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Abstract. Post-quantum cryptography has gained attention due to
the need for secure cryptographic systems in the face of quantum
computing. Code-based and lattice-based cryptography are two promi-
nent approaches, both heavily studied within the NIST standardization
project. Code-based cryptography—most prominently exemplified by the
McEliece cryptosystem—is based on the hardness of decoding random
linear error-correcting codes. Despite the McEliece cryptosystem hav-
ing been unbroken for several decades, it suffers from large key sizes,
which has led to exploring variants using metrics other than the Ham-
ming metric, such as the Lee metric. This alternative metric may allow
for smaller key sizes, but requires further analysis for potential vulner-
abilities to lattice-based attack techniques. In this paper, we consider a
generic Lee metric based McEliece type cryptosystem and evaluate its
security against lattice-based attacks.

Keywords: code-based cryptography · Lee metric · Hamming metric
· lattice-based cryptography · ℓ1-norm.· ℓ2-norm.

1 Introduction

In response to the threat posed by quantum computing to traditional crypto-
graphic systems, post-quantum cryptography has gained significant attention
over the last few years. Among the various approaches within post-quantum
cryptography, code-based and lattice-based cryptography are two of the most
widely studied research directions and constitute a majority of the current pro-
posals in the NIST standardization project.

Code-based cryptography is founded on the hardness of decoding (random
linear) error-correcting codes, a problem that remains intractable for both clas-
sical and quantum computers in its general form. This branch of cryptography



has its roots in the McEliece cryptosystem, proposed in 1978, a system that
remains unbroken to date and, therefore, promises high security guarantees. On
the other hand, it suffers from the drawback of requiring large public key sizes.
Consequently, one of the main research tasks in code-based cryptography is to
establish variants of the McEliece cryptosystem with smaller keys. One way of
doing so is to use decoding metrics other than the originally proposed Hamming
metric, e.g., the rank or the Lee metric, of which the latter is the main topic of
this work.

Lattice-based cryptography, on the other hand, relies on the difficulty of solv-
ing problems in (high-dimensional) lattices, such as the Shortest Vector Problem
(SVP) and the Learning With Errors (LWE) problem. Lattice-based schemes
offer several compelling advantages, including strong security proofs and prac-
tical efficiency. The seminal works of Ajtai and Dwork [1] in the late 1990s laid
the groundwork for this domain, leading to the development of numerous cryp-
tographic protocols [13, 11] that are both theoretically sound and practically
viable.

The use of the Lee metric in code-based cryptography was first suggested in
[8] and has since been studied from a coding-theoretic perspective in, e.g., [19,
3–5]. These results suggest that the generic Lee syndrome decoding problem is
(much) harder than its Hamming metric counter-part, which would imply that
smaller codes could be used in a code-based cryptosystem when using the Lee
metric instead of the Hamming metric. This would, in turn, lead to a reduced
public key size.

To complement the coding-theoretic perspective, it is well-known that the
Lee metric over modular integer rings is the analog of the ℓ1-norm over the
integers. It is therefore important to analyze the security of a Lee metric code-
based cryptosystem with respect to lattice techniques (in the ℓ1- or ℓ2-norm).
Exactly this approach has recently been used in [9] to break the signature scheme
FuLeeca [14], which was submitted to the NIST standardization project. The
attack exploits several properties of those Lee metric codes which arise from
the specific parameters that were suggested—in particular, a large modulus and
small minimum distance of the error vector.

In this paper, we first consider a McEliece type cryptosystem over the Lee
metric and then study the attackability of such Lee metric code-based cryptosys-
tems with lattice techniques more generally. For this, we will focus on public key
encryption schemes (and not on digital signatures). In particular, we will derive
complexity reductions to and from several known lattice problems including the
bounded distance decoding problem (BDD), the Lee-distance decoding problem
(LeeDP), and the unique shortest vector problem (uSVP); as shown in Fig. 1. We
will then analyze and find the values and parameters for which lattice reduction
algorithms could be applied to Lee metric codes embedded in a lattice and com-
pare the marginal error distributions of the Lee metric, the Hamming metric,
and the ℓ1- and the ℓ2-norms for both the Laplace and Gaussian distributions.

The paper is structured as follows. Section 2 provides all the necessary prelim-
inaries, definitions and results needed for the rest of the paper. It also includes the
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Fig. 1. Scheme of the reductions for full rank integer lattices in the ℓ1-norm.

Lee-McEliece cryptosystem. In Section 3, we first establish the relation between
the shortest vector (in ℓ1-norm) of a lattice constructed based on Construction A
and the minimum Lee distance of its underlying code. We further establish a two
way complexity reduction between LeeDP, BDD, and uSVP, see Theorems 3.3
and 3.7. In Section 4, we study when the techniques in the FuLeakage attack [9]
that were applied to FuLeeca [14] can and cannot be applied to the cryptosys-
tem in Section 2. Finally, we establish connections between the Lee metric and
the Laplace distribution and use it to compare Laplace and discrete Gaussian
distributions in terms of Rényi divergence.

2 Preliminaries

We denote by Zq the ring of integers modulo q. We will switch between two
different representations of the elements of Zq, namely the standard repre-
sentation t0, 1, 2, . . . , q ´ 1u, and the representation centered at zero t´tpq ´

1q{2u, . . . , 0, . . . , tq{2uu. If not specified, we will use Zq “ t0, 1, 2, . . . , q ´ 1u.
For a convex set S Ď Rn that spans a k-dimensional subspace, we will denote

the k-dimensional relative volume of S by VolkpSq, i.e., the volume of S in the
linear space spanned by S. Given a set U of k vectors over R, we will denote the
span of U in R by SpanRpUq :“

!

řk
i“1 xiui | xi P R, ui P U

)

.

Definition 2.1 Let A be a n ˆ n invertible matrix and define Mi,j to be the
determinant of the pn´1q ˆ pn´1q matrix obtained by removing the ith row and
jth column from A. Then the adjugate of A is defined to be

adjpAq :“
”

p´1q
i`j

Mj,i

ı

1ďi,jďn
.

It is a well-known property of the adjugate that

adjpAq ¨ A “ detpAq ¨ In “ A ¨ adjpAq.

2.1 Lee metric codes and the Lee-McEliece system

Definition 2.2 For x P Zq we define the Lee weight to be

wtLpxq :“ mint| x |, | q ´ x |u,
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Then, for x P Zn
q , we define the Lee weight to be the sum of the Lee weights of

its coordinates,

wtLpxq :“
n

ÿ

i“1
wtLpxiq .

We define the Lee distance of x, y P Zn
q as

dLpx, yq :“ wtLpx ´ yq .

Note that for q “ 2, 3 the Lee weight is equal to the Hamming weight wtH

in Zn
q , which is defined as

wtHpxq :“ |ti | xi ‰ 0u| for all x P Zn
q .

Both for practical and theoretical reasons the following marginal distributions
per coordinate of a vector with constant Lee—respectively, Hamming—weight t
will be useful.

