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Abstract. We introduce new lattice-based techniques for building ABE for circuits with unbounded attribute
length based on the LWE assumption, improving upon the previous constructions of Brakerski and Vaikun-
tanathan (CRYPTO 16) and Goyal, Koppula, and Waters (TCC 16). Our main result is a simple and more efficient
unbounded ABE scheme for circuits where only the circuit depth is fixed at set-up; this is the first unbounded
ABE scheme for circuits that rely only on black-box access to cryptographic and lattice algorithms. The scheme
achieves semi-adaptive security against unbounded collusions under the LWE assumption. The encryption time
and ciphertext size are roughly 3× larger than the prior bounded ABE of Boneh et al. (EUROCRYPT 2014), substan-
tially improving upon the encryption times in prior works. As a secondary contribution, we present an analogous
result for unbounded inner product predicate encryption that satisfies weak attribute-hiding.

1 Introduction

Attribute-based encryption (ABE) [SW05,GPSW06] is a generalization of public-key encryption to support fine-
grained access control for encrypted data. Here, ciphertexts are associated with attributes like ‘(author:Waters), (inst:UT),
(topic:PK)’ and keys with access policies like ((topic:Thy) OR (topic:Qu)) AND (NOT(inst:CWI)), and decryption is possi-
ble only when the attributes satisfy the access policy. Over past decade, substantial progress has been made in the
design and analysis of ABE schemes, leading to a large families of schemes that achieve various trade-offs between
efficiency, security and underlying assumptions. Meanwhile, ABE has found use in a variety of settings such as elec-
tronic medical records, messaging systems and online social networks; companies like Cloudflare already use ABE
to distribute private key storage across data centers [Ver23].

As institutions grow and with new emerging and more complex applications for ABE, we need ABE schemes that
can readily accommodate the addition of new roles, entities, attributes and policies. This means that the ABE set-up
algorithm should put no restriction on the length of the attributes or the size of the policies that will be used in the
ciphertexts and keys. This requirement was introduced and first realized in the work of Lewko and Waters [LW11]
under the term unbounded ABE; we would henceforth also refer to standard ABE as bounded ABE. The Lewko-Waters
schemes rely on pairings without random oracles, and have since been improved and extended in several subsequent
works [Lew12,OT12,RW13,Att14,KL15,Att16,CGKW18]. All of these schemes are limited to policies described by NC1

circuits or branching programs, as is the case with all pairing-based ABE schemes.
In 2016, Brakerski and Vaikuntanathan (BV16) gave the first construction of unbounded ABE for circuits [BV16]

based on the Learning with Errors (LWE) assumption, building upon bounded ABE schemes in [BGG+14,GVW13].
This was followed shortly by a generalization in Goyal-Koppula-Waters (GKW16) [GKW16] showing a generic com-
piler of bounded ABE schemes to unbounded ones assuming additionally adaptively secure identity-based encryption
(IBE). Both BV16 and GKW16 schemes also achieve semi-adaptive security [CW14], a slight strengthening of selec-
tive security where an adversary can choose its encryption challenge after seeing the public key. We note that both
schemes do inherit the limitation from prior bounded ABE for circuits, in that the depth of the circuits needs to be
fixed at set-up; nonetheless, this already capture NC1 circuits, whose depth can be bounded by security parameter
λ.

One theoretical and practical draw-back of the BV16 and GKW16 schemes is that they require non-black-box
access to the underlying cryptographic building blocks and algorithms, which not only incur substantial efficiency
overheads during encryption, but also make these schemes harder to implement and deploy in practice. In particular,
the BV16 scheme uses homomorphic computation of a pseudorandom function, whereas the GKW16 applies circuit
garbling techniques to the underlying ABE schemes. This is in contrast to the afore-mentioned pairing-based un-
bounded ABE schemes as well as prior LWE-based ABE schemes for circuits, which avoid non-black-box techniques.



1.1 Our Results

In this work, we present new LWE techniques for building simple and more efficient unbounded ABE from bounded
ones that avoid non-black-box techniques, leading to substantial savings in encryption times. Our constructions are
inspired in part by prior pairing-based schemes in [Lew12,OT12,CGKW18], as well as ideas from [Agr17] on how to
combine inner-product functionality and BGGHNSVV14 structure.

Unbounded ABE for circuits. Our main result is a more efficient unbounded ABE for circuits of a-priori bounded
depth d based on the LWE assumption. From a feasibility stand-point, this is the first unbounded ABE scheme for
circuits that rely only on black-box access to cryptographic and lattice algorithms. As with BV16 and GKW16, we
achieve semi-adaptive security against unbounded collusions. For depth d circuits over ℓ-bit inputs where only d is
fixed at set-up, we have

|mpk| = poly(d, λ), |ct| = ℓ · poly(d, λ), |sk| = ℓ · poly(d, λ)

Compared to the BGGHNSVV14 ABE (which only achieves selective security),

– the encryption time and the ciphertext size are roughly 3× larger;
– the decryption time incurs an additive ℓ · poly(d, λ) overhead; the overhead is sublinear in the BGGHNSVV14

ABE decryption time s · poly(d, λ).

The efficiency savings over prior works are as follows:

– compared to the BV16 unbounded ABE, the savings in running times and ciphertext/key sizes are two-fold:
cutting down poly(d + dPRF) dependencies to poly(d) where dPRF is the depth of a PRF and removing additive
overheads corresponding to PRF evaluation; in particular, (i) encryption time in BV16 is mostly dominated by
homomorphic evaluation of a PRF with ℓ-bit output, and our encryption time should be a poly(λ) factor smaller,
(ii) for constant-depth circuits and shallow circuits where d ≪ dPRF, our scheme is substantially more efficient
for all running times and sizes.

– compared to the GKW16 unbounded ABE, our encryption time and ciphertext size are a multiplicative O(λ)
factor smaller, which corresponds to the overhead from garbling the BGGHNSVV14 ABE encryption circuit.

Decryption times in our scheme and GKW16 are comparable to that in BGGHNSVV14 ABE, and faster than that in
BV16. In all three unbounded ABE schemes, the secret key has two components: a private component corresponding
to a BGGHNSVV14 ABE secret key of size poly(d, λ) as well as a public component of size ℓ · poly(d, λ) that can be
reused across all keys for circuits of input length ℓ. In BV16, the private component is slightly larger poly(d+dPRF, λ),
but the public component is just ℓ+ poly(λ) bits.

Unbounded inner product predicate encryption. Next, we turn our attention to inner product predicate en-
cryption (IPPE) [KSW08], where ciphertexts are associated with (row) vectors x ∈ Zℓ

q and keys with vectors y ∈ Zℓ
q

and decryption is possible only if their inner product xy⊤ equals 0. In addition to hiding the message as in ABE, we
require attribute-hiding, namely that ciphertexts hide the attribute x. Unbounded IPPE schemes can be realized from
pairings [OT12] with black-box techniques, or from LWE by applying the GKW16 transformation to the bounded
IPPE scheme of Agrawal, Freeman, and Vaikuntanathan (AFV11) [AFV11] with non-black-box techniques.

Our second result is a more efficient unbounded inner product predicate encryption scheme based on the LWE
assumption. We achieve semi-adaptive, weak attribute-hiding security against unbounded collusions. For vectors
over Zℓ

q where only q is fixed at set-up, we have

|mpk| = poly(log q, λ), |ct| = ℓ · poly(log q, λ), |sk| = ℓ · poly(log q, λ)

Compared to the scheme derived from combining GKW16 with the AFV11 scheme, our encryption time and
ciphertext size are a multiplicative O(λ log q) factor smaller, where the O(λ) factor comes from garbling as before,
and the O(log q) comes from the fact that we can directly support attributes over Zq in our scheme. In contrast, the
techniques in BV16 and GKW16 are inherently limited to attributes over a binary alphabet.
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Scheme Time(Enc) Time(Dec)

[BGG+14] TEnc(ℓ, d) = ℓ · poly(λ, d) TDec(s, d) = s · poly(λ, d)
[BV16] O(TEnc(ℓ, d+ dPRF)) + sPRF · poly(λ, d+ dPRF) TDec(s+ sPRF, d+ dPRF) + ℓ · poly(λ, d)
[GKW16] poly(λ) · TEnc(ℓ, d) TDec(s, d) + ℓ · poly(λ, d)

this work (3 + o(1)) · TEnc(ℓ, d) TDec(s, d) + ℓ · poly(λ, d)

Fig. 1: Comparison of running times with prior KP-ABE for circuits of size s and depth d over {0, 1}ℓ. [BGG+14]
is used as a benchmark. Here, dPRF = O(log λ + log ℓ) and sPRF = O(ℓ · λ) denotes the depth and size of a PRF
for ℓ-bit inputs. The ciphertext sizes satisfy an analogous relationship, where we replace TEnc by SEnc, namely:
SEnc(ℓ, d) = ℓ · poly(d, λ), O(SEnc(ℓ, d + dPRF)), poly(λ) · SEnc(ℓ, d), (3 + o(1)) · SEnc(ℓ, d) respectively. The total
key sizes are SDec(d) = poly(λ, d), SDec(d+ dPRF) + ℓ+ poly(λ), SDec(d) + ℓ · poly(λ), ℓ · SDec(d) respectively.

