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Abstract

One of the most popular techniques to prove adaptive security of identity-based encryp-
tions (IBE) and verifiable random functions (VRF) is the partitioning technique. Currently,
there are only two methods to relate the adversary’s advantage and runtime (ϵ,T) to those of
the reduction’s (ϵproof ,Tproof) using this technique: One originates to Waters (Eurocrypt 2005)
who introduced the famous artificial abort step to prove his IBE, achieving (ϵproof ,Tproof) =
(O(ϵ/Q),T+O(Q2/ϵ2)), where Q is the number of key queries. Bellare and Ristenpart (Euro-
crypt 2009) provide an alternative analysis for the same scheme removing the artificial abort
step, resulting in (ϵproof ,Tproof) = (O(ϵ2/Q),T + O(Q)). Importantly, the current reductions
all loose quadratically in ϵ.

In this paper, we revisit this two decade old problem and analyze proofs based on the
partitioning technique through a new lens. For instance, the Waters IBE can now be proven
secure with (ϵproof ,Tproof) = (O(ϵ3/2/Q),T + O(Q)), breaking the quadratic dependence on
ϵ. At the core of our improvement is a finer estimation of the failing probability of the
reduction in Waters’ original proof relying on artificial abort. We use Bonferroni’s inequality,
a tunable inequality obtained by cutting off higher order terms from the equality derived by
the inclusion-exclusion principle.

Our analysis not only improves the reduction of known constructions but also opens the
door for new constructions. While a similar improvement to Waters IBE is possible for the
lattice-based IBE by Agrawal, Boneh, and Boyen (Eurocrypt 2010), we can slightly tweak the
so-called partitioning function in their construction, achieving (ϵproof ,Tproof) = (O(ϵ/Q),T +
O(Q)). This is a much better reduction than the previously known (O(ϵ3/Q2),T+O(Q)). We
also propose the first VRF with proof and verification key sizes sublinear in the security pa-
rameter under the standard d-LIN assumption, while simultaneously improving the reduction
cost compared to all prior constructions.
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1 Introduction

1.1 Background

In security proofs for cryptographic primitives, we often face conflicting requirements. For in-
stance, when proving security of a signature scheme, the reduction needs to simulate signatures
upon adversary’s signing queries and to extract a solution to a computationally hard problem from
the forgery. On first glance, such a proof seems to indicate that a reduction can simply simulate an
adversary internally: It simulates a forgery instead of running the adversary and extracts the so-
lution from it, contradicting the hardness of the problem. The partitioning technique resolves this
apparent paradox. The message space is divided into controlled and uncontrolled sets. The reduc-
tion can only simulate signatures for controlled messages, while a forgery is only useful if it’s for an
uncontrolled message. Since a message can only be either controlled or uncontrolled, the paradox
is resolved. This technique has been useful outside the simple application of signatures, and in
particular, has been central to show adaptive security of more advanced primitives such as identity-
based encryption (IBE) [Bon01, BB04b, Wat05, ABB10a, CHKP10, ABB10a, CHKP10, ACF14,
Yam16, ZCZ16, KY16, Yam17, Kat17, AFL17, ALWW21] and verifiable random function (VRF)
with large input spaces [HW09, Jag15, HJ16, Yam17, Kat17, JN19, Koh19, Nie21, JKN21].1

A proof relying on the partitioning technique comes in two steps. The first step consists of
constructing a scheme that secretly partitions the challenge space in controlled and uncontrolled
sets during the security proof. This is typically done by implicitly computing a bespoke keyed
function F inside the scheme. In the context of signatures, this partitioning function F(M) is
secretly computed during the signing algorithm, where F(M) = 1 (resp. 0) indicates that M
is included in the controlled (resp. uncontrolled) set. For the reduction, the probability that
the adversarial queries are consistent with the partition made by F needs to be high enough.
Specifically, the probability that (i) F(M(i)) = 1 for all messages (M(i))i∈[Q] queried to the signing
oracle and (ii) F(M∗) = 0 for the forgery message M∗ must be noticeable. Below, we denote this
probability as γ(M⃗), where M⃗ := (M(1), · · · ,M(Q),M∗). The second step is to lower bound the
advantage ϵproof of the reduction using the advantage of the adversary ϵ. This step is trivial when
reducing a hard search problem to a search type security game (e.g., unforgeability of a signature
scheme) as we have a simple lower bound ϵproof ≥ γminϵ, where γmin = min

M⃗
γ(M⃗). However,

such a simple bound no longer holds when reducing a hard decisional problem to a decisional
security game, those considered by IBEs and VRFs. Studying the partitioning technique in this
non-trivial setting is the main focus of our work.2

To the best of our knowledge, there are only two solutions to the second step of the partitioning
technique. The first solution originates to Waters [Wat05], who identified this non-triviality when
proving security of his IBE. His main observation was that it suffices to efficiently approximate
γ(I⃗D) to lower bound ϵproof , where we replace M⃗ with I⃗D to be consistent with our IBE explanation.

Namely, he used the Monte Carlo method to approximate γ(I⃗D) and completed the reduction
using the notorious artificial abort step; a counterintuitive step where the reduction sometimes
aborts the simulation and outputs a random guess, even if the simulation is successful (i.e., the
adversarial queries lie in the correct constrained and unconstrained sets). While this solved the
elusive problem of using the partitioning technique for decisional security games, the main caveat
was that performing artificial abort incurred a huge runtime loss due to the Monte Carlo method.

1Other techniques to achieve adaptive security relying on specific algebraic structures (e.g., dual system encryp-
tion) exists. See Sec. 1.3 for more details.

2Looking ahead, the difficulty stems from the fact that in a decisionoal security game, the adversary may have
a negative advantage conditioned on M⃗. We refer to Sec. 2.1 for the details.
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Denoting the runtime of the reduction and adversary by Tproof and T, respectively, we have
(ϵproof ,Tproof) = (O(ϵ/Q),T + O(Q2/ϵ2)), where Q is the number of key queries made by the
adversary.3 The second solution is due to Bellare and Ristenpart [BR09]. They showed that if
the value of γ(I⃗D) for all I⃗D lie in a narrow enough interval, the artificial abort step by Waters
can be removed from the reduction. Specifically, the reduction no longer needs to run the costly
Monte Carlo method. To satisfy this condition on γ(I⃗D), they further proposed a new partitioning
function F. Altogether, they achieve a better reduction with (ϵproof ,Tproof) = (O(ϵ2/Q),T+O(Q)),
shaving off a factor Q in total. However, notice the advantage ϵproof becomes worser than Waters
due to the modification they made to the partitioning function F. Importantly, both solutions
still have a reduction loss quadratic in ϵ.

Surprisingly, this analysis of (ϵproof ,Tproof), i.e., the second step of the partitioning technique,
has not seen any improvement for over 15 years. Indeed, all previously cited IBEs [Bon01, BB04b,
Wat05, ABB10a, CHKP10, ABB10a, CHKP10, ACF14, Yam16, ZCZ16, KY16, Yam17, Kat17,
AFL17, ALWW21] and VRFs [HW09, Jag15, HJ16, Yam17, Kat17, JN19, Koh19, Nie21, JKN21]
have proofs based on the partitioning technique that rely either on a Waters-style analysis or
a Bellare-Ristenpart-style analysis — most of the improvements come from designing a better
partitioning function F with a compatible scheme, i.e., improving the first step of the partitioning
technique. This motivates us with the following question:

Can we achieve a better reduction cost for proofs based on the partitioning technique?
That is, is there a better analysis than those by Waters [Wat05] and Bellare and
Ristenpart [BR09]?

1.2 Our Contributions

In this paper, we answer the above question affirmatively by proposing a new analysis for proofs
based on the partitioning technique. Using our analysis, we improve the reduction cost of many of
the aforementioned IBEs and VRFs without any modification to the construction. For example,
Waters IBE can now be proven secure with (ϵproof ,Tproof) = (O(ϵ3/2/Q),T + O(Q)), breaking
the quadratic dependence on ϵ. We further obtain the same reduction cost for the lattice-based
Agrawal-Boneh-Boyen (ABB) IBE [ABB10a], where the known reduction was quite loose, only
achieving (ϵproof ,Tproof) = (O(ϵ3/Q2),T+O(Q)).4

Our analysis not only improves the reduction of known constructions but also opens the door
for new constructions. Concretely, we construct an IBE and VRF with novel properties.

• By slightly tweaking the ABB IBE construction, we obtain an IBE with a reduction (ϵproof ,Tproof) =(
O(ϵ1+

1
d−1 /Q),T + O(Q)

)
, where d ≥ 3 is a tunable positive integer that roughly dictates

the length of the public parameter. When d = 3, we recover the ABB IBE, modulo the
small difference in how an identity ID is hashed to matrices. By setting d = ω(1), we achieve
(ϵproof ,Tproof) = (O(ϵ/Q),T + O(Q)), which can be thought of as an ideal reduction for a
partitioning based proof, matching the lower bound for the (black-box) reduction for Waters
IBE [HJK12].

• We propose the first VRF achieving sublinear verification key and proof sizes (in the security
parameter) under the standard d-LIN assumption. Previous VRFs only achieved this under

3Throughout the introduction, we ignore factors only depending on the security parameter λ and focus on the
adversarially dependent Q and ϵ.

4To be precise, we modify the partitioning function used in ABB-IBE in a superficial manner, so technically
speaking, it is no longer an identical scheme (see Sec. 2.7).
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non-static q-type assumptions. In fact, we propose two VRFs, where one achieves an ω(1)
proof size at the cost of increasing the verification key size slightly compared to the other.
Moreover, the two VRFs enjoy a reduction of (ϵproof ,Tproof) =

(
O(ϵ1.5/Q),T + O(Q)

)
and(

O(ϵ1+
µ
2 /Qµ),T+O(Q)

)
for an arbitrary constant µ > 1, respectively. All prior reductions

of VRFs with either sublinear verification key or proof sizes only achieve (ϵproof ,Tproof) =(
O(ϵ1+µ/Qµ),T+O(Q)

)
, or worse. We refer to Table 2 in Sec. 7.5 for the detailed compar-

ison.

At the core of our technical contribution is a new framework for partitioning that interpolates
the analysis of Waters and Bellare-Ristenpart in a way that we achieve the best of both worlds.
Recall Waters [Wat05] used the naive Monte Carlo method to approximate γ(I⃗D). While this leads
to a good approximation, it suffers from longer runtime of O(Q2/ϵ2). In contrast, Bellare and
Ristenpart [BR09] show that if γ(I⃗D) for all I⃗D lie within a narrow enough interval, the expensive
approximation step can be removed. This intuitively requires that a fixed value γ̃ can be used as
a good enough approximation for γ(I⃗D) for all I⃗D. To realize this restrictive condition, they have
to change the partitioning function F, leading to a worser advantage ϵproof = O(ϵ2/Q).

In our work, we resurrect Waters’ artificial abort step, where we approximate γ(I⃗D) for each I⃗D,
rather than requiring a single approximation γ̃ that works for γ(I⃗D) for all I⃗D as Bellare-Ristenpart.
This provides us with greater flexibility in selecting the partitioning function F compared to
Bellare-Ristenpart and opens up the potential for achieving a higher advantage ϵproof . To this

end, we require an improved approximation for γ(I⃗D) in comparison to Bellare and Ristenpart, as
well as an efficient algorithm for computing this approximation in comparison to the Monte-Carlo
method by Waters. For a better approximation of γ(I⃗D), we use Bonferroni’s inequality [Bon36],
a tunable inequality obtained by cutting of higher order terms from the equality derived by the
inclusion-exclusion principle. The evaluation of γ(ID) by Bellare and Ristenpart, which uses
union bound, can be seen as an application of the special case of Bonferroni’s inequality. Now,
computing an approximation of γ(I⃗D) depends on the concrete choice of the partitioning function
F. In one case, used by Waters IBE, we need to solve certain counting problem efficiently. For
this purpose, we use generating functions — a standard tool in enumerative combinatorics but
seldom used in cryptography. This part may be of independent interest.

Given that the second step of the partitioning technique remains independent of the underlying
primitives (e.g., IBE or VRF) and algebraic structures (e.g., pairings or lattices), we abstract it
as a partitioning function with approximation, an extension of the partitioning function due to
Yamada [Yam17]. We extend the prior definition by augmenting it with an efficient algorithm
that estimates γ(I⃗D). We revisit partitioning functions implicitly used in previous works [Wat05,
ABB10a, Lys02], observing that they fit within our abstraction.

Lastly, our new analysis indicates that it is beneficial to choose a partitioning function F that
allows to nicely and efficiently approximate γ(I⃗D). This leads to new ideas to improve the first step
of the partitioning technique. For example, we show that by slightly tweaking the partitioning
function F used in ABB IBE, we can efficiently compute the Bonferroni’s inequality at a much
higher order, allowing for a better approximation of γ(I⃗D). Further details are given in Sec. 2.

1.3 Related Works

Related Works on IBEs. The notion of IBE [Sha84] is introduced as a tool for simplifying the
key management in e-mail systmes. The first constructions of IBE are given by [BF01, SOK00] on
groups with bilinear maps in the random oracle model. Since then, a large number of IBE schemes
have been proposed. We know constructions from quadratic residue [Coc01, BGH07], bilinear
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maps [BB04a, BB04b, Wat05, Gen06, Wat09], groups without bilinear map [DG17, BLSV18],
from factoring [DG17], lattices [GPV08, CHKP10, ABB10a], and (a strong variant of) learn-
ing with parity [BLSV18]. In subsequent works, IBEs with various trade-offs between effi-
ciency, underlying assumptions, and tightness of the reduction have been proposed from the
pairings [Lew12, CLL+13, RCS12, JR13, CW13, BKP14, AHY15, GDCC16, CGW17] and from
lattices [Yam16, BL16, ZCZ16, KY16, Yam17, Kat17, AFL17, ALWW21, KTY23]. Notably,
[BL16] proposes tightly secure IBE from lattices achieving (ϵproof ,Tproof) = (O(ϵ),T + O(Q)).
However, their scheme requires the fully homomorphic evaluation of PRF, which is highly ineffi-
cient and requires LWE with super-polynomial modulus.

In the context of pairing-based IBE, the powerful machinery of the dual system encryption
methodology has been devised [Wat09, LW10]. To name a few, the technique enables compact
public parameters for IBEs [Wat09], (almost) tightly secure IBEs [CW13, BKP14], and adaptive
security for primitives beyond IBE [Wat09, LOS+10]. However, there are still many important
classes of schemes for which the dual system encryption methodology can not be applied and the
partitioning technique is essentially the only option. This includes lattice-based IBEs [ABB10a,
CHKP10, Yam16, ZCZ16, KY16, Yam17, Kat17, AFL17, ALWW21], pairing-based IBEs from
from computational/decisional bilinear Diffie-Hellman (CBDH/DBDH) problem [Wat05, KY16],
pairing IBE with short ciphertext overhead consisting of two group elements [Wat05].

Related Works on VRFs. The notion of VRF is introduced by Micali, Rabin, and Vad-
han [MRV99]. Since then, several constructions has been proposed [MRV99, Lys02, Dod03, DY05].
These constructions only allow a polynomial bounded input space, or do not achieve adaptive secu-
rity without complexity leveraging. The first construction with “all the desired properties” [HJ16],
namely, exponentially large input space and a proof of adaptive security under a non-interactive
complexity assumption was proposed by Hohenberger and Waters [HW09]. Subsequently, a large
number of constructions have been proposed based on pairings [ACF09, HW09, BMR10, ACF14,
Jag15, HJ16, Yam17, Kat17, Ros18, JN19, Koh19, Nie21, JKN21] with trade-offs between ef-
ficiency, the underlying assumptions, and tightness of the reductions. Notably, Hofheinz and
Jager [HJ16] proposed the first VRF with all the desired properties from the standard d-LIN
assumption. We also know constructions from general assumptions [Bit17, GHKW17, BGJS17].
We finally note that the dual system encryption methodology has not been successfully applied
to the construction of VRF, even in the pairing settings.

Related Works on Partitioning Techniques. Many prior works focus on the first step
of the partitioning technique, namely, designing of the partitioning function F and compatible
algebraic structures. Concrete examples are for instance the admissible hash function [Lys02,
BB04b, CHKP10, FHPS13], Waters hash [Wat05, BR09, HK08, HW09] and its variant [ABB10a,
Boy10], and others [Yam16, ZCZ16, Yam17, ALWW21]. These partitioning functions lead to IBEs
and VRFs with various tradeoffs between efficiency, underlying assumption, and tightness when
combined with suitable algebraic structures. Several works abstract out the algebraic structure
that is compatible with the partitioning. In particular, Hofheinz and Kiltz [HK08] introduce the
notion of programmable hash functions on pairing groups, which abstracts out the properties
of Waters hash [Wat05]. They show new applications along with novel asymptotic analysis.
Zhang, Chen, and Zhang [ZCZ16] extend the notion of programmable hash function to the lattice
settings. Importantly though, all the above works on IBEs and VRFs rely either on the Waters-
style analysis or Bellare-Ristenpart-style analysis to argue the second step of the partitioning
technique5, possibly resulting in a sub-optimal reduction.

5The work by Hofheinz and Kiltz [HK08] does not explicitly consider an application to IBEs. However, we can
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Road Map. We first provide the overview of our techniques in Sec. 2. Preliminalies are in
Sec. 3 due to page limitations. In Sec. 4, we provide a general theorem enabling a finer grained
analysis of the artificial abort paradigm decoupled from the underlying primitives and algebraic
structures. In Sec. 5, we show our new analysis of the new and existing partitioning functions. In
Sec. 6, we apply the tools developed in Sec. 4 and 5 to IBEs, e.g., the Waters IBE, the ABB IBE,
and a variant of ABB IBE, and show a tighter security. In Sec. 7, we propose a new VRF scheme
achieving the best asymptotic space efficiency and tighter security under a standard assumption.

2 Technical Overview

We provide an overview of our results. In Sec. 2.1, we review why a naive proof using the
partitioning technique fails. While this is agnostic to the specific application, we use Waters
IBE [Wat05] as a representative example. In Sec. 2.2 and 2.3, we explain how Waters resolved
the problem using the artificial abort step and see that it suffices to estimate γ(I⃗D) with certain
accuracy. In Sec. 2.4, we explain the reduction by Bellare and Ristenpart [BR09] from this
perspective. In Sec. 2.5, we explain the main idea behind our improved reduction for Waters IBE.
In Sec. 2.6, we explain our new estimation algorithm for γ(I⃗D). In Sec. 2.7, we shift our focus
and consider partitioning technique in the lattice setting. We then explain that we can improve
the reduction cost of ABB IBE and propose a variant of it with an even better reduction cost.
Finally, in Sec. 2.8, we shift our focus again and consider a new partitioning technique based on
substring matching.

2.1 The Difficulty

Let us review the proof of Waters IBE [Wat05] based on the partitioning technique and observe
the non-triviality of it. In his proof, the reduction algorithm for DBDH perfectly simulates the
security game for an adversary A against the IBE scheme until it reaches the point where it
cannot continue the simulation anymore and has to abort the reduction. The probability that the
simulation is not successful only depends on the sequence of identities I⃗D = (ID∗, ID(1), . . . , ID(Q)),
where ID∗ ∈ {0, 1}ℓ is the challenge identity for which the challenge ciphertext is generated and
ID(1), . . . , ID(Q) ∈ {0, 1}ℓ are identities for which key queries were made. Let us analyze a naive
reduction that outputs the same bit as A when the simulation is successful and outputs a random
bit when the simulation fails.

We denote the advantage of the adversary A by ϵ, the probability that A makes the sequence
of queries I⃗D by p(I⃗D), and its advantage conditioned on the sequence of queries I⃗D by ϵ(I⃗D). We
have

1

2
+ ϵ =

∑
I⃗D

p(I⃗D)

(
1

2
+ ϵ(I⃗D)

)
=

1

2
+
∑
I⃗D

p(I⃗D)ϵ(I⃗D),

where the sum is taken over all possible I⃗D. Denoting the probability of the simulation being
successful by γ(I⃗D),6 the advantage of the reduction algorithm against DBDH can be evaluated

use their framework in the context of IBE and this requires the heavy artificial abort step in the reduction.
6We differentiate “not aborting” and ”simulation being successful”, since we will later introduce artificial abort,

where the simulator aborts even if the simulation is successful. We note that in the naive reduction described here,
this distinction is irrelevant.
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as ∑
I⃗D

p(I⃗D)

(
γ(I⃗D)

(
1

2
+ ϵ(I⃗D)

)
+

1− γ(I⃗D)
2

)
− 1

2
=
∑
I⃗D

γ(I⃗D)p(I⃗D)ϵ(I⃗D). (1)

In Waters’ proof, it is shown that γ(I⃗D) ≥ 1/poly for all possible I⃗D. It is tempting to conclude
the proof by claiming the above advantage is non-negligible conditioned on ϵ being non-negligible.
However, this intuition turns out to be false and this is precisely the reason why artificial abort
was introduced in [Wat05]. As an illustrating example, consider an adversary who yields only two
types of query sequences I⃗DA and I⃗DB. We further assume p(I⃗DA) = p(I⃗DB) = 1/2, γ(I⃗DA) = 1/3,
γ(I⃗DB) = 2/3, ϵ(I⃗DA) = 2/5, and ϵ(I⃗DB) = −1/5. Even though the adversary A has advantage
1/10, the advantage of the reduction algorithm is 0, meaning that it guesses the challenge bit no
better than randomly guessing.

The reason why the above problem occurs is that ϵ(I⃗D) can be negative for some I⃗D. When
the “weight” on ϵ(I⃗D) changes from p(I⃗D) to p(I⃗D)γ(I⃗D) due to the failure of the simulation, the

negative ϵ(I⃗D) may be amplified to cancel out the positive ϵ(I⃗D
′
), rendering the total sum being

negligible. It is worth highlighting that this is exactly why partitioning based proofs are easier
for search type games since ϵ(I⃗D) ≥ 0 is guaranteed by definition (see Footnote 2).

2.2 Artificial Abort

We then move to explain in several steps how Waters [Wat05] resolved the above problem by
introducing the artificial abort step. First, observe that if γ(I⃗D) = γ holds for some fixed γ ≥
1/poly for all I⃗D, the above naive reduction works. This is because we have the following which
is non-negligible: ∑

I⃗D

γ(I⃗D)p(I⃗D)ϵ(I⃗D) = γ
∑
I⃗D

p(I⃗D)ϵ(I⃗D) = γϵ.

We then move to the more realistic setting where γ(I⃗D) varies with I⃗D. Here, we still assume
that γ(I⃗D) ≥ γmin holds for all I⃗D and for some fixed γmin ≥ 1/poly. For the sake of explanation,
we also introduce a simplifying assumption that γ(I⃗D) can be computed efficiently given I⃗D. In this
setting, we can make the reduction work by introducing an additional abort step (i.e., artificial
abort). Namely, after having successfully completed the simulation against the adversary, the
simulator evaluates γ(I⃗D) based on the sequence of queries I⃗D. It then aborts with probability
1 − γmin/γ(I⃗D) and outputs a random bit. Then, the probability of the simulation not aborting
is the same for all I⃗D, namely, γmin. We therefore can use the above analysis to conclude that the
advantage of the final adversary is γminϵ, which is non-negligible.

However, in reality, we do not know how to compute γ(I⃗D) efficiently. WhatWaters [Wat05] did
instead is to approximate the value of γ(I⃗D) by the Monte Carlo method. The simulator repeatedly
chooses simulation randomness, sees if each randomness leads to a successful simulation, and uses
the fraction of randomness that leads to a successful simulation as an approximation for γ(I⃗D). We
do not give details of the analysis by [Wat05] further, since it is irrelevant to the overview. We just
note that the Monte Carlo method is expensive and the approximation needs time proportional
to O(Q2/ϵ2) to compute.

2.3 Accuracy of Approximation

Let us discuss how the accuracy of the approximation γ(I⃗D) affects the reduction. We note that
our explanation here is different from the analysis by [Wat05] and is an extension of the analysis
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by Bellare and Ristenpart [BR09]. For the sake of easier exposition, we first show our general
analysis and then explain the analysis by [BR09] as a special case. Let us assume that γ(I⃗D)
can be approximated efficiently and deterministically. We denote the approximation for γ(I⃗D) by
γ̃(I⃗D). At the end of the simulation, the reduction algorithm aborts and outputs a random bit
with probability 1−γmin/γ̃(I⃗D), with the intention of making the abort probability as independent
of I⃗D as possible. We then discuss the advantage of the adversary. Since we have just changed
the abort probability, we can see that the advantage of the reduction algorithm is obtained by
replacing γ(I⃗D) in Eq. (1) with γmin · γ(I⃗D)/γ̃(I⃗D), which is the probability that the reduction
algorithm does not abort conditioned on the sequence of the identities in the simulation is I⃗D.
Namely, the advantage is

∑
I⃗D

γmin ·

(
γ(I⃗D)

γ̃(I⃗D)

)
· p(I⃗D)ϵ(I⃗D) = γmin ·

∑
I⃗D

(1 + ∆(I⃗D)) · p(I⃗D)ϵ(I⃗D)

 ,

where we define ∆(I⃗D) := γ(I⃗D)/γ̃(I⃗D) − 1. In the following, we will argue that if ∆(I⃗D) is
sufficiently small, we can give a useful lower bound for the above quantity. Toward this goal, we
assume −∆ ≤ ∆(I⃗D) ≤ ∆ and continue the analysis. We have∑

I⃗D

(1 + ∆(I⃗D)) · p(I⃗D)ϵ(I⃗D) = ϵ+
∑
I⃗D

∆(I⃗D)p(I⃗D)ϵ(I⃗D)

≥ ϵ+
∑

I⃗D s.t. ϵ(I⃗D)≥0

(−∆) · p(I⃗D)ϵ(I⃗D) +
∑

I⃗D s.t. ϵ(I⃗D)<0

∆ · p(I⃗D)ϵ(I⃗D)

≥ ϵ− 2∆,

where the first line uses
∑

I⃗D
p(I⃗D)ϵ(I⃗D) = ϵ and the third line uses

∑
I⃗D s.t. ϵ(I⃗D)≥0 p(I⃗D)ϵ(I⃗D) ≤ 1

and
∑

I⃗D s.t. ϵ(I⃗D)<0
p(I⃗D)ϵ(I⃗D) ≥ −1. This analysis shows that if ∆ < ϵ/3, we have that the overall

advantage of the reduction algorithm is at least γminϵ/3, which is non-negligible. Recalling the
definition of ∆, this means that for the reduction to work, it suffices to approximate γ(I⃗D) within
an additive error no greater than γminϵ/3.

We then move to explain the idea of Bellare and Ristenpart [BR09] as a special case of the
above reduction strategy. We can regard their reduction algorithm as a special case of the above
reduction, where the approximation γ̃(I⃗D) for γ(I⃗D) is always set to be γmin, regardless of I⃗D. This
means that the reduction algorithm never artificially aborts, since 1−γmin/γ̃(I⃗D) = 0. As we have
discussed above, we need to have ∆ < ϵ/3, which implies that (1−ϵ/3)γmin ≤ γ(I⃗D) ≤ (1+ϵ/3)γmin

for all I⃗D. They achieve this condition by finding a clever choice of parameters. We defer the
detail to the next subsection.

2.4 Simulation Method of Bellare and Ristenpart [BR09]

To explain their idea, we have to dive into details of how γ(I⃗D) is defined for a sequence of queries
I⃗D. Recall that in the security proof using the partitioning technique, we divide the identity space
into controlled and uncontrolled sets based on a secret randomness K. In the security proof by
[Wat05, BR09], they divide the identity space by the following (partitioning) function

FWat(K, ID) =

{
0 (Meaning “uncontrolled”) if K0 +

∑
i:IDi=1Ki = 0

1 (Meaning “controlled”) if K0 +
∑

i:IDi=1Ki ̸= 0.
, (2)
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where K = (K0,K1 . . . ,Kℓ) is the secret randomness chosen as K0
$← [−ℓN, 0] and Ki

$← [0, N ]
for i ∈ [ℓ], ℓ denotes the binary length of identities, and IDi denotes the i-th bit of an identity
ID ∈ {0, 1}ℓ. We will explain how they determine the parameter N later. Recall that γ(I⃗D) is the
probability that the simulation is successful. Namely, this is the probability that ID∗ falls into the
uncontrolled set and all of ID(1), . . . , ID(Q) fall into the controlled set. Denoting the event that
FWat(K, ID

∗) = 0 holds by E∗ and the event that FWat(K, ID
(j)) = 0 holds for j ∈ [Q] by E(j), we

have

γ(I⃗D) = Pr[E∗ ∧ ¬E(1) · · · ∧ ¬E(Q)]

= Pr[E∗]− Pr[E∗ ∧ (E(1) ∨ · · · ∨ E(Q))]

= Pr[E∗]− Pr[(E∗ ∧ E(1)) ∨ · · · ∨ (E∗ ∧ E(Q))], (3)

where the probability is taken over the choice of K.
Since it is straightforward to see Pr[E∗] = 1/(ℓN + 1), getting approximation for γ(I⃗D) boils

down to getting approximation for Pr[(E∗∧E(1))∨· · ·∨ (E∗∧E(Q))]. They use the union bound to
upper bound the term and give a trivial lower bound 0, which results in the following inequality:

Pr[E∗]−
∑
j∈[Q]

Pr[E∗ ∧ E(j)]

︸ ︷︷ ︸
= Approximation error

≤ γ(I⃗D) ≤ Pr[E∗]. (4)

Recall that they use fixed γmin as an approximation for γ(I⃗D) for all I⃗D and for the reduction to
work, the approximation should be within additive error of γminϵ/3. To achieve this guarantee,
they adjust the parameter so that the approximation error term

∑
j∈[Q] Pr[E

∗ ∧ E(j)] is as small
as possible. Let us introduce the parameter δ, which is defined as δ := Pr[E∗]. We can easily see
that δ can be controlled by adjusting the parameter N and Pr[E(j)] = δ for j ∈ [Q] holds. For
the sake of simplicity of the explanation, we introduce an oversimplifying assumption that these
events are pair-wise independent, meaning that Pr[E(j) ∧ E∗] = δ2 and Pr[E(j) ∧ E(k)] = δ2. We
then upper bound the error term as∑

j∈[Q]

Pr[E∗ ∧ E(j)] ≤ Qδ2.

What remains is to choose γmin and δ so that γmin ≤ δ − Qδ2 and Qδ2 ≤ γminϵ/3 hold. The
latter inequality implies Qδ2 ≪ γmin and the former then implies that we can take γmin = δ/2 for
example. Then, the latter implies Qδ2 ≤ δϵ/6, which in turn implies δ ≤ ϵ/6Q. Therefore, we set
δ = Θ(ϵ/Q) and then the advantage of the reduction algorithm is γminϵ/3 = Θ(δϵ) = Θ(ϵ2/Q).7

2.5 More Sophisticated Approximation

Our idea to improve the reduction algorithms of previous works [Wat05, BR09] is to approximate
γ(I⃗D) by a more sophisticated analysis. In particular, we approximate the term Pr[(E∗ ∧ E(1)) ∨
· · · ∨ (E∗ ∧ E(Q))] in Eq. (3) by Bonferroni’s inequalities8, rather than the union bound. Namely,

7Due to the simplifying assumption, the bound here does not exactly correspond to that given in [BR09]. More
formally, we have an extra cost of O(1/ℓ) in the final advantage. Similar remark applies to other analyses that
appear in the overview.

