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Abstract. In this paper, we introduce the notion of relaxed lattice-
based programmable hash function (rPHF), which is a novel variant of
lattice-based programmable hash functions (PHFs). Lattice-based PHFs,
together with preimage trapdoor functions (TDFs), have been widely
utilized (implicitly or explicitly) in the construction of adaptively se-
cure identity-based encryption (IBE) schemes. The preimage length and
the output length of the underlying PHF and TDF together determine
the user secret key and ciphertext lengths of the IBE schemes. How-
ever, the current lattice-based PHF definition imposes the restriction
that the preimage length of TDF in the IBE schemes cannot be too
short, hindering the utilization of size-efficient NTRU TDF. To overcome
this hurdle, rPHF relaxes the hash key distribution requirement in the
definition of PHF from statistical indistinguishability to computational
indistinguishability. This relaxation eliminates limitations on the preim-
age length of underlying TDFs in IBE, enabling the construction of IBEs
from NTRU TDFs.
We introduce two instantiations of rPHF: the first produces a hash output
length of 2 ring elements, with a hash key size linear to the input length,
and the second yields an output length of 14 ring elements, with a hash
key size proportional to the square root of the input length. Building
upon these rPHF instantiations, we propose two adaptively secure lattice-
based IBE schemes with ciphertext lengths of 5 and 17 ring elements and
user secret key lengths of 4 and 16 ring elements, respectively. The length
of the IBE master public key is roughly equivalent to the size of the hash
key of the underlying rPHF. In comparison to existing IBE constructions,
our proposed schemes achieve a significant reduction (over an order of
magnitude) in ciphertext and secret key sizes. Notably, state-of-the-art
constructions from ideal lattices exhibit secret key and ciphertext sizes
over 100 ring elements, making our proposed schemes highly efficient.
Moreover, the master public key sizes of our IBEs remain comparable.

Keywords: lattice-based cryptography, programmable hash function, identity-
based encryption



1 Introduction

In 2008, Hofheinz and Kiltz introduced the concept of programmable hash func-
tion (PHF) [12] with the aim of capturing the partitioning technique essential
for security proofs in the standard model. A PHF refers to a keyed hash function
that exhibits two behaviours based on how hash keys are generated. Specifically,
there are two distinct algorithms for generating these hash keys: the normal key
generation algorithm and the trapdoor key generation algorithm. Both algo-
rithms produce statistically indistinguishable hash keys. Hash keys generated
using the trapdoor mode contain secret trapdoor information, allowing the se-
cret partitioning of the hash input into two separate sets. In contrast, in the
normal mode, hash keys have no such trapdoor information. In one set, we pos-
sess the knowledge to solve a challenging problem, while in the other set, such
knowledge is absent.

The original PHF introduced in [12] and its subsequent works rely on “DL
groups”, which are vulnerable to attacks from quantum computers. To address
this vulnerability, Zhang et al. [28] proposed the concept of lattice-based PHF.
This notion can be seen as the instantiation of traditional PHF on lattices, a
promising candidate for post-quantum cryptography. Lattice-based PHFs serve
as fundamental components for adaptively secure lattice-based short signature
and identity-based encryption (IBE) schemes.

1.1 Lattice-Based PHF and Adaptively Secure IBEs

In this section, we briefly review the constructions of adaptively secure IBEs em-
ploying lattice-based PHFs. For ease of explanation, we consider the construction
from standard lattices. Let HK be a lattice-based PHF, where K represents the
hash key.HK maps an input string to a matrix. The hash key K can be generated
in two modes: the normal mode and the trapdoor mode.

In the normal mode, a PHF hash key K comprises matrices H0,H1, ...,Hk ∈
Zn×m
q chosen uniformly at random, where k can be linear, square-root, or log-

arithmic with respect to the input string length ℓ, depending on the specific
construction. The PHF will map a input X ∈ {0, 1}ℓ to a matrix HX such that
HK(X) = HX ∈ Zn×m

q . For concreteness, the lattice-based PHF defines HK(X)

as H0 +
∑

i(−1)X[i] ·Hi.
In contrast, the trapdoor mode generates hash key K ′ in the form of Hi =

A · Ri + Si · G, where A ∈ Zn×m′

q and G ∈ Zn×m
q are pre-defined matrices,

and {Ri,Si} are the trapdoor. The trapdoor information allows us to establish
the relationship between the hash output of any input X through the equation:
HK′(X) = HX = A·RX + SX·G, where RX ∈ Zm′×m

q and SX ∈ Zn×n
q are two

matrices that can be computed from the trapdoor.
For a lattice-based PHF, it partitions the hash inputs into two categories

based on whether SX = 0 or not. The category SX = 0 allows the ability to use
adversaries to solve specific hard problems in security proofs. Specifically, if a
PHF is (u, v)-programmable, then given any inputs X1, · · · , Xu and Y1, · · · , Yv
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such that Xi ̸= Yj for all i, j, the probability:
Pr[SX1 = · · · = SXu = 0 ∧ SY1 ̸= 0, · · · ,SYv ̸= 0] ≥ 1/poly.

Lattice-based PHFs, when combined with “preimage sampleable” trapdoor
functions (TDFs) [11], form the foundation for constructing lattice-based adap-
tively secure IBEs in the standard model. In such IBE schemes, each user id
is associated with a matrix [A|Hid]. Matrix A ∈ Zn×m′

q is the public key for a
lattice-based TDF fA. A is equipped with a trapdoor that facilitates the sampling
of a short vector t such that fA(t) = At = w mod q for any w. Hid ∈ Zn×m

q

represents the hash output of a rPHF HK(id) with hash key K in normal mode.
Extracting the secret key for a user id involves utilizing the trapdoor of A to
generate a short vector skid ∈ Zm′+m

q such that [A|Hid] · skid = u mod q, where
u is another vector included in the master public key. To encrypt a message for
id, one utilizes [A|Hid] and u as the public key of the Dual Regev PKE [11].

The main challenge of achieving adaptive security in the security proof is
to make the simulator respond to key extraction queries without knowing A’s
trapdoor. To tackle this challenge, the hash key K in the security proof is gen-
erated in the trapdoor mode, incorporating with matrix A and another matrix
G. This G is the public key for TDF fG and possesses its own trapdoor. When
confronted with a key extraction query for a specific identity id, the simulator
can relate Hid = HK(id) to A and G in the form of Hid = A·Rid+Sid·G. When
Sid ̸= 0, the simulator can leverage the trapdoor of G to sample skid , effectively
responding to the key extraction query.

The space complexity of the IBE scheme is intricately tied to the properties of
both the underlying TDF and rPHF. Specifically, in the IBE scheme, the lengths
of the secret key and ciphertext are determined by the dimensions of the lattice
associated with [A|Hid] (m′+m), where m′ is the preimage length of fA, and m
is the hash output length of rPHF. Thus, in the pursuit of designing size-efficient
IBE schemes, the selection of TDF with short public keys is paramount. One of
the most promising candidates is the NTRU TDF. NTRU stands out by offering
a TDF with a preimage length of only 2 ring elements (equivalent to length 2n),
which is significantly shorter than its counterparts in standard and ideal lattices.
By utilizing the NTRU TDF as the A and G components, it is hopeful to reduce
the ciphertext to a few ring elements.

This idea, however, is difficult to realize. The security proof relies on the
fact that the hash keys of rPHF generated from normal and trapdoor modes
are statistically indistinguishable. Existing approaches utilize the leftover hash
lemma to argue that A·Ri is close to uniform, thereby making the trapdoor
mode hash key Hi = A·Ri+Si ·G also close to uniform. Unfortunately, utilizing
leftover hash lemma has requirements on the dimension of A ∈ Zn×m′

q , and the
entropy of Ri, which renders the resulting IBE has secret key and ciphertext
length of O(n log q), even though more size efficient NTRU TDF exists.

In light of this challenge, our paper aims to revisit the notion of lattice-
based PHF and remove the dimension restriction. By addressing this limitation,
we seek to pave the way for more efficient IBE schemes based on the proposed
lattice-based rPHF.
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1.2 Technical Overview

In our approach, we address the challenge inherent in the use of the leftover
hash lemma. To overcome this, we first relax the requirement that the hash keys
in the definition of rPHF in normal and trapdoor modes to be computationally
close. This relaxaion gives rise to our rPHF. We detail how to create rPHF from
computational assumptions. For clarity, let’s consider our rPHF from standard
lattices (although in our actual construction, we employ the more efficient NTRU
lattices).

Similar to lattice-based PHFs, hash keys for rPHFs consist of a collection
of matrices {H0,H1, · · · ,Hκ} sampled uniformly at random from Zn×m

q . How-
ever, unlike original PHFs, in the trapdoor mode, each hash key matrix Hi

is constructed as Hi = A·Ri + Ei + Si·G, where matrices A ∈ Zn×n
q and

G ∈ Zn×m
q are user specified, Ri,Ei ∈ Zn×m

q are sampled from small error
distribution. By adopting this approach, we move from statistical arguments to
computational ones. Specifically, we leverage the LWE (Ring LWE) assump-
tions to make the hash keys generated in normal mode to be computationally
indistinguishable from those generated in trapdoor mode. Moreover, we achieve
a reduction in the dimension of A from n×m′ (where m′ = O(n log q)) to
n × n. In the trapdoor mode, each input X can be associated with the hash
output HK(X) = A ·Rx +Ex + Sx ·G. The remaining part is to deal with the
additional subtleties introduced from the error terms.

