
A Certified-Input Mixnet from Two-Party
Mercurial Signatures on Randomizable

Ciphertexts

Masayuki Abe1,2 , Masaya Nanri2 , Miyako Ohkubo3 , Octavio
Perez-Kempner1 , Daniel Slamanig4 , and Mehdi Tibouchi1,2

1 NTT Social Informatics Laboratories, Tokyo, Japan
2 Kyoto University, Kyoto, Japan

3 Security Fundamentals Laboratory, CSRI, NICT
4 Research Institute CODE, Universität der Bundeswehr München, Germany

Abstract. A certified-input mixnet introduced by Hébant et al. (PKC
’20) employs homomorphically signed ciphertexts to reduce the com-
plexity of shuffling arguments. However, the state-of-the-art construc-
tion relies on heavy Groth-Sahai proofs for key homomorphism, and only
achieves honest-user security, limiting broader applicability.
This work proposes a novel certified-input mixnet achieving stronger
security guarantees, alongside better efficiency. This is achieved by in-
troducing a tailored signature scheme, two-party mercurial signatures on
randomizable ciphertexts, that allows users and an authority to jointly
sign ciphertexts supporting key, ciphertext, and signature randomization
without compromising integrity and privacy.
We compare our approach to previous works that employ structured
ciphertexts, implement our protocols, and provide performance bench-
marks. Our results show that verifying the mixing process for 50,000
ciphertexts takes just 135 seconds on a commodity laptop using ten mix-
ers, underscoring the practicality and efficiency of our approach.

Keywords: Mixnet, Certified Inputs, Mercurial Signatures, Voting.

1 Introduction

Mixnets [Cha81] use multiple servers to shuffle a set of encrypted messages in
cascade to hide the relation between the initial input and resulting output. A cen-
tral challenge has been how to efficiently guarantee the integrity of the messages.
Hébant, Phan, and Pointcheval [HPP20] introduced a new paradigm, certified-
input mixnets, that takes homomorphically signed ciphertexts as input and out-
puts randomized yet signed ciphertexts with a lightweight proof of correctness of
the randomization of the keys, which is aggregated over all users’ keys, together
preserving the integrity of the embedded messages after shuffling. In contrast
to prior approaches, which incur linear overhead in the number of mix servers
on top of the ciphertexts (already linear in the number of users), their work

https://orcid.org/0009-0006-1614-0587
https://orcid.org/0009-0007-7390-5600
https://orcid.org/0009-0006-8656-035X
https://orcid.org/0000-0002-3377-9802
https://orcid.org/0000-0002-4181-2561
https://orcid.org/0000-0002-2736-2963

achieves constant overhead in the number of mix servers. Specifically, the veri-
fier only needs to examine the input, the final output from the mixnet, and the
proofs on the aggregated keys. These proofs can optionally be compressed into a
single proof, eliminating the need for a linear number of proofs. Their approach
requires a certification authority (CA) to certify inputs (as motivated by voting
scenarios) and offers a highly scalable solution. This extended model also fits
other practical applications such as oracle networks (e.g., [MTV+23, CVM25])
including those deployed in platforms such as Chainlink [Cha25] that involve
semi-trusted authorities and untrusted parties who run software as a service.

While promising, their state-of-the-art instantiation, referred to hereafter as
HPP20, suffers from serious drawbacks, hindering real-world deployments. To
clarify, we recap their construction at a high level. Each user holds a user-key uvk
and a signature σa on it issued by the CA with its key avk. The user encrypts a
message into a ciphertext ct and signs it with uvk into signature σu. The certified-
input is thus structured as (ct, σu, σa, uvk). Each mix-server randomize it into
(ct′, σ′u, σ

′
a, uvk

′) with shuffling, and provides a proof π of correct randomization
of uvk in an aggregated form over all users’ keys. The signatures and keys are to
be homomorphic to allow randomization and aggregation. Unforgeability of σu

guarantees that every signed output-ciphertext corresponds to a signed input-
ciphertext. The proof π of correct randomization on aggregated keys ensures
that every input user-key corresponds to an output user-key.

Firstly, we observe that their soundness and privacy are only guaranteed for
honest users, and they actually break down in the presence of corrupt users.
Suppose that there are corrupted users associated with keys uvk1, uvk2 and uvk3
colluding with the first mix-server. They set up their keys to satisfy uvk1+uvk2+
uvk3 = 3 · uvk1 so that the first mix-server can replace their inputs with three
randomized copies of the input from the first user without affecting to their
aggregation. In the voting application, this is a serious threat for fairness as an
adversary can replace some votes after other votes are cast.

Secondly, HPP20 involves several primitives: two linearly homomorphic sig-
nature schemes [LPJY13]—one for σu and the other for σa, a multi-signature
scheme [BDN18] and Groth-Sahai proofs [GS08] included in π issued by each
mix server. This results in a complex setup and use of an ad-hoc unlinkability
assumption.

1.1 Our Contribution

We present a certified-input mixnet addressing previous drawbacks. Figure 1
illustrates the diagram of our base scheme whose details appear in Section 4.
Following HPP20, to remove linearity in the number of mix servers, we discuss
alternatives for mix-servers to jointly prove the correctness of their processing.
Our key contributions include a new signature scheme, Mercurial Signature on
Randomizable Ciphertexts (MSoRC), and its two-party signature generation pro-
tocol. We detail the advantages of our construction and contributions as follows.

Malicious-user Security. Our mixnet ensures soundness even in the presence
of corrupt users. As shown in Figure 1, every ciphertext is signed using a joint key

2

MIX

𝑉𝐾 0 𝜋(1)

Output List

𝑐𝑡Π(1), 𝜎Π(1), 𝘷𝘬Π(1)
𝑁

𝑐𝑡Π(𝑛), 𝜎Π(𝑛), 𝘷𝘬Π(𝑛)
𝑁

𝜋(𝑁)𝑉𝐾 1 𝑉𝐾 𝑁−1 𝑉𝐾 𝑁

ExtVer

𝑉𝑒𝑟𝑖𝑓𝑦 ()

Verify
MIX I/O

Mix1

Shuffle &
AggKey Proof

𝑀𝑖𝑥 ()

MixN
𝑀𝑖𝑥 ()

Shuffle &
AggKey Proof

AggKey Proof Chain

Authenticated
Input List

𝗎𝗏𝗄1, 𝖾𝗏𝗄1 , 𝑐𝑡1, 𝜎1, 𝗏𝗄1
(0)

𝗎𝗏𝗄𝑛, 𝖾𝗏𝗄𝑛 , 𝑐𝑡𝑛, 𝜎𝑛, 𝗏𝗄𝑛
(0)

InputCertification

𝖾𝗏𝗄𝑖

Enc

2PC-MSoRC

User
𝗎𝗏𝗄i

𝗏𝗄𝑖 ≔

 𝗎𝗏𝗄𝑖 + 𝖾𝗏𝗄𝑖 + avk

𝐸𝑛𝑐𝐴𝑢𝑡ℎ𝑈()

CA
avk

𝐸𝑛𝑐𝐴𝑢𝑡ℎ𝐶𝐴()

Fig. 1. Diagram of our base certified-input mixnet.

composed of the user’s key (uvki), an ephemeral key (evki), and the authority’s
key (avk). The inclusion of evk prevents corrupt users from manipulating the
distribution of the joint signature keys and ensures a one-to-one correspondence
between input and output joint keys through a proof of correct key randomiza-
tion on their aggregated form. We additionally allow the CA to randomize the
ciphertexts, preventing the original user from opening them. While this does not
directly enhance the standard security of mixnets, it is beneficial for achieving
receipt-freeness in voting contexts, as discussed in Appendix A.

Simpler and More Efficient. Our approach replaces the two-layer structure
of HPP20, where users sign ciphertexts and authorities sign user keys, with a
two-party MSoRC signing protocol that produces a single signature verified by
a joint key. This simplification eliminates the need for Groth-Sahai proofs exe-
cuted by each mix-server. Instead, we simply require discrete logarithm proofs,
further enhancing efficiency. Overall, our construction reduces setup complexity,
computation, and verification costs compared to HPP20.

These desirable properties are attained with a moderate increase in com-
plexity for the CA. Our two-party signing process necessitates two rounds of
interaction, as opposed to the single round required in HPP20. Additionally, in
HPP20, the CA’s task can be completed independently of the ciphertext. While
the CA’s involvement is slightly more intensive in our approach, it’s important
to note that, in HPP20, users’ keys are intended for one-time use and the CA
must participate in each execution of the mixnet regardless.

New mercurial signature scheme. Our new primitive, MSoRC, is an inde-
pendent contribution that we anticipate will have applications beyond mixnets.
We first present a base MSoRC construction, which extends signatures on ran-
domizable ciphertexts (SoRC) in [BF20] to allow key randomization, similar to
mercurial signatures (MS) [CL19]. Then, we introduce its two-party signature
generation, incorporating techniques from interactive threshold mercurial signa-

3

tures (TMS) in [ANKT25]. These constructions are secure against adversarially
chosen encryption keys. However, for mixnets, a relaxed security notion with
honestly generated encryption keys is sufficient. Consequently, we also present
a more efficient variant that achieves an optimal signature size of three group
elements [AGHO11].

Practical implementation. Our mixnet improves computation efficiency by
a factor of 3.5x and communication by up to 3x compared to HPP20. It also
significantly outperforms all previous works based on Rand-RCCA encryption
discussed in Section 1.2. To evaluate practical performance, we provide a Rust
implementation. To the best of our knowledge, this is the first practical im-
plementation of mixnets under the certified input paradigm. In the worst-case
scenario, for n = 50k ciphertexts and N = 10 mixers, the mixing process takes
approximately 40 seconds, and verifying the final mixing result takes around 135
seconds on a commodity laptop, without parallelization. All of our cryptographic
building blocks can be easily implemented using existing libraries. Additionally,
our modular design makes implementation tasks less error-prone.

1.2 Related Work

Signatures on Equivalence Classes and Randomizable Ciphertexts. Sig-
natures on Equivalence Classes (EQS) [HS14, FHS19] are malleable structure-
preserving signatures [AFG+10, AGHO11] (i.e., pairing-based signatures with
messages and public keys that are elements of a source group and whose ver-
ification is done using paring-product equations) defined over a message vec-
tor space. They allow a controlled form of malleability on message-signature
pairs. EQS have further been studied to consider equivalence classes for the
public key only [BHKS18] or both (latter introduced under the name of mer-
curial signatures in [CL19]). In addition, [BF20] considered a different equiv-
alence relation for the message space and gave the first construction of SoRC
[BFPV11] from EQS. In brief, it signs ElGamal ciphertexts and all random-
izations of a ciphertext define an equivalence class. The motivation of SoRC is
to build signatures on ciphertexts that could be adapted to randomizations of
them. The SoRC construction from [BF20] (which is based on [FHS19]) provides
a strong notion of class-hiding where an adapted message-signature pair looks
like a completely random message-signature pair even when knowing the original
message-signature pair. However, it only provides the same weak public-key class
hiding guarantees of early constructions [CL19, CL21, CLPK22] (i.e., original
signers can identify adapted signatures for an adapted public key using their
secret key). A stronger class-hiding notion for the public key was recently ad-
dressed in [ANKT25] where TMS are introduced. As it allows parties to produce
a signature on their combined public keys, key-randomizability of the resulting
signature provides a stronger class-hiding notion as long as parties keep their
signing key private. We follow their two-party construction that is simpler and
suffices for our purpose.

4

Verifiable Mixnets. Efficient proofs of shuffling have been continuously im-
proved in the literature. The proof size and the verification work could be sub-
linear relative to the number of inputs, e.g., [BG12]. In general, applying zk-
SNARKs, e.g., [GGPR13, Gro16, AHIV17, GWC19] to the shuffling relation
the communication complexity can be reduced to poly-logarithmic. However,
these approaches include several trade-offs, such as cumbersome setups, exten-
sive common reference strings, heavy preprocessing requirements, or significant
computational resource on the prover’s side. Also, as noted in [HPP20], the proof
grows linearly in the number of mix servers at the end. Such conditions are not
necessarily acceptable for a scenario where casual users act as mix servers to
protect their privacy autonomously.

While we focus on the certified input paradigm, other approaches ease the
workload of verifiable shuffling by enforcing a specific structure on input cipher-
texts to prevent malicious behaviour by mix-servers. Faonio et al. [FFHR19,
FR22] use Re-randomizable Replayable CCA (Rand-RCCA) encryption [CKN03]
to eliminate the need for a proof of shuffle, replacing it with NIZK proofs of
plaintext knowledge for each ciphertext and NIZK proofs of membership at each
mixing stage. Unfortunately, their approach requires a complex setup and incurs
high computational costs. This is primarily because their Rand-RCCA scheme
is based on Cramer-Shoup encryption [CS02], and the associated NIZK proofs
involve elements in the target group of a pairing, significantly increasing proof
size.

Another approach that diminishes a proof of shuffle appears in [CLW08]. It
uses an escrowed linkable ring signature scheme and a regular signature to sign
ciphertexts, publishing the former while hiding the latter among mix servers.
However, as the ring includes all potential users, it does not easily scale.

Finally, there are works that explore post-quantum secure mixnets, such as
[BHM20, ABG+21, HMS21, AKA+21, ABGS23a, ABGS23b]. Although these
approaches require a careful selection of parameters and are far less efficient, ex-
ploring post-quantum security in the certified input paradigm remains a promis-
ing direction for future research.

1.3 Technical Overview

We provide a step-by-step overview of the two-party MSoRC construction and
explain its role in our certified-input mixnet design.

1) SoRC. We begin by recalling SoRC from [BF20]. With verification key (G, Ĝ, X̂0,
X̂1), its signature on ElGamal ciphertext (C0, C1) for encryption key (G,X) con-
sists of group elements (Z, S, Ŝ, T). It is verified by three equations:

e(Z, Ŝ) = e(C0, X̂0)e(C1, X̂1)e(G, Ĝ),

e(S, Ĝ) = e(G, Ŝ), and e(T, Ŝ) = e(G, X̂0)e(X, X̂1)

where e is a bilinear map. The ciphertext and signature are malleable in the
sense that anyone can re-randomize them; (C ′0, C ′1) = (C0 + rG,C1 + rX) and

5

(Z ′, S′, Ŝ′, T ′) = ((Z+rT)/s, sS, sŜ, T/s) for any r and s ∈ Z∗p. However, the key
space is not malleable, as the verification equation involves e(G, Ĝ), which rules
out any key randomizations of the form (X̂ρ

0 , X̂
ρ
1) for any ρ ←$ Z∗p that would

pass the first verification equation: e(Zρ, Ŝ) ̸= e(C0, X̂
ρ
0)e(C1, X̂

ρ
1)e(G, Ĝ).

2) From SoRC to MSoRC. To obtain malleability on the key space, we turn the
SoRC from [BF20] into a full-fledged MSoRC. Our MSoRC extends the signing
key with one more element, X̂2, using it to sign a fixed generator G. The first
verification equation changes to e(Z, Ŝ) = e(C0, X̂0)e(C1, X̂1)e(G, X̂2), and the
key can be randomized within the equivalence class with factor ρ as e(Zρ, Ŝ) =
e(C0, X̂

ρ
0)e(C1, X̂

ρ
1)e(G, X̂ρ

2). This prevents the ciphertext from being altered
with (Cρ′

0 , Cρ′

1) since G in e(G, X̂2) must remain fixed. We prove security of our
base MSoRC giving a reduction to the original SoRC.

3) Optimizing MSoRC. For honestly generated encryption key X, our MSoRC
can be optimized to yield a signature, (Z, Ŝ, T), consisting of only three group
elements without compromising the security. To see why, consider the case where
x of X = Gx is known to the adversary. Since the third verification equation is

e(T, Ŝ) = e(G, X̂0)e(G
x, X̂1) = e(G, X̂0X̂

x
1),

the adversary can compute T and Ŝ as T = G and Ŝ = X̂0X̂
x
1 without knowing

signing key x0 and x1. Thus, the second verification equation e(S, Ĝ) = e(G, Ŝ)
has been involved to ensure that Ŝ has been computed with x0 and x1, even
if decryption key x is known to the adversary. On the other hand, if x is not
known to the adversary, the second equation is unnecessary and so does S. We
prove this intuition rigorously in the Generic Group Model (GGM).

4) Two-party MSoRC. MSoRC provides the public key class-hiding only in a
weak sense as the signer can trace randomized keys by using the signing key.
Observe that the equivalence class of key (X̂0, X̂1, X̂2) is defined by keys of the
form (X̂ρ

0 , X̂
ρ
1 , X̂

ρ
2). A key (X̂ ′0, X̂

′
1, X̂

′
2) is in the class if and only if (X̂ ′0)

1/x0

= (X̂ ′1)
1/x1 = (X̂ ′2)

1/x2(= Ĝρ) holds for secret key (x0, x1, x2). In [ANKT25], it
is suggested to distribute the secret key among multiple parties, ensuring that no
single party can perform tracing. However, achieving efficient distributed signing
in the presence of malicious signers is a non-trivial challenge. Following the ap-
proach in [ANKT25], we additively distribute the secret key among two parties,
a user and the CA, to fit to our certified-input mixnet scenario. The signing
protocol for the two-party MSoRC follows a blind-compute-unblind structure,
which allows us to simulate an honest party in the unforgeability proof when
the other party is corrupted. We show that the unforgeability of the two-party
MSoRC can be reduced to the unforgeability of the base MSoRC.

