
VOLE-in-the-head signatures from
Subfield Bilinear Collisions

Janik Huth1,2 and Antoine Joux1

1 CISPA - Helmholtz Center for Information Security, Saarbrücken, Germany
janik.huth@cispa.de, joux@cispa.de

2 Saarland University, Saarbrücken, Germany

Abstract. In this paper, we introduce a new method to construct a sig-
nature scheme based on the subfield bilinear collision problem published
at Crypto 2024. We use techniques based on vector oblivious linear eval-
uation (VOLE) to significantly improve the running time and signature
size of the scheme compared to the MPC-in-the-head version.

1 Introduction

The Multi-Party Computation in the Head (MPCitH) paradigm was first intro-
duced in [18] as a new approach to design Zero-Knowledge (ZK) protocols. This
approach leverages a multiparty protocol checking an NP-relation R(x,w) to
construct a ZK protocol where a prover P convinces a verifier V that she knows
a witness w for a given (public) value of x, without disclosing any information
about w. In the MPCitH protocol, the prover emulates the execution of the un-
derlying MPC protocol checking the relation being proven. The verifier V then
checks parts of this execution in a way that allows him to verify the correctness
of the relation while preserving the secrecy of the witness w. As other identifica-
tion protocols, those based on MPCitH can be turned into signature schemes by
using the Fiat-Shamir transform [14]. In recent years, a large number of MPCitH-
based signature schemes have been proposed [12,13,5,3,11]. These schemes are
quite efficient in terms of speed, but the corresponding signatures remain quite
large compared to classical signature schemes such as [22,24,2]. In order to limit
this problem and reduce the size of signatures, Baum et al. introduced an ad-
ditional twist on MPCitH, called VOLE-in-the-head [4], which relies on vector
oblivious linear evaluation (VOLE) and uses a non-interactive version of the
SoftspokenOT technique [23]. This technique significantly reduces the signature
size and, as a side bonus, also improves the running times of signature schemes,
for example, see [8,10,6].

In this paper, we consider the subfield bilinear collision (SBC) problem pro-
posed at Crypto 2024 [17] and develop a VOLE-in-the-head signature scheme
based on this problem. In [17], it already appeared that the structure of the
problem was highly suited to the MPCitH paradigm leading to a simple and
quite compact signature. In the present paper, we show that the structure of the
SBC problem also works very well in the context of VOLE-in-the-head. In fact,

because of this, we do not need to use the full extent of the functionalities pre-
sented in [4]. Instead, we reconstruct a specific version of VOLEitH from scratch
dedicated to the SBC problem in order to obtain a simplified scheme.

2 Preliminaries

2.1 Notations

We denote the target security level of our scheme by λ. For any positive integer
m ∈ Z+, we denote the set {0, . . . ,m− 1} by [m]. For m > 1, we denote the set
{1, . . . ,m− 1} by [m]∗.

Let S be a finite set. Then the notation s
$←− S indicates that s is sampled

uniformly at random from S.
Let F be a finite field. We denote the polynomial ring over F with indeter-

minate X by F[X]. We indicate vectors by using the arrow notation, e.g. x⃗.
Coordinates of x⃗ are denoted xi, with indices starting at 0.

We denote the dot product between two vectors u⃗ ∈ Fn and x⃗ ∈ Fn by
u⃗ · x⃗ =

∑n−1
i=0 uixi. Let a⃗ ∈ Fn1 and b⃗ ∈ Fn2 be two vectors of dimensions n1 and

n2 respectively. We denote the vector of dimension n1 + n2 resulting from the
concatenation of the coordinates of a⃗ and b⃗ by (⃗a, b⃗).

Additionally, we place ourselves in the random oracle model and consider
every hash function used in this paper as a random oracle. In particular, H is
always modeled by a random oracle.

2.2 The SBC Problem

The subfield bilinear collision (SBC) problem was introduced in [17]. We recall
it using the same notations as in [17]:

Definition 1. Let q be a prime power and let k, n be positive integers.

– Problem instance: Two vectors u⃗, v⃗ ∈
(
Fqk

)n
, which are linearly independent

over Fqk .
– Solution: Two vectors x⃗, y⃗ ∈ (Fq)

n
, linearly independent over Fq, that satisfy

the relation:

(u⃗ · x⃗) (v⃗ · y⃗) = (u⃗ · y⃗) (v⃗ · x⃗) . (1)

We denote such an instance of the SBC problem by SBC[u⃗, v⃗] and write (x⃗, y⃗) ∈
SBC[u⃗, v⃗] when the vectors x⃗, y⃗ ∈ (Fq)

n
are a solution of the instance specified

by u⃗ and v⃗.

Remark 1. In (1), we use the canonical embedding from Fq to Fqk . Therefore,
all operations are well-defined. As mentioned in [17], it is simpler and preferable
to use normalized solutions for the SBC problem of the form x⃗′ = (x⃗, 1, 0) and

y⃗ = (y⃗′, 0, 1) for x⃗, y⃗ ∈ (Fq)
n−2

. Furthermore, [17] shows how to transform
a regular solution into a normalized one using simple linear algebra. In the
normalized case, we use the notation (x⃗′, y⃗′) ∈ NSBC[u⃗, v⃗] to denote a solution.

2

Generating instances with a planted solution. In order to design identification
and signature schemes from the SBC problem, we need the ability to efficiently
create instances together with a solution. The following method from [17] solves
this issue.

Given q, k and n, we can generate an instance of the SBC problem to-
gether with a normalized solution in the following way: Choose, uniformly at
random two vectors x⃗, y⃗ ∈ (Fq)

n−2
and let x⃗′ := (x⃗, 1, 0) and y⃗′ := (y⃗, 0, 1).

Then randomly select the vector coordinates u⃗ ∈ Fn
qk and the n− 1 coordinates

v0, . . . , vn−2 ∈ Fqk of v⃗. Finally, compute the missing coordinate vn−1 as

vn−1 =
(u⃗ · y⃗′)

(∑n−2
i=0 vix

′
i

)
− (u⃗ · x⃗′)

(∑n−2
i=0 viy

′
i

)
y′n (u⃗ · x⃗′)

.

If the denominator y′n (u⃗ · x⃗′) happens to be zero, the computation of vn fails.
This occurs with negligible probability. In this case, we can restart the se-
lection of u⃗ and v⃗. Similarly, in the very unlikely case that u⃗, v⃗ are linearly
dependent, we select new vectors instead. The construction guarantees that
(x⃗′, y⃗′) ∈ NSBC[u⃗, v⃗].

Hardness of SBC. Following the heuristic analysis from [17], the NSBC problem
is hard for n ≈ k

2 . Note that, as mentioned in [17], any advance concerning
the SBC problem could be leveraged into a faster bilinear descent step for the
computation of discrete logarithms in small characteristic finite fields [19].

To design our scheme, we follow the parameters suggested in [17] for a security
level of λ = 128 bits, namely we use q = 2, n = 130 and k = 257.

2.3 The MPC-in-the-head paradigm

The construction of a ZK proof in [17] relies on the MPCitH paradigm introduced
in [18]. We first define notations for basic secure multiparty computations which
we use throughout this paper. We use additive sharings of finite field elements
and finite field vectors. Let N be the number of parties. Then an N -sharing of
a finite field element x ∈ F is an N -tuple

JxK =
(
xJ0K, . . . , xJN−1K

)
such that

x =

N−1∑
i=0

xJiK (in F).

We call xJiK the i-th share of x. Similarly, we use the notation

Jx⃗K =
(
x⃗J0K, . . . , x⃗JN−1K

)
3

for a sharing of a finite field vector x⃗ ∈ Fn. In our setting, each party receives
one of the N shares.

A sharing of a given value x is usually obtained by computing N −1 random
values xJ0K , . . . , xJN−2K and by setting xJN−1K = x −

∑N−2
i=0 xJiK mod |F|. In

this paper, we often use a random oracle to derive the shares appearing in the
protocol. In this situation, each share can be viewed as a random value, and
summed together they would share a random value. Thus, to obtain a sharing
of the desired value, we need an offset value δx, which is computed as

δx = x−
N−1∑
i=0

xJiK .

