
Revisiting Keyed-Verification Anonymous Credentials

Michele Orrù
CNRS

m@orru.net

Abstract

Keyed-verification anonymous credentials (KVACs) have demonstrated their practicality
through large-scale deployments in privacy-critical systems like Signal and Tor. Despite their
widespread adoption, the theoretical framework underlying KVACs lacks the flexibility needed to
support diverse applications, which in general require different security properties. For instance,
rate-limiting credentials only need a weaker unforgeability notion (one-more unforgeability), yet
the framework cannot easily accommodate this relaxation. Similarly, identity-based applications
require stronger properties than unforgeability -—specifically, extractability for security proofs
when adversaries can observe other users’ credentials.

In this work, we address these limitations, introducing new notions of extractability and
one-more unforgeability. We improve two foundational works in the space:

• The scheme by Chase et al. (CCS 2014), commonly referred to as CMZ or PS MAC can be
made statistically anonymous, and issuance cost reduced from O(2n) to O(1). We update
the proof of Chase et al. in the algebraic group model.

• The scheme by Barki et al. (SAC 2016), known as BBDT or BBS MAC can be issued more
efficiently (one less group element).

Finally, we note that for KVACs, designated-verifier proofs suffice since the verifier is known in
advance. We introduce designated-verifier polynomial commitment schemes and instantiate a
variant of the popular KZG commitment scheme without pairings. Any interactive oracle proof
can be used in tandem with it, leading to designated-verifier fully-succinct zk-SNARKs without
pairings for algebraic groups.

Our model can improve the deployment of larger protocols relying on KVACs. We show this
with some examples that benefit from our approach.

Keywords: Algebraic MACs; Keyed-Verification Anonymous Credentials; Anonymous Tokens

1

Contents
1 Introduction 3

1.1 Our contribution . 3
1.2 Related work . 4

2 Technical Overview 7
2.1 Security . 7
2.2 Chase–Meiklejohn–Zaverucha credentials . 8
2.3 Boneh–Boyen–Shacham credentials . 12
2.4 Extensions beyond selective disclosure . 14
2.5 Instantiating the zero-knowledge proofs . 16

3 Preliminaries 18
3.1 Cryptographic assumptions . 18
3.2 Algebraic message authentication codes . 18
3.3 Zero-knowledge arguments . 19
3.4 Anonymous Tokens . 20

4 Keyed-verification credential systems 22
4.1 Syntax . 22
4.2 Correctness . 23
4.3 Anonymity . 24
4.4 Extractability . 24

5 Chase–Meiklejohn–Zaverucha credentials 27
5.1 Protocol description . 27
5.2 Theorems . 29
5.3 Algebraic MAC . 30
5.4 Anonymity . 34
5.5 Extractability . 36
5.6 One-more unforgeability . 37

6 Boneh–Boyen–Shacham credentials 42
6.1 Protocol description . 42
6.2 Theorems . 44
6.3 Algebraic MAC . 45
6.4 Anonymity . 47
6.5 Extractability . 49
6.6 One-more unforgeability analysis . 50

7 Designated-verifier fully-succinct SNARKs without pairings 52
7.1 Designated-verifier Kate–Zaverucha–Goldberg commitments 53
7.2 IOP compiler for designated-verifier polynomial commitments 55

8 Building on keyed-verification credential systems 59
8.1 Time-based policies . 59
8.2 Rate-limiting . 59
8.3 Pseudonyms . 65

9 Straight-line extraction from Σ-protocols 71

10 Acknowledgements 74

References 74

2

1 Introduction
Anonymous credential systems, introduced by David Chaum [Cha85], allow a user to obtain certified
credentials from an organization and later prove their possession, disclosing as little information as
possible about the user’s identity. Chaum envisioned a system where different organizations would
know a user by different pseudonyms. Pseudonyms are unlinkable, and colluding organizations
cannot track a user. After Chaum, a practical anonymous credential system was proposed in Stefan
Brands’s PhD thesis [Bra95; Bra00], leading to what is known today as the U-Prove technology from
Microsoft Research [Upr].Under the hood, Brands credentials tweak blind Schnorr signatures [Sch01]
to support digital identity claims to be efficiently tied to the use of tamper-resistant devices such as
smart cards.
Signatures with efficient protocols. Shortly after, Camenisch and Lysyanskaya [CL01; CL03]
approached the problem of anonymous credentials by constructing a signature scheme over which
it is possible to produce efficient zero-knowledge proofs (of knowledge). Their idea is to have the
issuer sign a commitment to the user’s attributes, and have the user later prove (in zk) knowledge
of a signature on them. The proof might partially reveal some properties of the predicates, e.g. an
“age” attribute being within a specific range. If the proof is valid, then via the knowledge extractor
the reduction can recover a signature and a message, reducing the security of the credential to the
one of the signature or the commitment scheme. If the message space of the signature scheme is
“compatible” (algebraic) with the commitment space, proofs can be very efficient. This line of work
led to the Idemix technology from IBM Research [CV02].
Algebraic MACs. Chase, Meiklejohn, and Zaverucha [CMZ14] remarked that, if the issuer and
the verifier are the same entity, it is sufficient to rely on message authentication codes with similar
algebraic properties (algebraic MACs), as opposed to signatures. They show that such schemes
can be instantiated over prime-order groups without a bilinear pairing map. Such credentials are
called keyed-verification anonymous credentials. The two core notions that they must satisfy are
unforgeability (it’s not possible to present a credential for a statement that is false for all issued
credentials), and anonymity (presentations are unlinkable across executions).
Theory gap. Unfortuantely, the security notions of keyed-verification credential make hard to use
them in a larger authentification protocol. For example, on the web, often times a server needs to
establish trust in clients and rate-limit requests. In this case, where we do not need verification from
third parties, they would be a compelling alternative to cookies. And yet the unforgeability is not
quite what we need: here we care about one-more unforgeability rather than plain unforgeability,
adversaries that can observe presentations from other users! Anonymity is split into three security
notions: key consistency, blind issuance, and anonymity, and it’s hard to understand what ar privacy
guarantees of keyed-verification anonymous credentials.

