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Abstract

SNOVA is one of the submissions in the NIST Round 1 Additional Signa-
ture of the Post-Quantum Signature Competition. SNOVA is a UOV vari-
ant that uses the noncommutative-ring technique to reduce the size of the
public key. SNOVA’s public key size and signature size are well-balanced
and have good performance. Recently, Beullens proposed a forgery at-
tack against SNOVA, pointing out that the parameters of SNOVA can
be attacked. Beullens also argued that with some slight adjustments his
attacks can be prevented. In this note, we explain Beullens’ forgery attack
and show that the attack can be invalid by two different approaches. Fi-
nally, we show that these two approaches do not increase the sizes of the
public keys or signatures and the current parameters satisfy the security
requirement of NIST.
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1 Introduction

SNOVA is a member of the NIST Additional Digital Signature Competition [7].
SNOVA has a relatively small public key and signature and has been performing
well at the same time. Recently, there has been some discussion about the
security of SNOVA [1, 3, 4, 5]. In this note, we would like to point out that
SNOVA still meets the security requirements with minor adjustments.

In [3, 4, 5], the (lv, lo, q)-UOV or (v, o, ql)-UOV structure was used to perform
key recovery attacks on SNOVA. The security of the current SNOVA parameter
sets against these attacks was confirmed in [5, 9]. In this note, we propose two
different approaches in Section 3 and Section 4 to resist the Beullens attack.
The adjustments made in both approaches do not affect the analyses presented
in [3, 4, 5]. Therefore, the current parameter sets of SNOVA remain secure
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against key recovery attacks under the adjustments outlined in Section 3 and
Section 4. As such, the primary focus of this note is on countering the Beullens
attack.

Table 1: Table of current SNOVA parameter sets with key-sizes and lengths of
the signature.

Security Level (v, o, q, l) Sizepk (Bytes) Sizesig (Bytes)

I
(37, 17, 16, 2) 9826 108(+16)
(25, 8, 16, 3) 2304 148.5(+16)
(24, 5, 16, 4) 1000 232(+16)

III
(56, 25, 16, 2) 31250 162(+16)
(49, 11, 16, 3) 5989.5 270(+16)
(37, 8, 16, 4) 4096 360(+16)

V
(75, 33, 16, 2) 71874 216(+16)
(66, 15, 16, 3) 15187.5 364.5(+16)
(60, 10, 16, 4) 8000 560(+16)

2 Beullens Attack on SNOVA

In [1], Beullens interprets the public map of SNOVA with bilinear form for-
mulation. Under this formulation, he discovered that if the Aα, Bα, Qα1, Qα2

matrices in SNOVA are generated randomly then the matrices Ei,j in the for-
mulation may have low rank linear combination and this gives a forgery attack.
The attack shows that the matrix Ei,j ∈ Fml2×ml2

q is block diagonal matrix with
m identical blocks of size l2 × l2 on the diagonals. Moreover, these Ei,j matri-
ces are determined by the Aα, Bα, Qα1, Qα2 matrices and hence, as in Beullens’
paper, this attack can be avoided with suitable adjustment on Aα, Bα, Qα1, Qα2.

We propose two approaches, both make the current parameters meet NIST
security requirements [6, 7], do not change the public key and signature size,
and maintain the original verification efficiency.

2.1 Notation

Let o and v denote the number of Oil and Vinegar variables. Let n = o + v
and m = o denote the number of matrix variables and the number of matrix
equations in the SNOVA public map. Let Fq be a finite field of order q. For a
matrix A and a positive integer n, A⊗n denotes the block diagonal matrix with
n copies of A on the block diagonal.

SNOVA public map is a multivariate quadratic map characterized with l × l
matrix ring R = Matl×l(Fq) and a symmetric matrix S with irreducible char-
acteristic polynomial. More details can be found in [8, 9].
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2.2 Description

The attack uses the following formulation of SNOVA public map.

Bilinear formulation. For SNOVA public map, P (
#—

U) =
(
P1(

#—

U), . . . , Pm(
#—

U)
)
:

Rn → Rm, it can be expressed as, for i ∈ {1, 2, . . . ,m},

Pi(
#—

U) =

l2∑
α=1

n∑
j=1

n∑
k=1

Aα · U t
j (Qα1Pi,jkQα2)Uk ·Bα (2.1)

=

l2∑
α=1

Aα · #—

Ut ·Q⊗n
α1 · [Pi] ·Q⊗n

α2 · #—

U ·Bα (2.2)

where [Pi] are the public keys of SNOVA, Q⊗n
α1 is a n× n diagonal matrix over

R with identical blocks Qα1 and similarly for Q⊗n
α2 . Here, the vector #—

U =
(U1, · · · , Un)

t ∈ Rn is a matrix of height nl and width l when we regard it as
over Fq.