Our construction, in a nutshell. The starting point, following BV16 and GKW16, is to compute/sample a BG-
GHNSVV14 mpk during key generation, which would be reused across all key queries; this (deceptively) simple
idea buys us both short mpk and semi-adaptive security. Decryption would then first reconstruct a BGGHNSVV14
ciphertext w.r.t. mpk and then proceed as in BGGHNSVV14 decryption. The key technical novelties in this work lie
in how we enable reconstruction of BGGHNSVV14 ciphertext using simple LWE algebra and techniques (instead of
non-black-box techniques), along with a new simple idea for handling circuit with different input lengths in the key
queries.

1.2 Technical Overview

We proceed to provide a technical overview of our constructions, focusing on the unbounded ABE.

BGGHNSVV14 ABE. We begin with an overview of the BGGHNSVV14 bounded ABE scheme for depth d circuits
over {0, 1}ℓ [BGG+14]. Let A ∈ Zn×ℓ·m

q be a matrix where q ∈ N is prime and m = O(n log q). Given A and a
circuit f : {0, 1}ℓ → {0, 1} of depth d, we can derive [BGG+14,GSW13] a matrix Af ∈ Zn×m

q such that for any
x ∈ {0, 1}ℓ, we can compute a low-norm matrix HA,f,x satisfying

(A− x⊗G) ·HA,f,x = Af − f(x) ·G, (1)

where G ∈ Zn×m
q is the gadget matrix [MP12] and ∥HA,f,x∥ ≤ mO(d). The ABE scheme is as follows, omitting

error terms in the ciphertext:

mpk = A0 ← Zn×m
q ,b← Zn

p ,A← Zn×ℓ·m
q .

ct = (

c0︷ ︸︸ ︷
s ·A0,

c2︷ ︸︸ ︷
s · b⊤ + µ · ⌊q/2⌋,

c3︷ ︸︸ ︷
s · (A− x⊗G)), s← Zn

q .

sk = k⊤
f ← DZ2m,τ s.t. [A0 | Af ] · k⊤

f = b⊤.

Decryption computes an approximation to µ · ⌊q/2⌋ for f(x) = 0 as follows:

c2 −
≈ s·[A0|Af ]︷ ︸︸ ︷

[c0 | c3 ·HA,f,x] ·k⊤
f .

Compressing mpk. As a warm-up, we describe an ABE for circuits over {0, 1}ℓ where |mpk| = poly(d, λ). It is
convenient to then write A in the BGGHNSVV14 ABE as Ai ∈ Zn×m

q , i ∈ [ℓ] and c3 in the ciphertext as s · (Ai −
xiG), i ∈ [ℓ]. We want to sample Ai during key generation (and not set-up) and then compute s ·(Ai−xiG) during
decryption. In particular,
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– mpk now contains random matrices B0,W,V ← Zn×m
q in addition to A0,b, and msk contains the trapdoors

for A0 and B0;
– the ciphertext contains

si ·B0, {si ·W + s ·G, si ·V + xi · s ·G}i∈[ℓ],

where s, si ← Zn
q are sampled during encryption;

– during decryption, we compute

s · (Ai − xi ·G) ≈ (si ·W + s ·G) ·G−1(Ai)− (si ·V + xi · s ·G) + si ·B0 · Zi

where Zi ← B−1
0 (V −W ·G−1(Ai)) is provided in the secret key.

– key generation for f returns the same (Ai,Zi) across all secret keys — generated using a PRF key in msk so that
we don’t need to maintain state across key queries — as well as a BGGHNSVV14 secret key for f .

This is sufficient for functionality. However, an adversary can also compute si ·B0 ·Zj and thus s(Aj − xi ·G) for
any i ̸= j. To prevent this attack, we replace W with W+ i ·G in both the ciphertext and the secret key. This yields
the following ABE scheme:

mpk = A0,B0,W,V← Zn×m
q ,b← Zn

q .

ct =
( c0︷ ︸︸ ︷
s ·A0, {

c1,i︷ ︸︸ ︷
si ·B0,

c2,i︷ ︸︸ ︷
si · (W + i ·G) + s ·G,

c3,i︷ ︸︸ ︷
si ·V + xi · s ·G}i∈[ℓ],

c4︷ ︸︸ ︷
s · b⊤ + µ · ⌊q/2⌋

)
, s, si ← Zn

q .

sk =
(
{Zj ,Rj}j∈[ℓ],kf

)
,where Zj ,Rj are fixed across all keys[

Zj

Rj

]
← DZ2m×m,τ s.t.

[
B0 |W + j ·G

]
·
[
Zj

Rj

]
= V,

Aj = G ·Rj

k⊤
f ← DZ2m,τ s.t. [A0 | Af ] · k⊤

f = b⊤

Decryption first uses

c1,i · Zi + c2,i ·Ri − c3,i ≈ s · (Ai − xi ·G) (2)

to recover a BGGHNSVV14 ciphertext, and then proceed as in BGGHNSVV14 decryption.

Proof overview. The proof proceeds in two steps:

Step 1. For i = 1, 2, . . . , ℓ, we rely on pseudorandomness of si · [B0 |W + i ·G] to replace c1,i, c2,i with random
and rewrite c3,i in terms of s · (Ai − xi ·G) using (2). In more detail,

– we program W + i ·G = B0 · W̃ for a random low-norm W̃;
– we sample random Gaussian Zi,Ri and program V accordingly;
– for all j ̸= i, we sample Zj ,Rj using the trapdoor for [B0 |W + j ·G] = [B0 | B0 · W̃ + (j − i) ·G];
– use the LWE assumption to replace si ·B0 with random.

Step 2. Run the BGGHNSVV14 security proof. This step knows the trapdoor for B0, which is used to solve for Zj .

Our construction and proof strategy achieve semi-adaptive security for the same reason as in BV16, GKW16: the
matrices Ai from the BGGHNSVV14 mpk are sampled after the adversary chooses its encryption challenge attribute.
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Getting to an unboundedABE scheme. In an unbounded ABE scheme, we need to allow both an honest party and
an adversary to ask for keys corresponding to functions with different input lengths. The previous scheme already
satisfies the syntax of an unbounded ABE scheme, since we can sample the Ai matrices “on the fly”, while using a
PRF to ensure that we use the same Ai across all secret keys. However, it is insecure as an unbounded ABE: consider
an attack that fixes x∗ for the challenge ciphertext and then query a f such that f evaluates to true on a prefix of
x∗. To defeat this attack, we add s · (B1−|x| ·G) to the challenge ciphertext and modify sk for f : {0, 1}ℓ → {0, 1}
to satisfy

[A0 | Af | B1 − ℓ ·G] · k⊤
f = b⊤

To handle semi-adaptive security, we would simply guess |x∗|when simulating B1 in the reduction, which incurs an
additional polynomial loss. This is where GKW16 uses an adaptively secure IBE (for which the known instantiations
from LWE in e.g. [Yam16] are more complex than their selectively secure counter-parts), since they embed |x∗| into
the identity of the IBE ciphertext. The BV16 scheme similarly embeds |x∗| as part of the attribute in an “outer ABE”
that plays an analogous role to the IBE ciphertext in GKW16.

Inner product predicate encryption scheme. Here, we start with the AFV11 inner product predicate encryption,
where an encryption for an attribute x = (x1, . . . , xℓ) ∈ Zℓ

q is exactly the same as that in the BGGHNSVV14 ABE.
Here, we exploit the fact that our construction directly support attributes over Zq . We can then proceed essentially
as before.

1.3 Discussion

Additional comparison with prior approaches. As mentioned at the beginning of Section 1.1, our constructions
are inspired in part by prior pairing-based schemes. To better convey this, compare our ciphertext with that in the
KP-ABE for arithmetic span programs in [CGKW18, Section 9.3], where an encryption of x = (x1, . . . , xℓ) ∈ Zℓ

p

has the form:

(
[

c0︷︸︸︷
sB0 ]1, [

c2,i︷︸︸︷
siB0]1, [

c′
2,i︷︸︸︷

s′iB0]1, [

c1,i︷ ︸︸ ︷
si(W + iW1) + s′i(W

′ + iW′
1) + s(V + xiV

′)]1, [sb
⊤]Tµ

)
, s, si, s

′
i ← Zk

p.

where [·]1 denotes exponentiation in the group G1. Our si(W+i ·G) is inspired by si(W+i ·W1) above. However,
note that s, sxi appear together as s(V + xiV

′) in c1,i. In our scheme, sG, xisG appear separately in s2,i and s3,i
respectively.

In our analysis, we implicitly treat {si(W+i ·G)}i∈[ℓ] as independent IBE ciphertexts (for the LWE-based IBE in
[ABB10]) corresponding to the identities 1, 2, . . . , ℓ with randomness si. This is again inspired by the pairing-based
scheme [CGKW18] which uses IBE techniques in a similar way. IBE schemes are also used in the BV16, GKW16
constructions in a generic manner, whereas our schemes exploit specific algebraic structure in the underlying IBE.

Our construction can be viewed as using a one-key secure inner product functional encryption (IPFE) scheme to
compute s(Ai−xiG), where the IPFE ciphertext encrypts (s, xis). The IPFE approach was used in [Agr17, Section 5]
to construct a ”bounded” ABE for circuits with semi-adaptive security. Our construction is simpler in that we do not
need to encrypt a LWE error term, but also more delicate since we want an unbounded ABE scheme.