Replacing the lattice-based PHF used in the IBEs (e.g., [1, 28]) with our rPHF
already allows for improvements in space complexity. The significance of our
relaxation lies in the ability to remove the dimension limit. This key relaxation
allows us to seamlessly combine the very efficient TDF from the NTRU lattice,
and we will briefly outline it below.

NTRU lattice associated with modulus q and h ∈ Rq is defined as Λh,q =
{(u, v) ∈ R2

q|u + v ∗ h = 0 mod q}, where h = g· f−1 and g, f are ring elements
with small coefficients. With g, f, we are able to sample short (s1, s2) such that
s1 + h· s2 = u mod q for a given u. By utilizing this NTRU TDF to instantiate
our rPHF, we can construct new IBE schemes featuring exceptionally short key
and ciphertext sizes.

In this approach, each identity id corresponds to a vector fid = [1, h,hid] where
hid ∈ Rd

q is the rPHF hash output for id. In the IBE scheme, the NTRU trapdoor
within h allows for the extraction of the secret key s satisfying fid· s⊺ = u mod q
for u ∈ Rq in the master public key. With fid and u ∈ Rq as the user public key, a
message m can be encrypted. In the security proof, h will be sampled uniformly
at random from its range. The simulator generates trapdoor mode hash key
hi = h· ri + ei + si·g, using this sampled h and a vector g ∈ Rd

q equipped
with a trapdoor. Each id is associated with a hash output hid in the form of
hid = h· rid + eid + sid·g. When sid ̸= 0, we are able to construct an algorithm
that extracts secret keys s for [1, h, h· rid + eid + sid·g] with the trapdoor within
g. During the challenge phase, if si = 0, the simulator leverages the adversary’s
response to solve the decisional RLWE problem.
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1.3 Contributions

In this paper, our primary focus is on the development of adaptively secure
lattice-based IBE with a core objective: enhancing their efficiency. Our goal
centres on designing schemes with notably compact ciphertext sizes, aiming to
reduce them to a minimal constant number of ring elements. Specifically, we
obtain the following results.

– We first introduce and formalize the notion of the relaxed lattice-based pro-
grammable hash function (rPHF). Based on this, we provide two instantia-
tions of rPHF.
• Type-I-rPHF features a compact hash output comprising only 2 ring

elements, with the hash key length being linear concerning the input
size.

• Type-II-rPHF is designed to balance hash key length and hash output
size. Building upon the approach proposed in [14], this instantiation
achieves a hash key length proportional to the square root of the input
length. Consequently, the hash output size increases to a larger constant
value in terms of ring elements.

– Based on our rPHF, we propose novel adaptively secure lattice-based IBE
schemes using the NTRU TDF.
• Type-I Instantiation IBE: Based on the Type-I rPHF, this scheme fea-

tures a remarkably short ciphertext length of only 5 ring elements, with
user secret key length of 4 ring elements and master public key length lin-
ear to the identity length. It sets a new standard for minimal ciphertext
size among previously proposed adaptively secure IBE schemes.

• Type-II Instantiation IBE: This scheme offers a ciphertext length of ap-
proximately 17 ring elements and a user secret key length of 16 ring
elements. The length of the master public key is proportional to the
square root of the identity length.

A detailed comparison between our IBE schemes and prior works is presented
in Table 1.

– Additionally, we propose a short signature scheme secure against universal
forgery under chosen-message attack (UF-CMA) based on our rPHF in Sec-
tion 5. The resulting two schemes have signature sizes of 4 ring elements and
14 ring elements, respectively. To the best of our knowledge, existing lattice
signatures in the standard model typically have a shortest signature size of
O(log q) ring elements (O(n log q) Zq elements) [10, 2, 6, 18, 28].

1.4 Related Work

IBE, initially introduced by Shamir [22] in 1984, is a public key encryption
scheme that allows the use of arbitrary strings as public keys, such as user’s email
address or telephone number. Boneh and Franklin [5] defined a security model
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Table 1. Comparison of Lattice IBE in Standard Model1

Schemes Ciphertext mpk LWE LatticeLength2 Length param 1/α

ABB10 [1]+Boy10 [6] O(n log2 q) O(n2ℓ· log2 q) Õ(n5.5) Standard

KY16 [14]: Type I O(n log2 q) O(nℓ
1
d · log2 q) Õ(n2d+1.5) Ideal

KY16 [14]: Type II3 (32d+48)n log q O(ℓ
1
d n log q) Õ(n2d+2.5) Ideal

113n log q 113 + 112ℓ
1
2 n log q Õ(n6.5) Ideal

ZCZ16 [28] O(n log2 q) O(n2 log ℓ log2 q) Õ(Q2·n6.5) Standard

Yam17 (FMAH) [27] O(n log2 q) O(n2 log2 ℓ log2 q) Õ(n11) Standard

JKN21 [13] O(n log2 q) O(n2 log ℓ log2 q) Õ(n6) Standard

This paper (Type-I) 5n log q (5 + 4ℓ)n log q Õ(n3.75) NTRU

This paper (Type-II) 17n log q (17 + 28ℓ
1
2 )n log q Õ(n10.5) NTRU

1 ℓ is the length of identity. Q is the total number of query in the security proof.
2 User secret key length is cl − n log q where cl is the ciphertext length.
3 The length given here is different from the original paper according to our analysis.

The parameter given in the paper does not satisfy their security proof. Specifically,
according to their proof, in [14] Type II, m should satisfy m ≥ 2 logρ q. Thus, for
q = n2d+3, ρ = n

1
4 , m ≥ 16d + 24 should hold. The ciphertext length is 2m + 1

ring elements. d is a flexible small constant equal to 2 or 3. The second row is the
parameter when d = 2.
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for identity-based encryption and proposed the first efficient and secure IBE
based on Bilinear Diffie-Hellman (BDH) problem secure in the random oracle
model. Since then, IBE has been a vibrant area of research in cryptography.
In subsequent works, there have been pairing-based IBE schemes shown to be
secure without random oracle, either in a weaker selective-ID model [7, 3] or in
fully secure adaptive-ID model [4, 24, 25].

An important research direction of IBE is the design of schemes based on
lattice-based cryptography, a promising candidate of post-quantum cryptogra-
phy. Gentry et al. [11] first proposed a lattice-based IBE scheme in the random
oracle model. Subsequently, lattice-based schemes secure in the standard model
were introduced [8, 1, 26, 14, 27]. Cash et al. [8] leverage the admissible hash func-
tions and assign a matrix to each bit of identity in their construction, resulting in
a large user public key formed by concatenating these matrices. To enhance the
efficiency, Agrawal et al. [1] processes identities as a chunk using a map function
that maps an identity to a matrix, resulting in a lattice with dimension similar to
IBE schemes in the random oracle model. To build such a map, it requires O(ℓ)
basic matrices in the public parameters where ℓ is the identity length. Later,
by altering the mapping approaches for identities, constructions with shorter
public parameter sizes were proposed [26, 14, 28, 27, 13]. Despite these efforts,
the typical ciphertext lengths of these adaptively secure IBEs are often bound
by O(log q) ring elements or O(n log q) elements in Zq. In this paper, we aim to
construct adaptively secure IBEs with a significantly reduced ciphertext length,
restricted to just a small constant number of ring elements, using the NTRU
lattice.

Current lattice-based IBEs from NTRU [9, 17] are both from the random
oracle model. It is worth noting that building an adaptively secure NTRU IBE
scheme from the standard model is not a mere adaptation of existing counter-
parts from standard lattice or ideal lattice to the NTRU lattice. This is due
to the fact that the leftover hash lemma, which is employed in previous works
to maintain the indistinguishability of IBE master public keys in the construc-
tion and security proofs, is not applicable to the NTRU preimage sampleable
function.

2 Preliminaries

Elements in Zq are represented by integers in [− q
2 ,

q
2 ). For a ring R we define

Rq to be the quotient ring Zq[x]/(x
n+1) with n being a power of 2 and q being

a prime.

Vector and Matrix in R: We use R×
q to denote the set of ring elements that have

an inverse in Rq. Row vectors in Zm
q are denoted by italic lower-case bold letters

(e.g. x). Elements in Rq are denoted by lower-case letters (e.g. x). Row vectors
with entries from Rq are denoted by lower-case bold letters (e.g. x). Matrices
are denoted by upper-case bold letters (e.g. X). We denote [x]j as the j-th entry
of vector x and [X]j as the j-th column of matrix X. We use ϕ : Rk

q → Zkn
q
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to denote the transformation from a vector of ring elements to the vector of its
coefficient embedding and [ϕ(a)]j to denote the coefficient of term xj in a. We
use [a, b]R,κ to represent a polynomial in R with all of its coefficients in the
interval [a, b] and degree no larger than κ− 1.

For two row vectors v, u (two matrices A, B), we use [v,u], [A|B] (resp.
[v;u], [A;B]) to denote the horizontal (resp. vertical) concatenation of them.

