 2) considering L = 3. We then calculate the
probability of each path using the routing matrix R¥ and subsequently derive
the average latency as the weighted sum of the latencies of these paths. Addi-
tionally, we consider the entropy of the probability distribution of these paths as
H(P), representing the entropy of paths. This metric indicates how biased rout-
ing increases the advantage of a Global Passive Adversary (GPA). When the
routing within the mixnet is uniformly random, the GPA has no better guess
than a uniform distribution for the paths selected by the clients. However, biased
routing can improve the GPA’s guess.'?

For instance, in the case of uniform routing, the entropy of paths H(P) equals
log(N(N — 1)(N — 2)), which approximates 3log(N) for L = 3 and N = 100,
giving H(P) = log(10°) ~ 20. This metric allows us to quantify how anonymity
is compromised using different routing bias approaches.

3.2 Latency

We initiate our analysis by examining the average link delay, as depicted in
Fig. 3a. This figure illustrates the impact of varying 7 on latency in mixnet
link delays when employing different routing algorithms: LASTor, LARMix, and

12 Usually, in Tor [11] or the NYM network [8], the number of hops is set to 3 to
manage latency while maintaining sufficient anonymity, and N = 100 as it is within
the range of the number of nodes in each layer in deployed mixnets [8].

13 A similar concept was used in LARMix to measure the advantage of such an adver-
sary, albeit with an abstract consideration of the probability of connecting the entry
mixnodes to the exit mixnodes.

LARMix++ 13

T T T T T T
11— Balanced LASTor — Balanced LASTor
020 .. | ASTor ++++ LASTOr
) = = Balanced LARMix E 30 1 == Balanced LARMix
2 0.15+ —- LARMix 3 — - LARMix
; CLAPS-Mix ; CLAPS-Mix
! P ity 20 -pooooogronnoas -
£ 0.10 S — L g oA
[7) JUPTY 0 Py - et =T _
““'; »-'—_:.—--—0--'—"——-?""""4 R ‘é’ '____—r’ /r/
- . ! . 10 A >a s
0.05 T-gorrcodnmrrogaaness w e ge— " -
0.00 (1]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Tuning parameter(T) Tuning parameter(T1)
(a) Average link delays within mixnet. (b) Average entropy of paths H(P).
T T T T T
= LASTor = = Balanced LARMix
> =+ LARMix > - Balanced LASTor
g 300+ CLAPS-Mix g 300
g | vl . [}
‘E A // \'*N. ",'5'
= 200 B LI b = 200 ARnII
E 2 Pt L TP . E — o i
2 —— 2 R
5 5
£ 100 £ 100
w w
0]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Tuning parameter(71) Tuning parameter(71)

(c¢) Entropy/Latency for imbalance rout- (d) Entropy/Latency for balanced rout-
ings. ings.

Fig.3

CLAPS Mix, under both balanced and imbalanced network conditions. Specifi-
cally, an increase in 7 consistently results in higher latency across all strategies.
In LASTor and LARMix, 7 acts as a tuning parameter that injects a vary-
ing amount of randomness into the routing policies. This randomness influences
routing decisions by deprioritizing paths with lower latency, thereby increasing
the average link delay. In contrast, in CLAPS Mix, 7 primarily functions as a
bias control factor, rather than a randomness factor. Adjusting 7 in CLAPS Mix
affects the network’s balance rather than its randomness. As a result, higher
7 values lead to a preference for more balanced paths, which naturally exhibit
higher latencies compared to faster, less balanced alternatives. This trend also
holds for balanced configurations in both LARMix and LASTor, where balanced
setups tend to experience greater latencies than their imbalanced counterparts.

Additionally, when routing is uniform (7 = 1) for LASTor and LARMix, the
average link latency is approximately 120 ms. Utilizing LARMix can reduce this
latency to 46 ms, representing a 61% reduction when 7 = 0. When LARMix is
balanced, the latency is minimized to 73 ms, achieving a 40% reduction. In con-
trast, using LASTor in both imbalanced and balanced configurations results in
latencies of 65 ms and 98 ms, respectively. Remarkably, CLAPS Mix matches the
performance of an imbalanced LARMix with 7 = 0. Intriguingly, when CLAPS
Mix is balanced (7 = 1), the latency stabilizes at 65 ms, equivalent to LAS-

14 M. Rahimi

Tor in its imbalanced state with 7 = 0. This demonstrates the efficacy of linear
programming in reducing latency across various configurations while ensuring a
balanced distribution of traffic.

3.3 Anonymity

Fig. 3b depicts the entropy of paths versus tuning parameter 7. In the uniform
case, where 7 = 1 for LARMix or LASTor routing, the entropy is approximately
20 bits. Using CLAPS Mix, which provides very low latency, results in a dramatic
decrease in entropy to about 10 bits for almost all values of the tuning parameter
7. This reduction could be detrimental as it increases the likelihood that an
adversary can guess the paths selected by clients. In contrast, LARMix exhibits
variable effects depending on the value of 7. For example, at 7 = 0.6, a balanced
configuration of LARMix reduces the entropy to 16.5 bits while providing a
latency of 75 ms. On the other hand, LASTor demonstrates the best overall
performance; in both imbalanced and balanced configurations, it reduces entropy
to 17 bits and 18.5 bits, respectively. For instance, with 7 = 0 in an imbalanced
LASTor configuration, the latency is reduced to 65 ms and the entropy to 17
bits, which appears to be a favorable trade-off. Moreover, a balanced LASTor
configuration offers very high entropy, but it does not reduce latency below 100
ms, which may not meet practical performance requirements.