Lemma 2.3 (a) [3, Lemma 1] Let x P Zn
q be a uniformly random vector with

wtLpxq “ t “ Tn for some T P r0, tq{2us such that t P Z. Further, let E
be the random variable representing a coordinate of x. Then, as n tends to
infinity, for any j P Zq,

FT pjq :“ PrpE “ jq “
expp´βwtLpjqq

řq´1
i“0 expp´βwtLpiqq

, (1)

where β is the unique real solution to the constraint

T “

q´1
ÿ

j“0
wtLpjq

expp´xwtLpjqq
řq´1

i“0 expp´xwtLpiqq
. (2)

(b) Let x P Zn
q be a uniformly random vector with wtHpxq “ t “ δn for some

δ P r0, 1s such that t P Z. Further, let E be the random variable representing
a coordinate of x. Then, as n tends to infinity, for any j P Zq,

Hδpjq :“ PrpE “ jq “

#

1 ´ δ if j “ 0
δ

q´1 otherwise
.

Note that, even though the Lee and Hamming marginal distribution is an
asymptotic result for growing n, the de facto distribution for small n only differs
by something very small. Therefore, we will use the marginals from above in our
analysis. Furthermore, we will use T for the relative Lee distance and δ for the
relative Hamming distance.

Remark 2.4 For q “ 2, 3 we get

β “ log
ˆ

1 ´ δ

δ
pq ´ 1q

˙

above in the Lee distribution, and hence the Lee distribution equals the Hamming
distribution.
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Definition 2.5 Let q be a positive integer.

1. A code over Zq of length n is a subset of Zn
q .

2. A (ring-)linear code over Zq of length n is a Z{qZ-submodule of Zn
q .

3. The minimum Lee distance dLpCq of a code C Ď Zn
q is the minimum of all

Lee distances of distinct codewords of C:

dLpCq “ mintdLpx, yq | x, y P C with x ‰ yu.

Linear codes can be completely represented through a generator or a parity-
check matrix.

Definition 2.6 A matrix G is called a generator matrix for a (ring-)linear code
C if its row space corresponds to C. In addition, we call a matrix H a parity-check
matrix for C if its kernel corresponds to C.

Note that such generator and parity-check matrices are not unique. If q is not
prime, even the number of rows of such matrices is not unique.

The general security assumption of code-based cryptography is based on the
hardness of the syndrome decoding problem (SDP).4 The Lee metric version of
this is as follows:

Problem 2.7 (Lee syndrome decoding problem (LeeSDPt)) Given a lin-
ear code C over Zq of length n with parity check matrix H P Zpn´kqˆn

q , a syn-
drome s P Zn´k

q and a positive integer t P N, find e P Zn
q such that wtLpeq ď t

and eHJ “ s, where J denotes the transposition operation.

Note that this problem is equivalent to the general decoding problem for
linear codes:

Problem 2.8 (Lee decoding problem (LeeDPt)) Given a linear code C over
Zq of length n, a vector r P Zn

q and a positive integer t P N, find c P C such that
wtLpr ´ cq ď t.

It was shown in [19] that for uniformly random instances the syndrome de-
coding problem is NP-complete for any additive weight function, which includes
the Lee metric. It is therefore a cryptographically interesting computationally
hard problem to be used in public key cryptosystems. Algorithm 1 shows a gen-
eral setup of a McEliece-type public key encryption scheme with Lee metric
codes.

Remark 2.9 The Lee isometries are generally not transitive on the sphere of
vectors with a fixed Lee weight. To prevent partial information leakage about
the error vector during the encryption, this should be considered when choosing
the secret linear code and generator matrix. Furthermore, the isometry φ could
4 De facto this is not true for the McEliece cryptosystem, since the codes used are not

random. However, we will not go into detail about this issue in this paper.

5



Algorithm 1 Lee-McEliece cryptosystem
Secret key: The generator matrix Gsec P Zkˆn

q of an efficiently decodable Lee metric
code with error-correction capacity w P N, and a Lee-isometry φ.
Public key: The generator matrix Gpub “ φpGsecq P Zkˆn

q and w.
Encryption: To encrypt the message m P Zk

q choose an error vector e of Lee weight
w uniformly at random and create the cipher

c “ mGpub ` e.

Decryption: Decode
φ´1

pcq

in the secret code to retrieve φ´1
pmqGsec. Recover m through linear algebra

operations and application of φ.

be replaced by a near-isometry (i.e., maps that possibly change the weight of the
vector by at most some prescribed value t), and the error weight in the encryption
should be chosen to be w´t, such that the receiver can still uniquely decrypt. It is
not the topic of this paper to analyze this issue, however it will be of paramount
importance when suggesting a specific instance of such a cryptosystem.

There are two main types of attacks that need to be analyzed in this setting:
key recovery attacks, where the attacker can recover the secret linear code and its
efficient decoding algorithm; and message recovery attacks, where the intruder
recovers the message m from the ciphertext c without recovering the secret key.
In this paper we will focus on the latter, by using known lattice techniques to
recover the message.

2.2 Lattice theory

We assume that the space Rn is equipped with the ℓ1-norm ∥v∥1 :“
řn

i“1 |vi|.
Note that this differs from the classical approach, where the ℓ2-norm is used.

Definition 2.10 The ℓ1 distance between two vectors v, w P Rn is denoted by

d1pv, wq :“ ∥v ´ w∥1 .

Definition 2.11 Given m linearly independent vectors b1, . . . , bm P Rn, the
lattice generated by them is given by

Lpb1, . . . , bmq :“
#

m
ÿ

i“1
xibi : xi P Z

+

.

For a vector r P Rn, the distance between r and L is given by d1pr, Lq :“
inf td1pr, vq : v P Lu. The shortest vector of a lattice L is the vector in L having
the smallest ℓ1-norm. The length of the shortest vector is denoted by λ1pLq, the
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length of the shortest lattice vector that is not a multiple of the shortest vector
is denoted by λ2pLq.

We can now state the two lattice problems in the ℓ1-norm that are of interest
for us:

Problem 2.12 (α-Bounded distance decoding problem (BDDα)) Given
an integer lattice L and a vector r P Zn such that d1pr, Lq ă αλ1pLq, find v P L
such that d1pv, rq ă αλ1pLq.

Problem 2.13 (γ-unique shortest vector problem (uSVPγ)) Given an in-
teger lattice L such that λ2pLq ą γλ1pLq, find a non-zero vector v P L of length
λ1pLq.

The connection between those two problems has already been studied in [10] as
follows:

Theorem 2.14 [10, Theorem 1] For any γ ě 1, there is a polynomial time
reduction from BDD1{2γ to uSVPγ .

Theorem 2.15 [10, Theorem 2] For any polynomially bounded γpnq “ nOp1q,
there is a polynomial time reduction from uSVPγ to BDD1{γ .

We remark that the results in [10] were proven for the ℓ2-norm over Rn;
however, it was noted that the same proofs will hold for any other ℓp-norm as
well. Without loss of generality, we also assume that the above results hold for
integer lattices and target vectors. We can thus use the ℓ1-versions as follows:

Theorem 2.16 For any γ ě 1, there is a polynomial time reduction from
BDD1{p2γq to uSVPγ over the ℓ1-norm.

Theorem 2.17 For any polynomially bounded γpnq “ nOp1q, there is a polyno-
mial time reduction from uSVPγ to BDD1{γ over the ℓ1-norm.

Lastly, for our results in Section 4 we will make use of the following two
known results.

Theorem 2.18 [18] Let Cn “ r´ 1
2 , 1

2 s
n

Ď Rn, i.e., the n-dimensional unit cube
centered at the origin. Let Pk Ď Rn be any k-dimensional linear subspace. Then
VolkpCn X Pkq ě 1.

Theorem 2.19 Let L be a k-dimensional lattice in Rn and let S Ď SpanRpLq

be a convex set symmetric about the origin (i.e., x P S implies ´x P S). Sup-
pose that VolkpSq ą m ¨ 2k ¨ detpLq. Then there are m different pairs of vectors
˘z1, . . . , ˘zm P S X Lzt0u.