In [1], it can be seen that

P (
#—

U) =

l∑
j=1

l∑
j=1

Ej,k · B(uj ,uk) (2.3)

where Ej,k is block diagonal matrix with identical blocks, i.e., Ej,k = Ẽ⊗m
j,k , Ẽj,k

is an l2× l2 matrix determined by matrices Aα, Bα, Qα1, Qα2 and uj is the j-th
column of #—

U. Here, B : Fnl
q × Fnl

q → Fml2

q is a bilinear form defined by SNOVA
public keys [P1] , . . . , [Pm] and the matrix S. In the equation (4.5) below we
derive an explicit formula for Ej,k in terms of the A, B and Q matrices.

We then briefly describe the attack by Beullens. For other details, we refer to
[1].

Attack. This attack attempts to forge a signature by solving for #—

U satisfy
that the columns uj = aju1 + vj where vj ∈ Fln

q is randomly chosen for all
j ∈ {2, . . . , l}, for some a1, . . . , al ∈ Fq. Under the formulation (2.3), this
implies that the quadratic part of public map P (

#—

U) is Eα · B(u1,u1) where

Eα =

l∑
j=1

l∑
j=1

ajakEjk. (2.4)

The attack is divided into three steps:

- Since Ej,k = Ẽ⊗m
j,k , the linear combination Eα is also a block diagonal

matrix of size l2m×l2m with identical l2×l2 blocks on diagonal. Therefore,
if the linear combination of matrices Ẽjk have rank defect d then the
corresponding linear combination Eα will have rank defect md. This gives
a generalized MinRank problem.
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- Following with the first step, if d = l2 − r then we have rank(Eα) =
mr. Therefore, for an attacker who wants to forge a fake signature, the
remaining is to solving an MQ system of mr equations in nl −m(l2 − r)
variables.

- Using the structure of Fq[S], the generalized MinRank problem in the
first step can be extended to a generalized MinRank problem with l(l−1)
variables that trying to find the low rank of ER which is the quadratic
part of P (

#—

U) under the setting that uj = R⊗n
j u1 + vj for Rj ∈ Fq[S].

This will allow the attackers to find matrices with lower rank. Hence, the
number of variables in step 2 can be further reduced. Then, the attack
becomes more efficient.

Complexity and Countermeasures. The complexity of Beullens attack is
dominated by the cost of solving the MQ system of mr equations in nl−m(l2−r)
variables. This MQ system can be very underdetermined if the rank defect d at
step 1 becomes larger, or equivalently, the rank defect of ER = Ẽ⊗m

R becomes
lager where ẼR is an l2 × l2 matrix induced by Aα, Bα, Qα1, Qα2 in SNOVA.
We can observe that Beullens’s attack is based on the rank defect of the matrix
ER. Therefore, we realize that we can make non-trivial linear combination of
matrices Ejk all are of full rank or make the case that this rank defect is not
enough to affect the security of the scheme. We believe that there are a number
of minor mistakes in Beullens paper [1]. In particular the complexity formula of
Hashimoto’s algorithm mentioned by Beullens deviates from that in the original
[2]. As a result, we have not been able to reproduce the complexity estimates.
We do agree that the attack is valid and needs to be addressed.

In the following section, we propose two approaches to keep the security the
current parameters of SNOVA.

3 Varying A, B and Q matrices in SNOVA

For Beullens attack, the key point is that when ẼR has rank defect d then
ER = Ẽ⊗m

R has rank defect md. This rank defect is caused by the m identical
blocks structure of ER. Note that this identical blocks structure of ER = Ẽ⊗m

R

comes from the fact that P1, . . . , Pm share this set of matrices

{A1, . . . , Al2 , B1, . . . , Bl2 , . . . , Q1,1, . . . , Ql2,1, Q2,1, . . . , Ql2,2}. (3.1)

Therefore, a direct countermeasure is to make P1, . . . , Pm do not share the same
set of A,B,Q matrices in SNOVA. In other words, for i ∈ {1, 2, . . . ,m}, we let