We can then reconstruct x using the formula

x = δx +

N−1∑
i=0

xJiK .

This could also be viewed as an (exact) sharing of x between N + 1 parties. By
introducing these offset values, we can use a random oracle to derive sharings if
needed and can simplify the notation we use in our protocol description.

Hypercube technique. A prevalent tool to improve efficiency of MPCitH-based
schemes is the hypercube technique introduced in [1]. Let N = 2D be the number
of parties. This approach transforms one instance of the protocol with N = 2D

parties into D instances of the protocol, each involving only 2 parties, while still
having the same total soundness error as the original protocol. Let the j-th bit
of the binary decomposition of an integer i be Bj(i). The process of converting
one protocol instance with N = 2D parties into D instances with 2 parties is
referred to as folding of the shares.

Consider the sharing of an element x between N parties of the form

x =

N−1∑
i=0

xJiK.

For any fixed value j ∈ [D], we see that

x =
∑

Bj(i)=0

xJiK +
∑

Bj(i)=1

xJiK

= xj
J0K + xj

J1K

is a sharing of x between two parties. In the hypercube technique, D such proto-
cols between two parties are run in parallel, each having a soundness error of 1

2 .

We use the notation
(
xj

J0K , xj
J1K

)
j∈[D]

← Folding
(
xJ0K , . . . , xJN−1K

)
to denote

this construction. For efficiency, we use the fast folding algorithm with running
time O(N) described in [17, Section 6] in our implementation.

4

The key point of the hypercube technique is that the choice of one missing
share among N is equivalent to the choice of one missing share in each derived
binary sharing. Note that the correspondence between the missing positions
simply comes from the binary decomposition of the missing index among N .
Furthermore, the derived binary sharings are mutually independent.

2.4 Puncturable PRFs

To reduce communication cost, the N -sharings appearing in the construction are
based on the use of puncturable pseudo-random functions (PPRFs). More specif-
ically, we use the classical PPRF based on GGM trees [15], which is mentioned
for example in [7,21]. Starting from a root seed, the idea is to build a binary tree
with N = 2D leaves by recursively applying a length-doubling pseudo random
generator (PRG) to obtain the left and right children of a node. To reveal all N
leaves of such a binary tree except one leaf i∗ ∈ [N], the idea is to reveal all the
nodes of the siblings of the path from the root seed to the leaf i∗. By using this
method, all leaves except i∗ can be reconstructed by communicating ⌈log2(N)⌉
nodes instead of N − 1 leaves.

In our scheme, we use correlated GGM (or cGGM) trees, as introduced in [16].
The idea is to build a tree where the sum of all nodes on each level is preserved as
the tree is being constructed. In order to do that, it suffices to modify the length-
doubling PRG so that the sum of the label of the left and right descendants of
any node is equal to the label of the node itself. Given the (salted) hash function
H and any node T , this is easily achieved by setting the left child of T to H(T)
and the right child of T to T −H(T). In the binary case q = 2, the right child is
rewritten as T ⊕H(T) and we speak of a XOR-preserving GGM tree. Note that
correlated GGM trees have a limitation. Namely, the size of the correlated value
is limited by the size of the inner nodes of the tree, usually equal to λ bits. As
a consequence, if the tree is used to share more than λ bits between the parties,
it is necessary to compute and transmit offsets for the values beyond the first λ
bits. Of course, this constraint of having offsets does not apply to purely random
values shared between the parties.

In order to improve the running time of the scheme for λ = 128, we use a
cGGM tree construction based on the AES block cipher instead of a salted hash
function. This technique was introduced in [9] and takes full advantage of the
AES instruction set available on many recent CPU architectures. In the standard
GGM, we need two keys K0 and K1, the left child is set to T⊕AESK0(T) and the
right child is set to T⊕AESK1(T). It is important to note that a direct application
of AES would not lead to secure PPRF construction because decryption would
allow one to climb back to the root node. In order to achieve a XOR preserving
tree, we still use two keys and define the left node to be AESK0

(T)⊕AESK1
(T),

which leads to a right node of T ⊕AESK0(T)⊕AESK1(T).

5

3 Identification protocol based on SBC

Consider an NSBC instance NSBC[u⃗, v⃗] for u⃗, v⃗ ∈
(
Fqk

)n
. Based on the cGGM

tree construction described in Section 2.4, we build an interactive Zero-Knowledge
proof of knowledge of a solution (x⃗′, y⃗′) ∈ NSBC[u⃗, v⃗] between a prover P and a
verifier V. As previously explained, the normalized vectors x⃗′ and y⃗′ are written
in the form x⃗′ = (x⃗, 1, 0) and y⃗′ = (y⃗, 0, 1) for x⃗, y⃗ ∈ (Fq)

n−2
. For simplicity, we

only consider the case q = 2 for this construction. In other words, the secret key
of our scheme consists of the 2n− 4 bits forming x⃗ and y⃗.

3.1 Correlating multiple cGGM trees

To design our signature scheme, we need multiple (different) sharings of the
vectors x⃗ and y⃗ between 2 parties in the hypercube setting. More precisely, the
number of binary sharings can never be lower than the desired security level λ.
Furthermore, depending on the details of the scheme and of its security proof, a
few extra sharings might be needed.

In particular, we need to be able to construct a large number of (indepen-
dent) sharings of x⃗ between 2 parties. When doing that, it is essential to ensure
that the same value of x⃗ is used everywhere. With a standard cGGM tree with
N parties, we obtain log2(N) such sharings. And, by construction, both the
prover and verifier have the guarantee that all sharings are for the same vector
x⃗. Unfortunately, N cannot be arbitrarily large, since it would make the com-
putation costs too high. As a consequence, repetition is needed to obtain a large
enough number of sharings. Using τ repetitions, we obtain a total of τ ·D binary
sharings, and to ensure the desired security level, we require τ ·D ≥ λ.

In this section, we introduce a technique that allows us to guarantee the
equality of the vector x⃗ across several distinct cGGM trees. This is achieved
by a layered construction: first, an initial cGGM tree is built, followed by the
hypercube folding, which is used to initialize a second level consisting of τ distinct
cGGM trees.

First, we construct the initial cGGM tree, which we also call the pre-tree,
that contains 2τ leaves, where every level sums to x⃗, using a bitwise XOR on λ
bits. To initialize this tree, we generate a random initial value Rx⃗ and set the
two sibling elements on the second level of the tree as Rx⃗ and Rx⃗ ⊕ x⃗. The root
node is unused and can remain unassigned. The XOR of these two nodes is x⃗ by
design. From them, we compute the next levels of a XOR-preserving cGGM tree
Tx⃗pre

with 2τ leaves. We call this functionality the generation of the Pre-Tree

and denote it by Tx⃗pre
← cGGM(Rx⃗, Rx⃗ ⊕ x⃗, 2τ). Let (x⃗J0K , . . . , x⃗J2τ−1K) be the

leaves of Tx⃗pre
.

Using the hypercube folding for these leaves, we obtain τ (pre) sharings of x⃗
between two parties of the form Jx⃗Kj =

(
x⃗J0Kj , x⃗J1Kj

)
for j ∈ [τ] by using the

function Folding
(
x⃗J0K , . . . , x⃗J2τ−1K

)
. By construction, we have that x⃗J0Kj⊕x⃗J1Kj =

x⃗ for j ∈ [τ].
We can use each of these sharings to initialise a second level containing τ new

correlated trees Tx⃗j
for j ∈ [τ]. Each of these trees can then be fully computed

6

with the cGGM technique. We thus obtain τ trees Tx⃗0
, . . . , Tx⃗τ−1

with 2D leaves

each using the function Tx⃗j
← cGGM(x⃗J0Kj , x⃗J1Kj , 2D) for each j ∈ [τ]. The

leaves of tree Tx⃗j
are denoted by

(
x⃗

J0K
j , . . . , x⃗

J2D−1K
j

)
. By using the hypercube

folding on the leaves of each of these trees again, we obtain D sharings of x⃗

between 2 parties for each of the τ trees. We denote this by
(
x⃗

J0Ki
j , x⃗

J1Ki
j

)
i∈[D]

←

Folding
(
x⃗

J0K
j , . . . , x⃗

J2D−1K
j

)
for j ∈ [τ].