The above theorem is an extension of Minkowski’s convex body theorem. Since
the standard form of Minkowski’s theorem is for full-dimensional lattices and
m “ 1, we provide the proof of this version in Appendix A for completeness.
Our proof is based on the proofs from [12, Theorem 20-21] and [17, Theorem
5-6].

7



2.3 Distributions

Let F be a probability distribution over the sample space X. Then, we denote
the support of F by SupppF q :“ tx P X | F pxq ‰ 0u. Throughout the paper,
we may interchangeably use the same symbol to denote both the probability
distribution and its density function.

We define a continuous Gaussian distribution over R by its density function
DR,σpxq “ 1

σ
?

2π
expp´x2{σ2q and over a lattice L Ď Rn as follows:

Definition 2.20 (Discrete Gaussian) For a lattice L, the discrete Gaussian
distribution DL,σ is defined by the probability density function

DL,σpxq :“ expp´}x}2
2{2σ2q

ř

yPL expp´}y}2
2{2σ2q

,

for every x P L.

Similarly, we define a continuous Laplace distribution over R by its density
function LapR,bpxq “ 1

2b expp´ |x| {bq and over a lattice L Ď Rn as follows:

Definition 2.21 (Discrete Laplace) For a lattice L, the discrete Laplace dis-
tribution LapL,b with b ą 0 is defined by its probability density function

LapL,bpxq :“
1
2b expp´}x}1{bq

ř

yPL
1
2b expp´}y}1{bq

,

for every x P L.

Given the integer lattice Zn, it is easy to check that DZn,σ “
śn

i“1 DZ,σ and
LapZn,b “

śn
i“1 LapZ,b.

We use the Rényi and Kullback-Leibler divergence to measure the closeness
of two distributions.

Definition 2.22 Let F and G be discrete probability distributions satisfying
SupppF q Ď SupppGq. Then,

1. (Rényi divergence) for any a P p1, 8s, the Rényi divergence of order a
between F and G is given by:

RapF ||Gq :“

$

’

’

’

&

’

’

’

%

˜

ř

xPSupppF q

F pxq
a

Gpxqa´1

¸
1

a´1

for a P p1, 8q

max
xPSupppF q

F pxq

Gpxq
for a “ 8

2. (Kullback-Leibler divergence) the Kullback-Leibler (KL) divergence be-
tween F and G is given by

KLpF ||Gq :“
ÿ

xPSupppF q

F pxq log
ˆ

F pxq

Gpxq

˙
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The definitions are extended in a natural way to continuous distributions
using integrals instead of the summations. Note that we define Rényi divergence
without taking the logarithm, which is standard in lattice-based cryptography.
Given this, we see that the Kullback-Leibler divergence is a logarithm of the
limit of Rényi divergence of order a as a goes to 1, i.e.,

KLpF ||Gq “ log
´

lim
aÑ1

RapF ||Gq

¯

.

See [7] for a proof. We will use the following properties of Rényi and Kullback-
Leibler divergence. We again refer to [7] for proofs.

Lemma 2.23 Let F and G be probability distributions with SupppF q Ď SupppGq.
Further, let F pnq “ F ˆ ¨ ¨ ¨ ˆ F and Gpnq “ G ˆ ¨ ¨ ¨ ˆ G be the product of n
independent and identical copies of F and, respectively, G. Then,
1. Multiplicativity of Rényi divergence:

Ra

´

F pnq||Gpnq
¯

“

n
ź

i“1
RapF ||Gq.

2. Additivity of Kullback-Leibler divergence:

KL
´

F pnq||Gpnq
¯

“

n
ÿ

i“1
KLpF ||Gq.

3 Complexity Reductions of Lee Metric Decoding
Problems

In this section we show that for bounded error vectors the Lee metric decoding
problem (Problem 2.8) over linear codes reduces to the bounded distance decod-
ing problem (Problem 2.12) over lattices in the ℓ1-norm, and vice versa. All the
results from this section are also summarized in Fig. 1.

In general, we can always associate a lattice to a given linear code. One of
the most common approaches is known as Construction A, which takes a linear
code in Zn

q and translates it over Zn using the vectors from qZn.

Definition 3.1 (Construction A) Let C be a linear code in Zn
q and let G be a

k ˆ n generator matrix of C. Then the Construction A lattice associated to C is
given by:

LApCq “ tc P Zn : c “ GJx mod q for some x P Zku.

It can be easily seen that LApCq “ C `qZn, and hence LApCq does not depend
on the choice of the generator matrix G. If the code C is clear from the context,
we will simply denote LApCq by LA.

With the representation of Zn
q centered around zero, i.e., Zn

q “ t´ tpq ´ 1q{2u ,
. . . , 0, . . . , tq{2uun, we obtain that the construction of the lattice LApCq preserves
the metric structure on C, i.e., the length of the shortest ℓ1-norm vector in LApCq

relates to the minimum Lee distance of C.
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Proposition 3.2 Let C be a linear code in Zn
q . Then the ℓ1-norm of the shortest

vector in the Construction A lattice LA is given by

λ1pLAq “ mintq, dLpCqu,

where dLpCq is the minimum Lee distance of C.

This proposition has previously appeared in [2] and [15] without a proof. Thus,
for completeness we give the proof below.

Proof. For simplicity we assume that q is odd and let M “ tq{2u. For an even q,
the proof would be similar with only minor changes in the representation of Zq.

As described earlier, we represent elements of Zq in Z by t´M, . . . , Mu. Using
this representation, we get a one-to-one correspondence between the codewords
in C and the lattice points of LApCq inside the n-cube r´M, M s

n. Note that
each codeword c P C and its representative, say c̃, in LA satisfy wtLpcq “ ∥c̃∥1.
This implies that λ1pLAq ď dLpCq. Moreover, since pq, 0, . . . , 0q P LA, we get
λ1pLAq ď q, and hence λ1pLAq ď mintq, dLpCqu.

Now, to show that λ1pLAq ě mintq, dLpCqu, it is enough to show λ1pLAq ě q
or λ1pLAq ě dLpCq. Let x P LA be a lattice point such that ∥x∥1 “ λ1pLAq. If
x mod q “ 0, then λ1pLAq ě q as q is the smallest ℓ1-norm for a non-zero point
in Zn. Now, if x mod q ‰ 0, then x P LA X r´M, M sn because, if |xi| ą M for
any i, then by either subtracting or adding q to xi one can obtain another lattice
point with ℓ1-norm strictly smaller than ∥x∥1 “ λ1pLAq, which is a contradiction.
Since x P LA X r´M, M sn, we get a codeword in C that corresponds to x and
has Lee weight equal to ∥x∥1 “ λ1pLAq. This implies that dLpCq ď λ1pLAq.

We remark that a similar result for the Hamming distance and the ℓ2-norm for
Construction A lattices has been given in [16] (see Corollary 2 therein).

Theorem 3.3 Let C be a linear code over Zq with minimum Lee distance dLpCq.
Then, for any t “ α mintq, dLpCqu P Z for some α P p0, 1q, there is a polynomial
time reduction from LeeDPt on C to BDDα in the ℓ1-metric on LApCq.