5) Mixnet from two-party MSoRC. We use the two-party MSoRC so that
users and the CA jointly create a certified ciphertext as input to the mixnet.
User i having ciphertext (C0, C1)i joins with the preliminary registered key,
uvki, and the authority works with an ephemeral key evki and its long-term key
avk. User key uvki as well as ephemeral key evki are published in an authentic

6

manner so that joint verification key vki := uvki+evki+avk can be computed in
public. The ephemeral key is included to ensure that every vki is independent.
The randomized ciphertext (C ′0, C

′
1)i, MSoRC signature σ′i, and verification key

vk′i (all publicly randomizable through adaptation functions of MSoRC), are the
user’s input to the mixnet. For simplicity, our communication model assumes
the presence of a publicly verifiable authenticated channel – i.e., all messages
are recorded in a way that their authenticity can be publicly verified. This is
equivalent to a bulletin board with authenticated writing, which is a standard
assumption in e-voting applications, and the setting we adopt as well.

Considering s1, . . . , sN mix servers, sj delivers SSet(j) := {(C ′0, C ′1)Π(i), σ
′
Π(i),

vk′Π(i)}i∈[n] for permutation Π : [n] → [n] and an authenticated NIZK proof of
correct mixing to sj+1 using the statement from the previous round as the base
point. The proof is: NIZK{(

∑i=n
i=1 vk

′(j−1)
Π(i) , ρ) :

∑i=n
i=1 vk

′(j)
Π(i) = ρ ·

∑i=n
i=1 vk

′(j−1)
Π(i) }.

This is where we replace Groth-Sahai with more lightweight Schnorr proofs
thanks to our MSoRC structure. All servers authenticate their NIZK proof, which
can be batch verified. Everyone can publicly verify the authenticated proofs to
confirm the participation of each mix server while batch verification validates the
output tuple. Only the initial tuples, the final ones, all the N short NIZK proofs,
and server’s public keys are needed for verification. This is because if the au-
thenticated proofs verify, the output tuple implicitly validates the intermediate
randomizations performed by each mix server. Alternatively, as in HPP20, the
mix servers could perform a second round to produce a multi-signature on a
single proof, making the final verification independent of N (cf. Section 4).

Security of MSoRC ensures that no collusion between mix servers and the CA
can break public key unlinkability of honest users as long as one mix server is
honest (i.e., it correctly randomizes the tuples and permutes them). This holds
even if the CA colludes with a subset of mix servers and users. Correctness of
this process is ensured proving the correct randomization of verification keys,
which is a discrete log proof on the sum of all of them.

2 Preliminaries

Notation. The set of integers from 1 to n is denoted as [n]. Zp represents the
ring of integers modulo p. For a set S, r ←$ S denotes that r is sampled uniformly
at random from S. The security parameter κ is usually passed in unary form. Let
PP be the set of public parameters. For each pp ∈ PP, let Mpp, DKpp, EKpp,
Cpp, Rpp, SKpp, VKpp, and Spp denote the sets of messages, decryption keys,
encryption keys, ciphertexts, ciphertext randomness, signature keys, verification
keys, and signatures, respectively. Let BGGen be a PPT algorithm that on input
1κ, returns public parameters pp ∈ PP s.t. pp = (p,G1,G2,GT , G, Ĝ, e), an
asymmetric bilinear group where G1, G2, GT are cyclic groups of prime order p
with ⌈log2 p⌉ = κ, G and Ĝ are generators of G1 and G2, and e : G1×G2 → GT is
an efficiently computable (non-degenerate) bilinear map. e is said to be of Type-3
if no efficiently computable isomorphisms between G1 and G2 are known.

7

ElGamal Encryption. ElGamal [ElG86] is an IND-CPA PKE scheme (KeyGen,
Enc, Dec) in G1 under the the DDH assumption in G1. Key generation KeyGen(pp)
chooses dk := x ←$ Z∗p, sets ek := X ← xG and outputs (dk, ek). Encryption
Enc(X,M) outputs ciphertext (C1, C0) := (µG,M+µX) with µ←$ Z∗p. Decryp-
tion Dec(x, (C0, C1)) outputs M := C1 − xC0.
Zero-Knowledge Proofs. Without loss of generality, we consider languages
in NP defined in terms of a relation LR = {x| ∃ w s.t. (x,w) ∈ RL}, where
x ∈ X and w ∈ W with RL being a subset of X ×W . With a zero-knowledge
proof the prover proves to a verifier that (x,w) ∈ RL without disclosing any in-
formation about w. We will use Zero-Knowledge Proofs of Knowledge (ZKPoK)
and Non-Interactive Zero-Knowledge Arguments (or simply NIZK). The former
are three-round public coin, honest verifier zero-knowledge proofs that satisfy
knowledge soundness (cf. [Gol01]). The latter are single-round protocols in the
common reference string (crs) model whose syntax we recall next (cf. [DEF+25]
and [CH20] for formal definitions). A NIZK proof system for a language L is de-
fined by three algorithms: (1) Setup generates a crs and (optionally) a trapdoor;
(2) Prove produces a proof for (x,w) ∈ RL; (3) Verify verifies a proof w.r.t. an
instance x. Couteau and Hartmann proposed a framework for building pairing-
based NIZK for algebraic languages [CH20], an extension of linear languages. In
particular, their framework is very well-suited as an alternative to GS proofs
[GS08] due to its conceptual simplicity and because it provides fully adaptive
soundness and perfect zero-knowledge with a single random group element as the
crs. We will consider the following linear language LA for A = (A0,A1,A2) ∈ G3

given by RA := {(x, w) : x ∈ G3, w ∈ Zp s.t. x = Aw}, which captures
DDH relations. We show how to instantiate and batch verify a NIZK for LA
in Appendix C. Moreover, it is also updatable, a feature that we discuss in
Appendix C.2 and will use to optimize verification in our scheme.

3 Mercurial Signatures on Randomizable Ciphertexts

3.1 Definitions

Our definitions for MSoRC adapt the presentation from [BF20] to signatures on
randomizable ciphertexts (similar to what [CL19] does for mercurial signatures
when generalizing the ideas from [FHS19]). Thus, they can be seen as a merge
between the original syntax and security properties of SoRC and MS schemes.
For completeness, we include an algorithm ConvertSK in the syntax (it is not
required by our mixnet but it could be useful in other applications of MSoRC). As
in [CL19], letR be an equivalence relation where [x]R = {y | R(x, y)} denotes the
equivalence class of which x is a representative. We loosely consider parametrized
relations and say they are well-defined as long as the corresponding parameters
are well-defined. We recall that signatures on randomizable ciphertexts are EQS
where Adapt is analogous to ChgRep. More precisely, the equivalence class [c]ek of
a ciphertext c under encryption key ek is defined as all randomizations of c, that
is, [c]ek := {c′ | ∃ r ∈ Rpp : c

′ = Rndmz(ek, c; r)}. Similarly, equivalence classes of

8

verification and secret keys are defined as [vk]vk := {vk′ | ∃ r ∈ Rpp : vk′ = rvk}
and [sk]sk := {sk′ | ∃ r ∈ Rpp : sk

′ = rsk}, respectively.
Definition 1 (Mercurial Signature on Randomizable Ciphertexts). A
MSoRC scheme for parametrized equivalence relations Rc, Rpk, Rsk is a tuple of
the following polynomial-time algorithms of which all except Setup, KeyGen, and
SKG are implicitly parametrized by pp generated by Setup:
Setup(1κ)→ pp : Outputs public parameters.
KeyGen(pp)→ (ek, dk) : Outputs encryption and decryption keys.
Enc(ek,m; r)→ c : Outputs a ciphertext c for a message m using randomness r.
Dec(dk, c)→ m : Outputs a message m.
Rndmz(ek, c;µ)→ c′ : Randomizes a ciphertext c into c′ using random µ.
SKG(pp)→ (sk, vk) : Outputs a signing key and a verification key.
Sign(sk, ek, c; s)→ σ : Outputs a signature σ for c under sk using random s.
Verify(vk, ek, c, σ)→ 0/1: Verifies (c, σ) w.r.t. vk and ek.
Adapt(σ;µ, ρ)→ σ′ : Randomizes σ into σ′ using random µ and ρ.
ConvertSK(sk, ρ)→ sk′ : Randomizes sk into sk′ using random ρ.
ConvertVK(vk, ρ)→ vk′ : Randomizes vk into vk′ using random ρ.

Definition 2 (Correctness). A MSoRC scheme is correct if for all sufficiently
large κ, pp ∈ Setup(1κ), (ek, dk) ∈ KeyGen(pp), (sk, vk) ∈ SKG(pp), m ∈ Mpp,
r, µ, ρ ∈ Rpp, σ ∈ Sign(sk, ek, c) and c ∈ Cpp : Dec(dk,Enc(ek,m; r)) = m,
Pr[Verify(vk, ek, c, σ) = 1] = 1,ConvertSK(sk, ρ) ∈ [sk]sk ∧ ConvertVK(vk, ρ) ∈
[vk]vk ∧ Pr[Verify(ConvertVK(vk, ρ), ek, Rndmz(ek, c;µ),Adapt(σ;µ, ρ)) = 1] = 1.

Similar to mercurial signatures, MSoRC unforgeability should allow the ad-
versary to output signatures under equivalent public keys (which are not con-
sidered a forgery). However, since MSoRC also deal with encryption keys, it is
crucial to consider what happens to them and how they are managed in the
unforgeability game. The unforgeability notion from BF20 [BF20] considers a
forgery to be the case in which the adversary can produce a signature on an
encryption of a message for an encryption key that has not been queried for
that message. This strong unforgeability notion lets the adversary produce sig-
natures under any encryption key pair of its choice. While such notion enables
applications such as blind signatures [BFPV11], we observe that the encryption
keys used in mixnets are either managed by the CA or by some other set of
authorities (if a distributed key generation protocol is used to distribute trust)
but not the users. Therefore, we can relax the unforgeability requirement so that
it’s the challenger who picks the encryption key pair instead of the adversary.1
We formalize both variants as UNF-I and UNF-II next.

Definition 3 (UNF-I). A MSoRC scheme is unforgeable if the advantage of
any PPT adversary A defined by AdvUNF−I

MSoRC(1
κ,A) := Pr [ExpUNF−I

MSoRC(1
κ,A)⇒ true]

≤ ϵ(κ), where ExpUNF−I
MSoRC(1

κ,A) is shown in Fig. 2.

Definition 4 (UNF-II). A MSoRC scheme is unforgeable if the advantage of
any PPT adversary A defined by AdvUNF−II

MSoRC(1
κ,A) := Pr [ExpUNF−II

MSoRC(1
κ,A)⇒ true]

≤ ϵ(κ), where ExpUNF−II
MSoRC(1

κ,A) is shown in Fig. 3.
1 This key observation allows us to obtain an even more efficient MSoRC construction.

9

Experiment ExpUNF-I
MSoRC(1

κ,A)
Q← ∅; pp←$ Setup(1κ); (sk, vk)←$ SKG(pp); (vk∗, ek∗, c∗, σ∗)← ASign(sk,·,·)(vk)
return (ek∗, c∗) /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek∗, c∗, σ∗)

Oracle Sign(sk, ek, c) : Q← Q ∪ {ek} × [c]ek; return Sign(sk, ek)̧

Fig. 2. Unforgeability experiment (UNF-I).

Experiment ExpUNF-II
MSoRC(1

κ,A)
Q← ∅; pp←$ Setup(1κ); (sk, vk)←$ SKG(pp); (dk, ek)←$ KeyGen(pp)

(vk∗, c∗, σ∗)← ASign(sk,·,·)(vk, ek); return c∗ /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek, c∗, σ∗)

Oracle Sign(sk, ek, c) : Q← Q ∪ [c]ek; return Sign(sk, ek)̧

Fig. 3. Unforgeability experiment (UNF-II).

An MSoRC should also provide an encryption scheme with IND-CPA security
and full class-hiding, as previously defined in [BF20].

Definition 5 (IND-CPA security & Full Class-Hiding [BF20]). A MSoRC
scheme is IND-CPA and full class-hiding if:

IND-CPA: the advantage of any PPT adversary A defined by AdvIND-CPA
MSoRC,A (κ) :=

2 · Pr
[
ExpIND-CPA

MSoRC,A (κ)⇒ true
]
− 1 = ϵ(κ).

Full class-hiding: the advantage of any PPT adversary A defined by AdvFull-CH
MSoRC,A(κ)

:= 2 · Pr
[
ExpFull-CH

MSoRC,A(κ)⇒ true
]
− 1 = ϵ(κ).

where ExpIND-CPA
MSoRC,A (κ) and ExpFull-CH

MSoRC,A(κ) are defined as:
Experiment ExpIND-CPA

MSoRC,A (κ) Experiment ExpFull-CH
MSoRC,A(κ)

pp←$ Setup(1κ); b←$ {0, 1}; r ←$Rpp pp←$ Setup(1κ); b←$ {0, 1}; r ←$Rpp

(dk, ek)←$ KeyGen(pp) (dk, ek)←$ KeyGen(pp)
(st,m0,m1)← A(ek); c← Enc(ek,mb, r) (st, c)← A(ek); c0 ←$ Cpp; c1 ← Rndmz(ek, c; r)

b′ ←$A(st, c); return b = b′ b′ ← A(st, cb); return b = b′

We consider signature adaptations for a new representative of the public key,
extending the definition from [BF20].

Definition 6 (Adaption). A MSoRC schemeis adaptable (under malicious keys)
if for all sufficiently large κ, all pp ∈ Setup(1κ), (vk, ek, c, σ) ∈ VKpp × EKpp ×
Cpp × Spp that satisfy Verify(vk, ek, c, σ) = 1 and all (µ, ρ) ∈ R2

pp, the output of
Adapt(σ;µ, ρ) is uniformly distributed over the set {σ′ ∈ Spp|Verify(ConvertVK(vk,
ρ), ek,Rndmz(ek, c, µ), σ′) = 1}.

We will also consider an interactive signing protocol as defined below.

ISignP0
(sk0, ek, c)↔ ISignP1

(sk1, ek, c)→ σ: This algorithm is run interactively.
It produces a signature σ for c under sk, implicitly defined as sk0 + sk1.

Consequently, we define unforgeability and public-key class-hiding assuming
at least one honest signer. To prove security, we introduce a key generation

10

Experiment ExpUNF−III

MSoRC(1
κ,A)

Q← ∅; pp←$ Setup(1κ); (b, st)← A(pp); (dk, ek)←$ KeyGen(pp)
(ski, vki)i∈{0,1} ←$ TKGen(pp); vk← vk0 + vk1
(vk∗, c∗, σ∗)← AISign1−b(sk1−b,·,·)(st, vk0, vk1, skb, ek)
return c∗ /∈ Q ∧ [vk∗]vk = [vk]vk ∧ Verify(vk∗, ek, c∗, σ∗) = 1

Oracle ISign1−b(sk1−b, ek, c) : Q← Q ∪ [c]ek; return ISign1−b(sk1−b, ek, c)

Fig. 4. Unforgeability w.r.t an interactive signing protocol.

algorithm that is run by a trusted third party that produces (vk, sk) as in SKG
but such that vk = vk0 + vk1 and sk = sk0 + sk1 (in practice, each party will run
SKG independently). We require the following property adapted from [ANKT25].

Definition 7 (Security of key generation). TKGen is secure if it outputs
vk with the same distribution as SKG, and there exists a simulator, SimTKGen,
s.t. for any sufficiently large κ, any pp ∈ Setup(1κ), (vk, sk) ∈ SKG(pp), and
b ∈ {0, 1}, SimTKGen(vk, b) outputs skb and {vk0, vk1}. The joint distribution of
(vk, vk0, vk1, skb) is indistinguishable from that of TKGen(pp).

For unforgeability, we let the adversary choose one of the parties and leak
its corresponding keys. The encryption key pair is generated by the challenger,
which suffices for our application. However, we emphasize that the definition
below can easily be generalized to adversarially chosen keys, as earlier discussed.

Definition 8 (UNF-III). A MSoRC scheme is unforgeable if the advantage of
any PPT adversary A having access to an interactive signing oracle defined by
AdvUNF−III

MSoRC(1
κ,A) := Pr [ExpUNF−III

MSoRC(1
κ,A)⇒ true] ≤ ϵ(κ), where ExpUNF−III

MSoRC(1
κ,A)

is shown in Fig. 4.

For public key class-hiding, we adapt definitions from [CL19] and [ANKT25]
(i.e., considering an interactive signing protocol). This allows us to obtain a
stronger notion of public key class-hiding when one of the parties is honest.
In other words, full public key class hiding holds if the parties don’t collude.
Following the naming convention from [ANKT25], we formalize this notion as
public key unlinkability. As we shall see, this notion suffices for the considered
applications.

Definition 9 (PK-UNL). A MSoRC scheme is public key unlinkable if the ad-
vantage of any PPT adversary A defined by AdvPK-UNL

MSoRC (1κ,A) := 2·Pr
[
ExpPK-UNL

MSoRC (1κ,
A)⇒ true]− 1 ≤ ϵ(κ), where ExpPK-UNL

MSoRC (1κ,A) is shown in Fig. 5.