1.1 Our contribution

This paper puts forward new notions of keyed-verification credentials. Fist, a new notion of
anonymity, that requires a simulator across issuance and redemption is given. Then, two notions of
unforgeability are put forth:

• extractability, which requires the existence of an extractor, that can recover the attributes
from a credential;

3

• one-more unforgeability, weaker and closer to anonymous tokens, and can therefore lead to
simpler and more efficient issuance protocols.

Extractability is stronger and more versatile than unforgeability of [CMZ14], and allows for
arbitrary extensions to be proven secure; one-more unforgeability is weaker, but allows for simpler
issuance protocols as, in general, it will not require zero-knowledge proofs. We show that the notion
of extractability already applies to some previous schemes in the literature, and that the notion of
one-more unforgeability can be used to make these schemes even simpler.
µCMZ. MACGGM (Chase, Meiklejohn and Zaverucha [CMZ14]) was proven secure in the generic
group model. We show that it can be slightly modified to reduce issuance cost to 1 group element
from 2n+ 1 (where n is the number of private attributes), and prove it secure in the algebraic group
model under 3-DL. When considering one-more-unforgeability, we show that the user stays secure
even without the user sending the zero-knowledge proof at issuance time. Finally, we show how it
can be made statistically anonymous for applications worried about post-quantum anonymity.
µBBS. We alter BBDT (Barki et al. [BBDT17]) to make it compatible with the ongoing standard-
ization effort, improving issuance and presentation cost by sending one less group element for each.
We show how, removing the zero-knowledge proof sent at issuance time, the scheme still satisfies a
weaker notion of unforgeability (one-more-unforgeability), and prove its security in the algebraic
group model, while previous analyses were in the generic group model or loose in the q-strong DH
assumption.
Efficient designated-verifier SNARKs. Keyed-verification credentials, often, rely on zero-knowledge
proofs. Since the verifier is known in advance and it’s the issuer, malicious designated-verifier
zero-knowledge proofs suffice. We build a compiler that uses an interactive oracle proof (IOP)
and a designated-verifier polynomial commitment to produce a designated-verifier zero-knowledge
non-interactive argument. We build a designated-verifier polynomial commitment (denoted dvKZG)
that does not require pairings, inspired by KZG. As an example application, we instantiate an
efficient constant-size range proof that does not require pairings. While it is common to think of
designated-verifier proofs as “more expensive than normal proofs” (1 NIZK + 1 OR proof), we show
that this is not always the case: as an example, we provide a constant-sized range proof in the
keyed-verification setting that is competitive with state-of-the-art range proofs.
Extensions examples. Using our notions, we provide efficient schemes for credential expiry, public
metadata, pseudonyms, and rate-limiting. The schemes can be composed with arbitrary credential
systems and proof systems.

1.2 Related work

The literature that builds modular credential systems is vast. Camenisch et al. [CKLMNP16]
develop a modular framework for constructing anonymous credentials called privacy-enhancing
attribute-based credential systems. Using a commitment scheme, a signature scheme (more precisely,
a privacy-enhancing attribute-based signature scheme), a revocation scheme and a pseudonym
scheme, they show how to compose them into a full-fledged credential system. Their framework
can be instantiated with Camenisch–Lysyanskaya [CL01; CL03] and Brands signatures [Bra95;
Bra00], and has been foundational for extensions on credential systems, such as issuer-hiding
attribute-based credentials [BEKRS21], encrypted attribute-based credentials [KLSS17], and more.
Chase and Lysyanskaya [CL06] introduce signatures of knowledge, signatures that can be issued