3.4 Trade-Offs

To facilitate a better comparison of different approaches and to determine which
one offers the optimal trade-off, we further explore the ratio of Entropy to La-
tency for both imbalanced and balanced routing configurations. These compar-
isons are depicted in Fig. 3c for imbalanced configurations and Fig. 3d for bal-
anced configurations. Fig. 3c illustrates the imbalanced configurations of LAS-
Tor, LARMix, and CLAPS Mix. Notably, CLAPS Mix is always considered im-
balanced, except when 7 = 1.

It is observed that for 7 < 0.43, LASTor yields the highest Entropy/Latency
ratio, suggesting a favorable trade-off. In this range, LASTor’s latency varies
from 65 ms to 80 ms, while its entropy ranges from 17 bits to 19 bits. However,
for 7 > 0.43, LARMix leads in performance, particularly at 7 = 0.6 where
it reduces latency to 50 ms and achieves an entropy of 12 bits. This suggests
that LARMix tends to favor lower latency, whereas LASTor prioritizes higher
entropy. Conversely, CLAPS Mix does not exhibit very high performance due to
its consistent entropy of approximately 10 bits across all values of 7. Given this
consistent performance, CLAPS Mix may be recommended when minimizing
latency is more critical than maximizing the entropy of paths in the network.

On the other hand, Fig. 3d illustrates the Entropy/Latency ratio for the
balanced approaches, including Balanced LARMix and Balanced LASTor. As
observed, the trend between these two algorithms is similar to their imbalanced
counterparts, although the Entropy/Latency ratio in balanced approaches is
slightly lower. This suggests that achieving a fair distribution of loads across

LARMix++ 15

Approaches N =50/N =100|N = 200 Approaches N =50 |N =100/N = 200

LASTor 100 ms| 88 ms 82 ms LASTor 16.2 bits|17.9 bits|21.8 bits

Balanced LASTor | 117 ms | 109 ms | 105 ms || Balanced LASTor |16.5 bits| 19 bits |22.3 bits

LARMix 60 ms 45 ms 25 ms LARMix 7.6 bits | 8.8 bits | 9.6 bits

Balanced LARMix| 87 ms 75 ms 68 ms ||Balanced LARMix|11.3 bits|12.2 bits|13.8 bits

CLAPS-Mix 71 ms | 53 ms 45 ms CLAPS-Mix 8.6 bits | 10 bits |13.6 bits
(a) Average latency. (b) Entropy of paths (H(P)).

Fig. 4: Effects of network size (IN) on latency and anonymity.

mixnodes comes at the expense of less favorable trade-offs. However, in balanced
cases when 7 < 0.42, LASTor exhibits the best performance, thanks to the
highest entropy provided in this interval. Nevertheless, the balanced version of
LASTor cannot provide latency lower than 100 ms, making LARMix a preferable
option unless the reduction in entropy is not tolerable by the clients. For 7 > 0.42,
Balanced LARMix consistently delivers better performance, with an optimal
balance achieved at 7 = 0.6, where it offers a substantial reduction in latency
to 75 ms while maintaining an entropy of 12 bits.!4 Lastly, it is noted that at
7 = 1, CLAPS Mix provides a balanced version which, compared to Balanced
LASTor and Balanced LARMix, is not optimal; however, it can offer very low
latency, which may be advantageous in scenarios where lower latency is favored
while a reduction in entropy is tolerable.

3.5 Scaling the Mixnet

Up till now, the mixnet size was set to N = 100 and the number of hops to
L = 3, specifically to align with real-world deployed mixnets such as NYM.
However, in this section, we analyze how increasing the network size (N) and
the number of hops (L) affect both latency and anonymity. To do so, considering
all introduced routing strategies, we set the tuning parameter 7 = 0.4. Firstly,
we fixed L = 3 and varied the network size, recording the average link delay and
entropy of paths, as illustrated in Fig. 4.

More accurately, Fig. 4a delineates the effect of network size on latency.
Increasing the network size across all routing strategies results in a reduced
average link latency. Specifically, when the network size increases from N = 50 to
N = 200, the latency induced by LARMix shows an approximate 58% reduction.
This significant effect can be attributed to the fact that a larger number of nodes
increases the likelihood of having geographically closer peers, enabling clients to
select paths through the mixnet that minimize latency. Thus, augmenting the
number of mixnodes can potentially reduce latency.

Conversely, Fig. 4b indicates that increasing the number of active mixnodes
enhances the entropy of paths. This outcome arises because a greater number of

14 Note that this entropy is sufficient for comparing different approaches, but will not
reflect the exact impact of low-latency routing on anonymity. We will examine this
impact in terms of message entropy in Section 4.

16 M. Rahimi

Approaches L=2[L=3|L=4 Approaches L=2 L=3 L=4
LASTor 40 ms| 88 ms (130 ms LASTor 12.8 bits|[17.9 bits|24.4 bits
Balanced LASTor |50 ms|109 ms|163 ms Balanced LASTor | 13 bits | 19 bits [25.4 bits
LARMix 21 ms| 45 ms | 67 ms LARMix 5.9 bits | 8.8 bits [13.1 bits
Balanced LARMix |38 ms| 75 ms [114 ms Balanced LARMix| 8.9 bits [12.2 bits|17.8 bits
CLAPS-Mix 23 ms| 53 ms | 72 ms CLAPS-Mix 7.2 bits | 10 bits [14.6 bits
(a) Average latency. (b) Entropy of paths (H(P)).