8Bonferroni’s inequalities are the inequalities obtained by cutting off higher order terms from the equality derived
from inclusion-exclusion principle. See Lemma 1 for the formal statement.
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we have ∑
j∈[Q]

Pr[E
(j)
2 ]−

∑
1≤j<k≤Q

Pr[E
(j)
2 ∧ E

(k)
2 ] ≤ Pr[E

(1)
2 ∨ · · · ∨ E

(Q)
2 ] ≤

∑
j∈[Q]

Pr[E
(j)
2 ],

where we denote E
(j)
2 := E∗ ∧ E(j) for notational convenience in the above. Plugging the above

equation into Eq. (3), we obtain

Pr[E∗]−
∑
j∈[Q]

Pr[E∗∧E(j)] ≤ γ(I⃗D) ≤ Pr[E∗]−
∑
j∈[Q]

Pr[E∗∧E(j)]+
∑

1≤j<k≤Q
Pr[E∗ ∧ E(j) ∧ E(k)]

︸ ︷︷ ︸
=Approximation error

, (5)

where we use Pr[E
(j)
2 ∧ E

(k)
2 ] = Pr[E∗ ∧ E(j) ∧ E(k)]. We then use Pr[E∗] −

∑
j∈[Q] Pr[E

∗ ∧ E(j)]

as the approximation for γ(I⃗D), i.e., γ̃(I⃗D) := Pr[E∗] −
∑

j∈[Q] Pr[E
∗ ∧ E(j)]. While for this to

be useful, we have to show that we can efficiently compute Pr[E∗ ∧ E(j)], we simply assume this
is possible and defer the detail to Sec. 2.6. Now, observe that the approximation error can
be bounded by

∑
1≤j<k≤Q Pr[E∗ ∧ E(j) ∧ E(k)]. We analyze this term by introducing again an

oversimplifying assumption that the events E∗,E(1), . . . ,E(Q) are 3-wise independent, meaning
that any conjunction of 3 of them happens with probability δ3. Using this, we bound the above
approximation error term by Q(Q−1)δ3/2 ≤ Q2δ3. By our condition on the approximation error,
we need to satisfy

Q2δ3 ≤ γminϵ/3.

We also have to set γmin so that it is smaller than the leftmost term in Eq. (5). We have∑
j∈[Q] Pr[E

∗ ∧ E(j)] = Qδ2 by our assumption of pairwise independence and thus the condition is
equivalent to

γmin ≤ δ −Qδ2.
By a similar analysis explained in the previous subsection, we can take γmin = δ/2. We then have
Q2δ3 ≤ δϵ/6, resulting in δ ≤ ϵ1/2/6Q. By setting δ = Θ(ϵ1/2/Q), the advantage of the reduction
algorithm becomes γminϵ/3 = Θ(δϵ) = Θ(ϵ1.5/Q), improving the result of [BR09]. The reason
for this improvement is our fine-grained approximation of γ(I⃗D) compared to [BR09] based on
Bonferroni’s inequality. By representing the approximation error as a higher order polynomial of
δ, we can chose a larger δ (i.e., Θ(ϵ0.5/Q) as opposed to Θ(ϵ/Q)), leading to a better advantage.

2.6 Computing the Probability Efficiently

Two things are missing from the above explanation. First, in the above analysis, we assumed
that the events E∗, E(1), . . . ,E(Q) are 3-wise independent. Unfortunately, this assumption is not
true. However, we can show that Pr[E∗ ∧ E(j) ∧ E(k)] = Θ(ℓ2δ3) for j ̸= k, which is still useful
for the analysis. We defer the details on how to prove this to the main body of the paper. The
other more important detail missing from the above explanation is how to compute Pr[E∗ ∧ E(j)]
efficiently for j ∈ [Q]. The rest of this subsection will be devoted on explaining how to do it. Let

us define S := {i ∈ [ℓ] : ID∗i = 1} and T := {i ∈ [ℓ] : ID
(j)
i = 1}. Then, by the definition of E∗ and

E(j), we have

Pr[E∗ ∧ E(j)] = Pr

[
K0 +

∑
i∈S

Ki = 0 ∧ K0 +
∑
i∈T

Ki = 0

]
=

1

ℓN + 1
· Pr

[∑
i∈S

Ki =
∑
i∈T

Ki

]
,

(6)
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where the probability is taken over the randomness of K0
$← [−ℓN, 0] and Ki

$← [0, N ] for i ∈ [ℓ].
Without loss of generality, we can assume that S ∩ T = ∅. Furthermore, we can assume that
S = [nS ] and T = [nS + 1, nS + nT ], where nS = #S and nT = #T with nS ≤ nT . Toward
computing the above probability, we introduce a function R, defined as

Rn(α) := #

0 ≤ Ki ≤ N :
∑
i∈[n]

Ki = α

 .

Using the notation, we continue the analysis from Eq. (6). We have

Pr[E∗ ∧ E(j)]

=
1

(ℓN + 1)(N + 1)nS+nT
·#

Ki ∈ [0, N ] for i ∈ [nS + nT ] :
∑
i∈[nS ]

Ki =
∑
i∈[nT ]

Ki


=

1

(ℓN + 1)(N + 1)nS+nT
·
nSN∑
α=0

#

Ki ∈ [0, N ] for i ∈ [nS + nT ] :
∑
i∈[nS ]

Ki =
∑
i∈[nT ]

Ki = α


=

1

(ℓN + 1)(N + 1)nS+nT
·
nSN∑
α=0

RnS (α)RnT (α).

At this point, the problem of estimating the probability boils down to the problem of computing
the summation

∑nSN
α=0 RnS (α)RnT (α). We emphasize that the algorithm needs to run in at most

poly-logarithmic time inN . Otherwise, our final reduction algorithm will add an additive overhead
Q · poly(N) = Q · poly(Q, 1/ϵ) to the running time, which ruins the merit of having a larger
distinguishing advantage for the reduction algorithm compared to [BR09].

The most natural approach for solving the problem would be to take a dynamic programming
approach to compute Rn(α) for n ∈ {nS , nT } and α ∈ [0, nT ] and then compute the summation.
This approach is problematic in two-folds: First, computing Rn(α) by dynamic programming
requires poly(N) time, which is too slow. Furthermore, even if Rℓ(α) can be computed efficiently,
we have to compute the summation of nSN terms, which requires poly(N) time if we follow the
straightforward approach. Luckily, there is an elegant solution to the first problem of computing
Rn(α) efficiently using the powerful machinery of generating functions [Wil05], which is a standard
tool in enumerative combinatrics. Furthermore, we can show the equation

nSN∑
α=0

RnS (α)RnT (α) = RnS+nT (nTN) (7)

again using generating functions and therefore the summation can be computed efficiently. We
defer the detail of how to compute Rℓ(α) to the main body and explain how to prove the equation
here.

Before the proof, let us define a useful notation. For a polynomial f(Z) =
∑

i aiZ
i with Z being

indeterminate, we denote [Zj ]f(Z) as the j-th coefficient of f(Z), namely, aj . We then observe
that Rn(α) equals to [Zα](1+Z+Z2+ · · ·ZN )n. This can be seen by expanding the multiplication
and observing that to yield the term Zα, we have to choose ZKi from the i-th factor so that their
sum K1 + · · ·KN equals to α. We also observe that Rn(α) = Rn(nN − α), which can be seen
by comparing the coefficients of the left and right hands of the equality (1 + Z+ Z2 + · · ·ZN )n =
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ZnN (1 + Z−1 + · · ·Z−N )n. We finally observe that for polynomials f(Z) and g(Z) and an integer
n with n ≥ deg(f), we have

[Zn](f(Z) · g(Z)) =
deg(f)∑
i=0

[Zi]f(Z) · [Zn−i]g(Z).

Equipped with the observations, we are now ready to prove Eq. (7). We have:

nSN∑
α=0

RnS (α)RnT (α) =

nSN∑
α=0

RnS (α)RnT (nTN − α)

=

nSN∑
α=0

[Zα](1 + Z+ Z2 + · · ·+ ZN )nS · [ZnTN−α](1 + Z+ Z2 + · · ·+ ZN )nT

= [ZnTN ](1 + Z+ Z2 + · · ·+ ZN )nS+nT

= RnS+nT (nTN)

as desired.

2.7 Partitioning for Lattices

From here on, we shift our focus and analyze different partitioning strategies. Let us start with a
variant of FWat defined in Eq. (2). While the partitioning strategy specified by the function FWat

can in principle be used in the lattice setting, it requires a super-polynomial size modulus q for the
underlying scheme, since q should be larger than the parameter N , which is polynomially related
to Q (and 1/ϵ). To refrain from using a superpolynomial modulus q, Boyen [Boy10] proposed a
variant of Waters’ partitioning function suitable for the lattice setting, later used for proving the
security of ABB IBE [ABB10a]. As we explain in Sec. 5.4, our formal analysis reveals that their
analysis suffers from a large reduction loss of γminϵ = O(ϵ3/Q2). We show that a more natural
adaptation of the Waters’ partitioning function to the lattice setting gives us a reduction with
γminϵ = O(ϵ2/Q), even with the Bellare-Ristenpart-style analysis. This variant is essentially iden-
tical to Boyen’s partitioning function but fixing some superfluous components (see Footnote 10).
Importantly, this is only a superficial difference and keeps the efficiency of the original ABB IBE
unchanged. We then show that this can be further improved to γminϵ = O(ϵ1.5/Q) by our analysis
using Bonferroni’s inequality. Lastly, with a more noticeable tweak to the partitioning function,
we can achieve γminϵ = O(ϵ1+1/d/Q) for an arbitrary d > 2 or even γminϵ = O(ϵ/Q), where this
tweak results in slightly modifying the ABB IBE.

More concretely, we define our partitioning function FParWat(K, x) as follows:

FParWat(K, ID) =

{
0 K0 +

∑
i:IDi=1Ki = 0c (mod q)

1 otherwise
,

whereK = (K0,K1, . . . ,Kℓ) ∈ (Zcq)ℓ and c is a parameter that will be defined later. K0,K1, . . . ,Kℓ

are chosen uniformly at random from Zcq. We note that here, q is a small polynomially bounded
prime.

Bellare-Ristenpart-style analysis. We then analyze γ(I⃗D). Let us start with a Bellare-
Ristenpart-style analysis, where we use a fixed value γmin for the estimation of γ(ID). Denoting
the event that FParWat(K, ID

∗) = 0 holds by E∗ and the event that FParWat(K, ID
(j)) = 0 holds
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for j ∈ [Q] by E(j), Eq. (4) can be shown to hold by the same analysis as in Sec. 2.4. We then
proceed to bound the error term

∑
j∈[Q] Pr[E

∗ ∧ E(j)]. While this requires a bit of work for the
case of FWat, it is straightforward here. Concretely, we have

Pr[E∗] =
1

qc
, Pr[E∗ ∧ E(j)] =

1

q2c

for all j ∈ [Q]. Here, the former equation is straightforward to see by the fact thatK0 is distributed
uniformly at random over Zcq. To see the latter equation, we observe

K0 +
∑

i:IDi=1

Ki = (1, ID) · (K⊤0 ,K⊤1 , . . . ,K⊤ℓ )⊤,

where we regard ID ∈ {0, 1}ℓ as a row vector with dimension ℓ and (K⊤0 ,K
⊤
1 , . . . ,K

⊤
ℓ )
⊤ ∈ Z(ℓ+1)×c

q

is a matrix obtained by regarding each Ki as a row vector and concatenating them vertically.
When ID∗ and ID(j) are distinct, (1, ID∗) and (1, ID(j)) are linearly independent and thus the pair
(K0 +

∑
i:ID∗

i=1Ki,K0 +
∑

i:ID
(j)
i =1

Ki) are distributed uniformly at random over Z2c
q , implying

the above equation.
From the above analysis, we can see that the error term in Eq. (4) can be bounded by Q ·q−2c.

It remains to choose γmin and c so that γmin ≤ q−c−Qq−2c and Q·q−2c ≤ γminϵ/3 hold. Combining
these inequalities, we have Q · q−2c ≤ q−cϵ/3. To satisfy this, we choose c = logq(3Q/ϵ), which
leads to the reduction cost γminϵ = Θ(ϵ2/Q).

Our improved analysis. We then move to explain our finer-grained analysis using Bonferroni’s
inequality. Now, by the same analysis as Sec. 2.5 using Bonferroni’s inequality, we can derive
Eq. (5). We then set γ̃(I⃗D) := Pr[E∗] −

∑
j∈[Q] Pr[E

∗ ∧ E(j)] = q−c − Qq−2c. Unlike Sec. 2.5, we

can directly compute γ̃(I⃗D). We then bound the error term
∑

j,k Pr[E
∗ ∧ E(j) ∧ E(k)] in Eq. (5).

We have
Pr[E∗ ∧ E(j) ∧ E(k)] = q−3c

for each j, k, since we can prove that the vectors (1, ID∗), (1, ID(j)), and (1, ID(k)) are linearly
independent for mutually distinct ID∗, ID(j), and ID(k). This allows us to bound the error term
by Qq−3c. It remains to choose γmin and c so that γmin ≤ q−c − Qq−2c and Q2 · q−3c ≤ γminϵ/3
hold. Combining these inequalities, we have Q · q−3c ≤ q−cϵ/3. To satisfy this, we choose
c = logq(3Q/

√
ϵ), which leads to the reduction cost γminϵ = Θ(ϵ1.5/Q). This improves the bound

based on the Bellare-Ristenpart-style analysis by a factor of ϵ1/2.

Going beyond γminϵ = O(ϵ1.5/Q). A natural question would be whether we can go beyond
γminϵ = O(ϵ1.5/Q) using Bonferroni’s inequality with higher order terms. This could be possible
if we had Pr[E∗∧E(j1)∧ · · ·∧E(jd−1)] = q−cd for d ≥ 4. However, unfortunately, this does not hold
already for d = 4. We therefore change the function a bit so that

FParWat(K, ID) =

{
0 K0 +

∑
i:hd-wise(ID)i=1Ki = 0c (mod q)

1 otherwise
,

where the only change we add is that we hash the identity by a hash function hd-wise : {0, 1}ℓ →
{0, 1}Ld . For the hash function, we require the property that (1, hd-wise(ID1)), . . . , (1, hd-wise(IDd))
are linearly independent over Zq for mutually distinct ID1, . . . , IDd. Let us postpone the construc-
tion of such a hash function to the main body. Assuming that we have such a hash function, we
are now able to prove Pr[E∗ ∧ E(j1) ∧ · · · ∧ E(jd−1)] = q−cd by the same linear algebraic discussion
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we have done. We can then approximate the value of γ(I⃗D) within error Qd−1q−cd and this leads
to the improved reduction cost of γminϵ = Θ(ϵ1+1/(d−1)/Q). Furthermore, by setting d = ω(1), we
can competelty eliminate the dependence of γmin on ϵ to achieve γmin = O(1/Q), which leads to
γminϵ = O(ϵ/Q). Note that the above change in the partitioning function increases the size of the
key K, since the output length Ld of hd-wise is about dℓ, which is d times longer than the input.

2.8 Partitioning Based on Substring Matching

Here, we demonstrate that our technique can lead to tighter analysis also for the partitioning
based on the substring matching [Lys02], which has been a useful tool in constructing adaptively
secure IBEs and VRFs [BB04b, CHKP10, Yam17, Kat17, Bit17, Koh19]. Here, we focus on the
application to IBE, though our analysis is applicable to VRF as well, as is done in Sec. 7. To
describe the partitioning function, we introduce an error correcting code Encode : {0, 1}ℓ → {0, 1}n
with relative distance 0 < c < 1/2 and output length n.9 Then, the identity space {0, 1}ℓ is
partitioned as follows:

FSSM(K, ID) =

{
0 if σi = Encode(ID)Ii ∀i ∈ [η]

1 otherwise
, (8)

where the secret information K is in the form of K = {(Ii, σi)}i∈[η] and Ii ∈ [n] and σi ∈ Σ for
all i ∈ [n], with η being a parameter that will be chosen later. We choose I = (Ii)i∈[η] so that I

constitutes a random subset of [n] and σi
$← {0, 1} for each i.

Bellare-Ristenpart-style analysis. We then analyze γ(I⃗D). Let us start with a Bellare-
Ristenpart-style analysis. Denoting the event that FSSM(K, ID∗) = 0 holds by E∗ and the event
that FSSM(K, ID(j)) = 0 holds for j ∈ [Q] by E(j), Eq. (4) can be shown to hold by the same
analysis as in Sec. 2.4. We then proceed to bound the error term

∑
j∈[Q] Pr[E

∗ ∧ E(j)]. Noting

that it is straightforward to see Pr[E∗] = 2−η, we evaluate Pr[E∗ ∧ E(j)]:

Pr[E∗ ∧ E(j)] = Pr

(Encode(ID∗)Ii = σi ∀i ∈ [η]) ∧ I ⊆ {k : Encode(ID∗)k = Encode(ID(j))k︸ ︷︷ ︸
:=J

}


= Pr

[(
Encode(ID∗)Ii = σi ∀i ∈ [η′]

) ∣∣ I ⊆ J}] · Pr[I ⊆ J}]
= 2−η ·

η−1∏
i=0

(
#J − i
n− i

)
(9)

≤ 2−η ·
η−1∏
i=0

(
(1− c)n− i

n− i

)
≤ 2−η(1− c)η

where the third equation follows from σi
$← {0, 1} and by the fact that I is a random subset of [n]

and the first inequality follows from the fact that the relative distance of Encode is c, which in turn
implies J ≤ (1− c)n. From the above analysis, we can see that the error term in Eq. (4) can be
bounded by Q ·2−η(1−c)η. It remains to choose γmin and η so that γmin ≤ 2−η−Q2−η(1−c)η and
Q ·2−η(1−c)η ≤ γminϵ/3 hold. Combining these inequalities, we have Q ·2−η(1−c)η ≤ 2−ηϵ/3. To

9Many previous works (e.g., [BB04b, CHKP10]) primarily focus on the encoding function and call it “admissible
hash”. In this paper, we use the term partitioning based on substring matching following [Bit17, Koh19].
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satisfy this, we choose η = log1/1−c(3Q/ϵ), which leads to the reduction cost γminϵ = Θ(ϵ1+µ/Qµ),
where µ = 1/(log 1/(1− c)). Note that we have µ > 1 and by approaching c to 1/2, it is possible
to make µ approach to 1 as closely as one wants. The security proofs for many IBE and VRF
scehems [Jag15, Yam17, Kat17, Koh19] essentially depend on the above analysis and derive the
above reduction cost.

Our improved analysis. We then move to explain our finer-grained analysis. Now, by the
same analysis as Sec. 2.5 using Bonferroni’s inequality, we can derive Eq. (5). We then set
γ̃(I⃗D) := Pr[E∗] −

∑
j∈[Q] Pr[E

∗ ∧ E(j)]. Similarly to Sec. 2.7, it is straightforward to compute

γ̃(I⃗D) efficiently, since we can use Eq. (9) to compute each of Pr[E∗ ∧ E(j)]. We then bound the
error term

∑
j,k Pr[E

∗∧E(j)∧E(k)] in Eq. (5). For doing that, we need an extra property for Encode
that we call the small triple overlap property. Namely, we need for an arbitrary but mutually
distinct x1, x2, x3 ∈ {0, 1}ℓ to satisfy,

# {ι ∈ [n] : Encode(x1)ι = Encode(x2)ι = Encode(x3)ι} ≤ (1− c)2n.

We defer the construction of such code to the end of this subsection and continue the analysis.
We now bound each of Pr[E∗ ∧ E(j) ∧ E(k)]:

Pr[E∗ ∧ E(j) ∧ E(k)]

= Pr

(Encode(ID∗)Ii = σi ∀i ∈ [η]) ∧ I ⊆ {ι : Encode(ID∗)ι = Encode(ID(j))ι = Encode(ID(k))ι}︸ ︷︷ ︸
:=L


= Pr [(Encode(x)Ii = σi ∀i ∈ [η]) | I ⊆ L] · Pr[I ⊆ L]

= 2−η ·
η−1∏
i=0

(
#L− i
n− i

)

≤ 2−η ·
η−1∏
i=0

(
(1− c)2n− i

n− i

)
≤ 2−η(1− c)2η.

where we use the small triple overlap property in the first inequality. From the above analysis,
we can see that the error term in Eq. (5) can be bounded by Q22−η(1− c)2η. It remains to choose
γmin and η so that γmin ≤ 2−η−Q ·2−η(1−c)η and Q2 ·2−η(1−c)2η ≤ γminϵ/3 hold. From the both
inequalities, we can derive Q2(1 − c)2η ≤ ϵ/3. We then take η = log1/1−c(3Q/

√
ϵ), which leads

to the reduction cost γminϵ = Θ(ϵ1+µ/2/Qµ), where µ = log 1/(1− c). Note that we can make µ
approach 1 as closely as one wants by approaching c to 1/2. This improves the reduction cost of
previous works γminϵ = Θ(ϵ1+µ/Qµ) by a factor of ϵµ/2. Again, the reason why the improvement
is possible is that we use the finer-grained approximation of γ(I⃗D) using Bonferroni’s inequality
to represent the error terms as a higher order polynomial of (1 − c). This allows us to take η
smaller, which leads to better advantage.

Instantiating Encode. We then discuss how to instantiate Encode. Unfortunately, we do not
know explicit constructions of a function with the small triple overlap property, where an explicit
construction refers to a deterministic algorithm that takes as input n, ℓ, and ID and outputs
Encode(ID). Instead, we observe that a randomly chosen 3-wise independent hash function satisfies
this property with overwhelming probability under specific parameter settings. Therefore, in
applications to IBEs/VRFs, we choose a random 3-wise independent hash function and append
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it to the public parameters as the description of Encode. The description size of Encode is much
shorter than any other part of the parameters in our application and does not harm the efficiency of
the construction. In addition, we observe that this does not harm the security of the constructions
either. We defer to the details to the main body.

Polynomial-size alphabet variant. Finally, we discuss the variant of the function FSSM
with polynomial-size alphabets, where the underlying encoding function has codewords with a
polynomial-size alphabet. Namely, we have Encode : {0, 1}ℓ → Σn for a polynomial size Σ, rather
than Σ = {0, 1}. While many previous works primarily focused on binary encoding functions
when constructing IBEs/VRFs [BB04b, CHKP10, Yam17, Kat17], Kohl [Koh19] showed that us-
ing encoding functions with a polynomial-size alphabet can be useful when constructing VRF
schemes with a compact proof size. While she uses Reed-Solomon code, we replace it with a 3-
wise independent hash function. Since a 3-wise independent hash function achieves larger relative
distance c than the Reed-Solomon code (w.h.p), using it is quite beneficial. We can improve the
overall parameter size of her construction even if we have to add the description of Encode to the
public parameter as the description size is small. Furthermore, we can also improve the reduction
cost because of the larger relative distance of the 3-wise independent hash function. On top of
the improvement described above, we can further apply our finer-grained analysis to the variant
with polynomial-size alphabet, since the underlying encoding function satisfies the small triple
overlap property. This leads to a tighter analysis that achieves γminϵ = O(ϵ1.5/Q).

2.9 Overview for Our Construction of VRF

Finally, we present an overview of our construction of VRF, which is built upon Kohl’s construc-
tion [Koh19]. As mentioned in Sec. 2.8, by merely substituting the underlying error-correcting
code in her construction with ours, we can improve both efficiency and reduction cost. We further
reduce the public parameter (i.e., verification key) size to be sublinear by modifying the algebraic
structure of the scheme.

Let us first start with the high level overview of the construction by Hofheinz and Jager [HJ16].
Informally speaking, they reduce the problem of constructing VRF to the construction of a func-
tion v(·) that maps a VRF input x to a vector in Zkp with the following properties: First, gv(x)

can be certified by the public parameter with the help of a proof, where g is a generator of a
pairing group. Furthermore, v(·) should be compatible with the partitioning FSSM (defined in
Eq. (8)) in the security proof. Namely, we require that if x is in the controlled set, then v(x) is in
certain subspace U of Zkp with dimension k−1 and otherwise it is outside of U . In the subsequent
work, Kohl [Koh19] follows the framework but instantiates v(·) in a new way, resulting in the
improvement on the proof size of the construction by Hofheinz and Jager. In this overview, we
present her construction of v(·) associated with FSSM in the oversimplified setting, where we set
η = 1 and Encode to be an identity map. In this setting, the secret information K consists of a
pair of an index and a bit (i∗, σ∗) ∈ [ℓ]× {0, 1}. We have FSSM(K, x) = 1 if and only if the i∗-th
bit xi∗ of x equals to σ∗. In her construction, she defines

v(x) =
∑
i∈[ℓ]

L⊤i,xiu,

where u ∈ Zkp, and {Li,b ∈ Zk×kp }i∈[n],b∈{0,1} are parameters fixed in the system. Here, u is chosen

uniformly at random and L⊤i,b is chosen so that its image is contained in U if (i, b) ̸= (i∗, σ∗) and
it is full-rank when (i, b) = (i∗, σ∗). We have that over the random choice of u, v(x) is in U if and
only if FSSM(K, x) = 1 with high probability as desired. This can be observed from the fact that
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when (i, b) ̸= (i∗, b∗), L⊤i,bu is within U ; otherwise, L⊤i,bu is distributed uniformly at random across

Zkp and has a negligible probability of falling into the subspace U . When converting the above

function into a VRF, we must incorporate all gu and {gLi,b}i∈[ℓ],b∈{0,1} in the public parameter.
This results in O(ℓ) group elements, which is rather large.

To reduce the public parameter, we indirectly define {Li,b}i,b by the combination of smaller
number of matrices {Mj}j∈[ℓ1] and {Nk}k∈[ℓ2] as

Li,b = MS1(i,b)NS2(i,b),

and publish {gMj}j∈[ℓ1] and {gNk}k∈[ℓ2] instead of {gLi,b}i,b. Here, S1 : [ℓ] × {0, 1} → [ℓ1] and
S2 : [ℓ]×{0, 1} → [ℓ2] are arbitrary efficiently computable maps such that (i, b) 7→ (S1(i, b), S2(i, b))
is injective. To be able to define such a map, it suffices to set ℓ1 = ℓ2 = ⌈

√
2ℓ⌉. This reduces the

number of group elements in the verification key to be O(ℓ1 + ℓ2) = O(
√
ℓ) from O(ℓ).

We then show that we can make the function compatible with FSSM by appropriately defining
the matrices. Let j∗ = S1(i

∗, σ∗) and k∗ = S2(i
∗, σ∗). We then set the matrix M⊤j (resp., N⊤k )

so that its image is in V (resp., U) if j ̸= j∗ (resp., k ̸= k∗), where V is some subspace of Zkp with
dimension k − 1. Furthermore, we set Mj∗ and Nk∗ to be full-rank matrices with the constraint
thatN⊤k∗ maps a vector in V to a vector in U . We have that with high probability over the choice of
u, L⊤i,bu = N⊤S2(i,b)

M⊤S1(i,b)
u is in U if and only if (S1(i, b), S2(i, b)) = (j∗, k∗), which is equivalent

to (i, b) = (i∗, σ∗). This can be seen by the case analysis. If S2(i, b) ̸= k∗, N⊤S2(i,b)
M⊤S1(i,b)

u is

in U . Otherwise, there are two cases to consider: If S2(i, b) = k∗ and S1(i, b) ̸= j∗, we have
that M⊤S1(i,b)

u is in V. This implies L⊤i,bu is in U , since N⊤S2(i,b)
maps an element in V to U .

If S2(i, b) = k∗ and S1(i, b) = j∗, both N⊤S2(i,b)
and M⊤S1(i,b)

are full-rank, which implies that

L⊤i,bu is distributed uniformly at random over Zkp, meaning that the vector falls into U only with
negligible probability. The above observation immediately implies that v(x) is in U if and only if
FSSM(K, x) = 1 as desired.

One may ask why we limit ourselves to only two sequences of matrices (i.e., {Mj}j and
{Nk}k). Namely, by considering three sequences, we could potentially achieve a further reduction
in the size of the verification key to O(ℓ1/3). The answer is that because we do not know how
to give a short proof to certify gv(x). In the above example, publishing π = g

∑
i Li,xi suffices to

certify gv(x): We can verify the value of gv(x) by checking e(gv(x), g)
?
= e(π⊤, gu) and e(π, g)

?
=∑

i,b e(g
MS1(i,b) , gNS2(i,b)). Importantly, by the pairing, we can easily check the quadratic forms on

the exponent. However, we cannot do this for the cubic form. We leave the problem of further
reducing the size of the verification key while maintaining the short proof as an open problem.

3 Preliminaries

3.1 Notations

For a distribution D, x ∈ D means Pr[y = x : y
$← D] > 0. With an abuse of notations, we extend

this to a set of distributions, that is, x ∈ D ∪ D′ means Pr[y = x ∨ y′ = x : y
$← D, y $← D′] > 0

For an algorithm A, A(x) denotes the output distribution of A on input x.

Definition 1 (Hard Decision Problem). We say a family of pairs of distributions D := {(Dλ,0,Dλ,1)}λ
is a hard decision problem if the following advantage is negligible for all PPT adversary A.

AdvD(A) :=
∣∣∣Pr[A(1λ, ψ) = 1 : ψ ← D0]− Pr[A(1λ, ψ) = 1 : ψ ← D1]

∣∣∣ .
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3.2 Identity-based Encryption

We provide the definition of an identity-based encryption (IBE) scheme.

Definition 2 (Identity-based Encryption). An identity-based encryption (IBE) scheme with an
(efficiently sampleable) message space M and identity space {0, 1}ℓ is defined by the following
four algorithms.

Setup(1λ)→ (mpk,msk): It takes as input a security parameter 1λ and outputs a master public
key mpk and a master secret key msk.

KeyGen(mpk,msk, ID)→ skID: It takes as input a master public key mpk, a master secret key msk,
and an identity ID ∈ {0, 1}ℓ and outputs a secret key skID.

Encrypt(mpk, ID,M)→ ct: It takes as input a master public key mpk, an identity ID ∈ {0, 1}ℓ,
and a message M and outputs a ciphertext ct.

Decrypt(mpk, skID, ct)→ M or ⊥: It takes as input a master public key mpk, a private key skID,
and a ciphertext ct and outputs the message M or ⊥.

An IBE scheme satisfies correctness and IND-CPA security, defined below.

Definition 3 (Correctness). An IBE scheme is correct if for all λ ∈ N, all ID ∈ {0, 1}ℓ, and all
M ∈M, the following holds

Pr

Decrypt(mpk, skID, ct) = M :
(mpk,msk)← Setup(1λ)

skID ← KeyGen(mpk,msk, ID)
ct← Encrypt(mpk, ID,M)

 = 1− negl(λ),

where the probability is taken over the randomness of the algorithms.

Definition 4 (IND-CPA Security). To define IND-CPA security of an IBE scheme, we consider
the following game between a challenger and an adversary A.

Setup. The challenger generates (mpk,msk)← Setup(1λ) and gives mpk to A.