Pi(
#—

U) =

l2∑
α=1

n∑
j=1

n∑
k=1

Ai,α · U t
j (Qi,α1Pi,jkQi,α2)Uk ·Bi,α. (3.2)

Note that, the matrices Ai,α, Bi,α, Qi,α1 and Qi,α2 now are “varying” with
index i. We call such adjustment to be the “A,B,Q varying”. Since Ai,α, Bi,α,
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Qi,α1 and Qi,α2 are generated from a random seed, this adjustment does not
affect the public key size and signature size of SNOVA and does not have much
influence on the efficiency of SNOVA .

The result is that the matrix ER ∈ Fml2×ml2

q will no longer a block diagonal
matrix with identical blocks but a block diagonal matrix with different diagonal
blocks in general. The effectiveness of the Beullens attack comes from the fact
that the MinRank problem in the first step significantly reduces the complexity
of solving the MQ in the second step. More precisely, because every diagonal
block of ER is identical then the solution of MinRank problem of ER = Ẽ⊗m

R

share the same solution of MinRank problem of ẼR which is much smaller in size.
However, it is different in the case of A,B,Q varying, the MinRank problem in
the first step will become a MinRank problem of more general matrices due to
the fact that now the blocks of ER are different. This makes Beullens’ attack
much less effective. The following table records the lower bound of the rank
of ER that makes SNOVA current parameter set in Table 1 satisfy the NIST
security requirements.

Table 2: Table of lower bound of the rank of ER (in the generalized MinRank
problem) that makes SNOVA current parameter set satisfy the NIST security
requirements and the cost of corresponding MQ system in step 3 (in gates).

Security Level (v, o, q, l) lower bound of the
rank

complexity of the
corresponding MQ

I
(37, 17, 16, 2) 52 144
(25, 8, 16, 3) 49 143
(24, 5, 16, 4) 52 146

III
(56, 25, 16, 2) 79 208
(49, 11, 16, 3) 83 210
(37, 8, 16, 4) 78 210

V
(75, 33, 16, 2) 106 272
(66, 15, 16, 3) 110 272
(60, 10, 16, 4) 113 273

Note that the numbers in Table 2 coincide with the analysis in [1]. However,
since ER now is a block diagonal matrix with different diagonal blocks, the
probability that rank of ER will be lower than the lower bound in Table 2
is negligible in practice. Therefore, with Pi of the form (3.2), the minimal
rank of ER all are higher than the lower bound that makes SNOVA current
parameter set satisfy the NIST security requirements in general. In other words,
with A,B,Q varying, the current parameters of SNOVA in Table 1 remain its
security. To demonstrate that the probability that rank of ER will be lower
than the lower bound in Table 2 is negligible in practice. With 10000 trials,
we exhaustively search the solution of MinRank problem on the matrix ER in
the case of A,B,Q varying. The results are presented in the following Table 3,
Table 4 and Table 5.
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Table 3: Table of the distribution of the minimal rank of l = 2 parameter set
for the SL I with 10000 trials.

(v, o, q, l) lower bound in Table 2 minimal rank No. of trials

(37, 17, 16, 2) 52

57 1
58 2
59 35
60 101
61 410
62 1699
63 5083
64 2650
65 19

Table 4: Table of the distribution of the minimal rank of l = 2 parameter set
for the SL III with 10000 trials.

(v, o, q, l) lower bound in Table 2 minimal rank No. of trials

(56, 25, 16, 2) 79

87 5
88 14
89 35
90 149
91 360
92 943
93 2456
94 4371
95 1652
96 15

Table 5: Table of the distribution of the minimal rank of l = 2 parameter set
for the SL V with 10000 trials.

(v, o, q, l) lower bound in Table 2 minimal rank No. of trials

(75, 33, 16, 2) 106

116 5
117 8
118 22
119 68
120 159
121 326
122 696
123 1339
124 2535
125 3556
126 1267
127 19
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Note that, as q decreases, the rank drop tends to more in general. We com-
pare the distribution of minimal rank of ER on (37, 17, 16, 2) and (37, 17, 5, 2)
parameter sets in Table 6 to demonstrate this phenomenon. With 10000 trials,
the smallest minimal rank of ER for q = 5 is 44, which is much lower than 57,
the smallest minimal rank of ER for q = 16.