Fig. 5: Effects of number of hops (L) on latency and anonymity.

nodes provides more options for constructing a message route, thereby increasing
the entropy values.'®

Fig. 5 illustrates the relationship between the number of hops (L) and the av-
erage link delay or entropy of paths, with the mixnet size fixed at N = 100. More
specifically, Fig. 5a demonstrates that increasing the number of hops proportion-
ally increases the average latency. Indeed, adding more hops necessitates longer
travel distances for messages, resulting in heightened latency. Consequently, as
the number of hops increases, the number of possible ways to create a message
route also increases. Therefore, as depicted in Fig. 5b, increasing the number of
hops consistently enhances anonymity. Hence, the number of hops is a crucial
parameter that needs to be tuned to balance latency and anonymity. In networks
such as Tor and NYM, this is typically fixed at L = 3.

4 Simulation of Free Routes Mixnet

In our analysis so far, we’ve examined the effects of low-latency routing on mixnet
link delays and the entropy of paths (H(P)). While these metrics are sufficient for
comparing different approaches, they may not fully capture the real effect of each
approach on the anonymity of messages, which is primarily determined by the
mixing process. Therefore, this section focuses on such analysis by simulating
the action of mixnodes within a mixnet together with clients, and assessing
anonymity measures based on message entropy while also recording end-to-end
latency.

To conduct this analysis, we simulate a Free Routes mixnet using SimPy [20],
a discrete event simulator implemented in Python. We employ the mixing pro-
cess via the stop-and-go mixing strategy [14], which introduces delays to input
messages based on an exponential distribution with an average delay parameter
w. For our simulation, we set x4 at 50 ms to mirror NYM network conditions.
Additionally, the input traffic is modeled to follow a Poisson distribution with
a rate parameter A = 10000, implying that, on average, 10,000 messages enter
each mixnode in the network.

15 Tt is important to note that increasing the number of nodes is advantageous only if
there is sufficient traffic for each node. In a network with low traffic, adding more
nodes can negatively impact message anonymity. If there are more mixnodes than
necessary, the traffic will be distributed among more nodes, diminishing the chances
of messages being mixed with a sufficient number of other messages.

LARMix++ 17

: T T 14 T 7 7
o5+ Balanced LASTor i i i
" «+= LASToOr 12 +-F== TpeTr byt
) e —
o 0al—" Balanced LARMix m 10
g] =+ LARMix _ -_‘é
5 0.34 CLAPS-Mix ; 8
€ | —== " Q. 6+— Balanced LASTor
IR I e e FTTE SIS <Ei 2 -+ LASTor
L Y C 4+ == Balanced LARMix
w
0.1 2] = LARMix
CLAPS-Mix
0.0 0-—+ + +
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Tuning parameter(T1) Tuning parameter(71)
(a) Average end-to-end latency. (b) Average entropy of messages H(m).

Fig.6

We record the entering and exiting times of each message to compute end-to-
end latency. Furthermore, we utilize a methodology outlined in [3] to quantify
the anonymity of messages. This approach evaluates the probability that a mes-
sage entering the mixnet, targeted by the adversary, can be correlated to its
counterpart at the exit among other messages.*®

4.1 Basic Results

In our mixnet simulator, we conducted two key experiments to evaluate first, the
end-to-end latency, which encompasses both the link delay within the mixnet and
the additional delay imposed by the mixing process at mixnodes; and second,
message anonymity, quantified by H(m). We conducted around 100 iterations for
each experiment, configuring a new mixnet each time to ensure the reliability of
our results.

Fig. 6a illustrates the end-to-end latency across all routing approaches, in-
cluding LASTor, LARMix in both balanced and imbalanced cases, and CLAPS
Mix. We adjusted the tuning parameter 7 for all approaches and observed be-
havior almost identical to that seen for the average link delay within the mixnet
versus varying 7, with the notable exception of higher average latency. In this
context, latency includes delays from mixnodes, which, with an average contribu-
tion of 50 x 3 = 150 ms, can be further tuned according to network requirements
but typically has a negative impact on the overall end-to-end latency. With a 50
ms average exponential delay, the minimum achievable latency through imbal-
anced LARMix or CLAPS Mix is 85 ms, marking a 44% reduction compared to
the uniform routing (7 = 1), which increases latency to 250 ms. Conversely, in
this scenario, Balanced LASTor behaves almost like a uniform approach with-
out substantial improvement in latency, while imbalanced LASTor and Balanced
LARMix can reduce latency to as low as 200 ms, amounting to a 20% reduction
in end-to-end latency.

16 Further details of the simulation process are provided in Appendix B.

18 M. Rahimi

Fig. 6b presents the entropy of messages across all routing approaches men-
tioned in this paper, analyzed against varying values of 7. The observations in-
dicate that, irrespective of the 7 values, the message entropy typically fluctuates
around 12 bits. This consistency suggests that the real anonymity of the mixnet
(specifically, the anonymity provided by the messages themselves) remains rel-
atively stable despite the entropy of path selection showing dramatic decreases.
This reveals that while H(P) is useful for analyzing biased routing, it does not
fully capture the nuances of message anonymity. In scenarios involving biased
routing, both the LARMix imbalances and CLAPS Mix can lead to a reduction
of up to 1 bit in message entropy (H(m)). Conversely, imbalanced LASTor and
Balanced LARMix exhibit similar behavior, whereas Balanced LASTor slightly
enhances the entropy of messages, benefiting from less biased routing toward
low-latency paths. Overall, the approaches show a slight increase in message en-
tropy as 7 increases, likely due to the introduction of more randomness into the
network.

4.2 Constraint on End-to-End Latency

In certain scenarios, clients utilizing mixnets may necessitate meeting an average
end-to-end delay latency to ensure fast and reliable communication. In default
mixnet configurations, this requirement can generally be addressed by adjusting
the average latency induced by mixnodes (u). However, this straightforward
approach often leads to a significant reduction in anonymity, as the mixing delay
directly influences message anonymity.