Phase 1. A can adaptively make key-extraction queries. When A submits ID ∈ {0, 1}ℓ, the chal-
lenge generates skID ← KeyGen(mpk,msk, ID) and returns skID to A.

Challenge. At any point, A can make a challenge query by submitting a messages M0 ∈M and
an identity ID∗ ∈ {0, 1}ℓ, never queried in Phase 1. The challenger picks a random coin

coin
$← {0, 1}. If coin = 0, it generates ct∗0 ← Encrypt(mpk, ID∗,M0). If coin = 1, it samples

a random message M1 ← M, generates ct∗1 ← Encrypt(mpk, ID∗,M1), and returns ct∗coin to
A.

Phase 2 A can continue making key-extraction queries with the added restriction that it can only
query ID ∈ {0, 1}ℓ such that ID ̸= ID∗.

Guess. Finally, A outputs a guess ĉoin for coin.

The advantage of A is defined as AdvIND-CPA
IBE (A) = |Pr[ĉoin = coin] − 1/2|. We say that an

adversary A is a (t, Q, ϵ)-adversary if A runs in time t, makes Q key-extraction queries, and
has advantage AdvIND-CPA

IBE (A) ≥ ϵ. We say that an IBE scheme is (t, Q, ϵ)-random-or-challenge-
plaintext-attack secure if there is no (t, Q, ϵ)-adversary.

Note the above definition is identical, up to a constant factor 2, to the alternative notion of
IND-CPA security where the adversary submits two messages (M0,M1) of its choice.
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3.3 Verifiable Random Function

We provide the definition of a verifiable random function (VRF) scheme.

Definition 5 (Verifiable Random Function). A verifiable random function (VRF) with (efficiently
sampleable) input and output spaces ({0, 1}ℓ,Y) is defined by the following three algorithms.

Gen(1λ)→ (vk, sk): It takes as input a security parameter 1λ and outputs a verification key vk
and a secret key sk.

Eval(sk, x)→ (y, π): It takes as input a secret key sk and an input x ∈ {0, 1}ℓ and outputs a value
y ∈ Y and proof π.

Verify(vk, x, y, π)→ 1 or 0: It takes as input a verification key vk, input x ∈ {0, 1}ℓ, y ∈ Y, and a
proof π and outputs a bit.

A VRF satisfies correctness, unique provability, and pseudorandomness, defined below.

Definition 6 (Correctness). For all λ ∈ N, (vk, sk) ← Gen(1λ), x ∈ {0, 1}ℓ, and (y, π) ←
Eval(sk, x), we have Verify(vk, x, y, π) = 1.

Definition 7 (Unique Provability). For all vk ∈ {0, 1}∗ (not necessarily generated by Gen) and
all x ∈ {0, 1}ℓ, there does not exist (y0, π0, y1, π1) such that y0 ̸= y1 and Verify(vk, vk, x, y0, π0) =
Verify(vk, x, y1, π1) = 1.

Definition 8 (Pseudorandomness). To define pseudorandomness of a VRF, we consider the fol-
lowing game between a challenger and an adversary A.

Setup. The challenger generates (vk, sk)← Gen(1λ) and gives vk to A.

Phase 1. A can adaptively make evaluation queries. When A submits x ∈ {0, 1}ℓ, the challenger
generates (y, π)← Eval(sk, x) and returns (y, π) to A.

Challenge. At any point, A can make a challenge query by submitting x∗, never queried in
Phase 1. The challenger picks a random coin coin

$← {0, 1}. If coin = 0, it generates
(y∗0, π

∗
0)← Eval(sk, x∗) . If coin = 1, it picks y∗1 ← Y. It returns y∗coin to A.

Phase 2 A can continue making evaluation queries with the added restriction that it can only
query x ∈ {0, 1}ℓ such that x ̸= x∗.

Guess. Finally, A outputs a guess ĉoin for coin.

The advantage of A is defined as AdvrandVRF(A) = |Pr[ĉoin = coin]− 1/2|. We say that an adversary
A is a (t, Q, ϵ)-adversary if A runs in time t, makes Q evaluation queries, and has advantage
AdvrandVRF(A) ≥ ϵ. We say that the VRF is (t, Q, ϵ)-pseudorandom if there is no (t, Q, ϵ)-adversary.

3.4 Bonferroni’s Inequality

We will use the Bonferroni’s inequality [Bon36], which is a generalization of the union bound.
The inequality is obtained by cutting the tail of inclusion-exclusion principle.
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Lemma 1. Let E1, . . . ,En be events in a probability space. Then, the following inequalities hold.

Pr

[
n∨
i=1

Ei

]
≤

k∑
j=1

(−1)j−1 ·
∑

1≤ℓ1<···<ℓj≤n
Pr

[
j∧
i=1

Eℓi

]
for any odd k ∈ [n],

Pr

[
n∨
i=1

Ei

]
≥

k∑
j=1

(−1)j−1 ·
∑

1≤ℓ1<···<ℓj≤n
Pr

[
j∧
i=1

Eℓi

]
for any even k ∈ [n].

4 A Finer Grained Analysis of the Artificial Abort Paradigm

Our main technical contribution is to provide a more fine grained analysis of Bellare and Ris-
tenpart [BR09] by further relying on the artificial abort paradigm [Wat05]. In this section, we
divorce the artificial abort paradigm from security proofs of a particular cryptographic primitive.
Instead, we provide a statistical theorem that extracts the essence of the paradigm. Looking
ahead, in Sec. 5, we will relate the following statistical theorem to concrete cryptographic primi-
tives using a tool called partitioning function with approximation. This allows for a more modular
proof of IBE and VRF schemes, as we illustrate in Sec. 6 and 7.

Theorem 1. Let T be a finite set named the transcript space. Let D : {0, 1}×{0, 1}×T → [0, 1]
be an arbitrary distribution. Let γmin > 0 be a positive real and γ : T → [0, 1] and γ̃ : T → [0, 1]
be functions such that γ(T) ≥ γ̃(T) ≥ γmin for all transcipts T ∈ T .

Consider a distribution D∗ : {0, 1} × {0, 1} × T defined through the following procedure:

1. Sample (coin, ĉoin,T)
$← D.

2. With probability γ(T), set coin′ ← ĉoin and with probability 1 − γ(T), sample a uniformly

random coin′
$← {0, 1}. The later event is called Bad. If ¬Bad, it further executes Item 3.

3. With probability 1− γmin/γ̃(T), replace coin′ with a uniformly random coin′
$← {0, 1}. This

event is called AAbort, short for artificial abort.

4. Output (coin, coin′,T).

Lastly, define

ϵ =

∣∣∣∣∣ Pr
(coin,ĉoin,T)

$←D

[
ĉoin = coin

]
− 1

2

∣∣∣∣∣ and ϵ∗ =

∣∣∣∣∣ Pr
(coin,coin′,T)

$←D∗

[
coin′ = coin

]
− 1

2

∣∣∣∣∣.
Then, if |γ(T)− γ̃(T)| < γmin

3 · ϵ holds for all transcripts T ∈ T , we have ϵ∗ > γmin
3 · ϵ.

Before providing the proof, we explain some intuition of the theorem. In the context of security
proofs, coin denotes the random challenge bit sampled by the challenger and ĉoin denotes the guess
output by the adversary A. The advantage of A is thus ϵ. Bad denotes the typical event that the
reduction fails. For example, in the context of IBE schemes, Bad can denote the event that the
reduction cannot answer the key-extraction query or cannot simulate the challenge ciphertext. In
such a case, since the reduction cannot properly simulate the game for A, it will output a random
coin′ as A’s output. AAbort is the more interesting event. In this case, while the reduction is able
to simulate A till the end of the game and obtains ĉoin, it will ignore this and output a random
coin′ with some probability. The term artificial abort stems from the fact that the reduction is
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ignoring A’s output even if it might be the case coin = ĉoin. While counter intuitive, The artificial
abort paradigm states that the reduction’s advantage can degrade by at most a factor γmin/3. In
other words, the quality of the reduction is dictated by how large γmin can be; the larger the γmin,
the better the reduction is.

We now present the proof of Theorem 1.

Proof of Theorem 1. For T ∈ T , let E(T) be the event that T is sampled by D. Note that T is
sampled by D∗ with the same probability as by D. Then, we have the following, where unless
stated otherwise, we assume the probability is taken over the randomness of sampling from D∗:

ϵ∗ =

∣∣∣∣Pr [coin′ = coin
]
− 1

2

∣∣∣∣
=

∣∣∣∣∣∑
T∈T

Pr
[
coin′ = coin ∧ E(T)

]
− 1

2

∣∣∣∣∣ (10)

=

∣∣∣∣∣∑
T∈T

Pr [E(T)]

(
Pr
[
coin′ = coin ∧ ¬Bad

∣∣E(T)]+ Pr
[
coin′ = coin ∧ Bad

∣∣E(T)]− 1

2

)∣∣∣∣∣ (11)

=

∣∣∣∣∣∑
T∈T

Pr [E(T)]

(
γ(T) · Pr

[
coin′ = coin

∣∣E(T) ∧ ¬Bad]+ 1

2
· (1− γ(T))− 1

2

)∣∣∣∣∣ (12)

=

∣∣∣∣∣∑
T∈T

Pr [E(T)] γ(T)
(
Pr
[
coin′ = coin ∧ ¬AAbort

∣∣E(T) ∧ ¬Bad]
+Pr

[
coin′ = coin ∧ AAbort

∣∣E(T) ∧ ¬Bad]− 1

2

)∣∣∣∣ (13)

=

∣∣∣∣∣∑
T∈T

Pr [E(T)] γ(T)

(
γmin

γ̃(T)
· Pr

[
coin′ = coin

∣∣E(T) ∧ ¬Bad ∧ ¬AAbort]+ 1

2
·
(
1− γmin

γ̃(T)

)
− 1

2

)∣∣∣∣∣
(14)

=

∣∣∣∣∣∑
T∈T

Pr [E(T)] γ(T)
γmin

γ̃(T)

(
Pr

(coin,ĉoin,T)
$←D

[
ĉoin = coin

∣∣∣E(T)]− 1

2

)∣∣∣∣∣ (15)

= γmin

∣∣∣∣∣∑
T∈T

Pr [E(T)]
γ(T)

γ̃(T)
· ϵ(T)

∣∣∣∣∣ (16)

= γmin

∣∣∣∣∣∑
T∈T

Pr [E(T)] · ϵ(T) +
∑
T∈T

Pr [E(T)]

(
γ(T)

γ̃(T)
− 1

)
· ϵ(T)

∣∣∣∣∣ (17)

≥ γmin

∣∣∣∣∣∑
T∈T

Pr [E(T)] · ϵ(T)

∣∣∣∣∣− γmin

∣∣∣∣∣∑
T∈T

Pr [E(T)]

(
γ(T)

γ̃(T)
− 1

)
· ϵ(T)

∣∣∣∣∣ (18)

≥ γmin

∣∣∣∣∣∑
T∈T

Pr [E(T)] · ϵ(T)

∣∣∣∣∣− γmin

∑
T∈T

∣∣∣∣Pr [E(T)](γ(T)γ̃(T)
− 1

)
· ϵ(T)

∣∣∣∣ (19)

= γmin · ϵ− γmin

∑
T∈T

∣∣∣∣γ(T)γ̃(T)
− 1

∣∣∣∣ · |Pr [E(T)] · ϵ(T)| (20)

where ϵ(T) = Pr
(coin,ĉoin,T)

$←D

[
ĉoin = coin

∣∣∣E(T)]− 1
2 . In the above, Eq. (10) and Eq. (11) follow by
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the law of total probability, Eq. (12) follows from Pr [Bad|E(T)] = 1−γ(T), Eq. (13) follows by the
law of total probability, Eq. (14) follows from Pr [AAbort|E(T) ∧ ¬Bad] = 1− γmin/γ̃(T), Eq. (15)

follows from the fact that ĉoin = coin′ holds conditioned on ¬BadID ∧ ¬AAbort, Eq. (16) and
Eq. (17) are only a change in expression, Eq. (18) and Eq. (19) follows by the triangle inequality,
and Eq. (20) follows from the facts that

∣∣∑
T∈T Pr [E(T)] ϵ(T)

∣∣ = ϵ and |a · b| = |a| · |b| for any real
numbers a and b.

From our assumption that |γ(T) − γ̃(T)| < γminϵ/3 and 0 < γmin ≤ γ̃(T) for all T ∈ T , we
have

− γmin

3
· ϵ < γ(T)− γ̃(T) < γmin

3
· ϵ

⇒ 1− γmin

3γ̃(T)
· ϵ < γ(T)

γ̃(T)
< 1 +

γmin

3γ̃(T)
· ϵ

⇒ 1− ϵ

3
<
γ(T)

γ̃(T)
< 1 +

ϵ

3

⇒ − ϵ

3
<
γ(T)

γ̃(T)
− 1 <

ϵ

3

⇒
∣∣∣∣γ(T)γ̃(T)

− 1

∣∣∣∣ < ϵ

3

Using this inequality, we can lower bound Eq. (20) by the following:

γmin · ϵ− γmin ·
ϵ

3

∑
T∈T
|Pr [E(T)] · ϵ(T)| (21)

=γmin · ϵ− γmin ·
ϵ

3

 ∑
T∈T s.t. ϵ(T)≥0

|Pr [E(T)] · ϵ(T)|+
∑

T∈T s.t. ϵ(T)<0

|Pr [E(T)] · ϵ(T)|

 (22)

=γmin · ϵ− γmin ·
ϵ

3

 ∑
T∈T s.t. ϵ(T)≥0

Pr [E(T)] · ϵ(T)−
∑

T∈T s.t. ϵ(T)<0

Pr [E(T)] · ϵ(T)

 (23)

≥γmin

3
· ϵ. (24)

In the above, Eq. (23) follows from the sign of ϵ(T) inside the absolute value, and Eq. (24) follows
from the facts that

∑
T∈T s.t. ϵ(T)≥0 Pr [E(T)] ϵ(T) ≤ 1 and

∑
T∈T s.t. ϵ(T)<0 Pr [E(T)] ϵ(T) ≥ −1.

Combining the inequalities, we obtain ϵ∗ > γmin
3 · ϵ as desired.

Remark 1 (Comparison with Prior Work). As briefly mentioned in the introduction, the proof
of Bellare and Ristenpart [BR09] can be seen as a special case of our Theorem 1. Their proof
fixes the approximation function γ̃(T) := γmin for all T ∈ T . Effectively, this is a special class of
reduction without performing artificial aborts. As we see in the later sections, a tighter security
proof is achieved by fine-tuning γ̃(T) and tactically performing artificial aborts. While we did not
chose to do so, we can generalize our Theorem 1 to capture the proof of Waters [Wat05] as well.
Recall that in his proof, γ̃(T) is not a fixed value but rather a probabilistic value defined through
the Monte Carlo method. Accordingly, |γ(T)− γ̃(T)| < γmin

3 · ϵ will only be satisfied with some
probability. As we did not obtain new results with this generalization, we intentionally kept our
definition simple to only capture [BR09].
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5 Partitioning Function with Approximation

In this section, we introduce a tool called partitioning function with approximation allowing us to
naturally use the finer grained artificial abort paradigm in Theorem 1 to prove tighter security of
a wide class of cryptographic primitives.

5.1 Overview

A partitioning function without approximation was first introduced by Yamada [Yam17]. Let us
use IBE schemes as a representative example to get a flavor of this tool. A partitioning function
allows the reduction to secretly partition the identity space into two sets of exponential size:
the reduction can answer key-extraction queries on one set and embed a hard problem into the
challenge ciphertext on the other set. The partition is made in a meticulous manner so that there
is a noticeable probability that the adversary’s key-extraction queries and the challenge identity
fall in the correct sets. Looking at Theorem 1, the probability that the partitioning fails (e.g., the
reduction cannot answer the key-extraction query) is denoted as Bad, occurring with probability
1 − γ(I⃗D), where I⃗D is the sequence of identities queried by the adversary. Most prior works
using (explicitly or implicitly) partitioning functions [Yam16, Jag15, KY16, Yam17, Bit17] rely
on the analysis of Bellare and Ristenpart [BR09]. They approximate γ(I⃗D) by the trivial lower
bound γ̃(I⃗D) = γmin, in which case the probability of an artificial abort AAbort occurring becomes
1 − γmin/γ̃(I⃗D) = 0. Consequently, as explained in the technical overview, the reduction has to
rely on a small γmin. As it is clear from Theorem 1, a smaller γmin results in a worser reduction.

It is worth recalling that we cannot choose an arbitrary approximation γ̃(I⃗D), say γ̃(I⃗D) =
γ(I⃗D), as γ̃(I⃗D) needs to be efficiently computable. This is because the reduction must compute
1− γmin/γ̃(I⃗D) to perform the artificial abort.

In the remainder of this section, we propose four partitioning functions allowing to efficiently
approximate γ(I⃗D) better than γmin. Each partitioning function has different characteristics and
can be embedded into a wide class of cryptographic primitives with different algebraic properties.
An overview of the partitioning functions with approximation can be found in the following Ta-
ble 1. One of the four partitioning functions FParWat is new to this work. FSSM, FWat, and FBoy
appear in [Lys02], [Wat05], and [ABB10a], respectively. The novelty of our work is proving that
each of FSSM, FWat, and FBoy has a corresponding efficiently computable approximation γ̃(I⃗D)
better than γmin, where in the case of FSSM, we have to use specific error correcting codes in
order for our analysis to work. A concrete example of how to use our partitioning function with
approximation along with Theorem 1 is given in Sec. 6 and 7.

5.2 Definition of Partitioning Function with Approximation

We first define a partitioning function with approximation. The definition is based on [Yam17],
where we extend the original definition to capture a finer grained approximation of γ. We recover
the original definition by setting γ̃(⃗x) = γmin.

Definition 9 (Partitioning Function with Approximation). Let F =
{
Fλ : Kλ × {0, 1}ℓ(λ) → {0, 1}

}
λ∈N

be an ensemble of function families. We say that F is a (γmin, TF, Tapprox)-partitioning function, if
there exists an efficient algorithm PrtSmp(1λ, Q, ϵ), which takes as input a polynomially bounded
Q = Q(λ) ∈ N and a noticeable ϵ = ϵ(λ) ∈ (0, 1/2] and outputs a partitioning key K such that:

1. There exists λ0 ∈ N such that

Pr
[
K ∈ Kλ : K

$← PrtSmp
(
1λ, Q(λ), ϵ(λ)

) ]
= 1
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Table 1: Different Types of Partitioning Function and their Quality of γmin.

Partitioning Function
γmin with

[BR09] Analysis
γmin with

Fine-tuned Analysis
Misc.

FWat (Sec. 5.3) O(ϵ/ℓQ) O(
√
ϵ/ℓQ)

pairing: IBEs and VRFs
lattice: IBE with exp. modulus q

FBoy (Sec. 5.4) O(ϵ2/Q2) O(ϵ/Q2) lattice IBEs
FParWat (Sec. 5.5) O(ϵ/qQ) O(ϵ1/d/qQ)† lattice IBEs
FSSM (Sec. 5.6, Binary) O((ϵ/Q)µ) O((

√
ϵ/Q)µ) pairing and lattice IBEs & VRFs

FSSM (Sec. 5.6, Poly) O((ϵ/ℓQ)1+1/ν)‡ O(
√
ϵ/ℓνQ) pairing and lattice IBEs & VRFs

The table shows four different partitioning functions. A black (resp., gray) entry shows that the corresponding
bound is proven in our work (resp., previous work). The column “γmin with [BR09] Analysis” shows lower bounds
on γmin derived from Bellare-Ristenpart-style analysis, where γ̃(⃗x) is a fixed value that does not depend on x⃗. The
column “γmin with Fine-tuned Analysis” shows lower bounds on γmin derived from our fine-tuned analysis, where
γ̃ can be dependent on the input x⃗. For FSSM, “Binary” (resp., “Poly”) represents the case where the underlying
error correcting code is instantiated over binary (resp., polynomial size) alphabet. In the table, ℓ is the length
of the input, q is the size of the modulus used in the lattice based constructions, and d is an integer that can be
set arbitrarily, which is determined by the underlying hash functions. The constants µ > 1 and 1 ≥ ν > 0 are
determined by the underlying error correcting codes and can be set arbitrarily.

† By choosing d = ω(1), we can achieve γmin = O(1/qλQ), which removes the dependency on ϵ altogether.
‡ The bound here is due to Kohl [Koh19]. We can improve the bound to O(ϵ/ℓνQ) using our error correcting code. We
refer to Remark 5 for the details.

for all λ > λ0. Here, λ0 may depend on functions Q(λ) and ϵ(λ).

2. For a vector x⃗ := (x∗, x(1), . . . , x(Q)) ∈ ({0, 1}ℓ)Q+1, let us define γ(λ, x⃗) as

γ(λ, x⃗) := Pr
[
F(K, x(1)) = · · · = F(K, x(Q)) = 1 ∧ F(K, x∗) = 0 : K

$← PrtSmp
(
1λ, Q(λ), ϵ(λ)

)]
.

For λ > λ0, there exist γmin(λ) and γ̃(λ, x⃗) that depend on Q(λ) and ϵ(λ) such that for all
distinct x(1), . . . , x(Q), x∗ ∈ {0, 1}ℓ, the following hold:

γ(λ, x⃗) ≥ γmin(λ), γ̃(λ, x⃗) ≥ γmin(λ), |γ(λ, x⃗)− γ̃(λ, x⃗)| <
γmin(λ)

3
· ϵ. (25)

The probability is taken over the choice of K
$← PrtSmp(1λ, Q(λ), ϵ(λ)).

3. For λ > λ0, there exists an algorithm that takes λ,Q, ϵ, and x⃗ as input and computes γmin(λ)
and γ̃(λ, x⃗) in time Tapprox(λ,Q, ϵ). Moreover, for all λ > λ0, K ∈ K and x ∈ {0, 1}ℓ, F(K, x)
can be computed in time TF(λ).

We may drop the subscript λ and denote F, K, and X for the sake of simplicity.

5.3 Partitioning Function Underlying Waters IBE

Here, we analyze the partitioning function FWat used by Waters [Wat05]. Due to its algebraic
simplicity, this has been successfully used in many other constructions such as [BMW05, ABB10a,
HW10, KPC+11, DKPW12]. Formally, FWat is defined as follows:

FWat(K, x) =

{
0 K0 +

∑
i:xi=1Ki = 0 mod p

1 otherwise
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where K := (K0,K1, . . . ,Kℓ) ∈ K := [−(p − 1)/2, (p − 1)/2]ℓ+1, x ∈ {0, 1}ℓ, xi is the i-th bit of
x ∈ {0, 1}ℓ, and p is a prime integer.

The following theorem provides a more fine-grained analysis of FWat compared to prior works.

Theorem 2. Let p = p(λ) ≥ 2λ be a prime, ϵ = ϵ(λ) be a noticeable function in (0, 1/2], and
ℓ = ℓ(λ) and Q = Q(λ) be a polynomially bounded positive integers such that Q ≤ p

√
ϵ/ℓ
√
3.

Then, FWat is a (γmin, TF, Tapprox)-partitioning function with approximation such that

γmin =
1

ℓN + 1

(
1− Q

N + 1

)
, TF = ℓ · poly(λ), and Tapprox = (Q · ℓ2) · poly(λ)

where N = ⌊
√
3·Q/

√
ϵ⌋ and poly(λ) is a fixed polynomial independent from Q and ϵ. In particular,

we have γmin >
√
ϵA/7Qℓ.

Proof. We first define the algorithm PrtSmp(1λ, Q, ϵ).

PrtSmp(1λ, Q, ϵ)→ K: It takes as input a security parameter 1λ, a polynomial bounded Q =

Q(λ), and a noticeable ϵ = ϵ(λ) ∈ (0, 1/2]. It defines N := ⌊
√
3 · Q/

√
ϵ⌋, samples K

$←
[−ℓN, 0]× [0, N ]ℓ, and returns K.

It is clear that PrtSmp terminates in polynomial time. Below, we show that PrtSmp satisfies the
three properties in Def. 9.

First property. We start with the first property. When Q and ℓ are polynomially bounded and
ϵ is noticeable, we have

ℓN ≤ ℓQ
√

3

ϵ
= poly(λ).

Since p ≥ 2λ, we have [−ℓN, 0]× [0, N ]ℓ ⊂ [−(p− 1)/2, (p− 1)/2]ℓ+1 = K for sufficiently large λ.
Since the output K of PrtSmp is always included in K, PrtSmp satisfies the first property.

Second property. Below, for simplicity, we omit λ when the context is clear. For x⃗ =
(x∗, x(1), . . . , x(Q)), define γ(⃗x) as

γ(⃗x) := Pr
[
FWat(K, x

(1)) = · · · = FWat(K, x
(Q)) = 1 ∧ FWat(K, x

∗) = 0
]
,

where the probability is taken over the choice of K
$← PrtSmp

(
1λ, Q, ϵ

)
.

Further define γmin and γ̃(⃗x) as

γmin :=
1

ℓN + 1

(
1− Q

N + 1

)
and (26)

γ̃(⃗x) := Pr[FWat(K, x
∗) = 0]−

∑
j∈[Q]

Pr[FWat(K, x
∗) = FWat(K, x

(j)) = 0]. (27)

Below, we show that γ(⃗x), γmin, and γ̃(⃗x) satisfy the three inequalities in Def. 9, Item 2.

Let us first focus on the first inequality: γ(⃗x) ≥ γmin. Notice that if γ(⃗x) ≥ γ̃(⃗x), then the
second inequality in Def. 9, Item 2 implies the first inequality. Since we will show the second
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inequality later, we only need to show γ(⃗x) ≥ γ̃(⃗x). Let E(x) be the event that FWat(K, x) = 0

holds where K
$← PrtSmp(1λ, Q, ϵ). Then, we have

γ(⃗x) = Pr[E(x∗) ∧ ¬E(x(1)) ∧ · · · ∧ ¬E(x(Q))]

= Pr[E(x∗)]− Pr[E(x∗) ∧ ¬(¬E(x(1)) ∧ · · · ∧ ¬E(x(Q)))]

= Pr[E(x∗)]− Pr[E(x∗) ∧ (E(x(1)) ∨ · · · ∨ E(x(Q)))]

= Pr[E(x∗)]− Pr[(E(x∗) ∧ E(x(1))) ∨ · · · ∨ (E(x∗) ∧ E(x(Q)))]

≥ Pr[E(x∗)]−
∑
j∈[Q]

Pr[E(x∗) ∧ E(x(j))] = γ̃(⃗x),

where the third equation follows from the De Morgan’s laws and the final inequality follows from
the union bound. Thus, γ(⃗x) ≥ γ̃(⃗x) as desired.

We next show the second inequality: γ̃(⃗x) ≥ γmin. From Q ≤ p
√
ϵ/ℓ
√
3 and N ≤

√
3 ·Q/

√
ϵ,

we have ℓN ≤ p. Because there is exactly one K0 ∈ [ℓN, 0] satisfying FWat(K, x
∗) = 0 for any

{xi}i∈[ℓ] ∈ [0, N ]ℓ and K0 is chosen uniformly at random from [−ℓN, 0], we have Pr[E(x∗)] =
1/(ℓN + 1). From this fact, we have

γ̃(⃗x) =
1

ℓN + 1
−
∑
j∈[Q]

Pr[E(x∗) ∧ E(x(j))] (28)

Now, we derive an upper bound of Pr[E(x∗) ∧ E(x(j))] for any j ∈ [Q]. Let S(x) ⊆ [ℓ] be a set of
indices such that xi = 1. First, we consider the case |S(x∗)| ≤ |S(x(j))|. Because x∗ ̸= x(j), there
is at least one index k ∈ [ℓ] such that k ∈ S(x(j)) and k /∈ S(x∗). Then, we have

Pr[E(x∗) ∧ E(x(j))]

= Pr[FWat(K, x
∗) = 0] · Pr

 ∑
i∈S(x(j))

Ki =
∑

i∈S(x∗)

Ki

∣∣∣∣∣∣FWat(K, x
∗) = 0


=

1

ℓN + 1
· Pr

 ∑
i∈S(x(j))

Ki =
∑

i∈S(x∗)

Ki

∣∣∣∣∣∣FWat(K, x
∗) = 0


=

1

ℓN + 1
· Pr

Kk =
∑

i∈S(x∗)

Ki −
∑

i∈S(x(j))\{k}

Ki

∣∣∣∣∣∣FWat(K, x
∗) = 0


=

1

ℓN + 1
·
∑

a∈[0,N ]

Pr

Kk = a ∧
∑

i∈S(x∗)

Ki −
∑

i∈S(x(j))\{k}

Ki = a

∣∣∣∣∣∣FWat(K, x
∗) = 0


=

1

ℓN + 1
·
∑

a∈[0,N ]

Pr

 ∑
i∈S(x∗)

Ki −
∑

i∈S(x(j))\{k}

Ki = a

∣∣∣∣∣∣FWat(K, x
∗) = 0


× Pr

Kk = a

∣∣∣∣∣∣FWat(K, x
∗) = 0 ∧

∑
i∈S(x∗)

Ki −
∑

i∈S(x(j))\{k}

Ki = a

 . (29)
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Because k /∈ S(x∗), the event (FWat(K, x
∗) = 0) ∧ (

∑
i∈S(x∗)Ki −

∑
i∈S(x(j))\{k}Ki = a) is inde-

pendent of the event Kk = a. Since Kk is chosen uniformly at random from [0, N ], Pr[Kk =
a|FWat(K, x

∗) = 0 ∧
∑

i∈S(x∗)Ki −
∑

i∈S(x(j))\{k}Ki = a] is equal to 1/(N + 1). Therefore, we
obtain

Eq. (29) =
1

ℓN + 1
·
∑

a∈[0,N ]

Pr

 ∑
i∈S(x∗)

Ki −
∑

i∈S(x(j))\{k}

Ki = a

∣∣∣∣∣∣FWat(K, x
∗) = 0

 · 1

N + 1

=
1

(ℓN + 1)(N + 1)
· Pr

 ∑
i∈S(x∗)

Ki −
∑

i∈S(x(j))\{k}

Ki ∈ [0, N ]

∣∣∣∣∣∣FWat(K, x
∗) = 0


≤ 1

(ℓN + 1)(N + 1)
. (30)

The other case |S(x∗)| > |S(x(j))| follows similarly and we obtain the same inequality. Applying
this to Eq. (28), we have

γ̃(⃗x) ≥ 1

ℓN + 1
−
∑
j∈[Q]

1

(ℓN + 1)(N + 1)
=

1

ℓN + 1

(
1− Q

N + 1

)
= γmin.

This establishes the second inequality.

Finally, we show the third inequality: |γ(λ, x⃗)− γ̃(λ, x⃗)| < γmin(λ)
3 · ϵ. Recall we have

γ(⃗x) = Pr[E(x∗) ∧ ¬E(x(1)) ∧ · · · ∧ ¬E(x(Q))] = Pr[E(x∗)]− Pr

 ∨
j∈[Q]

(E(x∗) ∧ E(x(j)))

 .
By Bonferroni’s inequalities, we obtain the following bound.