4

on behalf of any NP statement. Belenkiy et al. [BCKL08] introduce the notion of P-signatures, a
cryptographic primitive that consists of a signature scheme, a commitment scheme, a non-interactive
protocol for obtaining signatures on committed values, and a non-interactive proof system for
proving that a pair of commitments are commitments to the same value. Abe, Fuchsbauer, Groth
et al. [AFGHO16] introduced the notion of structure-preserving signatures, signatures that lie in a
bilinear group for which the verification equation consists of pairing products [GS08]. Fuchsbauer,
Hanser, and Slamanig [FHS19] introduce structure-preserving signatures for equivalence classes,
and inspired mercurial signatures [CL19], centered around the idea that signatures that can be
re-randomized instead of the commit and prove approach at credentials. Compared to all above
works, instead of showing how to build full-fledged credentials from smaller cryptographic primitives,
we define a (slightly different) core credential system primitive that supports issuance predicates,
and then build on top extensions that can be added at the discretion of the credential designer.

Campanelli, Fiore, and Querol introduce LegoSNARK [CFQ19], a framework to build modular
SNARKs that can be composed to enable different efficiency trade-offs. Their work is inscribed within
the commit-and-prove paradigm and, more specifically, investigates SNARKs about commitments
made ahead of time, without knowing the statement they are going to be proven on. Our work is
complementary, and is meant to be used in tandem with commit-and-prove systems.

Among real-world cryptographic deployments, we identify the following groups of credentials:
(a) Based on Camenisch–Lysyanskaya [CL01; CL03]. Used in the Open Wallet Foundation’s

Bifold [Ope] and Hyperledger’s anoncreds implementation [Con], both sponsored by the
(b) Based on Chase–Meiklejohn–Zaverucha [CMZ14; PS16]. Used in Signal [CPZ20] for private

group systems [Sig], by NYM Technologies [Nym], Tor [TG23] for distribution of bridges.
(c) Based on BBS signatures [BBS04; TZ23]. The W3C hosts multiple efforts in this direction,

more specifically on decentralized identity [SLSRSA] and verifiable credentials [SB]. The IETF
currently has an ongoing proposal for BBS credentials [LKWL]. This is also what is adopted
by Idemix [Ide] for their DLOG credentials, which are based on the work of Au et al. [ASM06].
(Idemix is also implemented by IRMA [Irm].) BBS are also at the core of Dock [Lab], a
blockchain network that provides reusable digital identification and verifiable credentials.

(d) Tokens Based on Blind Signatures. A number of show-once credentials have been created
in the past years. RFC9578 [CDVW24] internally relies either on the verifiable oblivious
random function (VOPRF) of Jareki et al. [JKK14] or the Blind RSA signature scheme of
Chaum [Cha82]. Google’s BoringSSL implements anonymous tokens [KLOR20]. Blind RSA
signatures are also used by Apple Cloud Relay [App] and Google One’s VPN service [Goo].

(e) Based on SNARKs. This broad class of credentials generally relies on SNARKs and recursive
SNARKs [Chi10], and generally boils down to creating Merkle trees of secret keys in possession
of users and then proving statements of membership and non-membership in order to authenti-
cate. This class generally lacks a public provable-security formalisation. Semaphore [Foub] and
Anon Aadhaar protocol [Aad] from Privacy Scaling Explorations (PSE) are a collection of tools
used for building applications that leverage anonymous signaling on the Ethereum blockchain,
relying on general-purpose zero-knowledge succinct arguments (zk-SNARKs). Zupass [Foua]
is an authentication system based on the proof-carrying data paradigm.

Section 5 is relevant for (b); Section 6 is relevant for (c); the anonymous token variants
µCMZAT,µBBSAT may be relevant for approaches based on blind signatures (Item (d)); Section 7
may be relevant for applications needing polynomial commitments for SNARKs (Item (e)).

5

Table 1: Concrete communication and space costs for some keyed-verification credential systems with n hidden attributes (public attributes at
issuance/presentation are for free). The bit size of G is denoted g, the scalar field bit size s, and the security parameter λ. In [square brackets]
we indicate the size for empty predicates or optional elements, using Schnorr proofs. ATR is checked if n = poly(λ) attributes are supported,
PMB denotes private metadata bit feature, NYM refers to Section 8.3, RTL to Section 8.2, THRLD to thresholding, and IBR to efficient
issuer-hiding presentation [BEKRS21]. Empty cell represent open problems, not impossibility.

