MAYO Key Recovery by Fixing Vinegar Seeds

Sonke Jendral and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden
{jendral,dubrova}@kth.se

Abstract. As the industry prepares for the transition to post-quantum
secure public key cryptographic algorithms, vulnerability analysis of their
implementations is gaining importance. A theoretically secure crypto-
graphic algorithm should also be able to withstand the challenges of phys-
ical attacks in real-world environments. MAYO is a candidate in the on-
going first round of the NIST post-quantum standardization process for
selecting additional digital signature schemes. This paper demonstrates
three first-order single-execution fault injection attacks on a MAYO im-
plementation in an ARM Cortex-M4 processor. By using voltage glitch-
ing to disrupt the computation of the vinegar seed during the signature
generation, we enable the recovery of the secret key directly from the
faulty signatures. Our experimental results show that the success rates
of the fault attacks in a single execution are 36%, 82%, and 99%, re-
spectively. They emphasize the importance of developing countermea-
sures against fault attacks prior to the widespread deployment of post-
quantum algorithms like MAYO.

Keywords: Fault injection - MAYO - Multivariate cryptography - Post-
quantum digital signature - Key recovery attack

1 Introduction

The National Institute of Standards and Technology (NIST) recently concluded
its competition for Post-Quantum Cryptographic (PQC) algorithms, resulting
in the publication of standards for key encapsulation mechanism ML-KEM [35],
and digital signature algorithms ML-DSA [34] and SLH-DSA [36]. To strengthen
security through diversification and broaden the range of use cases for PQC sig-
natures, NIST launched a second competition in 2022. The goal is to identify
additional general-purpose PQC signature algorithms based on different under-
lying mathematical problems than ML-DSA and SLH-DSA, offering other key
and signature sizes, and providing varied key generation, signing or verifica-
tion performance [33]. MAYO is one of the submissions selected by NIST as a
first-round candidate in this competition. It is a multivariate quadratic digital
signature scheme designed to be existential unforgeable under chosen message
attacks (EUF-CMA) in the random oracle model [9]. EUF-CMA security means
that an adversary with access to the public key and a signing oracle cannot
generate a valid signature for a new message. The security of MAYO relies on
the presumed hardness of the Oil and Vinegar (OV) problem and a variant of

2 S. Jendral and E. Dubrova

the Multivariate Quadratic (MQ) problem called the multi-target whipped MQ
problem.

However, a theoretically secure cryptographic algorithm should also be able
to withstand the challenges of physical attacks in real-world environments. Yet,
numerous successful side-channel and fault attacks on implementations of PQC
algorithms demonstrated over the past few years [19, 42, 43] indicate that this is
not always the case. It is important to identify which types of physical attacks
are most relevant in real-world scenarios to focus efforts on designing effective
and targeted countermeasures prior to the widespread deployment of PQC al-
gorithms.

Contributions: In this paper, we present three first-order single-execution fault
injection attacks on an implementation of MAYO. All three attacks reveal the
secret vinegar values by fixing the seed from which they are derived to a known
value. The first attack fixes the seed to a constant by skipping the absorption
phase during the computation of the seed, as in the attack on CRYSTALS-
Dilithium in [23]. The second attack aborts a loop during the absorption phase,
thereby allowing the seed to be predicted from public information. The third
attack skips the initialisation of one of the arguments for the computation of
the seed, similarly allowing the seed to be predicted from public information.
We identified settings that consistently skip the necessary instructions without
crashing the device or disrupting other steps of the signature generation.

All three attacks enable the recovery of the full secret key from a single faulty
signature with probabilities of 82%, 36%, and 99%, respectively, using a novel
key recovery method.

We additionally propose a technique for classifying the results of a symbolic
execution-based simulation that is able to identify instructions for fault injection.
Our approach uses loopy belief propagation on a factor graph to estimate per-
bit probabilities of states. It allows us to identify frequently reachable states
where the search space for the sponge contents is small. Finally, we propose
countermeasures against the presented attacks.

Organisation of the paper: The rest of this paper is organised as follows.
Section 2 describes previous work. Section 3 provides background information
on the MAYO algorithm and voltage fault injection. Section 4 describes the sim-
ulation and classification technique. Section 5 presents the experimental setup.
Section 6 describes the fault attacks. Section 7 introduces the secret key recov-
ery method. Section 8 summarises the experimental results. Section 9 discusses
possible countermeasures against the attacks. Section 10 concludes the paper.

2 Previous work

This section gives an overview of previous attacks on multivariate signature
schemes, including MAYO, which make use of fault injection or side-channel
analysis to recover the secret key. Table 1 provides a summary.

2. PREVIOUS WORK 3

Table 1. Comparison to previous fault attacks on multivariate signature schemes.

Algorithm #Signatures #Faults Evaluation® Assumptions
Hashimoto
ot al. [20] Multiple Multiple Multiple Theoretical =~ None
Kr.a mer and UQV/ Multiple Multiple Theoretical =~ None
Loiero [27] Rainbow
Shim and Uov 44-103 Multiple Theoretical N
Koo [46] ultiple eoretica one
Key in Fa (not
?Zﬁl]s et al. LUOV Multiple Multiple Practical applicable to
MAYO)
Aulbach Rainbow Multiple 1 Simulation Exact memory
et al. [3] reuse
Furue . . . Enumeration
et al. [17] uov Multiple 2-40 Simulation 941_989
Stay?rl[45] MAYO 2 ! Theoretical None
et al. 2 1 Deterministic
1 1 Zero-
Aulbach MAYO Practical initialisation
et al. [4] Exact memory
2 1
reuse
1 1 None
This work MAYO 1 P"ractic'al, None
Simulation -
1 1 Similar mem-

ory location

® Indicates whether the attack is evaluated theoretically, simulated, or performed in

practice.

4 S. Jendral and E. Dubrova

Hashimoto et al. [20] presented two general fault attacks applicable to a
number of multivariate schemes. Their first attack changes single coefficients
in the central map through a fault. By decrypting random messages under the
faulty map and reencrypting them under the original map, they are able to
extract information about a part of the secret key from the differences. Their
second attack targets the random values used in the signing process. By fixing
these values to a constant using a fault, they are able to combine information
from several faulty signatures and thereby reduce the complexity of the Kipnis-
Shamir attack for recovering part of the secret key. Kramer and Loiero [27]
reevaluated these attacks in the context of UOV and Rainbow and found that
the first attack is not applicable to schemes that omit one of the affine maps,
such as UOV (and MAYO). They also propose additional countermeasures for
the second attack. Shim and Koo [46] extended the second attack to achieve full
key recovery from UOV with between 44 and 103 faulty signatures (depending
on the fault model). The attack is not validated experimentally.

Mus et al. [31] showed a Rowhammer-based bit flipping attack on LUOV.
Their attack works by recovering a number of bits of the secret key by flipping
individual bits and observing the resulting faulty signatures. By combining the
partial knowledge of the key with an algebraic approach, they are able to recover
all 11,229 bits of the key from 4116 bits obtained by bit flipping in 3hrs 49min
and 49hrs of additional processing. They do not state the number of signing
operations that were performed by the target device in the 3hrs 49min timeframe.
As pointed out in [17], this attack is not applicable to UOV (or MAYO), as the
secret key is not in a finite field of two elements.

Aulbach et al. [3] presented two practical fault attacks on Rainbow. The
first uses the same approach as [46] of fixing the vinegar variables to reuse
them across iterations, but applies a more efficient postprocessing technique.
The second attack skips the linear transformation, thereby allowing it to be
recovered through multiple faulty signatures. By applying the Kipnis-Shamir
attack, they are able to recover the full secret key. They experimentally verify
their results using simulation, but do not state the number of signatures required
for the attacks.

