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Abstract. �e planted random subgraph detection conjecture of Abram et al. (TCC 2023) asserts

the pseudorandomness of a pair of graphs pH,Gq, where G is an Erdős-Rényi random graph on n
vertices, and H is a random induced subgraph of G on k vertices. Assuming the hardness of distin-

guishing these two distributions (with two leaked vertices), Abram et al. construct communication-

e�cient, computationally secure (1) 2-party private simultaneous messages (PSM) and (2) secret

sharing for forbidden graph structures.

We prove the low-degree hardness of detecting planted random subgraphs all the way up to

k ď n1´Ωp1q
. �is improves over Abram et al.’s analysis for k ď n1{2´Ωp1q

. �e hardness extends

to r-uniform hypergraphs for constant r.

Our analysis is tight in the distinguisher’s degree, its advantage, and in the number of leaked ver-

tices. Extending the constructions of Abram et al, we apply the conjecture towards (1) communication-

optimal multiparty PSM protocols for random functions and (2) bit secret sharing with share size

p1` εq log n for any ε ą 0 in which arbitrary minimal coalitions of up to r parties can reconstruct

and secrecy holds against all unquali�ed subsets of up to ` “ opε log nq1{pr´1q
parties.

1. Introduction

In the planted clique model [Jer92, Kuc95] one observes the union of an Erdős-Rényi random

graph G0 „ Gpn , 1{2q and a randomly placed k “ kn-clique H, i.e., the graph G “ G0 Y H.

�e goal of the planted clique detection task is to distinguish between observing G from the

planted clique model and G which is simply an instance of Gpn , 1{2q. �e planted clique conjec-

ture states that the planted clique instance remains pseudorandom whenever k ď n1{2´Ωp1q
up

to n´Ωp1q distinguishing advantage. Conversely, multiple polynomial-time algorithms can dis-

tinguish with high probability whenever k “ Ωp
?

nq. Research on the planted clique conjecture

has gone hand-in-hand with key developments in average-case complexity theory over the last

decades, including spectral and tensor algorithms [AKS98, FK08], lower bound techniques for re-

stricted classes including the sum-of-squares hierarchy [BHK
`

19], low-degree polynomial meth-

ods [Hop18], statistical query methods [FGR
`

17] and MCMC methods [Jer92, GZ19, CMZ23], and

the development of new average-case reductions [BB20, HS24].

At this point, the conjectured hardness of the planted clique problem around k «
?

n stands

as a central conjecture in average-case complexity. But despite its popularity, the cryptographic

applications have been quite limited, with one exception in the symmetric-key se�ing proposed

by Juels and Peinado [JP97]. Recently Abram et al. [ABI
`

23] revisited the planted clique prob-

lem and showed how it can be useful in the context of secret sharing and secure computation.
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�e authors speci�cally show that (slight variants of) the planted clique conjecture can be used

to construct a computationally secure scheme whose share size is much smaller than the best

existing information-theoretically secure scheme.

In order to obtain further improvements to the share size, Abram et al. proposed a new in-

triguing conjecture similar to planted clique. �ey start by de�ning the following general model

(also introduced in [Hul22]).

De�nition 1.1. (Planted (induced) subgraph model1) Fix H to be an arbitrary unlabeled subgraph

on k vertices. �en G is chosen to be a random n-vertex graph where a copy of H is placed on

k vertices chosen uniformly at random (as an induced subgraph on the k vertices), and all edges

without both endpoints on the k vertices appear with probability 1/2.

When H is the k-clique, the planted subgraph model becomes exactly the planted clique model.

�e clique is the most structured graph possible and it is natural to wonder:

could the problem be signi�cantly harder if a di�erent graph H is planted?
Abram et al. suggest studying the planted random subgraph model in which H is an instance of

Gpk , 1{2q. An equivalent de�nition is the following.

De�nition 1.2. (Planted random subgraph model) One observes a pair pH,Gq, where G is a ran-

dom n-vertex graph and H is a random k-subgraph of G with the vertex labels removed.

Abram et al. make the following interesting conjecture.

Conjecture 1.3. (Planted Random Subgraph conjecture [ABI
`

23]) �e planted random subgraph

problem is hard up to advantage n´Ωp1q provided k ď n1´Ωp1q
, with high probability over H „

Gpk , 1{2q as n grows to in�nity.

�is stands in contrast to the case that H is a k-clique where a computational phase transition

is expected to take place at the smaller value k « n1{2
.

Abram et al. con�rm the planted random subgraph conjecture in the low-degree analysis

framework (to be described below) but only up to the “planted clique threshold” k ď n1{2´Ωp1q

(a result also independently proven by Huleihel [Hul22]). �eir work leaves open the regime

n1{2´Ωp1q ď k ď n1´Ωp1q, and in particular the question of whether there is a larger window of

hardness for planted random subgraph than for planted clique.

Our main contribution is the con�rmation of Conjecture 1.3 in the low-degree framework. We

prove that the planted random subgraph problem remains hard for low-degree distinguishers of

degree at most opplog n{ log log nq2q in the full range k ď n1´Ωp1q
. �e degree is best possible up

to log log n factors, and the analysis extends also to the case of hypergraphs. See Section 2 for

the precise theorem statement.

1.1. Secret sharing and leakage. For their intended cryptographic applications Abram et al.

rely on a strengthening of the planted random subgraph conjecture which also allows for leaked

additional information about the embedding of H in G. It is easiest to motivate these stronger

conjectures through their intended application.

1
A similar yet di�erent model where one observes the union of a copy of H with an instance of Gpn , 1{2q has also

been recently analyzed in the statistical inference literature [Hul22, MNWS
`

23, YZZ24]. For this work, we solely

focus on the “induced” variant, where H appears as an induced subgraph of G.
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A (partial) access structure for k parties is a pair of set systems R, S over t1, . . . , ku, where R is

upward-closed, S is downward-closed, and R, S are disjoint. A bit secret sharing scheme consists

of a randomized sharing algorithm that maps the secret bit s P t0, 1u into k shares so that sets

in R can reconstruct s from their shares with probability one, while sets in S cannot distinguish

s “ 0 or s “ 1.