Scheme Key material Issuance Presentation Supported features Security
|pp| |σ| |I.Usr| |I.Srv| |P.Usr| ATR PMB NYM RTLT THRLD IHP Unforgeability Anonymity

µCMZ, Figure 9 (n+2)g g + [g] g + [(n+ 2)s] 2g + [3s] (n+2)g + [(2n+2)s] ✓ ✓ ✓ ✓ ✓ AGM + 3-DL statistical
µBBS, Figure 10 1g 1g + [2λ] g + [(n+ 2)s] g + 2λ+ [2s] 2g + [(n+ 4)s] ✓ ✓ ✓ ✓ AGM + q-DL statistical∗

[BBDT17] 1g 1g + [2λ] g + [(n+ 2)s] g + 2λ+ s+ [2s] 3g + [(n+7)s] ✓ ✓ ✓ ✓ q-SDH statistical
[CMZ14] (n+1)g g + [g] (2n+ 1)g + [(2n+ 2)s] 3g + [(2n+4)s] (n+2)g + [(2n+2)s] ✓ ✓ ✓ ✓ ✓ GGM DDH
[CPZ20] 2g 2g + s (3n+ 2)g + [4s] 3g + s+ [(n+6)s] (n+ 3)g + [4s] ✓ ✓ ✓ GGM DDH

[DGSTV18] 1g 2λ+ [g] 1g 1g + [2s] 4λ ✗ ✗ ✗ näıve ✓ ✓ RO + gap-OMCDH statistical

∗A technicality in the simulator makes it difficult to simulate issuance when the user is invoked on a message m⃗ such that ∑imiGi = −G0. This can be circumvented setting the message space to exclude this bad case or relying on the DL assumption during credential issuance.

Table 2: Concrete sizes over 256-bit curves. Relevant examples are secp256k1 [Qu99], Ristretto [Ber06; Ham15], BN254 curves [BN06], Pallas,
Vesta, and JubJub curves. Note that the comparison does not take into account that, to have comparable levels of security, µBBS and [BBDT17]
should be instantiated over larger (≈300 bit) curves.

Attributes n = 1 Attributes n = 5

Scheme Key material Issuance Presentation Key material Issuance Presentation
|pp| |σ| |I.Usr| |I.Srv| |P.Usr| |pp| |σ| |I.Usr| |I.Srv| |P.Usr|

µCMZ, Figure 9 96B 64B 128B 160B 224B 224B 64B 256B 160B 608B
µBBS, Figure 10 32B 64B 128B 128B 224B 32B 64B 256B 128B 352B

[BBDT17] 32B 64B 128B 160B 352B 32B 64B 256B 160B 480B
[CMZ14] 64B 64B 224B 288B 224B 192B 64B 736B 544B 608B
[CPZ20] 64B 96B 288B 352B 256B 64B 96B 672B 480B 384B

[DGSTV18] 32B 64B 32B 96B 64B 32B 64B 32B 96B 64B

Table 3: Concrete sizes over ≈ 400-bit curves. Relevant examples are BLS12-381 and BLS12-377 [BLS04].
Attributes n = 1 Attributes n = 5

Scheme Key material Issuance Presentation Key material Issuance Presentation
|pp| |σ| |I.Usr| |I.Srv| |P.Usr| |pp| |σ| |I.Usr| |I.Srv| |P.Usr|

µCMZ, Figure 9 144B 96B 144B 192B 272B 336B 96B 272B 192B 720B
µBBS, Figure 10 48B 80B 144B 144B 256B 48B 80B 272B 144B 384B

[BBDT17] 48B 80B 144B 176B 400B 48B 80B 272B 176B 528B
[CMZ14] 96B 96B 272B 336B 272B 288B 96B 912B 592B 720B
[CPZ20] 96B 128B 368B 400B 320B 96B 128B 944B 528B 512B

[DGSTV18] 48B 80B 48B 112B 64B 48B 80B 48B 112B 64B

2 Technical Overview
An anonymous credential is a signature or a MAC over some attributes. Instead of just revealing
them, the user proves (in zk) that the attributes satisfy some properties. We call this to present or
show a credential. The entity issuing a credential is called issuer ; the entity to which a credential is
issued user. The entity that verifies the credential is called redeemer.
Public- and keyed-verification. It is possible to distinguish two lines of literature in the credential
space: (i) keyed-verification credentials, where the issuer and the redeemer are the same entity,
and both hold the same signing key sk; (ii) public-verification credentials, where the issuer and the
redeemer are different entities. In this case, the issuer holds a signing key sk and the redeemer holds
the respective verification key vk. The verification key vk is insufficient to produce new credentials.
It is a common practice to build public-verification credentials from keyed-verification credentials
(and vice-versa) assuming (respectively, removing) a pairing map in a bilinear group, but this is
not true for all credential systems.1 Two popular choices of credentials are Chase–Meiklejohn–
Zaverucha [CMZ14] MACs, with their publicly verifiable variant Pointcheval–Sanders [PS16]; and
Boneh–Boyen–Shacham [BBS04], with their keyed-verification variant Barki et al. [BBDT17]. This
work focuses on keyed-verification credentials (KVAC).