Norms: ∥v∥1 is the ℓ1 norm of vector v and ∥v∥ is the ℓ2 norm of v. For v =
(v1, · · · , vn), we define ∥v∥ =

√∑n
i=1 ∥vi∥2. For a matrix V, we define s1(V)

as the spectral norm and ∥Ṽ∥ as the Gram-Schmidt norm.

Distributions: For distribution D, x← D means sampling x according to distri-
bution D. Given two distributions D1 and D2, D1

c
≈ D2 means that these two

distributions are computationally indistinguishable. The continuous normal dis-
tribution over Rn centered at v with standard deviation σ is defined as ρσ,v(x) =
( 1√

2πσ2
)e

−∥x−v∥2
2σ2 . For simplicity, when v is the zero vector, we use ρσ(x). We also

use ρσ,v(a) to denote the Gaussian distribution of a =
∑n−1

i=0 aiX
i ∈ R where

the entry of coefficient vector ϕ(a) ∈ Rn is sampled from ρσ,v.
The discrete normal distribution over Zn centered at v ∈ Zn with standard

deviation σ is defined as DZn,σ,v(x) = ρσ,v(x)
ρσ,v(Zn) . We use DR,σ to denote sampling

the coefficient of a ring element as the distribution DZn,s.

Lemma 1. Let b be a positive integer and R ∈ Rs×t
q be a matrix with coefficient

independently sampled from Dα. Then, with overwhelming probability we have

Pr[s1(R) ≤ α
√
n · (
√
s+
√
t+ ω(

√
log n))]

Let b be a positive integer and R ∈ Rs×t
q be a matrix chosen uniformly at random

from [−b, b]s×t
R . Then, there exists a universal constant C(≈ 1/

√
2π) such that

Pr[s1(R) ≤ C·β
√
n · (
√
s+
√
t+ ω(

√
log n))]

2.1 Lattices and Hardness Assumptions

A lattice in m-dimension Euclidean space Rm is a discrete set

Λ(b1, · · · , bn) =

{
n∑

i=1

xibi|xi ∈ Z

}

of all integral combinations of n linear independent vectors b1, · · · , bn in Rm

(n ≤ m). We call matrix B = [b1; · · · ; bn] ∈ Rn×m a basis of lattice Λ. Using
matrix notation, a lattice can be defined as Λ(B) = {xB|x ∈ Zn}.

The discrete Gaussian distribution of a lattice Λ, parameter σ and center v
is defined as DΛ,σ,v(x) =

ρv,s(x)
ρv,s(Λ) .
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Definition 1 Let m ≥ n ≥ 1 and q ≥ 2. For arbitrary matrix A ∈ Zn×m
q and

vector u ∈ Zn
q define m-dimensional full-rank integer lattices and its shift:

Λ⊥(A) = {z ∈ Zm
q : Az⊺ = 0 mod q},

Λ⊥
u (A) = {z ∈ Zm

q : Az⊺ = u mod q}.

Lemma 2 ([19], Lemma 4.4). For any n-dimensional lattice Λ, vector c ∈ Rn,
and reals 0 < ϵ < 1, s ≥ η(n), we have

Pr
x∼DΛ,s,c

[∥x∥ > s
√
n] ≤ 1 + ϵ

1− ϵ
· 2−n.

Lemma 3 ([14], Lemma 20). Let e ∈ Zn and let x← DZn,αq, for some αq >
ω(
√
n). Then the quantity |e·x⊺| treated as an integer in [0, q−1] satisfies|e·x⊺| ≤

∥e∥αq·ω(
√
log n) with all but negligible probability in n.

Learning With Error Problem Learning with error (LWE) problem was
introduced by Regev [21] in 2005. It is a classic hard problem on lattices, that
solving it is at least as hard as solving standard problems on lattices in the worst
case. The Ring LWE (RLWE) problem [15] is a more compact variant of LWE
and its provable hardness assumes the intractability of worst-case ideal lattice
problems.

Definition 2 (Ring-LWEn,q,χ RLWEn,q,χ Assumption) Given ring-LWE dis-
tribution As,χ with a secret s ∈ Rq, ai uniform in Rq, the “error polynomials”
ei sampled from the error distribution χ, for ℓ = poly(n), it holds that

{(ai, ai· s + ei)}i∈[ℓ]
c
≈{(ai, ui)}i∈[ℓ],

where ui is uniformly sampled from Rq.
The search Ring-LWE assumption states that no PPT adversary can recover

s from a polynomial number of samples {(ai,ai· s+ei)}i∈[ℓ] with a non-negligible
probability.

Definition 3 (Average-Case Decision Ring-LWE dRLWEn,q,χ) Given m in-
dependent samples (ai, ui) ∈ Rq×Rq, where every sample is distributed according
to either:(i) As,χ for a uniformly random s ∈ Rq (fixed for all samples), or (ii)
the uniformly random, distinguish which is the case (with non-negligible advan-
tage).

Theorem 1 ([16], Theorem 2.22) Let α = α(n) > 0, and let q = q(n) ≥ 2,
q = 1 mod 2n be a poly(n)-bounded prime such that αq ≥ ω(

√
log n). Then there

is a polynomial-time quantum reduction from Õ(
√

n/α)-approximate SIVP (or
SVP) on ideal lattices to the problem of solving dRLWEn,q,ξ given only ℓ samples,
where ξ = αq· (nℓ/ log(nℓ)) 1

4 .
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Theorem 2 ([14], Theorem 1) Let α = α(n) > 0, and let q = q(n) ≥ 2,
q ∼= 3 mod 8 be a poly(n)-bounded prime such that there is another prime p ∼= 1

mod 2n. Let αq ≥ n
3
2 ℓ

1
4ω(log

9
4 n). Then there is a polynomial-time quantum

reduction from Õ(
√
n/α)-approximate SIVP (or SVP) on ideal lattices to the

problem of solving dRLWEn,q,ξ given only ℓ samples, where ξ = αq.

Lemma 4 (Noise Rerandomization [14]). Let q, ℓ,m be positive integers
and r be a positive real satisfying r > max{ω(

√
logm), ω(

√
log ℓ)}. Let b ∈ Zm

q

be arbitrary and x chosen from DZm,r . Then for any V ∈ Zm×ℓ and positive
real σ > s1(V), there exists a PPT algorithm ReRand(V, b+x, r, σ) that outputs
b′ = bV + x′ where x′ is distributed statistically close to DZℓ,2rσ.

2.2 NTRU Lattices

Definition 4 (NTRU lattices) Let f, g ∈ Rq and h = g· f−1 mod q, the
NTRU lattice associated to h and q is

Λh,q = {(u, v) ∈ R2
q|u + v· h = 0 mod q} (1)

Λh,q is a full-rank lattice in Z2n generated by the rows of
[

qIn 0
−rotn(h) In

]
,

where rotn(h) is an anticirculant matrix defined as follow:

Definition 5 An N-dimensional anticirculant matrix of f is the following Toeplitz
matrix:

rotn(f) =


f0 f1 f2 . . . fn−1

−fn−1 f0 f1 . . . fn−2

−fn−2 −fn−1 f0 . . . fn−3

...
...

... . . . ...
−f1 −f2 −f3 . . . f0

 =


ϕ(f)

ϕ(x· f)
ϕ(x2· f)

...
ϕ(xn−1· f)

 ,

where fi represents the coefficient of term xi in f.
When it is clear from the context, we will drop the subscript n, and just

write rot(f). For vector of ring elements f ∈ Rℓ
q, rot(f) ∈ Zn×nℓ

q .

Lemma 5. Let f, g ∈ R, we have rot(f+g) = rot(f)+rot(g), rot(f· g) = rot(f)· rot(g),
ϕ(f· g) = ϕ(f)· rot(g), and [ϕ(f· g)]j = ϕ(f)· [rot(g)]j.

Definition 6 (NTRU Assumption) Let h = g· f−1 over Rq where g, f ← χ
are short. The pair (f, g) is called a trapdoor of the NTRUn,q,χ instance h. It
holds that h c

≈ u where u $←− Rq.

Definition 7 (Decisional NTRU Problem (dNTRUn,q,χ)[20]) Given a sam-
ple ai ∈ Rq, where it is distributed according to either:(i) NTRUn,q,χ, or (ii) the
uniformly random, distinguish which is the case (with over negligible advantage).

10



2.3 Trapdoors and Sampling Algorithm

We first recall the notion of gadget vector gb which was defined in [18].

Theorem 3 ([18], Theorem 4.1 and [14], Lemma 5) For any integers q ≥
2, b ≥ 2, n ≥ 1, d = ⌈logb q⌉, there exists a primitive vector gb ∈ Rd

q such that

– the lattice Λ⊥(gb) has a known basis Tg ∈ Rd×d with ∥T̃g∥ ≤
√
b2 + 1 and

∥Tg∥ ≤ max{
√
b2 + 1, (b− 1)

√
k};

– there exists a deterministic polynomial time algorithm g−1
b which takes a

vector u ∈ Rd
q as input and outputs R ∈ [−b, b]d×d

R and gb·R = u mod q.