Perspective. Apart from the landmark results of ABE for circuits from LWE about a decade ago now, research on
LWE-based ABE has largely lagged behind their pairing-based counter-parts. One reason is that we have a much
larger arsenal of techniques in the pairings world, which exploit the rich algebraic structure in pairing groups. We see
this work as taking another step towards discovering analogues of these algebraic techniques in the LWE setting, in
the specific context of realizing short mpk. We stress that realizing short mpk (where |mpk| is much shorter than the
ciphertext attributes) is not only relevant for constructing unbounded ABE and IPPE schemes, but also a necessity
for several outstanding open problems in the LWE-based ABE literature, notably (i) CP-ABE for unbounded size
circuits (even just NC1), (ii) ABE for DFA and Turing machines, (iii) broadcast encryption where the total parameter
size |mpk|+ |ct|+ |sk| is sublinear in the total number of users, all of which we have made much more substantial
progress in the pairings setting. We hope that developing new algebraic techniques for short mpk as well as LWE
analogues of existing pairing-based techniques in this work could help facilitate progress on these open problems.
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2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. r) and boldface upper case for matrices (e.g. R). For
integral vectors and matrices (i.e., those over Z), we use the notation ∥r∥, ∥R∥ to denote the maximum absolute
value over all the entries. We use v ← D to denote a random sample from a distribution D, as well as v ← S to
denote a uniformly random sample from a set S. We use ≈s and ≈c as the abbreviation for statistically close and
computationally indistinguishable. We denoted byDZm,χ the (centered) discrete Gaussian distribution over Zm with
parameter χ, i.e., the distribution over Zm where for all x, Pr[x] ∝ e−π·(x2

1+···+x2
m)/χ2

.

2.1 Pseudoradom Functions

A pseudorandom function (PRF) is a family of functions {F(k, ·) : {0, 1}m(λ) → {0, 1}ℓ(λ)}λ∈N,k∈{0,1}λ such that:

– efficiency: one can compute F(k, x) in poly(λ)-time given x and k,
– security: for any PPT adversary A let

AdvPRF
A,F(λ) :=

∣∣∣Pr [AF(k,·)(1λ) = 1
]
− Pr

[
AR(·)(1λ) = 1

]∣∣∣ ,
where k←{0, 1}λ and R←F({0, 1}m(λ) → {0, 1}ℓ(λ)), with F({0, 1}m(λ) → {0, 1}ℓ(λ)) denoting the set of all
functions mapping m(λ) bits to ℓ(λ) bits. A PRF F is secure if for all PPT adversaryA, the advantage AdvPRF

A,F(λ)
is a negligible function in λ.

2.2 Attribute-based encryption

Syntax. A key policy attribute-based encryption (KP-ABE) scheme Π for some class F consists of four algorithms:

– Setup(1λ,F)→ (mpk,msk). The setup algorithm gets as input the security parameter 1λ and class description
F . It outputs the master public key mpk and the master secret key msk.

– Enc(mpk,x,µ) → ctx. The encryption algorithm gets as input mpk, an input x and a message µ ∈ {0, 1}λ. It
outputs a ciphertext ctx. Note that x is public given ctx.

– KeyGen(mpk,msk, f) → skf . The key generation algorithm gets as input mpk,msk and f ∈ F . It outputs a
secret key skf . Note that f is public given skf .

– Dec(mpk, skf , f, ctx,x)→ µ. The decryption algorithm gets as input skf and ctx along with mpk. It outputs a
message µ.

Correctness. For all ℓ ∈ N, inputs x ∈ {0, 1}ℓ, functions f : {0, 1}ℓ → {0, 1} with f(x) = 0, and all µ ∈ {0, 1}λ,
we require

Pr

Dec(mpk, skf , ctx) = µ :
(mpk,msk)← Setup(1λ,F)
skf ← KeyGen(mpk,msk, f)
ctx ← Enc(mpk,x,µ)

 ≥ 1− negl(λ).

Security Definition. For a stateful adversary A, we define the advantage function

AdvABE
A,Π(λ) := Pr

b = b′ :

(mpk,msk)← Setup(1λ,F)
x∗ ← A(1λ,mpk)
(µ0,µ1)← AKeyGen(mpk,msk,·)(mpk)
b← {0, 1}; ctx∗ ← Enc(mpk,x∗,µb)
b′ ← AKeyGen(mpk,msk,·)(ctx∗)

− 1

2
,

with the restriction that all queries f : {0, 1}ℓ → {0, 1} that A sent to KeyGen(mpk,msk, ·) satisfy either ℓ ̸= |x∗|
or f(x∗) = 1. An ABE scheme Π is semi-adaptively secure if for all PPT adversariesA, the advantage AdvABE

A,Π(λ) is
a negligible function in λ.
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2.3 Lattices background

Learning with Errors. Given n,m, q, χe ∈ N, the LWEn,m,q,χe assumption states that

(A, s ·A+ e) ≈c (A, c),

where
A←Zn×m

q , s←Zn
q , e←DZm,χe

, c←Zm
q .

Leftover Hash Lemma and Generalizations A result that we will use is the so-called leftover hash lemma (LHL)
[HILL99], which states that for m ≥ (n + 1) · log q + 2 · λ the distribution of (A,u = A · x) for uniform and
independent A← Zn×m

q and x← {1,−1}m is statistically indistinguishable from uniformly random.

Lemma 1 (Generalized Leftover Hash Lemma [DRS04,ABB10]). Suppose that m > (n + 1) log q + ω(log n)
and that q > 2 is prime. Let R be an m × k matrix chosen uniformly in {1,−1}m×k mod q where k = k(n) is
polynomial in n. LetA andB be matrices chosen uniformly in Zn×m

q and Zn×k
q respectively. Then, for all vectorsw in

Zm
q , the distribution (A,A ·R,w⊤ ·R) is statistically close to the distribution (A,B,w⊤ ·R).

Trapdoor and preimage sampling. Let n, q ∈ Z,

gq = (1, 2, 4, . . . , 2⌈log q⌉−1) ∈ Z⌈log q⌉.

The gadget matrix Gn,q is defined as the diagonal concatenation of gq n times. Formally, Gn,q = gq ⊗ In ∈
Zn×n·⌈log q⌉. For any t ∈ Z, the function G−1

n,q : Zn×t
q → {0, 1}n·⌈log q⌉×t expands each entry a ∈ Zq of the input

matrix into a column of size ⌈log q⌉ consisting of the bit-representation of a. For any matrix A ∈ Zn×t
q it holds that

Gn,q ·G−1
n,q(A) = A mod q. We refer to the gadget matrix simply as G when parameters n and q are clear from

the context.
Let n,m, q ∈ N and consider a matrix A ∈ Zn×m

q . For all V ∈ Zn×m′

q we let A−1(V, τ) denote the random
variable whose distribution is the discrete Gaussian DZm×m′ ,τ conditioned on A ·A−1(V, τ) = V mod q. If Y ←
A−1(V, τ) then ∥Y∥ ≤ k · τ ·

√
m ·m′ with probability at least 1 − e−Ω(k2). A matrix T ∈ Zm×m such that

A ·T = H ·G, for some invertible matrix H ∈ Zn×n
q is called a τ -trapdoor for A, for τ ≥ 2 ·m ·

√
n · log q · ∥T∥.

The following properties have been established in a long sequence of works.

Lemma 2 (TrapdoorGeneration and Sampling [Ajt96,GPV08,MP12]). There exists a pair of probabilistic polynomial-
time algorithms:

– TrapGen(1n, 1m, q) that for all m ≥ m0 = m0(n, q) = O(n log q), outputs (A,TA) s.t. A ∈ Zn×m
q is within

statistical distance 2−n from uniform and TA is a τ -trapdoor forA where τ = O(
√
n · log q · log n).

– SamplePre(A,T,V, τ) that given A and any τ -trapdoor T ofA, outputs a sample from A−1(V, τ).

Moreover

1. for x←DZm,τ , the marginal distribution of y = A · x ∈ Zn
q is uniform (up to negl(n) statistical distance), and the

conditional distribution of x given y is A−1(y, τ).

Lemma 3 (Trapdoor Extension [ABB10,CHKP10]). Given A ∈ Zn×m
q , with a τ -trapdoor T, it is efficient to

sample from [A|B]−1(·, τ) for all B ∈ Zn×k
q . Moreover, for any V ∈ Zn×m′

q , the following two distributions are
statistically close

– U ∈ Zm+k×m′
, where U←[A|B]−1(V, τ),

–
[
U0

U1

]
∈ Zm+k×m′

, where U1←DZk×m′ ,τ and U0←A−1(V −BU1, τ).