Since we used XOR preserving cGGM trees on both layers of our construc-
tion, this is guaranteed to yield a total of τ ·D hypercube sharings of the same
value x⃗.

To simplify the notation, we renumber the τ · D sharings obtained in this
way and simply write them as:

x⃗J0K
m ⊕ x⃗J1K

m = x⃗ for each m ∈ [τ ·D].

In addition, by using a pseudo-random function to expand the leaves of each
tree Tx⃗j

into more than λ bits, it is easy to produce shares for additional values
in each tree. Note, however, that these extra values are not correlated. As a
consequence, they might require offsets and extra precautions to prove equality
across trees.

Punctured keys for the correlated cGGM family. When giving out the punctured
key for a correlated cGGM family, we need to do it in a way that guarantees to
the verifier that the construction was properly used. Thus, it is not sufficient to
independently give a punctured key for each tree from the second level. Indeed,
such an opening would be possible even with completely independent trees. Thus,
equality across trees would not be guaranteed. Instead, we first give a punctured
key for the pre-tree. From this punctured key, the verifier can recover all the
leaves of the pre-tree but one. Thus, after hypercube folding he learns exactly
one node on the second level of each of the τ trees. Note that these nodes would
normally be part of the punctured keys of the second level trees, so this technique
allows us to remove one element from each of the second level punctured keys.
Therefore, proceeding in this manner does not modify the overall size of the
global punctured key. Indeed, we remove τ elements and replace them by the
punctured key of the pre-tree, which contains τ nodes. To locate the missing
position that is need in the pre-tree, it suffices to assemble the high order bits
of the missing nodes of each second-level tree into a τ -bit number.

3.2 From sharings to Vector Oblivious Linear Evaluation (VOLE)

In our use of the trees described in the above section, the prover always knows
the complete trees, while the verifier only lacks one leaf of every tree (including
the pre-tree). At the level of the sharings, it means that for every m ∈ [τ ·D],

the verifier knows only one value x⃗
JbmK
m (out of two) for a bit bm of its choice,

while the prover knows both.

7

It is equivalent and convenient to say that the prover creates an affine vec-
torial function:

fm(bm) = x⃗J0K
m ⊕ bm · x⃗

and that the verifier chooses bm and learns fm(bm).
With this view in mind, we can now pick a series of random coefficients αm

in the large field F2k and consider the function:

F⃗ =

τD−1∑
m=0

αmfm(bm) =

τD−1∑
m=0

αmx⃗J0K
m +

[
τD−1∑
m=0

αmbm

]
· x⃗.

Remark that F⃗ is an affine function known to the prover and that the verifier
chooses the evaluation point ∆ =

∑τD−1
m=0 αmbm and learns the value F⃗ (∆)

obtained by evaluating F⃗ at this point.
In principle, the coefficients αm could be pre-specified as part of the scheme.

However, to avoid casting suspicion on the choice of coefficients, we feel that it
is preferable to have them chosen at random by the honest verifier.

3.3 A simple but inefficient construction

As already mentioned, cGGM trees with internal nodes of size λ bits are limited
and can only produce correlated values up to λ bits. Unfortunately, the secret
key of the SBC problem contains a total of 2λ bits, namely x⃗ and y⃗. To illustrate
our construction in a simple but inefficient way, let us use the construction of
Section 3.1 twice, in order to independently get τ ·D sharings of each of x⃗ and
y⃗. We write them as:

x⃗J0K
m ⊕ x⃗J1K

m = x⃗ and y⃗J0K
m ⊕ y⃗J1K

m = y⃗ for each m ∈ [τ ·D]. (2)

Proceeding as in Section 3.2, we use these two families of correlated trees to
define two vectorial functions F⃗x, F⃗y : F2k → (F2k)

n−2
:

F⃗x(∆) = A⃗Fx +∆ · x⃗,
F⃗y(∆) = A⃗Fy

+∆ · y⃗,

whose constant coefficients are given by

A⃗Fx = F⃗x(0) =

τ ·D−1∑
m=0

αm x⃗J0K
m and A⃗Fy = F⃗y(0) =

τ ·D−1∑
m=0

αm y⃗J0K
m .

Note that, since we want to evaluate both functions at the same ∆, the missing
tree leaves in both families are located in the same manner.

Before learning the evaluation point ∆, the prover computes the polynomial
Φ in ∆ defined as:

Φ(∆) :=

u⃗ ·

F⃗x(∆)
1
0

v⃗ ·

F⃗y(∆)
0
1

−
u⃗ ·

F⃗y(∆)
0
1

v⃗ ·

F⃗x(∆)
1
0


8

=

u⃗ ·

A⃗Fx

1
0

v⃗ ·

A⃗Fy

0
1

−
u⃗ ·

A⃗Fy

0
1

v⃗ ·

A⃗Fx

1
0


+

[v⃗ ·

A⃗Fy

0
1

u⃗ ·

x⃗
1
0

+

u⃗ ·

A⃗Fx

1
0

v⃗ ·

y⃗
0
1


−

u⃗ ·

A⃗Fy

0
1

v⃗ ·

x⃗
1
0

−
v⃗ ·

A⃗Fx

1
0

u⃗ ·

y⃗
0
1

]
∆

+

u⃗ ·

x⃗
1
0

v⃗ ·

y⃗
0
1

−
u⃗ ·

y⃗
0
1

v⃗ ·

x⃗
1
0

∆2.

Remark 2. Note that Φ is of the form

Φ(∆) = A+B∆

if and only if (x⃗′, y⃗′) ∈ NSBC[u⃗, v⃗] for x⃗′ = (x⃗, 1, 0), y⃗′ = (y⃗, 0, 1). The coefficients
A,B ∈ F2k are given by

A =

u⃗ ·

A⃗Fx

1
0

v⃗ ·

A⃗Fy

0
1

−
u⃗ ·

A⃗Fy

0
1

v⃗ ·

A⃗Fx

1
0

 ,

B =

v⃗ ·

A⃗Fy

0
1

u⃗ ·

x⃗
1
0

+

u⃗ ·

A⃗Fx

1
0

v⃗ ·

y⃗
0
1


−

u⃗ ·

A⃗Fy

0
1

v⃗ ·

x⃗
1
0

−
v⃗ ·

A⃗Fx

1
0

u⃗ ·

y⃗
0
1

 .

We use this property of Φ in our ZK protocol.

The prover sends the coefficients A,B ∈ F2k to the verifier. The verifier responds
by sending back random challenges i∗0, . . . , i

∗
τ−1 ∈ [2D], one for each tree. The

prover returns the PPRF keys Ki∗j
for the trees Tx⃗j

and Ty⃗j
for each j ∈ [τ] to

the verifier.
As explained in Section 3.2, this corresponds to the verifier choosing an eval-

uation point

∆∗ :=

τ ·D−1∑
m=0

bmαm,

and obtaining the values F⃗x(∆
∗) and F⃗y(∆

∗). Equipped with this knowledge,
the verifier can compute Φ(∆∗) as

Φ(∆∗) =

u⃗ ·

F⃗x(∆
∗)

1
0

v⃗ ·

F⃗y(∆
∗)

0
1

−
u⃗ ·

F⃗y(∆
∗)

0
1

v⃗ ·

F⃗x(∆
∗)

1
0

 .

9

He then checks whether Φ(∆∗) = A+B∆∗ and accepts or rejects accordingly.

Remark 3. The protocol accepts a wrong instance of vectors (x⃗′, y⃗′) ̸∈ NSBC[u⃗, v⃗]
if ∆∗ is a root of the polynomial

Φ (∆)−B∆−A.

For (x⃗′, y⃗′) ̸∈ NSBC[u⃗, v⃗], Φ(∆) is a quadratic polynomial in ∆. Therefore,
Φ (∆) − B∆ − A has at most two roots. Since the evaluation point is chosen
in a set of cardinality 2τD, the probability of getting a false positive is bounded
by 21−τD.