3.2 Single-Signer Construction

In Fig. 6, we present the base MSoRC with a single signer. Our departure point
is the SoRC from [BF20], which is an EQS based on [FHS19] that signs ElGamal
ciphertexts. In [BF20], a signature consists of four group elements Z = 1

s (x0C0+

11

Experiment ExpPK-UNL
MSoRC (1κ,A)

pp←$ Setup(1κ); ρ←$Rpp; b←$ {0, 1}; (s̃k, ṽk)←$ TKGen(pp)

(ski, vki)i∈{0,1} ←$ TKGen(pp); vk′ ← ConvertVK(ṽk+ vkb, ρ)

b′ ←$AISign(skb,·,·)(s̃k, ṽk, vk′, vk0, vk1); return b = b′

Oracle ISign(skb, ek, c, vk)

if vk = vk′ then σ ←$ ISignb(skb, ek, c)
return Adapt(σ; ρ) elseif vk = vki return ISign(ski, ek, c)

Fig. 5. Public key unlinkability experiment (PK-UNL).

MSoRC.Setup(1κ) : pp := (p,G1,G2,GT , G, Ĝ, e)←$ BGGen(1κ); return (pp)

MSoRC.KeyGen(pp) : dk := x←$ Z∗
p; ek := X ← xG; return (dk, ek)

MSoRC.SKG(pp) : sk := (x0, x1, x2)← Z∗
p; vk := (x0Ĝ, x1Ĝ, x2Ĝ); return (sk, vk)

MSoRC.Enc(X,M ; r) : return (rG,M + rX)

MSoRC.Dec(x, (C0, C1)) : return M := C1 − xC0

MSoRC.Rndmz(X, (C0, C1);µ) : return (C0 + µG,C1 + µX)

MSoRC.Sign((x0, x1, x2), X, (C0, C1)) :

s←$ Z∗
p;Z := 1

s
(x0C0 + x1C1 + x2G);S := sG; Ŝ := sĜ;T := 1

s
(x0G+ x1X)

return (Z, S, Ŝ, T)
MSoRC.ConvertSK((x0, x1, x2), ρ) : return (ρx0, ρx1, ρx2)

MSoRC.ConvertVK((X̂0, X̂1, X̂2), ρ) : return (ρX̂0, ρX̂1, ρX̂2)

MSoRC.Adapt((Z, S, Ŝ, T);µ, ρ) :

s′ ←$ Z∗
p;Z

′ := ρ
s′ (Z + µT);S′ := s′S; Ŝ′ := s′Ŝ;T ′ := ρ

s′ T ; return (Z′, S′, Ŝ′, T ′)

MSoRC.Verify((X̂0, X̂1, X̂2), X, (C0, C1), (Z, S, Ŝ, T)) :

return e(Z, Ŝ) = e(C0, X̂0)e(C1, X̂1)e(G, X̂2)

∧ e(T, Ŝ) = e(G, X̂0)e(X, X̂1) ∧ e(S, Ĝ) = e(G, Ŝ)

Fig. 6. Our base MSoRC scheme.

x1C1 + G), S = sG, Ŝ = sĜ and T = 1
s (x0G + x1X), where (C0, C1) is the

ciphertext, X it’s encryption key, and (x0, x1) the scheme’s signing key. Without
G, (Z, S, Ŝ) is the EQS from [FHS19]. The idea from [BF20] was to embed G
into Z so that Z can only be adapted to ciphertext randomizations using the
additional element T . To turn the SoRC from [BF20] into a full-fledged MSoRC
we extend the secret key to include one more element x2 and use it to sign G
in Z. This way, Z can be adapted to a new key representative, as well as to a
ciphertext randomization if T is used.

Correctness of our base scheme follows by inspection. ElGamal is IND-CPA if
the DDH assumption holds, which we assume. Full class-hiding was already
proven in [BF20] giving a reduction to DDH. Likewise, signature adaption fol-
lows directly from that of the original SoRC ([BF20], Proposition 2). Next, we

12

prove unforgeability and public key unlinkability. As in related work ([ANKT25,
BF20]), we consider the stand-alone model and adversaries in the GGM.

Theorem 1. Our base MSoRC is unforgeable in the GGM with respect to Defi-
nition 3, and public key unlinkable under corruption of at most one party.

Proof. Unforgeability. Security of our base scheme (Def. 3) is reduced to that
of [BF20]. We consider a reduction B playing the role of the adversary against
[BF20]. B receives pk = (X̂0, X̂1) from the challenger, it picks α ←$ Z∗p , sets
pk′ := (αX̂0, αX̂1, αĜ) for our scheme and forwards it to A. Whenever A asks
for a signature on (C

(i)
0 , C

(i)
1 , X(i)), B forwards to the signing oracle of [BF20].

On receiving σ(i) = (Z(i), T (i), S(i), Ŝ(i)), it sets σ(i)′ = (αZ(i), αT (i), S(i), Ŝ(i))

and returns it to A. Whenever A outputs (Z∗, T ∗, S∗, Ŝ∗) and (C∗0 , C
∗
1 , X

∗) for
public key pk∗ = βpk′, B outputs (1

αβZ
∗, 1

αβT
∗, S∗, Ŝ∗) for the same query. We

note that B is a generic forger and thus, it can obtain β. To see how, we proceed
as done in [CL19] (Claim 1). Since A is a generic forger, the forged key must
be computed as a linear combination of previously seen elements. Thus, for all
i ∈ {0, 1, 2}:

X̂∗
i = χ1Ĝ+ χ1

0X̂0 + χ1
1X̂1 + χ0

2X̂2 +

k∑
j=1

χ1
s,j Ŝj

Taking the discrete logarithm base Ĝ, we get:

x∗
i = χ1 + χ1

0x0 + χ1
1x1 + χ0

2x2 +

k∑
j=1

χ1
s,jsj

The above is a multivariate polynomial of degree O(k) in x0, x1, x2, s1, . . . , sk.
Consider the probability that two formally different polynomials collide such
that x∗i = βxi, but B cannot obtain β ∈ Z∗p despite seeing A’s queries to the
group and signing oracles and their results. By the Schwartz-Zippel lemma, such
probability is O(kp), which is negligible.
Public key unlinkability. We show that adapted signatures are independent
of b, i.e., the adversary gains no information by knowing one of the shares of
the corresponding secret key. For any tuple (X, (C0, C1)), an adapted signature
from one computed using s̃k, skb and a uniformly random ρ verifies under vk′ =

ρ(s̃k+ skb) and has the following distribution for uniformly random values s and
δ: Z = 1

s (ρ(s̃k
0
+sk0b)C0+ρ(s̃k

1
+sk1b)C1+ρ(s̃k

1
+sk1b)G), T = 1

s (ρ(s̃k
0
+sk0b)G+

ρ(s̃k
1
+ sk1b)X), S = sG, and Ŝ = sĜ. Since ρ is uniformly random, it perfectly

hides b and the adversary gains no information dependent on b.

3.3 Two-Party Construction

We can extend our construction to support a two-party interactive signing pro-
tocol as shown in Fig. 7. We do so using the techniques from [ANKT25] to build
TMS, and all elements are computed analogously (e.g., we compute a blinded

13

version of Z and T , with each party proving the correctness of each step via
short ZKPoK’s). ZKPoK’s are defined as follows:

– ZKPoK[s0 : S0 = s0G ∧ Ŝ0 = s0Ĝ],
– ZKPoK[(s0, x

0
0, x

0
1, x

0
2) : T0 = 1

s0
(T1+x0

0G+x0
1X)∧S0 = s0G∧Z0 = 1

s0
(Z1+x0

0C0+

x0
1C1 + x0

2G) ∧ X̂0
0 = x0

0Ĝ ∧ X̂0
1 = x0

1Ĝ ∧ X̂0
2 = x0

2Ĝ],
– ZKPoK[(r, x1

0, x
1
1, x

1
2) : T1 = rS0+x1

0G+x1
1X∧Z1 = rS0+ x1

0C0+x1
1C1+x1

2G∧X̂1
0 =

x1
0Ĝ ∧X1

1 = x1
1Ĝ ∧X2

1 = x1
2Ĝ],

– ZKPoK[(r, s1) : T = 1
s1
(T0 − rG) ∧ S = s1S0 ∧ Ŝ = s1Ŝ0 ∧ Z = 1

s1
(Z0 − rG)].

We stress that all ZKPoK involved are as simple to implement as a Schnorr
proof. Let us now argue that the interactive variant produces signatures under
the same distribution. Looking closer at how Z and T are computed, we have:

Z =
1

s1
(Z0 − rG) =

1

s1

(
1

s0

(
Z1 + x0

0C0 + x0
1C1 + x0

2G
)
− rG

)
=

1

s1

(
1

s0

(
rs0G+

(
x0
0 + x1

0

)
C0 +

(
x0
1 + x1

1

)
C1 +

(
x0
2 + x1

2

)
G
)
− rG

)
=

1

s0s1

((
x0
0 + x1

0

)
C0 +

(
x0
1 + x1

1

)
C1 +

(
x0
2 + x1

2

)
G
)

Similarly, T is computed as:

T =
1

s1
(T0 − rG) =

1

s1

(
1

s0

(
T1 + x0

0G+ x0
1X

)
− rG

)
=

1

s0s1

((
x0
0 + x1

0

)
G+

(
x0
1 + x1

1

)
X
)
+

1

s1

(1

s0
rs0G− rG

)
=

1

s0s1

((
x0
0 + x1

0

)
G+

(
x0
1 + x1

1

)
X
)

It follows that s0s1, x0
0 + x1

0, x0
1 + x1

1 and x0
2 + x1

2 correspond to s, x0, x1 and
x2 in the single party variant. It remains to be seen that our two-party variant
is also unforgeable (other properties are obviously taken over from the single-
party construction). We reduce unforgeability of the two-party MSoRC to that
of single-party MSoRC in a similar way as done in [ANKT25]. Consequently, we
obtain the following theorem.

Theorem 2. Our two-party MSoRC from Fig. 7 is unforgeable under Defini-
tion 8 (considering adversarially chosen encryption keys) if the single-party base
MSoRC is unforgeablein the sense of Definition 3, and all ZKPoK’s are secure.

Proof. For an adversary A′ against the unforgeability game of Def. 8, we con-
struct a simulator that, given access to A′, plays the role of the adversary in
the unforgeability game of Def. 3. The simulator gets pp and vk from the chal-
lenger. It then calls A on pp to obtain b and executes SimTKGen(vk, b) to get
(skb, vk0, vk1). Now the simulator invokes A′ with (skb, vk0, vk1) as input. From
this point onwards, A′ can make signing queries and in the following we show
that regardless the corruption case, the simulator is able to simulate the hon-
est party and that such interaction is indistinguishable from the real execution

14

P0: C0, C1, X, {X̂0
i = x0

i Ĝ, x0
i , X̂

1
i }i∈{0,1,2} P1: C0, C1, X, {X̂1

i = x1
i Ĝ, x1

i , X̂
1
i }i∈{0,1,2}

s0 ←$ Z∗
p; S0 ← s0G; Ŝ0 ← s0Ĝ r ←$ Zp; s1 ←$ Z∗

p

π0 ← ZKPoK[s0]
S0, Ŝ0, π0−−−−−−−→ Ŝ ← s1Ŝ0;Z1 ← rS0 + x1

0C0 + x1
1C1 + x1

2G

T1 ← rS0 + x1
0G+ x1

1X

T0 ← 1
s0
(T1 + x0

0G+ x0
1X)

T1, Z1, π1←−−−−−−− π1 ← ZKPoK[r, x1
0, x

1
1, x

1
2]

Z0 ← 1
s0
(Z1 + x0

0C0 + x0
1C1 + x0

2G)

π̃0 ← ZKPoK[s0, x
0
0, x

0
1, x

0
2]

Z0, T0, π̃0−−−−−−−→ T ← 1
s1
(T0 − rG);Z ← 1

s1
(Z0 − rG)

π̃1 ← ZKPoK[r, s1]

return (σ, π̃1)
σ, π̃1←−−−− σ ← (Z, S , Ŝ, T); return (σ, π̃1)

Fig. 7. Our two-party interactive signing algorithm.

in the view of A′. Whenever A′ queries a message, the simulator forwards the
query to it’s signing oracle and obtains a signature (Z ′, S′, Ŝ′, T ′). From there,
the simulator proceeds as shown in Fig. 8 (left side for the case where b = 0 or
right side for the case where b = 1), as corresponds.

We observe that in the first case (Fig. 8, left side), a real computation of Z1

is indistinguishable from that of Z ′ as the former includes a uniformly random
factor and the latter is uniformly random. This is also the case for T1 and T ′.
Moreover, the zero-knowledge property of π1 conceals this information. Looking
at the second round, the simulated nature of σ cannot be distinguished by A′
due to the soundness of both π̃0 and π̃1. The second case (Fig. 8, right side) is
analogous to the first one. In both, the simulator outputs whatever A′ outputs.
Hence, whenever A′ wins, the simulator wins.

We claim that signature element S (boxed value S in Fig. 7) can be removed if
encryption keys are honestly generated, and use this optimization to instantiate
MSoRC in our mixnet construction.

3.4 Optimization

Namely, instead of allowing the adversary to choose the encryption key pair as
done in Def. 3, we work with Def. 4 so that the challenger picks the encryption
key pair. This relaxed security suffices for the optimized MSoRC to build mixnets
where the encryption key is not under the user’s control. This allows us to further
optimize the previous construction by dropping S to obtain a shorter signature
with optimal size.

This modification also reduces the number of pairings used in verification by
two. Correctness, IND-CPA, full-class hiding, signature adaption and public key
unlinkability directly follow from the previous proofs. Unforgeability needs to
be proven from scratch as we cannot reduce the security of this version to that
of the original scheme (signatures no longer have four elements). We provide a
proof of the following theorem in Appendix D.

15

P0: sk0, pk0, pk1, (C0, C1) P1: pk0, pk1, (C0, C1)

(S0, Ŝ0, π0)← A(st)
S0,Ŝ0,π0−−−−−−→ (Z′, S′, Ŝ′, T ′)← Sign(sk, (C0, C1))

Z1 ←$ G1;S ← S′; Ŝ ← Ŝ′;T ←$ G1

T1,Z1,π1←−−−−−− π1 ← ZKPoK.Sim(T1, Z1, S0, (C0, C1))

(T0, Z0, π̃0)← A(st, T1, Z1, π1)
Z0,T0,π̃0−−−−−−→ Z ← Z′;T ← T ′;π1 ← ZKPoK.Sim(Z,Z0, S0, Ŝ0)

return (σ, π1)
σ,π̃1←−−− σ ← (Z, S, Ŝ, T); return (σ, π̃1)

P0: pk0, pk1, (C0, C1) P1: sk1, pk0, pk1, (C0, C1)

(Z′, S′, Ŝ′, T ′)← Sign(sk, (C0, C1))

S0 ← S′; Ŝ0 ← Ŝ′;π0 ← ZKPoK.Sim(S0, Ŝ0)
S0,Ŝ0,π0−−−−−−→ (Z1, π1)← A(st, S0, Ŝ0, π0)

r ← ZKPoK.Ext(π1);Z0 ← Z′P r;T0 ← T ′P r
T1,Z1,π1←−−−−−−

π̃0 ← ZKPoK.Sim({Zi, Ti, Ci}i∈{0,1}, Y0)
Z0,T0,π̃0−−−−−−→ (σ, π̃1)← A(st, Z0, T0, π0)

return (σ, π̃1)
σ,π̃1←−−− return (σ, π̃1)

Fig. 8. Simulator’s algorithm for corrupted P0 (above) and for corrupted P1 (below).

Theorem 3 (Unforgeability of our optimized MSoRC). Our optimized scheme
is unforgeable in the GGM as per definitions 3 and 8 if all ZKPoK’s are secure.

4 Mixnet from Two-Party MSoRC

4.1 Entities and Communication Model

As outlined before, our mixnet considers three main entities: users, CA, and mix-
ers. As for the trust model, any users may be corrupted and behave maliciously.
The CA is trusted to adhere to the protocol and thus follows the protocol as
specified, but it is not trusted in terms of privacy. Mixers are not trusted to
follow the protocol but at least one of them is trusted in terms of privacy. Our
mixnet involves two more entities; an external verifier and a polling authority
(PA). The external verifier assures the correctness of the input and output lists
for the sake of soundness, and the involvement of all mix servers for the sake of
privacy. PA is an entity that is responsible to decrypt the output ciphertexts. It
is trusted in terms of privacy but not for soundness. To ease the trust, PA could
be distributed among a set of entities that hold the decryption key and decrypt
the output tuples in a distributed manner. Since this is a common approach,
we do not discuss it in detail. These entities communicate through a publicly
verifiable authenticated channel.

4.2 Construction

Our mixnet operates in four main phases: Setup, Input Certification, Mixing, and
Verification, as illustrated in Figure 1. These are followed by a final decryption

16

phase performed by PA, which we omit here as it is straightforward. Below, we
describe each phase in detail.

Setup Phase. All parameters and keys are sampled in this phase. For ease of
exposition, we present this phase as a single algorithm, Setup(1κ), run by a
trusted party. The public parameters pp are published, and the secret keys are
delivered to the respective parties privately.

Setup(1κ) :

pp1 ←$ MSoRC.Setup(1κ) // pp1 = (p,G1,G2,GT , G, Ĝ, e)

pp2 ←$ NIZK.Setup(1κ)
(dk, ek)← MSoRC.KeyGen(pp1) // to PA

(ask, avk)← MSoRC.SKG(pp1) // to CA

foreach i ∈ [n] (uski, uvki)← MSoRC.SKG(pp1) // to user i

pp := (pp1, pp2, ek, avk, uvki∈[n]) // publish

In practice, each key generation algorithm is performed independently by the
respective party, i.e., PA, CA, and each user. This assumes the standard certified-
key setting, where all entities must prove knowledge of their secret keys.