A more practical method to manage end-to-end latency involves the use of
low-latency approaches introduced in this study. For instance, consider a sce-
nario where the end-to-end latency is represented as leo.. One straightforward
method to achieve this end-to-end latency is to set the mixing delay and sub-
sequently adjust the tuning parameter for low-latency routing, seeking a com-
bination that satisfies the end-to-end latency requirement. Although this trial-
and-error method can be effective, it cannot fully optimize message anonymity
while satisfying the end-to-end latency constraint. This limitation arises because
increasing the tuning parameter 7 improves the entropy of paths H(P) but also
heightens the link delay within the mixnet. Consequently, there is less room for
mixing delays, leading to a reduction in message anonymity.

To attain a more optimized setting, we propose an approach wherein the pa-
rameter 7 is first set, followed by measuring the link delays within the mixnodes
in such settings. With this information, the mixing delay can be established as
= M. By adjusting the value of 7, one can identify the optimal
combination of 7 and p that maximizes message anonymity while adhering to
the average end-to-end latency constraints.

Following this approach, we performed an experiment considering the LARMix
routing for a scenario where the average end-to-end latency is set to 150 ms. In
this case, we first varied the value of 7 and then measured the link delays and
subsequently the mixing delays for the mixnodes, with a setting of N = 100 and
L = 3. The results are shown in Tab. 1. As illustrated, increasing 7 increases

LARMix++ 19

Table 1: Optimizing anonymity while meeting an end-to-end average latency.

Tuning parameter 7 0.0{0.1(02]03]04[{05[0.6|0.7[08] 0.9 [1.0
Link delays ms 58.0/58.1|58.15| 58.2 [58.3|58.3| 60 | 70 | 91 |108.2|121
Mix delay (1) ms 30 [30| 30 | 30 |29.9/29.9]29.8| 27 | 19 | 14 | 10

Entropy of Messages (H(m)) bits|10.1{10.2{10.21|10.42{10.8| 11 |11.4|11.6|11.5| 11.2 |10.8
Entropy of Paths (H(P)) bits 6.64|6.65| 6.9 | 7.6 |8.5|9.9|12.5/16.2|18.8] 19.7 |19.9

the entropy of paths as well as link delays within the mixnet, consequently de-
creasing mixing delays. However, the anonymity of messages, influenced by both
7 and mixing delays, demonstrates different behavior. When 7 < 0.7, message
anonymity increases by increasing 7, but when 7 > 0.7, this metric started de-
creasing after further increasing 7. This suggests that the optimal combination
for this end-to-end constraint is to set 7 = 0.7 and subsequently set the mixing
delay p = 27 ms.

5 Adversarial Mixnodes

In this section, we broaden the scope of adversarial analysis in mixnets, shift-
ing from a GPA to a more localized threat, the mixnode adversary. A GPA
can observe all connections and transactions within the communication network
but lacks the ability to inspect the internal operations of mixnodes or directly
engage in the mixing process. Therefore, to render our analysis more practi-
cal, we explore scenarios in which the adversary is capable of corrupting parts
of the mixnet by compromising specific mixnodes. Through these compromised
nodes, the adversary can link input and output messages, effectively nullifying
the anonymity of communications routed through these nodes. Consequently, it
is crucial for client messages to pass through at least one uncorrupted mixnode
to maintain anonymity.

Moreover, for an adversary to achieve comprehensive de-anonymization, con-
trol over at least L mixnodes is necessary to construct complete paths. To aug-
ment their capability to de-anonymize clients, adversaries must also increase
the number of mixnodes under their control, ensuring their inclusion across nu-
merous paths. This strategic positioning increases the probability of intercepting
and compromising client communications. Within this context, we assess the ad-
versary’s effectiveness when routing preferences are skewed towards low-latency
routers. In these scenarios, the primary objective for the adversary is to max-
imize the Fraction of Corrupted Paths (FCP), thereby ensuring a significant
number of paths within the mixnet are fully compromised. In the next subsec-
tion, we will delineate some possible strategies that may be taken into account
by adversaries for these purposes.

5.1 Adversarial Strategies

Random Strategy The Random Strategy is the most basic approach to cor-
rupting mixnodes within the mixnet. Here, the adversary controls C' mixnodes

Step 1 Step 2

Fig. 7: Intelligent Corruption of mixnodes.

selected at random. Depending on the dynamics of selection, this approach can

occasionally yield a high probability of intercepting paths that frequently incor-

porate these mixnodes, while at other times, it may result in less optimal node

placements, targeting paths with lower selection probabilities. For instance, in a
3N

Free Routes mixnet with uniform routing, if L = 3 and C' = 5 (indicating that

30% of the nodes are corrupted), the FCP would be approximately 2.5%.

Single Location Strategy Another tactical approach involves exploiting the
clients’ preference for low-latency routing, which often directs traffic through
mixnodes located within the same jurisdiction or region. By identifying and cor-
rupting mixnodes within these targeted regions, the adversary can significantly
enhance their strategic advantage. This method is particularly effective as it
raises the likelihood that messages will pass through adversarially controlled
nodes, thus amplifying the potential for fully de-anonymizing clients.

Intelligent Corruption Strategy To comprehensively analyze the capabil-
ity of a mixnode adversary, we introduce a practical strategy termed Intelligent
Corruption, assuming the adversary has complete information about the other
active mixnodes in the network. This strategy begins by randomly corrupting
a mixnode within the mixnet. The adversary then assesses the distance from
this possessed mixnode to all others, selecting those closest or with the highest
probability of being the next hop. This process continues, choosing subsequent
mixnodes that are nearest to the most recently corrupted node or those most
likely to be selected next, until C' mixnodes are corrupted, as detailed in Algo-
rithm 2.