In a forbidden graph access structure, R is the edge-set of a graph and S is the union of its

complement ttu , vu R R : u ‰ v P rksu and the set rks of vertices. Abram et al. propose the

following secret sharing scheme for any such structure:

Construction 1. Forbidden graph secret sharing:

(1) �e dealer samples a random n-vertex graph G and remembers a secret k-vertex subgraph

H of it randomly embedded via φ : VpHq Ñ VpGq.
(2) �e dealer publishes the pair pHs ,Gq, where Hs is a k-vertex graph with adjacency matrix

Hspu , vq “

#

Hpu , vq ‘ s , if tu , vu P R
a random bit, otherwise.

(1.1)

(3) �e share of party v is the value φpvq P rns.
If tu , vu P R, the parties reconstruct by calculating

Hspu , vq ‘ Gpφpuq, φpvqq “ Hpu , vq ‘ Gpφpuq, φpvqq ‘ s “ s . (1.2)

Secrecy requires that the joint distribution pHs ,G, φpuq, φpvqq of the public information and

the shares is indistinguishable between s “ 0 and s “ 1 provided tu , vu P S. In the absence

of the “leakage” pφpuq, φpvqq this is a consequence of the planted random subgraph conjecture

(Conjecture 1.3).

To handle the leakage, we consider the following generalization. Two parties tu , vu P S know

the location of their edge Hpu , vq “ Gpφpuq, φpvqq in G, which could potentially be useful to

search for the “local structure of H” around their edge. �e new conjecture posits that if u and

v have this additional information, they still cannot distinguish whether H is planted. With an

eye towards stronger security we state it below for a general `.

Conjecture 1.4. (Planted random subgraph conjecture with `-vertex leakage) With high probabil-

ity over H „ Gpk , 1{2q, the following two distributions are n´Ωp1q-indistinguishable in polyno-

mial time for all subsets L “ tu1, . . . , u`u Ď VpHq of size `:

(1) (planted) pH,G, φpu1q, . . . , φpu`qq where we choose uniformly at random an injective

function φ : rks Ñ rns and embed H into G on the image of φ. �e remaining edges of

G are sampled randomly.

(2) (model) pH,G, φpu1q, . . . , φpu`qq where we choose uniformly at random an injective

function φ : L Ñ rns and embed the subgraph of H on L into G on the image of φ.

�e remaining edges of G are sampled randomly.

Assuming this conjecture with ` “ 2, given pφpuq, φpvqq for tu , vu P S, we claim that both

pH0,Gq and pH1,Gq are pseudorandom and hence indistinguishable: As tu , vu P S, the pu , vq-th
bits of H0 and H1 in pHs ,Gq are independent of all the others and cannot be used to distinguish.

Once the pu , vq-th bits of H0 and H1 are removed, both pH0,Gq and pH1,Gq become identically

distributed to the planted pH,Gq with its pu , vq-th bit removed. By the conjecture, this model is

indistinguishable from a uniformly random string.
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�e share size in this scheme is p1 ` op1qq log k. In contrast, the most compact known for-

bidden graph scheme with perfect security has shares of size exp
˜Θp
a

log kq [LVW17, ABF
`

19].

Statistical security requires shares of size log k ´ Op1q when R is the complete graph [ABI
`

23].

It is not known if computational security is subject to the same limitation.

Under the `-vertex leakage assumption the secrecy holds not only against pairs of parties that

are not an edge in R, but also against all independent sets up to size `, i.e.,

S “ tI : I is an independent set of R and |I| ď `u.

By passing to r-hypergraphs instead of graphs, we naturally extend the construction to R
which is an arbitrary subset of at most r parties, with security against all size-` independent

sets of R (see Construction 3 below). �e most compact known perfectly secure forbidden r-

hypergraph scheme has share size exp
˜Θp
a

r log kq [LVW17] whereas our share size is still p1`

op1qq log k.

It would be interesting to obtain a provable separation in share size between the computation-

ally secure Construction 3 and the best possible perfectly secure construction for some access

structure. In Section 4.1 we explain why this is challenging using available methods.

1.2. Private simultaneous messages (PSM). In a PSM, Alice and Bob are given inputs x , y
to a public function F : rks2 Ñ t0, 1u. �ey calculate messages φpxq, φpyq which are securely

forwarded to Carol. Carol needs to output the value Fpx , yq without learning any information

about x and y beyond this value.

Abram et al. propose the following PSM protocol. In a setup phase, F viewed as a bipartite

graph is randomly embedded into an otherwise random host graph G via φ. �e graph G is

given to Carol and the embedding φ is given to Alice and Bob. Carol outputs Gpφpxq, φpyqq
which must equal Fpx , yq.

Abram et al. argue that this protocol is “secure” for a p1´ op1qq-fraction of functions F under

Conjecture 1.4 with leakage ` “ 2. �eir security de�nition appears to additionally assume that

the choice of inputs px , yq is independent of the function F. In contrast, our security de�nition

in Section 4.2 allows for Alice and Bob to choose their inputs jointly from some distribution that

depends on the description of F. �is is more natural for potential cryptographic applications;

Alice and Bob should not be expected to commit to their input before they know which func-

tion they are computing. We extend our low-degree analysis to support this stronger notion of

security.

Messages in this protocol are of length log n “ p1 ` εq log k. In contrast, perfect security is

known to require combined message length

ˇ

ˇφpxq
ˇ

ˇ`
ˇ

ˇφpyq
ˇ

ˇ ě p3´op1qq log k [FKN94, AHMS18]

(but it is not known if statistical security is subject to the same bound).