Furue et al. [17] introduced a novel fault attack on UOV. Their attack works
by causing faults on parts of the secret key. By observing faulty signatures gen-
erated from the changed secret key, they are able to construct a reduced UOV
instance, which can be attacked with lower complexity using either the Kipnis-
Shamir attack or an intersection attack. They simulate their attack and find that
the secret key could be recovered with 2 to 40 faults and 24! to 2% enumerations
with probabilities between 30% to 80%.

Sayari et al. [45] addressed two fault injection attacks in their hardware im-
plementation of MAYO. The first of these concerns the reuse of vinegar variables
by skipping their sampling through fault injection. The difference between the
original signature and a faulty signature can potentially be used to reveal a
vector in the oil space and thus recover the secret key. They propose to shuffle
the vinegar values after the signing procedure to prevent reuse. The second at-

3. BACKGROUND 5

Table 2. MAYO parameter sets from [11].

Parameter set n m o k g saltlen digestllen pkseedlen f(z)

MAYO, 66 64 8 9 16 24b 32b 16b fea(z)
MAYO, 78 64 18 4 16 24b 32b 16b fea(2)
MAYO; 99 96 10 11 16 32b 48b 16b fos(2)
MAYOs5 133 128 12 12 16 40b 64b 16b fi2s(2)

tack concerns skipping the addition of the oil values at the end of the signing
procedure through fault injection, thereby revealing a vinegar value. If the de-
terministic signing mode is used, this vinegar value can be used to recover an oil
vector and thus the secret key from the difference between an original signature
and the faulty signature. They propose to check the validity of the signature, as
the fault injection causes the signature to be invalid.

Recently, Aulbach et al. [4] presented two variants of a loop-abort fault in-
jection attack on MAYO similar to the first attack by Sayari et al. [45]. The idea
is again to abort the loop that is used to sample the vinegar values, thus leaving
some of the values uninitialised. Under the assumption that the vinegar values
are initially set to a constant value or are reused across multiple invocations of
the signing procedure, they are able to recover a vector in the oil space, and
thereby the key of the scheme, either directly or from the difference of two sig-
natures. They experimentally validated the attack using clock glitching, but do
not report a fault probability. Both attacks require only a single fault and one
respective two signatures.

Aulbach et al. [2] also presented an attack making use of side-channel anal-
ysis. They exploit leakage during the multiplication of the vinegar values with
known constants and are able to recover all vinegar values using a template-based
approach. Using the vinegar values, they are able to recover both a vector in the
oil space and the full oil space O. The latter is recovered using a combination
of the Kipnis-Shamir attack [25] and the reconciliation attack [16]. They exper-
imentally validate their attack on an STM32F303RCT7 processor and recover
the full key from a single trace with a probability greater than 97%.

3 Background

This section describes the MAYOQO algorithm and the voltage fault injection
method.

3.1 MAYO algorithm

MAYO is a multivariate quadratic digital signature scheme introduced by Beul-
lens [9]. It is based on the Oil and Vinegar (OV) signature scheme originally
introduced by Patarin [39] and is considered secure in the random oracle model

6 S. Jendral and E. Dubrova

Algorithm 1 MAYO.KeyGen() [9]
Output: Public key pk, secret key sk
1: O« F*("=2)

2: seedsy « {0,1}*

3: seed,r, < SHAKE256(seed;y,)

4: for i from 1 to m do
PEI) + Expand(seed, || P1|| %)
PE2) <+ Expand(seed,x || P2 || ©)
P® « Upper(—OP" 0T — OP?)

return (pk, sk) = ((seedpk, {P§3)}1§i§m), (seedsk, O))

based on the assumed hardness of the OV and multi-target whipped Multivari-
ate Quadratic (MQ) problems. In OV schemes, the public key is a multivariate
map P : Fy — F* of m n-variate quadratic polynomials py(z),...,pm(z) over
a finite field ;. The map features a trapdoor, which is a secret subspace O
on which the map vanishes. Using the trapdoor, it is possible to efficiently find
a preimage s of a hash t such that P(s) = t. Without knowledge of the trap-
door finding a preimage is assumed to be difficult, which is known as the MQ
problem. Distinguishing a map with such a trapdoor from a fully random map
is similarly assumed to be difficult and the corresponding problem is known as
the OV problem. To reduce the size of the public key, MAYO employs an opti-
misation that constructs a larger map P* from a smaller map P before finding
the preimage. Beullens refers to this process as “whipping up” the map and the
resulting variant of the MQ problem that asks to find the preimage in P* is thus
known as the multi-target whipped M@ problem.

An overview over the possible sets of parameters for MAYO is given in Ta-
ble 2. For further details we refer to the specification [11]. We are focusing on
MAYO; in this paper, though variants MAYO,, MAYO3 and MAYOj can be ap-
proached similarly. A caveat that applies to MAYO; is addressed explicitly in
Section 7.

The main components of the MAYO scheme are the key generation proce-
dure, the signing procedure and the verification procedure.

Key generation (Algorithm 1) The key generation samples a random matrix
O that forms the oil space. It also samples a secret random seed seed,;, and a
public seed seed,;, from which the sequences of m matrices Pgl) and PZ(-Z) of the
multivariate quadratic map P are expanded pseudorandomly. This allows the
public key to only contain the seed instead of the matrices, thereby reducing its
size. Finally, the remaining sequence of m matrices ng) is chosen such that the
map P vanishes on the oil space O. The public key consists of the public seed
seed,;, and the sequence of matrices P(3). The secret key consists of the secret
seed seed,; and the matrix O.

3. BACKGROUND 7

Algorithm 2 MAYO.Sign(sk, M) [9]

Input: Secret key sk, message M
Output: Signature o
: (seeds, O) sk
seed,i, — SHAKE256(seed,y,)
for ¢ from 1 to m do
PEI) + Expand(seed, || P1|| %)
L PE2) <+ Expand(seed,x || P2 || ©)
R+ {0,1}" > Determanistic variant: R < {0}"
salt < SHAKE256(M || R || seedsk)
t «+ SHAKE256(M || salt)
9: for ctr from 0 to 255 do
10: V + SHAKE256(M || salt || seeds || ctr)
11: Vi,...,Vi < Decode(V)
12: (A,y) < BuildLinearSystem({v1,...,vs}, O, P, P(Q),t)
13: x <— SampleSolution(A,y) > Try to find Ax =y (i.e. P*(s) =t)
14: if x #1 then break
15: s+ {vi + Ox; || xi }1<i<s
16: return o = (s, salt)

Algorithm 3 MAYO.Verify(pk, M, o) [9]

Input: Public key pk, message M, signature o
Output: Boolean
(seed,r, PO « pk
for i from 1 to m do
PEI) + Expand(seed, || P1|| %)
L P® + Expand(seed, || P2 || i)
((s,salt) = o
t < SHAKE256(M || salt)
t’ < Evaluatep (1) ORI (s) > P (s) =t
return true if t = t’ else false

Signing (Algorithm 2) The signing procedure extracts the oil space O and the
sequences of matrices P(!) and P from the secret key. It then uses SHAKE256
to compute the salt and from the salt, the target value t. Using SHAKE256, the
vinegar seed V is derived from the message M, the salt, the secret seed seed
and a counter value ctr. From there, a system of linear equations is constructed
and solved, corresponding to finding s such that under the multivariate quadratic
map P*, it holds that P*(s) = t. For certain choices of vinegar values, the matrix
A that defines the system does not have full rank and thus the system cannot
be solved. If this is the case, the signing process restarts with a different vinegar
seed. Solving the system can be done efficiently, due to the knowledge of the oil
space O. Once a solution is found, the resulting signature consists of a sequence
s of oil vectors masked by vinegar values vi + Ox, ..., v + Ox; concatenated
with the corresponding arguments X1, ..., X, and the salt.