Input Certification Phase. In this phase, ciphertexts from users are certified to
form the initial input for the subsequent mixing phase. Each user and the CA
collaboratively execute the protocols EncAuthui

and EncAuthCA, respectively. At
a high level, this process consists of the user encrypting their message, followed
by a two-party MSoRC signing protocol (as depicted in Fig. 7) on the resulting
ciphertext. The protocol is detailed below.

EncAuthui(uski, uvki, avk,Mi, ek) : EncAuthCA(ask, avk, uvki, ek) :

cti ← MSoRC.Enc(ek,Mi; γ)

π ← ZKPoK[(γ, uski) : st1]
cti, π−−−−−−−→ ct′i ← MSoRC.Rndmz(ek, cti;µ)

π′ ← ZKPoK[µ : st2]

ct′i, π
′, evki←−−−−−−−− (eski, evki)←$ MSoRC.SKG()

σi ← MSoRC.ISignP0
(uski, ct

′
i)

MSoRC.ISign←−−−−−−→↔ σi ← MSoRC.ISignP1
(eski + ask , ct′i)

return (σi, ct
′
i, evki) return (σi, ct

′
i, eski, evki)

The protocol involves two zero-knowledge proofs, which are implicitly veri-
fied, and the protocol aborts if any verification fails. The first proof, provided by
the user, establishes knowledge of (γ, uski) such that st1 := (C0 = γG ∧ uvki =
uskiĜ), where C0 is the first component of the ciphertext cti = (γG,Mi + γek).
The second proof, st2, demonstrates that ct′i is a correct re-randomization of
cti, i.e., st2 := (ct′i = MSoRC.Rndmz(ek, cti;µ)). In the following, we clarify the
rationale behind our design choices:
Ciphertext randomization by the CA is optional. While not essential for our mix-
net’s soundness or privacy, randomizing the ciphertext by the CA is beneficial in
applications such as receipt-free voting, as it prevents users from demonstrating
that a ciphertext decrypts to a specific message.

17

User’s ZKPoK ensures plaintext knowledge and authentication. This proof pre-
vents replay attacks in which an adversarial user could wait for another to submit
a ciphertext, randomize it, and then obtain a signature on the same message.
Ephemeral key pairs (eski, evki) on the CA side. Introduction of an ephemeral
key pair by the CA protects against maliciously crafted user keys. Without this,
a malicious user could generate keys in a correlated manner and collude with the
first mix server to replace ciphertexts. The inclusion of the ephemeral public key
ensures that each verification key is independent of the user’s key generation.
In the algorithm, we highlight this modification by indicating that the CA signs
with eski + ask instead of ask alone (boxed value in the protocol). Consequently,
MSoRC.ISign produces a signature that verifies under uvki + evki + avk.

Upon completion of the protocol between the CA and user i, the resulting
tuple (σi, ct

′
i, uvki, evki) is published in an authenticated manner. It is crucial

to ensure that evki is the ephemeral key generated by the CA. For clarity and
consistency, we assume that the CA is responsible for publishing these tuples.

This phase concludes once all users have completed the protocol with the
CA. Let CIL := (σi, ct

′
i, uvki, evki)i∈[n] denote the certified input list. For each

entry, define vki := uvki + evki + avk; we treat vki as a virtual value, computed
in this way whenever referenced. From this point onward, each tuple (ct′i, σi, vki)

produced in this phase is relabeled with the superscript (0) as (ct(0)i , σ
(0)
i , vk

(0)
i).

We then define the initial shuffle set as SSet(0) := (ct
(0)
i , σ

(0)
i , vk

(0)
i)i∈[n].

Mixing Phase. In this phase, the mix servers 1, . . . , N operate sequentially in
a cascade. Each mix server receives an input list, processes it, and passes the
resulting output list to the next server. Let Π[n] denote the set of all permu-
tations over [n], and let NIZK denote a non-interactive zero-knowledge proof
system. Each mix server j executes the Mix algorithm as shown in Fig. 9.

Statement st3 := (VK(j) = MSoRC.ConvertVK(VK(j−1), ρ)), ensures correct
transformation of the aggregated key. The algorithm proceeds as follows:

1. It first parses SSet(j−1) (the previous mix server’s output) and samples fresh
randomness µ, ρ, and a permutation Πj from their respective domains.

2. For each verified input tuple (ct
(j−1)
i , σ

(j−1)
i , vk

(j−1)
i), it randomizes the ver-

ification key, signature, and ciphertext using the random factors ρ and µ
via the corresponding MSoRC functions, and stores the result in a position
determined by Πj in the output list.

3. Finally, it aggregates the verification keys in both the input and output,
and proves that they are correctly related via the common randomness ρ.
With our MSoRC, this proof reduces to a lightweight equality of discrete
logarithms among three pairs of elements.

Each mix server j publishes its output (SSet(j),VK(j), π(j)). The output list
SSet(j) is then provided as input to the next mix server. The pair (VK(j), π(j))
forms a link in the proof chain that will be checked during the verification phase.
The mixing phase concludes when the final mix server N publishes its output.
Mix servers do not verify the proof from previous servers. While they could

18

Mix(SSet(j−1))

(ct
(j−1)
i , σ

(j−1)
i , vk

(j−1)
i)i∈[n] ← SSet(j−1) //parse input list

µ, ρ←$ Z∗
p; Πj ←$ Π[n] //sample random factors

foreach i ∈ [n] do //randomize & permute

if MSoRC.Verify(vk
(j−1)
i , ct

(j−1)
i , σ

(j−1)
i) ̸= 1 abort

vk
(j)

Πj(i)
← MSoRC.ConvertVK(vk

(j−i)
i , ρ)

σ
(j)

Πj(i)
← MSoRC.Adapt(σ

(j−1)
i ;µ, ρ)

ct
(j)

Πj(i)
← MSoRC.Rndmz(ek, ct

(j−1)
i ;µ)

SSet(j) := (ct
(j)
i , σ

(j)
i , vk

(j)
i)i∈[n] //compose output list

VK(j−1) :=
∑

vk
(j−1)
i ; VK(j) :=

∑
vk

(j)
i //aggregate I/O keys

π(j) ← NIZK.Prove[ρ : st3] //proof on aggregated keys

return (SSet(j),VK(j), π(j))

Fig. 9. Mix algorithm.

Verify(CIL, π(1), . . . , π(N),VK(1), . . . ,VK(N−1),SSet(N)) :

(σi, ct
′
i, uvki, evki)i∈[n] ← CIL //parse I/O lists

(ct
(N)
i , σ

(N)
i , vk

(N)
i)i∈[n] ← SSet(N)

foreach i ∈ [n] do //check I/O entries

if MSoRC.Verify(uvki + evki + avk, ct′i, σi) ̸= 1 return 0

if MSoRC.Verify(vk
(N)
i , ct

(N)
i , σ

(N)
i) ̸= 1 return 0

VK(0) :=
∑n

i=1 uvki + evki + avk; VK(N) :=
∑n

i=1 vk
(N)
i //aggregate I/O keys

foreach j ∈ [N] do //check proof chain

if NIZK.Verify(π(j),VK(j−1),VK(j)) ̸= 1 return 0
return 1

Fig. 10. Verify algorithm.

perform this check and abort early upon failure, we defer all proof verification to
the final verification phase for simplicity. However, each server does verify every
entry in its input list using MSoRC.Verify. Notably, this verification is essential
for privacy rather than soundness, as detailed in the security proof.

Verification Phase. Any external party can verify the mixing process. Although
all outputs are publicly available, the verifier only requires the certified input
list CIL, the sequence of proofs (π(1), . . . , π(N)), the aggregated keys (VK(1), . . . ,
VK(N−1)), and the final output list SSet(N) as input. Notably, the verifier does
not need access to any intermediate output lists SSet(j) for j = 1, . . . , N−1. The
verification algorithm is shown in Fig. 10. The phase concludes when the verifier
outputs 1 (success) or 0 (failure). In the event of failure, the application layer
can determine the appropriate response. Since all data are authenticated and
publicly available, identifying the source of any inconsistency is straightforward.

19

4.3 Achieving Constant-Size Proof

Following HPP20, we can eliminate the linear dependency on N by introducing
a second round of interaction using the multi-signature from [BDN18](see Ap-
pendix F for details). Each mixer computes its own proof and a partial proof π′,
which is updated by multiplying in its witness. Unlike HPP20, which relies on
GS proofs, we use the more efficient updatable proof system from Couteau and
Hartmann (CH20) [CH20] (see Appendix C.2). The first mixer creates a proof,
and each subsequent mixer updates it; at the end, π′ attests to the relation be-
tween the initial and final tuples, allowing the entire process to be verified with
a single proof. Mixers batch verify all proofs and jointly sign π′ if they agree.
Both the last individual proof and π′ show knowledge of a witness for the final
tuple, but π′ relates it directly to the initial input. Batch verification ensures all
servers participated honestly. Updating π′ is efficient, requiring only a multipli-
cation in Zp and two exponentiations in G2 for the optimized two-key version of
our MSoRC.

By allowing a second round of interaction, we can further simplify the above
approach, originally envisioned in HPP20 and adapted to our setting. Since the
NIZK proofs used in this work are simple discrete logarithm proofs, we can
dispense with the CH20 proof system and instead rely on standard Schnorr
proofs. Concretely, the process proceeds as follows:

1. Each mixer computes its individual proof π(j) ← NIZK.Prove(VK(j−1),VK(j),
ρ(j)) as a Schnorr proof, and records the randomizer ρ(j) used.

2. After the mixing phase, the mixers engage in a second round of interaction.
First, they batch-verify all individual proofs as before. Then, they jointly pro-
duce a distributed Schnorr proof π′ ← NIZK.Prove(VK(0),VK(N), ρ′), where
ρ′ =

∏
j ρ

(j). Finally, they sign π′ using a multi-signature scheme.

4.4 Security Model

We strengthen the security model from HPP20 so that soundness and privacy
hold against malicious users. For soundness, we guarantee that an adversary
cannot successfully modify or replace messages of any user, including malicious
ones. Similarly, our privacy notion ensures that messages in the input shuffle set
are unlinkable from those in the output, even if some users and mixers collude.

Definition 10 (Soundness). A mixnet is said to be sound in the certified
key setting, if any PPT adversary A has a negligible success probability in the
following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (uvki)i∈I∗
– decides on the set I of users that will generate a message
– proves knowledge of the secret keys for each corrupted user in I∗ to get the

MSoRC signatures σi and ephemeral verification keys evki for ciphertexts of
its choice

20

– generates the tuples (Ti)i∈I∗ for the corrupted users and provides messages
(Mi)i∈I\I∗ for the honest users

3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and
their tuples (Ti)i∈I\I∗ . The initial certified input list is thus defined by CIL :=
(Ti)i∈I .

4. The adversary mixes CIL in a provable way into (SSet, proof).

The adversary wins if Verify(CIL,SSet, proof) = 1 but {Dec∗(CIL)} ≠ {Dec∗(SSet)},
where Dec∗ extracts the plaintexts using the decryption key.

Theorem 4 (Soundness). Our Mixnet is sound in the certified key setting if
our MSoRC scheme is unforgeable and the proof system used is sound.

Proof Sketch. We first note that if verification passes, soundness of the NIZKPoK
proof guarantees that ∀ vk′i ∈ SSet∧vki ∈ CIL :

∑
vk′i =

∑
αvki. This, together

with the unforgeability of MSoRC, implies that ∀ vk′i : vk
′
i = α(uski+eski+ask)Ĝ

since [vk′i]vk = [vki]vk. Observe that for each uski (regardless of whether it is
maliciously chosen or not), the value eski + ask (framed in the signing protocol
description) “fixes” the corresponding equivalence class. The class is unique and
is outside the adversary’s control since eski is chosen independently from uski
and uniformly by the CA. This proves that the verification keys in the output
shuffle set are a permutation of the ones in the input shuffle set. Consequently,
the ciphertexts in the output shuffle set are also a permutation of the ciphertexts
from the input shuffle set.

As originally defined in HPP20, the above soundness game (and proof) does
not depend on the number of mixing steps. Instead, it considers a global mixing
from the input to the output shuffle set. This reflects the use of a single (constant-
size) proof. That said, we stress that one can apply a similar reasoning to prove
that our base construction is also sound. More in detail, assume that the last
proof π(N) verifies (i.e., VK(N) is a (correct) randomization of VK(N−1)) but
there exists some VK(k−1) for 0 < k ≤ N − 1 such that VK(k) is not a (correct)
randomization of VK(k−1). As outlined in the previous proof, such situation
would lead to a contradiction. If the MSoRC scheme is unforgeable (i.e., for all
[vk

(k)
i]vk = [vk

(k−1)
i]vk) and π(k) verifies, then the proof system is not sound.

In the privacy game, the adversary provides two possible permutations for
the case where the mix server follows the protocol and it wins if it can identify
the permutation used. As expected, we will require the presence of one honest
mixer to guarantee that at least one honest permutation is done during mixing.

Definition 11 (Privacy). A mixnet is said to provide privacy in the certified
key setting, if any PPT adversary A has a negligible advantage in guessing b in
the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (uvki)i∈I∗

21

– decides on the corrupted mixers J ∗ and generates itself their keys (spki)i∈J ∗

– decides on the set I of users that will generate a message
– decides on the set J of mixers that will make mixes
– proves its knowledge of the secret keys for each corrupted user in I∗ to get

the MSoRC signatures σi and keys evki for ciphertexts of its choice
– generates the message tuples (Ti)i∈I∗ for corrupted users
3. The challenger generates keys for honest mixers (sskj, spkj)j∈J\J ∗ and the

keys of the honest users (uski, uvki)i∈I\I∗ and their message tuples (Ti)i∈I∗ .

The initial certified input list is thus defined by CIL = (Ti)i∈I . The challenger
randomly chooses a bit b and then enters into a loop for j ∈ J with the attacker:

– if j ∈ J ∗, A builds itself the new shuffle set SSet(j) with the proof proof(j)

– if j /∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, then the
challenger runs the mixing with Πj,b, and provides the output (SSet(j),proof(j))

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if
b′ = b and 0 otherwise.

Theorem 5 (Privacy). Our Mixnet is private in the certified key setting if at
least one mix server is honest, assuming the public key unlinkability and signature
adaption of our MSoRC scheme, and the SXDH assumption.

Proof. We analyze what happens when an honest mixer runs the protocol, show-
ing that in the adversary’s view the output shuffle set and proof are indepen-
dent from the permutation chosen and any other information available to the
adversary. Without loss of generality, we consider an honest mixer j that gets
SSet(j−1) = {((C0, C1)i, σi, Σi, vki)}

(j−1)
i∈[n] and proof(j−1). Soundness guarantees

that SSet(j−1) is well-formed with respect to the initial tuple SSet(0). The chal-
lenger, running mixer j:

1. randomizes all vki ∈ SSet(j−1) with ρ(j) to get vk(j)i . Public key unlinkability
of MSoRC guarantees that vk(j)i is unlinkable to the adversary (even knowing
the secret key and previous randomizers of corrupted users and mixers).

2. randomizes each (C0, C1)
(j−1)
i with µ(j) and adapts Σ(j−1)

i with µ(j) and ρ(j)

to get (C0, C1)
(j)
i and Σ

(j)
i . On the one hand, security of ElGamal under

DDH ensures that (C0, C1)
(j)
i is unlinkable to (C0, C1)

(j−1)
i . On the other

hand, signature adaption of MSoRC guarantees that Σ(j)
i looks like a freshly

computed signature for (C0, C1)
(j)
i and thus, unlinkable to Σ

(j−1)
i for all i.

Multiple Ciphertexts. As discussed in Appendix A (where we present a de-
tailed discussion on applying our scheme to e-voting), the encryption key pair
can be distributed among a set of trustees (e.g., as in [CGGI13]). Besides, longer
plaintexts may have to be supported for complex voting rules or to allow re-
dundant encoding for the convenience of final counting. The authors of [BF20]
discussed how their SoRC scheme can be generalized to sign a vector of ElGa-
mal ciphertexts without increasing signature size. The idea is to define a key

22

vector so that multiple ciphertexts can be encrypted using the same random-
ness. Our construction is compatible with such generalization, allowing users
to obtain a single signature for multiple ciphertexts. Given an encryption key
ek = (ek1, · · · , ekn), a signing key (x0, · · · , xn+1), a ciphertext consisting of
C0 = rG and Ci = Mi + reki for 1 ≤ i ≤ n, the signature is:

Z := 1
s

(∑i=n
i=0 xiCi + xn+1G

)
, T := 1

s

(
x0G+

∑i=n
i=1 xieki

)
, Ŝ := sĜ

This way, users can encrypt, e.g., the ranking preference for each candi-
date keeping the signature size constant. Since every vote is decrypted individu-
ally, the validity of each vote can be verified at decryption time and malformed
votes can be discarded. This contrasts with homomorphic voting schemes like
[CFSY96] for which adding such functionality is costly and non-trivial.