�e r-hypergraph variant of the conjecture with leakage ` “ r gives PSM security for r-party

protocols also with message size log n “ p1 ` εq log k (Section 4.2). Even without a security

requirement the message size must be at least p1 ´ op1qq log k for the protocol to be correct on

most inputs.

1.3. Low-degree lower bounds. We provide evidence for these conjectures in the form of lower

bounds against the low-degree polynomial computational model (see e.g., [KWB19] and refer-

ences therein). In this model, �xing a parameter D “ Dn , the distinguishing algorithm is allowed

to compute an arbitrary degree-D polynomial function of the bits of the input over the �eld �.
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�e algorithm succeeds if the value of the polynomial is noticeably di�erent between the ran-

dom and planted models. Degree-D polynomials serve as a proxy for nOpDq
time computation

since a degree-D polynomial in polypnq input bits can be evaluated by brute force in time nOpDq

(ignoring numerical issues).

Surprisingly, for noise-robust
2

hypothesis testing problems it has been conjectured that when-

ever all degree-D polynomials with D “ Oplog nq fail (formally, no polynomial strongly sep-

arates the two distributions [COGHK
`

22, Section 7]), then no polynomial-time distinguisher

succeeds. �is is now known as the “low-degree conjecture” of Hopkins [Hop18]. Based on this

heuristic, a provable failure of Oplog nq-degree polynomials to strongly separate the two distri-

butions provides a state-of-the-art prediction of the hard and easy regimes for the problem of

interest.

It should be noted that there exists a certain weakness in existing low-degree hardness ev-

idence for the planted clique problem, which also applies to our lower bound for the planted

random subgraph problem (and that of [ABI
`

23]). Both planted clique and planted random sub-

graph technically do not satisfy the noise-robust assumption of the low-degree conjecture be-

cause the planted isomorphic copy of H in the graph G is not robust to small perturbations of

G (if 0.01 fraction of the edges of G are randomly �ipped then the copy of H will be destroyed).

Noise-robustness is an important assumption; in fact, in a handful of carefully chosen noise-free

problems, low-degree methods are provably weaker than other bri�le polynomial-time methods

such as Gaussian elimination or la�ice-basis reduction techniques [ZSWB22]. �at being said,

the existing techniques do not appear applicable to graph se�ings such as planted clique or the

planted random subgraph model.

2. Our result

Let H be an r-uniform hypergraph over vertex set rks chosen uniformly at random (i.e., each

r-hyperedge between the vertices of rks is included independently with probability half). Let

L Ď VpHq of size `. Let�H,L and�H,L be the following distributions over r-uniform hypergraphs

G with vertex set rns, where n ě k ě `:

(1) In the planted distribution �H,L, an injective map φ : rks Ñ rns is chosen uniformly at

random among all injective maps conditioned on φpuq “ u for u P L. �e hyperedges of

G are

Gpu1, . . . , urq “

#

Hpφ´1pu1q, . . . , φ´1purqq, if φ´1pu1q, . . . , φ´1purq exist

a random bit, otherwise.

(2) In the null distribution �H,L, the hyperedges of G are

Gpu1, . . . , urq “

#

Hpu1, . . . , urq, if u1, . . . , ur P L
a random bit, otherwise.

Uniform r-hypergraphs on n vertices are represented by their adjacency maps

`

rns
r

˘

Ñ t˘1u,

with ´1 and 1 representing the presence and absence of a hyperedge, respectively.

In words, the hypergraph G „ �H,L drawn from the planted model has the public hypergraph

H embedded into a uniform choice of k vertices, and is otherwise purely random. However, the

2
Noise-robustness means that the planted structure is resilient to small random perturbations [Hop18, HW21].
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location of L Ď VpHq is �xed and public information. �e hypergraph G „ �H,L drawn from

the random model copies the subgraph of H on L, but it does not use the part of H outside of

L; all remaining edges of the graph are chosen purely at random. Note that in both models, the

marginal distribution of G is a uniformly random hypergraph, but distinguishers know H and L.

In the case r “ 2 of graphs, there is a slight di�erence between the distributions �H,L ,�H,L
and those described in the Introduction, namely that we have imposed the condition φpuq “ u
on the leaked vertices in L. �is condition is without loss of generality, and in particular, it does

not a�ect the complexity of distinguishing �H,L from �H,L.

Following the low-degree framework [KWB19], we consider the degree-D-likelihood ratio

LRDpH, Lq,
LRDpH, Lq “ sup

pP�rGp®uq:®uPprnsr qs
deg pďD

AdvppH, Lq

where

AdvppH, Lq “
��H,LrppGqs ´��H,LrppGqs

b

Var�H,LrppGqs
.

Here p P �rGp®uq : ®u P
`

rns
r

˘

s denotes a multivariate polynomial in the quantities Gpu1, . . . , urq

for pu1, . . . , urq P
`

rns
r

˘

with degree at most D. LRDpH, Lq measures the best advantage of a

degree-D polynomial distinguisher that can arbitrarily preprocess H and knows L. Whenever

LRDpH, Lq “ op1q then no D-degree polynomial can achieve strong separation between �H,L
and �H,L [COGHK

`
22, Section 7].

To gain intuition on the performance of low-degree polynomials, let us start with the simplest

one, which is the bias of the edges of the hypergraph G:

ppGq “
ÿ

1ďu1ă¨¨¨ăurďn
Gpu1, . . . , urq.

Assume for simplicity that L “ H. It holds by direct expansion,

��H rppGqs “
ÿ

1ďu1ă¨¨¨ăurďk

Hpu1, . . . , urq

��H rppGqs “ 0

Var�H rppGqs “
`n

r

˘

.

�e likelihood ratio is

AdvppHq “ Θ
ˆ

��H rppGqs
nr{2

˙

.