Proof. We consider an instance of LeeDPt on C with r being the vector in Zn
q to

be decoded. Note that we can write r “ c`e, where c P C is the closest codeword
to r and e P Zn

q is the corresponding error vector. Let r̃, c̃, ẽ P r´M, M sn be the
corresponding representatives of r, c, e, respectively, in LA X r´M, M sn. Since
r̃ ´ c̃ “ ẽ mod q, we get that

r̃ ´ c̃ “ ẽ ` vqIn

for some v P Zn (in fact, it is v P t´1, 0, 1un). Here In denotes the identity
matrix of order n. Then c̄ :“ c̃ ´ vqIn is an element of LA and fulfills r̃ ´ c̄ “ ẽ.
This implies d1pr̃, LAq ď ∥r̃ ´ c̄∥1 “ ∥ẽ∥1 “ wtLpeq ď t “ αλ1pLAq. Hence, we
get an instance of BDDα for a received vector r̃ with d1pr̃, LAq ď αλ1pLAq. The
BDDα oracle now gives a lattice vector x satisfying d1pr̃, xq ď αλ1pLAq “ t.
Let cx :“ x pmod qq, then we have that cx P C (according to the definition of
Construction A lattices) and wtLpr ´ cxq ď t.
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Remark 3.4 In the case when we have a LeeDPt instance with t “ αdLpCq and
dLpCq ą q, the reduction to BDDα does not hold. Note that in this case, we
cannot directly apply the BDDα oracle, like we did in the proof of Theorem 3.3,
because we may not satisfy d1pr̃, LAq ď αλ1pLAq “ αq for any α P p0, 1q.

Lemma 3.5 Let L Ď Zn be a full rank integer lattice with basis vectors
tb1, . . . , bnu, let

B “

»

—

–

b1
...

bn

fi

ffi

fl

,

and let q “ detpBq. Let CApBq Ď Zn
q be the code generated by the vectors of bi

pmod qq. Then LApCApBqq “ L.

Proof. Let qbi P Zn
q be the coordinate-wise reduction of bi modulo q and let

rbi P Zn be qbi considered as an integer vector. For 1 ď i ď n, let qi P Zn be the
vectors with all zeros except for a q in the ith coordinate. Then, for all i,

bi “ rbi `

n
ÿ

j“1
ci,jqj

for some integers ci,j . By definition, LApCApBqq is generated by the vectors
Ăb1, . . . , Ăbn, q1, . . . , qn so bi P LApCApBqq for all i, and therefore L Ď LApCApBqq.
Conversely, because adjpBq ¨ B “ qIn (or, alternatively, see [12, Theorem 16]),
each qj P L and then, for all i, rbi “ bi´

řn
j“1 ci,jqj P L so we have LApCApBqq Ď

L.

Theorem 3.6 Let L Ď Zn be a full-rank integer lattice with basis B. Then for
some α P p0, 1q and t “ αλ1pLq there exists a polynomial time reduction from
BDDα with received vector r P Zn in the ℓ1-norm on L to LeeDPt on some
C Ď Zn

q , for some q.

Proof. Given r P Zn such that d1pr, Lq ă αλ1pLq, we know there exists some
v P L such that d1pv, rq ă αλ1pLq. Let C Ď Zn

q be the code obtained (as above)
by the reducing the lattice modulo q “ detpBq where we represent coordinates
of the vectors in Zn

q with integers between r´q{2s and tq{2u (omitting the value
r´q{2s in the case that q is even). Let qr “ r pmod qq and qv “ v pmod qq. Then
dLpqv,qrq ď d1pv, rq ă t.

Given input C and qr, LeeDPt outputs a codeword qc P C such that dLpqc,qrq ă t.
Now, consider qe “ qr ´ qc, and let re,rr, rc P Zn be the vectors qe,qr, qc considered as
an integer vectors, and set s “ r ´re. By Lemma 3.5, we know that rs “ rr ´re P L
and q1, . . . , qn P L. Additionally, we know that there exist c1, . . . , cn P Z such
that r “ rr `

řn
i“1 ciqi. Then

r ´ re “ rr `

n
ÿ

i“1
ciqi ´ re “ rs `

n
ÿ

i“1
ciqi P L.

11



Lastly, note that

∥re∥1 “

n
ÿ

i“1
|rei| “

n
ÿ

i“1
mint|qei| , |q ´ qei|u “ wtLpqeq ă t “ αλ1pLq.

Thus v “ r ´ re is a valid solution to BDDα.

4 Containment of Finite Codes in Construction A
Lattices

In this section we will study when a code over Zq is completely contained in
the lattice generated by a given generator matrix of the code. We remark that
the containment was one of the crucial factors in the FuLeakage attack [9] on
the signature scheme FuLeeca[14] since this allowed them to reduce the attack
complexity by reducing the lattice dimension. This would also work as a message-
recovery attack on a Lee-McEliece cryptosystem if the majority of the codewords
are contained in a lower dimensional sublattice of Construction A. We therefore
analyze the cardinality of the intersection of the code with the lattice generated
by a generator matrix of the code (which is always a sublattice of Construction A
and the Construction A lattice consists of a union of affine shifts of the sublattice).

We first introduce a fixed notation for the lattice generated by the generator
matrix of the code:

Definition 4.1 (Construction AG) Let C be a linear code in Zn
q , let G be a

k ˆ n generator matrix of C, and let gi with i P t1, . . . , ku be its rows. Then, the
Construction AG lattice associated to G is given by:

LAG pCq “

#

k
ÿ

i“1
zigi : zi P Z

+

.

In the FuLeeca attack in [9] it was experimentally shown that the secret
codewords (very short vectors) and signatures of the scheme in Construction A are
both always contained in the Construction AG lattice. However, this is not true
in general and running BDD or SVP solvers on the whole Construction A lattice
is usually not feasible. Therefore, we would like to know when C is contained in
LAG pCq, or—if not—how many elements of the code are contained in LAG pCq.

We will use a generalized version of Minkowski’s bound (see Theorem 2.19)
to derive a lower bound on the cardinality of C X LAG pCq:

Theorem 4.2 Let C be a linear code in Zn
q , let G be a generator matrix of C

considered in Zkˆn, and let

M :“
#

q´1
2 for q odd

q
2 ´ 1 for q even

.

12



Then
|C X LAG pCq| ě 2m ` 1,

where m is the largest positive integer strictly less than p2Mq
k

2k
?

detpGGJq
.

Proof. Let S :“ r´M, M s
n

X SpanRpLAG pCqq where SpanRpLAG pCqq Ď Rn is the
k-dimensional R-subspace spanned by LAG pCq. Note that in the case where q is
even, due to the requirement that S be symmetric, we are omitting some possible
lattice points from our lower bound by excluding those whose coordinates take
values of q{2. By Theorem 2.18, we have that VolkpSq ě p2Mq

k.
Let m be the largest positive integer strictly less than p2Mq

k

2k
?

detpGGJq
. Then

VolkpSq

2k detpLAG pCqq
“

VolkpSq

2k
a

detpGGJq
ě

p2Mq
k

2k
a

detpGGJq
ą m.

By Theorem 2.19, we know that there are then at least m pairs of non-zero
vectors in S X LAG pCq Ď C. Including the zero vector gives us the bound.

Remark 4.3 Note that the lower bound introduced in Theorem 4.2 is inversely
proportional to

a

detpGGJq, i.e., it maximizes when
a

detpGGJq is minimal.
It is well-known that

a

detpGGJq is minimized for unimodular even or Type II
lattices (which are closely related with self-dual codes), see e.g., [6]. This is an
indication that self-dual codes might admit a large number of codewords in LAG

and would hence be cryptographically insecure. Similary, the bound increases for
growing q, indicating that a very large q will likely be insecure.