Another related result that we will use is the so-called leftover hash lemma (LHL) [HILL99], which states that for
m ≥ (n + 1) · log q + 2 · λ the distribution of (A,u = A · x) for uniform and independent A ← Zn×m

q and
x← {0, 1}m is statistically indistinguishable from uniformly random.
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Homomorphic Computation on Matrices. We recall basic homomorphic computation on matrices used in BG-
GHNSVV14:

Theorem 1 ([BGG+14,GSW13]). There exist efficient deterministic algorithms EvalF and EvalFX such that for all
n, q, ℓ ∈ N, and for any sequence of matrices A = (A1, . . . ,Aℓ) ∈ (Zn×n·⌈log q⌉)ℓ, for any depth-d Boolean circuit
f : {0, 1}ℓ → {0, 1} and for every x = (x1, . . . , xℓ) ∈ {0, 1}ℓ, the following properties hold.

– TheoutputsAf = EvalF(A, f) andHA,f,x = EvalFX(A, f,x) arematrices inZn×(n·⌈log q⌉)
q andZ(ℓ·n·⌈log q⌉)×(n·⌈log q⌉),

– It holds that ∥HA,f,x∥ ≤ (n · log q)O(d),
– It holds that

(A− x⊗Gn,q) ·HA,f,x = Af − f(x) ·Gn,q mod q.

For a proof of this theorem, we refer the reader to [BCTW16, Fact 3.4].

3 Unbounded ABE for Circuits

We refer to Section 1.2 for an overview of the scheme and the security proof.

Construction. Let the ABE Π = (Setup,Enc,KeyGen,Dec) for the family Fd of circuits of depth d, over ℓ-bit
inputs for any ℓ ∈ N, be defined as follows:

– Setup(1λ, 1d): Sample

(A0,TA0)←TrapGen(1n, 1m, q), (B0,TB0)←TrapGen(1n, 1m, q),

B1,W,V←Zn×m
p ,D←Zn×λ

q ,

k←{0, 1}λ.

where q is prime1. Set mpk = (A0,B0,B1,W,V,D), and msk = (TA0
,TB0

, k). Return (mpk,msk).
– Enc(mpk,x ∈ {0, 1}ℓ,µ ∈ {0, 1}λ): Let ℓ = |x|. Sample

s← Zn
q , e0 ← DZm,χ, e4 ← DZλ,χ, e5 ← DZm,χ′ ,

sj ← Zn
q , e1,j ← DZm,χ, e2,j ← DZm,χ′ , e3,j ← DZm,χ′′ for all j ∈ [ℓ].

Compute

c0 := s ·A0 + e0 mod q,

c1,j := sj ·B0 + e1,j mod q for all j ∈ [ℓ],

c2,j := sj · (W + j ·G) + s ·G+ e2,j mod q for all j ∈ [ℓ],

c3,j := sj ·V + xj · s ·G+ e3,j mod q for all j ∈ [ℓ],

c4 := s ·D+ µ · ⌊q/2⌋+ e4 mod q.

c5 := s · (B1 − ℓ ·G) + e5 mod q.

Output ctx := (c0, {c1,j}j∈[ℓ], {c2,j}j∈[ℓ], {c3,j}j∈[ℓ], c4, c5).
– KeyGen(mpk,msk, f): Let ℓ equal the size of f ’s inputs. For all j ∈ [ℓ], sample

Kj ← SamplePre

(
[B0|W + j ·G],

[
TB0

0m×m

]
,V, τ1;F(k, j)

)
.

Parse
Kj =

[
Zj

Rj

]
,

1 We can also adapt the construction to support non-prime moduli using techniques from [MP12].
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and let Aj := G ·Rj mod q. Let A := [A1| . . . |Aℓ] and Af = EvalF(A, f). Sample

Kf ← SamplePre

[A0|Af |B1 − ℓ ·G],

 TA0

0m×m

0m×m

 ,D, τ2

 .

Output skf := ({Kj}j∈[ℓ],Kf ). Here, Kf is the private component, and {Kj} is the public component and can
be reused over all functions of input length at most ℓ.

– Dec(mpk, skf , f, ctx,x): Let ℓ = |x|. Parse ctx = (c0, {c1,j}j∈[ℓ], {c2,j}j∈[ℓ], {c3,j}j∈[ℓ], c4, c5), skf = ({Kj}j∈[ℓ],Kf ),

and Kj =

[
Zj

Rj

]
for all j ∈ [ℓ]. Let Aj = G ·Rj and A =

[
A1 . . . Aℓ

]
. Compute HA,f,x = EvalFX(A, f,x).

For each j ∈ [λ], check if the j-th entry of

c4 −
[
c0

∣∣∣∣ ([[c1,1 c2,1
]
·K1 | . . . |

[
c1,ℓ c2,ℓ

]
·Kℓ

]
−
[
c3,1 . . . c3,ℓ

])
·HA,f,x

∣∣∣∣ c5] ·Kf

is q/4-close to q/2. If so, set µj := 1. Else, µj := 0. Return µ.

Parameters. We have 3 gaussian parameters:
≈∥e0∥,∥e1,j∥,∥e4∥︷ ︸︸ ︷

χ′ ≤

≈∥e2,j∥,∥e5∥︷ ︸︸ ︷
χ′ ≤

≈∥e3,j∥︷ ︸︸ ︷
χ′′ .

The parameters requirements can be compactly specified as:

m ≥ O(n log q) trapdoor generation (Lemma 2)

2n
δ

≥ q/χ0, χ ≥ O(n+ λ) LWEn,χs0
,q hardness (H3,i,6 ≈c H3,i,7,H2 ≈c H3,H7 ≈c H8)

χ′ ≥ χ · poly(λ,m) · λω(1) noise flooding (H3,i,5 ≈s H3,i,6,H6 ≈s H7)

χ′′ ≥ χ′ · τ1 · poly(λ,m) · λω(1) noise flooding (H3,i,4 ≈s H3,i,5,H6 ≈s H7)

m ≥ (n+ 1) · log q + ω(log n) + 2λ (G)LHL (H3,i,0 ≈s H3,i,1,H3,i,7 ≈s H3,i,8)

τ1 ≥ O(m2) trapdoor generation (H3,i,2 ≈s H3,i,3)

τ2 ≥ λω(1) ·m3 ·B trapdoor generation (H4 ≈s H5)

q ≥ poly(λ,m, ℓ) · τ2 · τ1 ·B · (χ+ χ′ + χ′′) correctness (Theorem 2)

We bound the adversarially chosen parameter d, ℓ by λω(1). Taking λ1 = λω(1), and additionally bounding the
poly(λ,m, ℓ) terms by λ1, we can set

m = O(n log q),
χ = λ1, χ′ = λ3

1, χ′′ = λ6
1,

τ1 = λ1, τ2 = B · λ2
1 = λ

O(d)
1 ,

q = B · τ2 · λ8
1 = λ

O(d)
1 , n = O(logB + log λ1)

1/δ = O(d · log λ1)
1/δ,

(3)

where in the last two lines, we use B ≤ mO(d) ≤ λ
O(d)
1 .

Efficiency. Our ABE scheme achieves

|mpk| = O((n · log q)2), |ct| = O(ℓ · n · (log q)2), |sk| = O(ℓ · (n · log q)2 · log τ1 + λ · n · log q · log τ2).

This yields the following parameter sizes (in bits) for our ABE scheme:

|mpk| = Oλ(d
2+2/δ), |ct| = Oλ(ℓ · d2+1/δ), |sk| = Oλ(ℓ · d2+2/δ).

where Oλ(·) hides factors polynomial in λ (bounded by λ4). Here, we use n = O(d1/δ · λ), log q = O(d · λ), where
we do optimize on the dependency on d but not on λ.
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Comparison with BGGHNSVV14 ABE. To compare concrete efficiency of our construction against the BG-
GHNSVV14 ABE, let n,m, q denote the parameters in our scheme and n0,m0, q0 those in BGGHNSVV14. Since
q0 ≥ B, we can set

q = q0 · λω(1).

This implies that we have

log q = (1 + o(1)) · log q0, n = (1 + o(1)) · n0, and m = (1 + o(1)) ·m0.

In particular, n,m, and log q factors are essentially the same in both schemes. Therefore, to compare concrete
efficiency with BGGHNSVV14 ABE, we can compare the number of field (i.e., Zq) elements and operations.

– Our ciphertext size is (3ℓ+2) ·m+λ elements in Zq , whereas that in BGGHNSVV14 is (ℓ+1) ·m+λ elements.
– Encryption requires (3ℓ+ 2) ·m+ λ vector-vector products over Zn

q and sampling (3ℓ+ 2) ·m+ λ gaussians
over Zq , whereas that in BGGHNSVV14 requires (ℓ + 1) ·m + λ vector-vector products and (ℓ + 1) ·m + λ
gaussians.

– Our secret key contains a private component with mλ Zq-elements, and a public component with mℓn Zq-
elements, whereas that in BGGHNSVV14 is mλ elements.

– Decryption in both schemes are dominated by s · poly(λ) time to compute HA,f,x, with an additive ℓ · poly(λ)
overhead in our scheme.

Notice that this also applies to GKW16 since it uses the BGGHNSVV14 scheme as the underlying building block.

Theorem 2 (Correctness). LetΠ be the ABE construction described in Section 3, with parameters as in Equation (3).
Then Π is correct.