As ��H rppGqs is a sum of the

`k
r

˘

hyperedge indicators for H, ��H rppGqs would have value

˘Θpkr{2q for a typical choice of H, resulting in an advantage of Θppk{nqr{2q (a�er optimizing

between ppGq or ´ppGq). �e advantage is op1q when k ď n1´Ωp1q
and therefore the distin-

guisher fails in this regime. Yet, when k “ Θpnq the calculation suggests the count distinguisher

succeeds withΩrp1q probability which indeed can be con�rmed by being a bit more careful in the

above analysis. Our main theorem shows that other low-degree polynomials cannot substantially

improve upon the edge-counting distinguisher.
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�eorem 2.1. Assume for some p P � and constant ε ą 0, the following bounds hold on the size
of H, k, the leakage number ` and the degree D:

(1) k ď pn ´ `qn´ε{24p2D2 ` `
(2) ` ď mintk , ε1{pr´1qrplog nq1{pr´1q{40u and,
(3) D ď ε3 plog nqr{pr´1q

{
` r

r´1
log log n

˘

.

�en for any L Ď rks with |L| “ `,

`

�HLRDpH, Lq2p˘1{p
ď

2
p
`

r´1
qn´ε

1´ n´ε{2
` exp

´

´Ω

´

rpε log nq1`1{pr´1q
¯¯

.

In particular, for p “ 1, ` “ opplog nq1{pr´1qq, and ε “ Ωp1q

�HLRDpH, Lq2 “ n´ε`op1q.

�e bound is tight in the following ways:

(1) Degree: �e bound on D is optimal (for constant ε) up to a factor of Oplog log nq. A

degree-Oppr log nqr{pr´1qq distinguisher with high advantage and time complexity 2
Oppr log nq1{pr´1qq

exists. �is is the algorithm that looks for the presence of a subgraph in G that is identical

to the one induced by the �rst Oprr{pr´1qplog nq1{pr´1qq vertices in H.

(2) Leakage: When

` `
r´1

˘

ě logp2nq the distinguishing advantage is constant (for any k ą `).
�e distinguisher that looks for the existence of a vertex in G whose adjacencies in L match

those of an arbitrary vertex in H outside L has constant advantage, degree

` `
r´1

˘

, and time

complexity Opn
` `

r´1

˘

q.

(3) Advantage: �e edge-counting distinguisher described above has advantage pk{nqr{2 “
n´εr{2

. Our proof can show a matching lower bound in the absence of leakage. When

leakage is present, assuming ` ą r ´ 1, the linear distinguisher

sign

ÿ

vRL

Gp1, . . . , r ´ 1, vq “ sign

ÿ

vRL

Hp1, . . . , r ´ 1, vq

has squared advantageΩppk ´ `q{pn ´ `qq “ Ωpn´εq which matches the theorem state-

ment.

2.1. Our proof. Abram et al. obtain their result as a consequence of a worst-case bound for

arbitrary planted H: �ey prove that for all graphs H with k ď n1{2´ε
vertices,

LRDpH, Lq ď op1q .

As k “ n1{2
is tight for clique their method cannot prove a be�er bound. In contrast, we average

the likelihood ratio over the choice of H, showing that �HrLRDpH, Lq2s is small all the way

up to k ď n1´ε
. By taking the expectation over H, we introduce extra cancellations that are

necessary to obtain the stronger bound.

By Markov’s inequality

PHrLRDpH, Lq2 ě ηs ď
�HrLRDpH, Lq2s

η
.

A vanishing expectation implies concentration, namely LRDpH, Lq “ op1q for a 1´op1q fraction

of H.
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�e above calculation bounds the advantage for a �xed leakage set L. In order to bound the

advantage of an arbitrary set L for the cryptographic applications, we also bound the higher mo-

ments of LRDpH, Lq. Using p “ ` log n and applying Markov’s inequality with η “ 4n´ε`op1q

PHrLRDpH, Lq2 ě ηs ď
�HrLRDpH, Lq2ps

ηp

ď

ˆ

n´ε`op1q

η

˙p

“ 4
´` log n

ď
1

n
`n
`

˘ .

Taking a union bound over the

`k
`

˘

choices for L, we can deduce the stronger result that no leakage

set L can a�ain advantage η:

PH

„

maxLĎVpHq
|L|“`

LRDpH, Lq2 ě 4n´ε`op1q


ď op1q .

We summarize the �nal bound on the low-degree advantage for Conjecture 1.4 as the following

corollary, which includes the parameters.

Corollary 2.2. For all p P � and η ą 0,

PH

„

maxLĎVpHq
|L|“`

LRDpH, Lq2 ě η



ď

ˆ

n
`

˙

η´p

˜

2
p
`

r´1
qn´ε

1´ n´ε{2
` exp

´

´Ω

´

rpε log nq1`1{pr´1q
¯¯

¸p

.

3. Proof of Theorem 2.1

Viewed as an

`n
r

˘

-dimensional vector, every G in the support of�H,L decomposes as pG1,GLq,

where GL is the subgraph of G on L and G1 is the remaining part (indexed by r-subsets that have

at least one vertex in rnszL).

We start by claiming that without loss of generality, all polynomial distinguishers of interest are

constant in the coordinates of GL. Indeed, in both the planted �H,L and null distributions �H,L,

the status of the hyperedges in L is always �xed. As �xing the L-indexed inputs can only lower

the degree of the distinguishing polynomial p, this assumption holds without loss of generality.

In the null G1 is simply uniformly random in t˘1up
rns

r qzp
L
rq, i.e., �H,LpG1,GLq “ �pG1q, where

� is the uniform distribution. Now, let us focus on G1 for the planted �H,L. We can describe the

distribution �1H,L of G1 as follows:

(1) Choose a random subset S1 of k ´ ` vertices in rnszL.