In the above theorem we establish a lower bound for the cardinality of the
intersection of a code C over Zn

q . Naturally, we would also like to derive an upper
bound on this number. A trivial upper bound is the cardinality of C, that is,
|C X LAG pCq| ď |C|. We remark that there exists a reverse Minkowski bound,
which could be used to derive another upper bound—however, it turns out that
doing so results in a bound above the trivial bound, which is not useful.

In general, the lower bound derived in Theorem 4.2 and the trivial upper
bound are not tight, however in special cases they are. In the following examples
we illustrate this fact.

Example 4.4 Let C1 and C2 be linear codes in Z2
7 with generator matrices

G1 “
`

1 1
˘

and G2 “
`

1 2
˘

respectively. Fig. 2 depicts these two codes and
their corresponding lattices LA and LAG . Note that |C1 X LAG pC1q| “ 7 and
|C2 X LAG pC2q| “ 3. Both codes have 7 elements, which is also the trivial up-
per bound for |Ci X LAG pCiq|, for i “ 1, 2. We see that the trivial upper bound
for |C X LAG pCq| is attained for C1, but not for C2. Now, the lower bound from
Theorem 4.2 for these two cases is

|C1 X LAG pC1q| ě 2
Z

3
?

2

^

` 1 “ 5,

|C2 X LAG pC2q| ě 2
Z

3
?

5

^

` 1 “ 3

13



C1 “ xp1, 1qy P Z2
7 C2 “ xp1, 2qy P Z2

7

Fig. 2. Lattices LA and LAG for C1 and C2 in Example 4.4.

respectively. We see that the lower bound for |C X LAG pCq| is attained for C2, but
not for C1.

Example 4.5 Let C3 Ď Z3
7 and C4 Ď Z5

13 be linear codes with generator matrices

G3 “

ˆ

3 1 2
3 2 3

˙

and G4 “

¨

˝

3 1 2 5 ´4
3 2 3 6 ´1

´1 2 5 ´5 6

˛

‚,

respectively. In these two cases, both the trivial upper bound and the lower bound
from Theorem 4.2 are not tight since |C3 X LAG pC3q| “ 19 and |C4 X LAG pC4q| “

17 and the bounds give

49 “ |C3| ě |C3 X LAG pC3q| ě 2
Z

9
?

19

^

` 1 “ 5,

2197 “ |C4| ě |C4 X LAG pC4q| ě 2
Z

63
?

23804

^

` 1 “ 3.

Remark 4.6 Both the lower bound from Theorem 4.2, and the actual number
|C X LAG pCq| generally depend on the choice of generator matrix G and are not a
code invariant (see Example 4.8). It would be useful to find a characterization or
tighter bounds to understand when a generator matrix leads to a big (or small)
intersection number. This seems to be a complex task, since the number of zeros
(i.e., the Hamming weight), the number of different Lee weights, and the largest
Lee weight (i.e., the ℓ8-norm) of the basis vectors have an impact on the wrap-
around behavior (at the boundaries) of the code over Zq, when represented over
Z.

To give more insight into the wrap-around behavior we describe it in the
one-dimensional case. However, already for codes of dimension 2, the situation
is much more complex and is left as an open problem for future work.
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Proposition 4.7 Let us represent Zq centered at zero, and let M “ tq{2u. Fur-
ther, let C be a one-dimensional linear code on Zn

q and G a 1 ˆ n generator
matrix. Then we have that:

1. if |C X LAG pCq| “ q, then all non-zero entries of G are ˘1. This is the only
case where C Ď LAG pCq.

2. if ||G||8, the largest magnitude among the entries of G, is equal to t P

t0, 1, . . . , Mu, then

|C X LAG pCq| “

# 2 tM{tu ` 1 if q odd

tM{tu ` tpM ´ 1q{tu ` 1 if q even
.

Proof. We assume for simplicity that q is odd (the even case is analogous).

1. Denote by gi the i-th entry of G. We can easily count all the non-zero integer
multiples of an entry gi that are within Zq (for λ P Zzt0u):

´
q ´ 1

2 ď λgi ď
q ´ 1

2 ðñ |gi| ď

ˇ

ˇ

ˇ

ˇ

q ´ 1
2λ

ˇ

ˇ

ˇ

ˇ

.

Thus, for q ´ 1 non-zero multiples of G to be in Zn
q we need, in particular

for λ “ ˘pq ´ 1q{2, to have |gi| ď
ˇ

ˇ

q´1
2λ

ˇ

ˇ “ 1, which implies that gi P t0, ˘1u.
2. With a similar counting argument as above we get that for λ P Z, we have

|λgi| ď |λt| and

|λt| ď
q

2 ðñ |λ| ď
q

2t
“

M

t
,

i.e., exactly for λ P t´ tM{tu , . . . , tM{tuu the λ-multiple of G is contained
in LAG pCq X Zn

q , which implies the statement.

Example 4.8 Let C5 be a linear code in Z2
11 and G5 “

`

1 2
˘

and G1
5 “

`

5 ´1
˘

be two generator matrices. It is easy to see that |C5| “ 11 but when looking at
the cardinality of the intersection with the lattice we have that

ˇ

ˇC5 X LAG5
pC5q

ˇ

ˇ “ 5 and
ˇ

ˇ

ˇ
C5 X LAG1

5
pC5q

ˇ

ˇ

ˇ
“ 3.

Now, let C3 Ď Z3
7 be the same code as in Example 4.5, then C3 can also be

generated with

G1
3 “

ˆ

0 1 1
3 0 1

˙

and G2
3 “

ˆ

0 2 2
3 2 3

˙

.

Again, when checking the cardinality of the intersection we obtain
ˇ

ˇ

ˇ
C3 X LAG1

3
pC3q

ˇ

ˇ

ˇ
“ 20 and

ˇ

ˇ

ˇ
C3 X LAG2

3
pC3q

ˇ

ˇ

ˇ
“ 9.

This illustrates the dependency on the choice of generator matrix.
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5 Comparison of Error Distributions

In this section we will compare the different error distributions related to the
metrics described before. First, we will compare the Hamming and the Lee met-
ric. Then we will show the connection between the Lee metric and the Laplace
distribution, which motivates us to compare the Laplace and the Gaussian dis-
tribution (to compare the behavior of the ℓ1- and ℓ2-norm). For the discrete
distributions we will use Rényi divergence, whereas for the continuous distribu-
tions, we will use Kullback-Leibler convergence.

Let us recall from Lemma 2.3 that for a uniformly random vector x P Zn
q

with normalized Lee distance T , the marginal Lee distribution is given by

FT pjq :“ PrpE “ jq “
expp´βwtLpjqq

řq´1
i“0 expp´βwtLpiqq

,

where β is the unique real solution to the constraint

T “

q´1
ÿ

i“0
wtLpiq PrpE “ iq.

We can extend this distribution for length n vectors over Zq by assuming
that each coordinate is independent and identically distributed and we obtain
for any x P Zn

q chosen uniformly at random:

F
pnq

T pxq :“
n

ź

i“1
FT pxiq “

expp´βwtLpxqq
ř

yPZn
q

expp´βwtLpyqq
.

5.1 Lee vs. Hamming distribution

Remember that for a given normalized Hamming weight δ, we get the following
marginal distribution Hδpjq for j P Fq:

Hδpjq “

#

1 ´ δ if j “ 0
δ

pq´1q
otherwise

.