Lemma 6 (NTRU GenBasis[9]). There exists an efficient algorithm GenBasis
which on input the security parameter 1λ, outputs an NTRU lattice Λh,q along
with a short basis B. The Gram-Schmidt norm of the basis B is ∥B̃∥ ≈

√
q·e
2 .

Theorem 4 ([11]) For any lattice basis B ∈ Zn×n, any target vector c ∈ Zn

and σ ≥ ∥B̃∥ω(
√
log n), there exists an algorithm SampleD(B, σ, c) → t ∈ Zq

where t is within negligible statistical distance of DΛ(B),σ,c.

Then, for an NTRU lattice Λh,q = {(u, v) ∈ R2
q|u+v· h = 0 mod q} equipped

with a short basis B, given u ∈ Rq we can sample s1, s2 ← DΛ⊥
u (1,h),σ by com-

puting (s1, s2)← (u, 0)− SampleD(B, σ, (u, 0)).

2.4 Algorithm SampleLeft and SampleRight

Now we introduce algorithms SampleLeft and SampleRight which will be lever-
aged in our construction and security proof.

SampleLeft algorithm: Let n be a power of 2, q ≥ 2 be a prime. We define the
sample left algorithm as follows:
SampleLeft(h,g,Bh, u, σ)→ s: On input h = [1, h] ∈ R2

q, g ∈ Rd
q , Bh a basis for

h, u ∈ Rq and σ ≥ ∥B̃h∥ω(
√
log n), this algorithm samples s′ ← DRd,σ and com-

putes u′ = u−g· s′⊺. Then, it generates (s1, s2)← (u′, 0)−SampleD(Bh, σ, (u′, 0))
and outputs s = [s1, s2, s′]. The distribution of s is close to DΛ⊥

[h,g]
,σ.

SampleRight algorithm Let n be a power of 2, q ≥ 2 be a prime. Let p be a
vector in Rd

q , Bp be a basis of Λ⊥
q (p), h = [1, h], r, e ∈ Rd

q . This algorithm aims
at output a vector s ∈ R2+d

q satisfies the distribution DR2+d
q ,σ such that

[1, h, h· r+ e+ p]· s⊺ = u mod q (2)

We define the sample right algorithm for NTRU lattice as follows:
SampleRight(h,p, r, e,Bp, u, σ) → s: This algorithm will first generate a basis
T ∈ Z(2+d)n×(2+d)n

q for Λ⊥
[h,p′] where p′ = h· r + e + p. Then T can be used to

sample s that satisfies eq. (2).
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For i = 1, ..., dn, let bi be the ith row of Bp ∈ Zdn×dn
q , set

ti =
[
−bi·

[
rot(e)
rot(r)

]⊺
, bi

]
∈ Z(2+d)n

q .

It is easy to see that rot([1, h, h· r+ e+ p])· t⊺i = 0 mod q.
Let U ∈ R2×d

q be an arbitrary matrix such that [1, h,p′]· [I2,U]⊺ = 0 mod q
where I2 is the identity matrix. Then construct a matrix

Thalf = [rot(I2)− rot(U⊺)⊺·
[
rot(e)
rot(r)

]⊺
, rot(U⊺)⊺] ∈ Z2n×(2+d)n

q .

Then rot([1, h, h· r + e + p])· (Thalf)
⊺ = 0 mod q. For i = dn + 1, · · · , (2 + d)n,

let ti be the ith row of Thalf .

Lemma 7 ([1],Lemma 18.). The vectors T = {t1; · · · ; t(2+d)n} are linearly
independent in Z(2+d)n

q and satisfies

∥T̃∥ ≤ ∥B̃p∥·
(
s1

([
rot(e)
rot(r)

]⊺)
+ 1

)
Thus, with T as a basis for Λ⊥

[h,p′], for σ ≥ ∥T̃∥·ω(
√
log n), this algorithm can

use T to sample s such that [1, h, h· r+ e+ p]· s⊺ = u mod q. The distribution
of s is close to DΛ⊥

[h,p′],σ
.

2.5 Identity-Based Encryption

Syntax An identity-based encryption (IBE) consists of four algorithms, namely,
KeySetup, Extraction, Encryption, Decryption defined as follows:

– KeySetup(1λ) → (mpk,msk): On input the security parameter 1λ, KeySetup
algorithm generates master public key and master secret key pair (mpk,msk).

– Extraction(msk, id,mpk)→ skid: The extraction algorithm takes as input the
master public key mpk, master secret key msk and an identity id ∈ ID, and
outputs a secret key skid.

– Encryption(mpk, id,m) → c: On input a master public key mpk, an identity
id ∈ ID, and a message m, Encryption algorithm outputs a ciphertext c.

– Decryption(mpk, id, skid, c)→ m:The decryption algorithm takes as input the
master public key mpk, a private key skid, and a ciphertext c. It outputs a
message m.

Correctness. The correctness of an IBE is defined as: for all security parameter
1λ, all id ∈ ID, it holds that

Pr[Decryption(mpk, skid,Encryption(mpk, id,m)) = m] = 1− negl(λ),

where (mpk,msk) ← KeySetup(1λ), skid ← Extraction(msk, id,mpk).
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IND-CPA security The adaptive IND-CPA security for an IBE scheme is
defined by the following game between adversary A and challenger C.

– Setup. Challenger C runs KeySetup(1λ) → (mpk,msk) and sends mpk to
adversary A.

– Key Extraction Query Adversary A sends an user ID id to challenge C, C
returns skid ← Extraction(msk, id,mpk).

– Challenge. Adversary A chooses an identity id∗,two messages m0 and m1 on
which it wishes to be challenged. If id∗ has been queried in key extraction
query, C abort and outputs ⊥. Otherwise, C tosses a coin coin

$←− {0, 1} and
sends C∗ ← Encryption(mpk, id∗,mcoin) to A.

– Key Extraction Query. Adversary A can continue to make key extraction
query on identity id ̸= id∗.

– Output. A output a coin coin∗.

A wins the game if coin∗ = coin. The advantage of A is:

AdvA = Pr[A wins IND-CPA game]− 1

2
.

Definition 8 (IND-CPA) An IBE scheme is adaptive IND-CPA secure if for
any polynomial-time adversary A, AdvIBEA is negligible.

3 Relaxed Programmable Hash Function rPHF

In this section, we begin by introducing the definition of our rPHF. Then, we
present two distinct instantiations: Type-I rPHF and Type-II rPHF. These in-
stantiations are designed to cater to different requirements and offer flexibility
in the construction of other cryptography primitives.

A (u, v, β, γ, δ)-rPHF function H consists of four algorithms, namely, H.Gen,
H.Eval, H.TrapGen, H.TrapEval, described below.

– H.Gen(1λ): this algorithm takes security parameter 1λ as input and, outputs
a normal mode hash key K.

– H.Eval(K,X)→ Z : On input a key K and X ∈ X , this algorithm outputs a
hash output Z ∈ Zn×m̄

q .
– H.TrapGen(1λ,A,B) → (K, td): on input user specified uniformly random

matrix A ∈ Zn×m
q , and a (public) trapdoor matrix B ∈ Zn×m̄

q , this PPT
algorithm outputs a key K together with a trapdoor td.

– H.TrapEval(td,K,X) → (Rx,Ex,Sx): On input a key K along with its trap-
door td, and X ∈ X , this deterministic algorithm returns Rx ∈ Zm×m̄

q ,
Ex ∈ Zn×m̄

q , and Sx ∈ Zm̄×m̄
q such that s1(Rx;Ex) ≤ β hold with over-

whelming probability.

H.TrapGen and H.TrapEval are sometimes referred to as the trapdoor key
generation and trapdoor evaluation algorithm.
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Correctness. For all (K, td)← H.TrapGen(1λ,A,B), all X ∈ X and (Rx,Ex,Sx)←
H.TrapEval(td,K,X), we have H.Eval(K,X) = ARx +Ex + SxB.

Computational Close Keys. For all (K′, td) ← H.TrapGen(1λ,A,B) and K ←
H.Gen(1λ,A,B), given any PPT adversary A, we have

|Pr[A(A,K′) = 0]− Pr[A(A,K) = 0]| ≤ γ.

Well-distributed hidden matrices. For all (K, td) ← H.TrapGen(1λ, A, B), any
input X1, · · · ,Xu,Y1, · · · ,Yv ∈ X such that Xi ̸= Yj for any i, j, we have

Pr[Sx1
= · · · = Sxu

= 0 ∧ SY1
, · · · ,SYv

∈ I] ≥ δ,

(Rxi
,Exi

,Sxi
)← H.TrapEval(td,K,Xi),

(Ryi
,Eyi

,Syi
)← H.TrapEval(td,K,Yi),

where I is the set of all the invertible matrices. If γ is negligible and δ is
noticeable, we say H is a (u, v, β)-rPHF.

3.1 Type-I rPHF from RLWE assumption

Let the hash input space be {0, 1}ℓ for some ℓ ∈ N. We first present Type-I rPHF,
which features O(ℓ) size hash key and constant size hash output. The output
size can be as small as 2 ring elements. This instantiation has a bound on the v
that v < q

2 .