Proof. Fix x, f such that f(x) = 0. The bulk of the proof lies in showing that[
c0

∣∣∣∣ ([[c1,1 c2,1
]
·K1 | . . . |

[
c1,ℓ c2,ℓ

]
·Kℓ

]
−
[
c3,1 . . . c3,ℓ

])
·HA,f,x

∣∣∣∣ c5]
= s ·

[
A0 | Af | B1 − ℓ ·G

]
+ e′f,x mod q (4)

where ∥e′f,x∥ is small. Correctness then follows readily from the fact that

c4 − (s ·
[
A0 | Af | B1 − ℓ ·G

]
+ e′f,x) ·Kf = µ · ⌊q/2⌋+ e4 − e′f,x ·Kf mod q.

To prove Eq. (4):

– First, for any j ∈ [ℓ], we have[
c1,j c2,j

]
·Ki = (sj ·

[
B0 |W + j ·G

]
+ s ·

[
0n×m | G

]
+
[
e1,j | e2,j

]
) ·Kj

= sj ·
[
B0 |W + j ·G

]
·Kj + s ·

[
0n×m | G

]
·Kj +

[
e1,j | e2,j

]
·Kj

≈ si ·V + s ·Ai mod q.

– Further, we have

sj ·V + s ·Aj − c3,j = sj ·V + s ·Aj − (sj ·V + xj · s ·G+ e3,j )

≈ s · (Aj − xj ·G) mod q.

– We deduce that[[
c1,1 c2,1

]
·K1 | . . . |

[
c1,ℓ c2,ℓ

]
·Kℓ

]
−
[
c3,1 . . . c3,ℓ

]
= s · (A− x⊗G) + ex mod q,

where A := [A1 | . . . | Aℓ] and ex :=
[[
e1,1 e2,1

]
·K1 | . . . |

[
e1,ℓ e2,ℓ

]
·Kℓ

]
−

[
e3,1 | . . . | e3,ℓ

]
.
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– Using the key equation
(A− x⊗G) ·HA,f,x = Af mod q,

as f(x) = 0, we have[[
c1,1 c2,1

]
·K1 | . . . |

[
c1,ℓ c2,ℓ

]
·Kℓ

]
·HA,f,x = s · (A− x⊗G) + ex) ·HA,f,x

= s ·Af + ex ·HA,f,x

≈ s ·Af mod q.

– Putting everything together, we obtain Eq. (4) with

e′f,x =
[
e0 | ex ·HA,f,x | e5

]
=

[
e0 |

([[
e1,1 e2,1

]
·K1 | . . . |

[
e1,ℓ e2,ℓ

]
·Kℓ

]
−

[
e3,1 | . . . | e3,ℓ

])
·HA,f,x | e5

]
,

where

∥e′f,x∥ ≤ λ · χ
+ λ2 · 2 · ℓ ·m2 · (χ+ χ′ + χ′′) · τ1 ·B
+ λ · χ′.

In particular, the norm of the final error term is, with overwhelming probability in λ, bounded by

∥e4∥+ ∥e′f,x ·Kf∥ ≤ λ · χ

+ λ · 3 ·m · τ2 ·
(
λ · χ

+ λ2 · 2 · ℓ ·m2 · (χ+ χ′ + χ′′) · τ1 ·B

+ λ · χ′
)
,

where we have used that ∥Kf∥ ≤ λ · τ2 and that e′f,x is a vector of length 3 ·m. Since

q ≥ poly(λ,m, ℓ) · τ2 · τ1 ·B · (χ+ χ′ + χ′′)

the theorem follows. ⊓⊔

Theorem 3 (Security). Let Π be the KP-ABE construction described in Section 3, with parameters set as in Eq. (3),
and F a PRF. Then, for any semi-adaptive adversary A that runs is time T = T (λ), there exists adversaries B0, B1 and
B2 against PRF-security, LWEn,m,χ,q , and LWEn,m+λ,χ,q respectively, such that

Advsa-ABEA,Π (λ) ≤ T ·
(
AdvPRFB0,F(λ) + Adv

LWEn,m,χ,q

B1
(λ) + Adv

LWEn,m+λ,χ,q

B2
(λ) + negl(λ)

)
.

Proof. Consider the following sequence of hybrids, summarized in Fig. 2 and Fig. 3. LetAdvi(A) denote the advantage
ofA in hybrid Hi. Notice that we can bound the length ℓ of the input domain of any function f queried to the KeyGen
oracle by T , i.e., an adverary A running in time T will never obtain Kj for j > T .

– H0: This is identical to the real security game. Therefore

Advsa-ABE
A,Π (λ) = Adv0(A).

– H1: This is identical to H0, except for the fact that the reduction guesses |x∗| = ℓ∗ before generating the public
parameters. If the guess is not correct, the reduction aborts. SinceA runs in time T , one has that ℓ∗ ≤ T , so the
reduction can guess ℓ∗ and incur a security loss of T . In other words, we have that

Adv0(A) ≤ T · Adv1(A).

11



Hybrid mpk ct skf justification

H0

(A0,TA0)←TrapGen(1n, 1m, q)
(B0,TB0)←TrapGen(1n, 1m, q)
W←Zn×m

q

V←Zn×m
q

B1←Zn×m
q

D←Zn×λ
q

k← K

c0 ≈ s ·A0

c1,j ≈ sj ·B0

c2,j ≈ sj · (W + j ·G) + s ·G
c3,j ≈ sj ·V + x∗

j · s ·G
c4 ≈ s ·D+ µ · ⌊q/2⌋
c5 ≈ s · (B1 − |x∗| ·G)

TA0 ,TB0 , k

Kj =

[
Zj

Rj

]
← SamplePre

 [B0|W + j ·G],[
TB0

0m×m

]
,V, τ1;F(k, j)


Aj = G ·Rj

Kf ← SamplePre

 [A0|Af |B1 − ℓ ·G],

 TA0

0m×m

0m×m

 ,D, τ2


H1 ↓ ↓ ↓ guess |x∗| = ℓ∗

H2 ↓ ↓ Kj =

[
Zj

Rj

]
← SamplePre

 [B0|W + j ·G],[
TB0

0m×m

]
,V, τ1; rj

 PRF security

H3 ↓
c1,j , c2,j ← Zm

q

c3,j ≈ [c1,j | c2,j ] ·Kj

−s · (Aj − x∗
j ·G)

↓ LWEn,m,χ,q

(Fig. 3)

H4 ↓ ↓

Rj ← DZm×m,τ1

Zj = SamplePre

(
B0,TB0 ,

V − [W + j ·G] ·Rj , τ1; rj,1

)
Kj =

[
Zj

Rj

] Lemma 3

H5 ↓ ↓

Aj ← Zn×m
q

Rj = SamplePre(G, I,Aj , τ1; rj,2)

Zj = SamplePre

(
B0,TB0 ,

V − [W + j ·G] ·Rj , τ1; rj,1

)
Kj =

[
Zj

Rj

] Lemma 2
(Item 1)

H6 B1 = A0 ·U+ ℓ∗ ·G ↓ Aj = A0 ·Uj + x∗
j ·G LHL

H7 ↓ ↓ Kf using

[U1| . . . |Uℓ∗ ] ·HA,f,x∗

Im
0m×m

 if ℓ = ℓ∗ −U0m×m

Im

 if ℓ ̸= ℓ∗

Lemma 2
SamplePre

H8 A0 ← Zn×m
q ↓ ↓ Lemma 2

TrapGen

H9 ↓
c3,j ≈ [c1,j | c2,j ] ·Kj

−c0 ·Uj

c5 ≈ c0 ·U
↓ noise flooding

H10 ↓ c0 ← Zm
q , c4 ← Zλ

q ↓ LWEn,m+λ,χ,q

Fig. 2: Summary of our security proof. ↓ denotes the same as the previous hybrid. We omit the noise terms in H0. Starting from
H6, the proof is essentially the same as the BGGHNSVV14 ABE.

– H2: This is identical to H1, except for the following modification to KeyGen:
• for all j ∈ [T ], sample once and for all a random string rj←{0, 1}poly(λ),
• use ri as randomness to sample Kj , i.e.

Kj ← SamplePre

(
[B0|W + j ·G],

[
TB0

0m×m

]
,V, τ1; rj

)
.

To show that H1 ≈c H2, we rely on the PRF security of F. The reduction works as follows:
• it samples A,B0,B1,W,V and D as in H1,
• it obtains x∗ from the adversary A,
• it answers KeyGen queries as in H1 but using the output O(j) of its PRF oracle as randomness to sample

Kj ,
• whenever the adversary A produces (µ0,µ1), it produces the challenge ciphertext ctx∗ as in H1.

Observe that
• if O(·) = F(k, ·) is pseudorandom function instance, the view of the adversary A is identical to H1;
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Hybrid mpk ct skf justification

H3,i,0 ↓ ↓ ↓ H3,1,0 = H2,
H3,i,0 = H3,i−1,9, i > 1

H3,i,1 W = B0 · W̃i − i ·G ↓ ↓ LHL

H3,i,2 V = [B0 |W + i ·G] ·Ki ↓
Zi,Ri←DZm×m,τ1

Ki =

[
Zi

Ri

] Lemma 2
(Item 1)

H3,i,3 ↓ ↓ Kj←SamplePre

 [B0|W + j ·G],[
W̃j

−Im

]
,V, τ1; rj

 , j ̸= i
Lemma 2
SamplePre

H3,i,4 B0 ← Zn×m
q ↓ ↓ Lemma 2

TrapGen

H3,i,5 ↓ c3,i = [c1,i | c2,i] ·Ki

−s · (Ai − x∗
i ·G) + e′

3,i
↓ noise flooding

H3,i,6 ↓ c2,i = c1,i · W̃i + i · s ·G+ e′
2,i ↓ noise flooding

H3,i,7 ↓ c1,i ← Zm
q ↓ LWEn,m,χ,q

H3,i,8 ↓ c2,i ← Zm
q ↓ ??