8 S. Jendral and E. Dubrova

Verification (Algorithm 3) The verification procedure extracts and derives
the sequences of matrices P, P and P®) from the public key. It also ex-
tracts the argument s, as well as the salt from the signature. It then derives the
original target value t and evaluates the multivariate quadratic map P* with
the argument s to compute the value t’. If the resulting values t and t’ match,
the signature is valid.

3.2 Voltage fault injection and fault model

Voltage fault injection manipulates the voltage supplied to a processor to induce
faults. Fault injection approaches differ mainly in the required degree of precision
for the timing of the glitch and in the offered degree of control over which parts of
the program are affected. Techniques that require less precise timing, such as [5,
6], which uniformly underpower the processor executing the program to slow
down logic gates to cause faults, also offer less control over which instructions
are affected and how. Techniques which require more precise timing, such as
[13, 38], which use precise voltage spikes to cause faults, allow affecting only
specific instructions.

In this paper, we apply the fault injection technique of O’Flynn [38], which
uses a crowbar circuit to short the power rails of the processor, thereby inducing
oscillations in the target circuit which potentially cause faults. The fault model
of this technique is single/multiple instruction skipping. While instances of in-
struction or data corruption can occasionally occur, these are not relevant for
the attacks presented in this paper.

3.3 SHAKE256 algorithm

SHAKE256 is an extendable output function (XOF) that is part of the FIPS202
standard [32]. Extendable output functions generate pseudorandom sequences
of output from a given input. SHAKE256 uses the sponge construction [18] and
an iterated one-way permutation function from the KECCAK family of permuta-
tions.

Fig. 2 shows the main components of the construction: Two buffers, which
are zero-initialised, form the state of the construction. During the absorption
phase, blocks of the input are XORed into the state and the state is updated
using the permutation function. This is repeated until all blocks of input have
been absorbed. Then, output is generated in the squeezing phase by taking part
of the state, extracting it as a block of output, and updating the state using the
permutation function. The algorithm terminates once all blocks of output have
been generated.

4 Simulation method

A large number of fault simulation techniques have been proposed in the past.
As they are too many to list, we focus on those relevant to this work.

4. SIMULATION METHOD 9

Techniques such as [21, 22, 30, 44] perform concrete execution using emula-
tion. These techniques are typically based on QEMU [7] or the related Unicorn
engine [37] and differ mainly in how the fault injection is configured and mod-
elled. Other techniques, such as [14, 15, 28, 29, 40] instead use symbolic execution
based on a variety of underlying frameworks. The simulation technique used in
this paper closely matches the approach by Lancia [29], which employs the same
underlying framework with similar modifications, but focuses on various bit flip
fault models instead of the instruction skipping fault model.

4.1 Symbolic execution

Symbolic execution is a simulation technique that substitutes computations on
concrete values with computations on symbolic values [24]. This allows for all
possible branches of a program to be explored unconditionally, instead of only
those reached under a given variable assignment. In the context of fault injection,
symbolic execution can identify faults that can only be reached under certain
conditions, which may be difficult or impossible to achieve with concrete exe-
cution, especially if data dependencies are only created as a result of the fault
injection.

Our simulation technique uses the angr framework [47] for performing sym-
bolic execution. We selected this framework due to its extensibility and compat-
ibility with our existing Python-based tooling, as well as its support for a large
number of architectures (including multiple ARM architectures, x86, RISC-V,
MIPS and even domain-specific architectures like Tricore). Using the framework,
we created a simulation engine that is able to skip a configurable number of in-
structions in given parts of the program. In our case, we consider the first part of
the SHAKE256 computation, from the zero-initialisation of the sponge up until
the absorption into the sponge is completed.

4.2 Reachability estimation using loopy belief propagation

As a part of the symbolic execution, the angr framework annotates each state
with a list of constraints that are necessary to reach it. These constraints are con-
ditional expressions on concrete or symbolic bitvectors, modelled as an abstract
syntax tree. For example, the constraint <Bool reg r4 8_32{UNINITIALIZED}
<= 0x87> indicates that the value of the 32-bit register r4 must be less than or
equal to 0x87.

The idea behind our approach is to model each bit and each operation as
a node and a factor or combination of factors in a factor graph. By applying
loopy belief propagation on the factor graph, we are able to derive approximate
marginal probabilities for the values of individual bits and thus estimate the
probability of a constraint being satisfied.

An advantage of this approach is that it allows for arbitrary per-bit proba-
bilities to be represented for input values. In our simulations, we assume that
uninitialised bits are distributed uniformly at random, but it would be possible
to achieve more accurate predictions by integrating additional information about

10 S. Jendral and E. Dubrova

the distributions, for example by sampling the register and memory values from
a real device. We did not pursue this approach because, in our experiments, the
target device runs part of the cryptographic algorithm and no other tasks. Thus,
any values gathered by sampling would be unlikely to be representative of a real
device.

We found that an unmodified version of the loopy belief propagation algo-
rithm performs poorly due to the presence of short loops caused, for example,
by the comparison of neighbouring bits. This is a known limitation of the loopy
belief propagation algorithm and a number of techniques have been proposed to
address it, including [26, 48]. For our use case, we found it sufficient to identify
short loops and combine together all of their factors.

4.3 Results

Within 81 minutes of simulation time, we identified 665 candidate states that
successfully complete the first part of the SHAKE256 computation despite the
injection of a fault. These 665 candidate states correspond to single instruction
skips at 122 unique addresses. Recall that, under symbolic execution, a state is
added for each branch in the program flow if the branch condition cannot be
statically resolved (i.e. if the branch condition depends on a data or register value
that is not unconditionally set during the program execution), thus the number
of candidate states is higher than the number of single instruction skips. Of the
665 candidate states, we identified 75 states where the number of unknown bits
in the sponge after the absorption phase is less than or equal to 32, corresponding
to the injection of single instruction skips at eight unique addresses.

We take into account that the first 32424 bytes of the input to the SHAKE256
function are public and are thus allowed to occur in the sponge without affecting
the search space, provided that their positions are known. These identified states
are those in which an attacker could, with reasonable number of enumerations,
recover the secret key using the technique described in section 6. However, not
all of the 75 states are reachable with high probability.

Using the loopy belief propagation approach, we found that 69 of the 75
states where the search space for the sponge contents is small, are unlikely to
be reached under the assumption that uninitialised memory and register values
are uniformly and randomly distributed. Of these 69 unlikely reachable states,
61 are related to skipping the initialisation of register r4 at the beginning of the
program and thus require specific values for the uninitialised register in order
for program execution to finish successfully.

Of the remaining eight unlikely reachable states, one state is related to skip-
ping the initialisation of register r8, thus shifting the area of memory into which
the data is absorbed into uninitialised memory. This state is wrongly annotated
as requiring the register of r8 to be zero, causing us to incorrectly deem it as
unlikely reachable. The likely cause for the wrong annotation is that the de-
fault memory model in angr does not handle writes to memory with symbolic
addresses correctly.

5. EXPERIMENTAL SETUP 11

The remaining seven unlikely reachable states skip a subtraction operation
that sets the condition flags during the XOR of data into the sponge, thus
causing a loop abort when the previous condition flags are set to certain values.
This is only possible if several specific bits of the first part of the input are
zero. Note that, while the first part of the input to the SHAKE256 function (the
message digest) is attacker controlled, setting specific bits in it to zero would
require finding a preimage for such a value under SHAKE256, which is considered
infeasible.