Similar to the Lee metric distribution, we can extend the Hamming distribution
for length n vectors over Zq by assuming that each coordinate is independent
and identically distributed, i.e., for each x P Zq

H
pnq

δ pxq “

n
ź

i“1
Hδpxiq “

ˆ

δ

q ´ 1

˙|Supppxq|

p1 ´ δq
n´|Supppxq| .

Theorem 5.1 Let FT denote the asymptotic marginal Lee distribution and let
Hδ denote the asymptotic marginal Hamming distribution from Lemma 2.3, both
over Zq. For any 0 ă T ă tq{2u, let β be the corresponding value from Equation
(2) and c1 :“ p

řq´1
i“0 expp´βwtLpiqqq´1. Let δ P p0, 1q, then

16



1. the Rényi divergence of order 8 between FT and Hδ is given by:

R8pFT ||Hδq “ max
"

c1

1 ´ δ
,

c1e´βνpβqpq ´ 1q

δ

*

,

where νpβq “ 1 if β ě 0 and νpβq “ tq{2u if β ă 0.
2. for any given T , the Rényi divergence R8pFT ||Hδq is minimized at δ “

e´βνpβq
pq´1q

1`e´βνpβqpq´1q
, giving the lower bound:

R8pFT ||Hδq ě c1 ` c1e´βνpβqpq ´ 1q. (3)

3. Assuming the coordinates are independent and identically distributed, the
Rényi divergence of FT and Hδ for length n vectors over Zq is as follows:

R8

´

F
pnq

T ||H
pnq

δ

¯

ě

´

c1 ` c1e´βνpβqpq ´ 1q

¯n

.

Proof. We have

R8pFT ||Hδq :“ max
r´q{2sďjďtq{2u

FT pjq

Hδpjq

“ max
"

c1

1 ´ δ
, max

1ďjďtq{2u

c1e´βjpq ´ 1q

δ

*

.

It is easy to see that the second term is maximal at j “ 1 if β ě 0, or j “ tq{2u

if β ă 0. Hence we get

R8pFT ||Hδq “ max
"

c1

1 ´ δ
,

c1e´βνpβqpq ´ 1q

δ

*

,

where νpβq “ 1 if β ě 0 and νpβq “ tq{2u if β ă 0.
Note that the first term increases as δ increases, whereas the second term

decreases as δ increases. The maximum of the two terms minimizes when the first
term is equal to the second term, i.e., c1

1´δ “
c1e´βνpβq

pq´1q

δ or δ “
e´βνpβq

pq´1q

1`e´βνpβqpq´1q
.

Thus, we get
R8pFT ||Hδq ě c1 ` c1e´βνpβqpq ´ 1q.

For vectors of length n, with independent and identically distributed coordi-
nates, the inequality follows using the multiplicative property of Rényi divergence
(Lemma 2.23), i.e., R8

´

F
pnq

T ||H
pnq

δ

¯

“
śn

i“1 R8pFT ||Hδq.

Remark 5.2 Plugging in the values for β and c1 for q P t2, 3u in Equation (3),
we get

R8pFT ||Hδq ě 1

showing that the bound is tight (since the two distributions coincide) in these
cases.
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As q increases, we can observe that the distributions FT and Hδ become
quite different from each other. The following result supports this observation
by showing that the Rényi divergence R8 between them goes to infinity as q
goes to infinity.

Proposition 5.3 Let T P p0, tq{2us and δ P p0, 1q be constant (with respect to q)
real numbers. Then, the Rényi divergence R8pFT ||Hδq goes to infinity as q goes
to infinity.

Proof. From Theorem 3, we have that R8pFT ||Hδq ě c1`c1e´βνpβqpq´1q, where
c1 “ p

řq´1
i“0 expp´βwtLpiqqq´1 and β is the unique real solution of Equation (2),

i.e.,

T “

q
ÿ

j“0
wtLpjq

expp´x wtLpjqq
řq

i“0 expp´x wtLpiqq
.

Let M “ tq{2u. Then, as q goes to infinity, we can rewrite the above equation
as follows:

T “ lim
qÑ8

řq
i“0 wtLpiq expp´x wtLpiqq

řq
i“0 expp´x wtLpiqq

“ lim
MÑ8

2
řM

i“1 i expp´x iq

1 ` 2
řM

i“1 expp´x iq

“
2 expp´xq

p1 ´ expp´xqq2 ¨
1 ´ expp´xq

expp´xq ` 1

“
2 exppxq

expp2xq ´ 1 .

Therefore, as q goes to infinity, β converges to the positive real solution of T “

2 exppxq{pexpp2xq ´ 1q, i.e.,

exppβq Ñ
1 `

?
1 ` T 2

T
as q Ñ 8.

Using this, it is easy to check that, as q Ñ 8,

c1 Ñ
exppβq ´ 1
exppβq ` 1 “

p1 ´ T q `
?

1 ` T 2

p1 ` T q `
?

1 ` T 2
.

As a conclusion, we note that for a fixed T (constant with respect to q), both
e´β and c1 converge to a constant as q tends to infinity. Hence, R8pFT ||Hδq ě

c1 ` c1e´βpq ´ 1q diverges as q goes to infinity. This supports the intuition that
the Lee metric diverges away from the Hamming metric with growing q.

5.2 Laplace vs. Gaussian distribution

We motivate this section by first showing the connection between the Lee metric
and the discrete Laplace distribution. Recall that the discrete Laplace distribu-
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tion over Z with parameter b ą 0 is defined as

LapZ,bpxq “
exp p´ |x| {bq

ř

yPZ expp´ |y| {bq
.

On the other hand, by considering the representation of Zq centered at origin,
the marginal Lee distribution FT pjq can be rewritten as

FT pjq “
expp´β |j|q

ř

iPZq
expp´β |i|q

, (4)

for each j P Zq “ t´tpq ´ 1q{2u, . . . , tq{2uu. We can observe that the above two
distributions would coincide when b “ 1{β and q goes to infinity. We can deduce
the same for length n vectors as well, by assuming that for each coordinate the
distributions are independent and identical.

Lemma 5.4 Let FT be the Lee distribution over Zn
q from Lemma 2.3, and let

LapZn,b be the discrete Laplace distribution over Zn. Assuming that each coordi-
nate is independent and identically distributed, we get that

lim
qÑ8

FT pxq “ LapZn, 1
β

pxq,

for every x P Zn
q .

Proof. From Equation (4), we have

FT pxq “
1

´

ř

iPZq
expp´β |i|q

¯n

n
ź

j“1
expp´β |xj |q

“
1

ř

yPZn
q

expp´β ∥y∥1q
expp´β ∥x∥1q.

Now, if we take the limit of q to infinity, then we see that the above Lee
distribution converges to the discrete Laplace distribution LapZ,b with parameter
b “ 1{β.

The above lemma says that the Lee metric distribution is close to the Laplace
distribution for large q. Therefore, in the case of large q, it would make sense
to compare Laplace and Gaussian distribution in order to compare Lee and
Euclidean error distributions. In other words, such a comparison would give us
a good understanding when lattice techniques in the ℓ2-norm are beneficial to
solve ℓ1-norm lattice problems or Lee metric decoding problems.

We start by comparing the continuous version of Laplace and Gaussian dis-
tribution by computing the Kullback-Leibler divergence between them.