3.4 Consistency checks

In Section 3.3, we use two independent cGGM trees. One to derive τ D sharings
of x⃗ and one to derive τ D sharings of y⃗. Despite its simplicity, this approach has
a very high cost since the need for opening two puncturable PRF families doubles
the amount of data. In this section, we address the problem of implementing the
same basic idea while using a single family of cGGM trees, based on x⃗. This leads
to a significant decrease in the required communication cost for the scheme but
requires additional techniques.

As mentioned in Section 3.1, we can use the tree family provided to share
x⃗ to create sharings of extra values, simply by applying a PRF to extend the
size of individual leaves. However, this creates two problems. First, every tree
induces sharings of random values, thus offsets are required to set the sharings to
the desired value. As a consequence, each of the τ cGGM trees created to share
x⃗ can be made to share y⃗ by providing a corresponding offset value. Since the
communication costs for these offsets are much lower than for an extra family
of cGGM trees, this is worthwhile in terms of signature size.

The second problem is more subtle and harder to fix. By providing an offset
for y⃗, we can make sure that each of the τ cGGM trees provides D sharings of
a value y⃗i. However, nothing guarantees, from the verifier’s viewpoint, that all
these values are identical. This could be exploited by a cheating prover to boost
his cheating probability. To remedy this, we need to add a consistency check
that lets the verifier check that all the y⃗i for i ∈ [τ] are really equal. This idea
of performing a (probabilistic) consistency check is known as the SoftSpokenOT
technique [23]. In our case, it can be somewhat simplified and we now describe
our version in detail.

For the purpose of realizing the equality testing, we extend each leaf in the
family of cGGM trees created to share x⃗ in order to produce additional sharings
of two additional elements: the second secret value y⃗ and an extra element z
from F2k . Since y⃗ is fixed, one offset is required for each of the τ trees. For z,
since a random element is requested, it is tempting to assume that no offsets
are needed. However, to prove equality between sharings of y⃗, we also need the
sharings of z to be equal across the trees. As a consequence, we can only skip
the offset corresponding to z for the first of the cGGM trees in the family.

10

More precisely, from each leaf x⃗
JiK
j ∈ (F2)

n−2
, the prover derives the shares

y⃗
JiK
j ∈ (F2)

n−2
and zj

JiK ∈ F2k for each (i, j) ∈ [2D] × [τ], using the random
oracle H. To commit to the family of τ subtrees, he sends the offset values
δy⃗j
∈ (F2)

n−2
and δzj ∈ F2k such that

y⃗j =

2D−1∑
i=0

y⃗
JiK
j + δy⃗j

and zj =

2D−1∑
i=0

zj
JiK + δzj for j ∈ [τ], (3)

to the verifier. Note that we set δz0 to 0 and do not send this value.
After the prover has committed to the cGGM trees, the verifier computes

a random vector µ⃗ ∈ (F2k)
n−2

and sends it to the prover. The goal of µ⃗ is to
provide an efficient check that the pairs (y⃗j , zj) are equal among the rounds.
Since µ⃗ is selected randomly and not under the control of the prover, it suffices
to check that zj + µ⃗ · y⃗j is constant across the rounds.

Remark 4. Note that the goal of z is to act as a one-time-pad and hide the value
µ⃗ · y⃗ which would, if revealed, leak the secret y⃗.

This equality check relies on the following lemma.

Lemma 1. Let y⃗, y⃗′ ∈ (F2)
n−2

and z, z′ ∈ F2k with (y⃗, z) ̸= (y⃗′, z′) and let

µ⃗
$←− (F2k)

n−2
. Then Pr[z + µ⃗ · y⃗ = z′ + µ⃗ · y⃗′] ≤ 2−k, where the probability is on

the choice of µ⃗.

Proof. Since (y⃗, z) ̸= (y⃗′, z′), we have:

(y⃗ ⊕ y⃗′, z ⊕ z′) ̸= (⃗0, 0).

To analyze the probability Pr[z + µ⃗ · y⃗ = z′ + µ⃗ · y⃗′], we consider two cases:

1. Assume y⃗ ⊕ y⃗′ = δy⃗ ̸= 0⃗. In this situation, the probabilistic event occurs
when δy⃗ · µ⃗ = z ⊕ z′. Equivalently, µ⃗ belongs to a given affine hyperplane
orthogonal to δy⃗, which occurs with (conditional) probability 2−k.

2. Assume, y⃗ = y⃗′ and z ̸= z′, thus z + µ⃗ · y⃗ ̸= z′ + µ⃗ · y⃗′. In this case, the
(conditional) probability is 0.

The statement follows by combining both cases. ⊓⊔

We now go back to the construction of the VOLE for y⃗ and z. A priori, the
verifier is not sure that y⃗ and z are equal in all trees, and the construction from
Section 3.2 cannot be used without precaution. However, all the binary sharings
derived from an individual tree correspond to equal values (y⃗j , zj), where j ∈ [τ]
denotes the index of the tree in its family. Thus, the prover can compute a
VOLE instance (with smaller evaluation domain) for (y⃗j , zj) for each j ∈ [τ].
More precisely, after folding, each tree provides D binary sharings:(

y⃗
J0Ki
j , zj

J0Ki
)
⊕

(
y⃗

J1Ki
j , zj

J1Ki
)
⊕ (δy⃗j

, δzj) = (y⃗j , zj).

11

As in Section 3.3, for each value (i, j) ∈ [D] × [τ] the prover defines a linear
polynomial:

fi,j(b) =
(
y⃗

JbKi
j , zj

J0Ki
)
+ b · (y⃗j , zj) .

We have grouped y⃗j and zj in the above polynomial for compactness. How-
ever, by abuse of notation and for the sake of convenience, we might refer to it
as a polynomial in y⃗j or zj alone. We continue as in Section 3.3, and combine
together the D polynomials in y⃗j and zj . This defines a polynomial:

F⃗ (j)
y,z (∆j) =

D−1∑
i=0

αD j+i fi,j(bi,j) =

D−1∑
i=0

αD j+i

(
y⃗

JbKi
j , zj

J0Ki
)
+∆j · (y⃗j , zj) ,

where ∆j =
∑D−1

i=0 αD j+i bi,j . As before, we can write this as

F⃗ (j)
y,z (∆j) = A⃗

(j)
Fy,z

+∆j · (y⃗j , zj), (4)

where the coefficient A⃗
(j)
Fy,z

= F⃗
(j)
y,z (0) is given by the evaluation at 0.

To implement the test provided by Lemma 1, we combine µ⃗ with Equation (4)
and find:

F⃗ (j)
y,z (∆j) · (µ⃗, 1) = A⃗

(j)
Fy,z
· (µ⃗, 1) + ∆j(y⃗j , zj) · (µ⃗, 1)

= A⃗
(j)
Fy,z
· (µ⃗, 1) + ∆j [zj + y⃗j · µ⃗].

To understand the goal of the protocol, let us first assume that y⃗j and zj
are equal across trees. Then the coefficient in front of ∆j is the same for all
values of j. As a consequence, we ask that the prover computes and transmit this
coefficient b = z+y⃗ ·µ⃗ ∈ F2k , where y⃗ and z denote the (putative) common values
across tress. The prover also computes and transmits the coefficients a(j) =

A⃗
(j)
Fy,z
· (µ⃗, 1) ∈ F2k for all j ∈ [τ].

As usual, the verifier sends the challenges i∗j ∈ [2D] for each subtree Tj

and obtains the corresponding punctured key from the prover, thus learning the

evaluations F⃗
(j)
y,z (∆∗

j) for each of the τ trees. Let us remark that if y⃗j and zj are
equal across trees, then we can add these evaluations and obtain:

F⃗y,z(∆
∗) =

τ−1∑
j=0

F⃗ (j)
y,z (∆

∗
j) = F⃗y,z(0) + ∆∗ (y⃗, z) , where ∆∗ =

τ−1∑
j=0

∆∗
j .

In particular, the verifier learns F⃗y(∆
∗) and also F⃗x(∆

∗) (from the correlated
part of the family of trees).