4.5 Performance Evaluation

Comparison. We compare our mixnet with the works by Hébant et al. [HPP20]
and Faonio and Russo [FR22] (Rand-RCCA), presenting asymptotic computa-
tional and communication costs.2

Computational and communication costs for verification in HPP20 consider
the use of a multi-signature as originally reported by the authors. Consequently,
for HPP20, we include verification costs of the individual proofs required to
produce the multi-signature as part of the mixing computational costs. HPP20
does not consider a bulletin board to authenticate the mixers’ proofs. Instead, it
considers the use of a generic signature scheme. To make a fair comparison, we
consider the use of BLS [BLS04] as it is highly efficient and compatible with their
setting. In our case, we consider the standard scenario where verification depends
linearly on the number of mixers and the use of an aggregate signature scheme
to authenticate all proofs emulating a bulletin board. We use the sequential
aggregate signature (SAS) from Pointcheval and Sanders [PS16] (see Appendix
F for details) as it suits our setting. In our case, the mixers do not need to verify
individual proofs, but they verify the partial aggregate signature before mixing,
favouring a comparison with HPP20. Therefore, we report the computational
cost that corresponds to the last mixer who has to perform N exponentiations in
G2 to verify the messages from all previous servers. For in and out communication
we include the server’s public keys needed to verify the signatures and related
messages (considering their original representation with sizes in source group
instead of Zp). We recall that our construction achieves a stronger security model
compared to HPP20 and is, therefore, more competitive.

Comparison with [FR22] requires us to make some assumptions since NIZK
proofs NIZKsnd and NIZKmx are not fully specified in their works [FFHR19, FR22,

2 We note that Faonio et al. initially proposed the use of Rand-RCCA PKE as a build-
ing block to construct mixnets in [FFHR19]. There, the Rand-RCCA PKE needs to
provide public verifiability. In [FR22] the authors manage to get rid of such require-
ment.

23

0 10k 20k 30k 40k 50k
0

106
2 · 106
3 · 106
4 · 106
5 · 106

Computational costs (mixing)

Rand-RCCA
HPP20
Ours

0 10k 20k 30k 40k 50k
0106

5 · 106
107

1.5 · 107
2 · 107

Computational costs (verification)

Rand-RCCA
HPP20
Ours

Fig. 11. Computational costs considering group exponentiations and pairings for a
number of users from 1k to 50k and 10 mixers. Y axis is the total count of all group
exponentiations and pairings relative to exponentiation cost in G1.

FHR23]. Consequently, we make the simplifying assumptions (which are in their
favor) that for NIZKmx we have a simple adaptively sound QA-NIZK due to Kiltz
and Wee [KW15], which under SXDH has a proof size of 2G1 elements, and a
Groth-Sahai NIZK for NIZKsnd (just considering pairing product equations) with
a size of 4G1+4G2 elements. This allows us to compare the three approaches in
detail, providing concrete costs as shown in Appendix G.

We consider the BLS12-381 curve where sizes of group elements in bits are
as follows: |G2| = 2 · |G1|, |G1| = 2 · |Zp|, |Zp| = 256 and |GT | = 12 · 381. For the
scalar multiplications in the groups G1 and G2, the exponentiation in group GT

as well as pairing computation, we have that scalar multiplications in G1 are the
cheapest and the operations in G2, GT and P are a factor of 2 as well as 7 more
expensive than in G1. These relations were taken based on the measurements
of these operations using the BLS12-381 curve and we use them to determine
dominant operations in our asymptotic computational costs.

Computational comparisons are shown in Fig. 11 whereas communication
costs are shown in Fig. 12. Firstly, we observe that HPP20 and our approach
only linearly depend on the parameters n and N . In contrast [FR22] have a
dependency on n ·N in the verification costs and generally higher computational
and bandwidth costs overall. When taking a closer comparison with the more
scaleable solution (HPP20), our effort for verification is comparable (even for the
variant where we are linear in N as typically N ≤ 10), but in all other aspects
we improve. For instance, if one sets n = 1000 and N = 10, mixing is around
3.5x more efficient with our approach and bandwidth savings are around 1.5x
(for inputs as well as outputs to mixing) and around 3x for the optimized case
(and 1.1x for the unoptimized one).
Experimental Results. We implemented a prototype of our protocols in Rust
using the blasters library [Lab21], which implements the pairing-friendly BLS12-
381 curve. BLAKE3 [OANWO20] was used to instantiate hash functions. Source
code and documentation to reproduce our results are available on GitHub [Nan25].
We used Rust’s Criterion library and the nightly compiler with no extra opti-
mizations to run the benchmarks on a MacBook Pro M3 with 32GB of RAM.

24

0 10k 20k 30k 40k 50k
0

25
50

100

150
175

Communication costs (input)

Rand-RCCA
HPP20
Ours

0 10k 20k 30k 40k 50k
0

25
50

100

150
175

Communication costs (output)

Rand-RCCA
HPP20
Ours

0 10k 20k 30k 40k 50k
0

25
50

100

150
175

Communication costs (verification)

Rand-RCCA
HPP20
Ours

Fig. 12. Communication costs in MB for a number of users from 1k to 50k and 10
mixers.

Table 1. Running times of each protocol in seconds.

Verify
n InputVerification Mix (N = 5) (N = 10)

1k 2.7 0.8 2.7 2.7
10k 27.1 8.3 27 27
25k 67.6 20.7 67.4 67.4
50k 135 41.3 134.6 134.5

The (interactive) signing protocol of our MSoRC scheme (Fig. 7) takes 6.4ms
while EncAuth (which includes the ZKPoK’s) takes 8.1ms.

Running times of other protocols are summarized in Table 1, confirming the
linear complexity of our mixnet scheme. In all cases, the standard deviation was
below 1s. We note that a pairing takes around 380 microseconds while a multi-
exponentiation for N = 10 takes 737 microseconds. Thus, for a small N , the
difference between our standard Verify (where we verify N proofs in batch) and
the constant-size variant of it (where a single proof is verified) is negligible.

Our prototype does not make use of parallelization libraries such as Rayon.
However, our scheme is highly compatible with such techniques due to the indi-
vidual processing of tuples during mixing and verification. Moreover, practical
deployments would use proper servers, allowing our solution to scale further.

5 Conclusion

In this work, we introduced a new certified-input mixnet construction based on
the novel concept of mercurial signatures on randomizable ciphertexts (MSoRC).

25

Our approach advances the state of the art by achieving both improved effi-
ciency and stronger security guarantees compared to previous frameworks such
as HPP20. In particular, our two-party MSoRC provides public-key unlinkability,
which is crucial for protecting voter privacy in e-voting systems against collusion
between users, mix servers, and the certificate authority.

The modularity of our construction facilitates integration and future im-
provements, making it adaptable to evolving cryptographic primitives. Through
careful design and optimization, we demonstrated that our protocol is both scal-
able and practical. Our implementation and benchmarks show that, for 50k
voters and 10 mix servers, the worst-case mixing time is around 40 seconds, and
the entire process completes in under 5 minutes on a commodity laptop, without
any parallelization. We believe our contributions will enable the development of
more efficient and practical mixnet protocols for privacy-sensitive applications.

References

Abe98. Masayuki Abe. Universally verifiable mix-net with verification work in-
dependent of the number of mix-servers. In Kaisa Nyberg, editor, EURO-
CRYPT’98, volume 1403 of LNCS, pages 437–447. Springer, Heidelberg,
May / June 1998.

Abe99. Masayuki Abe. Mix-networks on permutation networks. In Kwok-Yan
Lam, Eiji Okamoto, and Chaoping Xing, editors, ASIACRYPT’99, vol-
ume 1716 of LNCS, pages 258–273. Springer, Heidelberg, November 1999.

ABG+21. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and
Thor Tunge. Lattice-based proof of shuffle and applications to electronic
voting. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 227–251. Springer, Heidelberg, May 2021.

ABGS23a. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde.
Verifiable mix-nets and distributed decryption for voting from lattice-
based assumptions. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2023, Copenhagen,
Denmark, November 26-30, 2023, pages 1467–1481. ACM, 2023.

ABGS23b. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde.
Verifiable mix-nets and distributed decryption for voting from lattice-
based assumptions. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’23, page 1467–1481,
New York, NY, USA, 2023. Association for Computing Machinery.

ABR23. Diego F. Aranha, Michele Battagliola, and Lawrence David Roy. Faster
coercion-resistant e-voting by encrypted sorting. In Proceedings of E-
Vote-ID 2023. Tartu University Press, June 2023. 8th International Joint
Conference on Electronic Voting, E-Vote-ID ; Conference date: 03-10-2023
Through 06-10-2023.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van
Oorschot, editor, USENIX Security 2008, pages 335–348. USENIX As-
sociation, July / August 2008.

AF04. Masayuki Abe and Serge Fehr. Adaptively secure feldman VSS and appli-
cations to universally-composable threshold cryptography. In Matthew K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual

26

International CryptologyConference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Com-
puter Science, pages 317–334. Springer, 2004.

AFG+10. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 209–236. Springer, Heidelberg, August 2010.

AGHO11. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Optimal structure-preserving signatures in asymmetric bilinear groups.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
649–666. Springer, Heidelberg, August 2011.

AH01. Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based
on permutation networks. In Kwangjo Kim, editor, PKC 2001, volume
1992 of LNCS, pages 317–324. Springer, Heidelberg, February 2001.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venki-
tasubramaniam. Ligero: Lightweight sublinear arguments without a
trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press,
October / November 2017.

AKA+21. Khaleel Ahmad, Afsar Kamal, Khairol Amali Bin Ahmad, Manju Khari,
and Rubén González Crespo. Fast hybrid-mixnet for security and privacy
using NTRU algorithm. J. Inf. Secur. Appl., 60:102872, 2021.

ANKT25. Masayuki Abe, Masaya Nanri, Octavio Perez Kempner, and Mehdi Ti-
bouchi. Interactive threshold mercurial signatures and applications. In
Kai-Min Chung and Yu Sasaki, editors, Advances in Cryptology – ASI-
ACRYPT 2024, pages 69–103, Singapore, 2025. Springer Nature Singa-
pore.

BCC+09. Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 108–125. Springer, Heidelberg, August 2009.

BDN18. Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-
signatures for smaller blockchains. In Thomas Peyrin and Steven Gal-
braith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages
435–464. Springer, Heidelberg, December 2018.

BF20. Balthazar Bauer and Georg Fuchsbauer. Efficient signatures on random-
izable ciphertexts. In Clemente Galdi and Vladimir Kolesnikov, editors,
SCN 20, volume 12238 of LNCS, pages 359–381. Springer, Heidelberg,
September 2020.

BFPV11. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien
Vergnaud. Signatures on randomizable ciphertexts. In Dario Catalano,
Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 403–422. Springer, Heidelberg, March 2011.

BG02. Dan Boneh and Philippe Golle. Almost entirely correct mixing with
applications to voting. In Vijayalakshmi Atluri, editor, ACM CCS 2002,
pages 68–77. ACM Press, November 2002.

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer,
Heidelberg, April 2012.

27

BGR98. Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification
for modular exponentiation and digital signatures. In Kaisa Nyberg, ed-
itor, EUROCRYPT’98, volume 1403 of LNCS, pages 236–250. Springer,
Heidelberg, May / June 1998.

BGR12. Sergiu Bursuc, Gurchetan S. Grewal, and Mark D. Ryan. Trivitas: Voters
directly verifying votes. In Aggelos Kiayias and Helger Lipmaa, editors,
E-Voting and Identity, pages 190–207, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

BHKS18. Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schnei-
der. Signatures with flexible public key: Introducing equivalence classes
for public keys. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 405–434. Springer,
Heidelberg, December 2018.

BHM20. Xavier Boyen, Thomas Haines, and Johannes Müller. A verifiable and
practical lattice-based decryption mix net with external auditing. In
Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors,
ESORICS 2020, Part II, volume 12309 of LNCS, pages 336–356. Springer,
Heidelberg, September 2020.

BLS04. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. Journal of Cryptology, 17(4):297–319, September 2004.

CCM08. Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:
Toward a secure voting system. In 2008 IEEE Symposium on Security
and Privacy, pages 354–368. IEEE Computer Society Press, May 2008.

CFSY96. Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti
Yung. Multi-autority secret-ballot elections with linear work. In Ueli M.
Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 72–83.
Springer, Heidelberg, May 1996.

CGGI13. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Iz-
abachène. Distributed elgamal à la pedersen: Application to helios. In
Proceedings of the 12th ACM Workshop on Workshop on Privacy in the
Electronic Society, WPES ’13, page 131–142, New York, NY, USA, 2013.
Association for Computing Machinery.

CGY24. Véronique Cortier, Pierrick Gaudry, and Quentin Yang. Is the JCJ vot-
ing system really coercion-resistant? In 37th IEEE Computer Security
Foundations Symposium (CSF), CSF 2024, Enschede, Netherlands, 2024.
IEEE. This is the long version of the paper published at CSF 2024.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-
knowledge arguments and ZAPs for algebraic languages. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 768–798. Springer, Heidelberg, August 2020.

Cha81. David L. Chaum. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Commun. ACM, 24(2):84–90, feb 1981.

Cha25. Chainlink. Chainlink network. Online, 2025.
CKLM12. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-

john. Malleable proof systems and applications. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS,
pages 281–300. Springer, Heidelberg, April 2012.

CKLM13. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meik-
lejohn. Verifiable elections that scale for free. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 479–
496. Springer, Heidelberg, February / March 2013.

28

CKN03. Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-
ciphertext security. In Dan Boneh, editor, CRYPTO 2003, volume 2729
of LNCS, pages 565–582. Springer, Heidelberg, August 2003.

CL19. Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous
credentials from mercurial signatures. In Mitsuru Matsui, editor, CT-
RSA 2019, volume 11405 of LNCS, pages 535–555. Springer, Heidelberg,
March 2019.

CL21. Elizabeth C. Crites and Anna Lysyanskaya. Mercurial signatures for
variable-length messages. PoPETs, 2021(4):441–463, October 2021.

CL24. Yi-Hsiu Chen and Yehuda Lindell. Feldman’s verifiable secret sharing for
a dishonest majority. IACR Cryptol. ePrint Arch., page 31, 2024.

CLPK22. Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. Im-
proved constructions of anonymous credentials from structure-preserving
signatures on equivalence classes. In Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS,
pages 409–438. Springer, Heidelberg, March 2022.

CLW08. Sherman S. M. Chow, Joseph K. Liu, and Duncan S. Wong. Robust
receipt-free election system with ballot secrecy and verifiability. In
NDSS 2008. The Internet Society, February 2008.

CP93. David Chaum and Torben Pryds Pedersen. Wallet databases with
observers. In Ernest F. Brickell, editor, Advances in Cryptology —
CRYPTO’ 92, pages 89–105, Berlin, Heidelberg, 1993. Springer Berlin
Heidelberg.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm
for adaptive chosen ciphertext secure public-key encryption. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 45–
64. Springer, Heidelberg, April / May 2002.

CS11. Véronique Cortier and Ben Smyth. Attacking and fixing helios: An anal-
ysis of ballot secrecy. In Michael Backes and Steve Zdancewic, editors,
CSF 2011 Computer Security Foundations Symposium, pages 297–311.
IEEE Computer Society Press, 2011.

CVM25. Diego Castejon-Molina, Dimitrios Vasilopoulos, and Pedro Moreno-
Sanchez. Mixbuy: Contingent payment in the presence of coin mixers.
Proc. Priv. Enhancing Technol., 2025(1):671–706, 2025.

DEF+25. Bernardo David, Felix Engelmann, Tore Frederiksen, Markulf Kohlweiss,
Elena Pagnin, and Mikhail Volkhov. Updatable privacy-preserving
blueprints, 2025.

ElG86. Taher ElGamal. On computing logarithms over finite fields. In Hugh C.
Williams, editor, CRYPTO’85, volume 218 of LNCS, pages 396–402.
Springer, Heidelberg, August 1986.

FFHR19. Antonio Faonio, Dario Fiore, Javier Herranz, and Carla Ràfols. Structure-
preserving and re-randomizable RCCA-secure public key encryption and
its applications. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 159–190.
Springer, Heidelberg, December 2019.

FGHP09. Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and
Michael Østergaard Pedersen. Practical short signature batch verifica-
tion. In Marc Fischlin, editor, CT-RSA 2009, volume 5473 of LNCS,
pages 309–324. Springer, Heidelberg, April 2009.

29

FHR23. Antonio Faonio, Dennis Hofheinz, and Luigi Russo. Almost tightly-
secure re-randomizable and replayable CCA-secure public key encryption.
In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023,
Part II, volume 13941 of LNCS, pages 275–305. Springer, Heidelberg,
May 2023.

FHS19. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. Journal of Cryptology, 32(2):498–546, April 2019.

FR22. Antonio Faonio and Luigi Russo. Mix-nets from re-randomizable and re-
playable cca-secure public-key encryption. In Clemente Galdi and Stanis-
law Jarecki, editors, Security and Cryptography for Networks, pages 172–
196, Cham, 2022. Springer International Publishing.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Andrew M. Odlyzko, editor, Ad-
vances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013.

Gol01. Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1.
Cambridge University Press, Cambridge, UK, 2001.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

Hea07. James Heather. Implementing stv securely in pret a voter. In 20th IEEE
Computer Security Foundations Symposium (CSF’07), pages 157–169,
2007.

HL10. Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols:
Techniques and Constructions. Information Security and Cryptography.
Springer, Berlin, Heidelberg, 2010.

HMMP23. Thomas Haines, Rafieh Mosaheb, Johannes Müller, and Ivan Pryvalov.
Sok: Secure e-voting with everlasting privacy. Proc. Priv. Enhancing
Technol., 2023(1):279–293, 2023.