(2) Choose a random permutation π1 : S1 Ñ rkszL. Extend π1 to a permutation from S1 Y L
to rks by se�ing π1puq “ u for all u P L.

(3) Set

G1pu1, . . . , urq “

#

Hpπ1pu1q, . . . , π1purqq, if u1, . . . , ur P S1 Y L
a random bit, otherwise.
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Using the above observations we have,

LRDpH, Lq “ sup

pP�rGp®uq:®uPprnsr qs
deg pďD

��H,LrppGqs ´��H,LrppGqs
b

Var�H,LrppGqs

“ sup

pP�rG1p®uq:®uPprnsr qzp
r`s
r qs

deg pďD

��1H,L
rppG1qs ´��rppG1qs
a

Var�rppG1qs

Since the null distribution � is a product measure, by a standard linear algebraic argument in

the literature of the low-degree method (see [KWB19] or [COGHK
`

22, Lemma 7.2]), the optimal

degree-D polynomial takes an explicit form. Using the expansion with respect to the Fourier-

Walsh basis tχαpG1q “
ś

ePα G1e , α Ď
`

rns
r

˘

z
`

r`s
r

˘

u, the explicit formula for the squared advantage

is

LRDpH, Lq2 “
ÿ

αĎprnsr qzp
L
rq

1ď|α|ďD

yLRpα|H, Lq2 (3.1)

where

yLRpα|H, Lq “ ��
�1H,LpG

1q

�pG1q
χαpG1q “ ��1H,LχαpG

1
q.

Now we expand the square on the right-hand side of (3.1) and take the expectation over H.

�HLRDpH, Lq2 “
ÿ

αĎprnsr qzp
L
rq

1ď|α|ďD

�χαpG1qχαpG2q, (3.2)

where the right-hand expectation is now taken over both the choice of H and the choice of two

independent “replicas” G1,G2 sampled from�1H . �e joint distribution of G1 and G2 is determined

by the independent choices of H, the subsets S1, S2, and the permutations π1, π2. Equation (3.2)

gives a formula for the second moment of the likelihood ratio with respect to the random variable

H, which we spend the rest of this section evaluating; higher moments will be computed later.

We �x α Ď
`

rns
r

˘

z
`L

r

˘

and upper bound the expectation. Since we are considering the ex-

pectation of a Fourier character, it will o�en be zero. Let Vpαq be the set of vertices in rns
spanned by α. If S1 Y L or S2 Y L does not entirely contain Vpαq then the expectation is zero:

if, say, e P α1 is not contained in S1 Y L, then G1peq is independent of all other bits appearing in

�χαpG1qχαpG2q “
ś

ePα G1peqG2peq resulting in a value of zero. �erefore

�rχαpG1qχαpG2qs

“ �rχαpG1qχαpG2q | S1 X S2 Ě VpαqzLs ¨ PrS1 X S2 Ě VpαqzLs

“ �rχαpG1qχαpG2q | S1 X S2 Ě VpαqzLs ¨ PrS1 Ě VpαqzLs2
(3.3)
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by independence of S1 and S2. As S1 is a random k-subset of rnszL,

PrS1 Ě VpαqzLs “
pk ´ `qpk ´ ` ´ 1q ¨ ¨ ¨ pk ´ ` ´ |VpαqzL| ` 1q

pn ´ `qpn ´ ` ´ 1q ¨ ¨ ¨ pn ´ ` ´ |VpαqzL| ` 1q

ď

ˆ

k ´ `
n ´ `

˙|VpαqzL|

. (3.4)

Conditioned on both S1 and S2 containing VpαqzL,

χαpG1qχαpG2q “
ź

pu1 ,...,urqPα

G1pu1, . . . , urqG2pu1, . . . , urq

“
ź

pu1 ,...,urqPα

Hpπ1pu1q, . . . , π
1
purqqHpπ2pu1q, . . . , π

2
purqq. (3.5)

As H consists of i.i.d. zero mean˘1 entries, this expression vanishes in expectation unless every

hyperedge in the collection

pψpu1q, . . . , ψpurqq : pu1, . . . , urq P α, ψ P tπ
1, π2u

appears exactly twice, in which case the product equals to one. �is is only possible if π : S1 Ñ S2

given by π “ pπ2q´1 ˝ π1 restricts to an automorphism of α. In particular, π must �x the set

Vpαq. As π outside L is a permutation which is chosen uniformly at random, we conclude that

(3.5) is upper bounded by,

Prπ �xes Vpαqs “
|VpαqzL|!

pk ´ `qpk ´ ` ´ 1q ¨ ¨ ¨ pk ´ ` ´ |VpαqzL| ` 1q

ď

ˆ

|VpαqzL|
k ´ `

˙|VpαqzL|

. (3.6)

Plugging (3.4) and (3.6) into (3.3) and then into (3.2) yields

�LRDpH, Lq2 ď
ÿ

αĎprnsr qzp
L
rq

1ď|α|ďD

ˆ

|VpαqzL| pk ´ `q
pn ´ `q2

˙|VpαqzL|

. (3.7)

�is bound only depends on the hypergraph α through |VpαqzL|. For v “ 1, . . . , rD let

Npv ,Dq “
ˇ

ˇ

 

α Ď
`

rns
r

˘

z
`L

r

˘

: |VpαqzL| “ v , 1 ď |α| ď D
(
ˇ

ˇ . (3.8)

Grouping the terms on the right-hand side by the value of v “ |VpαqzL| gives

�LRDpHq2 ď
rD
ÿ

v“1

Npv ,Dq ¨
ˆ

vpk ´ `q
pn ´ `q2

˙v

. (3.9)

To �nish the proof we will demonstrate that this sum is dominated by the leading term v “ 1.

We split this proof using the following two propositions.