Thus, as in the simplified version of Section 3.3, the verifier computes

Φ(∆∗) =

u⃗ ·

F⃗x(∆
∗)

1
0

v⃗ ·

F⃗y(∆
∗)

0
1

−
u⃗ ·

F⃗y(∆
∗)

0
1

v⃗ ·

F⃗x(∆
∗)

1
0

 ,

12

checks if it is equal to A+B∆∗ and accepts or rejects accordingly.
If we no longer assume equality across trees, the verifier has to perform

a little extra work. Namely, after obtaining each partial evaluation F⃗
(j)
y,z (∆∗

j), he

computes F⃗
(j)
y,z (∆∗

j) · (µ⃗, 1) and checks that the value is equal to a(j) + b∆∗
j . If

any of these checks fail, the verifier rejects. If all checks succeed, he continues
with the computation described in the case of equality, computing and checking
Φ(∆∗). The following theorem states that this provides a sound protocol.

Theorem 1. The soundness error of the NSBC identification scheme described
above using N = 2D parties and τ rounds is bounded by τ2−k + 21−τ ·D.

Proof. Consider a prover who does not share the same value for (y⃗, z) in every
round. The values (y⃗i, zi) can be partitioned into at most τ distinct subsets. In
particular, we have that

{(y⃗0, z0), . . . , (y⃗τ−1, zτ−1)} = S(0)∪̇ . . . ∪̇S(m−1), (5)

where m ≤ τ . For any fixed index j ∈ [m], we have that (y⃗i0 , zi0) = (y⃗i1 , zi1) for
all (y⃗i0 , zi0), (y⃗i1 , zi1) ∈ S(j) by definition. Moreover, for any j0, j1 ∈ [m] with
j0 ̸= j1, S

(j0) ∩ S(j1) = ∅.
From Lemma 1, we know that

Pr[∃i ̸= j|(y⃗i, zi) ∈ S(i), (y⃗j , zj) ∈ S(j) and zi + y⃗i · µ⃗ = zj + y⃗j · µ⃗] ≤ τ2−k.

This bad event provides the term τ2−k in the soundness error.
We now assume that the bad event has not occurred and without loss of

generality, we consider that the reference value is (y⃗0, z0) ∈ S(0) and that during
the protocol the prover sends the value b = z0 + y⃗0 · µ⃗. Since we excluded the
above bad event, we know that zj + y⃗j · µ⃗ ̸= b for all (y⃗j , zj) ∈ S(i), where
i ∈ {1, . . . ,m− 1}.

Consider a subtree Tj for j ∈ [τ] with (a(j), b(j)) ̸= (a(j), b). For this index,

we see that a(j) + b∆j = zj + µ⃗ · F⃗ (j)
y (∆j) for at most one value ∆j . Indeed, the

affine function a(j) + b∆j − zj − µ⃗ · F⃗ (j)
y (∆j) is non zero and thus has at most

one root.
In order for the verifier to validate the equality testing for this index j, a

cheating prover needs to guess the evaluation point ∆∗
j in advance and provide

a corresponding a(j). We denote the subset of [τ] containing the indices j with
zj + y⃗j · µ⃗ ̸= b as Ibad. In particular,

Ibad := {j ∈ [τ]|zj + y⃗j · µ⃗ ̸= b} .

Since each set of possible evaluation points for the partial VOLE evaluation of
any single tree contains 2D points, the probability for the prover to correctly
guess all evaluation points for Ibad is:

Pr[Prover guesses all ∆j for j ∈ Ibad] = 2−D·|Ibad|.

13

If the prover guesses correctly, we can treat all the ∆j for j ∈ Ibad. As a conse-
quence, the linear polynomials that are constructed in this situation only depend
on the remaining indices Igood := [τ] \ Ibad. More precisely, everything can be
expressed in terms of the variable:

∆g =
∑

j∈Igood

∆j .

In particular, we can view Φ as a polynomial in ∆g. Furthermore, we can see
that Φ(∆g) is an affine polynomial if and only if (x⃗′, y⃗′g) ∈ NSBC[u⃗, v⃗] for x⃗′ =
(x⃗, 1, 0), y⃗′g = (y⃗g, 0, 1).

As a consequence, for a cheating prover that does not know a solution to the
NSBC instance, we know that Φ(∆g) is a non-zero polynomial of degree 2. Thus,
the linearity check on Φ can only work at two exceptional points (coming from a
quadratic equation). Thus, the probability that this test succeeds for a cheating
prover is upper bounded by 2

2D·|Igood| = 21−D·|Igood|. Since τ = |Igood|+|Ibad| and
since the equality test for Ibad and the linearity test for Igood are independent,
the overall success probability of both is upper bounded by:

2−D·|Ibad| · 21−D·|Igood| = 21−τ ·D.

Adding this to the probability of the bad event described earlier, we conclude
that the soundness error of the identification scheme is bounded by:

τ2−k + 21−τ ·D.

⊓⊔

4 Detailed description of the identification scheme

For completeness, we now provide a detailed description of our five-round iden-
tification protocol between the prover P and the honest verifier V. This protocol
uses six algorithmic sub-routines, executed in alternation by the prover and the
verifier. These algorithms are: Commitment, First Challenge, First Response,
Second Challenge, Second Response, and Verification.

The main cryptographic tool that we use is the correlated cGGM trees family
from Section 3.1. In this section, we base the construction on a random oracle
H with output size λ. Following the state of the art, we use a seed and also do
full domain separation, providing a tree number and a node position to derive
the left child of each node using H. The right child is obtained by XORing the
left child and the parent. At the level of the leaf, we also use the random oracle
(with proper domain separation) to derive additional shares for y⃗ and z. With
our choice of security parameters, we need to create 3λ + 1 additional bits for
each leaf.

In the algorithms, we use the notations for the cGGM function introduced in
Section 2.4 and the Folding function described in Section 2.3.

14

The protocol for the Commitment is given in Figure 1, the First Challenge is
in Figure 2, the First Response in Figure 3. The Second Challenge and Second
Response are given in Figure 4 and Figure 5. Finally, the Verification protocol
is described in Figure 6.

Commitment

1. Sample Rx⃗
$←− (F2)

n−2 and a random seed for the cGGM trees derivation

2. Compute Pre-Tree:
(
x⃗J0K , . . . , x⃗J2τ−1K

)
← cGGM(Rx⃗, Rx⃗ ⊕ x⃗, 2τ)

3. Fold Pre-tree:
(
x⃗J0Kj , x⃗J1Kj

)
j∈[τ]

← Folding
(
x⃗J0K , . . . , x⃗J2τ−1K

)
4. For j ∈ [τ]:

– Get Tree Tj :
(
x⃗

J0K
j , . . . , x⃗

J2D−1K
j

)
← cGGM

(
x⃗J0Kj , x⃗J1Kj , 2D

)
– Expand Tj and get

(
y⃗

J0K
j , . . . , y⃗

J2D−1K
j

)
and

(
zj

J0K , . . . , zj
J2D−1K

)
– Fold Tree Tj :

•
(
x⃗

J0Ki
j , x⃗

J1Ki
j

)
i∈[D]

← Folding
(
x⃗

J0K
j , . . . , x⃗

J2D−1K
j

)
•

(
y⃗

J0Ki
j , y⃗

J1Ki
j

)
i∈[D]

← Folding
(
y⃗

J0K
j , . . . , y⃗

J2D−1K
j

)
•

(
zj

J0Ki , zj
J1Ki

)
i∈[D]

← Folding
(
zj

J0K , . . . , zj
J2D−1K

)
– Let z ← z0

J0K0 ⊕ z0
J1K0

– Compute offsets:
• δy⃗j ← y⃗ ⊕ y⃗

J0K0
j ⊕ y⃗

J1K0
j

• δzj ← z ⊕ zj
J0K0 ⊕ zj

J1K0

5. Send
(
δy⃗j

)
j∈[τ]

,
(
δzj

)
j∈[τ]∗

and seed to the verifier

Fig. 1. Commitment algorithm of the identification protocol for the NSBC problem

Challenge 1

1. Sample µ⃗
$←− (F2k)

n−2

2. For m ∈ [τ ·D]: Sample αm
$←− F2k

3. Send µ⃗, (αi)i∈[τ ·D] to the prover

Fig. 2. First Challenge algorithm of the identification protocol for the NSBC problem