For example, as depicted in Fig 7, consider a Free Route mixnet with N = 6
mixnodes and an adversary’s budget of C' = 3. Initially, the adversary corrupts a
random mixnode. They then evaluate the likelihood of selecting any uncorrupted
mixnodes from this node, aiming to maximize the probability of routing through
corrupted paths. Subsequently, the adversary corrupts the mixnode with the
highest selection probability (e.g., 0.5). Next, from the second corrupted node,
they assess two mixnodes, each with a selection probability of 0.3, and corrupt
one of them in the final step, completing the Intelligent Corruption of the mixnet.

LARMix++ 21

0.25

=+ LARMix =+ LARMix

0.20+ """ LASTor 0.20+ """ LASTor
= = Balanced LARMix = = Balanced LARMix
CLAPS-Mix CLAPS-Mix
o 015+ ___ Balanced LASTor o 0151 ___ Balanced LASTor
o O
“ 0.10 “ 0.10
0.05 0.05 - S R T T A T e T
..... -
3313 T T M
0.00 0.00 +
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Tuning parameter(T) Tuning parameter(Tt)
(a) FCP for Random strategy. (b) FCP for Single Location strategy.
0.25 === : 0.25 71— T
—+ LARMix —+ LARMix
0.20+ CLAPS-Mix | 0.20+ CLAPS-Mix
= LASTor N -+-+ Balanced LARMix
- I K L y
0.15+ Balanced LARMix y 0.15+ LASTor .
& — Balanced LASTor \ & — Balanced LASTor Va
% 0.10 \ " 0.10 BN e
\, -
...... 3 >
0.05 b i = = 4 kel T . 0.05
ninininietet SN GELITTT T TR
0.00 0.00
0.0 0.2 0.4 0.6 0.8 1.0
Tuning parameter(71)
(c) FCP for Intelligent Corruption Strat- (d) Fraction of corrupted mixnodes.
egy.

Fig.8

5.2 Evaluation of Adversarial Strategies

To evaluate the adversarial strategy for maximizing the FCP, we considered all
routing strategies—LARMix, LASTor, and CLAPs Mix—in both imbalanced
and balanced cases. We then measured the FCP by varying the value of 7 and
setting the fraction of corrupted mixnodes as % = 0.3. Fig. 8a illustrates the
results of FCP derived from Random corruption of mixnodes. As observed, al-
most all the routing approaches yield similar results; even as 7 varies, the results
do not change dramatically. This consistency can be attributed to the nature of
Random Corruption, where the adversary might corrupt mixnodes that are ei-
ther on highly probable paths or, conversely, on paths with very low probability
of selection. Therefore, on average, the amount of FCP should be comparable to
that with uniform routing, previously described as 2.5%.

Fig. 8b showcases the results of employing the Single Location strategy for
corrupting mixnodes within low-latency routings approaches. As the value of 7
increases, the FCP generally decreases across most routing configurations. The
primary reason for this trend is that increasing 7 introduces greater randomness
into the routing decisions of LASTor and LARMix, both in imbalanced and bal-
anced scenarios. This increased randomness reduces the probability of selecting
low-latency paths that were previously chosen with higher likelihood, thus di-

22 M. Rahimi

minishing the adversary’s advantage when the corruption of mixnodes adheres
to the Single Location strategy for all routing approaches.

In the case of CLAPS Mix, since an increase in 7 does not necessarily equate
to enhanced randomness, the outcomes remain relatively consistent regardless
of 7 value adjustments. As depicted in Fig. 8b, LARMix under imbalanced con-
ditions is notably more susceptible to the Single Location strategy, exposing up
to a 6% FCP. Conversely, both Imbalanced LASTor and Balanced LARMix ex-
hibit performances closely aligned with that of CLAPS Mix, particularly when
7 < 0.6. However, there is a marked reduction in FCP for these strategies rel-
ative to CLAPS Mix once 7 surpasses this threshold. Contrastingly, Balanced
LASTor offers the least benefit to the adversary by maintaining a low FCP,
comparable to outcomes derived from the Random Strategy. This observation
underscores that the variance between low-latency and high-latency paths in
this case is minimal, thereby limiting the adversary’s leverage when utilizing the
Single Location strategy.

In addition, applying the Intelligent Corruption strategy, as shown in Fig. 8c,
reveals that, similar to the results from the Single Location strategy, increas-
ing the value of 7 generally leads to a reduction in FCP. However, this strat-
egy results in a consistently higher FCP compared to the Single Location case.
Specifically, when using Imbalanced LARMix, the FCP can reach up to 25% at
7 = 0, which is up to five times higher than the results observed from the Single
Location strategy. This underscores the effectiveness of Intelligent Corruption,
particularly when latency is a significant factor within Imbalanced LARMix sce-
narios.

In contrast, for other routing approaches like CLAPS Mix, the increase in
FCP using the Intelligent Corruption strategy does not exceed twice the baseline.
Notably, for Balanced LARMix, unlike its imbalanced configuration, the FCP
result is only marginally higher than that achieved through the Single Location
strategy, and it aligns closely with the results of Imbalanced LASTor. Meanwhile,
Balanced LASTor exhibits results nearly identical to those of the Single Location
strategy. This suggests that even though balancing the mixnet using the RLD
algorithm may potentially heighten end-to-end latency, it can effectively mitigate
the impact of the Intelligent Corruption strategy. This is particularly significant
when compared to the higher vulnerabilities observed in the Imbalanced LARMix
configuration.