Theorem 5.5 The Kullback-Leibler divergence between the Laplace distribution
LapR,b and the Gaussian distribution DR,σ is given by

KLpLapR,b || DR,σq “ log
˜

σ
a

π{2
b

¸

`
b2

σ2 ´ 1.
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For vectors of length n, we assume the coordinates are independent and identi-
cally distributed, and obtain:

KLpLapRn,b || DRn,σq “ n

˜

log
˜

σ
a

π{2
b

¸

`
b2

σ2 ´ 1
¸

.

Proof. We compute the KL divergence as follows:

KLpLapR,b || DR,σq :“
ż 8

´8

LapR,bpxq log
ˆLapR,bpxq

DR,σpxq

˙

dx

“

ż 8

´8

1
2b

e´|x|{b

ˆ

log
ˆ

1
2b

e´|x|{b

˙

´ log
ˆ

1
σ

?
2π

e´x2
{2σ2

˙˙

dx

“

ż 0

´8

1
2b

ex{b

˜

x2

2σ2 `
x

b
` log

˜

σ
a

π{2
b

¸¸

dx

`

ż 8

0

1
2b

e´x{b

˜

x2

2σ2 ´
x

b
` log

˜

σ
a

π{2
b

¸¸

dx.

Using integration by parts multiple times, we obtain

KLpLapR,b || DR,σq “ log
˜

σ
a

π{2
b

¸

`
b2

σ2 ´ 1.

For vectors of length n, the result follows using the additive property of KL
divergence (Lemma 2.23), i.e., KLpLapRn,b || DRn,σq “

řn
i“1 KLpLapR,b || DR,σq.

Using standard analytical tools, we can find the minimum KL divergence
between the Laplace and Gaussian distribution.

Corollary 5.6 For any given b ą 0, the KL divergence KLpLapR,b || DR,σq has
exactly one local minimum at σ “ b

?
2. In this case, we obtain

KLpLapR,b || DR,σq “
logpπq ´ 1

2 « 0.072365.

The above corollary shows that for any given Laplace distribution with pa-
rameter b, the Gaussian distribution with variance σ “ b

?
2 is the closest. More-

over, the minimal divergence value is independent of the parameter b. Therefore,
even though b “ 1

β when using the Laplace distribution as an approximation of
the Lee distribution, and β depends on q and δ, the similarity of the ℓ2-norm
of lattice vectors and the Lee weight of codewords is generally independent of q
and δ (for very large q).

Remark 5.7 Theorem 5.5 shows that the Kullback-Leibler divergence between
the continuous Gaussian and the Laplacian distribution (which we take as a
good approximation of the Lee distribution for large q) grows linearly in n. This
indicates that as n increases the Laplace distribution diverges away from the
Gaussian distribution.
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Recall that we took a continuous (Laplace) distribution to represent a discrete
(Lee) distribution. Naturally, it would be a better approximation to take the
discrete Laplace distribution as an approximation of the Lee distribution. To
finalize this section, we will compute the divergence between discrete Laplace
and the discrete Gaussian distribution to illustrate the behavior of them.

Remark 5.8 Note that the Rényi divergence between discrete Laplace LapZ,b

and discrete Gaussian DZ,σ is 8, for any given parameters b and σ. This easily
follows from the following calculations:

R2pLapZ,b | DZ,σq “
ÿ

xPZ

´

1
S1pbq

exp p´ |x| {bq

¯2

´

1
S2pσq

exp p´x2{2σ2q

¯ ,

where S1pbq “
ř

yPZ e´|y|{b and S2pσq “
ř

yPZ e´y2
{2σ2 . This evaluates to:

R2pLapZ,b | DZ,σq “
S2pσq

pS1pbqq2

˜

1 ` 2
ÿ

xě1
exp

ˆ

x2

2σ2 ´
2x

b

˙

¸

.

It is easy to see that the summation goes to infinity, because exp
´

x2

2σ2 ´ 2x
b

¯

goes to infinity as x goes to infinity. This also implies that the Rényi divergence
Ra is infinity for all order a P p1, 8s, because RapF ||Gq is non-decreasing as a
function of a.

Unlike Rényi divergence, the Kullback-Leibler divergence between discrete
Laplace and discrete Gaussian is finite.

Theorem 5.9 Let b, σ ą 0 be real numbers. The Kullback-Leibler divergence
between the discrete Laplace distribution LapZ,b and the discrete Gaussian dis-
tribution DZ,σ is given by

KLpLapZ,b | DZ,σq “ log
ˆ

S2pσq

S1pbq

˙

`
1

S1pbq

ˆ

e1{bpe1{b ` 1q

pe1{b ´ 1q3σ2 ´
2e1{b

bpe1{b ´ 1q2

˙

,

where S1pbq “
ř

yPZ e´|y|{b and S2pσq “
ř

yPZ e´y2
{2σ2 .

Proof. We compute the KL divergence as follows:

KLpLapZ,b | DZ,σq :“
ÿ

xPZ
LapZ,bpxq log

ˆLapZ,bpxq

DZ,σpxq

˙

“
ÿ

xPZ

e´|x|{b

S1pbq

˜

log
ˆ

e´|x|{b

S1pbq

˙

´ log
˜

e´x2
{2σ2

S2pσq

¸¸

,

where S1pbq “
ř

yPZ e´|y|{b and S2pσq “
ř

yPZ e´y2
{2σ2 . Note that both S1pbq

and S2pσq are positive finite real numbers for any given b, σ ą 0. In particular,
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S1pbq “ e1{b
`1

e1{b´1 , and S2pσq is an evaluation of the theta function θ3
5.

KLpLapZ,b | DZ,σq “
1

S1pbq

ÿ

xPZ
e´|x|{b

ˆ

log
ˆ

S2pσq

S1pbq

˙

`
x2

2σ2 ´
|x|

b

˙

“
1

S1pbq

˜

log
ˆ

S2pσq

S1pbq

˙

` 2
ÿ

xě1
e´x{b

ˆ

x2

2σ2 ´
x

b
` log

ˆ

S2pσq

S1pbq

˙˙

¸

To proceed forward, we apply the following identities:

ÿ

xě1
e´x{b “

1
e1{b ´ 1

;
ÿ

xě1
xe´x{b “

e1{b

pe1{b ´ 1q2 ;
ÿ

xě1
x2e´x{b “

e1{bpe1{b ` 1q

pe1{b ´ 1q3 ,

and obtain

KLpLapZ,b | DZ,σq “ log
ˆ

S2pσq

S1pbq

˙

`
1

S1pbq

ˆ

e1{bpe1{b ` 1q

pe1{b ´ 1q3σ2 ´
2e1{b

bpe1{b ´ 1q2

˙

.

Lower bound on KL divergence between discrete Laplace and discrete Gaussian:
Given a fixed b ą 0, we can numerically find σ ą 0 that minimizes the KL
divergence between LapZ,b and DZ,σ. Using Theorem 5.9, we can observe that for
a fixed b the KL divergence KLpLapZ,b | DZ,σq is a continuous and differentiable
function of σ P p0, 8q. Moreover, it has exactly one minimum point σmin P p0, 8q,
which is the positive real root of

1
S2pσq

BS2pσq

Bσ
´

2e1{b

pe1{b ´ 1q2σ3 “ 0. (5)

In Table 1, we provide some numerical estimates of the minimum point σmin
and the corresponding KL divergence, for different given values of b. We note that
the minimum KL divergence converges to logpπq´1

2 « 0.072365 as the Laplace
width b increases (see Figure 3). Recall that the constant logpπq´1

2 is the minimum
KL divergence between continuous Laplace and Gaussian distributions, as seen
in Corollary 5.6. Thus, similar to the continuous case, we can conclude that the
Laplace distribution diverges from the Gaussian distribution for growing length
n.