Pr

 ∨
j∈[Q]

(E(x∗) ∧ E(x(j)))


≥
∑
j∈[Q]

Pr
[
E(x∗) ∧ E(x(j))

]
−

∑
1≤j<k≤Q

Pr
[
(E(x∗) ∧ E(x(j))) ∧ (E(x∗) ∧ E(x(k)))

]
=
∑
j∈[Q]

Pr
[
E(x∗) ∧ E(x(j))

]
−

∑
1≤j<k≤Q

Pr
[
E(x∗) ∧ E(x(j)) ∧ E(x(k))

]
.

Thus, we have

γ(⃗x) ≤ Pr[E(x∗)]−
∑
j∈[Q]

Pr
[
E(x∗) ∧ E(x(j))

]
+

∑
1≤j<k≤Q

Pr
[
E(x∗) ∧ E(x(j)) ∧ E(x(k))

]
.

From Eq. (27) and γ̃(⃗x) ≤ γ(⃗x), we have

|γ(⃗x)− γ̃(⃗x)| ≤
∑

1≤j<k≤Q
Pr
[
E(x∗) ∧ E(x(j)) ∧ E(x(k))

]
. (31)

We use the following two lemmas to derive an upper bound for Pr
[
E(x∗) ∧ E(x(j)) ∧ E(x(k))

]
for any 1 ≤ j < k ≤ Q. So as not to interrupt the proof, the proofs are postponed to the end.
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Lemma 2. Let ℓ and p be positive integers such that ℓ ≥ 3 and p ≥ 3 a prime. Further, let
x1, x2, x3 ∈ {0, 1}ℓ be arbitrary but mutually distinct vectors. Then, the following matrix A is full
rank over modulo p.

A :=

1 x1
1 x2
1 x3

 ⊂ Z3×(ℓ+1)
p .

Lemma 3. Let ℓ,N , and p be positive integers such that ℓ ≥ 3 and p ≥ 3 a prime. Further, let

A ∈ Z3×(ℓ+1)
p be an arbitrary full-rank matrix such that A1,1 ̸= 0 mod p (i.e., the top left entry

is non-zero). Then, we have the following.

1. If ℓN < p and we sample a row vector K
$← [0, ℓN + 1] × [0, N ]ℓ, then Pr[AK⊤ = 0

mod p] ≤ 1
(ℓN+1)(N+1)2

.

2. If we sample a row vector K
$← Zℓ+1

p , Pr[AK⊤ = 0 mod p] = 1
p3
.

Using these two lemmas, the upper bound follows naturally. Let us set (x1, x2, x3) in Lemma 2
as (x∗, x(j), x(k)) for any 1 ≤ j < k ≤ Q and invoke Lemma 3, Item 1. We then obtain
Pr
[
E(x∗) ∧ E(x(j)) ∧ E(x(k))

]
≤ 1/(ℓN + 1)(N + 1)2 and arrive at the following:

|γ(⃗x)− γ̃(⃗x)| ≤
∑

1≤j<k≤Q
Pr
[
E(x∗) ∧ E(x(j)) ∧ E(x(k))

]
≤ Q2

2(ℓN + 1)(N + 1)2
.

It remains to show the following inequality for the third inequality.

Q2

2(ℓN + 1)(N + 1)2
<
γmin

3
· ϵ.

Plugging in γmin = (1−Q/(N + 1))/(ℓN + 1), this is equivalent to showing the following:

Q2

2(N + 1)2
<

(
1− Q

N + 1

)
· ϵ
3
.

Since ϵ ∈ (0, 1/2], N ≤
√
3 · Q/

√
ϵ implies Q ≥ N/

√
6. Moreover, since N = ⌊

√
3 · Q/

√
ϵ⌋, we

have ϵ > 3Q2/(N + 1)2. By substituting ϵ > 3Q2/(N + 1)2 to the right hand side, we have

(r.h.s.) =

(
1− Q

N + 1

)
· Q2

(N + 1)2
>

(
1− N√

6 · (N + 1)

)
· Q2

(N + 1)2
>

Q2

2(N + 1)2
(32)

where the first inequality follows from Q ≤ N/
√
6, the second inequality follows from the fact

that 2(1−N/
√
6 · (N + 1)) > 1/2. This establishes the third inequality.

Combining everything, FWat indeed satisfies the second property of Def. 9. Plugging
√
3 ·
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Q/
√
ϵA − 1 < N ≤

√
3 ·Q/√ϵA into γmin = (1−Q/(N + 1))/(ℓN + 1), we have

1

(ℓN + 1)

(
1− Q

N + 1

)
>

1

(ℓ(
√
3 ·Q/√ϵA) + 1)

(
1− Q√

3 ·Q/√ϵA

)

>

√
ϵA

(ℓ
√
3 ·Q+

√
ϵA)

(
1− 1√

3

)
>

√
ϵA

(6ℓQ+ 2
√
3ϵA)

>

√
ϵA

7Qℓ

where the third inequality follows 1 − 1/
√
3 > 1/2

√
3. Thus we have γmin >

√
ϵA/7Qℓ as in the

theorem statement.

Third property. Finally, we show the third property of Def. 9. It is clear that γmin can be
computable in time poly(logQ, log(1/ϵ)) which is upper bounded by a fixed polynomial since Q
is a polynomial and ϵ is noticeable. While we can naively compute γ̃(⃗x) using time Q · poly(N) =
poly(Q, 1/ϵ), we want to avoid this. This is because when we consider applications of our analysis
to IBEs and VRFs, having large Tapprox leads to large runtime loss in the reductions and ruins the
advantage of having larger advantages, when we consider the overall reduction cost. Luckily, we
can do much better. Namely, we show in Sec. 8, Theorem 15 that there exists an algorithm that
takes as input λ,Q, ϵ, and x⃗ and computes γ̃(⃗x) in time only (Q · ℓ2) · poly(λ), i.e., independent
of ϵ and linear in Q. Thus, Tapprox = (Q · ℓ2) · poly(λ). Lastly, since it requires ℓ addition and one
modulo p ≈ 2λ operation to compute FWat, we have TF = ℓ · poly(λ). This completes the proof of
the third property.

Lastly, we prove the postponed proof of Lemmas 2 and 3 below.

Proof of Lemma 2. Since p ≥ 3 and (x1, x2, x3) are mutually distinct, rank (A) ̸= 1 cannot occur.
For the sake of contradiction, suppose rank (A) = 2. Then, there exists a pair (a, b) ∈ Z2

p such
that (1||x1) = a(1||x2) + b(1||x3) mod p. If a = 0 mod p, then (1||x1) = b(1||x2) mod p. While
this implies b = 1 mod p, it contradicts x1 ̸= x2. Thus, we can assume a ̸= 0 mod p. Similarly,
we can assume b ̸= 0 mod p. Next, looking at the first entry of the equality, we have a + b = 1
mod p. Combined with a, b ̸= 0 mod p, we have a, b ̸= 1 mod p, that is, a, b ∈ Zp\{0, 1}.
Now, since x2, x3 ∈ {0, 1}ℓ are distinct, ax2 + bx3 must include an entry that is either a or b.
However, since a(1||x2) + b(1||x3) mod p = (1||x1) ∈ {0, 1}ℓ, this implies either a = 1 or b = 1,
thus contradicting a, b ∈ Zp\{0, 1}. Therefore, we conclude rank (A) ̸= 2. Thus, we arrive at
rank (A) = 3.

Proof of Lemma 3. By Gaussian elimination, there exist a matrix L ∈ Z3×3
p , a permutation matrix

P ∈ Z(ℓ+1)×(ℓ+1)
p , and a matrix B ∈ Z3×(ℓ−2)

p such that A = L[I3|B]P mod p where I3 is the
identity matrix of size 3. Notice that L is non-singular because A is full rank. Since A1,1 is non-
zero, we can assume that the first column (resp. row) of P is (1, 0, . . . , 0)⊤ (resp. (1, 0, . . . , 0)).

We first focus on Item 1. Let us set K ′ := KP⊤. Then, since P is a permutation that
keeps the first entry in place, K ′ is distributed identically to K

$← [−ℓN, 0] × [0, N ]ℓ. Let K ′≤2
be the first three elements in K ′ and K ′>2 be elements in K ′ after the third one. (Namely, for
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K ′ = (K0,K
′
1, . . . ,K

′
ℓ), K̄

′≤2 = (K0,K
′
1,K

′
2) and K

′
>2 = (K ′3, . . . ,K

′
ℓ).) Then, we have

AK⊤ = 0 mod p

⇒ L[I3|B]PK⊤ = 0 mod p

⇒ L[I3|B]K ′⊤ = 0 mod p

⇒ [I3|B]K ′⊤ = 0 mod p

⇒ I3K
′⊤
≤2 +BK ′⊤>2 = 0 mod p

⇒ K ′⊤≤2 = −BK ′⊤>2 mod p.

The third change is true because L is non-singular. Since K ′≤2 is uniformly distributed over

[−ℓN, 0]× [0, N ]2 independently of K ′⊤>2 and ℓN ≤ p, AK⊤ = 0 mod p holds with probability at
most 1/(ℓN + 1)(N + 1)2 as desired.

The case where K
$← Zℓ+1

p follows an identical argument. The only difference is that the we

have exactly 1
p3

rather than an upper bound. This follows from the fact that K ′≤2 is uniformly

distributed over Z3
p. This concludes the proof.

5.4 Partitioning Function Underlying ABB IBE

We next analyze the partitioning function FBoy originally used by Boyen [Boy10] to construct
lattice-based signatures, and then subsequently used by Agrawal, Boneh, and Boyen [ABB10a] to
construct lattice-based IBE schemes. While Waters’ partitioning function FWat can, in principle,
be used to construct lattice-based signatures and IBE schemes, it requires the modulus q to be
exponential, leading to a large inefficiency. To this end, Boyen devised a partitioning function
more suited to the algebraic constraints of lattice.

Let n, k, q be integers such that k|n and q a prime. Let Hfrd be a full-rank difference encoding
as defined in Def. 18, which takes a vector in Zjq with arbitrary j and outputs a matrix in size
Zj×jq . Formally, FBoy is defined as follows:

FBoy(K, x) =

{
0
(
Hfrd(K0) +

∑
i:xi=1H

frd(Ki)
)
⊗ In/k = 0n×n mod q

1 otherwise

where K := (K0,K1, . . . ,Kℓ) ∈ K := ∪j|n
(
Zjq
)ℓ+1

, x ∈ {0, 1}ℓ, and xi is the i-th bit of an identity

x ∈ {0, 1}ℓ.10
The following theorem provides a more fine-grained analysis of FBoy compared to prior works.

Theorem 3. Let n = n(λ), ℓ = ℓ(λ), q = q(λ) be integers such that q is a prime satisfying
q/2 > ℓ. Let ϵ = ϵ(λ) be a noticeable function in (0, 1/2], Q = Q(λ) be a polynomially bounded
positive integer, and k be the smallest integer such that k|n and qk ≥ 2 ·Q ·

√
ϵ
−1

. Then, FBoy is
a (γmin, TF, Tapprox)-partitioning function such that

γmin =
1

qk

(
1− Q

qk

)
, TF = ℓ · poly(λ), and Tapprox = poly(λ),

10Here, we note that the above FBoy is slightly different from the one originally defined by Boyen [Boy10]. In his
work, FBoy(K, x) = 0 if and only if In +

∑
i∈[ℓ](−1)xi · Hfrd(Ki) ⊗ In/k = 0n×n mod q. It turns out that the our

definition is more natural and allows for a simpler and tighter analysis.
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where poly(λ) is a fixed polynomial independent from Q and ϵ. In particular, this implies γmin ≥
ϵ

8·Q2 .

Proof. We first define the algorithm PrtSmp(1λ, Q, ϵ).

PrtSmp(1λ, Q, ϵ)→ K: It takes as input a security parameter 1λ, a polynomial bounded Q =
Q(λ), and a noticeable ϵ = ϵ(λ) ∈ (0, 1/2]. It computes the smallest integer k that satisfies

k|n and qk ≥ 2 ·Q ·
√
ϵ
−1

, samples K
$←
(
Zkq
)ℓ+1

, and returns K.

It is clear that PrtSmp terminates in polynomial time. Below, we show that PrtSmp satisfies the
three properties in Def. 9.

First property. It is clear that K ∈ K := ∪j|n
(
Zjq
)ℓ+1

. Since the output K of PrtSmp is always

included in K, PrtSmp satisfies the first property.

Second property. Below, for simplicity, we omit λ when the context is clear. For x⃗ =
(x∗, x(1), . . . , x(Q)), we define γ(⃗x) as

γ(λ, x⃗) := Pr
[
FBoy(K, x

(1)) = · · · = FBoy(K, x
(Q)) = 1 ∧ FBoy(K, x

∗) = 0
]

where the probability is taken over the choice of K
$← PrtSmp

(
1λ, Q, ϵ

)
.

Further define γmin and γ̃(⃗x) as

γmin :=
1

qk

(
1− Q

qk

)
and

γ̃(⃗x) := Pr[FBoy(K, x
∗) = 0]−

∑
j∈[Q]

Pr[FBoy(K, x
∗) = FBoy(K, x

(j)) = 0]. (33)

Below, we show that γ(⃗x), γmin, and γ̃(⃗x) satisfy the three inequalities in Def. 9, Item 2.

Using the same argument made in Theorem 2, we only need to show the second inequality as it
implies the first inequality: γ̃(⃗x) ≥ γmin. We therefore focus on the second inequality: γ̃(⃗x) ≥ γmin.
First, observe that since FBoy induces a matrix that replicates the same matrix along the diagonal
n/k times, FBoy(K, x) = 0 if and only if fx(K) := Hfrd

k (K0)+
∑

i:xi=1H
frd
k (Ki) = 0k×k mod q. Now,

since Hfrd
k is linearly homomorphic and 0k is the only vector that gets mapped to 0k×k by Hfrd

k ,
fx(K) = 0k×k if and only ifK0+

∑
i:xi

Ki = 0k. Furthermore, since each entry ofK0,K1, . . . ,Kℓ is
distributed independently of each other, we can analyze the probability that fx(K) = 0k×k entry-
wise. That is, for any x ∈ {0, 1}ℓ, we have Pr[fx(K) = 0k×k] =

∏
j∈[k] Pr

[
K0[j] +

∑
i:xi

Ki[j] = 0
]
,

where Ki[j] denotes the j-th entry of Ki ∈ Zkq . Let E(x) be the event that FBoy(K, x) = 0 for

K
$← PrtSmp(1λ, Q, ϵ). Due to the above argument, we only need to individually focus on the

event Ej(x) defined as K0[j] +
∑

i:xi
Ki[j] = 0 for an arbitrary j ∈ [k].

From Lemma 2 and Lemma 3, Item 2, it is easy to check that for any distinct x, x′, x′′, we have
the following for for any j ∈ [k]:

Pr[Ej(x)] =
1

q
, Pr[Ej(x) ∧ Ej(x

′)] =
1

q2
, Pr[Ej(x) ∧ Ej(x

′) ∧ Ej(x
′′)] =

1

q3
.

Here, the equality holds exactly as for any (i, j) ∈ [ℓ] × [k], Ki[j] is distributed uniformly at
random over Zq.
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With these preparations, we can now check the second inequality. Plugging in the value of
Pr[E(x∗)] and Pr[E(x∗) ∧ E(x)] into Eq. (33), we have the following for any x:

γ̃(x) =
1

qk
− Q

q2k
= γmin.

This establishes the second inequality.

Finally, we show the third inequality: |γ(λ, x⃗)− γ̃(λ, x⃗)| < γmin(λ)
3 · ϵ. Following an exact

argument made in the proof of Theorem 2, we have

|γ(⃗x)− γ̃(⃗x)| ≤
∑

1≤j<k≤Q
Pr
[
E(x∗) ∧ E(x(j)) ∧ E(x(k))

]
.

As we established above, the right hand side is upper bounded by (Q2/2) · q−3k. Thus, it suffices
to establish

Q2

2q3k
<
γmin

3
· ϵ = ϵ

3qk

(
1− Q

qk

)
(34)

When Q <
√
ϵ·qk
2 , the left hand side is upper bounded by ϵ

8qk
. On the other hand, the right hand

side is lower bounded by

ϵ

3qk

(
1− Q

qk

)
>

ϵ

3qk

(
1−
√
ϵ

2

)
≥ ϵ

5qk
,

where the inequality follows from ϵ < 1/2. This establishes the third inequality.
Combining everything, FBoy indeed satisfies the second property of Def. 9. As a concrete

example, recall k is the smallest integer such that k|n and qk ≥ 2 · Q ·
√
ϵ
−1

. Thus, we have
2 ·Q ·

√
ϵ
−1 ≥ qk/2, implying 4 ·Q2 · ϵ−1 ≥ qk — it does not seem likely that we can show a better

upper bound on qk due to the restriction on k|n. Plugging the bounds in γmin = 1
qk

(
1− Q

qk

)
, we

have γmin ≥ ϵ
8Q2 as in the theorem statement.

Third property. Finally, we show the third property of Def. 9. Notice that for any x, we
established γ̃(x) = γmin. Since γmin can be computed in time poly(logQ, log(1/ϵ)) so can γ̃(x).
Note we can upper bound poly(logQ, log(1/ϵ)) = poly(λ) by a fixed polynomial since Q is a
polynomial and ϵ is noticeable. Moreover, FBoy can be computed with k × ℓ additions so we
have TF = ℓ · poly(logQ, log(1/ϵ)). Similarly this is upper bounded by ℓ · poly(λ) for some fixed
polynomial as desired.

Remark 2. As far as we are aware of, our work provides the first formal analysis of the (variant
of the) partitioning function FBoy. Due to the subtle yet profound restriction that k|n, we can only
bound γmin by O(ϵ/Q2), rather than the desired O(

√
ϵ/Q). Indeed, this quadratic worsening of the

reduction appears even if we take the Bellare-Ristenpart type reduction [BR09] or the Waters type
reduction [Wat05]. This is so because the issue is irrelevant on how well we approximate γ̃(x).
Even relying on these prior reductions, our proof of Theorem 3 indicates that γmin can only be
lower bounded by O(ϵ2/Q2), rather than O(ϵ/Q), as conventionally thought.
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5.5 A New Partitioning Function for Lattices

Here, we present a new partitioning function that can be used in place of FBoy. As shown in
the previous section, FBoy leads to sub-optimal γmin = O(ϵ/Q2) due to the restriction on k|n.
The new partitioning function FParWat can be viewed as performing parallel repetition of the
Waters partitioning function FWat with a twist, using a (perfect) d-wise linearly independent hash
function.

Let Hfrd
n : Znq → Zn×nq a full-rank difference encoding as defined in Def. 18. For any integers

d and Ld = L(d), let hd-wise : {0, 1}ℓ → {0, 1}Ld be a d-wise linearly independent hash function
over Zq, that is, for any distinct (xi)i∈[d] ∈ ({0, 1}ℓ)d, (hd-wise(xi))i∈[d] is linearly independent over
Zq. For d = 3, we can define hd-wise(x) = (1, x), since as we have shown in Lemma 2, the map
x 7→ (1, x) is 3-wise linearly independent over Zp for any primer p ≥ 3. We postpone how to
construct such a d-wise linearly independent hash function for d > 3 to Sec. 5.5.1. We then define
our partitioning function FParWat as follows:

FParWat(K, x) =

{
0
∑

i:hd-wise(x)i=1H
frd
n (Ki) = 0n×n (mod q)

1 otherwise

where K := (K1, . . . ,KLd
) ∈ K := (Znq )Ld , x ∈ {0, 1}ℓ, and hd-wise(x)i is the i-th bit of the hashed

identity hd-wise(x) ∈ {0, 1}Ld .
For this function, we have the following theorem. Notice that unlike for FBoy, k is no longer

restricted to satisfy k|n. This allows for a finer choice of k, leading to a better lower bound for
γmin.

Theorem 4. Let n = n(λ), ℓ = ℓ(λ), q = q(λ), d = d(λ) be integers such that q is a prime and
d ≥ 3 is odd. Let hd-wise : {0, 1}ℓ → {0, 1}Ld be a d-wise linearly independent hash function
over Zq. Let ϵ = ϵ(λ) be a noticeable function in (0, 1/2], Q = Q(λ) be a polynomially bounded

positive integer, let k be the smallest integer such that qk ≥ 2 · Q · ϵ−
1

d−1 . Then, FParWat is a
(γmin, TF, Tapprox)-partitioning function such that

γmin =
1

qk
+

∑
t∈[d−2]

(−1)t ·
(
Q

t

)
· 1

q(t+1)k
, TF = Ld · poly(λ), and Tapprox = poly(λ),

where poly(λ) is a fixed polynomial independent from Q and ϵ. In particular, this implies γmin ≥
ϵ

1
d−1

4q·Q and we have γmin ≥ 1
4λq·Q if we set d = ω(1).

Proof. We first define the algorithm PrtSmp(1λ, Q, ϵ).

PrtSmp(1λ, Q, ϵ)→ K: It takes as input a security parameter 1λ, a polynomial bounded Q =
Q(λ), and a noticeable ϵ = ϵ(λ) ∈ (0, 1/2]. It computes the smallest integer such qk ≥
2 ·Q · ϵ−

1
d−1 and samples K

$← (Zkq × {0}n−k)Ld ⊆ (Znq )Ld and returns K.

It is clear that PrtSmp terminates in polynomial time. Below, we show that PrtSmp satisfies the
three properties in Def. 9.

First property. It is clear that K ∈ K := (Znq )Ld . Since the output K of PrtSmp is always
included in K, PrtSmp satisfies the first property.

Second property. For any x, denote E(x) as the event FParWat(K, x) = 0. Then, for x⃗ =
(x∗, x(1), . . . , x(Q)), we define γ(λ, x⃗) as

γ(λ, x⃗) := Pr
[
¬E(x(1)) ∧ · · · ∧ ¬E(x(Q)) ∧ E(x∗)

]
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where the probability is taken over the choice of K
$← PrtSmp

(
1λ, Q, ϵ

)
.

Further define γmin and γ̃(⃗x) as

γmin :=
1

qk
+

∑
t∈[d−2]

(−1)t ·
(
Q

t

)
· 1

q(t+1)k

γ̃(⃗x) := Pr[E(x∗)] +
∑

t∈[d−2]

(−1)t ·

 ∑
1≤j1<···<jt≤[Q]

Pr

E(x∗) ∧ ∧
k∈[t]

E(x(jk))

 . (35)

Below, we show that γ(⃗x), γmin, and γ̃(⃗x) satisfy the three inequalities in Def. 9, Item 2. We
first make a simplifying observation: notice that for any x⃗ ∈ {0, 1}ℓ, FParWat(K, x) = 0 implies∑

i:hd-wise(x)i=1Ki = 0n ∈ Znq since Hfrd
n is linearly homomorphic and 0n is the only vector that gets

mapped to 0n×n by Hfrd
n . Moreover, since each entry of K1, · · · ,Kn is distributed independently

of each other, we can analyze the probability that
∑

i:hd-wise(x)i=1Ki = 0n entry-wise. That is,

for any x ∈ {0, 1}ℓ, we have Pr[
∑

i:hd-wise(x)i=1Ki = 0n] =
∏
ν∈[n] Pr

[∑
i:hd-wise(x)i=1Ki[ν] = 0

]
=∏

ν∈[k] Pr
[∑

i:hd-wise(x)i=1Ki[ν] = 0
]
, where Ki[ν] denotes the ν-th entry of Ki and the last equal-

ity follows from Ki ∈ Zkq × {0}n−k for all i ∈ [Ld]. For any x and ν ∈ [k], let us denote Eν(x) to

be the event
∑

i:hd-wise(x)i=1Ki[ν] = 0 for K
$← PrtSmp(1λ, Q, ϵ). Then, from the above argument,

E(x) = ∧ν∈[k]Eν(x) defines the event FParWat(K, x) = 0.

Now, let us first focus on the first inequality: γ(⃗x) ≥ γmin. Notice that if γ(⃗x) ≥ γ̃(⃗x), then
the second inequality in Def. 9, Item 2 implies the first inequality. Since we will show the second
inequality later, we only need to show γ(⃗x) ≥ γ̃(⃗x).

γ(⃗x) = Pr[E(x∗) ∧ ¬E(x(1)) ∧ · · · ∧ ¬E(x(Q))]

= Pr[E(x∗)]− Pr[E(x∗) ∧ ¬(¬E(x(1)) ∧ · · · ∧ ¬E(x(Q)))]

= Pr[E(x∗)]− Pr[E(x∗) ∧ (E(x(1)) ∨ · · · ∨ E(x(Q)))]

= Pr[E(x∗)]− Pr[(E(x∗) ∧ E(x(1))) ∨ · · · ∨ (E(x∗) ∧ E(x(Q)))]

≥ Pr[E(x∗)] +
∑

t∈[d−2]

(−1)t ·

 ∑
1≤j1<···<jt≤[Q]

Pr

 ∧
k∈[t]

(
E(x∗) ∧ E(x(jk))

]
= Pr[E(x∗)] +

∑
t∈[d−2]

(−1)t ·

 ∑
1≤j1<···<jt≤[Q]

Pr

E(x∗) ∧ ∧
k∈[t]

E(x(jk))

 = γ̃(⃗x), (36)

where the third equation follows from the De Morgan’s laws and the inequality follows from the
Bonferroni inequality and the fact that d is odd. Here, note that if we set d = 3, then the last
equation becomes Pr[E(x∗)]−

∑
j∈[Q] Pr[E(x

∗)∧E(x(j))], precisely the lower bound we used in the
Waters hash FWat in Theorem 2. In the above, we also assume implicitly that d ≤ Q; if d = Q,
then the above will be an equality rather than an inequality. Thus, γ(⃗x) ≥ γ̃(⃗x) as desired.

We next show the second inequality: γ̃(⃗x) ≥ γmin. Using the fact that hd-wise is a d-wise linearly
independent hash over Zq, for any distinct (xi)i∈[d], (hd-wise(xi))i∈[d] is linearly independent over
Zq. Following an almost exact proof for Lemma 3, we have the following for every t ∈ [d] and
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ν ∈ [k]:

Pr

∧
i∈[t]

Eν(xi)

 =
1

qt
⇒ Pr

∧
i∈[t]

E(xi)

 =
1

qtk
, (37)

where the implication holds from E(x) = ∧ν∈[k]Eν(x) and the independence of Eν(x) for distinct
ν’s. Plugging this into Eq. (36), we have

γ̃(⃗x) =
1

qk
+

∑
t∈[d−2]

(−1)t ·
(
Q

t

)
· 1

q(t+1)k
= γmin.

This establishes the second inequality.
Finally, we show the third inequality: |γ(λ, x⃗)− γ̃(λ, x⃗)| < γmin(λ)

3 · ϵ. Following a similar
argument made to derive Eq. (36), we can establish

γ(⃗x) ≤ Pr[E(x∗)] +
∑

t∈[d−1]

(−1)t ·

 ∑
1≤j1<···<jt≤[Q]

Pr

E(x∗) ∧ ∧
k∈[t]

E(x(jk))

 ,

where the only difference is that we use the Bonferroni inequality to upper bound, rather than
lower bound, γ(⃗x). This implies

|γ(⃗x)− γ̃(⃗x)| ≤
∑

1≤j1<···<jd−1≤[Q]

Pr

E(x∗) ∧ ∧
k∈[d−1]

E(x(jk))

 =

(
Q

d− 1

)
· 1

qdk
,

where the right equality holds from Eq. (37).
It remains to show the following inequality for the third inequality.

(
Q

d− 1

)
· 1

qdk
<
γmin

3
· ϵ = ϵ

3qk

1 +
∑

t∈[d−2]

(−1)t ·
(
Q

t

)
· 1

qtk

 . (38)

From assumption, we have Q ≤ c · qk · ϵ1/(d−1) for c = 1/2. Plugging this into the left hand side
of Eq. (38), we have

(l.h.s) ≤ Qd−1

2d−2 · qdk
≤ cd−1 · ϵ

2d−2 · qk
=

ϵ

22d−3 · qk
,

where the first inequality follows from the fact (d− 1)! ≥ 2d−2 for d ≥ 3. On the other hand, we
have

ϵ

6qk
≤ ϵ

3qk
·
(
1− c · ϵ

1
d−1

)
≤ (r.h.s),

where the first inequality follows from c = 1/2, ϵ ∈ (0, 1/2] and ϵ1/(d−1) < 1 for any d ≥ 3, and
the second inequality follows implicitly from the Bonferroni inequality. Thus, for any d ≥ 3, we
have Eq. (38) as desired. This establishes the third inequality.

Combining everything, FParWat indeed satisfies the second property of Def. 9. As a concrete

example, k is the smallest integer such that qk ≥ 2 ·Q · ϵ−
1

d−1 . Thus, we have 2 ·Q · ϵ−
1

d−1 ≥ qk−1,
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implying 2 · q · Q · ϵ−
1

d−1 ≥ qk — notice that this is a much better bound than achieved by FBoy
(see proof of Theorem 3). Combined with the lower bound γmin ≥ 1

2qk
(implicitly) established

above, we have γmin >
ϵ

1
d−1

4q·Q as in the theorem statement. The statement on the case of d = ω(1)

is obtained by observing ϵ > λ−d for sufficiently large λ.

Third property. Finally, we show the third property of Def. 9. Notice that for any x, we
established γ̃(x) = γmin. Since γmin can be computed in time poly(d, logQ, log(1/ϵ)) so can γ̃(x).
Note we can upper bound poly(d, logQ, log(1/ϵ)) = poly(d, λ) by a fixed polynomial since Q is
a polynomial and ϵ is noticeable. Moreover, FBoy can be computed with k × Ld additions so we
have TF = Ld ·poly(logQ, log(1/ϵ)). Similarly this is upper bounded by Ld ·poly(λ) for some fixed
polynomial as desired.

5.5.1 Constructing d-wise Linearly Independent Hash Function

Here, we show an explicit construction of d-wise linearly independent hash function hd-wise :
{0, 1}ℓ → {0, 1}Ld over Zq for arbitrary integers d and ℓ and a prime q. We set Ld = dt⌈log q⌉,
where t is the smallest integer such that qt ≥ 2ℓ and thus Ld ≤ 4dℓ. To construct such a
hash, we consider an arbitrary injective map ι : {0, 1}ℓ → Fqt , where Fqt is a finite field of size
qt. We also consider a natural bijection between Fqt and Ztq specified by maps π : Fqt → Ztq
and π−1 : Ztq → Fqt , where both π and π−1 are additively homomorphic. For an integer n,

we consider a map G−1n : Znq → {0, 1}n⌈log q⌉ that maps a vector a = (a1, . . . , an) ∈ Znq to its

binary representation in {0, 1}n⌈log q⌉. Note that we have G−1n (a) ·G⊤n = a for any a ∈ Znq , where
Gn = In ⊗ (1, 2, . . . , 2⌈log q⌉) and we treat the binary string G−1n (a) as a row vector here. In this
setting, we have the following lemma.

Lemma 4. The function hd-wise : {0, 1}ℓ → {0, 1}Ld defined as

hd-wise(x) = G−1td

(
π
(
ι(1)

)
, π
(
ι(x)

)
, π
(
ι(x)2

)
, . . . , π

(
ι(x)d−1

))
is d-wise linearly independent over Zq.