The remaining six states are unconstrained and thus correctly identified as
being reachable. Of these, three states are related to skipping the branching to
the absorption function or the initialisation of one of its parameters. This at-
tack is described in more detail in Section 6.1. One state is related to skipping
the branching to a subroutine called from the absorption function, instead of
skipping the absorption function itself, with the same result. We did not pursue
this attack further, as it requires skipping a single branching instruction without
affecting any of the surrounding instructions, which is impractical in our exper-
imental setup. Finally, two states are related to skipping a backwards branch in
different iterations of a loop during the absorption, thus causing a loop abort
and leaving the sponge partially initialised with the public part of the input.
This is the same loop that is targeted by the faults that skip setting a condition
flag mentioned earlier. The difference is that the branch here is skipped directly,
thus removing the need for the condition flags to have certain values. This attack
is also described in more detail in Section 6.1.

Overall, we found that the loopy belief propagation technique can provide
reasonable estimates for the probability of satisfying certain constraints under
the assumption that uninitialised values are uniformly and randomly distributed.
However, for the constraints we encountered in our simulation, these estimates
are of limited use. Most of the constraints require registers to contain specific val-
ues where, for example, the four highest bits of a 32-bit register must be 1 and all
other bits must be 0. Under the assumed distribution, the probability for such a
value to occur is small (2732 for the described case), thus differentiating between
states based on their probabilities is not possible. Future work may consider al-
ternative approaches for establishing statistical models for the distribution of
uninitialised memory and register values, such as the sampling technique men-
tioned earlier. Additionally, neither the belief propagation approach itself, nor
the combining approach used for graphs that contain loops, scale well, prevent-
ing larger, more complex expressions from being used. Future work may consider
applying other known techniques, such as [26, 48], in this context or reducing
the estimation complexity by other means.

5 Experimental Setup

This section describes the equipment used for the experiments, as well as the
target implementation of MAYO.

12 S. Jendral and E. Dubrova

Fig. 1. ChipWhisperer-Husky, CW313 adapter board and CW308T-STM32F4 board
used in the experiments.

5.1 Equipment

The equipment used in our experiments is shown in Fig. 1. The target device
is a CW308-STM32F4 board containing an ARM Cortex-M4 STM32F415RGT6
processor running at a frequency of 24 MHz. It is mounted on a CW313 adapter
board and faults are injected using a ChipWhisperer-Husky. The fault injection is
triggered via ARM CoreSight DWT watchpoints, thus avoiding any modification
of the assembly code otherwise caused by inserting a trigger. Alternative trigger
sources, such as communication with peripheral devices or similarity of the power
consumption to reference waveforms, could be used by an attacker that does not
have control over the target device.

5.2 Target implementation

In our experiments, we use the MAYO implementation by Beullens et al. [12].
Specifically, we use the most recent commit (fe46236) of the main branch, not
the nibbling-mayo branch. However, the changes introduced by the nibble rep-
resentation do not affect any of the components that we consider in this paper,
so we expect the attacks to translate to that version directly.

The implementation is compiled using arm-none-eabi-gcc with the highest
optimization level -03 (recommended default).

6 Fault Injection Attacks

This section describes the three fault injection attacks on MAYO.

6. FAULT INJECTION ATTACKS 13

10

11

12

13

size_t keccak_inc_absorb(uint64_t *state, size_t bytes_not_permuted,
uint8_t *m, size_t mlen) {

while (mlen + bytes_not_permuted >= 136) {
KeccakF1600_StateXORBytes(state, m, bytes_not_permuted);
mlen -= 136 - bytes_not_permuted;
m += 136 - bytes_not_permuted;
bytes_not_permuted = 0;
KeccakF1600_StatePermute(state);

}

KeccakF1600_StateXORBytes(state, m, bytes_not_permuted, mlen);
return bytes_not_permuted + mlen;

Listing 1.1. The C code of the keccak_inc_absorb procedure. The function targeted
by the fault injection is highlighted in green.

10

11

12

13

14

15

16

shake256(tmp, digest_bytes, m, mlen); // M.digest
randombytes (tmp + digest_bytes, salt_bytes) // R

// Store M.digest || R || seed.sk contiguously in tmp
memcpy (tmp + digest_bytes + salt_bytes, seed_sk, sk_seed_bytes);
shake256(salt, salt_bytes, tmp,

digest_bytes + salt_bytes + sk_seed_bytes); // salt

// Reuse tmp to store M.digest || salt contiguously
memcpy (tmp + digest_bytes, salt, salt_bytes);

*(tmp + digest_bytes + salt_bytes + sk_seed_bytes) = ctr;
// Sample seed for vinegar values
shake256(V, k * v_bytes + r_bytes, tmp,

digest_bytes + salt_bytes + sk_seed_bytes + 1);

Listing 1.2. The C code for the computation of the salt, t and vinegar values. The
function targeted by the first and second fault injection is highlighted in green, the
function targeted by the third fault injection is highlighted in red.

14 S. Jendral and E. Dubrova

z
F77774777°"°
V11811777777 ’ . . . 017777777777 7777| " 1
AR I d by fault tion #57520050000) I-)
105252220920077 1ppe y Iault mjection;277777727772229,
A B s St A 0050350550500
0005055055555 5500 b
VIPAI 2277877747777 70872777777774777777 172777 77 4727727777774 % m /_\
FIIAIIII I I 7777777787777 7777077777/ 7777777747 777877777777777"
N A
L0000 0000000000000050050550500500)
PIIAIIIIIVIIII I I I I PRI I I A I PRI LI I I I ISP I 7724777727777 77 8
A Ay k
A A s A ik
FIIIIIIIIVI I I I I 7 7777777077770 77777777 77077777077777777727777777%
A vk
L0 00000005050050055050050550 000000
A A Ak
A A A Ak
LIIIIIIIIYI 777777 7777770777707 777777777077 7707777777777777777%
A AR AN A R
R N s o e A Y
D 000000000000050050050050559505505505555555055255055 555500 &

absorbing squeezing

Fig. 2. SHAKE256 sponge construction (adapted from [18]). The fault injection skips
the absorption step highlighted in blue, thus causing the output Z to be constant and
independent of the input M.

6.1 Absorption skipping and absorption abort attacks on SHAKE256

The first attack, which we call the absorption skipping attack, extends the tech-
nique for skipping the absorption of input data during the calculation of a hash
in CRYSTALS-Dilithium introduced in [23] to MAYO.

The implementation of MAYO by Beullens et al. [12] uses the same SHAKE256
code from the pgm4 project as the implementation of CRYSTALS-Dilithium
by Abdulrahman et al. [1] targeted in the attack of [23]. The SHAKE256 imple-
mentation consists of four functions: The keccak_inc_init function is called first
and zero-initialises the sponge. Then, the keccak_inc_aborb function (see List-
ing 1.1) absorbs arbitrary-sized input blockwise into the sponge. This function
may be called multiple times to absorb data from different buffers. Finally, the
keccak_inc_finalize function is called exactly once and prepares the sponge for
squeezing, and the keccak_inc_squeeze function, which may also be called mul-
tiple times, extracts arbitrary-sized output blockwise by squeezing the sponge.