6 Conclusions

Due to the recent developments in Lee metric code-based cryptography, in par-
ticular the lattice-based attack on the NIST submission FuLeeca, we analyzed
the connection of Lee metric code-based cryptosystems and the corresponding
lattice problems in the ℓ1- and the ℓ2-norm.
5 We note that S2pσq “ θ3p0, e´1{2σ2

q, where θ3pu, qq “ 1 ` 2
ř8

n“1 qn2
cosp2nuq is a

theta function.
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Laplace width Minimum point Minimum divergence
b σmin KLpLapZ,b | DZ,σq

0.1 0.223609 7.83 x 10´8

0.5 0.607753 0.0886053
1.0 1.35696 0.101332
2.0 2.79918 0.0819178
4.0 5.64215 0.0749139
8.0 11.3063 0.0730125

Table 1. Numerical estimates of the minimal KL divergence between discrete Laplace
LapZ,b and discrete Gaussian distribution DZ,σ, for various given values of parame-
ter b. Here, the minimum point σmin is a solution to Equation (5) that minimizes
KLpLapZ,b | DZ,σq for the given b.

Fig. 3. Numerical estimates of the minimal KL divergence between Laplace and Gaus-
sian distribution. In the left figure, we plot the minimum KLpLapZ,b | DZ,σq (solid blue
line) as a function of b and compare it with the constant logpπq´1

2 (dashed red line)
corresponding to the continuous case (Corollary 5.6). In the right figure, we plot the
corresponding σmin where the minimum divergence is achieved. Here again we compare
σmin with the minimum sigma σ “ b

?
2 obtained in the continuous case (Corollary 5.6).

In particular, we showed that there are polynomial time reductions in both
directions between the Lee decoding problem over Zq and the unique shortest
vector problem (via the bounded distance decoding problem) over Z with re-
spect to the ℓ1-norm (where for the reduction from LeeDPt to BDDα we require
that t ă q). Moreover, we gave a lower bound on the number of points that
are contained in the lattice generated by a given code basis, showing that this
number depends on q and the actual choice of basis. The bound suggests that
the success likelihood of an attack by finding vectors in this lower dimensional
lattice increases for growing q. Furthermore, we studied the divergence behavior
of various probability distributions connected to the Lee and Hamming weight,
as well as the ℓ1- and ℓ2-norm. Our results show that the behavior of the Lee
metric diverges from the one of the Hamming metric for growing modulus q,
and that the Laplace distribution diverges from the Gaussian distribution for
growing vector length n (for large q).
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These results show when (Hamming and) lattice techniques can be used
to break Lee metric code-based cryptosystems. Hence, this can tell us which
parameters should be avoided when designing new public key encryption schemes
or digital signatures using Lee metric error correcting codes. In particular, when
q is chosen extremely small, then Hamming-based coding techniques can be used
to attack Lee metric cryptographic schemes. On the other hand, for large q, ℓ1-
lattice techniques might be applicable, however, using ℓ2-techniques will most
likely not work. Moreover, when q is very large, then the idea of the FuLeakage
attack of using the lattice generated by a basis of the code (instead of the whole
Construction A lattice) has a higher success probability than for smaller q. This
means that in general, q should be chosen large enough such that Hamming
attacks are not applicable but also small enough that a large part of the LAG

lattice is not contained in LA. Furthermore, n should be chosen large enough that
the ℓ2-norm is not a good approximation of the ℓ1-norm. The exact parameters
depend on the actual cryptosystem, the relationship of modulus, length, and
minimum distance of the code and need to be investigated when designing a
new Lee metric code-based cryptosystem.
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A Proof of Minkowski’s convex body theorem (Theorem
2.19)

In order to prove Theorem 2.19, we use Blichfeldt’s theorem on non-full dimen-
sional lattices. In the following, our proofs are based on the proofs from [12,
Theorem 20-21] and [17, Theorem 5-6].
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Theorem A.1 (Blichfeldt). Let L be a k-dimensional lattice in Rn and S Ď

SpanRpLq be a convex set symmetric about the origin (i.e., x P S implies ´x P

S). Suppose that VolkpSq ą m ¨ detpLq, for some integer m. Then, there are
m ` 1 vectors z1, . . . , zm`1 in S such that zi ´ zj P L for each i, j.

Proof. Let B “ tb1, . . . , bku be a basis of L and ΠpBq be the fundamental paral-
lelepiped associated to B defined as ΠpBq :“

!

řk
i“1 xibi | xi P r0, 1q

)

. Consider
the sets Sx :“ S X ty ` x | y P ΠpBqu for each x P L. We note that these sets
form a partition of S, i.e., they are pairwise disjoint and S “

Ť

xPL Sx. Thus,
we have VolkpSq “

ř

xPL VolkpSxq.
Now consider the shifted sets Sx ´ x :“ ty ´ x | y P Sxu. We note that

Sx ´ x “ pS ´ xq X ΠpBq. Now, since VolkpSxq “ VolkpSx ´ xq, we have that
ÿ

xPL
VolkpSx ´ xq “

ÿ

xPL
VolkpSxq “ VolkpSq ą m ¨ detpLq “ m ¨ VolpΠpBqq.

From
ř

xPL VolkpSx ´ xq ą m ¨ VolpΠpBqq and Sx ´ x Ď ΠpBq, we deduce that
there exist m ` 1 distinct points x1, . . . , xm`1 P L such that

Şm`1
i“1 pSxi

´ xiq

is non-empty. Let y P
Şm`1

i“1 pSxi ´ xiq and zi “ y ` xi P Sxi Ď S for each
i P t1, . . . , m ` 1u. Thus, we have m ` 1 vectors z1, . . . , zm`1 P S such that
zi ´ zj “ xi ´ xj P L for each i, j.

Now, we prove Theorem 2.19 as a corollary to Blichfeldt’s theorem.

Theorem 2.19 Let L be a k-dimensional lattice in Rn and let S Ď SpanRpLq

be a convex set symmetric about the origin (i.e., x P S implies ´x P S). Suppose
that VolkpSq ą m ¨ 2k ¨ detpLq, for some integer m. Then there are m different
pairs of vectors ˘z1, . . . , ˘zm P S X Lzt0u.

Proof. Consider the set 1
2 S “ tx | 2x P Su, then it is easy to note that

Volk
` 1

2 S
˘

“ 1
2k VolkpSq. This follows since S Ď SpanRpLq is contained in a

k-dimensional subspace of Rn and we can apply an orthogonal transformation
to embed S in Rk without changing its volume.

Now, since Volk
` 1

2 S
˘

ą m ¨ detpLq, we apply Theorem A.1 to obtain m ` 1
vectors 1

2 x1, . . . , 1
2 xm`1 P 1

2 S such that 1
2 xi ´ 1

2 xj P L for all i, j. We assume
that x1 is the smallest vector with respect to the lexicographic order ă.

Define zi “ 1
2 xi`1 ´ 1

2 x1 P L for each i P t1, . . . , mu. Clearly, zi’s are distinct
vectors, and since 0 ă zi for all i, we have zi ‰ ´zj for all i, j. Finally, since S
is convex and symmetric, zi “ 1

2 xi`1 ` 1
2 p´x1q P S for all i.
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