Definition 9 The rPHF H =(H.Gen, H.Eval, H.TrapGen, H.TrapEval) with key
space K ∈ (Rd

q)
ℓ+1 is defined as follows:

– H.Gen(1λ) → K: on input the security parameter 1λ, uniformly random
sample d(ℓ+ 1) ring elements

{hi = (h
(0)

i , · · · , h
(d−1)

i )}i∈[ℓ+1]
$←− K.

Return K = {hi}i∈[ℓ+1].
– H.Eval(K,X) → z : on input X = {x1, · · · , xℓ} ∈ {0, 1}ℓ and the key K =

{h
(0)

i , · · · , h
(d−1)

i }i∈[ℓ+1], compute

z = (h
(0)

0 , · · · , h
(d−1)

0 ) +

ℓ∑
i=1

(−1)xi · (h
(0)

i , · · · , h
(d−1)

i )

– H.TrapGen(1λ, a,g)→ (K′, td) : given uniform random ring element a $←− Rq

and trapdoor vector g = (g(0)

, · · · , g(d−1)

), for each hi, this algorithm chooses
ri ← DRd,β , ei ← DRd,β , si ← Zq, and then computes

hi = (h
(0)

i , · · · , h
(d−1)

i ) = a· ri + ei + sig.

Set K′ = {hi}i∈[ℓ+1], td = ({ri, ei}ℓi=0, s = {si}ℓi=0).
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– H.TrapEval(td,K′,X) → (rx, ex, sx) : given trapdoor td = ({ri, ei}ℓi=0, s =
{si}ℓi=0), hash key K′ = {hi}i∈[ℓ+1], and X = {x1, · · · , xℓ} ∈ {0, 1}ℓ, this
algorithm computes

rx = r0 +

ℓ∑
i=1

(−1)xi · ri, ex = e0 +

ℓ∑
i=1

(−1)xi · ei, sx = s0 +

ℓ∑
i=1

(−1)xi · si.

Looking ahead, we are going to use this Type-I rPHF to construct lattice-
based IBE schemes with short secret keys and ciphertexts. In the constructions
and security proofs, we will use d = 2 and g = [1, g] where g represents an NTRU
lattice with a short basis.

Computational Close keys. The distribution of hash keys K′ = {(h
(0)

i , · · · , h
(d−1)

i )}ℓi=0

generated from H.TrapGen(1λ, a,g) is computationally indistinguishable from
K← H.Gen(1λ) according to Lemma 8.

Well-distributed hidden matrices. For all (K, td) ← H.TrapGen(1λ, a,g), any
input X1,Y1, · · · ,Yv ∈ {0, 1}ℓ such that X1 ̸= Yi for any i, we have

Pr[sX1 = 0 ∧ sY1 , · · · , sYv ∈ I] ≥ γ

where γ ≥ 1
q (1−

v
q ). We require v < q

2 in the security proof. We omit the detailed
proof here due to page limitation. The proof is similar to the security proof for
adaptively secure IBE in [1].

Lemma 8. For n be a power of 2, q be a prime such that q ≡ 1 mod 2n,
β = n

1
4 log n, r(j)

i , e(j)

i ← DR,β and a $←− Rq we have distributions(
a, {a· r

(0)

i + e
(0)

i + si· g
(0)

, · · · , a· r
(d−1)

i + e
(d−1)

i + si· g
(d−1)

}ℓi=0

)
,(

a, {h
(0)

i , · · · , h
(d−1)

i }ℓi=0

)
computationally close.

Proof. We prove the lemma through a sequence of games between a challenger
C and adversary A

– Game0: Challenger C first flips a coin
$←− {0, 1}. If coin = 0, C sends (a,{(h̃

(0)

i , · · · ,

h̃
(d−1)

i )}ℓi=0) to A where h̃
(j)

i = h· r(j)

i + e(j)

i + si· g
(j)

i ; Otherwise, C sends(
a, {(h

(0)

i , · · · , h
(d−1)

i )}ki=0

)
to A. A outputs a bit coin∗ ∈ {0, 1}.

We use Wi to describe the event that coin∗ = coin happens in Gamei. The
advantage of A in Game0 is |Pr[W0]− 1

2 | = ν0.

– Game1: C performs almost the same as in Game1, except that h̃
(0)

0 now is
sampled uniformly random from Rq. We now argue that the |Pr[W1] −
Pr[W2]| = negl(n).
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On receiving a problem instance of dRLWE {a′, u′}, C sets a = a′, h̃
(0)

0 =
u′+s0 ·g(0) while other steps remain the same as in Game1. If {a′, u′} is a valid
RLWE sample, then this game is identical to Game0. If u′ $←− Rq, this game
is identical to Game1. Therefore, we have advdRLWEn,q,β = |Pr[W0]−Pr[W1]|.
pkc

– Game2: C performs almost the same as in Game2, except that h̃
(1)

0 is now sam-
pled uniformly random from Rq. We have |Pr[W1]−Pr[W2]| = advdRLWEn,q,β

due to the hardness of dRLWEn,q,β . The proof is identical to the proof in
Game1

– Gamed(ℓ+1): So on so forth, in Gamed(ℓ+1), C samples {h̃
(0)

i , · · · , h̃
(d−1)

i }ℓi=0

all uniformly random from Rq. Distributions (h,{(h̃
(0)

i , · · · , h̃
(d−1)

i )}ℓi=0) and
(h, {(h

(0)

i , · · · , h
(d−1)

i )}ℓi=0) are now identical and we have |Pr[Wd(ℓ+1)] −
Pr[Wd(ℓ+1)−1]| = advdRLWEn,q,β .

From the above, we have

∣∣∣∣Pr[Wd(ℓ+1) −
1

2
]

∣∣∣∣ =
∣∣∣∣∣∣Pr[W0]−

1

2
+

d(ℓ+1)∑
1

(Pr[Wi]− Pr[Wi−1])

∣∣∣∣∣∣
=d(ℓ+ 1)· advdRLWEn,q,β + ν0 = negl(n).

3.2 Type-II rPHF from RLWE assumption

Based on [14], we present our Type-II rPHF with hash key length O(
√
ℓ).

Definition 10 The Type-II rPHF H =(H.Gen, H.Eval, H.TrapGen, H.TrapEval)
with key space K ∈ (Rd

q)
2×k, where k =

√
ℓ, is defined as follows:

The hash input space is {0, 1}ℓ for some ℓ ∈ N. S is an injective map that maps
X ∈ {0, 1}ℓ to a subset S(X) of [1, k]2, where k = ⌈ℓ 1

2 ⌉. This injective map can
be done by regarding X as the indicator vector of a subset of [1, k]2.

– H.Gen(1λ) → K: on input the security parameter 1λ, uniformly random
sample d(1 + 2× k) ring elements, where k =

√
ℓ.(

h0 = (h
(0)

0 , · · · , h
(d−1)

0 ), {hi,j = (h
(0)

i,j , · · · , h
(d−1)

i,j )}
(i,j)∈[2]×[k]

)
$←− K.

Return K =
(
h0, {hi,j}(i,j)∈[2]×[k]

)
.

– H.Eval(K,X) → z : on input X = {x1, · · · , xℓ} ∈ {0, 1}ℓ and the key K =(
h0, {hi,j}(i,j)∈[2]×[k]

)
, compute

z = h0 +
∑

(j1,j2)∈S(X)

h1,j1 · g−1
b (h2,j2) ∈ Rd

q .
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Notation g−1
b is defined as for any u ∈ Rd

q , g−1
b (u) deterministically outputs

a short matrix R ∈ Rd×d
q such that gb·R = u where R ∈ [−b, b]d×d

R .

– H.TrapGen(1λ, a,gb) → (K′, td) : given a uniform random ring element a $←−
Rq and the gadget vector gb = (g(0)

, · · · , g(d−1)

) ∈ Rd
q , for h0 and hi,j , this al-

gorithm chooses r0, ri,j ← DRd,β , e0, ei,j ← DRd,β , s0
$←− [−ℓ(κn)2,−1]R,2(κ−1)+1,

si,j
$←− [1, n]R,κ, and then computes

h0 = a· r0 + e0 + s0 · gb,hi,j = a · ri,j + ei,j + si,j · gb, (i, j) ∈ [2]× [k].

Set K′ =
(
h0, {hi,j}(i,j)∈[2]×[k]

)
, td = (r0, e0, {ri,j , ei,j}(i,j)∈[2]×[k], s = (s0,

{si,j}(i,j)∈[2]×[k])).
– H.TrapEval(td,K′,X) → (rx, ex, sx) : given trapdoor td, hash key K′ =(

h0, {hi,j}(i,j)∈[2]×[k]

)
, and X = {x1, · · · , xℓ} ∈ {0, 1}ℓ, this algorithm com-

putes
rx = r0 +

∑
(j1,j2)∈S(X)

r1,j1 ·Rj2 + s1,j1 · r2,j2 ,

ex = e0 +
∑

(j1,j2)∈S(X)

e1,j1 ·Rj2 + s1,j1 · e2,j2 ,

and, sx = s0 +
∑

(j1,j2)∈S(X)

s1,j1 · s2,j2 .

where Rj2 = g−1
b (h2,j2) ∈ [−b, b]d×d

R .