Furthermore, to assess the effect of adversary budget, Fig. 8d presents the
results of Intelligent Corruption when we set 7 = 0.6 for all routing approaches
in both balanced and imbalanced cases. We then vary the fraction of corrupted
nodes (%) from 5% to 30%. As demonstrated, increasing the adversary’s budget
translates into corrupting more mixnodes, thereby increasing the likelihood that
adversarial mixnodes will compromise complete paths. Consequently, as seen in
Fig. 8d, the FCP increases. This behavior remains consistent across various ap-
proaches; specifically, the imbalanced LARMix configuration proves to be the
most vulnerable approach to increasing adversary budgets. Conversely, CLAPS
Mix is the second most susceptible. Meanwhile, Balanced LARMix and imbal-

LARMix++ 23

anced LASTor exhibit similar trends, and Balanced LASTor shows the greatest
resilience towards increasing the adversarial budget.

6 Conclusion

In this work, we introduced the first low-latency routing methodology tailored
for mixnets with a Free Routes design. We began by adapting existing routing
approaches from LASTor, LARMix, and CLAPS for use in mixnet environments.
Additionally, we developed the RLD algorithm that ensures each mixnode, re-
gardless of its position within the mixnet, receives an equal amount of traffic. Our
comprehensive analytical and simulation experiments demonstrate substantial
latency reductions, while only compromising a negligible amount of anonymity.
Moreover, our adversarial analysis reveals no significant advantage for mixnode
adversaries compared to a GPA. We anticipate that this framework will prove
especially useful in scenarios requiring cost-effective (or low-latency) anonymity.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able feedback. This research is partially supported by CyberSecurity Research Flanders
with reference number VR20192203.

References

1. Akhoondi, M., Yu, C., Madhyastha, H.V.: Lastor: A low-latency as-aware tor client.
In: 2012 IEEE Symposium on Security and Privacy. pp. 476-490. IEEE (2012)

2. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against tor. In: Proceedings of the 2007 ACM workshop on Privacy in
electronic society. pp. 11-20 (2007)

3. Ben Guirat, 1., Gosain, D., Diaz, C.: Mixim: Mixnet design decisions and empirical
evaluation. In: Proceedings of the 20th Workshop on Workshop on Privacy in the
Electronic Society. pp. 33-37 (2021)

4. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., De Ruiter, J., Sherman,
A.T.: cmix: Mixing with minimal real-time asymmetric cryptographic operations.
In: Applied Cryptography and Network Security: 15th International Conference,
ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings 15. pp. 557-578.
Springer (2017)

5. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84-90 (1981)

6. Chen, D., Borrego, C., Navarro-Arribas, G.: A privacy-preserving routing protocol
using mix networks in opportunistic networks. Electronics 9(11), 1754 (2020)

7. Diaz, C.: Anonymity and privacy in electronic services. Heverlee: Katholieke Uni-
versiteit Leuven. Faculteit Ingenieurswetenschappen (2005)

8. Diaz, C., Halpin, H., Kiayias, A.: The nym network (2021)

9. Diaz, C., Murdoch, S.J., Troncoso, C.: Impact of network topology on anonymity
and overhead in low-latency anonymity networks. In: Privacy Enhancing Tech-
nologies: 10th International Symposium, PETS 2010, Berlin, Germany, July 21-23,
2010. Proceedings 10. pp. 184-201. Springer (2010)

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. Rahimi

Diaz, C., Preneel, B.: Taxonomy of mixes and dummy traffic. In: Information Se-
curity Management, Education and Privacy: IFIP 18th World Computer Congress
TC11 19th International Information Security Workshops 22-27 August 2004
Toulouse, France. pp. 217-232. Springer (2004)

Dingledine, R., Mathewson, N., Syverson, P.F., et al.: Tor: The second-generation
onion router. In: USENIX security symposium. vol. 4, pp. 303-320 (2004)

Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances
in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part 11 35. pp. 305-326. Springer (2016)

Hogan, K., Servan-Schreiber, S., Newman, Z., Weintraub, B., Nita-Rotaru, C.,
Devadas, S.: Shortor: Improving tor network latency via multi-hop overlay routing.
In: 2022 IEEE Symposium on Security and Privacy (SP). pp. 1933-1952. IEEE
(2022)

Kesdogan, D., Egner, J., Biischkes, R.: Stop-and-go-mixes providing probabilistic
anonymity in an open system. In: International Workshop on Information Hiding.
pp. 83-98. Springer (1998)

Kohls, K., Diaz, C.: {VerLoc}: Verifiable localization in decentralized systems. In:
31st USENIX Security Symposium (USENIX Security 22). pp. 2637-2654 (2022)
Kwon, A., Lu, D., Devadas, S.: {XRD}: Scalable messaging system with crypto-
graphic privacy. In: 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). pp. 759-776 (2020)

Moller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster protocol—version
2 (2003)

Nithyanand, R., Starov, O., Zair, A., Gill, P., Schapira, M.: Measuring and miti-
gating as-level adversaries against tor. arXiv preprint arXiv:1505.05173 (2015)
Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix
anonymity system. In: 26th USENIX Security Symposium (USENIX Security
17). pp. 1199-1216 (2017)

Python: Event discrete, process based simulation for python. https://pypi.org/
project/simpy/ (2013)

Rahimi, M.: CLAM: client-aware routing in mix networks. In: Pérez-Gonzalez, F.,
Alfaro, P.C., Krétzer, C., Zhao, H.V. (eds.) Proceedings of the ACM Workshop
on Information Hiding and Multimedia Security, IH&MMSec 2024, Baiona, Spain,
June 24-26, 2024. pp. 199-209. ACM (2024). https://doi.org/10.1145/3658664.
3659631, https://doi.org/10.1145/3658664.3659631

Rahimi, M., Sharma, P.K., Diaz, C.: Larmix: Latency-aware routing in mix net-
works. In: The Network and Distributed System Security Symposium. Internet
Society (2024)