In the �rst proposition, we bound the “low” vertex size part.
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Proposition 3.1. Assume that epk ´ `q{pn ´ `q ď n´ε. �en for every 0 ă δ ă ε it holds for
su�ciently large n ,

ttu
ÿ

v“1

Npv ,Dq
ˆ

vpk ´ `q
pn ´ `q2

˙v

ď 2
p
`

r´1
q
¨

n´ε

1´ n´ε`δ
,

where

t :“ e´1
pr ´ 1qpδ log nq1{pr´1q

´ ` (3.10)

In the second proposition, we bound the “high” vertex size part.

Proposition 3.2. Assume that epk ´ `q{pn ´ `q ď n´ε. Assume also that for some δ ą 0 for
which 0 ă δ ă ε, it holds

(1) ` ď pr{9qpδ log nq1{pr´1q

and,
(2) D ď εδ2plog nqr{pr´1q{

´

r
r´1

log log n
¯

.

�en for t given in (3.10) if also δ ă 1{4 it holds,

rD
ÿ

v“ttu`1

Npv ,Dq
ˆ

vpk ´ `q
pn ´ `q2

˙v

ď exp

´

´Ωpδ1{pr´1qεrplog nqr{pr´1q
q

¯

.

Notice now that directly combining both the Propositions for δ “ ε{4 directly implies �eorem

2.1.

3.1. Proof of Proposition 3.1.

Proof. For �xed v, the set VpαqzL can be chosen in

`n´`
v

˘

ways. �e subset α can then include

any of the hyperedges in Vpαq of which there are at most

`v``
r

˘

, except those that at completely

contained in L of which there are

``
r

˘

, leading to the bound:

Npv ,Dq ď
ˆ

n ´ `
v

˙

¨ 2
p

v``
r q´p

`
rq. (3.11)

Bounding Npv ,Dq by (3.11) and using the standard binomial coe�cient bound

`a
b

˘

ď pea{bqb ,

the le� hand side is at most

t
ÿ

v“1

ˆ

epk ´ `q
n ´ `

˙v

2
p

v``
r q´p

`
rq

As epk ´ `q{pn ´ `q ď n´ε “ n´ε`δ ¨ nδ, this is bounded by

t
ÿ

v“1

n´pε´δqv ¨ 2´δv log
2

n`pv``r q´p
`
rq. (3.12)

Let f pvq “ ´δv log
2

n `
`v``

r

˘

´
``

r

˘

, v ě 1. For all integer v ě 1,

f pv ` 1q ´ f pvq “ ´δ log
2

n `
ˆ

v ` `
r ´ 1

˙

ď ´δ log n `
ˆ

epv ` `q
r ´ 1

˙r´1

.
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By the de�nition of t, this is negative when 1 ď v ď t, so f pvq is maximized at v “ 1. �ere-