15

Response 1

1. A⃗Fx ←
∑τ−1

j=0

∑(j+1)·D−1
i=j·D x⃗

J0Ki
j αi

2. A⃗Fy ←
∑τ−1

j=0

∑(j+1)·D−1
i=j·D y⃗

J0Ki
j αi

3. A←

u⃗ ·

A⃗Fx

1
0

v⃗ ·

A⃗Fy

0
1

−
u⃗ ·

A⃗Fy

0
1

v⃗ ·

A⃗Fx

1
0


4. B ←

v⃗ ·

A⃗Fy

0
1

u⃗ ·

x⃗
1
0

+

u⃗ ·

A⃗Fx

1
0

v⃗ ·

y⃗
0
1


−

u⃗ ·

A⃗Fy

0
1

v⃗ ·

x⃗
1
0

−
v⃗ ·

A⃗Fx

1
0

u⃗ ·

y⃗
0
1


5. Compute b← z + y⃗ · µ⃗
6. For j ∈ [τ]:

– Compute A⃗
(j)
Fy
←

∑(j+1)·D−1
i=j·D y⃗

J0Ki
j αi and A⃗

(j)
Fz
←

∑(j+1)·D−1
i=j·D zj

J0Kiαi

– Compute a(j) ← A⃗
(j)
Fz

+ A⃗
(j)
Fy
· µ⃗

7. Send A,B,
(
a(j)

)
j∈[τ]

and b to the verifier

Fig. 3. First Response algorithm of the identification protocol for the NSBC problem

Challenge 2

1. Sample
(
i∗j
)
j∈[τ]

$←− [2D]τ and send it to the prover

Fig. 4. Second Challenge algorithm of the identification protocol for the NSBC problem

Response 2

1. Compute the Pre-Challenge i∗p ←
∑τ−1

j=0 ·⌊i
∗
j/2

D−1⌋2j
2. Compute the Pre-Tree PPRF key Ki∗p
3. Compute the (truncated) PPRF key Ki∗0 ,...,i

∗
τ−1

4. Send
(
Ki∗p ,Ki∗0 ,...,i

∗
τ−1

)
to the verifier

Fig. 5. Second Response algorithm of the identification protocol for the NSBC problem

16

Verification

1. Recompute and fold all trees (with one missing leaf each)
2. For (i, j) ∈ [D] × [τ], let bi,j denote the known position of the respective

hypercube binary sharing
3. δz0 ← 0
4. For j ∈ [τ]:

– Compute ∆∗
j ←

∑(j+1)·D−1
i=j·D bi,jαi

– Compute F⃗
(j)
y

(
∆∗

j

)
←

∑(j+1)·D−1
i=j·D αi

(
y⃗

Jbi,jKi
j + bi,jδy⃗j

)
– Compute Z(j)

(
∆∗

j

)
←

∑(j+1)·D−1
i=j·D αi

(
zj

Jbi,jKi + bi,jδzj

)
– a(j)′ ← Z(j)

(
∆∗

j

)
⊕ F⃗

(j)
y (∆∗

j) · µ⃗⊕ b∆∗
j

5. ∆∗ ←
∑τ−1

j=0 ∆∗
j

6. F⃗x(∆
∗)←

∑τ ·D−1
m=0 x⃗

JbmK
m αm

7. F⃗y(∆
∗)←

∑τ−1
j=0 F⃗

(j)
y (∆∗

j)
8. Compute Φ(∆∗) asu⃗ ·

F⃗x(∆
∗)

1
0

v⃗ ·

F⃗y(∆
∗)

0
1

−
u⃗ ·

F⃗y(∆
∗)

0
1

v⃗ ·

F⃗x(∆
∗)

1
0


9. A′ ← Φ(∆∗)−B∆∗

10. If A = A′ and (a(j))j∈[τ] = (a(j)′)j∈[τ] output ACCEPT, otherwise output REJECT

Fig. 6. Verification algorithm of the identification protocol for the NSBC problem

5 Signature scheme

We can now proceed to transform the Honest Verifier Zero Knowledge (HVZK)
protocol from Section 3 into a signature scheme by using the Fiat-Shamir trans-
form [14] to obtain the desired security level of λ bits.

The public key is given by the two vectors u⃗, v⃗ ∈
(
Fqk

)n
, while the secret

key consists of x⃗, y⃗ ∈ (Fq)
n−2

with (x⃗′, y⃗′) ∈ NSBC[u⃗, v⃗] for x⃗′ := (x⃗, 1, 0) and
y⃗′ := (y⃗, 0, 1).

5.1 Removing the interactivity of the protocol

In the signature scheme, all algorithms of the prover and verifier but the final
verification are executed by the signer. Only the final verification is performed
by the verifier.

Using the five-round Fiat-Shamir transform, we simply replace the first and
second challenge by hash values based on the random oracle. To derive the first
challenge, we compute:

h0 ← H
((

δy⃗j
, δzj

)
j∈[τ]

)
17

and expand it into µ⃗ and (αi)i∈[τ ·D]. Note that neither h0 nor the derived µ⃗ and

(αi)i∈[τ ·D] need to be sent as part of the signature since they can be recomputed
from the offsets δy⃗j

and δzj using H.
To derive the second challenge, we continue hashing, including now A, B,(

a(j)
)
j∈[τ]

and b into a hash h1 from which we obtain the second challenge
(
i∗j
)
j∈[τ]

using H.
This also permits additional reduction of the signature size. Indeed, since A

and
(
a(j)

)
j∈[τ]

are recomputed during the verification phase, they do not need

to be sent. Instead, sending (and verifying) the hash h1 is enough. For a detailed
description of the resulting Signing and Verification algorithms, see Appendix A.

5.2 Signature size

As mentioned in [17], we need the bitsize of the elements of Fqk to be at least 2λ

to avoid generic attacks based on collision finding. Therefore, since n ≈ k
2 , the

bitsize of the elements of (Fq)
n−2

is λ. The signature consists of the following
elements:

– One hash value corresponding to the global commitment of the protocol of
size 2λ.

– One salt of size λ.
– The punctured key of the correlated PPRF family of size λτ log2(N).
– The coefficient B ∈ Fqk .
– The coefficient b = z0 + y⃗0 · µ⃗ ∈ Fqk .
– The offset values δy⃗0

, . . . , δy⃗τ−1
∈ (Fq)

n−2 and δz1 , . . . , δzτ−1
∈ Fqk .

The total communication cost in bits of the protocol is therefore

size ≥ λτ log2(N) + τλ+ (τ − 1)2λ+ 2λ+ 2λ+ 2λ+ λ

= λτ log2(N) + 3τλ+ 5λ

≈ λ2 + 3τλ+ 6λ.

The final approximate size depends on the exact value of τ log2(N). We need
τ log2(N) > λ and take τ log2(N) ≈ λ + 1, as far as factorization of numbers
close to λ+ 1 permits.

From Theorem 1, we know that the total soundness error of the identification
protocol we use is bounded by

τ2−k + 21−τ ·D. (6)

In general, for a signature scheme based on the Fiat-Shamir transformation
of a 5 round protocol, the cost of forgery is given by the Kales and Zaverucha
formula, based on their attack from [20]:

cost = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+Nτ2

}
,

18

where p denotes the false positive probability of the underlying identification
scheme.

In our case, the false positive probability in the sense of Kales and Zaverucha
is p = 2−k from Lemma 1. Since this is extremely small compared to the desired
security level, the Kales and Zaverucha attack does not apply in our case. In
fact, our proof of Theorem 1 uses a union bound argument to prevent any false
positive from happening and the same proof directly shows the security level of
our signature scheme in the random oracle model.

Consider the security level of λ = 128 bits and the parameters q = 2, k =
257 and n = 130. For these parameters, the values for D and τ , including the
respective signature sizes are displayed in Table 1. We note that, unlike the
standard SBC scheme [17], using (D, τ) = (16, 8) and (D, τ) = (8, 16) does not
yield a signature with 128 bits security level, since (6) yields a security parameter
smaller than 127 bits for these cases. This one bit gap comes from the fact that
the evaluation point of the quadratic polynomial is selected from a smaller set of
values. For this reason, the potential existence of two roots boosts the probability
of a cheating prover by a factor of two.