Table 6: The comparison of the distribution of the minimal rank of ER on
(37, 17, 16, 2) and (37, 17, 5, 2) parameter sets with 10000 trials. In each trial,
we exhaustively search the solution of MinRank problem on the matrix ER.

(v, o, q, l) minimal rank No. of trials
(q = 16)

No. of trials
(q = 5)

(37, 17, q, 2)

44 0 1
45 0 4
46 0 13
47 0 24
48 0 96
49 0 205
50 0 442
51 0 713
52 0 991
53 0 1350
54 0 1540
55 0 1453
56 0 1263
57 1 874
58 2 570
59 35 307
60 101 120
61 410 33
62 1699 1
63 5083 0
64 2650 0
65 19 0

Since the computation complexity of the exhaustively search of the minimal
rank of ER is too large in the case of q = 16 and l = 3, we exhaustively search
the minimal rank of ER with q = 5. In Table 7, we can see that the smallest
minimal ranks of ER are much higher than the lower bound in Table 2 even
when q = 5. Therefore, in the case q = 16, we can expect that the distribution
of minimal rank of ER are far away from the lower bound in Table 2.
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Table 7: Table of the distribution of the minimal rank with 1000 trials when
l = 3. In each trial, we exhaustively search the solution of MinRank problem on
the matrix ER. In this table, with q = 5, we can see that the smallest minimal
rank are higher than the lower bound in Table 2.

(v, o, q, l) lower bound in Table 2 minimal rank No. of trials

(25, 8, 5, 3) 49

61 1
62 6
63 27
64 367
65 599

Table 8: Table of the distribution of the minimal rank with 1000 trials when
l = 3. In each trial, we exhaustively search the solution of MinRank problem on
the matrix ER. In this table, with q = 5, we can see that the smallest minimal
rank are higher than the lower bound in Table 2.

(v, o, q, l) lower bound in Table 2 minimal rank No. of trials

(49, 11, 5, 3) 83

87 11
88 47
89 244
90 624
91 74

Table 9: Table of the distribution of the minimal rank with 1000 trials when
l = 3. In each trial, we exhaustively search the solution of MinRank problem on
the matrix ER. In this table, with q = 5, we can see that the smallest minimal
rank are higher than the lower bound in Table 2.

(v, o, q, l) lower bound in Table 2 minimal rank No. of trials

(66, 15, 5, 3) 110

118 2
119 7
120 16
121 34
122 89
123 239
124 518
125 95

Therefore, we conclude that our parameter set with l = 3 satisfy the security
requirement since for our current parameters we set q = 16.

In [1], we can see that the attack has almost no impact on l = 4 parameter sets.
As A,B,Q varying, we could expect that the minimal rank of ER will be way
higher than the lower bound in Table 2 on l = 4 parameter sets.
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4 Full rank SNOVA

As show by Beullens [1] attention must be paid to a good choice of the matrices
Aα, Bα, Qα1 and Qα2 or the scheme will be vulnerable to forgery attacks.
Before we address this we make explicit the relation between the SNOVA form
the equation (2.1) and the MAYO structure as described by Beullens.

Recall the bilinear formulation of the SNOVA public map, the equation (2.1),
for i ∈ {1, . . . ,m}

Pi(
#—

U) =

l2∑
α=1

n∑
j=1

n∑
k=1

Aα · U t
j (Qα1Pi,jkQα2)Uk ·Bα (4.1)

Denote the components of the nl × l matrix #—

U as Uk,j Adding explicit matrix
indices, the equation (4.1) can be written as

Pi,i1,j1(
#—

U) =
∑
α

∑
i2,j2,k1
k2,k3,k4

Aα,i1,i2Uk1,i2Q
⊗n
1(α,k1,k2)

Pi,k2,k3Q
⊗n
2(α,k3,k4)

Uk4,j2Bα,j2,j1

(4.2)
Here, and in the following, we use i•, j• = 0, ..., l − 1 and k• = 0, ..., nl − 1. As
the Q matrices are in Fq[S], the Q⊗n matrices can be expressed in terms of its
coefficients q1(α,a) as

Q⊗n
1α =

l−1∑
a=0

q1(α,a) (S
a)

⊗n

and similarly Q⊗n
2α and q2(α,b). In terms of these coefficients, the equation (4.2)

can be expressed as

Pi,i1,j1(U) =
∑

(i2,a),(j2,b)