The idea behind the absorption skipping attack is to prevent the absorption of
data into the sponge through fault injection in order to fix the value of the vinegar
seed to a known constant. When the branch to the KeccakF1600_StateX0RBytes
function (see line 11 of Listing 1.1) is skipped, the sponge does not absorb any
data. The loop in lines 3 to 9 is never executed in the computation of the vinegar
seed, because the length of the input M || salt || seedsy, || ctr is 81 bytes, which is
less than the 136 bytes required to trigger a permutation (i.e. the input does not
fill a full block). Due to the zero-initialisation performed by the keccak_inc_init
function prior to the fault injection, skipping the absorption leaves the sponge
in an initialised, but empty state. Hence squeezing the vinegar seed output from
this sponge generates a constant sequence of bytes known to the attacker.

6. FAULT INJECTION ATTACKS 15

Fig. 2 shows the sponge construction with the absorbing and squeezing
phases, as well as the two buffers that make up the sponge and whose values
are propagated to the squeezing phase by the fault injection. Note that, unlike
in the first attack method of Aulbach et al. [4], we do not need to make any
assumptions about the memory initialisation of the device.

The idea behind the second attack, which we call the absorption abort attack,
is to abort the loop that performs the actual absorption of data into the sponge.
By skipping a backwards branch, the loop exits early and the sponge only absorbs
the first part of the data. Since the first two arguments to the SHAKE256 function
in the computation of the vinegar seed are the public message digest and salt,
the attacker can predict the contents of the sponge after the absorption and thus
its output.

Note that, for both these attacks to be successful, the signing should not fail
after injecting the fault (i.e. there must be a solution to the system Ax =y).
Otherwise the next iteration of the signing loop will overwrite the faulty seed.
However, the failure probability for signing is known to be low (upper bounds
of ~ 1.55 x 107! for MAYO; and MAYOs, ~ 9.25 x 10~!° for MAYO3 and
~ 3.61 x 1072! for MAYOs; see Lemma 3 of [9]). Empirically, we observed no
instances of failure during signing of 40,000 random messages. Therefore this is
not an issue in practice.

6.2 Argument initialisation skipping attack on SHAKE256 via memcpy

The third attack, which we call the argument initialisation skipping attack, tar-
gets a single memcpy operation prior to the computation of the salt.

The SHAKE256 implementation used by Beullens et al. requires all arguments
of the shake256 function to be stored contiguously in a single buffer. In practice,
a buffer tmp is reused across multiple invocations of the shake256 function. More
specifically, the computation of the salt with the arguments M || R || seedgy, is
realised by first outputting the message digest into the buffer tmp (see line 1 of
Listing 1.2), then copying a random value R into the buffer (line 2) and finally
copying the secret seed seedyy into the buffer (line 5). The computation of the
vinegar seed reuses tmp by overwriting the value R with the computed salt (line
10) and appending the value ctr (line 13) before calling the shake256 function
again. By skipping the copying of seedg; in line 5, the corresponding section of
tmp is left uninitialised.

At the end of the signing procedure, the implementation by Beullens et al.
zeroes most of the memory as a security measure. Thus, when the same section
of memory is reused during the next invocation of the signing procedure, the
uninitialised parts of tmp are set to zero despite not being initialised. As a
consequence, all arguments of the shake256 function during the computation of
the vinegar seed can be predicted by an attacker. Concretely, the message digest
can be derived from the message, the salt can be extracted from the signature,
the secret seed seedy is zero by assumption and the value of the ctr could either
be enumerated over all possible 256 values, or assumed to be zero, as the same

16 S. Jendral and E. Dubrova

Algorithm 4 RecoverSecretKey (o, V)

1: (Senc,salt) « o

2: s < Decodeyec(Senc)

3: for i from 1 to k do

4: v; < Decodeyec(n — 0, V[(i — 1) * v_bytes : i * v_bytes])

S:L (zs,%:) < s[(i — 1) *n :ixn] > z; = v; + Ox;

6: Yi— 2i — V;

7: Select subset of o vectors such that X (see Equation 1) has full rank. If this is not
possible, return L.

8: Solve X'o =y as in Equation 2

9: Compute O from o as in Equation 3
10: return O

justification regarding the failure probability of the signing from the first attack
applies here. This allows the attacker to predict the vinegar seed.

Note that, unlike in the second attack method of Aulbach et al. [4], it is not
necessary that tmp is allocated in the exact same section of memory. Instead,
even shifts of several hundred bytes could cause tmp to be placed in zeroed
memory.

7 Secret key recovery

All three attacks presented in Section 6 enable the attacker to predict the seed
used for the sampling of the vinegar values. This section presents a novel ap-
proach for recovering the oil space O from a faulty signature generated with a
known vinegar seed.

Previous work has shown that it is possible to recover the entire oil space from
a small number of vectors. The reconciliation attack [16] provides a way to find
additional vectors in the oil space given an initial vector. Aulbach et al. [2] use
a combination of the reconciliation attack and the Kipnis-Shamir attack [25] to
recover the full oil space from a single vector. Beullens’ intersection attack [8, 9]
also combines ideas from the reconciliation attack and the Kipnis-Shamir attack
to identify initial vectors for the reconciliation attack. Recently, Pébereau [41]
presented efficient polynomial-time algorithms for recovering the secret key from
UOV schemes (including MAYO).

These techniques could also be applied to recover the secret key from the
faulty signatures in the attacks presented in this paper. However, knowledge
of the vinegar seed alongside the structure of the MAYO signature allows for
an alternative approach of performing secret key recovery. We stress that this
approach is not a replacement for existing techniques: It requires knowledge of
all vinegar values and occasionally fails to recover the secret key. We present
this approach mainly for completeness, and because it may outperform existing
techniques in practice.

A MAYO signature contains the masked oil vectors vi + Oxq, ..., vg + Oxy,
as well as the vectors xq,...,x,. We focus only on a subset of 0 many of these

8. EXPERIMENTAL RESULTS 17

vectors. The reason for this will be explained after the following definitions. Let

xi
Xi= || eFpe (1)
Xg
be the matrix given by selecting a subset of 0 many of the vectors xi,...,x; as
columns. Let further
X
I . (n—o)Xo(n—
X' = . GFZTLO o(n—o)

X
be the matrix whose diagonals are given by n — o copies of X and let

vi +Ox; — vy Oxq
y = = c Fg(n_O)
Vo + Ox, — v, Ox,

be the concatenation of the oil vectors. The solution o of the linear system

Xo=y (2)
yields the oil space O as
o[0] --- ofo(n —o0—1)]
0= : : . (3)
ofo—1]--- ofo(n — o) — 1]

In order for the system in Equation 2 to be solvable, the matrix X must be
square and have full rank. For parameter set MAYO,, where k < o, it is not
possible to find a subset of vectors such that X is square. Thus, this method is
not applicable to that parameter set. In parameter set MAYOs, where k = o, the
subset is trivial and cannot be chosen. In parameter sets MAYO; and MAYOs,
where k > o, we select the first subset of dimension o such that X has full rank.
If there is no subset such that X is square and has full rank, the method fails and
key recovery must instead be performed using one of the previously mentioned
techniques.

8 Experimental Results

This section describes the results of the fault injection attacks and subsequent
secret key recovery.

18 S. Jendral and E. Dubrova

8.1 Fault injection success probability

We managed to successfully skip execution of the KeccakF1600_StateXORBytes
function in 81.9% of 1,000 attempts and abort the loop during the absorption in
36.4% of 1,000 attempts. We further managed to skip execution of the memcpy
function in 100% of 1,000 attempts.

The success probability of the absorption abort attack is substantially lower
than the other two because the device crashes whenever the instruction following
the skipped one is affected by the fault. Hence, the injected fault has to be very
precise, which we found difficult to achieve in our experimental setup.

8.2 Secret key recovery

We applied Algorithm 4 to the faulty signatures generated in the first phase of
the attack.