fore (3.12) is at most

ttu
ÿ

v“1

n´pε´δqv ¨ 2´δ log n`p``1

r q´p
`
rq ď 2

p
`

r´1
q
¨

n´ε

1´ n´ε`δ

using the identity

```1

r

˘

´
``

r

˘

“
` `

r´1

˘

and the geometric sum formula. � �

3.2. Proof of Proposition 3.2.

Proof. When v is large, the bound (3.11) can be improved by taking into account that at most D
of the hyperedges can be chosen:

Npv ,Dq ď
ˆ

n ´ `
v

˙

¨ D
ˆ

`v``
r

˘

´
``

r

˘

D

˙

ď D
ˆ

epn ´ `q
v

˙v

¨

ˆ e
`v``

r

˘

D

˙D

ď

ˆ

epn ´ `q
v

˙v

¨

ˆ

epv ` `q
r

˙rD

¨ D
ˆ

e
D

˙D

.

Under the assumption epk ´ `q{pn ´ `q ď n´ε the summation of interest is at most

rD
ÿ

v“t`1

ˆ

epk ´ `q
n ´ `

˙v

¨

ˆ

epv ` `q
r

˙rD

¨ D
ˆ

e
D

˙D

ď rD2

ˆ

e
D

˙D

¨ n´εt
ˆ

eprD ` `q

r

˙rD

ď rD2

ˆ

e
D

˙D

¨ n´εt`epD ` `q
˘rD

.

As D ď εδ2plog nqr{pr´1q{p r
r´1

log log nq and ` ď pr{9qpδ log nq1{pr´1q
, for su�ciently large n,

D log

`

pD ` `q{pεδ2
q
˘

ď εδ2
plog nqr{pr´1q,

Hence, for su�ciently small constant 0 ă δ ă 1, for su�ciently large n it holds

D log pepD ` `qqq ď εδ2
plog nqr{pr´1q,

Using also the elementary inequality D2pe{DqD ď 8 we conclude that the summation of interest

is at most

8rn´εt
exp

´

εδ2
plog nqr{pr´1q

¯

.

Plugging in the direct bound from the de�nition of t and the upper bound on the leaked vertices,

t ě
r
7

pδ log nq1{pr´1q

we conclude that the summation of interest is at most

8r exp

ˆ

´ε
r ´ 1

e
δ1{pr´1q

plog nqr{pr´1q
` εδ2

plog nqr{pr´1q

˙

.
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Choosing now δ ă 1{4 concludes the result. � �

3.3. Extension to highermoments. Now we extend the calculation in �eorem 2.1 from p “ 1

to higher p. �e 2p-th moment of LRDpH, Lq is

�HLRDpH, Lq2p
“ �H

˜

ÿ

αĎprnsr qzp
L
rq

1ď|α|ďD

�G1„�1H
G2„�1H

χαpG1qχαpG2q

¸p

“
ÿ

α1 ,...,αpĎp
rns

r qzp
L
rq

1ď|αi |ďD

�

p
ź

i“1

χαipG
1
iqχαipG

2
i q

where the expectation is over H and also over the replicas G1i ,G
2
i sampled independently from

�1H . Each G1i is equivalently sampled as S1i and π1i (and likewise G2i as S2i and π2i ).

Fix the Fourier characters α1, . . . , αp and let Vpαiq be the set of vertices in rns spanned by αi .

First, the expectation is only nonzero if all of the sets S1i and S2i contain VpαiqzL. By (3.4) this

occurs with probability at most

P
“

@i P rps. S1i X S2i Ě VpαiqzL
‰

ď

ˆ

k ´ `
n ´ `

˙

2

řp
i“1
|VpαiqzL|

. (3.13)

Conditioned on this event,

p
ź

i“1

χαipG
1
iqχαipG

2
i q “

p
ź

i“1

χπ1ipαiq
pHqχπ2i pαiq

pHq .

When the expectation is taken over H, this is only nonzero if every hyperedge appears an even

number of times among the collection of edges

C :“ pψipu1q, . . . , ψipurqq : i P rps, pu1, . . . , urq P αi , ψi P tπ
1
i , π

2
i u .

In order for this to occur, every vertex in the image of the ψi must be in the image of at least two

ψi . Let us say that the collection of embeddings is a double cover if this occurs. �en

�H,π1i ,π
2
i

p
ź

i“1

χπ1ipαiq
pHqχπ2i pαiq

pHq

“ Pπ1i ,π2i rC is an even collections

ď Pπ1i ,π2i rpπ
1
i , π

2
i qiPrps is a double covers . (3.14)

Let V “
řp

i“1
|VpαiqzL|. We claim

Pπ1i ,π2i rpπ
1
i , π

2
i qiPrps is a double covers ď

p2Vq2V

pk ´ `qpk ´ ` ´ 1q ¨ ¨ ¨ pk ´ ` ´ V ` 1q
. (3.15)

�is is based on the following surjection a.k.a union bound. �e total number of vertices mapped

by all the permutations is 2V . We take any partition of the 2V vertices such that every block of

the partition has size at least two. �ere are at most p2Vq2V
such partitions. We go through the

vertices in some �xed order, and for each vertex which is not the �rst member of its block of the

partition, we obtain a factor of «
1

k´` for the probability that the vertex is mapped to the same
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element as the other members of its block of the partition. Since the blocks have size at least two

(in order to be a double cover), we obtain at least V factors of «
1

k´` in this way. We upper bound

«
1

k´` by a rising factorial to obtain the bound in (3.15).

If V ď
k´`

2
, then (3.15) can simpli�ed to

p2Vq2V

pk ´ `qpk ´ ` ´ 1q ¨ ¨ ¨ pk ´ ` ´ V ` 1q
ď

ˆ

8V2

k ´ `

˙V

. (3.16)

On the other hand, if V ě
k´`

2
, then the right-hand side is at least 1. Combining these two

possible cases, we conclude,

Pπ1i ,π2i rpπ
1
i , π

2
i qiPrps is a double covers ď

ˆ

8V2

k ´ `

˙V

. (3.17)

Now we return to the main calculation of �HLRDpH, Lq2p
. Combining (3.13), (3.17),

�HLRDpH, Lq2p
“

ÿ

α1 ,...,αpĎp
rns

r qzp
L
rq

1ď|αi |ďD

�

p
ź

i“1

χαipG
1
iqχαipG

2
i q

ď
ÿ

α1 ,...,αpĎp
rns

r qzp
L
rq

1ď|αi |ďD

ˆ

8V2pk ´ `q
pn ´ `q2

˙V

ď
ÿ

α1 ,...,αpĎp
rns

r qzp
L
rq

1ď|αi |ďD

ˆ

8p2D2pk ´ `q
pn ´ `q2

˙

řp
i“1
|VpαiqzL|

pV ď pDq

“

˜

ÿ

αĎprnsr qzp
L
rq

1ď|α|ďD

ˆ

8p2D2pk ´ `q
pn ´ `q2

˙|VpαqzL|
¸p

�e inner summation is nearly the combinatorial quantity we bounded in Equation (3.7) when

computing �HLRDpH, Lq2. �e only di�erence is the factor 8p2D2
which may be larger than

what we had before. �is factor can be negated by scaling down
k´`
n´` . Using the same counting

arguments as before with the slightly stronger assumption on k, we conclude the desired moment

bound.

4. Cryptographic applications

4.1. Hypergraph secret sharing. �e secret sharing scheme of Abram et al. was stated for

forbidden graph access structures. �e construction extends to partial access structures pR, Sq
where R is a collection of r-subsets and S consists of all independent sets of R of size at most `.

Construction 2. Forbidden hypergraph secret sharing: Syntactically replace “graph” by “r-

uniform hypergraph” and pu , vq by pu1, . . . , urq in Construction 1.

�is scheme reconstructs all tu1, . . . , uru P R by (1.2).
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Proposition 4.1. Assume pH,�H,Lq and pH,�H,Lq are ps , εq-indistinguishable for all L Ď VpHq
with |L| “ `. �en for every independent set I Ď R of size at most `, shares of 0 and 1 are ps , 2εq-
indistinguishable by parties in I.