Proof. For the sake of contradiction, let us assume that there exist mutually distinct x1, . . . , xd ∈
{0, 1}ℓ such that hd-wise(x1), . . . , hd-wise(xd) are linearly dependent over Zq. Then, there ex-

ists a vector v = (v1, . . . , vd)
⊤ ∈ Zdq\{0} such that

∑d
i=1 vihd-wise(xi) = 0. We then have∑d

i=1 vihd-wise(xi) · G⊤td =
∑d

i=1 vih
′(xi) = 0, where h′(xi) = (π(ι(1)), π(ι(xi)), . . . , π(ι(xi)

d−1)).

Since π is an additively homomorphic and injective map, this implies
∑d

i=1 vih
′′(xi) = 0, where

h′′(xi) = (ι(1), ι(xi), . . . ι(xi)
d−1) ∈ (Fqt)d. However, this contradicts the fact that (h′′(xi))i∈[d]

are linearly independent over Fqt (and thus over Zq), since these vectors constitute Vandermonde
matrix with (ι(xi))i∈[d] being mutually distinct.

5.6 Partitioning Function Based on Substring Matching

While FWat and FParWat both achieve a large γmin = O(ϵ1/d/Q) for d = 2 or even larger d and
covers both the pairing groups and lattice settings, respectively, one caveat is that the size it
takes to describe the partitioning function (i.e., partitioning key K) is large. It is often the case
that when using partitioning function with cryptographic primitives, we need to secretly compute
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F(K, ·), in which case we must embed K into the system parameters. Therefore, having smaller
description size for K often ends up with smaller system parameter and is desirable.

In this section, we revisit the partitioning functions based on substring matching that appear
in [Lys02, BB04b, CHKP10, FHPS13, Bit17, Koh19]. While the partitioning function is more
complex compared to FWat and FParWat, it offers a much smaller description size.

Let ℓ := ℓ(λ), n := n(λ), and η := η(λ) be integers of polynomial size and Σ := Σλ be an
alphabet. Here, we focus on the cases where Σ = {0, 1} and Σ = {1, 2, . . . , |Σ|} for polynomially
bounded |Σ|. We consider an encoding function

Encode : {0, 1}ℓ → Σn.

Let us also define K := ([n] × Σ)≤η. Namely, a key K ∈ K is in the form of K = {(Ii, σi)}i∈[η′],
where we have η′ ≤ η and Ii ∈ [n] and σi ∈ Σ for all i ∈ [η′]. We then define the function
FSSM : K × {0, 1}ℓ → {0, 1} as

FSSM(K, x) =

{
0 if σi = Encode(x)Ii ∀i ∈ [η′]

1 othrewise
, (39)

where Encode(x)Ii is the Ii-th symbol of the string Encode(x) ∈ Σn. Previously works required
Encode to be an error correcting code with large enough minimal distance.1112 In this work, we
require the following stronger property for Encode.

Definition 10 (Small triple overlap property). We say that an encoding function Encode :
{0, 1}ℓ → Σn has small triple overlap property with parameter c := c(λ) if the following prop-
erties hold:

• For arbitrary x1, x2 ∈ {0, 1}ℓ with x1 ̸= x2, we have

# {i ∈ [n] : Encode(x1)i = Encode(x2)i} ≤ (1− c)n,

where Encode(xb)i for b ∈ {1, 2} denotes the i-th symbol of the codeword Encode(xb) ∈ Σn.

• For arbitrary but mutually distinct x1, x2, x3 ∈ {0, 1}ℓ, we have

# {i ∈ [n] : Encode(x1)i = Encode(x2)i = Encode(x3)i} ≤ (1− c)2n,

where Encode(xb)i for b ∈ {1, 2, 3} denotes the i-th symbol of the codeword Encode(xb) ∈ Σn.

As we will soon see in Theorem 5, FSSM instantiated with an encoding function Encode sat-
isfying Def. 10 is a partitioning function that admits fine-tuned approximation, which leads to
better reduction costs for many VRFs and IBEs. Unfortunately, we do not know an explicit
construction of such encoding algorithm, where an explicit construction refers to an efficient de-
terministic algorithm that takes only ℓ, n, Σ, and x as input and outputs Encode(x). However, as
we show in the following lemma, random 3-wise independent hash functions with appropriately
chosen parameters satisfy the above properties except for an exponentially small probability. We
therefore can pick a random 3-wise independent hash and use it as a description of an encoding
function satisfying Def. 10.

11Both in previous works and our work, we do not need efficient decoding algorithm for Encode.
12Many previous works [BB04b, CHKP10, Yam17] call the encoding function that admits a partitioning function

based on sub-string matching “admissible hash”.
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Lemma 5. Let us consider a family of 3-wise independent hash Hℓ,Σ,n = {h : {0, 1}ℓ → Σn}.
Then, randomly chosen h from Hℓ,Σ,n satisfies small triple overlap property as per Def. 10 with
parameter c < 1− 1/|Σ| except for probability

pc,ℓ,Σ,n := 22ℓ+1 exp

(
−2
(
1− c− 1

|Σ|

)2

n

)
+ 23ℓ+1 exp

(
−2
(
(1− c)2 − 1

|Σ|2

)2

n

)
.

In particular, under the following settings, h chosen from Hℓ,Σ,n satisfies small triple overlap
probability with probability more than 1− 2−ℓ.

Binary alphabets. Σ = {0, 1}, c is a constant with c < 1/2, n = 4ℓ/((1− c)2 − 1/4) = O(ℓ).

Polynomial alphabets. Σ = {1, 2, . . . , 2ℓν}, c = 1−1/ℓν , where ν is a constant with 1 > ν > 0,
and n = 3ℓ1+4ν = O(ℓ1+4ν).

Proof. The latter part of the lemma follows from the former part. We therefore focus on the
former part. We first bound the probability that randomly chosen h does not satisfy the second
property of Def. 10. Let us fix mutually distinct x1, x2, and x3 in {0, 1}ℓ. For each i ∈ Σ, let
Ei be the event that h(x1)i = h(x2)i = h(x3)i holds, where the probability is taken over the

choice of h
$← Hℓ,Σ,n. Since Hℓ,Σ,n is a family of 3-wise independent hash, (h(x1), h(x2), h(x3)) is

distributed uniformly at random over Σ3. In particular, we have that E1, . . . ,En are independent
and Pr[Ei] = 1/|Σ|2. Using Hoeffding’s bound, we have Pr[

∑n
i=1 Ei ≥ (1− c)2n] ≤ 2 exp(−2((1−

c)2n − n/|Σ|2)2/n) = 2 exp(−2((1 − c)2 − 1/|Σ|2)2n), where we abuse the notation here and
denote by Ei the random variable that takes the value 1 when Ei occurs and 0 otherwise. Noticing
that

∑n
i=1 Ei ≥ (1 − c)2n ⇔ #{j : Encode(x1)j = Encode(x2)j = Encode(x3)j} ≥ (1 − c)2n

and taking union bound over all possible x1, x2, and x3 ∈ {0, 1}ℓ, we conclude that randomly
chosen 3-wise independent hash satisfies the second property of Def. 10 except for probability
23ℓ+1 exp(−2((1− c)2 − 1/|Σ|2)2n).

We then consider the probability that randomly chosen h does not satisfy the first property
of Def. 10. By the similar argument to the above, for any distinct x1 and x2, we can bound
the probability that the number of position i for which h(x1)i = h(x2)i exceeds (1 − c)n by
2 exp(−2(1− c− 1/|Σ|)2n). Then, by taking the union bound over all possible x1 and x2, we can
bound the probability by 22ℓ+1 exp(−2(1− c− 1/|Σ|)2n).

Finally, by taking the union bound again, we can conclude that randomly chosen h satisfies
both properties of Def. 10 except for probability 22ℓ+1 exp(−2(1−c−1/|Σ|)2n)+23ℓ+1 exp(−2((1−
c)2 − 1/|Σ|2)2n) as desired.

Remark 3 (On the usage of 3-wise independent hash functions). We remark that to construct
an error correcting code, more standard approach would be to choose random matrix A over Zn×ℓ|Σ|
and define h as h(x) := Ax⊤, where x ∈ {0, 1}ℓ is treated as a row vector (See e.g., [Gol08]). We
choose to use 3-wise independent hash function instead, since the description size for the encoding
function is much shorter. Looking ahead, having shorter description size for the function leads
to shorter system parameters when we consider applications to IBEs and VRFs, since we need to
include the function description into the system parameters in these applications.

We then show the following theorem.

Theorem 5. Let us assume that Encode : {0, 1}ℓ → Σn has small triple overlap property with
parameter c = c(λ) as per Defnition 10. Then, for a real number ϵ = ϵ(λ) in (0, 1/2] and a
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positive integer Q = Q(λ), FSSM defined as in Eq. (39) is a (γmin, TF, Tapprox)-partitioning function
such that

η =
ω(log(λ))

log(1/1− c)
, γmin =

1

2|Σ|η′
, TF = poly(λ, n), and Tapprox = Q · poly(λ, n),

where

η′ =

⌈
log(2Q/

√
ϵ)

log(1/1− c)

⌉
,

and poly(λ, n) is a fixed polynomial independent from Q and ϵ.

Proof. We define PrtSmp(1λ, Q, ϵ) as follows:

PrtSmp(1λ, Q, ϵ): It sets η′ :=
⌈
log(2Q/

√
ϵ)

log(1/1−c)

⌉
and samples random subset I = {I1, . . . , Iη′} ⊆ [n]

and random symbol σi
$← Σ for i ∈ [η′]. It then outputs K = {(Ii, σi)}i∈[η′].

To prove this lemma, we need to show that PrtSmp satisfies three properties in Def. 9.

First property. We show that K output by the above algorithm is always in Kλ for large enough
λ. Since K output by PrtSmp(1λ, Q, ϵ) is in ([n] × Σ)η

′
and K = ([n] × Σ)η, it suffices to show

that η′(λ) < η(λ) holds for large enough λ. This holds since we have

η′ =

⌈
log(2Q/

√
ϵ)

log(1/1− c)

⌉
=

⌈
log(poly(λ))

log(1/1− c)

⌉
≤ ω(log(λ))

log(1/1− c)
,

where the second equality follows from Q(λ) = poly(λ) and 1/ϵ(λ) = poly(λ) and the last inequal-
ity holds for large enough λ.

Second property. For x ∈ {0, 1}ℓ, let E(x) be the event that FSSM(K, x) = 0 holds. It is easy to
see that

Pr[E(x)] = Pr[Encode(x)Ii = σi ∀i ∈ [η′]] =
1

|Σ|η′

holds for all x, where K
$← PrtSmp(1λ, Q, ϵ). We also observe that for x and x′ with x ̸= x′, we

have

Pr[E(x) ∧ E(x′)] = Pr

(Encode(x)Ii = σi ∀i ∈ [η′]
)
∧ I ⊆ {j : Encode(x)j = Encode(x′)j︸ ︷︷ ︸

:=J

}


= Pr

[(
Encode(x)Ii = σi ∀i ∈ [η′]

) ∣∣ I ⊆ J}] · Pr[I ⊆ J}]
=

1

|Σ|η′
·
η′−1∏
i=0

(
#J − i
n− i

)
(40)

≤ 1

|Σ|η′
·
η′−1∏
i=0

(
(1− c)n− i

n− i

)

≤
(
1− c
|Σ|

)η′
(41)

where the probability is taken over the choice of K
$← PrtSmp(1λ, Q, ϵ). The third equation above

follows from the fact that for any fixed I, the event Encode(x)Ii = σi happens with probability
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1/|Σ| independently for each i ∈ [η′] and the first inequality follows from the fact that Encode(x)
and Encode(x′) differ in at least cn positions by the first property of Def. 10.

For x⃗ = (x∗, x(1), . . . , x(Q)), we then define γ̃(⃗x) as

γ̃(⃗x) := Pr[E(x∗)]−
∑
j∈[Q]

Pr[E(x∗) ∧ E(x(j))].

By the same analysis as the proof of Lemma 2, we have

γ(⃗x) ≥ Pr[E(x∗)]−
∑
j∈[Q]

Pr
[
E(x∗) ∧ E(x(j))

]
︸ ︷︷ ︸

=γ̃(⃗x)

≥ 1−Q(1− c)η′

|Σ|η′
≥ 1−

√
ϵ/2

|Σ|η′
≥ 1

2|Σ|η′︸ ︷︷ ︸
=γmin (⃗x)

where the second inequality follows from Eq. (41) and the third inequality follows from (1−c)η′ ≤√
ϵ/2Q, which holds by our choice of η′. We therefore have proven the first two inequalities of

Eq. (25). It remains to prove the third inequality. To do so, we first observe that for mutually
distinct x, x′, and x′′, we have

Pr[E(x) ∧ E(x′) ∧ E(x′′)]

= Pr
[(
Encode(x)Ii = σi ∀i ∈ [η′]

)
∧ I ⊆ {j : Encode(x)j = Encode(x′)j = Encode(x′′)j}

]
= Pr

[(
Encode(x)Ii = σi ∀i ∈ [η′]

) ∣∣ I ⊆ {j : Encode(x)j = Encode(x′)j = Encode(x′′)j}
]

·Pr[I ⊆ {j : Encode(x)j = Encode(x′)j = Encode(x′′)j}]

≤ 1

|Σ|η′
·
η′−1∏
i=0

(
(1− c)2n− i

n− i

)

≤
(
(1− c)2

|Σ|

)η′
, (42)

where the first inequality above follows from the fact that for any fixed I, the event Encode(x)Ii =
σi happens with probability 1/|Σ| independently for each i ∈ [η′] and the number of indices j such
that Encode(x)j = Encode(x)′j = Encode(x)′′j is at most (1 − c)2n due to the small triple overlap
property (Def. 10).

By the same analysis as the proof of Lemma 2, we have

|γ(I⃗D)− γ̃(I⃗D)| ≤
∑

1≤j<k≤Q
Pr
[
E(ID∗) ∧ E(ID(j)) ∧ E(ID(k))

]
. (43)

We then have

Eq. (43) ≤ Q2

2
·
(
(1− c)2

|Σ|

)η′
≤ ϵ

8|Σ|η′
=
γminϵ

4
<
γminϵ

3
,

where the first inequality follows from Eq. (42) and the second inequality follows from (1− c)η′ ≤√
ϵ/2Q, which holds by our choice of η′. This completes the third inequality of Eq. (25).

Third property. Finally, we show the third property of Def. 9. We first observe that to compute
γ̃(⃗x) = Pr[E(x∗)]−

∑
j∈[Q] Pr[E(x

∗) ∧ E(x(j))], it suffice to bound the time required for computing

Pr[E(x∗) ∧ E(x(j))] for each of j ∈ [Q], since Pr[E(x∗)] = 1/|Σ|η′ can be computed directly. By

Eq. (40), we have |Σ|η′ · Pr[E(x∗) ∧ E(x(j))] =
∏η′

i=1

(
#Jx∗,x−i
n−i

)
, where Jx∗,x = {j : Encode(x)j =
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Encode(x∗)j}. These quantities can be computed by in time poly(η′, n, log |Σ|) ≤ poly(λ, n) for
some fixed polynomial, where the inequality follows from the fact that log |Σ| and η′ are O(log λ).
Moreover, it is straightforward to see that FSSM can be computed in time poly(η′, n, log |Σ|) ≤
poly(λ, n) for some fixed polynomial as desired.

As a corollary of Lemma 5 and Theorem 5, we obtain the following theorem.

Theorem 6. For any integer function ℓ := ℓ(λ) and constants µ > 1 and 0 < ν < 1, there
exist a function n = n(λ) and a family of efficient and efficiently samplable hash functions Hλ :

{0, 1}ℓ → Σn such that FSSM defined as in Eq. (39) by setting Encode := h for h
$← Hλ is a

(γmin, TF, Tapprox)-partitioning function except for probability 2−ℓ under the following parameter
settings:

(Binary alphabets) In binary alphabets setting, we have Σ = {0, 1} and

n = Θ(ℓ), η = ω(log(λ)), γmin =
1

4

(√
ϵ

2Q

)µ
, TF = poly(λ, ℓ), Tapprox = Q · poly(λ, ℓ),

where poly(λ, ℓ) is some fixed polynomial independent from Q and ϵ.

(Polynomial alphabets) In polynomial alphabets setting, we have good property Σ = {1, 2, . . . , 2ℓν}
and

n = Θ(ℓ1+4ν), η = ω(1), γmin =

√
ϵ

ω(1) · ℓνQ
, TF = poly(λ, ℓ), Tapprox = Q · poly(λ, ℓ),

where ω(1) can be any function that grows faster than 1 asymptotically (e.g., log log(λ)) and
poly(λ, ℓ) is some fixed polynomial independent from Q and ϵ.

The description of h requires 3n⌈log |Σ|⌉ bits for both cases.

Proof. The proof is obtained by combining Lemma 5 and Theorem 5 straightforwardly, by noting
that a 3-wise independent hash function h : {0, 1}ℓ → Σn can be represented using a0, a1, a2 ∈ F2k ,
where h(x) = a0 + a1x + a2x

2, and both the input and output domains are embedded within a
finite field F2k of size 2k, where k = n⌈log |Σ|⌉, in a natural manner.

Remark 4 (Tradeoffs provided by setting ν). We want η and n to be as small as possible, since
as they get smaller, we typically are able to obtain VRF/IBE schemes with better space efficiency
(e.g., [Yam17, Kat17, Koh19]). Similarly, we want γmin to be as large as possible, since the
reduction costs of the schemes become tighter as it gets larger. By setting µ (resp., ν) close to
1 (resp., 0) in binary alphabet case (resp., polynomial alphabet case), these requirements can be
satisfied at the same time asymptotically. However, choosing ν and µ in a way that leads to better
asymptotic parameters may result in worse concrete space efficiency/reduction cost due to larger
hidden constant terms when we consider concrete parameters.

Remark 5 (Comparison with previous works). Here, we compare our bound on γmin with that
shown in previous works [Jag15, Koh19]. For simplicity, we ignore poly-logarithmic factors here.
In binary alphabet case, we achieve γmin = (

√
ϵ/Q)µ for arbitrary constant µ > 1, which im-

proves γmin = (ϵ/Q)µ shown by Jager [Jag15]. The improvement is due to our fine-tuned analysis
that uses small triple overlap property of the underlying encoding function. In the polynomial-
size alphabet case, we achieve

√
ϵ/ℓνQ for arbitrary 1 ≥ ν > 0, whereas Kohl [Koh19] showed
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(ϵ/ℓQ)1+1/ν .13 The reason why our bound is better is twofold. Firstly, we use an error-correcting
code whose gap between the quantities 1 − c and 1/|Σ| is quite narrow. This choice is pivotal,
because as we can observe from the statement of Theorem 5, as the gap between the quantities
1− c and 1/|Σ| widens, where c represents the relative distance of the code, γmin becomes smaller.
In our setting, we have 1 − c ≈ ℓ−ν ≈ 1/|Σ|, while she relies on Reed-Solomon code and has
1−c ≈ ℓ−ν and 1/|Σ| ≈ ℓ−1−ν . Secondly, we employ our fine-tuned analysis using the small triple
overlap property here again. This leads to a further improvement on the bound by a factor of

√
ϵ.

6 Application to IBEs

Recall that the notion of the partitioning function [Yam17] abstracts out the core statistical
properties useful for proving security of various cryptographic primitives. In Sec. 4, we essentially
showed that if the underlying partitioning function admits good enough approximation for the
quantity γ, then we can achieve better reduction costs in various security proofs than those
obtained by existing techniques [Wat05, BR09]. Then, in Sec. 5, we showed that new and existing
partitioning functions indeed admit good enough approximations. These arguments are divorced
from the underlying cryptographic primitives and algebraic structures. In this section, we apply
the tools we developed in Sec. 4 and 5 to the specific context of IBE. This allows us to prove
improved reduction costs for Waters IBE [Wat05] and Agrawal-Boneh-Boyen IBE [ABB10a] and
also yields a new scheme with good reduction costs. To formally prove these results in a unified
manner, we show a template of the security proof for IBE that uses partitioning functions. We
then prove the security of the respective IBE schemes using the template.

6.1 Security Proof Template for IBE

We show a security proof template for IBE schemes using the artificial abort paradigm.

Definition 11 (Partitioning-Based Reduction for IBE). We say that there is a (ϵS, ϵK, ϵE, ϵR)-
partioning-based reduction for an IBE scheme IBE = (Setup,KeyGen,Encrypt,Decrypt) from a
decision problem D = (D0,D1) with respect to a (γmin, TF, Tapprox)-partitioning function with ap-
proximation F =

{
F : K × {0, 1}ℓ → {0, 1}

}
if there exists a tuple of efficient algorithms (SimSetup,

SimKeyGen,SimEncrypt) with the following syntax.

SimSetup(K,ψ)→ (mpk, td). It takes as input a partitioning key K ∈ K and the problem instance
ψ (output by either D0 or D1) and outputs a master public key mpk and a trapdoor td.

SimKeyGen(td, ID)→ skID. It takes as input a trapdoor td and an identity ID ∈ {0, 1}ℓ and outputs
a secret key skID.

SimEncrypt(td, ID,M)→ ct. It takes as input a trapdoor td, an identity ID ∈ {0, 1}ℓ, and a message
M and outputs a ciphertext ct.

For these algorithms, we require the following properties. For describing the properties, we in-
troduce a couple of notations here. For a string mpk, we define a set Smpk as Smpk := {msk :

13Actually, Kohl [Koh19] adopts the technique of Waters [Wat05] and gives lower bound for γ, rather than giving
both lower and upper bounds as Bellare and Ristenpart [BR09]. This leads to looser reduction cost when we
consider applications to IBEs and VRFs in typical parameter settings, since it requires artificial abort using Monte
Carlo method. To be fair, we analyze her function employing the technique of Bellare and Ristenpart and then
compare the obtained bound on γmin with ours.
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(mpk,msk) ∈ Setup(1λ)}. For the distribution Db with b ∈ {0, 1} and K, SimSetup(K,Db) de-

notes the output distribution of SimSetup(K,ψ), where ψ is sampled as ψ
$← Db. We also denote

by SimSetup(K,Db)|mpk the distribution of td output by SimSetup(K,Db) conditioned on the first
output being mpk. If mpk ̸∈ SimSetup(K,Db), SimSetup(K,Db)|mpk outputs ⊥.

Master public key simulatability: For all K ∈ K and all ψ ∈ D0 ∪ D1, the marginal dis-
tribution of mpk output by SimSetup(K,ψ) is within ϵS statistical distance of the marginal
distribution of mpk output by Setup(1λ). Moreover, the runtime of SimSetup and Setup are
within some polynomial factor poly(λ).

Secret key simulatability: For all K ∈ K, all ψ ∈ D0∪D1, all (mpk, td) ∈ SimSetup(K,ψ) such
that Smpk ̸= ∅, all msk ∈ Smpk, and all ID ∈ {0, 1}ℓ such that F(K, ID) = 1, the following
distributions are within ϵK statistical distance:{

skID
$← SimKeyGen(td, ID)

}
≈ϵK

{
skID

$← KeyGen(mpk,msk, ID)
}
.

Moreover, the runtime of SimKeyGen and KeyGen are within some polynomial factor poly(λ).

Ciphertext simulatability: For all K ∈ K, all mpk such that there exists td satisfying (mpk, td) ∈
SimSetup(K,D0), all ID

∗ ∈ {0, 1}ℓ such that F(K, ID∗) = 0, and all M ∈ M the following
distributions are within ϵE statistical distance:{

ct
$← SimEncrypt(td, ID∗,M)

}
≈ϵE

{
ct

$← Encrypt(mpk, ID∗,M)
}
,

where td is sampled as td
$← SimSetup(K,D0)|mpk. Moreover, the runtime of SimEncrypt

and Encrypt are within some polynomial factor poly(λ).

Ciphertext randomizability: For all K ∈ K, all mpk such that there exists td satisfying
(mpk, td) ∈ SimSetup(K,D1), all ID

∗ ∈ {0, 1}ℓ such that F(K, ID∗) = 0, and all M,M∗ ∈ M
the following distributions are within ϵR statistical distance:{

ct
$← SimEncrypt(td, ID∗,M)

}
≈ϵR

{
ct

$← SimEncrypt(td, ID∗,M∗)
}
,

where td is sampled as td
$← SimSetup(K,D1)|mpk.

The following establishes the security of an IBE scheme with a partitioning-based reduction.
Below, for all of the constructions provided in this work, the dominant runtime overhead of the
reduction is Tapprox as Q · (TF + poly(λ)) ≲ t.

Theorem 7. Assume that there is a (ϵS, ϵK, ϵE, ϵR)-partioning-based reduction for an IBE scheme
IBE = (Setup,KeyGen,Encrypt,Decrypt) from a decision problem D = (D0,D1) with respect to a
(γmin, TF, Tapprox)-partitioning function F. Then, if there is an (t, Q, ϵ)-adversary A against the
IND-CPA security of the IBE scheme with a polynomial Q and non-negligible ϵ, there is an (ϵ′, t′)-
adversary A′ against the problem D such that

t′ = t+ Tapprox +Q · (TF + poly(λ)), ϵ′ ≥ γmin

3
· ϵ− (2ϵS + 2Q · ϵK + ϵE + ϵR),

for a non-negligible ϵ′ and infinitely many λ ∈ N. Moreover, poly(λ) is roughly the overhead
incurred by running the simulated algorithms compared to the real (Setup,KeyGen,Encrypt) algo-
rithms.
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Proof. We prove the theorem by a sequence of games. Let ϵi denote the advantage of A in Gamei.
Below, we use the fact that since ϵ(λ) is non-negligible, there exists a noticeable function ϵ∗(λ)
such that ϵ(λ) ≥ ϵ∗(λ) for infinitely many λ ∈ N.

Game0: This is the real IND-CPA game. By assumption, we have ϵ0 = ϵ.

Game1: In this game, we generate the partitioning key K
$← PrtSmp

(
1λ, Q, ϵ∗

)
at the end of

the game, independently from anything else. Even though we do not embed K into the
parameters (i.e., K is information theoretically hidden from the adversary), we introduce
the artificial abort step here. Note that due to our assumption and Def. 9, Item 1, for large
enough λ, we have K ∈ K and the properties in Items 2 and 3 hold.

Concretely, let ID∗ be the challenge identity, ID(i) be the i-th (i ∈ [Q]) identity queried as
part of the key-extraction query, I⃗D = (ID∗, ID(1), · · · , ID(Q)), coin the random bit sampled

by the challenger, and ĉoin the guess A outputs. At the end of the game, the challenger
checks if the event F(K, ID(1)) = · · · = F(K, ID(Q)) = 1 ∧ F(K, ID∗) = 0 occurs, and if not

(denoted as event Bad), it ignores A’s output and outputs a random guess coin′
$← {0, 1}

on behalf of A. From Def. 9, Item 2, event Bad occurs with probability 1− γ(I⃗D). If event
Bad does not occur, the challenger computes γmin and γ̃(I⃗D), and outputs a random guess

coin′
$← {0, 1} on behalf of A with probability 1− γmin/γ̃(I⃗D) (denoted as event AAbort). If

neither events Bad nor AAbort occur, the challenger uses A’s guess coin′ = ĉoin.

Due to Def. 9, Item 3, the challenger’s runtime overhead compared to Game0 is Tapprox(Q, ϵ)+

Q·TF(Q, ϵ). Due to Def. 9, Item 2, we have |γ(⃗x)− γ̃(⃗x)| < γmin(λ)
3 ·ϵ∗ ≤ γmin(λ)

3 ·ϵ for infinitely
many λ. Then, due to Theorem 1, we have

ϵ1 =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ ≥ γmin

3
· ϵ ≥ γmin

3
· ϵ∗,

for infinitely many λ ∈ N.

Game2: In this game, the partitioning key K is chosen at the beginning of the game and once the
Bad event is satisfied (i.e., F(K, ID(i)) = 0 for i ∈ [Q] or F(K, ID∗) = 1 during the game), the
challenger aborts without running the game until the end. This is only a conceptual change
and we have ϵ2 = ϵ1.

Game3: In this game, we use (mpk, td)
$← SimSetup(K,ψ) to obtainmpk, where ψ

$← D0. However,
we do not use td for the simulation at this point. Rather, we inefficiently recover msk
corresponding to mpk and then use the msk to run the game. In more detail, the challenger
inefficiently checks whether Smpk = ∅ and aborts if so. Otherwise, the challenger chooses
msk from the conditional distribution of msk output by Setup(1λ) with mpk being fixed,
which we denote by msk← Setup(1λ)|mpk. We claim that the difference between Game3 and
Game2 can be bounded by ϵS.

The claim can be proven by using the master public key simulatability by using the standard
fact that the application of any randomized function f does not increase the statistical
distance. Here, we consider the marginal distribution of mpk output by Setup(1λ) and
that output by SimSetup. We then consider a function f that takes as input mpk, samples
msk ← Setup(1λ)|mpk, and outputs (mpk,msk). If we start from the former (resp., latter)
distribution and then apply the function f , the joint distribution of (mpk,msk) will be that
of Game2 (resp., Game3). Hence, |ϵ3 − ϵ2| ≤ ϵS.
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Game4: In this game, we generate the challenge ciphertext by SimEncrypt(td, ID∗,Mcoin). Since
the challenger only has to answer challenge query for ID∗ such that F(K, ID∗) = 0 due to the
changes introduced in the previous games and since the the distribution of td follows that of
SimSetup(K,D)|mpk from the view of the adversary, we can use the ciphertext simulatability
to conclude |ϵ4 − ϵ3| ≤ ϵE.

Game5: In this game, we answer key-extraction queries by SimKeyGen(td, ID) instead of KeyGen(msk,
ID). Since the challenger only has to answer key queries for ID such that F(K, ID) = 1 due
to the changes introduced in the previous games, we can use the secret key simulatability
to conclude that |ϵ5 − ϵ4| ≤ Q · ϵK. Here, the multiplicative factor of Q comes from the fact
that we have to do the change Q times. Note that msk is no longer necessary for answering
the key queries in this game.

Game6: In this game, we stop checking whether Smpk = ∅ and no longer recover msk. Instead,
the challenger answers any key-extraction query for ID such that F(K, ID) = 1 by running
SimKeyGen(td, ID). Note that the game is now efficient again.

We claim that the view of the adversary in this game only changes by ϵS from the previous
game. To see this, we observe that these games differ only when Smpk = ∅. From the master
public key simulatability, the probability of Smpk = ∅ happening when mpk is sampled from
SimSetup(K,ψ) can be bounded by ϵS, since otherwise we can construct an (inefficient)
distinguisher that breaks the master public key simulatability by checking whether Smpk = ∅
or not. Hence, |ϵ6 − ϵ5| ≤ ϵS.

Game7: In this game, we sample ψ from D1 instead of D0. If there is an adversary who can
distinguish this game from the previous one, we can construct a distinguisher A′ against
D such that AdvD(A′) = |ϵ7 − ϵ6|. Note that such a distinguisher A′ is efficient due to the
modification we made in Game6.

Below, we would like to invoke ciphertext randomizability to change the challenge ciphertext
to random. However, we cannot yet invoke it since some information of the trapdoor td may be
leaking from the secret keys skID. Below, we undo the modifications so that td is only used to
generate the challenge ciphertext.