The above rx, ex, and sx are computed from:

h0 +
∑

(j1,j2)∈S(X)

h1,j1 · g−1
b (h2,j2)

=h0 +
∑

(j1,j2)∈S(X)

(a· r1,j1 + e1,j2 + s1,j1 ·gb)·g−1
b (a· r2,j1 + e2,j2 + s2,j2 ·gb)

=h0 +
∑

(j1,j2)∈S(X)

(a· r1,j1 + e1,j1) · g−1
b (h2,j2) + s1,j1 · (a· r2,j2 + e2,j2 + s2,j2gb)

=h0 +
∑

(j1,j2)∈S(X)

a(r1,j1 ·Rj2 + s1,j1 · r2,j2) + (e1,j1 ·Rj2 + s1,j1 · e2,j2) + s1,j1 · s2,j2 · gb.

For ∥s1,j1∥1 ≤ κ, r′ = r1,j1 ·Rj2 + s1,j1 · r2,j2 , e′ = e1,j1 ·Rj2 + s1,j1 · e2,j2 , further-
more, we have

s1([r
′; e′]) ≤ s1([r1,j1 ; e1,j1 ])· s1(Rj2) + s1(s1,j1)· s1([r2,j2 ; e2,j2 ]) = ϑ· bnd+ ϑ·κ

where ϑ is the s1 norm of [r1,j1 ; e1,j1 ] and [r2,j2 ; e2,j2 ].

Computational Close keys. The distribution of hash keys generated fromH.TrapGen
(1λ, a,gb) is computationally indistinguishable from K ← H.Gen(1λ). We omit
the proof here and the proof is similar to Lemma 8.
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Well-distributed hidden matrices. For all (K, td) ← H.TrapGen(1λ, a,g), any
input X1,Y1, · · · ,Yv ∈ {0, 1}ℓ such that X1 ̸= Yi for any i, we have

Pr[sX1 = 0 ∧ sY1 , · · · , sYv ∈ I] ≥ δ

where δ is noticeable.

Lemma 9 ([14], Lemma 3). Let q be a prime such that q ≡ 3 mod 8 and
n be a power of 2. Then, xn + 1 splits as xn + 1 ≡ t1(x)· t2(x) mod q for two
irreducible polynomials t1(x) = x

n
2 +ux

n
4 −1 and t2(x) = x

n
2 −ux

n
4 −1 in Zq[x]

where u2 = −2 mod q. Furthermore, all y ∈ Rq satisfying ∥ϕ(y)∥2 <
√
q are

invertible.

With the above lemma and Lemma 9 from [14], which argues that the prob-
ability sYi

corresponding to the hash query Yi being invertible and the sX for
the hash input X being zero is non-negligible, we can bound the probability δ
when q ≡ 3 mod 8 a prime and n be a power of 2 as

1

(ℓκ2n2)2κ+1
· (1− 4v

nκ
) ≤ δ ≤ 1

(ℓκ2n2)2κ+1
.

For δ being noticeable, we require that v > nκ

4 . Thus, the above rPHF possess
the well distributed hidden matrices property.

4 NTRU IBE from rPHF

In this section, we present the construction of our lattice-based IBE scheme based
on rPHF along with the security proof. The construction can be instantiated
by either our Type-I or Type-II rPHF. For each instantiation, we provide the
parameter set necessary to achieve the desired security properties.

KeySetup(1λ)→ (mpk,msk): On input the security parameter 1λ, this algorithm
runs as follow:

– Generate (h,Bh)← GenBasis(1λ).
– Generate hash key K← H.Gen(1λ)

– Sample a ring element u $←− Rq.
– Output the master public key mpk and master secret key msk: mpk =

(h,K),msk = Bh.

Extraction(msk, id,mpk) → skid: On input a master public key mpk=(h, K, u),
a master secret key msk = Bh ∈ Z2n×2n, and an identity id ∈ {0, 1}ℓ, this
algorithm runs as following:

– Run H.Eval(K, id)→ hid = [h
(0)

id , · · · , h
(d−1)

id ].
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– Sample (s = [s0, · · · , sd+1]) ← SampleLeft([1, h],hid, Bh, u, σ) such that

[1, h,hid]· s⊺ = u

– Output skid ← s ∈ Rd+2
q .

Encryption(mpk, id,m)→ C: this algorithm takes a message m ∈ {0, 1}n, a mas-
ter public key mpk = (h,K, u), and an identity id ∈ {0, 1}ℓ as input and does:

– Run H.Eval(K, id)→ hid = [h
(0)

id , · · · , h
(d−1)

id ];

– Choose a uniformly random ring element t $←− Rq;

– Choose a uniformly random ring element v $←− R×
q ;

– Choose noises e← DRd+2
q ,α, and e1 ← DRq,α′ ;

– Let fid = [1, h,hid]. Output C ← {c, cm} where

c← v· fid· t + e, cm ← (v· u)· t + e1 + m⌊q
2
⌋

Decryption(C, skid)→ m: On input user secret key skid = s ∈ Rd+2
q , and ciphertext

C = {c ∈ Rd+2
q , cm}, do

– Compute w← cm − c· s⊺;
– Let m = ⌊ w

q/2⌋;

– Output m.

4.1 Correctness and Parameter Selection

In this section, we provide two sets of parameters: one for the IBE scheme based
on our Type-I rPHF, and another for the IBE scheme based on Type-II rPHF.

From our Type-I rPHF, the resulting IBE has mpk size of ℓ vectors, ciphertext
size of 5 ring ellements, user secret key size of 4 ring elements. The IBE scheme
from Type-II rPHF strikes a balance between the ciphertext length and mpk
length, with a ciphertext length of 17 ring elements, user secret key size of 16
ring elements, and mpk length of O(

√
ℓ).

IBE from Type-I rPHF: We pick the following parameters:

q = ℓ4·n4ω(log2 n), σ = ℓ3·n 11
4 ω(log

3
4 n),

α′ = n
1
4ω(log

1
4 n), α = ℓ·nω(

√
log n)

Also for Type-I rPHF, we require that in the security proof the total number of
identity extraction query Q issued by adversary should satisfy that Q < q.

– n, q: n is a power of 2 and q is a prime and satisfies q ≡ 1 mod 2n.

19



– α′: According to Definition 1, set α′ = n
1
4ω(log

1
4 n) where three dRLWEn,q,α′

samples is given in the security proof.

– β: According to Theorem 13, we set β = n
1
4ω(log

1
4 n).

– α: We set α = 2s1([I2|Rid∗ ])α
′ with

s1([I2|Rid∗ ]) ≤ (β· ℓ+ δ)
√
n· (2
√
2 + ω(

√
log n))

for some constant δ ≈ 1√
2π

according to Lemma 1.

– σ: σ should be sufficiently large so SampleLeft and SampleRight work. Thus,
we set σ ≥ s1([Rid∗ ])∥B̃∥ω(

√
log n) where

s1([Rid∗ ]) ≤ β· ℓ
√
n· (2
√
2 + ω(

√
log n)), ∥B̃∥ ≈

√
q · e
2

.

– Error term: By Lemma 10, the error term e′ = e5 − e· s⊺ in Decryption
algorithm has the bound

|[ϕ(e5 − e· s⊺)]j | ≤ ℓ2n
3
2 ·ω(log n)√q + 1.5n

1
4ω(log

1
4 n).

Lemma 10. |ϕ(e)· [rot(s⊺)]j | ≤ ℓ2n
3
2 ·ω(log

3
2 n)
√
q .

Proof. By Lemma 3, we have

ϕ(e)· [rot(s⊺)]j ≤ ∥[rot(s⊺)]j∥αω(
√

log n)

And by Lemma 2 and 6, we have

∥[rot(s⊺)]j∥ ≤ β· ℓn· (2
√
2 + ω(

√
log n))

√
q · e
2

.

Thus we have |ϕ(e)· [rot(s⊺)]j | ≤ ℓ2n2·ω(log n)√q.

Lemma 11 (Correctness). Assume that error term is less than q/5 holds with
overwhelming probability. Then the above scheme has negligible decryption error.

Thus, to guarantee the correctness, we have

ℓ2n2·ω(log n)√q + 1.5n
1
4ω(log

1
4 n) <

q

5
.

IBE from Type-II rPHF: We pick the following parameters:

q = ℓ2n12·ω(log2 n), σ = ℓn6ω(log n),

α′ = n
3
2ω(log

9
4 n), α = d

3
2 ℓn

11
2 ω(log

9
4 n)

For Type-II rPHF, we require that in the security proof the total number of
identity extraction query Q issued by adversary should satisfy that Q < nκ

4 for
a constant κ.
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– n, q: n is a power of 2 and q is a prime and satisfies q ≡ 3 mod 8.

– d: d = logb q and here we set b = n.

– α′ and β: α′, β = n
3
2ω(log

9
4 n) according to Theorem 2.

– s1(Rid): According to Lemma 1, s1[ei,j ; ri,j ] = n2 · (
√
2+
√
d+ω(

√
log n))we

have s1(Rid) ≈ n2
√
dℓ· (bnd+ κn).

– α: We set α = 2s1([I2|Rid∗ ])α
′ with s1([I2|Rid∗ ]) ≤ n2

√
dℓ· (bnd+ κn) + 1.