2.1 Security

Keyed-verification credentials enjoy two core security properties: (a) Anonymity, which asks the
existence of a simulator that, given as input the signing key, can simulate any credential presentation
message (without knowing the attributes); (b) Unforgeability, which states that an adversary cannot
successfully present a credential for a predicate that none of the previously-issued attributes satisfy.
Limitations of anonymity and a new notion. In practice, the issuer can try to break anonymity
in two ways that are typically ignored by the canonical notion of anonymity: (i) by issuing
maliciously-crafted credentials that could later be used to de-anonymise the user. (ii) by maliciously
choosing the signing key. These attack vectors are commonly included in the notion of “unlinkability”
in the literature. For keyed-verification credentials, instead, handling such attacks is (in part)
deferred to two separate properties:

1. Key consistency, which asks that the issuer cannot generate two signing key for the same
public parameters.

2. Blind Issuance, which asks that the issuance protocol is an multi-party computation protocol
for the signing procedure, where the signing key is input by the issuer and the message by the
user.

In recent times, it has emerged as a desirable property for anonymity to hold even against computa-
tionally unbounded adversaries. However, the compound anonymity guarantees of these definitions
are not known.

We give a new anonymity definition where the adversary, given as input crs, is asked to
distinguish between the interaction with an honest user and a simulator that does not know
any of the attributes (for issuance and presentation). This new notions implies the one initially
proposed by [CMZ14]. When considering long-term user anonymity, two flavors of this notion are
desirable: statistical anonymity, which demands that computationally-unbounded adversary cannot
1For instance, it seems unlikely to produce a “keyed-verification variant” of Groth’s structure-preserving signa-
tures [Gro15] without a pairing map.

7

de-anonymise users; everlasting forward anonymity, which demands that, after letting users interact
with a computationally-bound malicious issuer, a computationally unbound distinguisher cannot
still de-anonymise users.
One-more unforgeability vs unforgeability. Spend-once credentials are popular type of “lightweight”
anonymous credential that have gained traction in the real-world. They rely on a weaker notion of
unforgeability, called one-more unforgeability. In this use-case, the issuer does not care about which
messages are signed, only that the user can’t present more than issued. As a consequence, it can
lead to more efficient protocol constructions.

Of course one can imagine an application that gives 1000 one-time tokens, and burns one of
them at a time in place of multi-show credentials. However, this would put in the application layer
the burden of tuning the number of credentials to be issued and when to refresh the pool of tokens
to be spent. Schemes that are native specifically for the multi-show setting are much more efficient.

We use this notion in tandem with algebraic MACs and show how it improves the protocol
efficiency. Interestingly, such notion is sufficient also to show the security of some protocol extensions
such as rate-limiting and pseudonyms.
Extractability. One possible attack surface not covered by unforgeability, but generally considered
in practice, is security against eavesdroppers. This attack vector considers adversaries that can also
observe (and manipulate!) credentials being issued to other users. For example, if a honest user
receives a credential for some private key k later used to authorize payments, it doesn’t mean that
an attacker should be able to do the same.

To capture also this problem, we introduce the notion of extractability for keyed-verification
credentials. In this game, the adversary can ask for credentials for themselves, or for honest users.
We allow for arbitrary issuance predicates to be proven upon issuance (similarly to predicate
blind signatures of Fuchsbauer and Wolf [FW24]) and presentation predicates to be proven upon
redemption. Two efficient extractors (one during issuance, and one during redemption) are asked
to recover the messages issued to (and presented by) the adversary. The adversary wins if any of
the presented credentials extracts to a message that was not previously issued to them, or if the
statement is not verified by an extracted message.

2.2 Chase–Meiklejohn–Zaverucha credentials

We first review the original scheme of Chase, Meiklejohn, and Zaverucha [CMZ14], and then present
our variant, illustrated in Figure 1.

2.2.1 Review

Let G be an additive group of order p where discrete logarithm is hard, with generators G and H.
Given a secret key (x0, xr, x1, . . . , xn), which is an (n+ 2)-tuple of integers uniformly distributed
modulo a large prime p, a CMZ credential for attributes m⃗ ∈ Zn

p is a pair(
U ←$ G×, V = (x0 +∑

i ximi)U
)
. (1)

Unforgeability of CMZ has been shown in the generic group model [CMZ14]. In a pairing group, when
given a “verification key” in the “second group”, i.e., given vk = (X̄0 = x0Ḡ, X̄1 = x1Ḡ, . . .) ∈ Ḡn+1,
the verification equation can be checked in the “target group” checking e(V, X̄0) = e(U, Ḡ) +∑

i e(miU, X̄i), where e : G× Ḡ 7→ GT denotes the bilinear pairing map. The resulting scheme is

8

known as the Pointcheval–Sanders signature scheme [PS16; PS18], proven secure in the generic
group model.
Blind issuance. Sometimes, we need to issue a MAC over some hidden (“blind”) attributes, signed
by the server, without fully knowing them. A classic use-case is when the credential is signing also
a user’s secret key. In these cases, the approach of Chase et al. [CMZ14] is to use the homomorphic
properties of ElGamal: given ciphertexts (Ei,1 = riG,Ei,2 = riY + miG) of each attribute mi