Table 1. Signature size for N = 2D parties and τ rounds with parameters q = 2, k =
257 and n = 130 for the security parameter λ = 128 bits.

D τ λ2 + 3τλ+ 6λ |sgn|
9 15 2 864 B 2 962 B

10 13 2 768 B 2 786 B

11 12 2 720 B 2 770 B

12 11 2 672 B 2 722 B

13 10 2 624 B 2 642 B

15 9 2 576 B 2 674 B

6 Implementation and performance

In this section, we provide the signature sizes and running times of the scheme
based on our C implementation, which is an adaptation of the artifact from [17].
The total communication cost of the standard SBC paper is λ2+16τλ+3λ bits,
while the communication cost of our scheme is λ2 + 3τλ+ 6λ bits.

We compare our scheme with the MPCitH signature scheme for SBC pro-
posed in [17] in Table 2. We see that the case (D, τ) = (13, 10) yields the smallest
signature size of 2 642 bytes, which results in a decrease of the signature size of
≈ 30% compared to the smallest signature size obtained by the standard SBC
signature scheme from [17], i.e. for (D, τ) = (16, 8). The running time of the
smallest SBCVOLE instance (D, τ) = (13, 10) is reduced by 90% compared to

19

the smallest instance of the standard SBC version for (D, τ) = (16, 8). We also
note that the SBCVOLE scheme for (D, τ) = (9, 15) and (D, τ) = (15, 9) is re-
dundant since it is slower and larger compared to the (13, 10) version.

Improving signature size with variable-sized trees. The main restriction on find-
ing good parameter choices is to find multiples of the desired number of trees,
i.e. the desired value of τ , slightly above 128. As seen in Table 2, this leads to
very limited good choices. We can improve the accessible range of parameters
by allowing the second level trees in the correlated family to have variable sizes.
For example, with τ = 9, we could use four trees of size 215 and five of size 214.
In this situation, the number of binary sharings would be 130, i.e. the same as
in the τ = 10 case. This approach can potentially reduce the signature sizes to
the estimated value λ2 + 3τλ+ 6λ given in Table 1.

Table 2. Signature sizes and running times for λ = 128 using N = 2D parties and
τ rounds with the parameters q = 2, k = 257 and n = 130 for standard SBC and
SBCVOLE using an AMD EPYC 9374F processor running at 3.85 GHz.

Parameters standard SBC [17] SBCVOLE

D τ |sgn| Sign Verify |sgn| Sign Verify

8 16 5 436 B 0.77 ms 0.68 ms — — —

9 15 5 340 B 0.90 ms 0.81 ms 2 962 B 2.41 ms 2.40 ms

10 13 4 842 B 1.29 ms 1.21 ms 2 786 B 1.58 ms 1.57 ms

11 12 4 665 B 1.60 ms 1.51 ms 2 770 B 1.60 ms 1.59 ms

12 11 4 457 B 2.25 ms 2.15 ms 2 722 B 1.79 ms 1.77 ms

13 10 4 216 B 3.47 ms 3.34 ms 2642 B 2.21 ms 2.19 ms

15 9 4 087 B 11.27 ms 10.94 ms 2 674 B 5.13 ms 5.02 ms

16 8 3 766 B 19.67 ms 19.17 ms — — —

References

1. Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue,
D.: The return of the SDitH. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part V. LNCS, vol. 14008, pp. 564–596. Springer, Cham (Apr 2023).
https://doi.org/10.1007/978-3-031-30589-4˙20

2. American National Standards Institute, Inc.: ANSI X9.62 public key cryptography
for the financial services industry: the elliptic curve digital signature algorithm
(ECDSA) (Nov 16, 2005), https://standards.globalspec.com/std/1955141/

ANSI%20X9.62

3. Aragon, N., Bardet, M., Bidoux, L., Chi-Domı́nguez, J., Dyseryn, V., Feneuil,
T., Gaborit, P., Neveu, R., Rivain, M., Tillich, J.: MIRA. Tech. rep., National
Institute of Standards and Technology (2023), available at https://csrc.nist.

gov/Projects/pqc-dig-sig/round-1-additional-signatures

20

https://doi.org/10.1007/978-3-031-30589-4_20
https://standards.globalspec.com/std/1955141/ANSI%20X9.62
https://standards.globalspec.com/std/1955141/ANSI%20X9.62
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

4. Baum, C., Braun, L., Delpech de Saint Guilhem, C., Klooß, M., Orsini, E.,
Roy, L., Scholl, P.: Publicly verifiable zero-knowledge and post-quantum sig-
natures from VOLE-in-the-head. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 581–615. Springer, Cham (Aug
2023). https://doi.org/10.1007/978-3-031-38554-4˙19

5. Bettale, L., Kahrobaei, D., Perret, L., Verbel, J.: Biscuit. Tech. rep., National
Institute of Standards and Technology (2023), available at https://csrc.nist.

gov/Projects/pqc-dig-sig/round-1-additional-signatures

6. Bidoux, L., Feneuil, T., Gaborit, P., Neveu, R., Rivain, M.: Dual support de-
composition in the head: Shorter signatures from rank SD and MinRank. Cryptol-
ogy ePrint Archive, Paper 2024/541 (2024), https://eprint.iacr.org/2024/541,
https://eprint.iacr.org/2024/541

7. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Berlin, Heidelberg (Dec 2013). https://doi.org/10.1007/978-
3-642-42045-0˙15

8. Bui, D.: Shorter VOLEitH signature from multivariate quadratic. Cryptology
ePrint Archive, Paper 2024/465 (2024), https://eprint.iacr.org/2024/465,
https://eprint.iacr.org/2024/465

9. Bui, D., Carozza, E., Couteau, G., Goudarzi, D., Joux, A.: Short Signatures
from Regular Syndrome Decoding, Revisited. Cryptology ePrint Archive, Paper
2024/252 (2024), https://eprint.iacr.org/2024/252

10. Cui, H., Liu, H., Yan, D., Yang, K., Yu, Y., Zhang, K.: ReSolveD: Shorter signa-
tures from regular syndrome decoding and VOLE-in-the-head. Cryptology ePrint
Archive, Paper 2024/040 (2024), https://eprint.iacr.org/2024/040, https:

//eprint.iacr.org/2024/040

11. Feneuil, T.: Building MPCitH-based signatures from MQ, MinRank, rank SD
and PKP. Cryptology ePrint Archive, Report 2022/1512 (2022), https://eprint.
iacr.org/2022/1512

12. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter
signatures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 541–572. Springer, Cham (Aug
2022). https://doi.org/10.1007/978-3-031-15979-4˙19

13. Feneuil, T., Rivain, M.: MQOM — MQ on my Mind. Tech. rep., National Insti-
tute of Standards and Technology (2023), available at https://csrc.nist.gov/

Projects/pqc-dig-sig/round-1-additional-signatures

14. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-
47721-7˙12

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792–807 (Oct 1986). https://doi.org/10.1145/6490.6503

16. Guo, X., Yang, K., Wang, X., Zhang, W., Xie, X., Zhang, J., Liu, Z.: Half-tree:
Halving the cost of tree expansion in COT and DPF. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part I. LNCS, vol. 14004, pp. 330–362. Springer, Cham (Apr
2023). https://doi.org/10.1007/978-3-031-30545-0˙12

17. Huth, J., Joux, A.: MPC in the head using the subfield bilinear collision problem.
In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part I. LNCS, vol. 14920, pp.
39–70. Springer, Cham (Aug 2024). https://doi.org/10.1007/978-3-031-68376-3˙2

21

https://doi.org/10.1007/978-3-031-38554-4_19
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2024/541
https://eprint.iacr.org/2024/541
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://eprint.iacr.org/2024/465
https://eprint.iacr.org/2024/465
https://eprint.iacr.org/2024/252
https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2024/040
https://eprint.iacr.org/2022/1512
https://eprint.iacr.org/2022/1512
https://doi.org/10.1007/978-3-031-15979-4_19
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/6490.6503
https://doi.org/10.1007/978-3-031-30545-0_12
https://doi.org/10.1007/978-3-031-68376-3_2

18. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (Jun 2007). https://doi.org/10.1145/1250790.1250794

19. Joux, A., Pierrot, C.: Algorithmic aspects of elliptic bases in finite field discrete
logarithm algorithms (2024). https://doi.org/10.3934/amc.2022085, https://www.
aimsciences.org/article/id/6368515a6aa93c395b347970

20. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed
from five-pass identification schemes. In: Krenn, S., Shulman, H., Vaudenay,
S. (eds.) CANS 20. LNCS, vol. 12579, pp. 3–22. Springer, Cham (Dec 2020).
https://doi.org/10.1007/978-3-030-65411-5˙1

21. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. Cryptology ePrint Archive, Report
2018/475 (2018), https://eprint.iacr.org/2018/475

22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2), 120–126 (Feb 1978). https://doi.org/10.1145/359340.359342

23. Roy, L.: SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the
minicrypt model. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS,
vol. 13507, pp. 657–687. Springer, Cham (Aug 2022). https://doi.org/10.1007/978-
3-031-15802-5˙23

24. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, New York (Aug
1990). https://doi.org/10.1007/0-387-34805-0˙22

22

https://doi.org/10.1145/1250790.1250794
https://doi.org/10.3934/amc.2022085
https://www.aimsciences.org/article/id/6368515a6aa93c395b347970
https://www.aimsciences.org/article/id/6368515a6aa93c395b347970
https://doi.org/10.1007/978-3-030-65411-5_1
https://eprint.iacr.org/2018/475
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/978-3-031-15802-5_23
https://doi.org/10.1007/0-387-34805-0_22

A Algorithms for the signature scheme

Below, we provide pseudocode for the algorithms of the SBC signature scheme
described in Section 5. The Signing algorithm is given in Figure 7, while the
Verification algorithm is given in Figure 8.

Inputs: Secret key sk = (x⃗, y⃗), public key pk = (u⃗, v⃗) and a message msg ∈ {0, 1}∗

1. Sample Rx⃗
$←− (F2)

n−2 and a random seed for the cGGM trees derivation

2. Compute Pre-Tree:
(
x⃗J0K , . . . , x⃗J2τ−1K

)
← cGGM(Rx⃗, Rx⃗ ⊕ x⃗, 2τ)

3. Fold Pre-tree:
(
x⃗J0Kj , x⃗J1Kj

)
j∈[τ]

← Folding
(
x⃗J0K , . . . , x⃗J2τ−1K

)
4. For j ∈ [τ]:

– Get Tree Tj :
(
x⃗

J0K
j , . . . , x⃗

J2D−1K
j

)
← cGGM

(
x⃗J0Kj , x⃗J1Kj , 2D

)
– Expand Tj and get

(
y⃗

J0K
j , . . . , y⃗

J2D−1K
j

)
and

(
zj

J0K , . . . , zj
J2D−1K

)
– Fold Tree Tj :

•
(
x⃗

J0Ki
j , x⃗

J1Ki
j

)
i∈[D]

← Folding
(
x⃗

J0K
j , . . . , x⃗

J2D−1K
j

)
•

(
y⃗

J0Ki
j , y⃗

J1Ki
j

)
i∈[D]

← Folding
(
y⃗

J0K
j , . . . , y⃗

J2D−1K
j

)
•

(
zj

J0Ki , zj
J1Ki

)
i∈[D]

← Folding
(
zj

J0K , . . . , zj
J2D−1K

)
– Let z ← z0

J0K0 ⊕ z0
J1K0

– Compute offsets δy⃗j ← y⃗ ⊕ y⃗
J0K0
j ⊕ y⃗

J1K0
j and δzj ← z ⊕ zj

J0K0 ⊕ zj
J1K0

5. h0 ← H
(
msg,

(
δy⃗j , δzj

)
j∈[τ]

)
6. µ⃗← H(h0)
7. For m ∈ [τ ·D]: αm ← H(m,h0)

8. Compute A⃗Fx ←
∑τ−1

j=0

∑(j+1)·D−1
i=j·D x⃗

J0Ki
j αi

9. Compute A⃗Fy ←
∑τ−1

j=0

∑(j+1)·D−1
i=j·D y⃗

J0Ki
j αi

10. Compute the coefficients A and B of Φ as in identification protocol
11. Compute b← z + y⃗ · µ⃗
12. For j ∈ [τ]:

– Compute A⃗
(j)
Fy
←

∑(j+1)·D−1
i=j·D y⃗

J0Ki
j αi and A⃗

(j)
Fz
←

∑(j+1)·D−1
i=j·D zj

J0Kiαi

– Compute a(j) ← A⃗
(j)
Fz

+ A⃗
(j)
Fy
· µ⃗

13. h1 ← H
(
h0,msg, A,B,

(
a(j)

)
j∈[τ]

, b

)
14. For j ∈ [τ]: i∗j ← H(j, h1)
15. Compute the Pre-Challenge i∗p =

∑τ−1
j=0 ·⌊i

∗
j/2

D−1⌋2j
16. Compute the Pre-Tree PPRF key Ki∗p and the PPRF key Ki∗0 ,...,i

∗
τ−1

17. Output the signature σ ←
(
h1, seed,

(
δy⃗j

)
j∈[τ]

,
(
δzj

)
j∈[τ]∗

, B, b,Ki∗p ,Ki∗0 ,...,i
∗
τ−1

)

Fig. 7. NSBC signature scheme - Signing algorithm

23

Inputs: Public key pk = (u⃗, v⃗), a message msg ∈ {0, 1}∗ and a signature σ =(
h1, seed,

(
δy⃗j

)
j∈[τ]

,
(
δzj

)
j∈[τ]∗

, B, b,Ki∗p ,Ki∗0 ,...,i
∗
τ−1

)
1. For j ∈ [τ]: i∗j ← H(j, h1)
2. Recompute and fold all trees (with one missing leaf each) using Ki∗p ,Ki∗0 ,...,i

∗
τ−1

and seed
3. For (i, j) ∈ [D]× [τ], let bi,j denote the known position of the respective hyper-

cube binary sharing
4. δz0 ← 0

5. h′
0 ← H

(
msg,

(
δy⃗j , δzj

)
j∈[τ]

)
6. µ⃗← H(h′

0)
7. For m ∈ [τ ·D]: αm ← H(m,h0)
8. For j ∈ [τ]:

– Compute ∆∗
j ←

∑(j+1)·D−1
i=j·D bi,jαi

– Compute F⃗
(j)
y

(
∆∗

j

)
←

∑(j+1)·D−1
i=j·D αi

(
y⃗

Jbi,jKi
j + bi,jδy⃗j

)
– Compute Z(j)

(
∆∗

j

)
←

∑(j+1)·D−1
i=j·D αi

(
zj

Jbi,jKi + bi,jδzj

)
– a(j)′ ← Z(j)

(
∆∗

j

)
⊕ F⃗

(j)
y (∆∗

j) · µ⃗⊕ b∆∗
j

9. ∆∗ ←
∑τ−1

j=0 ∆∗
j

10. F⃗x(∆
∗)←

∑τ ·D−1
m=0 x⃗

JbmK
m αm

11. F⃗y(∆
∗)←

∑τ−1
j=0 F⃗

(j)
y (∆∗

j)
12. Compute Φ(∆∗) asu⃗ ·

F⃗x(∆
∗)

1
0

v⃗ ·

F⃗y(∆
∗)

0
1

−
u⃗ ·

F⃗y(∆
∗)

0
1

v⃗ ·

F⃗x(∆
∗)

1
0


13. A′ ← Φ(∆∗)−B∆∗

14. h′
1 ← H

(
h′
0,msg, A′, B,

(
a(j)′

)
j∈[τ]

, b

)
15. If h′

1 = h1 output ACCEPT, otherwise output REJECT

Fig. 8. NSBC signature scheme - Verification algorithm

24

	VOLE-in-the-head signatures from Subfield Bilinear Collisions