Game8: In this game, we again check whether Smpk = ∅ and abort if so. Otherwise, it is the
same as the previous game, where note that we do not use msk ∈ Smpk. Following the same
argument as in Game6, we have |ϵ8 − ϵ7| ≤ ϵS due to the master public key simulatability.

Game9: In this game, we answer key-extraction queries by KeyGen(msk, ID) instead of SimKeyGen(td, ID).
Similarly to Game5, we can use the secret key simulatability to conclude that |ϵ9 − ϵ8| ≤
Q · ϵK.

Game10: Finally, in the last game, we choose a random message M∗
$← M and encrypt it for

generating the challenge ciphertext regardless of the value of coin. By the ciphertext ran-
domizability, we have |ϵ10 − ϵ9| ≤ ϵR.

In Game10, coin is information theoretically hidden from A, and hence, ϵ10 = 0. Collecting all the
bounds, we arrive at the theorem statement.
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6.2 Application to Waters IBE

Here, we apply our framework to Waters IBE [Wat05]. His IBE achieves the unique property
of having short ciphertext consisting only of 2 group elements and security under the standard
DBDH assumption or even under the CBDH assumption if we slightly modify it using Goldreich-
Levin’s hardcore bit function [GL89] as we discuss in App. A.4 (See also [KY16]). For Waters
IBE, we improve the reduction cost from O(ϵ2/Qℓ) to O(ϵ1.5/Qℓ), where by reduction cost we
mean the advantage of the DBDH solving algorithm obtained by a (t, Q, ϵ)-adversary against the
IBE. Here, we ignore the difference between the running time of the DBDH solving algorithms,
since they are t + Q · poly(λ) in both cases and their difference can be ignored in most of the
interesting parameters settings. More formally, we obtain the following theorem:

Theorem 8. If there is an (tA, Q, ϵA)-adversary A against the IND-CPA security of the Waters
IBE scheme, there is an adversary B that breaks the DBDH problem with advantage ϵB and tB
such that

ϵB >
ϵ1.5A

21Qℓ
, tB = tA +O(Q · ℓ2) · poly(λ) (44)

where Q ≤ p
√
ϵA/ℓ
√
3 and poly(λ) is roughly the overhead incurred by the running the simulated

algorithms compared to the real (Setup,KeyGen,Encrypt) algorithms.

The proof of the theorem can be obtained by observing that the original proof of Waters IBE
follows the template of partitioning-based reduction for IBE in Def. 11 and plugging in our analysis
on FWat in Theorem 2 into our template. In App. A, we provide the proof of the theorem and
necessary background, including the description of the Waters IBE scheme and partitioning-based
reduction for the scheme.

6.3 Applications to ABB IBE and Its Variant

Here, we apply our framework to ABB IBE [ABB10a], which is one of the most important lattice
IBE schemes, since it achieves the shortest ciphertext size and computational efficiency among the
existing schemes. Conventionally, the reduction cost for ABB IBE was considered to be O(ϵ2/qQ),
employing the partitioning strategy based on FBoy. However, as we note in Remark 2, our formal
analysis reveals that they are only lower bounded by O(ϵ3/Q2), which is much worse. Using our
new analysis on FBoy, we can improve it to be O(ϵ2/Q2). Furthermore, by using our analysis on
new partitioning function FParWat with d = 3, this can be further improved to be O(ϵ1.5/qQ).
More formally, we obtain the following theorem:

Theorem 9. If there is an (tA, Q, ϵA)-adversary A against the IND-CPA security of the ABB IBE
scheme, there is an adversary B that breaks the LWE problem with advantage ϵB and tB such that

ϵB >
ϵ1.5A

12qQ
− negl(λ), tB = tA +Q · poly(λ) (45)

where qn ≥ 2 · Q/√ϵA holds for dimension n of the scheme and poly(λ) is roughly the overhead
incurred by the running the simulated algorithms compared to the real (Setup,KeyGen,Encrypt)
algorithms.

We also consider a variant of ABB IBE, where we hash an identity using d-wise linearly
independent hash function and then use it as a new identity in ABB IBE scheme. Roughly
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speaking, d-extended ABB IBE has a master public key size that is d-times longer than the
original ABB IBE and has almost the same ciphertext size. We call it d-extended ABB IBE

scheme. For d-extended ABB IBE, we can achieve better reduction cost of O(ϵ1+
1

d−1 /qQ) using
the power of FParWat for arbitrarily chosen odd d.

Theorem 10. If there is an (tA, Q, ϵA)-adversary A against the IND-CPA security of the d-extended
ABB IBE scheme for odd integer d ≥ 3, there is an adversary B that breaks the LWE problem
with advantage ϵB and tB such that

ϵB >
ϵ
1+ 1

d−1

A

12qQ
− negl(λ), tB = tA +Q · poly(λ).

In particular, if we have d ≥ ω(1), we have

ϵB >
ϵA

12qλQ
− negl(λ), tB = tA +Q · poly(λ)

where qn ≥ 2 ·Q · ϵ−
1

d−1 holds for dimension n of the scheme and poly(λ) is roughly the overhead
incurred by the running the simulated algorithms compared to the real (Setup,KeyGen,Encrypt)
algorithms.

Note that Theorem 9 is a special case of Theorem 10, since d-extended ABB scheme with
d = 3 equals to the ABB scheme. The proof of Theorem 10 can be obtained by showing that d-
extended ABB IBE admits partitioning-based reduction and plugging in our analysis on FParWat in
Sec. 5.5 into our template. In App. B, we provide the formal proof of the theorems and necessary
background, including the description of ABB and d-extended ABB IBE schemes.

7 Application to VRFs

In this section, we apply the tools we developed in Sec. 4 and 5 to VRF. Similarly to the case of
IBE (Sec. 6), we prepare a security proof template that allows us to prove the security of VRF
using partitioning function with approximation in a modular manner. However, unlike Sec. 6,
we do not focus on applying our framework to existing schemes. Rather, we construct a new
VRF scheme and then apply our framework to the scheme. The new VRF scheme subsumes the
previous schemes in terms of asymptotic sapce efficiency and security at the same time, in the
sense that it is proven secure under the standard d-LIN assumption with tighter reductions. We
refer to Table 2 for the overview.

7.1 Security Proof Template for VRF

Similarly to what we have done for IBE schemes, we show a security proof template for VRF
schemes using the artificial abort paradigm.

Definition 12 (Partitioning-Based Reduction for VRF). We say that there is a partioning-based
reduction for a VRF scheme VRF = (Gen,Eval,Verify) from a decision problem D = (D0,D1) with
respect to a partitioning function with approximation F =

{
F : K × {0, 1}ℓ → {0, 1}

}
if there exists

a tuple of efficient simulation algorithms (SimGen,SimEval,SimChal) with the following syntax.

SimGen(K,ψ)→ (vk, td). It takes as input a partitioning key K ∈ K and the problem instance ψ
(output by either D0 or D1) and outputs a verification key vk and a trapdoor td.
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SimEval(td, x)→ (y, π). It takes as input a trapdoor td and an input x ∈ {0, 1}ℓ and outputs the
value y and corresponding proof π.

SimChal(td, ψ, x)→ y. It takes as input a trapdoor td, a problem instance ψ (output by either D0

or D1) and outputs a value y.

For these algorithms, we require the following properties.

Simulation indistinguishability: For functions Q = Q(λ) and ϵ = ϵ(λ), and a PPT adversary
A, let us define the advantage for the computational verification simulatability as follows:

Advsim-ind
PBR (A) =

∣∣∣∣Pr [A(K, vk)Eval(sk,·) = 1 :
(vk, sk)← Gen(1λ)

K
$← PrtSmp

(
1λ, Q, ϵ

)]

−Pr

A(K, vk)Sim(K,td,ψ,·) = 1 :

ψ ← D0

K
$← PrtSmp

(
1λ, Q, ϵ

)
(vk, td)← SimGen(K,ψ)

∣∣∣∣∣∣ ,
where Eval(sk, ·) takes as input x ∈ {0, 1}ℓ and returns Eval(sk, x), and the oracle Sim(K, td, ψ, ·)
is defined as follows :

Sim(K, td, ψ, ·): It takes as input x ∈ {0, 1}ℓ and returns SimEval(td, x) if F(K, x) = 1 and
SimChal(td, ψ, x) if F(K, x) = 0.

The adversary is allowed to access Eval(sk, ·) for Q times. We say that the adversary A is
an (t, Q, ϵ, ϵA) adversary if it has an advantage ϵA = Advsim-ind

PBR (A) in the above game. We
require that for all polynomial Q(λ), noticeable ϵ(λ), and all PPT adversary A, we require
ϵA(λ) = negl(λ).

Function value randomizability: For all K ∈ K, all (vk, td) such that there exists ψ ∈ D1

satisfying (vk, td) ∈ SimGen(K,ψ), and all x ∈ {0, 1}ℓ such that F(K, x) = 0, the following
distributions are the same:

{y = SimChal(td, ψ, x)} ≡
{
y

$← Y
}
,

where ψ is sampled conditioned on (vk, td) = SimSetup(K,ψ).

Remark 6 (Definitional differences between IBE and VRF). The definition of partitioning-
based reduction for VRF scheme is more succinct and general compared to that for IBE schemes
(see Def. 11). Roughly, the master public key, secret key, and ciphertext simulatability of the
IBE scheme is packed into the simulation indistinguishability of the VRF scheme. While this
makes the definition more succinct and general, the proof becomes more complex as we need to
implicitly prove all three properties in one game. This definitional choice was dictated by the
concrete IBE and VRF constructions we handle in this work. Concretely, while we are able to
define partitioning-based reduction for VRF scheme more similarly to those of the IBE schemes,
we will not be able to prove that for the VRF scheme we construct in Sec. 7.3. This is in partic-
ular because the master public key, secret key, and ciphertext simulatability are computationally
intertwined and cannot be separated.

The following establishes the security of a VRF scheme with a partitioning-based reduction.
Below, for the construction provided in this work, the dominant runtime overhead of the reduction
is Tapprox as Q · (TF + poly(λ)) ≲ t.
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Theorem 11. Assume that there is a computational partioning-based reduction for a VRF scheme
VRF = (Gen,Eval,Verify) from a decision problem D = (D0,D1) with respect to a (γmin, TF, Tapprox)-
partitioning function F. Then, if there is an (t, Q, ϵ)-adversary A against the pseudorandomness
of the VRF scheme with a polynomial Q and non-negligible ϵ, there is an (ϵ′, t′)-adversary A′

against the problem D and an (ϵ′′, Q, t′′)-adversary A′′ against the simulation indistinguishability
property such that

t′, t′′ = t+ Tapprox +Q · (TF + poly(λ)), ϵ′ + ϵ′′ ≥ γmin

3
· ϵ,

for a non-negligible ϵ′, ϵ′′ and infinitely many λ ∈ N. Here, poly(λ) is roughly the overhead incurred
by running the simulated algorithms compared to the real (Gen,Eval,Verify) algorithms.

Proof. We prove the theorem by a sequence of games. Let ϵi denote the advantage of A in Gamei.
Below, we use the fact that since ϵ(λ) is non-negligible, there exists a noticeable function ϵ∗(λ)
such that ϵ(λ) ≥ ϵ∗(λ) for infinitely many λ ∈ N.

Game0: This is the real pseudorandomness game. By assumption, we have ϵ0 = ϵ.

Game1: In this game, we generate the partitioning key K
$← PrtSmp

(
1λ, Q, ϵ∗

)
at the end of

the game, independently from anything else. Even though we do not embed K into the
parameters (i.e., K is information theoretically hidden from the adversary), we introduce
the artificial abort step here. Note that due to our assumption and Def. 9, Item 1, for large
enough λ, we have K ∈ K and the properties in Items 2 and 3 hold.

Following an identical analysis given in the proof of Theorem 7, we have

ϵ1 =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ ≥ γmin

3
· ϵ ≥ γmin

3
· ϵ∗,

for infinitely many λ ∈ N.
Moreover, the challenger’s runtime overhead compared to Game0 is Tapprox(Q, ϵ)+Q·TF(Q, ϵ).

Game2: In this game, the partitioning key K is chosen at the beginning of the game and once the
Bad event in Theorem 1 is satisfied (i.e., F(K, ID(i)) = 0 for i ∈ [Q] or F(K, ID∗) = 1 during
the game), the challenger aborts without running the game until the end. This is only a
conceptual change and we have ϵ2 = ϵ1.

Game3: In this game, we change the game so that the challenger uses the trapdoor to simulate
the game. In more detail, the challenger chooses ψ

$← D0 and runs K
$← PrtSmp

(
1λ, Q, ϵ

)
at the beginning of the game. Then, the challenger answers any evaluation query x by
SimEval(td, x) and the challenge query x∗ by SimChal(td, ψ, x∗) throughout the game.

We can show that the view of the adversary in this game is computationally indistinguishable
from the previous game by a straightforward reduction to the simulation indistinguishability
of the simulation algorithms (SimGen, SimEval, SimChal). Therefore, we can construct an
adversary A′′ against the simulation indistinguishability property such that Advsim-ind

PBR (A) =
|ϵ3 − ϵ2|.

Game4: In this game, we sample ψ as ψ
$← D1 instead of ψ

$← D0. The rest of the game is the
same as the previous one.

If there is an adversary who can distinguish this game from the previous one, we can
construct a distinguisher A against D such that AdvD(A) = |ϵ4 − ϵ3|.
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Game5: In this game, we choose the challenge function value y∗ as y∗
$← Y regardless of the

value of coin. By the function value randomizability, this change is conceptual and we have
ϵ5 = ϵ4.

In Game5, coin is information theoretically hidden from A, and hence, ϵ5 = 0. Collecting all the
bounds, we arrive at the theorem statement.

7.2 Preliminaries

Additional Notations. In this section, we use symmetric pairings and additive notations for
them for the sake of simplicity. Concretely, for a symmetric pairing e : G×G→ GT , to describe
group elements ga and gaT = e(g, g)a, we denote [a] and [a]T , respectively. We use similar notation
for vectors and denote by [v] the group elements (gv1 , . . . , gvd)⊤ for a vector v = (v1, . . . , vd)

⊤ ∈
Zdp. We also use similar notation for matrices. For vectors v = (v1, . . . , vd)

⊤ ∈ Zdp and w =

(w1, . . . , wd)
⊤ ∈ (Z∗p)d with the same dimension d, v⊙w denotes the vector (v1w1, . . . , vdwd)

⊤ and

v⊘w denotes (v1/w1, . . . , vd/wd)
⊤. It is easy to see that for any matrix B := [b1, . . . ,bd] ∈ Zd×dp

and vectors v ∈ Zdp and w ∈ Zdp, it holds that (Bv) ⊘ w = [b1 ⊘ w, . . . ,bd ⊘ w]v.14 Given [v]
and [w], we can compute [v ⊙w]T by the component-wise pairing computation. We denote this
by [v]⊙ [w].

Certified Bilinear Group Generators. We define certified bilinear group generators following
[HJ16]. We require that there is an efficient bilinear group generator algorithm GrpGen that on
input 1λ and outputs a description G of bilinear groups G,GT with prime order p and a map
e : G × G → GT . We also require that GrpGen is certified, in the sense that there is an efficient
algorithm GrpVfy that on input a (possibly incorrectly generated) description of the bilinear groups
and outputs whether the description is valid or not. Furthermore, we require that each group
element has unique encoding, which can be efficiently recognized.

Definition 13. A bilinear group generator is a probabilistic polynomial-time algorithm GrpGen
that takes as input a security parameter λ (in unary) and outputs G = (p,G,GT , ◦, ◦T , e, ϕ(1)) $←
GrpGen(1λ) such that the following requirements are satisfied.

1. p is prime and log(p) = Ω(λ).

2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps ϕ : Zp → G
and ϕT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security parameter)
maps ◦ : G×G→ G and ◦T : GT ×GT → GT , such that

• (G, ◦) and (GT , ◦T ) form algebraic groups,

• ϕ is a group isomorphism form (Zp,+) to (G, ◦), and
• ϕT is a group isomorphism from (Zp,+) to (GT , ◦T ).

4. e is an algorithmic description of an efficiently computable (in the security parameter) bi-
linear map e : G×G→ GT . We require that e is non-degenerate, that is,

x ̸= 0→ e(ϕ(x), ϕ(x)) ̸= ϕT (0).

14We note that (Bv) ⊘w ̸= B(v ⊘w) in general. This is the reason why we do not omit the parenthesis from
the expression (Bv)⊘w.
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Definition 14. We say that group generator GrpGen is certified, if there exists a deterministic
polynomial-time algorithm GrpVfy with the following properties.

Parameter validation. Given a string G (which is not necessarily generated by GrpGen), algo-
rithm GrpVfy(G) outputs 1 if and only if G has the form

G = (p,G,GT , ◦, ◦T , e, ϕ(1))

and all requirements from Def. 13 are satisfied.

Recognition and unique representation of elements of G. Furthermore, we require that
each element in G has a unique representation, which can be efficiently recognized. That is, on
input two strings G and s, GrpVfy(G, s) outputs 1 if and only if GrpVfy(G) = 1 and it holds that
s = ϕ(x) for some x ∈ Zp. Here ϕ : Zp → G denotes the fixed group isomorphism contained in G
to specify the representation of elements of G (see Def. 13).

We recall the definitions of the d-linear (d-LIN) assumption and the d-rank assumption follow-
ing the presentation by Kohl [Koh19]. We note that d-LIN assumption implies d-rank assumption.

Definition 15 (d-linear Problem). Let G be a description of bilinear group generated by GrpGen.
For a PPT algorithm A, the advantage of A for the d-linear problem is defined by

Advd-linG (A) :=

∣∣∣∣∣Pr
[
A

(
G, [c] , [d] ,

[
d∑
i=1

di/ci

])
= 1

]
− Pr[A(G, [c] , [d] , [r]) = 1]

∣∣∣∣∣
where c,d

$← Zdp and r
$← Zp. We say that the d-linear (d-LIN) assumption holds if Advd-linG (A)

is negligible for all PPT algorithm A. We also say that A is an (t, ϵ)-adversary against the d-LIN
problem if A runs in at most time t and satisfies Advd-linG (A) ≥ ϵ.

Definition 16 (d-rank Problem). Let G be a description of bilinear group generated by GrpGen.
For a PPT algorithm A, the advantage of A for the d-rank problem is defined by

Advd-rankG (A) := |Pr[A(G, [Md−1]) = 1]− Pr[A(G, [Md]) = 1]|

where Mi is uniformly chosen at random from the set of matrices of rank i in Zd×dp for i ∈
{d − 1, d}. We say that the d-rank assumption holds if Advd-rankG (A) is negligible for all PPT
algorithm A. We also say that A is an (t, ϵ)-adversary against the d-rank problem if A runs in at
most time t and satisfies Advd-rankG (A) ≥ ϵ.

7.3 Our New Short VRF

Here, we propose new construction of VRF with short parameters. Our scheme achieves the
best space efficiency among the existing schemes and enjoys the security proof under a static
assumption at the same time. Our construction is based on the the construction proposed by
Kohl [Koh19], but we substantially improve the space efficiency by adding a new twist to the
scheme. We then proceed to prove the security of the scheme based on our framework. Our
framework yields tighter reduction cost compared to the conventional analyses.

In Fig. 1, we give the description of our new VRF scheme. For the construction, we need an
error correcting code Encode : {0, 1}ℓ → Σn for an alphabet Σ and an injective map Inj : [n]×Σ→
[n1] × [n2]. In order to be able to define such an injective map, we need to have n|Σ| ≤ n1n2,
where |Σ| is the size of the alphabet. We will typically set n1 = n2 = ⌈

√
n|Σ|⌉ to achieve the
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smallest verification key size. For the construction, we use the map S : {0, 1}ℓ → 2[n1]×[n2] defined
as

S(x) := { Inj(i,Encode(x)i) : i ∈ [n] } ,

where Encode(x)i ∈ Σ denotes the i-th symbol of Encode(x) ∈ Σn. We can instantiate Encode
by the binary or non-binary error correcting codes provided in Lemma 5. As we will discuss in
Sec. 7.5, different choice of error correcting codes leads to trade-offs between the efficiency and the
reduction loss. The construction is parameterized by d and is secure under the d-LIN assumption
similarly to [Koh19]. We typically choose d to be small constant like d = 2 or d = 3.

Gen(1λ)

1 : G $← GrpGen(1λ)

2 : Mi,j
$← Zd×d

p for i ∈ [η] and j ∈ [n1]

3 : Ni,k
$← Zd×d

p for i ∈ [η] and k ∈ [n2]

4 : u
$← Zd

p\{0d},w $← (Z∗
p)

d

5 : vk := (G, [u] , [w] , {[Mi,j ]} i∈[η]
j∈[n1]

, {[Ni,k]} i∈[η]
k∈[n2]

)

6 : sk := (G,u,w, {Mi,j} i∈[η]
j∈[n1]

, {Ni,k} i∈[η]
k∈[n2]

)

7 : return (vk, sk)

Eval(sk, x)

1 : parse sk← (G,u,w, {Mi,j}i,j , {Ni,k}i,k)
2 : Compute S(x) ⊆ [n1]× [n2]

3 : Compute Pi :=
∑

(j,k)∈S(x)

Mi,jNi,k for i ∈ [η]

4 : Compute vi :=

(
i∏

ι=1

Pι

)⊤

u for i ∈ [η]

5 : z := vη ⊘w

6 : y := [⟨z,1d⟩] , π := ({[vi] , [Pi]}i∈[η] , [z])

7 : return (y, π)

Verify(vk, x, y, π)

1 : Check that vk is in the following form and output 0 otherwise:

vk = (G, [u] ∈ Gd, [w] ∈ Gd, {[Mi,j ] ∈ Gd×d}i∈[η],j∈[n1], {[Ni,k] ∈ Gd×d}i∈[η],k∈[n2])

such that GrpVfy(G) = 1

2 : Check that y and π are in the following form and output 0 otherwise:

y ∈ G, π = (
{
[vi] ∈ Gd, [Pi] ∈ Gd×d

}
i∈[η]

, [z] ∈ Gd)

3 : Check whether the following equations hold for all i ∈ [η] and output 0 otherwise:

e([Id] , [Pi])
?
=

∏
(j,k)∈S(x)

e([Mi,j ] , [Ni,k]), e([Id] , [vi])
?
= e(

[
P⊤

i

]
, [vi−1]), where v0 := u

4 : Check whether the following equations hold and output 0 otherwise:

[z]⊙ [w]
?
= [1d]⊙ [vη] , y

?
= [⟨z,1d⟩]

5 : return 1

Figure 1: Our VRF Scheme.

7.4 Correctness, Unique Provability, and Pseudorandomness

Here, we prove correctness, unique provability, and pseudorandomness of our scheme.

Correctness. We prove correctness of the scheme. It is easy to see that an honestly generated

proof passes all the verification steps except for the check e([Id] , [vi])
?
= e(

[
P⊤i
]
, [vi−1]) for i ∈ [η].
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We show that the proof also passes the check as well. This can be seen by observing

vi =

(
i∏
ι=1

Pι

)⊤
u = P⊤i

(
i−1∏
ι=1

Pι

)⊤
u = P⊤i vi−1

holds for all i ∈ [η].

Unique Provability. We prove the unique provability of the scheme. We first observe that for
each i ∈ [η], there is unique Pi ∈ Zd×dp that satisfies [Pi] =

∏
(j,k)∈S(x) e([Mi,j ] , [Ni,k]). Therefore,

there is unique sequence of vectors v1, . . . ,vη ∈ Zdp that satisfies e([Id] , [vi]) = e(
[
P⊤i
]
, [vi−1]) for

all i ∈ [η]. This in particular implies that vη that passes the verification is unique and thus z that
satisfies [z]⊙ [w] = [1d]⊙ [vη] is unique. Since z is unique, ⟨z,1d⟩ is unique as well. Finally, as the
group described by G satisfies recognition and unique representation of group elements, unique
provability follows.

Pseudorandomness. The following theorem addresses the pseudorandomness of the scheme.

Theorem 12. If there is an (tA, Q, ϵA)-adversary A against the pseudorandomness of the our VRF
scheme in Fig. 1 instantiated with Encode : {0, 1}ℓ → Σn that has small triple overlap property as
per Def. 10 with parameter c, there is an (ϵB, tB)-adversary B against the d-LIN problem and an
(ϵB′ , tB′)-adversary B′ against the d-rank problem such that

tB, tB′ = tA +Q · poly(λ, n), ϵB + 2ηϵB′ ≥ γminϵA
6|Σ|η′

− ηd(n1 + n2)

p
,

where η = ω(log(λ))/ log(1/1 − c), η′ = ⌈log(2Q/
√
ϵ)/ log(1/1− c)⌉, and poly(λ, n) is a fixed

polynomial independent from Q and ϵA.

To prove the theorem, we use our template introduced in Sec. 7.1. Namely, we define the algo-
rithms (SimGen, SimEval, SimChal) that are associated with the partitioning function with approx-
imation FSSM defined in Sec. 5.6 in the following. Rest of this section is devoted to prove function
randomizability of the simulation algorithms (Theorem 13) and simulation indistinguishability
(Theorem 14). The above theorem follows immediately from these properties.

SimGen(K,ψ): It takes as input the partitioning key K and a problem instance ψ. It then parses
them as K → {(Ii, σi)}i∈[η′] and ψ → (G, [c] , [d] , [t]), where we have Ii ∈ [n] and σi ∈ Σ for
all i ∈ [η′] and η′ ≤ η. It first discards [t] and then works as follows.

– It samples a1, . . . ,ad−1
$← Zdp and sets [B] := [a1 ⊙ c, · · · ,ad−1 ⊙ c,d] ∈ Zd×dp .

– For each i ∈ {0, 1, . . . , η − 1}, it chooses subspaces Ui and Vi of dimension d − 1
independently and uniformly at random. Furthermore, Uη is defined to be the subspace
spanned by the first d− 1 unit vectors.

– It chooses u
$← Zdp\U0 and sets w := c.

– It computes (ji, ki) := Inj(Ii, σi) for all i ∈ [η′] and sets (ji, ki) := (j1, k1) for i ∈
[η′ + 1, η].

It then chooses {Mi,j ∈ Zd×dp }i∈[η],j∈[n1] and {Ri,k ∈ Zd×dp }i∈[η],k∈[n2] as follows.

– For i ∈ [η], the algorithm samples Mi,ji and Ri,ki uniformly of rank d subject to

Ui = R⊤i,kiVi−1, Vi−1 = M⊤i,jiUi−1.
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– For other i, j, and k, the algorithm samples Mi,j and Ri,k uniformly of rank d − 1
subject to

Ui = R⊤i,kVi−1, Vi−1 = M⊤i,jUi−1.

Finally, the algorithm sets

[Ni,k] :=

{
[Ri,k] if i ∈ [η − 1]

[Ri,k] · [B]⊤ if i = η

for all k ∈ [n2]. Finally, it outputs the verification key

vk := (G, [u] , [w] , {[Mi,j ]}i∈[η],j∈[n1], {[Ni,k]}i∈[η],k∈[n2])

and the trapdoor

td := (G,u,a1, . . . ,ad−1, [B] , [c] , [d] , {Mi,j}i∈[η],j∈[n1], {Ri,k}i∈[η],k∈[n2]). (46)

Note that SimGen discards the challenge term [t] of the problem instance ψ.

SimEval(td, x)→ (y, π). It parses td as Eq. (46) and runs as follows.

– For i ∈ [η], it computes Qi as Qi :=
∑

(j,k)∈S(x)Mi,jRi,k.

– It computes

b = (b1, . . . , bd)
⊤ :=

(
η∏
ι=1

Qι

)⊤
u ∈ Zdp. (47)

– For i ∈ [η], it computes Pi and vi as

[Pi] =

{
[Qi] if i ≤ η − 1

[Qη] · [B]⊤ if i = η
, [vi] =


[(∏i

ι=1Qι

)]⊤
u if i ≤ η − 1

[B] · b if i = η
.

(48)

– It computes z as z :=
∑d−1

i=1 biai.

– Finally, it outputs y := [⟨z,1d⟩] and π := ({[vi] , [Pi]}i∈[η] , [z]).

SimChal(td, ψ, x)→ y. It parses ψ as ψ → (G, [c] , [d] , [t]) and td as Eq. (46). It then computes b
as in Eq. (47). It then computes y as

y :=

[
bdt+

〈
1d,

d−1∑
i=1

biai

〉]
(49)

using [t]. Finally, it outputs y.

Before proving function value randomizability and the simulation indistinguishability of the above
algorithms, we prove the following useful lemma.

Lemma 6. For all K ∈ Kλ, ψ ∈ D0 ∪ D1, (vk, td) ∈ SimGen(K,ψ), x ∈ {0, 1}ℓ, and b computed
as in Eq. (47), we have bd = 0 if and only if FSSM(K, x) = 1.
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Proof. We first prove that the following holds for all i ∈ [η]:

Q⊤i Ui−1 ⊆ Ui. (50)

This can be seen by observing that Q⊤i Ui−1 =
∑

(j,k)∈S(x)R
⊤
i,kM

⊤
i,jUi−1 and R⊤i,kM

⊤
i,jUi−1 = Ui for

each j and k, where the latter follows from M⊤i,jUi−1 = Vi−1 and R⊤i,kVi−1 = Ui. We also prove
the following equation for all i ∈ [η]:

Q⊤i

(
Zdp\Ui−1

)
⊆

{
Ui if (ji, ki) ̸∈ S(x)

Zdp\Ui if (ji, ki) ∈ S(x).
(51)

Since Q⊤i
(
Zdp\Ui−1

)
=
∑

(j,k)∈S(x)R
⊤
i,kM

⊤
i,j

(
Zdp\Ui−1

)
, to prove Eq. (51), it suffices to show that

the following equation holds for all i ∈ [η]:

R⊤i,kM
⊤
i,j

(
Zdp\Ui−1

)
⊆

{
Ui if (j, k) ̸= (ji, ki)

Zdp\Ui if (j, k) = (ji, ki)
. (52)

We prove Eq. (52) by the following case analysis.

The case of j ̸= ji. In this case, we have M⊤i,j(Zdp\Ui−1) ⊆ M⊤i,jZdp = Vi−1. Since we have

R⊤i,kVi−1 = Ui, the claim follows.

The case of k ̸= ki. In this case, the claim follows from R⊤i,kZdp = Ui directly.

The case of (j, k) = (ji, ki). We first show that M⊤i,ji
(
Zdp\Ui−1

)
⊆ Zdp\Vi−1. For the sake of

contradiction, suppose this does not hold. Then there exists a vector a ∈ Zdp\Ui−1 such that

M⊤i,jia ∈ Vi−1. However, this contradicts the fact that Mi,ji is full-rank, since a together

with Ui−1 spans the entire space Zdp and thus implies Mi,jiZdp ⊆ Vi−1. Because of the same

reasoning, R⊤i,ki
(
Zdp\Vi−1

)
⊆ Zdp\Ui holds. The claim thus follows.