(encrypted by the user under their public key Y), one can blindly issue a credential by sampling
u←$ Zp, computing [

D1
D2

]
=
[

0
ux0 +G

]
+ u

∑
i

xi

[
Ei,1
Ei,2

]

=
[∑

i xiriU
(x0+∑i ximi)U+u∑i xiriY

]
,

and responding a credential ciphertext (U = uG,D1, D2) to the user. The pair (D1, D2) decrypts
(under y) to a credential (U, V) valid for m⃗. For anonymity, the server must also prove (in
zero-knowledge) correct computation of the above, under some public parameters:

pp = (X0 := x0H + xrG, X1 := x1G, . . . , Xn = xnG) .

(Nota bene: X0 is committed as a Pedersen with blinding factor xr to prevent some trivial forgeries.)
The above approach relies on semantic security of ElGamal encryption and therefore the user’s

attributes are at best computationally hidden.
Presentation. Thanks to the algebraic structure of the MAC, it is possible to efficiently prove
knowledge of a MAC without revealing it. A common approach here is to prove that a committed
signature satisfies the verification equation for a given set of committed messages. Given a MAC
(U, V) valid for attributes (m1, . . . ,mn), let:

(U ′, CV) = (rU, rV + r′H) where r, r′ ←$ Zp

be a commitment to the MAC, and

Ci = miU
′ + riG where ri ←$ Zp

be commitment to the attributes. If (U, V) is a valid MAC for m1, . . . ,mn, then it satisfies:

x0U +∑
i xi ·miU − V = 0G ,

which in turn means that:

x0U
′ +∑

i xiCi − CV = ∑
i riXi − r′H . (2)

The above equation can be checked in zero-knowledge using Σ-protocols for linear relations. The user
sends commitments to the attributes C1, . . . , Cn and to the MAC (U ′, CV) as defined above, and
then computes Z := ∑

i riXi − r′H. Sends a zero-knowledge proof of knowledge of representation
for T in bases X1, . . . , Xn, H using r′, r1, . . . , rn. This is the right-hand side of Equation (2).

The issuer, upon receiving commitments to the attributes C1, . . . , Cn, a MAC (U ′, CV), and
the representation proof (denoted πp),uses the key (x0, xr, x1, . . . , xn) to re-compute T as Z :=
x0U ′ + ∑

i xiCi − CV (this corresponds to the left-hand side of Equation (2)) and checks the
zero-knowledge proof.

9

2.2.2 Limitations in practice

CMZ credentials, as defined in [CMZ14], are often attributed the following limitations.
Inefficient issuance and presentation costs. Excluding the cost of zero-knowledge proofs (which can
be sub-linear), issuing a credential costs 2n+ 1 group elements (two for each ElGamal encryption,
plus a public key), and presenting a credential costs n + 1 group elements. This limitation is
highlighted especially when comparing them to [BBDT17], which has constant issuance cost, even
when instantiating the zero-knowledge proof using Σ-protocols.
Weak anonymity guarantees. While presentation is perfectly zero-knowledge, issuance relies on
ElGamal encryption, which computationally protects the user’s attributes, and as a consequence
the user’s anonymity relies at best on the hardness of the decisional Diffie–Hellman problem. For
example, consider a user that is given a credential for a secret integer m, and later publishes a
proof that H(m) = 101010. A computationally-unbounded adversary can decrypt all the messages
signed during the issuance session, and then test for which of the recovered integers the presentation
predicate is satisfied.

Additionally, the server’s public key contains a Pedersen commitment, which unfortunately is
computationally binding. An adversary able to break DL may be able to issue two credentials valid
under two different secret keys, and as a consequence de-anonymise users.

2.2.3 Revisiting CMZ

Keyed-verification credential µCMZ

Base MAC
Key generation: µCMZ.K(crs)
sk = (x0, xr, x1, . . . , xn)←$ Zn+2

q

X0 = x0H; Xr = xrG

Xi = xiG for i ∈ [n]
return sk, pp = (X0, X⃗)

MAC sign: µCMZ.M((x0, xr, x⃗), m⃗)
U ←$ G; V = (x0 + xr +

∑
i mixi)U

return (U, V)

MAC verify: µCMZ.V((x0, xr, x⃗), m⃗, (U, V))
return U ̸= 0G ∧ V = (x0 + xr +

∑
i mixi)U

Credential Issuance: User (left) and Server (right)