GLHL

H3,i,9 same as H2 ↓ same as H2 H3,i,4 ≈s H3,i,0

Fig. 3: Summary for H2 ≈c H3. The sequence of hybrid is repeated for all i ∈ [ℓ∗]. That is, H2 = H3,1,0 ≈ · · · ≈ H3,1,9 =

H3,2,0 ≈ · · · ≈ H3,ℓ∗,9 = H3.

• if O(·) = F (·) is a truly random function instance, the view of A is identical to H2.
We conclude that

Adv1(A) ≤ Adv2(A) + AdvPRF
B0,F(λ).

and in particular, that H1 ≈c H2.

For i ∈ [ℓ∗]:

– H3,i,1: This is the same as previous hybrid, except for the following modification to W in mpk:
• sample W̃i ← {1,−1}m×m,
• set W := B0 · W̃i − i ·G.

Since W̃i is sampled uniformly and m ≥ (n + 1) · log q + 2 · λ, statistical indistinguishability of H3,i,1 from
previous hybrid follows from the leftover hash lemma. Notice that, for all j ∈ [ℓ∗], we can now rewrite

W + j ·G = B0 · W̃i + (j − i) ·G

– H3,i,2 This is the same as H3,i,1, except for the following modification to V in mpk and to Ki in KeyGen queries:
• Parse ri = [ri,1|ri,2] and sample Zi,Ri ← DZm×m,τ1 using as random coins ri,1 and ri,2 respectively,

• set Ki :=

[
Zi

Ri

]
,

• set V := [B0 |W + i ·G] ·Ki.
By the properties of the SamplePre algorithm (Lemma 2, Item 1), the distribution of V and Ki is statistically
indistinguishable between H3,i,1 and H3,i,2. Therefore

Adv3,i,1(A) ≤ Adv3,i,2(A) + negl(λ).

– H3,i,3: This is the same as H3,i,2, except for the following modification to KeyGen queries when j ̸= i:

• compute T :=

[
W̃i

−Im

]
and observe that

[B0 |W + j ·G] ·T = [B0 | B0 · W̃i + (j − i) ·G] ·
[
W̃i

−Im

]
= (i− j) ·G.
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• compute
Kj ← SamplePre([B0|W + j ·G],T,V, τ1; rj)

to answer KeyGen queries. This works as long as

τ1 ≥ O(m2) ≥ O(m2 · ∥W̃∥). (5)

Therefore, since τ1 satisfies such constraint by our choice of parameters, we have that

Adv3,i,2(A) ≤ Adv3,i,3(A) + negl(λ).

Notice that the reduction does not use TB0
anymore.

– H3,i,4: This is the same as H3,i,3, except for the following modification to B0 in mpk:
• sample B0←Zn×m

q instead of (B0,TB0)←TrapGen(1n, 1m, q).
By the properties of the TrapGen algorithm (Lemma 2), the distribution of B0 is statistically indistinguishable
between H3,i,3 and H3,i,4. Therefore,

Adv3,i,3(A) ≤ Adv3,i,4(A) + negl(λ).

– H3,i,5: This is the same as H3,i,4 except for the following modification to c3,i in the challenge ciphertext:
• set

c3,i := [c1,i | c2,i] ·Ki − s · (Ai − x∗
i ·G) + e′3,i,

for s← Zn
q , e′3,1 ← DZm,χ′′ .

First, recall that in H3,i,4, we have

c3,i = si ·V + x∗
i · s ·G+ e3,i

= si · [B0 |W + i ·G]︸ ︷︷ ︸
[c1,i|c2,i]−[0|s·G]−[e1,i|e2,i]

·
[
Zi

Ri

]
︸ ︷︷ ︸
Ki

+x∗
i · s ·G+ e3,i

= [c1,i | c2,i] ·Ki − s · (Ai − x∗
i ·G) + e3,i − [e1,i | e2,i] ·Ki mod q

where in the last equality we have used that Ai = G ·Ri and the boxed term is the term in H3,i,4 that will be
modified in H3,i,5. By noise flooding, we have

([e1,i | e2,i],Ki, e3,i − [e1,i | e2,i] ·Ki ) ≈s ([e1,i | e2,i],Ki, e
′
3,i),

as long as

χ′′ ≥ 2 ·m · χ′ · τ1 · λω(1),

≥ ∥[e1,i | e2,i] ·Ki∥ · λω(1).

We conclude that
Adv3,i,4(A) ≤ Adv3,i,5(A) + negl(λ).

– H3,i,6: This is the same as H3,i,5, except for the following modification to c2,i in the challenge ciphertext:
• set

c2,i := c1,i · W̃i + s ·G+ e′2,i,

for e′2,i ← DZm,χ′ and s← Zn
q .
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First, recall that in H3,i,5, we have

c2,i = si · (W + i ·G) + s ·G+ e2,i

= si · (B0 · W̃i) + s ·G+ e2,i

= (si ·B0 + e1,i︸ ︷︷ ︸
c1,i

) · W̃i + s ·G+ e2,i − e1,i · W̃i mod q

where the boxed term is the term in H3,i,5 that will be modified in H3,i,6. By noise flooding, we have(
e1,i,W̃i, e2,i − e1,i · W̃i

)
≈s

(
e1,i,W̃i, e

′
2,i

)
,

as long as

χ′ ≥ m · χ · λω(1)

≥ ∥e1,i · W̃i∥ · λω(1).

We conclude that
Adv3,i,5(A) ≤ Adv3,i,6(A) + negl(λ).

– H3,i,7: This is the same as H3,i,6, except for the following modification to c1,i in the challenge ciphertext:
• sample

c1,i ← Zm
q .

Recall that in H3,i,6, we have
c1,i = si ·B0 + e1,i,

where si ← Zn
q , e1,i←DZm,χ. To show that H3,i,6 ≈c H3,i,7, we rely on LWEn,m,χ,q . The reduction works as

follows:
• it parses B = B0 ∈ Zn×m

q and c̃ = c1,i ∈ Zm
q from the LWEn,m,χ,q instance,

• it samples W̃i←{0, 1}m×m and computes A0,W,V,D as in H3,i,6, while using B0 obtained from the LWE
instance,

• it receives x∗ from the adversary A,
• it answers KeyGen queries using T (which can be computed from W̃i) as in H3,i,6,
• whenever the adversary A outputs (µ0,µ1), it samples

b← {0, 1}, s← Zn
q , e0 ← DZm,χ, e4 ← DZλ,χ, e5 ← DZλ,χ′

c1,j ← Zm
q , c2,j ← Zm

q for j ∈ [i− 1],

e′2,i ← DZm,χ′ , e3,i ← DZm,χ′′ , and
sj ← Zn

q , e1,j ← DZm,χ, e2,j ← DZm,χ′ , e3,j ← DZm,χ′′ for j ∈ [i+ 1 : ℓ∗]

and outputs

ct =



s ·A0 + e0
{c1,j}j∈[i], {sj ·B0 + e1,j}j∈[i+1:ℓ∗]

{c2,j}j∈[i−1], c1,i · W̃i + s ·G+ e′2,i, {sj · (W + j ·G) + s ·G+ e2,j}j∈[i+1:ℓ∗]

{[c1,j | c2,j ] ·Kj − s · (Ai − x∗
i ·G) + e′3,i}j∈[i], {sj ·V + x∗

i · s ·G+ e3,j}j∈[i+1:ℓ∗]

s ·D+ µ · ⌊q/2⌋+ e4
s · (B1 − |x∗| ·G) + e5



ct =



s ·A0 + e0
{c1,j}j∈[i], {sj ·B0 + e1,j}j∈[i+1:ℓ∗]

{c2,j}j∈[i−1], c1,i · W̃i + s ·G+ e′2,i, {sj · (W + j ·G) + s ·G+ e2,j}j∈[i+1:ℓ∗]

{[c1,j | c2,j ] ·Kj − s · (Ai − x∗
i ·G) + e′3,i}j∈[i], {sj ·V + x∗

i · s ·G+ e3,j}j∈[i+1:ℓ∗]

s ·D+ µ · ⌊q/2⌋+ e4
s · (B1 − |x∗| ·G) + e5


15



Observe that
• if (B, c̃) is a structured LWEn,m,χ,q instance, the view of the adversary A is identical to H3,i,6;
• if (B, c̃) is a uniform random instance, the view of A is identical to H3,i,7.

We conclude that
Adv3,i,6(A) ≤ Adv3,i,7(A) + Adv

LWEn,m,χ,q

B1
(λ).

– H3,i,8: This is the same as H3,i,7, except for the following modification to c2,i in the challenge ciphertext:
• sample

c2,i ← Zm
q .

Recall that in H3,i,7, we have
c2,i = c1,i · W̃i + s ·G+ e′2,i.