HMQA23. Thomas Haines, Johannes Müller, and Iñigo Querejeta-Azurmendi. Scal-
able coercion-resistant e-voting under weaker trust assumptions. In Pro-
ceedings of the 38th ACM/SIGAPP Symposium on Applied Computing,
SAC ’23, page 1576–1584, New York, NY, USA, 2023. Association for
Computing Machinery.

HMS21. Javier Herranz, Ramiro Martínez, and Manuel Sánchez. Shorter lattice-
based zero-knowledge proofs for the correctness of a shuffle. In Finan-
cial Cryptography and Data Security. FC 2021 International Workshops

30

https://eprint.iacr.org/2019/953

- CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5, 2021,
Revised Selected Papers, volume 12676 of Lecture Notes in Computer Sci-
ence, pages 315–329. Springer, 2021.

HPP20. Chloé Hébant, Duong Hieu Phan, and David Pointcheval. Linearly-
homomorphic signatures and scalable mix-nets. In Aggelos Ki-
ayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part II, volume 12111 of LNCS, pages 597–627. Springer,
Heidelberg, May 2020.

HS14. Christian Hanser and Daniel Slamanig. Structure-preserving signatures
on equivalence classes and their application to anonymous credentials.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I,
volume 8873 of LNCS, pages 491–511. Springer, Heidelberg, December
2014.

JCJ05. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant
electronic elections. In Proceedings of the 2005 ACM Workshop on Pri-
vacy in the Electronic Society, WPES ’05, page 61–70, New York, NY,
USA, 2005. Association for Computing Machinery.

Kat23. Jonathan Katz. Round optimal robust distributed key generation. IACR
Cryptol. ePrint Arch., page 1094, 2023.

KER+22. Christian Killer, Moritz Eck, Bruno Rodrigues, Jan von der Assen, Roger
Staubli, and Burkhard Stiller. Provotumn: Decentralized, mix-net-based,
and receipt-free voting system. In 2022 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pages 1–9, 2022.

KLN23. Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-
preserving blueprints. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 594–625.
Springer, Heidelberg, April 2023.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear sub-
spaces revisited. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer,
Heidelberg, April 2015.

Lab21. Protocol Labs. High performance implementation of bls12 381. Online,
2021.

LOS+06. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Wa-
ters. Sequential aggregate signatures and multisignatures without random
oracles. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 465–485. Springer, Heidelberg, May / June 2006.

LPJY13. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly ho-
momorphic structure-preserving signatures and their applications. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 289–307. Springer, Heidelberg, August 2013.

LQT20. Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso.
VoteAgain: A scalable coercion-resistant voting system. In Srdjan Capkun
and Franziska Roesner, editors, USENIX Security 2020, pages 1553–1570.
USENIX Association, August 2020.

MMR22. David Mestel, Johannes Müller, and Pascal Reisert. How efficient are re-
play attacks against vote privacy? a formal quantitative analysis. In 2022
IEEE 35th Computer Security Foundations Symposium (CSF), pages
179–194, 2022.

31

MN06. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with
everlasting privacy. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 373–392. Springer, Heidelberg, August 2006.

MN07. Tal Moran and Moni Naor. Split-ballot voting: everlasting privacy with
distributed trust. In Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson, editors, ACM CCS 2007, pages 246–255. ACM Press,
October 2007.

MRV16. Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix
Diffie-Hellman assumption. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 729–
758. Springer, Heidelberg, December 2016.

MTV+23. Varun Madathil, Sri Aravinda Krishnan Thyagarajan, Dimitrios
Vasilopoulos, Lloyd Fournier, Giulio Malavolta, and Pedro Moreno-
Sanchez. Cryptographic oracle-based conditional payments. In 30th An-
nual Network and Distributed System Security Symposium, NDSS 2023,
San Diego, California, USA, February 27 - March 3, 2023. The Internet
Society, 2023.

Nan25. Masaya Nanri. Implementation of mixnets from msorc. https://github.
com/octaviopk9/esorics_msorc, 2025.

OANWO20. Jack O’Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko
Wilcox-O’Hearn. Blake3. Online, 2020.

Oka97. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale
elections. In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and
Michael Roe, editors, Security Protocols, 5th International Workshop, vol-
ume 1361 of LNCS, pages 25–35, Paris, France, April 7–9 1997. Springer,
Heidelberg.

PB09. Kun Peng and Feng Bao. A design of secure preferential e-voting. In Peter
Y. A. Ryan and Berry Schoenmakers, editors, E-Voting and Identity, Sec-
ond International Conference, VoteID 2009, Luxembourg, September 7-8,
2009. Proceedings, volume 5767 of Lecture Notes in Computer Science,
pages 141–156. Springer, 2009.

Poi23. David Pointcheval. Linearly-homomorphic signatures for short random-
izable proofs of subset membership. In Melanie Volkamer, David Duenas-
Cid, Peter B. Roenne, Peter Y. A. Ryan, Jurlind Budurushi, Oksana Ku-
lyk, Adrià Rodríguez-Pérez, Iuliia Spycher-Krivonosova, Michael Kirsten,
Alexandre Debant, and Nicole J. Goodman, editors, Eight International
Joint Conference on Electronic Voting, E-Vote-ID 2024, Luxembourg
City, Luxembourg, October 3-6, 2023, Proceedings, volume P347 of LNI.
Gesellschaft für Informatik e.V., 2023.

Poi24. David Pointcheval. Efficient universally-verifiable electronic voting with
everlasting privacy. In Clemente Galdi and Duong Hieu Phan, editors,
Security and Cryptography for Networks - 14th International Conference,
SCN 2024, Amalfi, Italy, September 11-13, 2024, Proceedings, Part I,
volume 14973 of Lecture Notes in Computer Science, pages 323–344.
Springer, 2024.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126.
Springer, Heidelberg, February / March 2016.

PS18. David Pointcheval and Olivier Sanders. Reassessing security of random-
izable signatures. In Nigel P. Smart, editor, CT-RSA 2018, volume 10808
of LNCS, pages 319–338. Springer, Heidelberg, April 2018.

32

https://github.com/octaviopk9/esorics_msorc
https://github.com/octaviopk9/esorics_msorc

Sch80. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, oct 1980.

Sch91. C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

SK95. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a
practical solution to the implementation of a voting booth. In Louis C.
Guillou and Jean-Jacques Quisquater, editors, EUROCRYPT’95, volume
921 of LNCS, pages 393–403. Springer, Heidelberg, May 1995.

Yan23. Quentin Yang. Résistance à la coercition en vote électronique : conception
et analyse. (Coercion-resistance in electronic voting : design and analy-
sis). PhD thesis, University of Lorraine, Nancy, France, 2023.

Appendix

A Application to Receipt-Free E-voting

As evidenced by the vast literature (see e.g., [SK95, Abe98, Abe99, AH01, BG02,
Adi08, CKLM13, LQT20, KER+22, ABGS23b]), voting (or e-voting) is by far
the most popular application of mixnets. We demonstrate that our mixnet con-
struction naturally supports a receipt-free e-voting scheme.

Our scheme follows the standard blueprint of mix-type e-voting. There are
voters, a certificate authority (CA), mix servers (MX), and tally servers (TA).
We implicitly use a trustful bulletin board (BB) that records all published data
authentically and in a non-erasable manner. The election process consists of four
phases, i.e., setup, registration, vote casting, and tallying, which correspond to
our mixnet procedures.

Setup phase. Setup and MixKG are executed by relevant entities. Each voter
ui generates a key pair (uski, uvki). CA generates the public parameters and key
pair (ask, avk). The tally servers generate an ElGamal encryption key pair, dk and
ek, by running a secure distributed key generation protocol, e.g., [Kat23, AF04,
CL24]. All public parameters and verification keys are published authentically.

Registration phase. Once the voting phase begins, ui decides their vote Mi

and engages in EncAuth with the CA. This process is one-time for each voter.
Voter ui obtains an encrypted and signed ballot (σi, C

′
i, uvki, evki). In EncAuth,

CA’s proof of re-randomization, π′ ← ZKPoK[µ : C ′i = Rndmz(ek, Ci;µ)], must
be done in a simulatable manner for the sake of receipt-freeness. The stan-
dard five-round augmentation of sigma-protocols provides fully simulatable zero-
knowledge (see, e.g., Chapter 6 of [HL10]). A sigma-protocol for disjunctive cou-
pling of the statement with a knowledge of secret-key uski gives a non-interactive
designated verifier proof in the ROM that also suffices for the purpose.

Casting phase. Each voter casts their ballot (σi, C
′
i, uvki) on BB. Communi-

cation happens over a public channel, and the process is done only once. At the
end of this phase, all evki corresponding to cast ballots are published by the CA.

33

Tallying phase. InputVerification is invoked to screen irregular votes. It is a
public process that can be executed by, e.g., a representative of mix servers. Each
mix server executes Mix in order and Verify at the end. Once the verification
passes, the tallying servers decrypt every verified ciphertext with distributed
ElGamal decryption and publish a proof of correct decryption. The final result
is publicly computed from the decryption result published on BB.

A.1 Security

First, we clarify which authority is trusted for which property.

CA: Trusted for verifiability, which relies on the unforgeability of the CA’s
signatures. Untrusted for ballot privacy. Trusted for receipt-freeness.

MX: Untrusted for verifiability and receipt freeness. At least 1 server is trusted
for privacy.

TA: Untrusted for verifiability and receipt freeness. At least k-out-of-N servers
are trusted for privacy.

BB: Trusted for all properties. It authentically holds data, i.e., it is publicly
verifiable who wrote what.

No trust is assumed on voters for any property.

Receipt-freeness. Receipt-freeness inherently requires a moment when the co-
ercer does not monitor or control every user. We require absence of the coercer
during the execution of EncAuth. Concretely, we consider Moran and Naor’s
standard notion of receipt-freeness [MN06], where the adversary cannot fully
monitor/control a voter. It considers an untappable channel (analogous to a
private polling booth) as a minimal assumption, and it is assumed that the ad-
versary is absent while the voter is using it since the shoulder attack would work
otherwise. Hence, we consider the absence of the coercer during the execution of
the signing process, a minimal assumption in the previous sense. If the coercer
attempts an attack before, the user can always submit another ciphertext, ignor-
ing the coercer. Since the ciphertext is randomized by the CA, the user cannot
prove to the coercer that it used the coercer’s ciphertext. After the user obtains
the signature, it can only be adapted to a ciphertext randomization, so it’s not
possible to change the encrypted vote. More formally, we define receipt-freeness
in a way that user ui completed the registration with vote Mi of its own choice
and can create a fake view of EncAuth concerning a forced vote M̃i that is indis-
tinguishable from the actual view. We recall EncAuth to explain how ui creates
such a fake view.

1. Follow the first step of EncAuthui
with M̃i to create (C̃i,π).

2. Pick C ′i and evki from the real view. Simulate a proof of re-encryption for C ′i
and C̃i : π′ ← ZKPoK[C ′i = Rndmz(ek, C̃i)].

3. Use the real view for MSoRC.ISign.

34

The simulated view differs from the proper distribution at C ′i and π. Distin-
guishing C ′i being re-randomization of C̃i or not is infeasible if the DDH assump-
tion holds in G1. Simulation of π′ is due to the quality of the zero-knowledge
simulator. Accordingly, the fake view is indistinguishable from the real one if the
SXDH assumption holds for BGGen.

Thus, vote selling or buying is of no use. We stress that users can be coerced
before the execution of EncAuth. If users are mandated to use a given vote M̃i,
during EncAuth, users can use their real choice Mi during the signing process.
The computationally bounded coercer will have no way to distinguish between
these cases. If users are coerced afterward, the unforgeability of MSoRC guaran-
tees that ciphertext-signature pairs can only be adapted to the same plaintext.

Verifiability, fairness, and voter privacy. A voting result is correct if it is
equal to the outcome obtained by applying the tally computation on the votes
Mi of voters who completed the registration and casting phases (Note that,
in our scheme, Mi is uniquely determined for each transcript of a completed
registration.). A voting scheme is universally verifiable when any third party
(verifier) accepts the final voting result if and only if it is correct. The “only if”
part can be relaxed by incorporating computational assumptions or the trust
model. The above verifiability captures the notion of fairness that no votes can
be altered once votes are cast.

Our scheme is verifiable since the mixnet is sound, all proofs made by MX
are publicly verifiable, and the distributed decryption by TA is also sound and
publicly verifiable. Note that the soundness of the mixnet requires the unforge-
ability of the signatures of CA. Hence, CA is trusted in a way that it would not
do anything that risks the unforgeability of MSoRC (e.g., share its secret key).

Verifiability also depends on the fact that every input to the mixnet comes
from one voter as the security of the mixnet only concerns one-to-one correspon-
dence between the input ciphertexts and the resulting plaintexts. Verifiablity
captures the one-voter-one-vote principle, which must be considered separately.
Our design choice is to authenticate users at the registration and casting phases
to maintain structural consistency between the voting scheme and the underlying
mixnet for easier understanding. We could also choose CA to send the encrypted
ballot to BB on behalf of each user at the end of each registration. In this case,
InputVerification can be replaced with the trust of CA. This would not change
the trust model since CA is trusted for soundness in our original construction.

We note that voting with authentication inherently reveals who has voted or
not. Some consider this as a benefit for democracy, while others view it as a risk
to privacy. Practical non-cryptographic countermeasures have been considered,
e.g., CA casting null votes for absentees. Another approach would be that if
CA sends the ballots to BB on voters’ behalf, uvki and evki in a ballot are
replaced with uvki + evki. It protects absentees’ privacy and provides so-called
everlasting privacy [CFSY96, MN07, HMMP23], which claims privacy against
unbound adversaries under trust assumptions. A drawback would be that it
requires more trust in CA.

35

Common threats for mix-type voting. A replay attack violates a particular
voter’s privacy by copying a victim’s encrypted ballot and seeing if the same
vote appears at the end. This is a common risk for mix-type voting with public
bulletin boards where ballots are published successively during the casting phase.
Many voting schemes have been proven vulnerable to these attacks [MMR22]
and possible alternatives to mitigate them should be compatible with receipt-
freeness. Our scheme prevents this by letting the voters prove their knowledge of
the plaintext, and it accommodates receipt-freeness thanks to the re-encryption.

An italian attack [Hea07] can also violate the privacy of a particular voter
and it is effective for coercion. In preferential voting, there could be some rarely
chosen combination of preferences. The coercer can pick such a rare choice and
ask a victim to submit it. As it appears at the end, the coercer can see if the
victim obeyed. It is an unavoidable threat against any open-ballot voting with
a large space of choices. We refer to [PB09, Yan23] for more discussion.

A.2 Comparison

Table 2. Comparison of trust model and voting properties. V = Voter, CA = Certi-
fication Authority, MX = Mix Servers, TA = Tallying Authority, U = Untrusted, T
= Trusted, (x, N) = x-out-of-N trust. RF = Receipt Freeness, CR = Coercion Re-
sistance, RA = Replay Attack Resistance, F = Fairness, UV = Universal Verifiability.
See text for details on each term.

Scheme Privacy Soundness Properties
V CA MX TA V CA MX TA RF/CR RA F UV

Rand-RCCA U - (1, N) (k, N) U - U (k, N) × ✓ ✓ ✓
HPP20 T U (1, N) (k, N) T T U (k, N) × × × ×
Ours U U (1, N) (k, N) U T U (k, N) ✓ ✓ ✓ ✓

Table 2 compares the trust model and voting properties of our construc-
tion with previously discussed mix-type voting schemes that follow the same
blueprint. “Privacy” stands for the infeasibility of associating individual votes
and voters when all voters are honest. The “Soundness” columns show which
entity must be trusted to guarantee a correct outcome. Namely, if an authority
marked as T acts in a way that betrays the defined trust, the result of the election
can be incorrect, i.e., different from what is directly computed from the plain
input, and it is not necessarily noticed by the public. “U” for soundness means
that, if the result of the election is obtained, it is correct without assuming any
trustful behavior on the respective authority. The “Properties” columns show if
the respective property is achieved even if voters and all authorities marked as
U are corrupted. In Appendix A.3, we extend the comparison to voting schemes
that follow a different paradigm.

HPP20 and Rand-RCCA. The model from [FFHR19, FR22, FHR23] does
not discuss any authentication mechanism, but we assume users can post signed

36

ciphertexts to the BB using a previously registered key with the CA (although
the corresponding entry in the table is left empty as it’s not defined in their
work). Since they include proofs of plaintext knowledge, replay attacks can be
avoided, but they cannot provide receipt-freeness (nor coercion-resistance). Pri-
vacy and verifiability are ensured by their verify-then-decrypt protocol. Consider-
ing HPP20, as discussed in Appendix B, their model only provides guarantees for
honest users, and hence, they cannot achieve any of the properties required for
e-voting. That said, recent works by Pointcheval [Poi23, Poi24] have addressed
receipt-freeness, also using linearly-homomorphic signatures with randomizable
tags as in HPP20. However, [Poi24] adopts the homomorphic encrypted tally
paradigm rather than the mixnet-based approach.