µCMZ.I.Usr((X0, Xr, X1, . . . , Xn), m⃗) µCMZ.I.Srv((x0, xr, x⃗))

s←$ Zp; C ′ =
∑

i miXi + sG

πiu ← PoK
{

(m⃗,s):
C′=
∑

i
miXi+sG

}
C ′, πiu check πiu

C ′′ := C ′ +Xr

u←$ Zp; U ′ = uG

V ′ = u(x0G+ C ′′)

check U ′ ̸= 0G ∧ πis
U ′, V ′, πis πis ← PoK

{
(x0,u):
U ′=uG,X0=x0H

V ′=x0U ′+uC′′

}
r ←$ Zp; U = rU ′

V = r(V ′ − sU ′)
return (U, V)

Credential Presentation: User (left) and Server (right)

µCMZ.P.Usr((X0, Xr, X1, . . . , Xn), m⃗, (U, V)) µCMZ.P.Srv((x0, xr, x1, . . . , xn))

r ←$ Zp; (U ′, V ′) = (rU, rV)
r′ ←$ Zp;CV = V ′ + r′H

for i ∈ [n]
ri ←$ Zp; Ci = miU

′ + riG

Z =
∑n

i riXi − r′H

πp ← PoK
{

(r′,r⃗,m⃗):
Z=
∑n

i
riXi−r′H

Ci=miU ′+riG

}
U ′, CV , C⃗, πp Z = (x0 + xr)U ′ +

∑
i xiCi − CV

check πp ∧ U ′ ̸= 0G

Figure 1: Summary of our CMZ variant, µCMZ.

In Figure 1 we illustrate a variant of CMZ that,
with minimal changes, achieves constant-time
issuance, perfect anonymity, that we prove ex-
tractable and one-more unforgeable in the alge-
braic group model. The scheme is more formally
presented in Section 5, and a more formal illus-
tration is available in Figure 9. The changes are
summarized below.
Constant-time issuance. We first modify is-
suance, and replace the user’s issuance message
with a Pedersen commitment to the attributes.
More specifically, the user sends

C ′ =
∑

i

miXi + sG

where X1 = x1G, . . . ,Xn = xnG are part of the
public parameters. Then, the signer computes
(U ′, V ′) using the homomorphic properties of
Pedersen commitments. (We focus on the user
algorithm for now.) The user can unblind the
credential subtracting sU ′ from C ′. This variant
of the issuance protocol is more efficient (as it is independent of the number of attributes) and
perfectly hides the attributes. The above approach was considered by [PS16] in the public-key
scenario. However, for correctness of their scheme, there the issuer there has also to add new
elements to the list of public parameters and, in the keyed-verification credential scenario, the server

10

also needs to prove correctness in zero-knowledge (the proof πis). Surprisingly, the resulting issuance
proof πis coming from the server is shorter than then original one of [CMZ14].
Perfect anonymity. Incidentally, the above modification also perfectly hides the user attributes.
Pedersen commitments are in fact perfectly hiding, and since the above modification does not impact
presentation, presentation sessions are still perfectly unlinkable. However, a malicious server still
has a chance at de-anonymising users by using two different x0, x′

0 associated to the same public
key. The adversary can find x0, x′

0, xr, x
′
r such that X0 = x0H + xrG = x′

0H + x′
rG, and this is as

hard as solving the DL of H base G.
A valid attempt for achieving perfect anonymity is to set xr = 0, leading to X0 = x0H, which

is perfectly binding and computationally hiding x0. This however leads to a secure credential
system for which forgeries on the zero message are easy: in fact, all signature of the form (U =
αH, V = αX0 = αx0H), for any α ∈ Zp, are valid.2 We solve this issue by making the server publish
X0 = x0H and Xr = xrG, making the public parameters perfectly blinding. We define a µCMZ
credential for attributes m⃗ ∈ Zn

p is a pair(
U ←$ G×, V = (x0 + xr +∑

i ximi)U
)

(3)

where U is sampled uniformly at random from G. Since now the server signs using x0 + xr, but the
two “shares” of the message-independent term are published different bases H and G, an adversary
can’t just re-use the public parameters to forge a credential. The rest of the protocol in Figure 1 is
adapted to the above change, at no additional communication cost for the user or the issuer.
MAC unforgeability. In Theorem 5.1, we prove that a µCMZ MAC is unforgeable in the algebraic
group model [FKL18] assuming it is hard to find x given (G, xG, x2G, x3G) ∈ G. (This assumption
is known as 3-DL.) The proof is done in two parts, Lemmas 5.4 and 5.5, by first proving security
for the special case n = 1 (where the bounds are lower), and then reducing the case of n > 1 to
the case of n = 1. The proof is inspired by the one of Pointcheval and Sanders in the public-key
scenario [PS18], and the one of Chase et al. [CMZ14] in the generic group model – which does not
rely on computational assumptions.

One of the main takeaways that our security analysis highlights is that CMZ requires only a
constant number of powers in the q-DL reduction. As a consequence, µCMZ can rely on 256-bit
curves for 128-bit security. This is a major difference from BBS credentials, which are often thought
as more efficient. See Table 1 for a comparison of the security assumptions of the different credentials.