Since c1,i is uniform random in Zm
q in H3,i,7, W̃i is sampled uniformly and m ≥ (n+1) · log q+2 ·λ+ω(log n),

indistinguishability (H3,i,7 ≈s H3,i,8) follows from the generalized leftover hash lemma (the adversary’s view
includes W = B0 · W̃i − i ·G), that is

Adv3,i,7(A) ≤ Adv3,i,8(A) + negl(λ).

– H3,i,9: This is the same as H3,i,8, except for the following modification to B0 in mpk and to the KeyGen queries:
• sample (B0,TB0)←TrapGen(1n, 1m, q), instead of B0←Zn×m

q ,
• compute

Kj ← SamplePre([B0|W + j ·G],

[
TB0

0m×m

]
,V, τ1; rj),

to answer KeyGen queries.
By the properties of the TrapGen algorithm (Lemma 2) and that of the SamplePre algorithm, the distribution
of B0 and that of answers to the KeyGen queries are statistically indistinguishable between H3,i,8 and H3,i,9.
Therefore,

Adv3,i,8(A) ≤ Adv3,i,9(A) + negl(λ).

– H4: This is the same as H3,ℓ,9, except for the following modification to Kj for all j ∈ [T ], and to the relative
KeyGen queries:
• sample, once and for all key queries, Rj←DZm×m,τ1 ,
• compute

Zj ← SamplePre(B0,TB0
,V − [W + j ·G] ·Rj , τ1; rj,1),

• set Kj :=

[
Zj

Rj

]
.

By the properties of the SamplePre algorithm and Lemma 3, the distribution of {Kj}j∈[T ] is statistically indis-
tinguishable between H3,ℓ,9 and H4. Therefore,

Adv3,ℓ,9(A) ≤ Adv4(A) + negl(λ).

– H5: This is the same as H4, except for the following modification to Aj ,Kj for all j ∈ [T ], and to the relative
KeyGen queries:
• sample Aj←Zn×m

q ,
• set Rj = SamplePre(G, I,Aj , τ1; rj,2),
• compute

Zj ← SamplePre(B0,TB0 ,V − [W + j ·G] ·Rj , τ1; rj,1),

• set Kj :=

[
Zj

Rj

]
.

By the properties of the SamplePre algorithm (Lemma 2, Item 1), the distribution of {Aj ,Kj}j∈[T ] is statistically
indistinguishable between H4 and H5. Therefore,

Adv4(A) ≤ Adv5(A) + negl(λ).
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– H6: This is the same as H5, except for the following modification to B1 and Aj for all j ∈ [ℓ∗]:
• sample U←{0, 1}m×m and Uj←{0, 1}m×m for j ∈ [ℓ∗],
• set B1 = A0 ·U+ ℓ∗ ·G and Aj := A0 ·Uj + x∗

j ·G for j ∈ [ℓ∗].
Since U,Uj are sampled uniformly and m ≥ (n + 1) · log q + 2 · λ, indistinguishability (H5 ≈s H6) follows
from the leftover hash lemma, that is

Adv5(A) ≤ Adv6(A) + negl(λ).

– H7: This is the same as H6, except for the following modification to change answers to KeyGen queries
• recall the key equation

(A− x⊗G) ·HA,f,x = Af − f(x) ·G mod q,

and that a valid adversary can only make KeyGen queries for functions f for which f(x∗) = 1, and that
|x∗| = ℓ∗. Using these facts, for functions f with input length ℓ∗, one has that

Af = (A− x∗ ⊗G) ·HA,f,x∗ + f(x∗) ·G
= ([A1| . . . |Aℓ∗ ]− x∗ ⊗G) ·HA,f,x∗ + f(x∗) ·G
= (A0 · [U1| . . . |Uℓ∗ ] + x∗ ⊗G− x∗ ⊗G) ·HA,f,x∗ + f(x∗) ·G
= A0 · [U1| . . . |Uℓ∗ ] ·HA,f,x∗︸ ︷︷ ︸

Uf

+f(x∗) ·G

= A0 ·Uf +G mod q,

where in the second equality we have used the definition of Aj for j ∈ [ℓ∗].

• compute Tf :=

 −Uf

Im
0m×m

 and observe that [A0|Af |B1 − ℓ∗ ·G] ·Tf = G.

• for functions f whose input length is ℓ∗, compute

Kf ← SamplePre ([A0|Af |B1 − ℓ ·G],Tf ,D, τ2)

to answer KeyGen queries.
• for functions f with input length ℓ ̸= ℓ∗, observe that

[A0|Af |B1 − ℓ ·G] ·

 −U0m×m

Im

 = [A0|Af |A0 ·U+ ℓ∗ ·G− ℓ ·G] ·

 −U0m×m

Im


= [A0|Af |A0 ·U+ (ℓ∗ − ℓ) ·G] ·

 −U0m×m

Im


= (ℓ∗ − ℓ︸ ︷︷ ︸

̸=0

) ·G mod q.

• for such functions (with input length ℓ ̸= ℓ∗), compute

Kf ← SamplePre

[A0|Af |B1 − ℓ ·G],

 −U0m×m

Im

 ,D, τ2


to answer KeyGen queries.

• these procedures work as long as

τ2 ≥ m3 · ℓ∗ ·B
≥ m2 ·m · ℓ∗ ·B
≥ O(m2 · (∥Uf∥+ ∥U∥))

(6)
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By properties of the SamplePre algorithm,

Adv6(A) ≤ Adv7(A) + negl(λ).

Notice that the reduction does not use TA0 anymore.
– H8: This is the same as H7, except for the following modification to A0 in mpk:
• sample A0←Zn×m

q instead of (A0,TA0
)←TrapGen(1n, 1m, q).

By the properties of the TrapGen algorithm (Lemma 2), the distribution of A0 is statistically indistinguishable
between H7 and H8. Therefore

Adv7(A) ≤ Adv8(A) + negl(λ).

– H9: This is the same as H8 except for the following modification to c3,j and c5 in the challenge ciphertext:
• set

c3,j := [c1,j | c2,j ] ·Kj − c0 ·Uj + e′′3,j , and
c5 := c0 ·U+ e′5,

for e3,j ← DZm,χ′′ , e′5 ← DZm,χ′ .
First, recall that in H8, we have

c3,j = [c1,j | c2,j ] ·Kj − s ·A0 ·Uj︸ ︷︷ ︸
c0·Uj−e0·Uj

+e′3,j

= [c1,j | c2,j ] ·Kj − c0 ·Uj + e0 ·Uj + e′3,j mod q,

and

c5 = s ·A0 ·U︸ ︷︷ ︸
c0·U−e0·U

+e5

= c0 ·U+ e5 − e0 ·U mod q.

where the boxed terms are the term in H8 that will be modified in H9. By noise flooding, we have(
e′3,j ,Uj , e0 ·Uj + e′3,j

)
≈s

(
e′3,j ,Uj , e

′′
3,j

)
,

and (
e0,U, e5 − e0 ·U

)
≈s (e0,U, e′5) ,

as long as

χ′′ ≥ m · χ · λω(1),

≥ ∥e0 ·Uj∥ · λω(1),

and

χ′ ≥ m · χ · λω(1),

≥ ∥e0 ·U∥ · λω(1),

respectively. We conclude that
Adv8(A) ≤ Adv9(A) + negl(λ).

– H10: This is the same as H9, except for the following modification to c0 and c4 in the challenge ciphertext:
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• sample
c0 ← Zm

q , c4 ← Zλ
q

Recall that in H9, we have

c0 = s ·A0 + e0, c4 = s ·D+ µ · ⌊q/2⌋+ e4

where s← Zn
q , e0←DZm,χ, and e4←DZm,χ. To show that H9 ≈c H10, we rely on LWEn,m+λ,χ,q . The reduction

works as follows:
• it parses B = [A0|D] ∈ Zn×(m+λ)

q and c̃ = [c0|c4] ∈ Zm+λ
q from the LWEn,m+λ,χ,q instance,

• it samples B0,W,V,U as in H7, while using A0,D obtained from the LWE instance,
• it receives x∗ from the adversary A,
• it samples {Uj}j∈[ℓ∗] and implicitly sets {Aj}j∈[ℓ∗] as in H9,
• it answers KeyGen queries using Uf or U as in H9,
• whenever the adversary A outputs (µ0,µ1), it samples

b← {0, 1}, e′5 ← DZλ,χ′

c1,j ← Zm
q , c2,j ← Zm

q for j ∈ [ℓ∗], and
e′′3,j ← DZm,χ′′ for j ∈ [ℓ∗]

and outputs

ct =


c0

{c1,j}j∈[ℓ∗],
{c2,j}j∈[ℓ∗],

{[c1,j | c2,j ] ·Kj − c0 ·Uj + e′′3,i}j∈[ℓ∗]

c4 + µb · ⌊q/2⌋
c0 ·U+ e′5


Observe that
• if (B, c̃) is a structured LWEn,m+λ,χ,q instance, the view of the adversary A is identical to H9;
• if (B, c̃) is a uniform random instance, the view of A is identical to H10.

We conclude that
Adv9(A) ≤ Adv10(A) + Adv

LWEn,m+λ,χ,q

B2
(λ).