Proof. Assume parties in I can 2ε-distinguish shares of 0 and 1 using distinguisher D. By the

triangle inequality, D ε-distinguishes pHs ,G, φpiq : i P Iq from pH,G, φpiq : i P Iq where

Gpu1, . . . , urq “

#

Hpu1, . . . , urq, if u1, . . . , ur P I
a random bit, otherwise.

for at least one value of s. Let D1
be the circuit that, on input pH1,G, ui : i P Iq, outputs DpH1 ‘

sR,G, ui : i P Iq. As R does not contain any hyperedges within I, by (1.1), D1pPH,Iq is identically

distributed to DpHs ,G, φpiq : i P Iq. As H is random, D1pQH,Iq is identically distributed to

DpH,G, φpiq : i P Iq. �erefore D1
and D have the same advantage. � �

�e class of access structures can be expanded to allow the reconstruction set R to consist

of arbitrary sets, as long as the size of all minimal sets is at most r. �is is accomplished by a

reduction to size exactly r. Let R1 Ď rn ` r ´ 1s be the r-uniform hypergraph

R1 “
 

A Y tn ` 1, . . . , n ` r ´ |A|u : A P R
(

.

Construction 3. Apply Construction 2 to R1 with the shares of parties n`1, . . . , n` r´1 made

public.

If all sets in R1 can resconstruct in Construction 2 then all sets in R can reconstruct in Con-

struction 3. As for secrecy, if Construction 2 is secure against all independent sets in R of size at

most `, then Construction 3 is secure against such sets of size at most ` ´ r ` 1.

Could Construction 2 give a provable separation between the minimum share size of information-

theoretic and computational secret sharing? We argue that this is unlikely barring progress in

information-theoretic secret sharing lower bounds. �e share size in Construction 2 is p1 `

Ωp1qqplog nq. However, the share size lower bounds of [KN90, BGK20] do not exceed log n for

any known n-party access structure.

In contrast, Csirmaz [Csi97] proved that there exists an n-party access structure with share

sizeΩpn{ log nq. Using Csirmaz’s method, Beimel [Bei23] constructed total r-hypergraph access

structures that require share size Ωpn2´1{pr´1q{rq for every r ě 3.

We argue that Csirmaz’s method cannot prove a lower bound exceeding ` for any (partial)

access structures in which secrecy is required to hold only for sets of size up to `. Csirmaz showed

that a scheme with share size s implies the existence of a monotone submodular function f (the

joint entropy of the shares in A) from subsets of t1, . . . , nu to real numbers that satis�es the

additional constraints

f pAq ` f pBq ě f pA Y Bq ` f pA X Bq ` 1 if A, B P S and A Y B P R (4.1)

f pAq ď s for all A of size 1. (4.2)

Proposition 4.2. Assuming all sets in S have size at most `, there exists a monotone submodular
function satisfying (4.1) and (4.2) with s “ `.

As our scheme does not tolerate Ωplog nq bits of leakage, the best share size lower bound

that can be proved using Csirmaz’s relaxation of secret sharing is ` “ oplog nq. �e proof of

Proposition 4.2 is a natural generalization of [Csi97, �eorem 3.5] to partial access structures.
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Proposition 4.2. �e function f pAq “
ř|A|

t“1
maxt` ´ t ` 1, 0u is monotone, submodular, satis-

�es (4.1) for every R Ď S, and (4.2) with s “ `. � �

4.2. Multiparty PSM for random functions. Given a function F : rksr Ñ t˘1u, the random

hypergraph embedding of F is the r-hypergraph F on rk vertices px , iq : x P rks, i P rrs such that

Fppx1, 1q, . . . , pxr , rqq “ Fpx1, . . . , xrq.

All other potential hyperedges of F are sampled uniformly and independently at random.

We describe the r-partite generalization of Abram et al.’s PSM protocol. Let φ : rksˆrrs Ñ rns
be a random injection and let G be the r-hypergraph on n vertices given by

Gpu1, . . . , urq “

#

Fpφ´1pu1q, . . . , φ´1purqq, if φ´1pu1q, . . . , φ´1purq exist

a random bit, otherwise.

Construction 4. r-party PSM protocol for F:

: In the setup phase, G is published and φ is privately given to the parties.

: In the evaluation phase,

1. Party i is given input xi .

2. Party i forwards ui “ φpxi , iq to the evaluator.

3. �e evaluator outputs Gpu1, . . . , urq.

�e protocol is clearly functional. A reasonable notion of security with respect to random func-

tions F should allow the parties’ input choices to depend on F. An input selector is a randomized

function I that, on input F, produces inputs IpFq “ px1, . . . , xrq for the r parties.

We say a protocol is ps1, s , εq (simulation) secure against a random function if for every input

selector I there exists a size-s1 simulator S for which the distributions

pF,G, φpx1, 1q, . . . , φpxr , rqq and pF, SpF, Fpx1, . . . , xrqqq (4.3)

are ps , εq-indistinguishable, where px1, . . . , xrq is the output of IpFq.

Proposition 4.3. Assume pH,G, LpHqq with G „ �H,LpHq versus G „ �H,LpHq are ps , εq-
indistinguishable with parameters |VpHq| “ kr, |VpGq| “ n, and ` “ r. �en Construction 4
is pOp

`n
r

˘

q, s ´ Op
`n

r

˘

q, εq-secure.

We label the vertices of H by pairs px , rq P rks ˆ rrs.

Proof. On input pF, yq, the simulator S
(1) chooses random u1, . . . , ur P rns
(2) sets Gpu1, . . . , urq “ y
(3) samples all other possible hyperedges of G independently at random

(4) outputs pG, u1, . . . , urq.

We describe a reduction R that, given a distinguisher D for (4.3), tells apart pH,G, LpHqqwith

G „ �H,LpHq versus G „ �H,LpHq for some leakage function L. On input pH,G, z1, . . . , zrq,

(1) set F to be the function Fpx1, . . . , xrq “ Hppx1, 1q, . . . , pxr , rqq
(2) output pF, πpGq, πpz1q, . . . , πpzrqq for a random permutation π on rns (which acts on G

as a hypergraph isomorphism).
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Let L be the leakage function that, on input H, runs IpFq to obtain px1, . . . , xrq, and outputs

ppx1, 1q, . . . , pxr , rqq.
�is reduction preserves distinguishing advantage as it maps the distributions (4.3) into the

distributions pH,�H,LpHq, LpHqq and pH,�H,LpHq, LpHqq, respectively. It can be implemented in

size Op
`n

r

˘

q, giving the desired parameters. � �
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