We also observe that the following holds:

FSSM(K, x) = 0 ⇔ σi = Encode(x)Ii ∀i ∈ [η′]

⇔ Inj(Ii, σi) = Inj(Ii,Encode(x)Ii) ∀i ∈ [η′]

⇔ (ji, ki) ∈ S(x) ∀i ∈ [η′]

⇔ (ji, ki) ∈ S(x) ∀i ∈ [η] (53)

where the first line follows from the definition of FSSM, the second line follows trivially, (in par-
ticular, the only if direction of) the third line follows from the injectivity of Inj, and the last line
follows from the definition that (ji, ki) = (j1, k1) for i > η′.

We then prove that b ∈ Uη if and only if FSSM(K, x) = 1. Recalling that Uη is the space
spanned by the first d − 1 unit vectors, this completes the proof of the lemma. There are two
cases to consider.

The case of FSSM(K, x) = 0. By Eq. (53), we have (ji, ki) ∈ S(x) for all i ∈ [η]. Then, straight-
forward induction shows that we have vi ∈ Zdp\Ui for i ∈ [0, η − 1] and b ∈ Zdp\Uη, where
the base case holds for i = 0, and the induction step follows from Eq. (51), with the final
step of the induction applied to vη−1 and b = Qηvη−1.

57



The case of FSSM(K, x) = 1. By Eq. (53), there exists i∗ ∈ [η] such that (ji∗ , ki∗) ̸∈ S(x). If
i∗ = η, b ∈ Uη follows from Eq. (50) and (51) directly, which imply QηZdp ⊆ Uη. If

i∗ ≤ η − 1, vi∗ ∈ Ui∗ follows from Eq. (50) and (51), which imply Qi∗Zdp ⊆ Ui∗ . Then,
straightforward induction shows that we have vi ∈ Ui for i ∈ [i∗, η − 1] and b ∈ Uη, where
the base case holds for i = i∗, and the induction step follows from Eq. (50), with the final
step of the induction applied to vη−1 and b = Qηvη−1.

This concludes the proof of Lemma 6.

We then prove the function value randomizability of the above algorithms.

Theorem 13. The simulation algorithms (SimGen,SimEval,SimChal) satisfy the function value
randomizability as per Def. 12.

Proof. Since SimGen discards [t], [t] is distributed uniformly at random over G independently
from (vk, td) when ψ ∈ D1. Furthermore, it follows by Lemma 6 that bd ̸= 0 holds for b computed
as Eq. (47). Therefore, y computed as Eq. (49) is distributed uniformly at random over G, since
[bdt] effectively functions as a one-time pad.

We then prove the simulation indistinguishability of the above algorithms.

Theorem 14. If there is (tA, Q, ϵ, ϵA, )-adversary A against the simulation indistinguishability
property, there is an (ϵB′ , tB′)-adversary B′ against the d-rank problem such that

tB′ = tA +Q · poly(λ, n), 2ηϵB′ ≥ ϵA −
ηd(n1 + n2)

p
,

where poly(λ, n) is a fixed polynomial independent from Q and ϵA.

Proof. Let us fix a PPT adversary A. We prove the theorem using a sequence of games. In the
following, let Exx be the probability that the adversary A outputs 1 at the end of Gamexx.

Game0: This is the game where the challenger runs (vk, sk)
$← Gen(1λ) and simulates the oracle

Eval(sk, ·) for A.

Game1: In this game, the challenger chooses ψ
$← D0 andK

$← PrtSmp
(
1λ, Q, ϵ

)
. Then, it chooses

subspaces Ui and Vi for each i ∈ {0, 1, . . . , η− 1} and B as in SimGen(K,ψ). However, they
are ignored throughout the game. Clearly, we have Pr[E1] = Pr[E0].

Game2: In this game, we sample u as u
$← Zdp\U0 instead of u

$← Zdp\{0d}. Since U0 is never used
in the game except for the sampling of u and thus is information theoretically hidden, this
change does not alter the view of the adversary. Therefore, we have Pr[E2] = Pr[E1].

We consider Game3,κ,1 for 0 ≤ κ ≤ η and Game3,κ,2 for 0 ≤ κ ≤ η − 1 defined as follows:

Game3,κ,1 : In this game, Mi,j and Ni,k for all i ≤ κ are chosen as in SimGen. For i ≥ κ + 1,
they are chosen from Zd×dp uniformly at random as in Gen(1λ). Note that we only change
the distribution of ({Mi,j}i,j , {Ni,k}i,k) here and the oracle given to the adversary is still
Eval(sk, ·).

Game3,κ,2: This game is the same as Game3,κ,1 except that Mκ+1,j are chosen as in SimGen.
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Clearly, we have Pr[E3,0,1] = Pr[E2], since Game3,0,1 and Game2 are equivalent. We will show that
|Pr[E3,κ,1]−Pr[E3,κ,2]| and |Pr[E3,κ,2]−Pr[E3,κ+1,1]| are negligible for all κ assuming the hardness
of the d-rank problem in the proof of Lemma 7 and 8, respectively.

Game4: This is the game where the challenger runs (vk, td)
$← SimGen(K,ψ) and answers the

queries made by A by simulating the oracle Sim(K, td, ψ, ·). In Lemma 9, we will show that
Game3,η,1 is equivalent to Game4 and thus we have Pr[E3,η,1] = Pr[E4].

We can see that the advantage of A against the simulation indistinguishability is |Pr[E0]−Pr[E4]|.
By the triangle inequality and Lemma 9, we have

|Pr[E0]− Pr[E4]| ≤
η−1∑
κ=0

|Pr[E3,κ,1]− Pr[E3,κ,2]|+
η−1∑
κ=0

|Pr[E3,κ,2]− Pr[E3,κ+1,1]|.

Therefore, to complete the proof of Theorem 14, it suffice to prove Lemma 7, 8, and 9. The proofs
of these lemmas closely follow those of [HJ16, Koh19].

Lemma 7. For all κ ∈ {0, 1, . . . , η− 1}, there exists an adversary B whose advantage against the
d-rank problem is at least |Pr[E3,κ,1]− Pr[E3,κ,2]| − dn1/p.

Proof. We describe an adversary B that uses A to break the d-rank problem with advantage at
least |Pr[E3,κ,1]− Pr[E3,κ,2]| − dn1/p. B works as follows.

B is given the problem instance (G, [A]) of the d-rank problem and simulates vk as follows.

1. B first samples U0,U1, . . . ,Uκ and V0,V1, . . . ,Vκ−1 as in Game3,κ,1. It also samples K
$←

PrtSmp
(
1λ, Q, ϵ

)
, u

$← Zdp\U0, and w
$← (Z∗p)d.

2. It then samples {Mi,j}i∈[κ],j∈[n1] and {Ri,k}i∈[κ],k∈[n2] as in Game3,κ,1. Note that this can be
done efficiently since it sampled U1, . . . ,Uκ and V1, . . . ,Vκ−1 by itself. It then sets Ni,k =
Ri,k for all i ∈ [κ] and k ∈ [n2]. Furthermore, it samples {Mi,j}i∈[κ+2,j],j∈[n1] (when κ ≤
η − 2) and {Ri,k}i∈[κ+1],k∈[n2] uniformly at random over Zd×dp as in Game3,κ,1. We describe
how to sample the remaining terms {[Mκ+1,j ]}j∈[n1] in the next item.

3. B chooses (not necessarily random) d − 1 linearly independent vectors e1, . . . , ed−1 ∈ Uκ
and a vector ed ∈ Zdp\Uκ and forms an invertible matrix E := (e1| · · · |ed). It also samples

g1
j , . . . ,g

d
j

$← Zdp for j ∈ [n1]. Then, it computes {[Fj ]}j∈[n1] as follows.

• For j ∈ [n1]\{jκ+1}, it implicitly sets Fj := (f1j | · · · |fdj ), where f1j := Ag1
j , . . . , f

d
j :=

Agdj . B can compute [Fj ] since it knows [A] and g1
j , . . . ,g

d
j .

• For j = jκ+1. it samples fdjκ+1

$← Zdp. It then implicitly sets Fjκ+1
:= (f1jκ+1

| · · · |fdjκ+1
),

where f1jκ+1
:= Ag1

jκ+1
, . . . , fd−1jκ+1

:= Agd−1jκ+1
. Similarly to the above case, B can compute[

Fjκ+1

]
from [A] and g1

jκ+1
, . . . ,gd−1jκ+1

.

It then computes [Mκ+1,j ] for j ∈ [n2] as Mκ+1,j := (FjE
−1)⊤.

4. Finally, B sets vk := (G, [u] , [w] , {[Mi,j ]}i,j , {[Ni,k]}i,k) and gives it to A.

When A makes an oracle query x, B answers the query as follows.
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1. For i ∈ {1, 2, . . . , η}\{κ+1}, it computes Pi =
∑

(j,k)∈S(x)Mi,jNi,k. This is possible since B
knows Mi,j and Ni,k in the clear (i.e., not on the exponent) for all j and k when i ̸= κ+ 1.

2. It then computes [Pκ+1] =
[∑

(j,k)∈S(x)Mκ+1,jNκ+1,k

]
. This can be computed efficiently,

since B knows [Mκ+1,j ] for all j and Nκ+1,k for all k in the clear.

3. It computes [vi] =

[(∏i
ι=1Pι

)⊤
u

]
for i ∈ [η]. This can be computed efficiently, since it

knows Pi for i ∈ {1, 2, . . . , η}\{κ+ 1} and u in the clear and [Pκ+1].

4. It also computes [z] = [vη ⊘w] from [vη] and w.

5. It sets y = [⟨z,1d⟩] and π := ({[vi] , [Pi]}i∈[η] , [z]).

6. Finally, B returns y to A if FSSM(K, x) = 0 and (y, π) to A if FSSM(K, x) = 1.

At the end of the game, B outputs what A outputs.

To finish the proof of the lemma, it suffices to show that B simulates Game3,κ,1 if A is full-
rank and Game3,κ,2 otherwise, except for negligible events that happen with probability at most
n1d/p. We first observe that the two games differ only in how {[Mκ+1,j ]}j∈[n1] are sampled.
Furthermore, by inspection, it can be seen that other terms in vk and responses to the oracle
queries are simulated as in Game3,κ,1 in the above simulation. Therefore, in the following, we
focus on {[Mκ+1,j ]}j∈[n1] and show that they are distributed as in Game3,κ,1 if A is full-rank and
as in Game3,κ,2 otherwise, except for probability n1d/p.

The case of rank(A) = d. In this case, for all j, Fj is distributed uniformly at random over Zd×dp

and thus so is Mκ+1,j = (FjE
−1)⊤. Therefore, the distribution of {Mκ+1,j}j corresponds

to that of Game3,κ,1.

The case of rank(A) = d− 1. In this case, we implicitly set Vκ to be a space spanned by the
columns of A. We analyze the distribution of Mκ+1,j for each j.

The case of j ∈ [n1]\{jκ+1}. In this case, each column of Fj is a random vector sampled
from Vκ. Let us assume that rank(Fj) = d−1, which happens with probability at least
1 − d/p. We then have that for each j ∈ [n1]\{jκ+1}, Fj is a random matrix of rank
d − 1 whose image is Vκ. This in turn implies that Mκ+1,j = (FjE

−1)⊤ is a random
matrix of rank d− 1 subject to Vκ = M⊤κ+1,jUκ, which corresponds to the distribution
of Mκ+1,j in Game3,κ,2.

The case of j = jκ+1. In this case, f1jκ+1
, . . . , fd−1jκ+1

are random vectors sampled from Vκ
and fdjκ+1

is a random vector chosen from Zdp. Let us assume that f1jκ+1
, . . . , fd−1jκ+1

span

the entire space Vκ and fdjκ+1
is not in Vκ. These two events happen with probability at

least 1−d/p. Then, Fjκ+1 is a random full-rank matrix with the constraint that the first
d− 1 columns span the space Vκ. This in turn implies that Mκ+1,jκ+1 = (Fjκ+1E

−1)⊤

is a random matrix of rank d subject to Vκ = M⊤κ+1,jκ+1
Uκ, which corresponds to the

distribution of Mκ+1,jκ+1 in Game3,κ,2.

In the above, for each j, we exclude the event that happens with probability at most d/p.
Taking the union bound for all j ∈ [n1], these events do not happen except for probability
at most n1d/p.
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This completes the proof of Lemma 7.

Lemma 8. For all κ ∈ {0, 1, . . . , η− 1}, there exists an adversary B whose advantage against the
d-rank problem is |Pr[E3,κ,2]− Pr[E3,κ+1,1]| − dn2/p.

Proof. The proof is very similar to that of Lemma 7. We will avoid repeating the same argument
here and highlight the difference. We describe an adversary B that uses A to break the d-rank
problem with advantage at least |Pr[E3,κ,2] − Pr[E3,κ+1,1]| − dn1/p. Given the problem instance
(G, [A]), B simulates vk as follows.

1. B first samples U0,U1, . . . ,Uκ, V0,V1, . . . ,Vκ, K, u, and w as in Game3,κ,2.

2. It samples {Mi,j}i,j and {Ri,k}i,k for all i, j, k except for {Rκ+1,k}k∈[n2] as in Game3,κ,2.

3. It simulates {[Nκ+1,k]}k∈[n2] so that its distribution corresponds to that of Game3,κ,2 when
A is full-rank and that of Game3,κ+1,1 when A is of rank d−1. We treat the case of κ = η−1
separately, since Uη is a space that is spanned by the first d− 1 unit vectors, rather than a
random subspace of Zdp with dimension d− 1.

• For κ < η−1, this can be done similarly to the proof of Lemma 7, where Vκ, Uκ+1, and
{Rκ+1,k}k here play the role of Uκ, Vκ, and {Mκ+1,j}j there. We sample {[Rκ+1,k]}k
and then set Nκ+1,k = Rκ+1,k.

• In the case of κ = η − 1, we set U ′η := BUη so that U ′η is a random subspace of

Zdp with dimension d − 1. Then, the same simulation strategy of Lemma 7 works,
where Vη−1, U ′η, and {Nη,k}k here play the role of Uκ, Vκ, and {Mκ+1,j}j there. Here,
we directly sample {[Ni,k]}i,k rather than first sampling {[Ri,k]}i,k and then setting
[Ni,k] =

[
Ri,kB

⊤].
4. Finally, B sets vk := (G, [u] , [w] , {[Mi,j ]}i,j , {[Ni,k]}i,k) and gives it to A.

Similarly to the proof of Lemma 7, B can answer an oracle query x made by A, since it knows
{[Nκ+1,k]}k and (u,w, {Mi,j}i,j , {Ni,k}i ̸=κ+1,k) in the clear (i.e., not on the exponent).

Lemma 9. We have Game3,η,1 ≡ Game4.

Proof. We can see that the distribution of vk in Game3,η,1 is exactly the same as that output
by SimGen. To show that the two games are equivalent, we show that the oracle responses to a
query x made by A in two games are equivalent. We consider the case of FSSM(K, x) = 0 and
FSSM(K, x) = 1.

The case of FSSM(K, x) = 1: It is straightforward to see that ({[vi] , [Pi]}i∈[η]) returned to A as
a part of the proof π in response to the oracle query x are computed in equivalent ways in the
two games. Therefore, it remains to show that the same holds for y and [z] returned to A.
In Game3,η,1, z is computed as z = vη ⊘w while in Game4, z is computed as z =

∑d−1
i=1 biai.
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We have

z = vη ⊘w

=

( η∏
i=1

Pi

)⊤
u

⊘w

=

B ·

(
η∏
i=1

Qi

)⊤
u

⊘ c

= (Bb)⊘w

= ([a1 ⊙ c, · · · ,ad−1 ⊙ c,d]b)⊘w

= [a1, · · · ,ad−1,d⊘ c]b

= bd · (d⊘ c) +

d−1∑
i=1

biai. (54)

Since FSSM(K, x) = 1, we have bd = 0 by Lemma 6 and thus z computed as above equals to
z =

∑d−1
i=1 biai as desired. Furthermore, since y is computed as y = [⟨1d, z⟩] in both games,

the view of the adversary in both games is the same as well.

The case of FSSM(K, x) = 0: In Game3,η,1, y is computed as y = [⟨1d, z⟩] while it is computed as[
bdt+

〈
1d,
∑d−1

i=1 biai

〉]
in Game4. We have

[⟨1d, z⟩] =

[
bd⟨1d, (d⊘ c)⟩+

〈
1d,

d−1∑
i=1

biai

〉]
=

[
bdt+

〈
1d,

d−1∑
i=1

biai

〉]
,

where we use Eq. (54) in the first equation and t = d ⊘ c when ψ ∈ D0 in the second
equation. Therefore, the view of the adversary in both games is the same in this case as
well.

This completes the proof of Lemma 9.

This completes the proof of Theorem 14.

Remark 7 (On using random encoding function). Note that for the statement of Theorem 12
to be meaningful, we need the underlying partitioning function FSSM to have a good lower bound
for the quantity γmin. In particular, we would like to use Theorem 6. However, to invoke the
theorem, Encode should be chosen randomly from a family of hash functions and included in
vk unlike previous constructions, where Encode is a deterministic function. We discuss that
this change does cause any problem. First of all, it is straightforward to see that this change
does not ruin correctness and unique provability, since these properties hold for any encoding
function Encode. In addition, this change does not harm the pseudorandomness. The only change
we have to add to the statement of Theorem 12 is to modify the the inequality ϵB + 2ηϵB′ ≥
γminϵA/6|Σ|η

′ − ηd(n1 + n2)/p to be ϵB + 2ηϵB′ ≥ γminϵA/6|Σ|η
′ − ηd(n1 + n2)/p − pc,ℓ,Σ,n, where

pc,ℓ,Σ,n is defined as in Lemma 5 and it accounts for the case where Encode chosen from the
family of hash functions does not make corresponding FSSM a partitioning function with the desired
parameters, due to the lack of small triple overlap property. We can make pc,ℓ,Σ,n smaller than
2−ℓ by setting the parameters as in Theorem 12.
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7.5 Comparison

Here, we discuss our new VRF scheme constructed in Sec. 7.3 and compare it with previous
schemes. We refer to Table 2 for the overview. For comparison, we focus on the schemes
that achieve “all the desired properties” [HJ16]. Namely, we require the construction to have
exponential-sized input space, adaptive security (i.e., both evaluation queries and the challenge
query can be made adaptively), and security under non-interactive assumption. Here, we nar-
row the focus further and discuss constructions that are proven secure under a static assump-
tion. We therefore do not include constructions that are proven secure under q-type assump-
tions [BMR10, HW10, Jag15, Yam17, Kat17, Nie21] or even stronger assumptions [JN19, JKN21]
in the table. However, we mention that our construction achieves asymptotic efficiency that
matches that of [Kat17], which is based on q-type assumptions. We also do not include the con-
struction of VRFs from general assumptions that are quite inefficient [Bit17, GHKW17]. As we
can see from the table, we achieve the best parameter size and reduction costs at the same time.

Since our construction is based on that of Kohl [Koh19], we compare our construction with
hers in detail. Recall that there are two constructions of VRF in [Koh19] similarly to ours:
one based on binary error correcting codes and the other based on error correcting codes with
polynomial-size alphabets. Our improvement is based on two orthogonal ideas explained below:

• The first idea is to use 3-wise independent hash function as an error correcting codes. On
the other hand, [Koh19] uses explicit constructions of error correcting codes both in binary
and polynomial-sized alphabet cases. While the usage of 3-wise independent hash function
requires that the description of the function should be included in the verification key, its
description size is much smaller than other part of the verification key and can be ignored
asymptotically. Simply replacing the underlying code in her construction with our code
already leads to the following improvement.

– In the polynomial-size alphabet setting, the usage of our code reduces the overall
verification key size. The reduction in the verification key size is attributed to the
reduction in the alphabet size |Σ| of the code. Recall that in her construction, the
verification key size is Θ̃(n|Σ|). We have |Σ| = ℓν for an arbitrarily chosen constant
ν > 0, while |Σ| > ℓ in her case.

– Both in polynomial-size alphabet and binary alphabet settings, we can use our fine-
tuned analysis of γmin using the small triple overlap property. This leads to better
reduction costs. In addition, in the polynomial-size alphabet setting, we can improve
the reduction cost further, due to larger relative distance c of the our code. The reason
why larger relative distance leads to better reduction cost is a bit technical. We refer
to Remark 5 for detail.

• In addition, we alter the algebraic structure of the construction to significantly reduce the
asymptotic size of the verification key. In her construction, she introduces a matrix of group
elements for each combination of indices and alphabets, which leads to verification size
Θ̃(n|Σ|). In contrast, we introduce two groups of matrices in the verification key and define
another set of matrices by the combination of them. Then, each combination of the matrices
is associated with the combination of indices and alphabets. This approach reduces the size

of the verification key to approximately
√

Θ̃(n|Σ|). This idea for reducing the verification
key size can be combined with the idea of using the 3-wise independent hash function in the
first item.
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Table 2: Comparison of VRF Schemes with All The Desired Properties Based on Standard As-
sumptions.

Schemes |vk| |π| Reduction Cost
(# of G) (# of G)

[HJ16] O(λ) O(λ) ϵ1+µ/λQµ

[Ros18] O(λ) O(λ) ϵ1+µ/λQµ

[Koh19] (binary) ω(λ log λ) ω(log λ) ϵ1+µ/ω(log λ)Qµ

[Koh19] (polynomial) ω(λ2+2ν) ω(1) ϵ2+1/ν/ω(1)λ1+νQ1+1/ν

Sec. 7.3 (binary) ω(
√
λ log λ) ω(log λ) ϵ1/2+µ/ω(log λ)Qµ

Sec. 7.3 (polynomial) ω(λ1/2+5ν/2) ω(1) ϵ3/2/ω(1)λνQ

We compare VRF schemes with all the desired properties proven secure under a static assumption. The constructions
in the table are all proven secure under the d-LIN assumption. |vk| and |π| represent the size of the verification keys
and the size of the proofs, respectively. To measure |vk| and |π|, we count the number of group elements. Q and ϵ
denote the number of evaluation queries and the advantage, respectively. poly(λ) represents fixed polynomial that
does not depend on Q and ϵ. To measure the reduction cost, we show the advantage of the algorithm that solves
the problem constructed from the adversary against the corresponding VRF scheme. We measure the reduction
cost by employing the technique of Bellare and Ristenpart [BR09] for all the prior scheme and use our fine-tuned
analysis for our schemes. In the table, µ and ν are arbitrary constants with µ > 1 and 0 < ν ≤ 1, respectively.

8 Computing γ̃(⃗x) Efficiently for Waters Hash FWat

In this section, we complete the proof of Theorem 2, showing how to efficiently compute the
approximation γ̃(⃗x) for the partitioning function FWat used by Waters [Wat05]. Although we can
naively compute γ̃(⃗x) in time poly(Q, 1/ϵ), such a large runtime defeats the purpose of a tighter
advantage loss we obtained when compared to the security proof by Bellare and Ristenpart [BR09].
The main result of this section is to show how to compute γ̃(⃗x) in time Q · poly(λ), which is of
the same order as the reduction runtime of Bellare and Ristenpart. For our analysis, we use the
powerful machinery of generating functions, which is a standard tool in enumerative combinatorics.
The reason why we use the tool is that this greatly simplifies our analysis.

8.1 Preliminaries on Generating Functions

Here, we introduce necessary backgrounds for our purpose. For more information on the subject,
we refer to [Wil05]. A generating function corresponding to a sequence {ai ∈ R}i∈Z≥0

is a formal

power series f(Z) =
∑∞

i=0 aiZ
i, where Z is indeterminate. When ai = 0 for all i > n, we denote

f(Z) =
∑n

i=0 aiZ
i. We regard a generating function as an element in the formal power series ring

R[[Z]] and thus we can define the addition and multiplication of the generating functions. For
j ∈ Z≥0 and f(Z) ∈ R[[Z]], by the symbol [Zj ]f(Z) we mean the coefficient of Zj in the series. More
explicitly, for f(Z) =

∑∞
i=0 aiZ

i, [Zj ]f(Z) = aj . We can see that for n ∈ N, f(Z) =
∑d1

i=0 aiZ
i,

and g(Z) =
∑d2

i=0 biZ
i with d1 ≤ n, we have

[Zn](f(Z) · g(Z)) =
d1∑
i=0

[Zi]f(Z) · [Zn−i]g(Z). (55)

When f(Z) =
∑∞

i=0 aiZ
i has a multiplicative inverse, we denote it by f(Z)−1. It can be easily

checked that we have (1− Z)−1 =
∑∞

i=0 Z
i = 1+ Z+ Z2 + · · · . Furthermore, it is known that the
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following equation holds:

(1− Z)−ℓ =
∞∑
j=0

(
ℓ+ j − 1

ℓ− 1

)
Zj . (56)

8.2 Combinatorial Lemmas

Here, we prove several important lemmas that are used for the analysis of our main algorithm in
Section 8.3. We first introduce function RN,ℓ : Z→ Z for (N, ℓ) ∈ N2 defined as

RN,ℓ(α) = #

(Kj)j∈[ℓ] ∈ [0, N ]ℓ :
∑
j∈[ℓ]

Kj = α

 .

Lemma 10. For all N, ℓ, α ∈ N, we have RN,ℓ(α) = RN,ℓ(ℓN − α).

Proof. This can be seen by observing that the map (K1, . . . ,Kℓ) 7→ (N−K1, . . . , N−Kℓ) gives a bi-

jection between the sets
{
(Kj)j∈[ℓ] ∈ [0, N ]ℓ :

∑
j∈[ℓ]Kj = α

}
and

{
(Kj)j∈[ℓ] ∈ [0, N ]ℓ :

∑
j∈[ℓ]Kj = ℓN − α

}
.

A similar statement to the following lemma appears in [Wil05] in the form of exercise with
a slightly different formulation. We provide the proof here for completeness. The lemma says
that we can compute RN,ℓ(α) in time polylogarithmic in N . Looking ahead, this polylogarithmic
efficiency is crucial when we use the lemma in Theorem 15.

Lemma 11 (Adapted from Exercise 10(g) of Section 1 in [Wil05]). For 0 ≤ α ≤ Nℓ, we have

RN,ℓ(α) =

⌊ α
N+1
⌋∑

i=0

(−1)i
(
ℓ

i

)(
ℓ+ α− (N + 1)i− 1

ℓ− 1

)
. (57)

Furthermore, RN,ℓ(α) can be computed in time O(ℓ2) · poly(logN, log ℓ).

Proof. We first claim that

RN,ℓ(α) = [Zα](1 + Z+ Z2 + · · ·+ ZN )ℓ

holds. This can be seen by observing that (1 + Z+ Z2 + · · ·+ ZN )ℓ =
∑

K1,...,Kℓ∈[0,N ] Z
K1+···+Kℓ .

We then have

RN,ℓ(α) = [Zα](1 + Z+ Z2 + · · ·+ ZN )ℓ

= [Zα]
(
(1− ZN+1)ℓ · (1− Z)−ℓ

)
= [Zα]

( ℓ∑
i=0

(−1)i
(
ℓ

i

)
Z(N+1)i

)
·

 ∞∑
j=0

(
ℓ+ j − 1

ℓ− 1

)
Zj


= [Zα]

 ℓ∑
i=0

∞∑
j=0

(−1)i
(
ℓ

i

)(
ℓ+ j − 1

ℓ− 1

)
Z(N+1)i+j


=

⌊ α
N+1
⌋∑

i=0

(−1)i
(
ℓ

i

)(
ℓ+ α− (N + 1)i− 1

ℓ− 1

)
,
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where we use (1−Z)(1+Z+Z2+ · · · ) = 1 in the first equation and binomial theorem and Eq. (56)
in the third equation. To show that the latter part of the lemma holds, it suffices to note that there
are at most ℓ terms in the summation and each of the binomial coefficient can be computed by
O(ℓ) multiplications and a single division by using the formula

(
m
n

)
= m(m−1) · · · (m−n+1)/n!.

This completes the proof of the lemma.

Lemma 12. Let ℓ1 and ℓ2 be integers with ℓ1 ≤ ℓ2. We have

ℓ1N∑
α=0

RN,ℓ1(α)RN,ℓ2(α) = RN,ℓ1+ℓ2(ℓ2N).

Proof. We have

ℓ1N∑
α=0

RN,ℓ1(α)RN,ℓ2(α) =

ℓ1N∑
α=0

RN,ℓ1(α)RN,ℓ2(ℓ2N − α)

=

ℓ1N∑
α=0

[Zα](1 + Z+ Z2 + · · ·+ ZN )ℓ1 · [Zℓ2N−α](1 + Z+ Z2 + · · ·+ ZN )ℓ2

= [Zℓ2N ](1 + Z+ Z2 + · · ·+ ZN )ℓ1+ℓ2

= RN,ℓ1+ℓ2(ℓ2N),

where we use Lemma 10 in the first equation, RN,ℓ(α) = [Zα](1+Z+Z2+ · · ·+ZN )ℓ in the second
and fourth equations, and Eq. (55) in the third equation. This completes the proof.

8.3 An Efficient Algorithm AlgWat,γ̃ for Computing γ̃(⃗x)

With the preparation out of the way, we are now ready to state our main theorem, establishing
the fact that γ̃(⃗x) can be computed efficiently in time Q · poly(λ).

Theorem 15. Let the parameters (Q, ϵ, ℓ, x⃗) be defined as in Theorem 2. Then, there exists
an algorithm AlgWat,γ̃(λ,Q, ϵ, x⃗) that computes the function γ̃(⃗x) = Pr[E(x∗)]−

∑
j∈[Q] Pr[E(x

∗) ∧
E(x(j))] in time O(Q · ℓ2) · poly(λ). In particular, when ℓ = poly(λ), it computes γ̃(⃗x) in time
Q · poly(λ).

Proof. We first show the description of the algorithm AlgWat,γ̃ and analyze its running time. We
postpone the explanation on the reason why AlgWat,γ̃ correctly computes γ̃(⃗x) by the procedure.

Now, we show the procedure of AlgWat,γ̃ . It first computes N = ⌊
√
3 ·Q/

√
ϵ⌋ according to the

conditions of Theorem 2. Next, it computes Pr[E(x∗) ∧ E(x(j))] for all j ∈ [Q] as follows.

1. It first defines S := {i ∈ [ℓ] : x∗i = 1} and T := {i ∈ [ℓ] : x
(j)
i = 1}. It sets S′ = S \ (S ∩ T )

and T ′ = T \ (S ∩ T ).

2. It sets ℓ1 = min(|S′|, |T ′|) and ℓ2 = max(|S′|, |T ′|). Notice that ℓ1 + ℓ2 ≤ ℓ.

3. If ℓ1 = 0 holds, it computes

Pr[E(x∗) ∧ E(x(j))] =

{
1/(ℓN + 1)(N + 1)ℓ2 if ℓ1 = 0

RN,ℓ1+ℓ2(ℓ2N)/(ℓN + 1)(N + 1)ℓ1+ℓ2 otherwise.
(58)

where RN,ℓ1+ℓ2(ℓ2N) is computed using Eq. (57) in the above. We postpone the proof of
Eq. (58) for the time being.
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It finally computes γ̃(⃗x) = Pr[E(x∗)]−
∑

j∈[Q] Pr[E(x
∗)∧ E(x(j))]. Recall that E(x∗) = 1/(ℓN + 1).

Let us evaluate the running time of AlgWat,γ̃ . It can compute N in O(1) arithmetic operations.