As a guess for the vinegar seed in the absorption skipping attack, we use the
output of SHAKE256 when invoked with the argument {0}%4®, i.e. an all-zero
input of 81 bytes, which is equivalent to the output generated after skipping
the absorption phase. In SHAKE256, the length of the input is absorbed into
the sponge after the absorption phase. As this step is not affected by the fault
attack, the length must be the same as that of the original input to generate the
correct output.

As a guess for the vinegar seed in the absorption abort attack, we use the
output of SHAKE256 when invoked with the argument M0 : 128] || {0}52°, i.e.
we take only the first 128 bits of the message digest and extend with zeros to
achieve the same length input.

As a guess for the vinegar seed in the argument initialisation skipping attack,
we use the output of SHAKE256 when invoked with the arguments M || salt ||
0lseedskl || 0, i.e. we substitute the secret seed seedy; and the ctr with 0. All
of these guesses can easily be made by an attacker, because they are either
constants or use public information contained in the faulty signatures.

Algorithm 4 successfully recovered the secret key from 818 out of 819 faulty
signatures (99.88%) for the absorption skipping attack, 361 out of 364 faulty
signatures (99.18%) for the absorption abort attack, and 993 out of 1,000 faulty
signatures (99.30%) for the argument initialisation skipping attack. The remain-
ing secret keys can be recovered using the techniques [2, 41] mentioned earlier.

9 Countermeasures

This section discusses possible countermeasures against the presented fault at-
tacks.

9.1 Absorption skipping and absorption abort attacks on SHAKE256

The absorption skipping and absorption abort attacks targeting the SHAKE256
procedure can be mitigated by eliminating the branches that are targeted by

9. COUNTERMEASURES 19

the fault injection. For the absorption skipping attack, it is sufficient to inline
the KeccakF1600_StateX0RBytes subroutine into the keccak_inc_absorb func-
tion, as mentioned in [23]. For the absorption abort attack, this would involve
unrolling the loop during the absorption, which is possible because the input
to the function during the computation of the vinegar seed has fixed length.
However, due to the resulting increase in code size and the need for a separate
implementation that is able to handle dynamic length input in other parts of
the algorithm, this countermeasure may be impractical.

A different approach is to increase the probability of the signing loop being
repeated. The attacks fail if the faulty seed is overwritten in a second iteration
of the signing loop. However, the failure probability of the signing (and thus the
probability of executing the signing loop more than once) is very low with the
current parameter sets. It may be possible to select parameters that deliberately
increase the probability of signing failure to make it more difficult for an attacker
to identify the correct iteration of the signing loop for fault injection. Assuming
an attacker is only able to inject a fault into a limited number of iterations, this
lowers the success probability at the cost of an increased runtime of the signing
procedure. It is worth pointing out that the tentative round 2 parameter sets
for MAYO recently proposed in [10] increase the probability of the signing loop
being repeated. However, the new repeat probabilities (< 2712) are still too low
to effectively prevent the attacks presented in this paper.

In [23] it is also suggested that implementations verify that the sponge is not
empty after absorbing data, thereby protecting against the absorption skipping
attack. However, the absorption abort attack can bypass this countermeasure
by allowing a small amount of data to be absorbed. It may thus be better to
compare the data in the sponge to the input data. Implementing such a check
correctly may be nontrivial, especially when absorbing later blocks of input into
a non-empty sponge, as is the case for larger inputs.

To protect against the absorption abort attack, which leaves the sponge only
partially initialised, it is possible to reorder the arguments to the SHAKE256
function to make the first part of the input unknown to the attacker. In our
attack, the absorption is aborted after filling the sponge with the first 128 input
bits. Thus, without knowing the input bytes, an attacker cannot enumerate the
contents of the sponge. However, our attack targets the second iteration of the
absorption loop, which absorbs 64 bits in each iteration. By instead targeting
the first iteration, an attacker may be able to reduce the number of bits in the
sponge. Additionally, other implementations may process fewer bits per iteration,
thereby also reducing the search space for an attacker.

9.2 Argument initialisation skipping attack on SHAKE256 via memcpy

To protect against the argument initialisation attack, it is possible to use the
incremental variant of the SHAKE256 function already found in the implemen-
tation [12], which splits the hash computation into several functions. This allows
the shake256_inc_absorb function to be used, which can be called multiple
times with different buffers, eliminating the need to copy the secret seed seedg

20 S. Jendral and E. Dubrova

to a common buffer. Alternatively, instead of zeroing buffers with sensitive in-
formation at the end of the signing, overwriting these buffers with random data
would also prevent the attack.

9.3 Other countermeasures

For the sake of completeness, we also mention that selecting parameter sets with
0 > k prevents the key recovery method presented in Section 7 from being used,
due to the linear system being underdetermined. However, this is not an effective
countermeasure in general, because key recovery techniques, such as [2, 41], are
not affected by setting o > k. As mentioned previously, those techniques can
also be used for key recovery for the fault attacks in this paper.

Finally, we experimented with inserting random delays into the execution
of the algorithm to make it more difficult for an attacker to identify the right
time for the fault injection. The random delays were implemented as a buffer of
NOPs into which the actual instructions were inserted at runtime with randomly
chosen distances between them. However, we found that it is possible to reliably
identify certain instructions based on reference power consumption waveforms
during the execution of the algorithm, thereby breaking the countermeasure.

Additionally, the generation of a sequence of instructions with randomly in-
serted delays has a significant runtime overhead both for the randomisation, as
well as the subsequent patching of relative branches to ensure the algorithm exe-
cuted correctly. There is also a significant memory and execution cost associated
with this technique, especially if delays are chosen to be large enough to protect
against attackers that can fault multiple instructions. Overall, the random delay
insertion does not seem viable to protect against the attacks presented in this

paper.

10 Conclusion

We presented three practical first-order single-execution fault injection attacks
on an implementation of MAYO that can recover the full secret key of the
scheme. Unlike previous work, two of our attacks do not make any assumptions
on the memory allocation of the device. The third requires a less restrictive
memory allocation than previous attacks.

We introduced an alternative key recovery method that is simpler than previ-
ous techniques and can be used in cases where the vinegar seed is known. We also
proposed a simulation technique that combines symbolic execution with loopy
belief propagation on a factor graph to identify faults that allow an attacker to
predict the vinegar seed.

Our work demonstrates that it is possible to recover the secret key of MAYO
in a single attempt with a high probability, up to 99%. This highlights the im-
portance of protecting the computations of seed values. Previous fault attacks
on MAYO have focused on attacking the vinegar values derived from the seed
instead of the seed itself. Future work includes developing stronger countermea-
sures against fault attacks on implementations of PQC algorithms.

11. ACKNOWLEDGEMENT 21

11 Acknowledgement

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation and by the Swedish Civil Contingencies Agency (Grant No. 2020-11632).