Putting everything together, we obtain

Advsa-ABE
A,Π (λ) ≤ T ·

(
AdvPRF

B0,F(λ) + Adv
LWEn,m,χ,q

B1
(λ) + Adv

LWEn,m+λ,χ,q

B2
(λ) + negl(λ)

)
,

as claimed. ⊓⊔

4 Unbounded Inner Product Predicate Encryption

We consider inner product predicate encrytion, where ciphertexts are associated with x ∈ Zℓ
q , keys with y ∈ Zℓ

q ,
and decryption is possible iff x · y⊤ = 0, where q is prime.

Predicate Encryption. The syntax is exactly the same as ABE except Dec only gets (mpk, skf , f, ctx) but not x.
Correctness is defined analogously. For security, we require weak attribute-hiding with semi-adaptive security as
captured by the following advantage function:

AdvPE
A,Π(λ) := Pr

b = b′ :

(mpk,msk)← Setup(1λ,F)
x∗
0,x

∗
1,← A(1λ,mpk)

(µ0,µ1)← AKeyGen(mpk,msk,·)(mpk)
b← {0, 1}; ct← Enc(mpk,x∗

b ,µb)
b′ ← AKeyGen(mpk,msk,·)(ct)

− 1

2
,

with the restriction that |x∗
0| = |x∗

1| and all queries f : {0, 1}ℓ → {0, 1} that A sent to KeyGen(mpk,msk, ·) satisfy
either (i) ℓ ̸= |x∗

0| or (ii) f(x∗
0) ̸= 0 and f(x∗

1) ̸= 0.
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Homomorphic computation on matrices. Following [AFV11], we have:

(A− x⊗Gn,q) ·

HA,y︷ ︸︸ ︷
(Iℓ ⊗Gn,q)

−1(y⊤) =

Ay︷ ︸︸ ︷
A · (Iℓ ⊗Gn,q)

−1(y⊤)−x · y⊤ ⊗G (7)

Observe that computing HA,y does not require knowing x.

4.1 Our Construction

Our inner product predicate encryption scheme Π ′ is exactly the same as our ABE, with the following modifications:

– In Enc, we have x ∈ Zℓ
q, xj ∈ Zq instead of x ∈ {0, 1}ℓ, xj ∈ {0, 1};

– In KeyGen, we replace Af in Kf with Ay in Ky , namely

Ky ← SamplePre

[A0| Ay |B1 − ℓ ·G],

 TA0

0m×m

0m×m

 ,D, τ2

 .

– In Dec, we replace HA,f,x with HA,y and Kf with Ky, namely

c4 −
[
c0

∣∣∣∣ ([[c1,1 c2,1
]
·K1 | . . . |

[
c1,ℓ c2,ℓ

]
·Kℓ

]
−
[
c3,1 . . . c3,ℓ

])
· HA,y

∣∣∣∣ c5] · Ky

– We can set the parameters as before, but with B = 1 (since ∥HA,y∥ ≤ 1), which yields:

Theorem 4 (Correctness). Let Π ′ be the inner product predicate encryption scheme just described, with parameters
as in Equation (3) and B = 1. Then Π ′ is correct.

Correctness is exactly the same as in the ABE, except we use (7). In particular, in the derivation of correctness we
only need to replace Eq. (4) with[

c0

∣∣∣∣ ([[c1,1 c2,1
]
·K1 | . . . |

[
c1,ℓ c2,ℓ

]
·Kℓ

]
−
[
c3,1 . . . c3,ℓ

])
·HA,y

∣∣∣∣ c5]
= s ·

[
A0 | Ay | B1 − ℓ ·G

]
+ e′f,y mod q. (8)

4.2 Security Proof

We sketch here the main modifications required. The security proof starts out exactly as in our ABE, except

– we replace Af with Ay and HA,f,x∗ with HA,y and x∗ with x∗
b .

– to show H6 ≈s H7, we use x∗
b · y⊤ ̸= 0, instead of f(x∗) ̸= 0.

In addition, we require the following additional games analogous to those in [AFV11]:

– H11: sample A0 together with a trapdoor TA0
via (A0,TA0

)←TrapGen(1n, 1m, q). We have H10 ≈s H11 by
properties of the TrapGen algorithm.

– H12: sample Ky using the trapdoor for A0:

Ky ← SamplePre

[A0|Ay|B1 − ℓ ·G],

 TA0

0m×m

0m×m

 ,D, τ2


We have H11 ≈s H12 by properties of the SamplePre algorithm.
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– H13: replace Aj , c3,j with random.2 We have H12 ≈s H13 via the leftover hash lemma as follows. First, in H12,
Ky does not leak any additional information about Uj beyond A1, . . . ,Aℓ∗ . Then, the leftover hash lemma tells
us

(A0, c0, c0 ·U1, . . . , c0 ·Uℓ∗ ,A0 ·U0, . . . ,A0 ·Uℓ∗)

is statistically close to random. This means:

(A0, c0, . . . , [c1,j |c2,j ] ·Kj − c0 ·Uj︸ ︷︷ ︸
c3,j

, . . . ,A0 ·Uj + x∗
b,j ·G︸ ︷︷ ︸

Aj

, . . .)

is statistically close to random.

Finally, observe that in H13, the view of the adversary is statistically independent of the challenges x∗
b . The various

hybrids are described in Fig. 4. This result is summarized in the following theorem.

Theorem 5 (Security). LetΠ ′ be the inner product predicate encryption scheme described in Section 4.1, with param-
eters set as in Eq. (3) with B = 1, and F a PRF. Then, for any semi-adaptive adversary A that runs is time T = T (λ),
there exists adversaries B0, B1 and B2 against PRF-security, LWEn,m,χ,q , and LWEn,m+λ,χ,q respectively, such that

AdvPEA,Π(λ) ≤ T ·
(
AdvPRFB0,F(λ) + Adv

LWEn,m,χ,q

B1
(λ) + Adv

LWEn,m+λ,χ,q

B2
(λ) + negl(λ)

)
.
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Hybrid mpk ct skf justification

H0

(A0,TA0)←TrapGen(1n, 1m, q)
(B0,TB0)←TrapGen(1n, 1m, q)
W←Zn×m

q

V←Zn×m
q

B1←Zn×m
q

D←Zn×λ
q

k← K

c0 ≈ s ·A0

c1,j ≈ sj ·B0

c2,j ≈ sj · (W + j ·G) + s ·G
c3,j ≈ sj ·V + x∗

b,j · s ·G
c4 ≈ s ·D+ µ · ⌊q/2⌋
c5 ≈ s · (B1 − |x∗

b | ·G)

TA0 ,TB0 , k

Kj =

[
Zj

Rj

]
← SamplePre

 [B0|W + j ·G],[
TB0

0m×m

]
,V, τ1;F(k, j)


Aj = G ·Rj

Kf ← SamplePre

 [A0|Af |B1 − ℓ ·G],

 TA0

0m×m

0m×m

 ,D, τ2


H1 ↓ ↓ ↓ guess |x∗| = ℓ∗

H2 ↓ ↓ Kj =

[
Zj

Rj

]
← SamplePre

 [B0|W + j ·G],[
TB0

0m×m

]
,V, τ1; rj

 PRF security

H3 ↓
c1,j , c2,j ← Zm

q

c3,j ≈ [c1,j | c2,j ] ·Kj

−s · (Aj − x∗
b,j ·G)

↓ LWEn,m,χ,q

(Fig. 3)

H4 ↓ ↓

Rj ← DZm×m,τ1

Zj = SamplePre

(
B0,TB0 ,

V − [W + j ·G] ·Rj , τ1; rj,1

)
Kj =

[
Zj

Rj

] Lemma 3

H5 ↓ ↓

Aj ← Zn×m
q

Rj = SamplePre(G, I,Aj , τ1; rj,2)

Zj = SamplePre

(
B0,TB0 ,

V − [W + j ·G] ·Rj , τ1; rj,1

)
Kj =

[
Zj

Rj

] Lemma 2
(Item 1)

H6 B1 = A0 ·U+ ℓ∗ ·G ↓ Aj = A0 ·Uj + x∗
b,j ·G LHL

H7 ↓ ↓ Ky using

[U1| . . . |Uℓ∗ ] ·HA,y

Im
0m×m

 if ℓ = ℓ∗ −U0m×m

Im

 if ℓ ̸= ℓ∗

Lemma 2
SamplePre

H8 A0 ← Zn×m
q ↓ ↓ Lemma 2

TrapGen

H9 ↓
c3,j ≈ [c1,j | c2,j ] ·Kj

−c0 ·Uj

c5 ≈ c0 ·U
↓ noise flooding

H10 ↓ c0 ← Zm
q , c4 ← Zλ

q ↓ LWEn,m+λ,χ,q

H11 (A0,TA0)←TrapGen(1n, 1m, q) ↓ ↓ Lemma 2
TrapGen

H12 ↓ ↓ Ky ← SamplePre


[A0|Ay|B1 − ℓ ·G], TA0

0m×m

0m×m

 ,D, τ2

 Lemma 2
SamplePre

H13 ↓ c3,j ← Zm
q Aj ← Zn×m

q LHL

Fig. 4: Summary of our security hybrids. ↓ denotes the same as the previous hybrid. We omit the noise terms in H0. Starting from
H10, the proof is essentially analogous to that in [AFV11].
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