Ei1,j1,(i2,a),(j2,b)
Di,(i2,a),(j2,b)

(U) (4.3)

where

Di,(i2,a),(j2,b)
(U) =

∑
k1,k2,k3,k4

Uk1,i2 (S
a)

⊗n
k1,k2

Pi,k2,k3

(
Sb

)⊗n

k3,k4
Uk4,j2 (4.4)

and
Ei1,j1,(i2,a),(j2,b)

=
∑
α

q1(α,a)q2(α,b)Aα,i2,i1Bα,j1,j2 . (4.5)

Note that

Di,(i2,a),(j2,b)
(U) = ut

i2 (S
a)

⊗n
Pi

(
Sb

)⊗n
uj2 = Bi,a,b(ui2 ,uj2) (4.6)

where Bi,a,b(ui2 ,uj2) is the (a, b) entries of bilinear map B(ui2 ,uj2) [1].

Note that the {(i2, a), (j2, b)}-th entries of the l2×l2 matrix Ẽi1,j1 in the bilinear
formulation (2.3) is Ei1,j1,(i2,a),(j2,b)

, i.e.,[
Ei1,j1,(i2,a),(j2,b)

]
i2,j2,a,b∈{0,...,l−1}

= Ẽi1,j1 (4.7)
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the equation (4.3) was first arrived at by Beullens [1]. the equation (4.5) makes
the relation between the SNOVA form the equation (4.2) and the MAYO for-
mulation the equation (4.3) explicit. If the index α is allowed to run up to l4

the relation can always be reversed; for any set of Ẽi1,j1 matrices, the equation
(4.3) can also be put in the SNOVA form the equation (4.2). See appendix A
for an example. This may not be the case if the sum over α contains only l2

elements as currently specified for SNOVA.

The attack formulated by Beullens in [1] depends on the possibility of finding
coefficients c(a,b) for which the rank of the sum

∑
ci1,j1Ẽi1,j1 is less than l2. For

random matrices this will usually be possible so the set of E matrices needs to
constructed carefully. For full rank SNOVA we use a l2 × l2 matrix E with an
irreducible characteristic polynomial. As Fq[E] is a field, all non-zero elements
are invertible. It follows that Ei1,j1 = Ei1l+j1 for i1, j1 = 0, ..., l − 1 is a set of
matrices that satisfy the full rank condition. See appendix B for a choice of E
matrices.

Using the equation (4.3) it is much easier to find a set of matrices that satisfy
full rank condition than using the equation (4.2). But there is no fundamental
change to SNOVA whether we use A, B, and Q or the equivalent formulation
in terms of Ei1,j1 . The main difference to the original SNOVA is that the sum
over α has to run op to l4 in order to use an irreducible set of E matrices.

In Table 10 we report the performance for an AVX2 optimized implementation
of full rank SNOVA.

Table 10: Performance comparison at SL I between the AVX2 optimized im-
plementation of full rank SNOVA and the AVX2 optimized implementation of
SNOVA with ABQ fixed as scheme parameters.

(v, o, l) XOF Sig. PK KeyGen Sign SSK Sign ESK Verify
Full Rank

(37, 17, 2) AES 124 9842 975,448 1,040,270 470,151 183,097
(25, 8, 3) AES 165 2320 472,859 958,048 608,151 206,443
(24, 5, 4) AES 248 1016 407,477 1,301,711 990,112 252,739

Fixed ABQ
(37, 17, 2) AES 124 9842 994,606 979,662 408,244 133,514
(25, 8, 3) AES 165 2320 461,836 909,411 567,129 206,905
(24, 5, 4) AES 248 1016 271,411 898,118 711,862 156,897

5 ABQ matrices as a scheme parameters

In the current specification of SNOVA the A, B, and Q1,2 matrices are generated
from the public key seed, just like the Pi matrices. As some of these matrices
yield a weakened scheme, a possible response is to fix A, B, and Q1,2 to well-
chosen values and leave the rest unchanged.