A.3 Extended Comparison

Voting schemes are generally required to provide ballot privacy (no coalition of
malicious parties can learn the voter’s vote), verifiability (voters can verify that
their vote was cast and counted as cast) and coercion resistance (a coercer who
interacts with a voter during the voting phase cannot determine if coercion was
successful or not from the election outcome). Sometimes, a weak form of coercion
resistance called receipt-freeness [Oka97] is also considered. This notion states
that voters cannot prove how they voted to a potential coercer. Additionally,
some notion of fairness is considered alongside integrity to ensure that no par-
tial tally is leaked, and no ballot can be altered during the tally phase. Such
guarantees are of utmost importance considering corruption scenarios during
the tally phase, which can incorporate information from exit polls to influence
the outcome. Similarly to the coercion case, robust notions of verifiability usu-
ally cover fairness. Last but not least, security against replay attacks protects
honest users from malicious ones that try to cast the same vote. Many voting
schemes have been proven vulnerable to these attacks [MMR22] and alternatives
to mitigate them should be compatible with receipt-freeness.

In this section, we focus on JCJ [JCJ05, CCM08, BGR12, CGY24, ABR23]
and VoteAgain [LQT20, HMQA23] that are well-studied mix-type coercion resis-
tant schemes in the literature. Furthermore, VoteAgain also aims for scalability
and thus its suitable for comparison with our work.

JCJ & variants – Fake credentials. The voting scheme by Jakobsson, Juels
and Catalano (JCJ) [JCJ05] is the standard benchmark for coercion resistance.
In this model, users manage real and fake credentials. Whenever they are under
the influence of a coercer, users can vote using their fake credentials to convince
the coercer that their vote was cast. However, the protocol only counts votes
from real credentials, whose use is indistinguishable from the fake ones in the
coercer’s view. Subsequent work identified security and efficiency issues in JCJ,
proposing several improvements (see e.g., Civitas/Trivitas [CCM08, BGR12] and
CHide [CGY24, ABR23]). Under the JCJ framework, the most efficient protocol
under a strong resistance-coercion definition is [ABR23] and has computational
complexity O(n log n) due to sorting. In all cases, users must keep their real

37

credentials safe and protect them from the coercer. Our work is closer to the
JCJ model because we require the absence of a coercer at the beginning.

VoteAgain [LQT20]. Lueks, Querejeta-Azurmendi and Troncoso proposed a
voting scheme based on the revoting paradigm, which assumes that the user
will be free from the coercer at some point before the voting phase ends. Since
each voter can vote multiple times, votes must be filtered so that only the last
vote is counted as valid, and coercers cannot identify which votes have been
filtered. To achieve better scalability, VoteAgain trades off trust for efficiency.
Indeed, its security model makes several trust assumptions: 1) the adversary
never gets access to the voter’s credentials, 2) the authority is trusted, and
3) a tally server, responsible for filtering the votes is also trusted. Follow-up
work [HMQA23] by Haines, Muller and Querejeta-Azurmendi slightly improved
trust assumptions but still required all the previous considerations. Besides,
the computational complexity is also O(n log n) due to the insertion of log n
dummies for every ballot. In this regard, we stress that VoteAgain and JCJ
consider different definitions and corruption scenarios for coercion-resistance,
which are incomparable in many ways.

Our Work. Ballot privacy, verifiability and fairness follow from the stronger pri-
vacy and soundness notions of our mixnet protocol. This contrasts with HPP20,
which was unable to provide fairness as evidenced in Appendix B. Receipt-
freeness was also already addressed before (recall the randomization on the
user’s ciphertext done by the CA during the interactive signing). For coercion-
resistance the situation is slightly different as our model contrasts with other
works in the literature and each of them introduces its tailored definition. How-
ever, as previously outlined, unforgeability and perfect adaption of our MSoRC
scheme together with receipt-freeness do provide a form of coercion-resistance.
Our work achieves all the previously-mentioned properties with O(n) complex-
ity under minimal trust assumptions. In particular, we only require an authen-
ticated communication with the BB whereas JCJ and VoteAgain require an
anonymous channel, which is a much stronger assumption and even harder to
achieve in practice. Besides, we also stress that our (public) verifiability also
covers the case where malicious mixers omit certain checks such as a correct key
randomization deliberately as such behaviours are easily caught when verifying
the proofs and mixers’ signatures.

B Mixnets from Linearly Homomorphic Signatures

This section presents HPP20’s mixnet framework [HPP20], the cornerstone upon
which we build upon. Simply put, it is based on the idea that each ciphertext can
be handled independently, and servers (mixers) are responsible for randomizing
and permuting them. Their shuffle approach comprises four algorithms: MixSetup
(global parameters), MixKG (key material for the CA, servers and users), MixInit
(run by users to cast their messages) and Mix (run by servers to mix messages),
and MixVerify (verifies the outcome).

38

First, users run MixInit to send a tuple Ti = (Ci, σi, vki, Σi) where Ci is
an ElGamal ciphertext containing the user’s plaintext message, σi is the user’s
one-time linearly homomorphic signature for Ci, and Σi is the CA’s linearly
homomorphic signature for vki (the public key against σi verifies). Notably, this
requires a rather complex set up of tags to randomize each signature, and the use
of “canonical vectors” to enforce correct randomizations of keys and ciphertexts.
This contrasts with our approach that, thanks to the use of MSoRC, removes
the need for different signature schemes.

Once all N users in the system have submitted their tuples, the initial shuffle
set SSet(0) = (Ti)ni=1 is assembled. Subsequently, the Mix process takes place
and every server Sj outputs a new shuffle set SSet(j) = {(CΠ(i), σΠ(i), vkΠ(i),

ΣΠ(i))
(j)
i∈[n], (π

(j), σ(j))}, containing the server’s NIZK proof and signature (π(j),

σ(j)) to verify the the correct randomization of each element of TΠ(i).
The linear dependence on N for the server’s proofs and signatures (π(k),

σ(k))Nk=1 can be removed using Groth-Sahai proofs. As explained in HPP20,
each server can compute a partial (updatable) proof proof(j) from proof(j−1).
Servers verify the individual proofs and the final proof proof(N) to then sign
proof(N) using the multi-signature scheme from Boneh-Drijvers-Neven [BDN18].
As a result, only the initial and last shuffle sets (SSet(0) and SSet(N)) and a
single proof-signature pair are required to run Verify.

Security Model. HPP20 requires soundness and privacy for honest users.
Informally, soundness means that all plaintexts of honest users in the input
shuffle set are in the output shuffle set. Likewise, privacy means that messages
of honest users are unlinkable from the input shuffle set to the output shuffle
set. For soundness, only the initial input shuffle set and output shuffle set are
considered.

Definition 12 (Soundness for Honest Users [HPP20]). A mixnet is said
to be sound for honest users in the certified key setting, if any PPT adversary
A has a negligible success probability in the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗
– proves its knowledge of the secret keys to get the certifications Σi on vki for

i ∈ I∗
– decides on the set I of the (honest and corrupted) users that will generate a

message
– generates the message tuples (Ti)i∈I∗ for corrupted users but provides the

messages (Mi)i∈I\I∗ for the honest ones
3. The challenger generates the keys of the honest users (ski, vki)i∈I\I∗ and their

tuples (Ti)i∈I\I∗ . The initial shuffle set is thus defined by SSet = (Ti)i∈I .
4. The adversary mixes SSet in a provable way into (SSet′, proof ′).

The adversary wins if Verify(SSet,SSet′, proof ′) = 1 but
{Dec∗(SSet)} ≠ {Dec∗(SSet′)}, where Dec∗ extracts the plaintexts using the

39

decryption key, but ignores messages of non-honest users (using the private keys
of honest users) and sets of plaintexts can have repetitions.

The privacy games allows the adversary to provide two possible permutations
for honest mix servers so that the challenger uses one of them. The adversary’s
goal is to identify which was the permutation used, capturing the unlinkability
notion behind the privacy definition.

Definition 13 (Privacy for Honest Users [HPP20]). A mixnet is said to
provide privacy for honest users in the certified key setting, if any PPT adversary
A has a negligible advantage in guessing b in the following security game:

1. The challenger generates certification and encryption keys.
2. The adversary A then
– decides on the corrupted users I∗ and generates itself their keys (vki)i∈I∗
– proves its knowledge of the secret keys to get the certifications Σi on vki for

i ∈ I∗
– decides on the corrupted mix-servers J ∗ and generates itself their keys
– decides on the set J of the (honest and corrupted) mix-servers that will make

mixes
– decides on the set I of the (honest and corrupted) users that will generate a

message
– generates the message tuples (Ti)i∈I∗ for corrupted users but provides the

messages (Mi)i∈I\I∗ for the honest ones
3. The challenger generates the keys of the honest mix-servers j ∈ J \ J ∗and

the keys of the honest users (ski, vki)i∈I\I∗ and their message tuples (Ti)i∈I∗ .

The initial shuffle set is thus defined by SSet = (Ti)i∈I . The challenger randomly
chooses a bit b←$ {0, 1} and then enters into a loop for j ∈ J with the attacker:

– let I∗j−1 be the set of indices of the tuples of the corrupted users in the input
shuffle set SSet(j−1)

– if j ∈ J ∗, A builds itself the new shuffle set SSet(j) with the proof proof(j)

– if j /∈ J ∗, A provides two permutations Πj,0 and Πj,1 of its choice, with
the restriction they must be identical on I∗j−1, then the challenger runs the
mixing with Πj,b, and provides the output (SSet(j),proof(j))

In the end, the adversary outputs its guess b′ for b. The experiment outputs 1 if
b′ = b and 0 otherwise.

Security against malicious users. Security for honest users is not sufficient for
voting applications. To see why, we consider the following example that is pos-
sible in their model. Assume the adversary controls four out of ten voters in an
election of three candidates (C1, C2 and C3). Let us also assume that the six
votes from honest users are distributed so that C1 gets four, C2 gets one and so
does C3. Initially, the adversary mandates the coerced users to vote such that
two votes are given to C1, one to C2 and one to C3. Once that all votes are casted
an exit poll reveals that C1 is the favourite. Knowing this, the adversary colludes

40

with the first mix server to change the votes of coerced users such that only the
vote for C3 is counted (the others are replaced by randomizations of that vote).
None of the votes from honest users is discarded nor modified yet the election
outcome changes. While such an action is not a flaw in the security model, it is
clearly a violation of voting schemes known as fairness. The essential problem is
that the universal verifiability is lost under the collusion of the first mix server
and some users. The authors consider a partial fix to this issue, adding another
Groth-Sahai proof as discussed in Sec. 6.1 from HPP20. However, such fix still
allows replay attacks [CS11] that should also be avoided in voting applications.

C Couteau & Hartmann’s Proof System

Below we give the NIZK proof system for LA in the framework of CH20 (Sec. 7.1).
Security has been proven under the kerMDH assumption [MRV16] in [CH20].

– NIZK.Setup(1κ): pp←$ BGGen(1κ); z ←$ Zp; τ ← z;
Z ← zG; crs← (pp, Z); return ((pp, crs), τ)

– NIZK.Prove(crs,A, x, w): r ←$ Zp;
a← rA; d← wZ + rG; π ← (a, d); return π

– NIZK.Verify(crs,A,x, (a, d)):
return e(d,A0) = e(Z, x0) + e(G, a0) ∧ e(d,A1)
= e(Z, x1) + e(G, a1) ∧ e(d,A2) = e(Z, x2) + e(G, a2)

C.1 Batch Verification

The proof system from [CH20] is compatible with the batch verification technique
from [FGHP09] that ports the small exponents test [BGR98] to the pairing
setting. Given two valid proofs (a, d) and (a′, d′) for A and A′ respectively, a
naive verification would have to check six pairing equations:

e(d,A0) = e(Z, x0) + e(G, a0) ∧ e(d,A1) = e(Z, x1) + e(G, a1)

∧ e(d,A2) = e(Z, x2) + e(G, a2) ∧ e(d′,A′0) = e(Z, x′0) + e(G, a′0)

∧ e(d′,A′1) = e(Z, x′1) + e(G, a′1) ∧ e(d′,A′2) = e(Z, x′2) + e(G, a′2)

With [FGHP09], a verifier can instead sample (δi)i∈[6] where δi is an ℓ-bit
element of Zp and check a single equation given by:

e(d,Aδ1
0 Aδ2

1 Aδ3
2) + e(d′,A′δ40 A′δ51 A′δ62)

=

e(Z, xδ10 xδ21 xδ32 x′δ40 x′δ51 x′δ62) + e(G, aδ10 aδ21 aδ32 a′δ40 a′δ51 a′δ62)

There is an efficiency trade-off: the larger ℓ is (in general ℓ = 80), the better
are the soundness guarantees.

41

C.2 Updatability

Updatable NIZK proofs are non-interactive (one move) malleable zero-knowledge
proofs [BCC+09, CKLM12] that allow to publicly update a valid proof to a
different witness. Updated proofs should be indistinguishable from fresh proofs
that are computed on the updated witness from scratch. This property is known
as derivation privacy. In the following, we recall the syntax and main security
properties of this primitive, and refer the reader to [DEF+25] for a more detailed
exposition.

Syntax. An updatable NIZK proof system for a language L and a set of transfor-
mations T is defined by the following algorithms of which all except Setup are
implicitly parametrized by crs.

Setup(1κ)→ (crs, τ): Generates a common reference string crs and a trapdoor τ ,
which is used for security definitions.
Prove(x,w)→ π: Produces a proof for (x,w) ∈ RL.
Verify(π, x)→ {0, 1}: Verifies π w.r.t. the public instance x.
Update(π, x, T)→ π′: Updates the proof π for x into π′ for T (x).

Definition 14 (Update Completeness [DEF+25]). An updatable NIZK
proof system for L satisfies update completeness w.r.t. a set of transformations
T , if given (crs, ·) ←$ Setup(1κ), for all x, π such that Verify(π, x) = 1, and all
T = (Tx, ·) ∈ T it holds that:

Pr[Verify(crs,Update(crs, π, x, T), Tx(x)) = 1] = 1

Definition 15 (Derivation Privacy [DEF+25]). An updatable NIZK
proof system for L satisfies derivation privacy w.r.t. a set of transformations T ,
if given (crs, ·)←$ Setup(1κ), for all (x,w) ∈ RL, all π such that Verify(π, x) = 1,
and all T = (Tx, Tw) ∈ T it holds that: {Update(π, x, T)} c

= {Prove(Tx(x), Tw(w))}.

Malleabiltiy of CH20 was used in [CLPK22] to build EQS and very re-
cently further formalized by David et al. [DEF+25] to build updatable privacy-
preserving blueprints [KLN23]. In brief, for linear languages like the on used in
this work LA, we can update a witness w into ww′ and obtain a proof for it by
simply multiplying the proof π = (a, d) for w by w′.

D Proof of Theorem 3

Proof. We consider an adversary A similar to that one against the unforgeability
game from Def. 3. The difference is that we let the challenger generate the
encryption keys and give the adversary access to ek only. To prove unforgeability
we follow a similar strategy (in parts verbatim) to that of [BF20]. The main
difference is that now, the generic adversary no longer controls the secret key
dk = x. Consequently, group elements output by the adversary can be a linear
combination of previously seen elements, which includes the representation of x
in the GGM. To prove that our modified scheme is also unforgeable w.r.t. the

42

interactive signing protocol (Def. 8), we need to modify the simulator from Fig. 8
to drop S and simulate it in the first ZKPoK, which can easily be done under
DDH.

We begin observing that the challenger picks (sk, vk) = ((x0, x1, x2), (X̂∗0 =
x0Ĝ, X̂∗1 = x1Ĝ, X̂∗2 = x2Ĝ)), (dk, ek) = (x,X = xG), and randomness si for
each of the adversary’s signing queries.

After seeing vk and signatures (Zi, Ŝi, Ti)
k
i=1 (computed with randomness si)

on queries (C
(i)
0 ,C(i)

1)ki=1, A outputs (C
(k+1)
0 , C(k+1)

1), a signature (Z∗, Ŝ∗, T ∗)

and verification key vk∗ = (X̂∗0 , X̂
∗
1 , X̂

∗
2). SinceA is a generic forger, all computed

elements must be a linear combination of previously seen elements. Consequently,
the following equations should hold for a suitable set of coefficients chosen by A:

C
(i)
0 = γ(i)G+ γ(i)

x X +

i−1∑
j=1

(γ
(i)
z,jZj + γ

(i)
t,jTj)

C
(i)
1 = κ(i)G+ κ(i)

x X +

i−1∑
j=1

(κ
(i)
z,jZj + κ

(i)
t,jTj)

Z∗ = ζG+ ζ(i)x X +

k∑
j=1

(ζz,jZj + ζt,jTj)

Ŝ∗ = ϕĜ+ ϕ0X̂0 + ϕ1X̂1 + ϕ2X̂2 +

k∑
j=1

ϕs,jŜj

T ∗ = τG+ τ (i)x X +

k∑
j=1

(τz,jZj + τt,jTj)

X̂∗0 = χ0Ĝ+ χ0
0X̂0 + χ0

1X̂1 + χ0
2X̂2 +

k∑
j=1

χ0
s,jŜj

X̂∗1 = χ1Ĝ+ χ1
0X̂0 + χ1

1X̂1 + χ0
2X̂2 +

k∑
j=1

χ1
s,jŜj

X̂∗2 = χ2Ĝ+ χ2
0X̂0 + χ2

1X̂1 + χ2
2X̂2 +

k∑
j=1

χ2
s,jŜj

Moreover, for all 1 ≤ i ≤ k, we can write the discrete logarithms zi and ti in
basis G of the elements Zi =

1
si
(x0C

(i)
0 +x1C

(i)
1 +x2G) and Ti =

1
si
(x0G+x1X)

from the oracle answers. We have:

43

zi =
1

si
(x0(γ

(i) + γ(i)
x x+

i−1∑
j=1

(γ
(i)
z,jzj + γ

(i)
t,j tj))

+ x1(κ
(i) + κ(i)

x x+

i−1∑
j=1

(κ
(i)
z,jzj + κ

(i)
t,jtj)) + x2)

ti =
1

si
(x0 + x1x)

A successful forgery (Z∗, Ŝ∗, T ∗) on (C
(k+1)
0 , C(k+1)

1) satisfies the verification
equations, and we can take the discrete logarithms in base e(G, Ĝ) for each
equation as shown below:

(ζ + ζxx+

k∑
j=1

(ζz,jzj + ζt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(1)

(τ + τxx+

k∑
j=1

(τz,jzj + τt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0 + αx1x

(2)

Equations (1) and (2) are valid with respect to the forged key (X̂∗0 , X̂∗1 , X̂∗2).
However, since verification pass, we have that [X̂∗i]pk = [X̂i]pk and thus ∃ α ∈ Z∗p
s.t. X̂∗i = αX̂i, i ∈ {0, 1, 2}.3 Furthermore, we can interpret the previous verifica-
tion equations as multivariate rational functions in variables x0, x1, x2, x, s1, . . . , sk,
unknown to A. We begin analyzing if α can be zero modulo any xi, as this will
prove useful later. We can take the discrete logarithms in base Ĝ for each equa-
tion defining X̂∗i to obtain:

αx0 = χ0 + χ0
0x0 + χ0

1x1 + χ0
2x2 +

k∑
j=1

χ0
s,jsj

αx1 = χ1 + χ1
0x0 + χ1

1x1 + χ0
2x2 +

k∑
j=1

χ1
s,jsj

αx2 = χ2 + χ2
0x0 + χ2

1x1 + χ2
2x2 +

k∑
j=1

χ2
s,jsj

3 Such relation is efficiently checkable by the challenger (it knowns sk).

44

From the above, it follows that for α to be zero modulo any xi, all the of coeffi-
cients must be zero, which is a contradiction.