– σ: σ should be sufficiently large so SampleLeft and SampleRight work. Thus,
we set σ ≥ s1([Rid])∥T̃g∥ω(

√
log n) and σ ≥ ∥B̃∥ω(

√
log n), thus we must

have

σ ≥
√

q· e
2
·ω(

√
log n) and σ ≥ n2

√
dℓ
√

b2 + 1(bnd+ κn)·ω(
√
log n).

For our parameter set, we have σ ≥
√

q·e
2 ·ω(

√
log n) satisfies both SampleLeft

and SampleRight requirement.

– Error term: The error term e′ = e1 − e· s⊺ in Decryption algorithm has the
bound

|ϕ(e)· [rot(s⊺)]j | ≤ ∥[rot(s⊺)]j∥αω(
√
log n) ≈ d2ℓn6√q·ω(log n)

|[ϕ(e5 − e· s⊺)]j | ≤ d2ℓn6√q·ω(log n) + n
3
2ω(log

9
4 n).

To guarantee the correctness, we should have

d2ℓn6√q·ω(log n) + n
3
2ω(log

9
4 n) <

q

5

4.2 Security Proof

Theorem 5 The NTRU IBE scheme presented above is IND-CPA adaptively
secure in the standard model assuming the underlying rPHF is (1, Q, β, ϱ, δ) −
rPHF, NTRU assumption holds, and dRLWEn,q,α′ is hard.

Proof. The proof proceeds in a sequence of games as follows:

Game0 : This game is identical to the original security game. At the end of the
game, A outputs coin∗. The challenger C sets coin′ = coin∗. We have∣∣∣∣Pr[X0]−

1

2

∣∣∣∣ = ∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[coin∗ = coin]− 1

2

∣∣∣∣ = ϵ0
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Game1 : In Game1, Challenger C performs exactly the same as in Game0, ex-
cept that C executes an abort event that is independent of the adversaries view.
At the beginning of the game, C runs H.TrapGen(1λ, h,gb) → (K′, td). Due to
NTRU assumption, h is indistinguishable with an uniformly random ring ele-
ments. C will keep td to itself. For identity id, C sets a function Fy(id) = yx

where (rx, ex, yx) ← H.TrapEval(td,K′, id). For a sequence of identities ID =
(id∗, id1, · · · , idQ) where id∗ represents the challenge identity and id1, · · · .idQ are
the identities queried by A key extraction queries, we define

γ(ID) = Pr
y
[Fy(id

∗) = 0 ∧ Fy(id1) ∈ I ∧ · · · ∧ Fy(idQ) ∈ I],

where the probability is taken over y sampled inH.TrapGen. For ID = (id∗, id1, · · · , idQ)
such that id∗ ̸= idi for i = 1, · · · , Q, we define γmin and γmax as the lower and up-
per bound of γ(ID) taken over all such ID and thus we have γ(ID) ∈ [γmin, γmax].

We have Game1 running as follows:

– Setup. Challenger C runs KeySetup(1λ) → (mpk,msk) and sends mpk to
adversary A.

– Key Extraction Query. and Challenge. phases are exactly identical as in
Game0.

– Output. In the final guess phase, A output a coin coin∗ ∈ {0, 1}. The chal-
lenger C now does the following:
Abort Check. C checks that whether the following condition holds:

τ(y, ID) = (Fy(id
∗) = 0 ∧ Fy(id1) ∈ I ∧ · · · ∧ Fy(idQ) ∈ I) (3)

Where id∗ is the challenge identity and idi is the identity for the ith key
extraction query. If condition (3) does not hold, the C sets coin′

$←− {0, 1}.
Otherwise, C performs identically as in Game0 and sets coin′ = coin∗.
Artificial Abort. The artificial abort proceeds the same as in [24]. The simu-
lator samples enough times the probability γ(ID) by choosing random y and
evaluating τ(y, ID′) to compute an estimate γ′(ID). Then if γ′(ID) ≥ γmin the
simulator will abort with probability γ′(ID)−γmin

γ′(ID) and take a random guess

coin′
$←− {0, 1}. Otherwise, the simulator will not abort.

We use Wi to describe the event that coin′ = coin in Gamei. According to Lemma
12, we have ∣∣∣∣Pr[X1]−

1

2

∣∣∣∣ ≥ 3

4
γmin· ϵ0.

Since we are using (1, Q, β, ϱ, δ)rPHF, we have γmin = δ.

Game2 : In Game2, we modify the way we generating the hash key K in mpk.
During the setup phase Game2, C returns mpk = (K′, h) where K′ is the output
of H.TrapGen algorithm. The rest of Game2 is identical to Game1.

From the computational close key property, we have the distributions of K′

and K negl(n)-close. Therefore, we have |Pr[X1]− Pr[X2]| = negl(n).
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Game3: In this game, we change how h are chosen in Game2. In Game3, C gener-
ates h $←− Rq. NTRU assumption guarantees that the distribution of h in Game2
and Game3 is indistinguishable. Same as in Game 1 and 2, C has the trapdoor
td for hash key K′. We use Tg to represent the basis of gadget vector gb.

Instead of using the trapdoor for [1, h], C now uses Tg to answer the key
extraction queries. To respond a key extraction query for id = (b1, · · · , bk) ∈
{0, 1}ℓ, C first constructs:

fid = [1, h,hid] ∈ R2+d
q

where hid = H.Eval(K′, id) = h· rid + eid + Fy(id)·gb.
Then, C needs to find short s ∈ R2+d

q such that fid· s⊺ = u.

For rid = [r(0)

id , · · · , r(d−1)

id ], eid = [e(0)

id , · · · , e(d−1)

id ], Rid =

[
e(0)

id · · · e
(d−1)

id

r(0)

id · · · r
(d−1)

id

]
∈

R2×d
q , gb ∈ Rd

q , we have hid = [1, h, h· rid + eid + Fy(id) · gb] .
The challenger C now does the following:

1. If Fy(id) /∈ I, abort the game and set coin′
$←− {0, 1} as in Game2;

2. Set s← SampleRight(h, Fy(id) · gb, rid, eid,Tg, u, σ) ∈ R2+d
q ;

3. Send skid ← s to A.
Since Tg is a basis for gb. According the property of algorithm SampleRight

with σ ≥ s1(Rid)∥T̃g∥ω(
√
log n), the generated s has distribution negl(n)-close

to DΛ⊥
u (fid),σ, which is the same as in Game2. Thus, we have Pr[X2] = Pr[X3].

Game4: In this game, C changes the way to generate challenge ciphertext. In the
challenge phase of Game4, for identity id∗ and a message m, C samples v $←− Rq

with an inverse, t $←− Rq, and e← DR2,α′ , em ← DR,α′ . C then computes

c = [v, v· h]· t + e ∈ R2
q, Rid =

[
e(0)

id · · · e
(d−1)

id

r(0)

id · · · r
(d−1)

id

]
∈ R2×d

q

ReRand
(
rotn([I2|Rid∗ ]), ϕ(c), α

′,
α

2α′

)
→ c′

and c′ = ϕ(c) ∈ Z(2+d)n
q . C sets the challenge ciphertext c∗ as

c∗ =
(
c′, cm = (v· u)· t + em + ⌊q

2
⌋mcoin

)
.

We claim that this change alters the view of A only negligibly. Observe that

ϕ(c) = ϕ([v, v· h]· t) + ϕ(e)

where ϕ(e) is distributed according to DZ2n,α′ . After applying the ReRand algo-
rithm, according to Lemma 4, the output c ∈ Z(2+d)n

q is

c =ϕ ([v, v· h]· t) · rotn([I2|Rid∗ ]) + ϕ(e′)

=ϕ([v, v· h, v· h
(0)

id∗ , v· h
(1)

id∗ ]· t) + ϕ(e′)
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where e′ ∈ R2+d
q is distributed according to D(2+d)n

α . Since for the challenge
identity, id∗, we have Fy(id

∗) = 0 and hid∗ = eid∗ + h· rid∗ for (rid∗ , eid∗ , yid∗) ←
H.TrapEval(td,K′, id∗). Thus we have the distribution of c∗ is statistically close
to that in Game3 and |Pr[X3]− Pr[X4]| = negl(n).

Game5: In this game, challenger C changes the way to generate challenge cipher-
text. In the challenge phase of Game5, C picks cm

$←− Rq, c′ $←− R2
q, e ← DR2,α′

and runs ReRand
(
rotn([I2|Rid∗ ]), ϕ(c), α

′, α
2α′

)
→ ϕ(c∗) , where c = c′ + e,

Rid = [eid∗ ; rid∗ ]. C sets the challenge ciphertext c∗ as c∗ = (c∗, cm) . As we show
in Lemma 13, if dRLWEn,q,α′ is hard, we have |Pr[X4]− Pr[X5]| = negl(n).

Analysis. Combining Game1 to Game5, we obtain that∣∣∣∣Pr[X5]−
1

2

∣∣∣∣ =
∣∣∣∣∣Pr[X1]−

1

2
+

4∑
i=1

(Pr[Xi+1]− Pr[Xi])

∣∣∣∣∣
≥
∣∣∣∣Pr[X1]−

1

2

∣∣∣∣− 4∑
i=1

|Pr[Xi+1]− Pr[Xi]| ≥
1

2
δ· ϵ0 − negl(n)

Since in Game5, the challenge ciphertext c∗ is independent from the value of
coin. We have

∣∣Pr[X5]− 1
2

∣∣ = negl(n). Therefore, we have ϵ0 = negl(n).