Now we focus on the computation of Pr[E(x∗)∧ E(x(j))] for each j ∈ [Q]. The computation in the
first and second steps and the third step for the case of ℓ1 = 0 requires (ℓ) arithmetic operations.
Due to Lemma 11, computing RN,ℓ1+ℓ2(ℓ2N) takes O((ℓ1 + ℓ2)

2) · poly(logN, log(ℓ1 + ℓ2)) time.
Thus, since ℓ1+ℓ2 ≤ ℓ, computing Pr[E(x∗)∧E(x(j))] for all j ∈ [Q] takes O(Q·ℓ2)·poly(logN, log ℓ)
time. The computation of γ̃(⃗x) at the end of the procedure requires O(ℓ) arithmetic operation.
Thus, AlgWat,γ̃ terminates in time O(Q · ℓ2) · poly(logN, log ℓ). Since Q and ℓ are polynomially
bounded and ϵ is noticeable, this concludes that it terminates in time Q · poly(λ).

To finish this proof, it remains to show Eq. (58). We first show the case of ℓ1 = 0. Without
loss of generality, we assume |S′| = 0, namely S ⊂ T . Then, ℓ2 = |T ′| holds. We have

Pr[E(x∗) ∧ E(x(j))] = Pr

[
K0 +

∑
i∈S

Ki = 0 ∧ K0 +
∑
i∈T

Ki = 0

]

= Pr

[
K0 +

∑
i∈S

Ki = 0 ∧
∑
i∈T ′

Ki = 0

]

= Pr

[
K0 +

∑
i∈S

Ki = 0

]
· Pr

[∑
i∈T ′

Ki = 0

]

=
1

(ℓN + 1)(N + 1)ℓ2

where the third equality follows from S ∩ T ′ = ∅. Next, we consider the case of ℓ1 > 0. We have
the following:

Pr[E(x∗) ∧ E(x(j))] = Pr

[
K0 +

∑
i∈S

Ki = 0 ∧ K0 +
∑
i∈T

Ki = 0

]

= Pr

[
K0 +

∑
i∈S

Ki = 0 ∧
∑
i∈S′

Ki =
∑
i∈T ′

Ki

]

=
ℓN∑
z=0

Pr[K0 = −z] · Pr

[∑
i∈S

Ki = −K0 ∧
∑
i∈S′

Ki =
∑
i∈T ′

Ki

∣∣∣∣∣K0 = −z

]

=
1

ℓN + 1
·
ℓN∑
z=0

Pr

[∑
i∈S

Ki = z ∧
∑
i∈S′

Ki =
∑
i∈T ′

Ki

]

=
1

ℓN + 1
· Pr

[∑
i∈S′

Ki =
∑
i∈T ′

Ki

]
.

Now, without loss of generality, we assume |S′| ≤ |T ′|, namely, |S′| = ℓ1 and |T ′| = ℓ2. Then, we
obtain

Pr

[∑
i∈S′

Ki =
∑
i∈T ′

Ki

]

=

ℓ1N∑
z=0

Pr

[∑
i∈S′

Ki =
∑
i∈T ′

Ki = z

]
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=
1

(N + 1)ℓ1+ℓ2
·
ℓ1N∑
z=0

#

{
Ki ∈ [0, N ] for i ∈ S′ :

∑
i∈S′

Ki = z

}
·#

{
Ki ∈ [0, N ] for i ∈ T ′ :

∑
i∈T ′

Ki = z

}

=
1

(N + 1)ℓ1+ℓ2
·
ℓ1N∑
z=0

RN,ℓ1(z) ·RN,ℓ2(z)

=
1

(ℓN + 1)(N + 1)ℓ1+ℓ2
·RN,ℓ1+ℓ2(ℓ2N)

where the first equality follows from the facts that ℓ1 ≤ ℓ2 and
∑

i∈S′ Ki ≤ ℓ1N , the second
equality follows from the fact that Ki for i ∈ S′ ∪ T ′ is chosen uniformly at random from [0, N ],
the third equality follows from the definition of RN,ℓ, and the final equality follows from Lemma 12.
This completes the proof.
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A Details on Application to Waters IBE

In this section, we provide omitted details from Sec. 6.2. Concretely, we provide the definition
of the DBDH assumption, the description of the Waters IBE scheme [Wat05], partitioning based
reduction for the scheme, and the proof of Theorem 8.

A.1 Preliminalies

Let (G1,G2,GT , p, e) be pairing parameters where G1, G2, and GT are groups of prime order p and
e is a non-degenerate and efficiently computable bilinear map. We denote the set of non-identity
elements in Gi by G∗i for any i ∈ {1, 2, T}.

We now recall tbe definition of decisional bilinear Diffie-Hellman (DBDH) problem.

Definition 17 (DBDH Problem). For pairing parameters (G1,G2,GT , p, e) and a PPT algorithm
A, the advantage of A for the DBDH problem is defined by

Advdbdh(A) =
∣∣∣Pr[A({gi, gai , gbi , gci }i∈{1,2}, e(g1, g2)abc) = 1]− Pr[A({gi, gai , gbi , gci }i∈{1,2}, e(g1, g2)z) = 1]

∣∣∣
74



where g1
$← G∗1, g2

$← G∗2, and a, b, c, z
$← Zp. We say that the DBDH problem is hard if

Advdbdh(A) is negligible for all PPT algorithm A.

A.2 Waters IBE and Partitioning-Based Reduction for the Scheme

In Fig. 2, we provide the description of Waters IBE scheme. Our description of Waters IBE scheme
is different from the original one [Wat05] in that we use asymmetric pairings, which allows us to
have a better efficiency. It is also different from the one by Bellare and Ristenpart [BR09], who uses
asymmetric pairings. The difference from the latter is that we make sure that all the ciphertext
components except for the message carrying part reside in G1, whereas in their description, they
are mix of G1 and G2 elements. By using asymmetric pairing that minimizes the description size
of G1 elements, we can minimize the ciphertext size.

Setup(1λ)

1 : (g1, g2)
$← G∗

1 ×G∗
2,

2 : (a, b)
$← Z2

p

3 : A1 := ga1 , B2 := gb2

4 : (u0, u1, . . . , uℓ)
$← Zℓ+1

p

5 : for i ∈ [0, ℓ] do

6 : Ui := gui
1 , U

′
i := gui

2

7 : U := (U0, U
′
0, . . . , Uℓ, U

′
ℓ)

8 : mpk := (g1, A1, g2, B2,U)

9 : msk := gab2

10 : return (mpk,msk)

Encrypt(mpk, ID,M)

1 : parse (g1, A1, g2, B2,U)← mpk

2 : parse (U0, U
′
0, . . . , Uℓ, U

′
ℓ)← U

3 : c
$← Zp

4 : ct(1) := e(A1, B2)
c ·M

5 : ct(2) := gc1

6 : ct(3) :=

(
U0

∏
i:IDi=1

Ui

)c

7 : ct← (ct(1), ct(2), ct(3))

8 : return ct

KeyGen(mpk,msk, ID)

1 : parse (g1, A1, g2, B2,U)← mpk

2 : parse (U0, U
′
0, . . . , Uℓ, U

′
ℓ)← U

3 : r
$← Zp

4 : sk
(1)
ID := msk ·

(
U ′
0

∏
i:IDi=1

U ′
i

)r

5 : sk
(2)
ID := gr2

6 : skID ← (sk
(1)
ID , sk

(2)
ID )

7 : return skID

Decrypt(mpk, skID, ct)

1 : if ct is not in a valid form

2 : return ⊥

3 : parse (sk
(1)
ID , sk

(2)
ID )← skID

4 : parse (ct(1), ct(2), ct(3))← ct

5 : M← ct(1) ·
e(ct(3), sk

(2)
ID )

e(ct(2), sk
(1)
ID )

6 : return M

Figure 2: Waters IBE Scheme.

The following lemma claims that Waters IBE scheme admits a partitioning-based reduction
from the DBDH problem with respect to FWat. Essentially, the lemma is proven by Waters [Wat05]
implicitly and here we translate his proof into our language of partitioning based reduction.

Lemma 13. There is (0, 0, 0, 0)- partitioning-based reduction for the Waters IBE scheme from
the DBDH problem with respect to FWat.
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SimSetup(X, ψ)

1 : parse (Xi)i∈[0,ℓ] ← X ∈ Zℓ+1
p

2 : parse ((gb, Ab, Bb, Cb)b∈{0,1},W )← ψ

3 : for i ∈ [0, ℓ] do

4 : Yi
$← Zp

5 : Ui := BXi
1 gYi

1 , U
′
i := BXi

2 gYi
2

6 : Y := (Y0, Y1, . . . , Yℓ)

7 : U := (U0, U
′
0, . . . , Uℓ, U

′
ℓ)

8 : mpk := (g1, A1, g2, B2,U)

9 : td := (Y,mpk, ψ)

10 : return (mpk, td)

SimKeyGen(td, ID)

1 : r
$← Zp

2 : sk
(1)
ID := A

− G(Y,ID)
G(X,ID)

2 ·
(
B

G(X,ID)
2 g

G(Y,ID)
2

)r
3 : sk

(2)
ID := gr2A

− 1
G(X,ID)

2

4 : skID := (sk
(1)
ID , sk

(2)
ID )

5 : return skID

SimEncrypt(td, ID,M)

1 : ct(1) :=W ·M
2 : ct(2) := C1, and

3 : ct(3) := C
G(Y,ID)
1

4 : ct← (ct(1), ct(2), ct(3))

5 : return ct

Hard Distribution D0

1 : (g1, g2)
$← G∗

1 ×G∗
2,

2 : (a, b, c)
$← Z3

p

3 : for i ∈ {1, 2} do
4 : Ai := gai , Bi := gbi , Ci := gci

5 : W := e(g1, g2)
abc

6 : ψ0 := ((gb, Ab, Bb, Cb)b∈{0,1},W )

7 : return ψ0

Hard Distribution D1

1 : (g1, g2)
$← G∗

1 ×G∗
2,

2 : (a, b, c, z)
$← Z4

p

3 : for i ∈ {1, 2} do
4 : Ai := gai , Bi := gbi , Ci := gci

5 : W := e(g1, g2)
z

6 : ψ1 := ((gb, Ab, Bb, Cb)b∈{0,1},W )

7 : return ψ1

Figure 3: Algorithms used by the partitioning-based reduction for the Waters IBE scheme. G
is a function G : Zℓ+1

p × {0, 1}ℓ → Zp such that G(Z, ID) = Z0 +
∑

i:IDi=1 Zi mod p for Z =

(Z0, Z1, . . . , Zℓ) ∈ Zℓ+1
p and ID ∈ {0, 1}ℓ.

Proof. Let us define a function G : Zℓ+1
p ×{0, 1}ℓ → Zp as G(Z, ID) = Z0 +

∑
i:IDi=1 Zi mod p for

Z = (Z0, Z1, . . . , Zℓ) ∈ Zℓ+1
p and ID ∈ {0, 1}ℓ.

We construct three simulation algorithms (SimSetup, SimKeyGen, SimEncrypt) in Fig. 3. It is
easy to check that the running time of each algorithm is poly(λ) related to their counterpart real
algorithm. Below, we show that these algorithm satisfies all properties of Def. 11.

Master public key simulatability. For ψ ∈ D0 ∪ D1, (g1, A1, g2, B2) is uniformly distributed
over G2

1 × G2
2. Since Y is chosen uniformly at random from Zℓ+1

p , {Ui}i∈[0,ℓ] and {U ′i}i∈[0,ℓ] are
uniformly distributed over Gℓ+1

1 and Gℓ+1
2 , respectively. Thus, the distributions of U output by

SimSetup and Setup are identical. Therefore, we obtain ϵS = 0.

Secret key simulatability. We now consider ID such that FWat(X, ID) = 1. Since G(X, ID) ̸= 0,

sk
(1)
ID and sk

(2)
ID are computable. Let us fix any mpk = (g1, A1, g2, B2,U). Notice that there exists

one msk ∈ Smpk for any mpk. Since Ui = BXi
1 gYi1 and U ′i = BXi

2 gYi2 holds for all i ∈ [0, ℓ],
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skID = (sk
(1)
ID , sk

(2)
ID ) output by SimKeyGen satisfies

A
−G(Y,ID)

G(X,ID)

2 ·
(
B

G(X,ID)
2 g

G(Y,ID)
2

)r
= A

−G(Y,ID)
G(X,ID)

2 ·
(
B

G(X,ID)
2 g

G(Y,ID)
2

) a
G(X,ID) ·

(
B

G(X,ID)
2 g

G(Y,ID)
2

)r− a
G(X,ID)

= A
−G(Y,ID)

G(X,ID)

2 ·Ba
2 ·A

G(Y,ID)
G(X,ID)

2 ·

U ′0 ∏
i:IDi=1

U ′i

r− a
G(X,ID)

= msk ·

U ′0 ∏
i:IDi=1

U ′i

r− a
G(X,ID)

and

gr2A
− 1

G(X,ID)

2 = g
r− a

G(X,ID)

2 .

Because r is chosen uniformly at random from Zp, r − a/G(X, ID) is uniformly distributed over
Zp. Thus, the distributions of skID output by SimKeyGen and KeyGen are identical for all ID such
that FWat(X, ID) = 1. Therefore, ϵK = 0 holds.

Ciphertext simulatability. We consider ID such that FWat(X, ID) = 0, namely, G(X, ID) = 0

holds. Let us fix any (mpk, td) generated by SimSetup(X, ψ) where ψ
$← D0. For ct(3), we have(

U1
∏
i:IDi=1 Ui

)c
=
(
B

G(X,ID)
1 g

G(Y,ID)
1

)c
= C

G(Y,ID)
1 . Then, since C1 is uniformly distributed over

G1, the distributions of ct
(2) and ct(3) output by SimEncrypt and Encrypt are identical. When td is

generated by D0, W = e(g1, g2)
abc = e(A1, B2)

c holds. Thus, the distributions of ct(1) output by
SimEncrypt and Encrypt are also identical. Therefore, for all ID ∈ {0, 1}ℓ such that F(K, ID∗) = 0

holds and td computed from ψ
$← D0, the distribution of ct generated by SimEncrypt and Encrypt

are identical. Thus, we have ϵE = 0.

Ciphertext randomizability. We consider ID such that FWat(X, ID) = 0 and (mpk, td) gener-

ated by SimSetup(X, ψ) where ψ
$← D1. SinceW is uniformly distributed over GT , ct

(1) generated
by SimEncrypt is uniformly distributed over GT independently of a message M to be encrypted.
Moreover, ct(2) and ct(3) are produced irrelevantly to M in SimEncrypt. Thus, for all M,M∗ ∈M,
the distributions of ct generated by SimEncrypt(td, ID∗,M) and SimEncrypt(td, ID∗,M∗) are iden-
tical. Therefore, we have ϵR = 0. This completes this proof.

A.3 Proof for Theorem 8

The following theorem asserts the security of Waters IBE scheme. The proof of the theorem
follows from Theorem 7 and Theorem 2 and Lemma 13 shown in the previous sections.

Theorem 16 (Restatement of Theorem 8). If there is an (tA, Q, ϵA)-adversary A against the
IND-CPA security of the Waters IBE scheme, there is an adversary B that breaks the DBDH
problem with advantage ϵB and tB such that

ϵB >
ϵ1.5A

21Qℓ
, tB = tA +O(Q · ℓ2) · poly(λ)

where Q ≤ p
√
ϵA/ℓ
√
3 and poly(λ) is roughly the overhead incurred by the running the simulated

algorithms compared to the real (Setup,KeyGen,Encrypt) algorithms.
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Proof. By applying Theorem 2 and Lemma 13 to Theorem 7, we have

tB = tA +O(Q · ℓ2) · poly(λ) +Q · (ℓ · poly(λ) + poly(λ))

= tA +O(Q · ℓ2) · poly(λ),

and ϵB ≥
γmin

3
ϵA >

ϵ1.5A

21Qℓ
.

This completes the proof.

A.4 A Variant of Waters IBE from the CBDH Assumption

Here, we briefly discuss the variant of Waters IBE that can be proven secure under the compu-
tational bilinear Diffie-Hellman (CBDH) assumption15, which assumes that given (gai , g

b
i , g

c
i )i=1,2

with random a, b, c on a bilinear group, it is hard to compute e(g1, g2)
abc. The assumption is

potentially strictly weaker than the DBDH assumption. We can base the security of Waters IBE
on the CBDH assumption with slight modification. For simplicity, let us consider a variant with
a single bit message space. In the modified scheme, we add a random string r whose length is
the same as the binary length of GT element to mpk and then mask the message M ∈ {0, 1}
by ⟨r,W ⟩ ⊕M in the ciphertext. Due to the Goldreich-Levin hardcore bit theorem [GL89], the
term ⟨r,W ⟩ is pseudorandom assuming the CBDH assumption. We can prove the security of this
variant with very small change from the case of DBDH. Our improvement on the reduction cost
can be applied to this variant as well.

B Details on Applications to Lattice IBEs

In this section, we provide omitted details from Sec. 6.3. Concretely, we provide backgrounds
on lattices, the description of the ABB IBE scheme [ABB10a] and our variant d-extended ABB
scheme, partitioning based reduction for the schemes, and the proofs of Theorems 9 and 10.

B.1 Preliminaries on Lattices

Distributions. For an integer m > 0, let DZm,σ be the discrete Gaussian distribution over Zm
with parameter σ > 0. We use the following lemmas regarding distributions.

Lemma 14 ([Reg09], Lemma 2.5). We have Pr[∥x∥2 > σ
√
m : x

$← DZm,σ] < 2−2m.

Lemma 15 (Leftover Hash Lemma). Let q > 2 be a prime, m,n, k be positive integers such that

m > (n+1) log q+ω(log n), k = poly(n). Then, if we sample A
$← Zn×mq and R

$← {−1, 0, 1}m×k,
then (A,AR) is distributed negligibly close to U(Zn×mq )× U(Zn×kq ).

Gadget Matrix. Let n, q ∈ Z and m ≥ n⌈log q⌉. A gadget matrix G is defined as In ⊗
(1, 2, ..., 2⌈log q⌉−1) padded with m − n⌈log q⌉ zero columns. For any t, there exists an efficient
deterministic algorithm G−1 : Zn×tq → {0, 1}m×t that takes U ∈ Zn×tq as input and outputs
V ∈ {0, 1}m×t such that GV = U.

Trapdoors. We summarize properties of lattice trapdoors based on the presentation by Brakerski
and Vaikuntanathan [BV16]. Let n,m, q ∈ N and consider a matrix A ∈ Zn×mq . For all V ∈

15This assumption is also called search bilinear Diffie-Hellman assumption.
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Zn×m′
q , we letA−1σ (V) be a distribution that is a Gaussian (DZm,σ)

m′
conditioned onA·A−1σ (V) =

V. A σ-trapdoor for A is a procedure that can sample from the distribution A−1σ (V) in time
poly(n,m,m′, log q) for any V. We slightly overload notation and denote a σ-trapdoor for A by
A−1σ . We have the following:

Theorem 17 (Properties of Trapdoors [Ajt96, GPV08, ABB10a, CHKP12, ABB10b, MP12,
BLP+13]). Lattice trapdoors exhibit the following properties.

1. Given A−1σ , one can obtain A−1σ′ for any σ′ ≥ σ.

2. Given A−1σ , one can obtain [A∥B]−1σ for any B.

3. For all A ∈ Zn×mq , R ∈ Zm×N with N > n⌈log q⌉, and invertible matrix H ∈ Zn×nq , one can
obtain [A∥AR+H ·G]−1σ for σ = m · ∥R∥∞ · ω(

√
logm).

4. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1σ0 ) where A ∈
Zn×mq for some m = O(n log q) and is 2−n-close to uniform, where σ0 = ω(

√
n log q log n).

5. For A−1σ and u ∈ Znq , it follows Pr[∥A−1σ (u)∥∞ >
√
mσ] = negl(λ).

Lemma 16 (Noise Rerandomization). Let q,m, k be positive integers and r a positive real satis-
fying r > max{ω(

√
logm), ω(

√
log k)}. Let b ∈ Zmq be arbitrary and x ∈ Zmq chosen from DZm,r.

Then, there exists a PPT algorithm ReRand(V,b + x, r, σ) that for any V ∈ Zm×kq and positive

real σ > s1(V), outputs b′ = bV + x′ ∈ Zkq where x′ is distributed statistically close to DZk,2rσ

We recall the full-rank difference encoding [ABB10a].

Definition 18 (Full-Rank Difference). Let k, q be integers such that q a prime. A function
Hfrd
k : Zkq → Zk×kq is a full-rank difference encoding if the following holds:

• For all distinct x,x′ ∈ Zkq , the matrix Hfrd
k (x)− Hfrd

k (x′) ∈ Zk×kq is full rank over modulo q.

• Hfrd
k is computable in time poly(k, log q).

Let g(X) be an arbitrary irreducible polynomial in Zq[X] of degree k − 1. Then, for a
vector x ∈ Zkq , we define ϕ : Zkq → Zq[X]/g(X) as the polynomial embedding of x, i.e.,
ϕ(x) =

∑
i∈[k] xiX

i−1 ∈ Zq[X]/g(X), where xi is the i-th entry of x. We define the inverse

operation as [·]coeff : Zq[X]/g(X)→ Zkq . It is shown in [ABB10a] that the following function is a
full-rank difference encoding.

Lemma 17. Let k, q be integers such that q a prime. Define the function Hfrd
k : Zkq → Zk×kq as

Hfrd
k (x) =


[ϕ(x)]coeff

[X · ϕ(x) mod g(X)]coeff
...

[Xk−1 · ϕ(x) mod g(X)]coeff

 .
Then Hfrd

k is a full-rank difference encoding.

We sometimes consider a function Hfrd defined over ∪k∈NZkq that takes x ∈ Zkq for some k and

outputs Hfrd
k (x).

Hardness Assumption. Finally, for our lattice-based constructions, we rely on the learning
with errors assumption.
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Definition 19 ( [Reg09], Learning with Errors). For integers n,m, a prime q > 2, an error
distribution χ over Z, and a PPT algorithm A, the advantage for the learning with errors problem
LWEn,m,q,χ of A is defined as follows:

Adv
LWEn,m,q,χ

A =
∣∣∣Pr [A(A, s⊤A+ z⊤

)
= 1
]
− Pr

[
A
(
A,b⊤

)
= 1
]∣∣∣

where A
$← Zn×mq , s

$← Znq , b
$← Zmq , z

$← χm. We say that the LWE assumption holds if

Adv
LWEn,m,q,χ

A is negligible for all PPT algorithm A.

The hardness of (decisional) LWEn,m,q,DZ,σ for σ > 2
√
n has been shown by Regev [Reg09]

under the worst case hardness of lattice problems.

B.2 Partitioning-Based Reduction for ABB IBE

Here, we provide description of d-extended ABB IBE scheme. The construction is parameterized
by a d-wise linearly independent hash function hd-wise : {0, 1}ℓ → {0, 1}Ld defined in Sec. 5.5.
When we set d = 3, we recover ABB IBE scheme, where hd-wise(ID) = (1, ID) for d = 3.16 In the
following, for notational simplicity, we fix d to be some value and denote Ld and hd-wise as L and
h, respectively. We provide the description of d-extended ABB in Fig. 4.

Setup(1λ)

1 : (A,A−1
σ0

)
$← TrapGen(1n, 1m, q)

2 : for i ∈ [L] do Bi
$← Zn×m

q

3 : u
$← Zn

q

4 : mpk := (A, (Bi)i∈[L],u)

5 : msk := A−1
σ0

6 : return (mpk,msk)

Encrypt(mpk, ID,M)

1 : BID :=
∑

i:h(ID)i=1

Bi

2 : (s, z1, z
′)

$← DZn,σ1
×DZm,σ1

×DZ,σ1

3 : z2
$← DZm,σ2

4 : ct(1) := sA+ z1

5 : ct(2) := sBID + z2

6 : ct(3) := su⊤ + z′ + ⌊q/2⌉ ·M
7 : ct← (ct(1), ct(2))

8 : return ct

KeyGen(mpk,msk, ID)

1 : BID :=
∑

i:h(ID)i=1

Bi

2 : eID
$← [A∥BID]

−1
σ (u)

3 : skID := eID

4 : return skID

Decrypt(mpk, skID, ct)

1 : w := ct(3) − [ct(1)∥ct(2)]e⊤ID
2 : if |w| < q/4 do

3 : return 0

4 : return 1

Figure 4: ABB IBE Scheme.

16In fact, it is a slight variant of the original scheme provided in [ABB10a], where the encryption algorithm
is simplified using the proof technique by Katsumata and Yamada [KY16]. Our technique is agnostic to this
modification.
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The following Lemma 18 establishes the existence of a partitioning-based reduction for the
d-extended ABB IBE scheme shown in Sec. 5.5.

Lemma 18. For any d, there is a (negl(λ), 0, negl(λ), 0)-partitioning-based reduction for the d-
extended ABB IBE scheme from the LWE problem with respect to the partitioning function with
approximation FParWat in Sec. 5.5. Concretely, we can choose the following asymptotic parameters
for the scheme:

• σ0 = ω(
√
n log q log n). (For TrapGen in Theorem 17.)

• m > (n+ 1) log q + ω(log n). (For left over hash lemma, Lemma 15.)

• σ = mL · ω(
√
logm). (For sampling skID with SimKeyGen.)

• σ1 = 2
√
n. (For LWE problem to be difficult.)

• σ2 =
√
nmL · ω(

√
logm). (For noise rerandomization lemma, Lemma 16.)

• q = nm2L · ω(logm). (For correctness.)

Proof. We define the simulation algorithms in Fig. 5. It is easy to check that the running time of
each algorithms are poly(λ) related to their counterpart real algorithms. Below, we check all the
properties Def. 11 required by a partitioning-based reduction.

Master public key simulatability. For ψ ∈ D0 ∪ D1, (A,u) are uniformly random over
Zn×mq ×Znq . Then, due to Lemma 15, (A,A[R1∥ · · · ∥RL]) is distributed negligibly close to uniform

over Zn×mq × (Zn×mq )L. This implies that mpk output by SimSetup and Setup are distributed
negligibly close.

Secret key simulatability. Let us fix any mpk = (A, (Bi)i∈[L],u) with a corresponding msk =
A−1σ0 . Any skID = eID sampled from [A∥BID]

−1
σ (u) is distributed as a discrete Gaussian DZ2m,σ

conditioned on [A∥BID]eID = u. We argue that this is the same distribution as a sample from
[A∥ARID +HID ·G]−1σ (u). First,

BID =
∑

i:h(ID)i=1

Bi

=
∑

i:h(ID)i=1

(
ARi + Hfrd

n (Ki)G
)
= ARID +HID ·G.

Next, by the assumption that FParWat(K, ID) = 1, we have HID ̸= 0n×n. Moreover, due to our
specific choice of full-rank difference encoding (see Lemma 17), HID is full rank over q, and hence,
invertible since we assume q a prime. We also have ∥RID∥∞ ≤ L since each Ri ∈ {−1, 0, 1} for
i ∈ [L]. Then, due to our parameter selection and Theorem 17, [A∥ARID +HID ·G]−1σ (u) indeed
produces the same distribution as [A∥BID]

−1
σ (u).

Ciphertext simulatability. Let us fix any mpk = (A, (Bi)i∈[L],u) with a corresponding td =(
(Ri)i∈[L], ψ

)
, where ψ = (A,u,b, b′) with b = sA+ z and b′ = su⊤+ z′, that is, ψ ∈ D0. Notice

that ct(1) = b and ct(3) = b′ are distributed identically for both Encrypt and SimEncrypt. We thus
focus on ct(2). Following the above argument, we have

sBID + z2 = s(ARID +HID ·G) + z2 = sARID + z2
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for z2
$← DZm,σ2 , where the third equality follows from the assumption that FParWat(K, ID) = 0.

Here, note that s1(RID) ≤ mℓ. On the other hand, when b = sA + z with z
$← DZm,σ1 ,

due to the noise rerandomization lemma (see Lemma 16) and our parameter selection, we have
bID = sARID + z′2, where z′2 is distributed negligible close to DZm,σ2 . Hence, the distribution of
ct(2) in Encrypt and SimEncrypt are negligibly close as desired.

Ciphertext randomizability. Observe that in case ψ
$← D1, then (b, b′) are uniformly random

over Zmq × Zq and independent from mpk. Therefore, ct(3) is distributed uniformly random for

all M ∈ M. Moreover, ct(1) and ct(2) are distributed independently of M. This completes the
proof.

SimSetup(K,ψ)

1 : parse (Ki)i∈[L] ← K

2 : parse (A,u,b, b′)← ψ

3 : for i ∈ [L] do

4 : Ri
$← {−1, 0, 1}m×m

5 : Bi := ARi + Hfrd
n (Ki)G

6 : mpk := (A, (Bi)i∈[L],u)

7 : td :=
(
(Ri)i∈[L], ψ

)
8 : return (mpk, td)

SimEncrypt(td, ID,M)

1 : RID :=
∑

i:h(ID)i=1

Ri

2 : bID
$← ReRand(RID,b, σ1,

σ2
2σ1

)

3 : ct(1) := b

4 : ct(2) := bID

5 : ct(3) := b′ + ⌊q/2⌉ ·M
6 : ct← (ct(1), ct(2))

7 : return ct

SimKeyGen(td, ID)

1 : RID :=
∑

i:h(ID)i=1

Ri

2 : HID :=
∑

i:h(x)i=1

Hfrd
n (Ki)

3 : abort if HID is non-invertible over Zq

4 : eID
$← [A∥ARID +HID ·G]−1

σ (u)

5 : skID := eID

6 : return skID

Hard Distribution D0

1 : (A,u)
$← Zn×m

q × Zn
q

2 : (s, z, z)
$← DZn,σ1

×DZm,σ1
×DZn,σ1

3 : b := sA+ z

4 : b′ := su⊤ + z′

5 : return ψ0 := (A,u,b, b′)

Hard Distribution D1

1 : (A,u)
$← Zn×m

q × Zn
q

2 : (b, b′)
$← Zm

q × Zq

3 : return ψ1 := (A,u,b, b′)

Figure 5: Algorithms used by the partitioning-based reduction for the ABB IBE scheme.

We note that we can also prove partitioning based reduction for ABB IBE scheme with respect
to FBoy by the very similar analysis. However, the final reduction cost obtained by the analysis
using FBoy is worse than that obtained by FBoy with d = 3. We therefore omit the details.

B.3 Proof of Theorem 10

Theorem 18 (Restate of Theorem 10). If there is an (tA, Q, ϵA)-adversary A against the IND-CPA
security of the d-extended ABB IBE scheme for odd integer d ≥ 3, there is an adversary B that
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breaks the LWE problem with advantage ϵB and tB such that

ϵB >
ϵ
1+ 1

d−1

A

12qQ
− negl(λ), tB = tA +Q · poly(λ).

In particular, if we have d ≥ ω(1), we have

ϵB >
ϵA

12qλQ
− negl(λ), tB = tA +Q · poly(λ)

where qn ≥ 2 ·Q · ϵ−
1

d−1 holds for dimension n of the scheme and poly(λ) is roughly the overhead
incurred by the running the simulated algorithms compared to the real (Setup,KeyGen,Encrypt)
algorithms.

Proof. The proof can be directly obtained by applying Theorem 4 and Lemma 18 to Theorem 7.
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