Rochet, F., Wails, R., Johnson, A., Mittal, P., Pereira, O.: Claps: Client-location-
aware path selection in tor. In: Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security. pp. 17-34 (2020)

Shirazi, F., Simeonovski, M., Asghar, M.R., Backes, M., Diaz, C.: A survey on rout-
ing in anonymous communication protocols. ACM Computing Surveys (CSUR)
51(3), 1-39 (2018)

Staff, R.N.: Ripe atlas: A global internet measurement network. Internet Protocol
Journal 18(3), 2-26 (2015)

Sun, Y., Edmundson, A., Feamster, N., Chiang, M., Mittal, P.: Counter-raptor:
Safeguarding tor against active routing attacks. In: 2017 IEEE Symposium on
Security and Privacy (SP). pp. 977-992. IEEE (2017)

https://pypi.org/project/simpy/
https://pypi.org/project/simpy/
https://doi.org/10.1145/3658664.3659631
https://doi.org/10.1145/3658664.3659631
https://doi.org/10.1145/3658664.3659631
https://doi.org/10.1145/3658664.3659631
https://doi.org/10.1145/3658664.3659631

LARMix++ 25

27. Sun, Y., Edmundson, A., Vanbever, L., Li, O., Rexford, J., Chiang, M., Mittal,
P.: {RAPTOR}: Routing attacks on privacy in tor. In: 24th USENIX Security
Symposium (USENIX Security 15). pp. 271-286 (2015)

28. Van Den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: Scalable private
messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on
Operating Systems Principles. pp. 137-152 (2015)

29. Wan, G., Johnson, A., Wails, R., Wagh, S., Mittal, P.: Guard placement attacks on
path selection algorithms for tor. Proceedings on Privacy Enhancing Technologies
2019(4) (2019)

A Algorithms and Notations

In this section, we introduce the algorithms and notations used in this paper.

Algorithm 1 Rebalancing Load Distributions

Input: Routing Matrix R*
Compute the summation of columns in R¥.
for each column j in R do
if 3, Rf; > 1 then
Label column j as overloaded.
else if 3°, RY; = 1 then
Label column j as balanced.
else
Label column j as underloaded.
end if
: end for
: for each column j labeled as overloaded do
Multiply each entry in column j by the inverse of its sum.
Distribute the surplus probabilities to underloaded columns,
prioritizing based on their proximity.
Exclude diagonal entries from redistribution.
: end for

o e el el el
DD WO P

. if there is exactly one underloaded column then
Rebalance by considering non-diagonal entries.
: end if

: if balance is not achieved then

Repeat the rebalancing procedure.

: end if

: Output: Rebalanced matrix R”.

NN NN DN -

B Expanding on Simulation of Free Routes Mixnet

B.1 Simulation Settings

As outlined in Section 4, we conducted simulations of a Free Routes mixnet
using the discrete event simulator SimPy in Python. Discrete event simulators

26 M. Rahimi

Algorithm 2 Intelligent Corruption

Input: Routing Matrix R, Total Mixnodes N
Initialize: Counter < 0
Initialize: Corrupted Set < empty set
Randomly pick one mixnode and add to Corrupted Set
Counter < Counter + 1
while Counter < C do
Identify Miznext where P(MiZnext|MiTcurrent) 18 maximized
Add Mizpext to Corrupted Set
Counter < Counter + 1
: end while
: Output: Corrupted set of mixnodes

IR A A

—_ =

Table 2: Notations used in this paper.

Parameter Meaning

N Size of the network
L Number of hops

R* Routing matrix at hop k

Rfj Routing probability between node ¢ at hop k£ and j at hop £+ 1
I Average mixing delay
A Poisson parameter of incoming message rate
lij Latency between mixnode ¢ and j
T Tuning parameter

H(P) Entropy of path selection

H(m) Entropy of message
f Rank function
Sk Set of available mixnodes at hop k + 1

are particularly suitable for modeling mixnets because they inherently handle
randomness and can effectively simulate the dynamic nature of network events,
such as message transmission through mixnodes.

In our simulations, we employed the stop-and-go mixing strategy, which de-
lays input messages according to an exponential distribution E(%) with an av-
erage delay parameter u, set at 50 ms. This strategy is a common choice due
to the high anonymity it provides, stemming from the memory-less property of
the exponential distribution. Specifically, this means that for any two messages
arriving at different times, the probability of them exiting the mixnode at any
subsequent time is the same, thereby enhancing their anonymity.

Additionally, such mixnodes have the manageable average latency, an option
not available in other mixnodes’ types that their flushing time depends on other
input messages. After setting up the mixnet with these mixnodes, we simulated
clients sending messages to the mixnet. Each client sends messages according

LARMix++ 27

to a Poisson distribution with a rate parameter A\, meaning that, on average,
A messages are sent to the mixnet every second. The simulator then applies a
routing strategy to route the packets while also measuring the latency based on
the RIPE dataset provided for these mixnodes.

We compute two primary parameters in simulations: the average end-to-
end latency for each message entering and exiting the mixnodes, using the
simpy.env.now() command to capture the current simulation time. Furthermore,
we assess the anonymity of each message, a critical metric for mixnets. For this,
we employed the approach described in [3|, which defines anonymity in a scenario
where an adversary targets an incoming message and probabilistically determines
its counterpart exiting the mixnet. Actually in this method, the first targeted
message entering the mixnet is assigned a probability of 1 of being targeted by
the adversary. Due to the memory-less nature of the distribution, this message
is mixed with others, and any outgoing message may potentially be the tar-
geted message with a reduced probability, dependent on the number of incoming
messages. This probability is updated as the message progresses through each
mixnode, and ultimately, we compute the entropy of the targeted message being
indistinguishable among all outgoing messages. In our simulations, we consid-
ered 200 targeted messages. Finally, we compared different routing approaches
to describe the variance in anonymity and latency metrics achieved during the
simulations.