In the following, we assume without loss of generality that (ϕ+ϕ0x0+ϕ1x1+

ϕ2x2 +
∑k

j=1 ϕs,jsj) ̸= 0 because Ŝ∗ ̸= 0.
As in [BF20], we now interpret the equalities over the ring Zp(s1, . . . , sk)

[x0, x1, x2, x] as well as over Zp(s1, . . . , sk)[x0, x1, x2, x]/(x0, x1, x2, x)≡ Zp(s1, . . . ,
sk).4 Over such quotient zi = 0 and ti = 0, and thus, (1) and (2) become:

ζ(ϕ+

k∑
j=1

ϕs,jsj) = 0 (3)

τ(ϕ+
k∑

j=1

ϕs,jsj) = 0 (4)

Case 1: If (ϕ+
∑k

j=1 ϕs,jsj) = 0 then ϕ = ϕs,j = 0. However, this would imply
that S∗ is a linear combination of the public key. But this can only hold if it’s
the trivial one, leading to a contradiction.
Case 2: (ϕ+

∑k
j=1 ϕs,jsj) ̸= 0. We have ∀i ∈ {1, . . . , k} : τ = ζ = 0. Hence, (1)

and (2) turn into:

(ζxx+

k∑
j=1

(ζz,jzj + ζt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(5)

(τxx+

k∑
j=1

(τz,jzj + τt,jtj))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 +

k∑
j=1

ϕs,jsj) = αx0 + αx1x

(6)

Computing the above modulo (x0, x1, x2) we get ζx = τx = 0. Putting back
x2 and looking modulo (x0, x1), we get:

(

k∑
j=1

ζz,j
1

sj
)(ϕ+ ϕ2x2 +

k∑
j=1

ϕs,jsj) = α (7)

4 This interpretation is possible because x0, x1 and x2 never appear in the denomina-
tors of any expression.

45

(

k∑
j=1

τz,j
x2

sj
)(ϕ+ ϕ2x2 +

k∑
j=1

ϕs,jsj) = 0 (8)

We deduce τz,j = 0 ∀j ∈ {1, . . . , k}. Now, equation (6) modulo (x, x1) be-
comes:

(

k∑
j=1

τt,j
1

sj
)(ϕ+ ϕ0x0 +

k∑
j=1

ϕs,jsj) = α (9)

We first observe that there exists j0 such that τt,j0 ̸= 0 as otherwise T ∗ would
be zero and thus a contradiction. Then, looking at the degrees in sj0 , the left hand
size of the equation has degsj0 = −1, which means that (ϕ+ϕ0x0+

∑k
j=1 ϕs,jsj)

should have degree one in sj0 . Hence, there is also at least one ϕs,j0 ̸= 0. Suppose
there exist j1 ̸= j2 ∈ {1, . . . , k} such that ϕs,j1 ̸= 0 and ϕs,j2 ̸= 0. As in [BF20],
that leads to a contradiction. So there is only one non-zero coefficient. Similarly,
we conclude ∀i ∈ {1, . . . , k} \ {j0} : ζz,j = τt,j = 0.

Now, equations (5) and (6) become:

(ζz,j0zj0 +

k∑
j=1

(ζt,j
x0 + x1x

sj
))(ϕ+ ϕ0x0 + ϕ1x1

+ϕ2x2 + ϕs,j0sj0) = αx0c
(k+1)
0 + αx1c

(k+1)
1 + αx2

(10)

(τt,j0
x0 + x1x

sj0
)(ϕ+ ϕ0x0 + ϕ1x1 + ϕ2x2 + ϕs,j0sj0) = αx0 + αx1x (11)

equating coefficients for x0 we get τt,j0ϕs,j0 = α, which means that τt,j0 ̸= 0.
Moreover, we deduce, ϕ = ϕ0 = ϕ1 = ϕ2 = 0. Besides, ζz,j0ϕs,j0 = α (taking
modulo x0, x1). This means that ζz,j0 = τt,j0 . Now, we have:

x0c
(j0)
0 ζz,j0ϕs,j0 + x1c

(j0)
1 ζz,j0ϕs,j0

+ϕs,j0sj0

k∑
j=1

(ζt,j
x0 + x1x

sj
) = αx0c

(k+1)
0 + αx1c

(k+1)
1

(12)

Equating coefficients for x0 and x1 we get that c
(j0)
0 = c

(k+1)
0 and c

(j0)
1 =

c
(k+1)
1 , meaning that it’s a ciphertext that has already been queried.

The above means that the adversary cannot win the unforgeability game
in the ideal world (because the first winning condition cannot be met if the
other two hold). It remains to see that the statistical distance from the adver-
sary’s point of view when interacting in the real game (for concrete choices of
x0, x1, x2, x, s1, . . . , sk) with the ideal one is negligible. This follows from the
analysis in [BF20], which applies the Schwartz-Zippel lemma [Sch80].

46

E Zero-knowledge Proofs

We instantiate the ZKPoK of our interactive signing protocol in the ROM using
known techniques [FS87, Sch91, CP93]. π0 := (ZKPoK[s0 : S0 = s0G ∧ Ŝ0 =
s0Ĝ]) is shown in Fig.13. π1 := (ZKPoK[(r, x1

0, x
1
1, x

1
2) : T1 = rS0 + x1

0G +
x1
1X ∧ Z1 = rS0+x1

0C0+x1
1C1+x1

2G ∧ X̂1
0 = x1

0Ĝ ∧ X1
1 = x1

1Ĝ ∧ X1
2 = x1

2Ĝ])
is shown in Fig.15. They are a simple application of standard ZKPoK. However,
π̃0 := (ZKPoK[(s0, x

0
0, x

0
1, x

0
2) : T0 = 1

s0
(T1+x0

0G+x0
1X) ∧ Z0 = 1

s0
(Z1+x0

0C0+

x0
1C1 + x0

2G) ∧ S0 = s0G ∧ X̂0
0 = x0

0Ĝ ∧ X̂0
1 = x0

1Ĝ ∧ X̂0
2 = x0

2Ĝ]) and
π̃1 := (ZKPoK[(r, s1) : T = 1

s1
(T0 − rG) ∧ Z = 1

s1
(Z0 − rG) ∧ Ŝ = s1Ŝ0])

include multiplication of witness variables in some clauses. Hence, we need to
re-arrange the statements. We change π̃0 into

ZKPoK[(s0, x
0
0, x

0
1, x

0
2) : T1 = s0T0 − x0

0G− x0
1X ∧

Z1 = s0Z0 − x0
0C0 − x0

1C1 − x0
2G ∧

S0 = s0G ∧ X̂0
0 = x0

0Ĝ ∧ X̂0
1 = x0

1Ĝ ∧ X̂0
2 = x0

2Ĝ]

and turn π̃1 into ZKPoK[(r, s1) : T0 = rG+s1T ∧Z0 = rG+s1Z∧ Ŝ = s1Ŝ0].
These statements are equivalent to the original ones that were shown in Fig. 16
and Fig. 14.

Prover: S0, Ŝ0, s0 Verifier: S0, Ŝ0

a1 ←$ Zp

A1 = a1G; Â1 = a1Ĝ
A1, Â1−−−−−→

c←−−−− c←$ Zp

q1 = a1 − cs0
q1−−−−−→ return A1 = q1G + cS0

∧ Â1 = q1Ĝ + cŜ0

Fig. 13. ZKPoK protocol for π0.

Prover: Z, T, Ŝ, Z0, T0, Ŝ0, r, s1 Verifier: Z, T, Ŝ, Z0, T0, Ŝ0

a1, a2 ←$ (Zp)
2;A1 = a1G + a2T

A2 = a1G + a2Z; Â4 = a2Ŝ0
A1, A2, Â4−−−−−−−−→

c←−−−−−−−− c←$ Zp

q1 = a1 − cr; q2 = a2 − cs1
q1, q2−−−−→ return A1 = q1G + q2T + cT0

∧ A2 = q1G + q2Z + cZ0 ∧ Â4 = q2Ŝ0 + cŜ

Fig. 14. ZKPoK protocol for π̃1.

F Aggregate and Multi-signatures

We recall the sequential aggregate signature from [PS16].

47

Prover: T1, Z1, {X̂1
i , x

1
i }i∈{0..2}, S0, X,C0, C1, r Verifier: T1, Z1, {X̂1

i }i∈{0..2}, S0, X,C0, C1

a1, a2, a3, a4 ←$ (Zp)
4

A1 = a1S0 + a3G + a4X
A2 = a1S0 + a3C0 + a4C1 + a2G

Â3 = a3Ĝ; Â4 = a4Ĝ; Â5 = a2Ĝ
A1, A2, Â3, Â4, Â5−−−−−−−−−−−−−−−→

q1 = a1 − cr; q2 = a2 − cx1
2

c←−−−−−−−− c←$ Zp

q3 = a3 − cx1
0; q4 = a4 − cx1

1

q1, q2, q3, q4−−−−−−−−−→ return A1 = q1S0 + q3G + q4X + cT1

∧ A2 = q1S0 + q3C0 + q4C1 + q2G + cZ1

∧ Â3 = q3Ĝ + cX̂1
0 ∧ Â4 = q4Ĝ + cX̂1

1

∧Â5 = q2Ĝ + cX̂1
2

Fig. 15. ZKPoK protocol for π1.

Prover: {Ti, Zi}i∈{0,1}, S0, s0, {X̂0
i , x

0
i }i∈{0..2}, X,C0, C1 Verifier: {Ti, Zi}i∈{0,1}, S0, {X̂0

i }i∈{0..2}, X,C0, C1

a1, a2, a3, a4, a6 ←$ (Zp)
5

A1 = a1T0 − a2G− a3X;A2 = a1T − a4G
A2 = a− 1Z0 − a2C0 − a3C1 − a4G

A3 = a1G; Â4 = a2Ĝ; Â5 = a3Ĝ; Â6 = a6Ĝ
A1 . . . Â6−−−−−−−→

q1 = a1 − cs0; q2 = a2 − cx0
0

c←−−−−−−−− c←$ Zp

q3 = a3 − cx0
1; q4 = a4 − cx0

2

q1, q2, q3, q4−−−−−−−−−→ return A1 = q1T0 − q2G− q3X + cT1

∧ A2 = q1Z0 − q2C0 − q3C1 − q4G + cZ1

∧ A3 = q1G + cS0 ∧ Â4 = q2Ĝ + cX̂0
0

∧ Â5 = q3Ĝ + cX̂0
1 ∧ Â6 = q5Ĝ + cX̂0

2

Fig. 16. ZKPoK protocol for π̃0.

SAS.Setup(1κ): pp←$ BGGen(1κ); w ←$ Zp;
W ← wG; Ŵ ← wĜ; return (pp,W, Ŵ).
SAS.SKG(pp): sk←$ Z∗p; pk← skĜ; return (sk, pk).
SAS.Sign(sk, σ, (m1, . . . ,mr), (pk1, . . . , pkr),m):
if r = 0 then σ ← (G,W) elseif (r > 0
∧ SAS.Verify(σ, (m1, . . . ,mr), (pk1, . . . , pkr)) = 0) ∨m = 0 ∨ ∃ pkj ∈ {pk1, . . . , pkr} :
pkj = pk return ⊥.
else t←$ Z∗p;σ′ ← (tσ1, t(σ2 + (sk ·m)σ1)) return σ′.
SAS.Verify(σ, (m1, . . . ,mr), (pk1, . . . , pkr)):
return σ1 ̸= 1G ∧ e(σ1, Ŵ +

∑
i mipki) = e(σ2, Ĝ).

Its security considers the certified keys setting from [LOS+06] (i.e., users
must prove knowledge of their secret key if they want to produce a signature) and
is proven in the generic group model for type-III pairings, under the Pointcheval-
Sanders assumption given in Definition 16. Alternatively, as shown by the same
authors [PS18], it’s also possible to prove security under a non-interactive as-
sumption (the q-MSDH-1 assumption, which is itself a variant of the q-SDH as-
sumption) in the random oracle model with a small modification to the scheme
that doesn’t incur any efficiency overhead.

48

Definition 16 (PS Assumption). Let BGGen be a type-III bilinear group
generator and A a PPTalgorithm. The Pointcheval-Sanders (PS) assumption
over BGGen states that the following probability is negligible in κ:

Pr

Q := ∅; pp←$ BGGen(1κ)

x, y ←$ Z∗
p; X̂ ← xĜ; Ŷ ← yĜ

(A∗, B∗,m∗)← AOx,y(·)(pp, X̂, Ŷ)

:
m∗ /∈ Q ∧ A∗ ̸= 1G
∧ B∗ = (A∗)x+m·y

 ,

where Q is the set of queries that A has issued to the oracle Ox,y(m) := Q ←
Q ∪ {m};A← G∗; return (A,Ax+m·y).

We also recall the (aggregatable) multisignature signature of Boneh-Drijvers-
Neven [BDN18], which uses two full-domain hash functions H0 : {0, 1}∗ → G2

and H1 : {0, 1}∗ → Zp.

MSig.Setup(1κ): pp←$ BGGen(1κ); return pp.
MSig.SKG(pp): sk←$ Z∗p; pk← skĜ; return (sk, pk).
MSig.KeyAgg({pk1, . . . , pkN}):
avk←

∑
H1(pki, {pk1, . . . , pkN})pki; return avk.

MSig.Sign(ski, {pk1, . . . , pkN},m): return σi = ski · H0(m).
//From all the individual signatures any combiner
//computes msig =

∑
H1(pki, {pk1, . . . , pkN})σi

MSig.Verify(avk,m,msig): return e(G,msig) = e(H0(m), avk).

G Detailed Performance Comparison With Related Work

We present the concrete costs for our work as well as the works from HPP20
and Rand-RCCA in Table 3 and Table 4 in descending order with respect to
their asymptotic complexity. Scalar multiplications in groups G1,G2 and GT are
denoted as E1, E2 and ET , respectively. Pairing operations are denoted by P .
We recall that n represents the number of users and N the number of mixers.

Table 3. Comparison of computational costs with prior work.

Scheme Mixing
Rand-RCCA [FR22] (7n + 6)E1 + (7n + 8)E2 + 2nET + (9n + 8)P
HPP20 [HPP20] (10n + 12N + 11)E1 + (7n + 12N + 10)E2 + (8N − 2)P
Ours (6n + 5)E1 + (2n + N + 2)E2 + 2P

Verification
Rand-RCCA [FR22] (6N(n + 1)− 6n)E1 + (6N + 4nN)E2 − 4nE2 + 4NET + 4n(N − 1)P
Ours (14n + N + 3)P
HPP20 [HPP20] (8n + 14)P

49

Table 4. Comparison of communication costs with prior work.

Scheme Mixing
Comm. (in) Comm. (out)

Rand-RCCA [FR22] (7n + 2N)G1 + 8nG2 + nGT (16n + 4)G1 + 12nG2 + 2nGT

HPP20 [HPP20] (8n + 10N + 7)G1 + (6n + 8N + 8)G2 (8n + 17)G1 + (6n + 16)G2

Ours (4n + N + 2)G1 + (4n + 5N)G2 (4n + 3)G1 + (4n + 2)G2

Verification
Rand-RCCA [FR22] (16n + 4)G1 + 12nG2 + 2nGT

Ours (10n + 2N + 1)G1 + (8n + 7N + 1)G2

HPP20 [HPP20] (12n + 4)G1 + (14n + 7)G2

50

	A Certified-Input Mixnet from Two-Party Mercurial Signatures on Randomizable Ciphertexts