1]

Bibliography

Abdulrahman, A., Hwang, V., Kannwischer, M.J., Sprenkels, A.: Faster
Kyber and Dilithium on the Cortex-M4. In: Ateniese, G., Venturi, D.
(eds.) Applied Cryptography and Network Security - 20th International
Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceedings, Lec-
ture Notes in Computer Science, vol. 13269, pp. 853-871, Springer (2022),
https://doi.org/10.1007/978-3-031-09234-3_42

Aulbach, T., Campos, F., Kramer, J., Samardjiska, S., Stottinger,
M.: Separating oil and vinegar with a single trace: Side-channel as-
sisted Kipnis-Shamir attack on UOV. TACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2023(3), 221-245 (June 2023),
https://doi.org/10.46586 /tches.v2023.i3.221-245

Aulbach, T., Kovats, T., Kramer, J., Marzougui, S.: Recovering Rain-
bow’s secret key with a first-order fault attack. In: Batina, L., Dae-
men, J. (eds.) Progress in Cryptology - AFRICACRYPT 2022, pp. 348-
368, Springer Nature Switzerland, Cham (2022), ISBN 978-3-031-17433-9,
https://doi.org/10.1007/978-3-031-17433-9_15

Aulbach, T., Marzougui, S., Seifert, J.P., Ulitzsch, V.Q.: MAYo or MAY-not:
Exploring implementation security of the post-quantum signature scheme
MAYO against physical attacks. Workshop on Fault Diagnosis and Toler-
ance in Cryptography (September 2024), URL https://fdtc.deib.polimi.it/
FDTC24/slides/FDTC2024-talk-2.2.pdf

Barenghi, A., Bertoni, G., Breveglieri, L., Pellicioli, M., Pelosi, G.: Low
voltage fault attacks to AES and RSA on general purpose processors. IACR
Cryptol. ePrint Arch. p. 130 (2010), URL http://eprint.iacr.org/2010/130
Barenghi, A., Bertoni, G., Parrinello, E., Pelosi, G.: Low voltage fault
attacks on the RSA cryptosystem. In: Breveglieri, L., Koren, 1., Nac-
cache, D., Oswald, E., Seifert, J. (eds.) Sixth International Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC 2009, Lausanne,
Switzerland, 6 September 2009, pp. 23-31, IEEE Computer Society (2009),
https://doi.org/10.1109/FDTC.2009.30

Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings
of the FREENIX Track: 2005 USENIX Annual Technical Conference, April
10-15, 2005, Anaheim, CA, USA, pp. 41-46, USENIX (2005), URL http:
//www.usenix.org/events/usenix05/tech/freenix/bellard.html

Beullens, W.: Improved cryptanalysis of UOV and Rainbow. In: Canteaut,
A, Standaert, F.X. (eds.) Advances in Cryptology — EUROCRYPT 2021,
pp. 348-373, Springer International Publishing, Cham (2021), ISBN 978-3-
030-77870-5

Beullens, W.: MAYO: Practical post-quantum signatures from oil-and-
vinegar maps. In: AlTawy, R., Hiilsing, A. (eds.) Selected Areas in Cryptog-
raphy, pp. 355-376, Springer International Publishing, Cham (2022), ISBN
978-3-030-99277-4, https://doi.org/10.1007/978-3-030-99277-4_17

https://doi.org/10.1007/978-3-031-09234-3_42
https://doi.org/10.46586/tches.v2023.i3.221-245
https://doi.org/10.1007/978-3-031-17433-9_15
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-2.2.pdf
https://fdtc.deib.polimi.it/FDTC24/slides/FDTC2024-talk-2.2.pdf
http://eprint.iacr.org/2010/130
https://doi.org/10.1109/FDTC.2009.30
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1007/978-3-030-99277-4_17

[10]

[11]

[12]

11. ACKNOWLEDGEMENT 23

Beullens, W.: MAYO: Overview + Updates. NIST PQC Seminar
(September 2024), URL https://csrc.nist.gov/csrc/media/Projects/
post-quantum-cryptography /documents/pqc-seminars/presentations/
20-mayo-09242024.pdf

Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: MAYO
(June 2023), URL https://pgmayo.org/assets/specs/mayo.pdf

Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: Nib-
bling MAYO: Optimized implementations for AVX2 and Cortex-M4. TACR
Transactions on Cryptographic Hardware and Embedded Systems 2024(2),
252-275 (March 2024), https://doi.org/10.46586 /tches.v2024.12.252-275
Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: Optimizing volt-
age fault injection attacks. TACR Trans. Cryptogr. Hardw. Embed. Syst.
2019(2), 199224 (2019), https://doi.org/10.13154 /tches.v2019.i2.199-224
Cotroneo, D., De Simone, L., Liguori, P., Natella, R.: ProFIPy: Pro-
grammable software fault injection as-a-service. In: 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 364-372 (2020), https://doi.org/10.1109/DSN48063.2020.00052
Darbari, A., Hashimi, B.A., Harrod, P., Bradley, D.: A new approach
for transient fault injection using symbolic simulation. In: 2008 14th
IEEE International On-Line Testing Symposium, pp. 93-98 (2008),
https://doi.org/10.1109/TOLTS.2008.59

Ding, J., Yang, B.Y., Chen, C.H.O., Chen, M.S., Cheng, C.M.: New
differential-algebraic attacks and reparametrization of Rainbow. In:
Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) Applied Cryp-
tography and Network Security, pp. 242-257, Springer Berlin Heidelberg,
Berlin, Heidelberg (2008), ISBN 978-3-540-68914-0

Furue, H., Kiyomura, Y., Nagasawa, T., Takagi, T.: A new fault attack on
UOV multivariate signature scheme. In: Cheon, J.H., Johansson, T. (eds.)
Post-Quantum Cryptography, pp. 124-143, Springer International Publish-
ing, Cham (2022), ISBN 978-3-031-17234-2, https://doi.org/10.1007/978-3-
031-17234-2_7

Guido, B., Joan, D., Michagl, P., Gilles, V.: Cryptographic sponge functions
(2011)

Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the Fujisaki-Okamoto transformation and its ap-
plication on FrodoKEM. In: Micciancio, D., Ristenpart, T. (eds.) Advances
in Cryptology — CRYPTO 2020, pp. 359-386, Springer International Pub-
lishing, Cham (2020), ISBN 978-3-030-56880-1

Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivari-
ate public key cryptosystems. In: Yang, B.Y. (ed.) Post-Quantum Cryp-
tography, pp. 1-18, Springer Berlin Heidelberg, Berlin, Heidelberg (2011),
ISBN 978-3-642-25405-5, https://doi.org/10.1007/978-3-642-25405-5_1
Hauschild, F., Garb, K., Auer, L., Selmke, B., Obermaier, J.:
ARCHIE: A QEMU-based framework for architecture-independent
evaluation of faults. In: 2021 Workshop on Fault Detection

https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/20-mayo-09242024.pdf
https://pqmayo.org/assets/specs/mayo.pdf
https://doi.org/10.46586/tches.v2024.i2.252-275
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.1109/DSN48063.2020.00052
https://doi.org/10.1109/IOLTS.2008.59
https://doi.org/10.1007/978-3-031-17234-2_7
https://doi.org/10.1007/978-3-031-17234-2_7
https://doi.org/10.1007/978-3-642-25405-5_1

24

[29]

[30]

S. Jendral and E. Dubrova

and Tolerance in Cryptography (FDTC), pp. 20-30 (2021),
https://doi.org/10.1109/FDTC53659.2021.00013

Hoffmann, M., Schellenberg, F., Paar, C.. ARMORY: Fully automated
and exhaustive fault simulation on ARM-M binaries. IEEE Transac-
tions on Information Forensics and Security 16, 1058-1073 (2021),
https://doi.org/10.1109/TIFS.2020.3027143

Jendral, S.: A single trace fault injection attack on hedged CRYSTALS-
Dilithium. Cryptology ePrint Archive, Paper 2024/238 (2024), URL https:
//eprint.iacr.org/2024/238

King, J.C.: Symbolic execution and program testing. Com-
mun. ACM 19(7), 385-394 (Jul 1976), ISSN 0001-0782,
https://doi.org/10.1145/360248.360252, URL https://doi.org/10.1145/
360248.360252

Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature
scheme. In: Krawczyk, H. (ed.) Advances in Cryptology — CRYPTO 98,
pp. 257-266, Springer Berlin Heidelberg, Berlin, Heidelberg (1998), ISBN
978-3-540-68462-6

Kirkley, A., Cantwell, G.T., Newman, M.E.J.: Belief propagation
for networks with loops. Science Advances 7(17), eabfl211 (2021),
https://doi.org/10.1126 /sciadv.abf1211

Krémer, J., Loiero, M.: Fault attacks on UOV and Rainbow. In: Polian,
L., Stottinger, M. (eds.) Counstructive Side-Channel Analysis and Secure
Design, pp. 193-214, Springer International Publishing, Cham (2019), ISBN
978-3-030-16350-1, https://doi.org/10.1007/978-3-030-16350-1_11
Lacombe, G., Feliot, D., Boespflug, E., Potet, M.L.: Combining static anal-
ysis and dynamic symbolic execution in a toolchain to detect fault injection
vulnerabilities. Journal of Cryptographic Engineering 14(1), 147-164 (April
2024), ISSN 2190-8516, https://doi.org/10.1007/s13389-023-00310-8, URL
https://doi.org/10.1007/s13389-023-00310-8

Lancia, J.: Detecting fault injection vulnerabilities in binaries with
symbolic execution. In: 2022 14th International Conference on Elec-
tronics, Computers and Artificial Intelligence (ECAI), pp. 1-8 (2022),
https://doi.org/10.1109/ECAT54874.2022.9847500

Murdock, K., Thompson, M., Oswald, D.: FaultFinder: lightning-fast, multi-
architectural fault injection simulation. In: ASHES ’24: Proceedings of the
2024 Workshop on Attacks and Solutions in Hardware Security, Association
for Computing Machinery (ACM), United States (September 2024), URL
http://ashesworkshop.org/home, not yet published as of 09/09/2024; 8th
Workshop on Attacks and Solutions in Hardware Security, ASHES 2024 ;
Conference date: 18-10-2024 Through 18-10-2024

Mus, K., Islam, S., Sunar, B.: Quantumhammer: A practical hybrid attack
on the LUOV signature scheme. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, p. 1071-1084, CCS
20, Association for Computing Machinery, New York, NY, USA (2020),
ISBN 9781450370899, https://doi.org/10.1145/3372297.3417272

https://doi.org/10.1109/FDTC53659.2021.00013
https://doi.org/10.1109/TIFS.2020.3027143
https://eprint.iacr.org/2024/238
https://eprint.iacr.org/2024/238
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1126/sciadv.abf1211
https://doi.org/10.1007/978-3-030-16350-1_11
https://doi.org/10.1007/s13389-023-00310-8
https://doi.org/10.1007/s13389-023-00310-8
https://doi.org/10.1109/ECAI54874.2022.9847500
http://ashesworkshop.org/home
https://doi.org/10.1145/3372297.3417272

[32]

[33]

[34]

11. ACKNOWLEDGEMENT 25

National Institute of Standards and Technology: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. Tech. Rep.
NIST FIPS 202, National Institute of Standards and Technology, Gaithers-
burg, MD (August 2015), https://doi.org/10.6028 /NIST.FIPS.202
National Institute of Standards and Technology: NIST announces
additional digital signature candidates for the PQC standardiza-
tion process (June 2023), URL https://csrc.nist.gov/News/2023/
additional-pqc-digital-signature-candidates

National Institute of Standards and Technology: Module-Lattice-Based
Digital Signature Standard. Tech. Rep. NIST FIPS 204, National In-
stitute of Standards and Technology, Gaithersburg, MD (August 2024),
https://doi.org/10.6028 /NIST.FIPS.204

National Institute of Standards and Technology: Module-Lattice-Based Key
Encapsulation Mechanism Standard. Tech. Rep. NIST FIPS 203, National
Institute of Standards and Technology, Gaithersburg, MD (August 2024),
https://doi.org/10.6028 /NIST.FIPS.203

National Institute of Standards and Technology: Stateless Hash-Based
Digital Signature Standard. Tech. Rep. NIST FIPS 205, National In-
stitute of Standards and Technology, Gaithersburg, MD (August 2024),
https://doi.org/10.6028 /NIST.FIPS.205

Nguyen, A.Q., Dang, H.V.: Unicorn: Next generation CPU emulator frame-
work. BlackHat USA 476 (2015)

O’Flynn, C.: Fault injection using crowbars on embedded systems. IACR
Cryptol. ePrint Arch. p. 810 (2016), URL http://eprint.iacr.org/2016,/810
Patarin, J.: The oil and vinegar signature scheme. In: Presented at the
Dagstuhl Workshop on Cryptography September 1997 (1997)
Pattabiraman, K., Nakka, N.M., Kalbarczyk, Z.T., Iyer, R.K.: Sym-
plfied: Symbolic program-level fault injection and error detection frame-
work. IEEE Transactions on Computers 62(11), 2292-2307 (2013),
https://doi.org/10.1109/TC.2012.219

Pébereau, P.: One vector to rule them all: Key recovery from one vector in
UOV schemes. In: Saarinen, M.J., Smith-Tone, D. (eds.) Post-Quantum
Cryptography, pp. 92-108, Springer Nature Switzerland, Cham (2024),
ISBN 978-3-031-62746-0

Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on
masked lattice-based encryption. In: Fischer, W., Homma, N. (eds.) Cryp-
tographic Hardware and Embedded Systems — CHES 2017, pp. 513-533,
Springer International Publishing, Cham (2017), ISBN 978-3-319-66787-4
Ravi, P., Roy, D.B., Bhasin, S., Chattopadhyay, A., Mukhopadhyay, D.:
Number “not used” once - practical fault attack on pqm4 implementations
of NIST candidates. In: Polian, I., Stéttinger, M. (eds.) Constructive Side-
Channel Analysis and Secure Design, pp. 232-250, Springer International
Publishing, Cham (2019), ISBN 978-3-030-16350-1

Riscure: Riscure FiSim. https://github.com/Keysight/FiSim (nd)

Sayari, O., Marzougui, S., Aulbach, T., Kramer, J., Seifert, J.P.: HAMAYO:
A fault-tolerant reconfigurable hardware implementation of the MAYO

https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/News/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/News/2023/additional-pqc-digital-signature-candidates
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.205
http://eprint.iacr.org/2016/810
https://doi.org/10.1109/TC.2012.219
https://github.com/Keysight/FiSim

26

[48]

S. Jendral and E. Dubrova

signature scheme. In: Wacquez, R., Homma, N. (eds.) Constructive Side-
Channel Analysis and Secure Design, pp. 240-259, Springer Nature Switzer-
land, Cham (2024), ISBN 978-3-031-57543-3

Shim, K.A., Koo, N.: Algebraic fault analysis of UOV and Rain-
bow with the leakage of random vinegar values. IEEE Transac-
tions on Information Forensics and Security 15, 2429-2439 (2020),
https://doi.org/10.1109/TIFS.2020.2969555

Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher,
A.; Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. In: IEEE
Symposium on Security and Privacy (2016)

Yedidia, J.S., Freeman, W., Weiss, Y.: Generalized belief propa-
gation. In: Leen, T., Dietterich, T., Tresp, V. (eds.) Advances
in Neural Information Processing Systems, vol. 13, MIT Press
(2000), URL https://proceedings.neurips.cc/paper_files/paper/2000/file/
61b1fb3f59e28c67{3925{3c79be81al-Paper.pdf

https://doi.org/10.1109/TIFS.2020.2969555
https://proceedings.neurips.cc/paper_files/paper/2000/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf

	MAYO Key Recovery by Fixing Vinegar Seeds