10



Preferably the well-chosen values result in a full rank scheme, but we have not
been able to find such values for l ≥ 3. Beullens has argued that the expected
minrank of a random matrix is l2 − l + 1. We use this value as a lower bound
for the definition of a ”good enough” value when l ≥ 3. For l = 2 an exhaustive
brute force search is feasible. We have imposed the additional constraint that
all l2 resulting Aα and Bα matrices are invertible. The consequence of this
constraint is that the corrections specified in Algorithms 1 and 2 of the SNOVA
specification [8] are not needed. This brute force search has resulted in multiple
full rank matrices for l = 2. We use shake256(”SNOVA_2_89047137”, 24) for
l = 2. For higher ranks we have not found a set of ABQ matrices that results in
a full rank scheme. For l = 3 we selected shake256(”SNOVA_3_15”, 108) and
for l = 4 we use shake256(”SNOVA_4_52”, 320). These shake256 seeds may
change as a result of ongoing analysis.

The advantage of using a fixed set of ABQ matrices over the full rank scheme
described in Section 4 is that the sum over α has l2 terms whereas the full rank
resolution requires a sum over l4 terms. Comparing to Varying ABQ, using
fixed values for ABQ allows for a higher level of vectorization. This results in
faster signing and verification. Table 10 shows the performance of the schemes
with fixed ABQ and compares it to the Full Rank resolution. Security estimates
of the described schemes are presented in Table 11. Both the full rank approach
and fixing ABQ schemes have estimated security levels satisfying the NIST SL
I requirement.

Table 11: Security estimates for Beullens attack for the SL I parameter sets. Full
Rank is the estimate for Beullens attack with the full rank resolution described
in section 4. Fixed ABQ is the estimate for Beullens attack using the apperoach
of fixing ABQ of section 5. For comparison the security estimate for the collision
attack [9] has been included. The collision attack is the most efficient known
attack for all parameter sets at SL I.

(v, o, l) Collision Full Rank Fixed ABQ

(37, 17, 2) 151 188 188
(25, 8, 3) 159 224 163
(24, 5, 4) 175 230 184

6 Conclusion

In this note, we propose two approaches to address the rank drop problem. The
security claims of SNOVA are upheld with the current set of parameters for
both approaches. Note that for parameter sets with l = 4, the security claim
was never in doubt, even after the Beullens attack.

The first approach, which varies the A, B, and Q matrices, may not increase
the computational cost for signing or verifying, meaning its performance could
be comparable to the original SNOVA. The second approach involves creating
a full-rank version of SNOVA by increasing the sum over α from l2 to l4. While
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this alternative approach may appear to significantly increase computational
complexity, optimizations ensure that both signing and verifying remain only
marginally slower than the original SNOVA. Therefore, this alternative approach
remains a viable option for adjusting SNOVA.
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https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2022/1742


/**
* Generate ABQ matrices from a given set of E_(i1, j1) matrices
*/
void gen_ABQ_from_E(map_group1 *map, const uint8_t *E)
{
assert(nalpha_SNOVA == (lsq_SNOVA * lsq_SNOVA));

for (int alpha = 0; alpha < nalpha_SNOVA; alpha++)
{
int a = alpha % l_SNOVA;
int b = (alpha / l_SNOVA) % l_SNOVA;
int j1 = (alpha / lsq_SNOVA) % l_SNOVA;
int j2 = (alpha / lsq_SNOVA / l_SNOVA) % l_SNOVA;

for (int i1 = 0; i1 < l_SNOVA; ++i1)
for (int i2 = 0; i2 < l_SNOVA; ++i2)
{

map->Aalpha[alpha][i1 * l_SNOVA + i2] =
E[i1 * l_SNOVA + j1][i2 * l_SNOVA + a][j2 * l_SNOVA + b];

map->Balpha[alpha][i1 * l_SNOVA + i2] = (i1 == j2) * (i2 == j1);
map->Qalpha1[alpha][i1 * l_SNOVA + i2] = S[a][i1 * l_SNOVA + i2];
map->Qalpha2[alpha][i1 * l_SNOVA + i2] = S[b][i1 * l_SNOVA + i2];

}
}

}

B E matrices

For the irreducible polynomials generating E we use the following:

Table 12: Irreducible polynomials p(z) use to generate E for all ranks l

Rank Irreducible polynomial p(z) over F16 = F2[x]/(x
4 + x+ 1)

l = 2 z4 + z2 + x3z + 1
l = 3 z9 + z + 1
l = 4 z16 + z3 + xz2 + (x3 + x+ 1)z + 1

To make the specification complete, the entries to the companion matrix E of
p are taken to be:

Ei,j = 1 if i > 0 and j = i− 1

= coefficient of zl
2−1−j in p(z) if i = 0

= 0 otherwise
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