Lemma 12. For any PPT adversary A, we have∣∣∣∣Pr[X1]−
1

2

∣∣∣∣ ≥ 3

4
γmin

∣∣∣∣Pr[X0]−
1

2

∣∣∣∣ = 3

4
γmin· ϵ0.

Proof. The probability of event X1 (coin′ = coin) happens in Game1 is analyze
as following

Pr[X1]

=Pr[abort ∧ coin′ = coin] + Pr[abort ∧ coin′ = coin]

=Pr[coin′ = coin|abort] Pr[abort] + Pr[abort ∧ coin′ = coin]

=
1

2
Pr[abort] + Pr[abort ∧ coin∗ = coin]

=

(
1

2
− 1

2
Pr[abort]

)
+ Pr[abort ∧ coin∗ = coin]

=
1

2
+

1

2
Pr[abort ∧ coin∗ = coin]− 1

2
Pr[abort ∧ coin∗ ̸= coin]

=
1

2
+

1

2
Pr[abort|coin∗ = coin] Pr[coin∗ = coin]− 1

2
·

Pr[abort|coin∗ ̸= coin] Pr[coin∗ ̸= coin]

=
1

2
+

1

2
Pr[abort|coin∗ = coin](

1

2
+ ϵ0)−

1

2
Pr[abort|coin∗ ̸= coin](

1

2
− ϵ0) (4)
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The analysis of the artificial abort is the same as in [24] and from it we have

Pr[abort|coin∗ = coin](
1

2
+ ϵ0)− Pr[abort|coin∗ ̸= coin](

1

2
− ϵ0) ≥

3

2
γmin· ϵ0 (5)

Thus, combining (4) and (5) we have
∣∣Pr[X1]− 1

2

∣∣ ≥ 3
4γmin· ϵ0.

Lemma 13. With the RLWEn,q,α′ assumption, we have |Pr[X4] − Pr[X5]| =
negl(n).

Proof. Assume there is an adversary A who has non-negligible advantage in
distinguishing Game4 and Game5. C then can use A solve dRLWEn,q,α′ .
C receives the dRLWE problem instances {(ai, ui)}3i=1∈(Rq × Rq)

3. If a1 is
not invertible, C reject. This is reasonable since when q = Ω(n), the probability
for a uniform element of Rq being invertible is non-negligible [23].

Without loss of generality, we assume that ui = u′
i + e′i for e′i ← DR,α′ . C

then runs the game as follow.

– Setup. Challenger C sets

u := a−1
1 · a3, h := a−1

1 · a2, ĥ := [1, h]

where a−1
1 is the inverse of a1. It also generates K′ = (h0, {hi,j}(i,j)∈[2]×[t])

as described in Game3. C returns mpk = (h,K′, u).
– Key Extraction Query. this phases are exactly identical as in Game4 including

aborting the game.
– Challenge. Adversary A chooses an identity id∗ on which it wishes to be

challenged. C samples coin
$←− {0, 1} and computes Fy(id

∗). If Fy(id
∗) ̸= 0,

C aborts and sets coin′
$←− {0, 1}. Otherwise, C sets the challenge ciphertext

C∗ as follow

ReRand
(
rotn([I2|Rid∗ ]), ϕ([u1, u2]), α

′,
α

2α′

)
↓

ϕ(c∗) ∈ Z(2+d)n
q

C∗ =
(
c∗, cm = u3 + ⌊

q

2
⌋mcoin

)
.

Here v will be implicitly setted as a1. C returns C∗ to A.
– Output. In the final guess phase, A output a coin coin∗ ∈ {0, 1}. The chal-

lenger C sets coin′ = coin. C outputs 1 if coin′ = coin. Otherwise, output
0.

If {ai, ui}i∈[3] are valid RLWE samples such that ui = ai· s + ei for some s ∈ Rq,
C perfect simulates the view of A in Game4. If ui are sampled uniformly random
from Rq, C perfect simulates the view of A in Game5. Thus we have

|Pr[X4]− Pr[X5]| = adv
dRLWEn,q,α′

C .
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5 Short Signature from rPHF

In this section, we are going to present the construction of our signature scheme
based on our rPHF H =( H.Gen, H.Eval, H.TrapGen, H.TrapEval) proposed in
Section 3.2.
Keygen(1ℓ)→ (vk, sk) : On input the security parameter 1λ, this algorithm runs
as follow:

– Generate (h,Bh)← GenBasis(1λ);

– Generate K← H.Gen(1λ)

– Choose u $←− Rq;

– Output the verification key vk and signing key msk,

vk = (h,K, u) , sk = Bh.

In the KeySetup algorithm, Bh is a short basis of Λh,q. It allows us to sample
(s1, s2), where s1 + h· s2 = t mod q for a given t.

Sign(M, vk, sk)→ σ : Given message M ∈ {0, 1}ℓ, verification key vk = (h,K, u),
and signing key sk = Bh, this algorithm runs as follow

– Run H.Eval(K,M)→ z ∈ Rd
q ;

– Let h = [1, h], sample a short vector s← SampleLeft(h, z,Bh, u, σ);

– Return signature s.

Verify(s,M, vk)→ 0/1 : Given signature s ∈ R2+d
q , message M , and verification

key vk = (h,K, u), this algorithm then checks for h = [1, h], H.Eval(K,M) →
z ∈ Rd

q , whether [h, z]· s⊺ = u and ∥s∥ ≤ φ holds or not. If it holds, output 1;
otherwise, output 0.

Correctness and Parameter Selection for Type-I rPHF

– n, q: n is a power of 2, q is a prime and satisfies q ≡ 1 mod 2n.

– β: According to Theorem 1, we set β = n
1
4ω(log

1
4 n).

– φ = σ
√
4n.

– σ: should be sufficiently large to allow SampleLeft and SampleRight work.
Thus, According to Lemma 1, 7, we set σ ≥ s1(R)· ∥B̃∥·ω(

√
log n) for B

the NTRU basis, s1(R) ≤ ℓ·β
√
n· (2
√
2+ω(

√
log n)), where R =

[
e(0)

m e(1)

m

r(0)

m r(1)

m

]
.
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Correctness and Parameter Selection for Type-II rPHF

– n, q: n is a power of 2, q is a prime and satisfies q ∼= 3 mod 8.
– β: According to Theorem 2, we set β = n

3
2ω(log

9
4 n).

– b: We set b = n and thus we have d = logb q

– φ = σ
√
(d+ 2)n.

– σ: should be sufficiently large to allow SampleLeft and SampleRight work.
Thus, According to Lemma 1,6,7, we set σ ≥

√
q·e
2 ·ω(

√
log n), and σ ≥

s1(R)· ∥T̃g∥·ω(
√
log n) for s1(R) ≈ n2

√
dℓ· (bnd+ κn), where R =

[
em
rm

]
.

We set s1(R)∥T̃g∥·ω(
√
log n) ≈ n2

√
dℓ· (bnd + κn)·

√
b2 + 1 ≈

√
q·e
2 and get

q ≈ ℓ2n10. For ℓ = n, we have d = 12.

5.1 Security Proof
Theorem 6 The signature scheme presented above is existentially unforgeable
in the standard model assuming the underlying rPHF is (1, Q, α, ϱ, δ) − rPHF,
NTRU assumption holds, and dRLWEn,q,β problem are hard.

Proof. If there exists an adversary A who can break the existentially unforge-
ability of our signature scheme, we then can construct a simulator S who breaks
the NTRU problem.
Key Generation. Given instance (h, u) ∈ Rq × Rq, simulator sets h = [1, h]. S
then generates (K, td)← H.TrapGen(1λ, h,gb). According the property of rPHF,
trapdoor mode key K will be computationally indistinguishable with normal
mode hash key.
Signing Oracle. On given a message M , simulator S computes (rm, em, ym) ←
H.TrapGen(td,K,m). If ym = 0, abort. Otherwise, run SampleRight(h, ym·gb, rm,
em, Tg, u, σ)→ s ∈ R2+d

q .
Forge. Finally, adversary A will output a message signature pair (Mf , sf ) as
forgery where Mf has not been queried to signing oracle. Simulator S runs
H.TrapGen(td,K,Mf ) → (rmf

, emf
, ymf

). If ymf
̸= 0, S aborts. Otherwise, S

obtains smf
∈ R2+d

q which satisfies

[1, h, h· rmf
+ emf

]· s⊺mf
= u. (6)

For smf
= [s1, s2, s′], S then has

(s1 + rmf
· s′⊺) + h· (s2 + rmf

· s′⊺) = u.

S obtains t = [s1 + rmf
· s′⊺, s2 + rmf

· s′⊺] as the solution to the NTRU problem
(h, u) with probability at least δ. According to the property of our rPHF, we
have ∥r(j)

mf
∥, ∥e(j)

mf
∥ ≤ α

√
n. Thus, we have ∥s1 + rmf

· s′⊺∥, ∥s2 + rmf
· s′⊺∥ ≤

σ
√
n(1 + dnα).
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