B.2 Detailed Simulation Results

Table 3: Detailed analysis of end-to-end latency.

Approaches =0 7=0.6 r=1
Statistics Average | Variance CI Average | Variance CI Average | Variance CI
LASTor 0.20 0.01 [0.20,0.204] 0.24 0.01 [0.240,0.243] 0.26 0.01 [0.26,0.267]
Balanced LASTor 0.24 0.01 [0.24,0.242] 0.25 0.01 [0.25,0.26] 0.26 0.01 [0.26,0.266)
LARMix 0.17 107* [0.165,0.171] 0.173 1073 [0.163,0.184] 0.26 0.01 [0.26,0.27]
Balanced LARMix 0.215 0.01 [0.21,0.22] 0.228 0.01 [0.227,0.228) 0.26 0.01 [0.26,0.27]
CLAPS-Mix 0.202 10°° [0.202,0.203] 0.206 1072 [0.206, 0.207] 0.212 1072 [0.212,0.213]

Table 4: Detailed analysis of message entropy.

Approaches T=0 7=0.6 T=1
Statistics Average | Variance CI Average | Variance CI Average | Variance CI
LASTor 12.03 0.04 [11.99,12.07] 12.38 0.02 [12.35,12.41] 12.49 0.03 [12.26,12.53]
Balanced LASTor 12.32 0.03 [12.28,12.36] 12.43 0.02 [12.4,12.47] 12.54 0.03 [12.5,12.57]
LARMix 11.12 0.1 [10.96, 11.27] 11.79 0.07 [11.74,11.85) 12.5 0.02 [12.47,12.54]
Balanced LARMix 11.69 0.09 [11.64,11.75] 12.12 0.04 [12.08,12.17] 12.5 0.02 [12.47,12.54]
CLAPS-Mix 11.71 0.35 [11.61,11.85] 11.69 0.21 [11.6,11.8] 11.37 0.18 [11.3,11.46]

In section 4, we provided the results of end-to-end latency and entropy of
messages, respectively, in Fig. 6a and Fig. 6b. However, we postponed the details

28 M. Rahimi

of these results, such as the variance and confidence interval of the average
results, to this subsection. To ensure the reliability of the results, we applied a
95% confidence interval with a confidence test. The data for the average end-
to-end latency and the entropy of messages are presented in Tab. 3 and Tab. 4,
respectively. As observed, the variance in all cases is almost negligible, and the
confidence interval is tight enough to conclude that the results in Fig. 6a and
Fig. 6b are reliable.

C Client Consideration

As described in Section 2, clients choose the first hop of the mixnet uniformly at
random. This approach implies that we do not optimize for the link delay between
the client and the mixnet. It is important to note that while we could extend the
routing to consider client-aware routing as well, several challenges arise in this
scenario. Specifically, when attempting to load balance the mixnodes, the diverse
preferences of clients in choosing the first hop can make it nearly impossible to
balance routing effectively at this stage. Consequently, this could hinder our
ability to balance the network for subsequent hops, as some mixnodes might
already receive a higher proportion of traffic. Therefore, to maintain fairness
and manageability in traffic distribution across the network, we choose to have
the first mixnodes selected uniformly at random. This method helps prevent
any single node from becoming overloaded and maintains the integrity of the
network’s performance and security.

D Comparison with Stratified Topology

As mentioned earlier, the motivation behind proposing the Free Route mixnet
optimization is to provide a structure viable for cases requiring high anonymity
but with more affordable infrastructure. However, it is important to note that
the anonymity afforded by a stratified mixnode is generally less than that of the
Free Routes topology.

For instance, consider a stratified topology of N mixnodes with L layers.
In this case, the number of paths, assuming uniform routing, would be (%)L ,
while the same for the Free Route mixnet, as shown in Section 3, would be
HiIZ:OLfl(N —1). Considering these cases, the entropy of messages for the Free
Route mix will be Zf:OL*l log(N — i), whereas for the stratified routing it is
Llog(%). Given that L << N, the latter generally falls behind in terms of
anonymity.

However, stratified topology has a firm topology compatible with adding
cover traffic, which can significantly enhance anonymity [9]. Although employing
such methods for enhancing anonymity can be too costly for a local network, in
scenarios where cost is a significant consideration, we recommend using the Free
Route mixnet. This approach is particularly suitable for local networks where
achieving high levels of anonymity must be balanced with the need for affordable
implementation.

LARMix++ 29

E Extension to Tor Network

As mentioned in Section 2, the Free Routes topology is extensively used in the
Tor network [11], and many studies have utilized this feature to develop routing
policies addressing specific interests. However, it is important to note that the
nature of mixnets and the Tor network are generally different, particularly in
terms of their threat models and adversaries [24,27].

In mixnets, we consider a global passive adversary who observes all the links
between the nodes within the mixnet alongside the mixnode adversary. Con-
versely, in the Tor network, the adversary’s capabilities are typically limited to
observing some parts of the network by corrupting Autonomous Systems (ASes).
Therefore, adapting our proposed methodologies to be useful for the Tor network
requires careful consideration of these mentioned threats. One needs to investi-
gate more thoroughly to ensure that lowering latency in the Tor network does
not inadvertently increase the adversary’s advantage significantly. This adapta-
tion involves not only technical modifications but also a deep understanding of
how these changes could potentially impact the security and anonymity provided
by the Tor network.

	LARMix++: Latency-Aware Routing in Mix Networks with Free Routes Topology