Another major difference with the previous analysis of Chase et al. [CMZ14] is that we prove a
stronger security experiment, as the credential built on top depends on this stronger notion (as we
describe in the next paragraph).3 In particular, the adversary is also given an helper oracle that,
given as input A0, A1, . . . , An, Z, returns 1 if (x0 + xr)A0 +∑

i xiAi = Z, and 0 otherwise.
Extractability. When proving extractability, one seeks a reduction from the credential scheme to
the underlying MAC. At a high level, an adversary for µCMZ has three available strategies to break
extractability:

1. At issuance time, send a message (C ′, πiu) where πiu verifies , but for which extraction fails (in
particular this happens if it extracts an m⃗ for which the predicate ϕ is not satisfied.

2The author thanks Jacques Traoré for spotting this mistake in a previous version of this paper.
3As far as we can tell, such oracle is needed also for the notion of unforgeability, and the proof of Chase et al. [CMZ14]
is inaccurate.

11

2. At presentation time, send a message (U ′, CV , C1, . . . , Cn, πp) where πp verifiers, but for which
extraction fails (in particular this happens if it extracts an m⃗ for which ϕ(m⃗) = 0.

3. The adversary returned a presentation message (U ′, CV , C1, . . . , Cn, πp) for which the extractor
of πp recovered a list of attributes m⃗∗ that satisfies the predicate, but m⃗∗ has not been
previously queried.

The first two items reduce trivially to soundness of the proof system, while the third one should
intuitively reduce to MAC unforgeability. The reduction B to MAC unforgeability will receive some
challenge public parameters (X0, Xr, X1, . . . , Xn) and has to rely on the adversary A to provide
a forgery for the MAC scheme. Issuance is fairly straightforward, since the serve can extract the
message from the user proof πiu, query the signing oracle with it, and simulate the proof πis. However,
presentation is tricky: the reduction B has to decide if the user message is valid or not, and to do
so, it needs to compute the element Z, for which the secret key is required.

To solve this problem without breaking modularity of the proofs, or altering the protocol to
send the additional element “Z”, we proceed as follows:

• We introduce an ad-hoc assumption for the zero-knowledge proof system. We ask that from a
proof it is possible to recover a candidate instance for which it is proven. This allows us to
recover a candidate “Z” from the proof πp without knowing the secret key. For an extracted
instance, we have no guarantee that it is correct (even if the proof is valid!).

• We demand a stronger security notion from the underlying MAC, where in addition to the
verification oracle, the adversary is also given a helper oracle that can check the correctness of
Z.

The above approach allows us carry out a reduction to MAC unforgeability, and conclude the
extractability proof.
One-more unforgeability. The zero-knowledge proof πiu sent by the user at issuance time in µCMZ
may be removed at the price of trading off extractability with one-more unforgeability, which is the
security notion of anonymous tokens [KLOR20; CDV23], lightweight spend-once credentials. The
MAC procedure can in fact be seen as computing an authentication code (U = uG, x0U + uC) for a
group element C ∈ G, where no assumption about the algebraic representation of C is made. We
prove this in Theorem 5.11 by relying the algebraic group model.

Looking ahead, this notion can be used also for extensions such as pseudonyms and rate-limiting
tokens.

2.3 Boneh–Boyen–Shacham credentials

We first review the original BBS+ anonymous credential [BBS04; ASM06] and its keyed-verification
variant [BBDT17]. Then, we present our variant, illustrated in Figure 2.

2.3.1 Review

A BBS+ anonymous credential [BBS04; ASM06] for attributes m⃗ ∈ Zn
p is a triple

A = 1
x+ e

(G0 +∑
imiGi + sG),

e←$ Zp,

s←$ Zp

 (4)

12

where x is the signing key, e, s are random in Zp, and (G0, . . . , Gn) are random independent generators
of G. The verifier may check in a pairing group that e(A, X̄ + eḠ) = e(G0 + ∑

imiGi + sG, Ḡ)
where X̄ = xḠ is the verification key. Barki et al. [BBDT17] propose a keyed-verification variant
where verification is performed using x, without relying on a pairing map.
Blind issuance. To issue a BBS MAC without knowing the message being authenticated, BBDT
relies on the “s” term: the user computes the commitment C = sG+∑

imiGi and sends it to the
issuer, together with a zero-knowledge proof of representation in G1, . . . , Gn, G. The issuer computes
the MAC over the commitment as A = (x+ e)−1(C +G0 + s′G) for random e, s′ ←$ Zp. The final
MAC is (A, e, s+ s′). This approach is also taken in the current blind BBS RFC draft [KB], where
the “s” term component is called secret blind.
Presentation. To present a credential, the user sends a commitment to the MAC and to the
attributes, and proves in zero-knowledge that the MAC is valid for the attributes.

In Figure 2, we replace Barki et al. [BBDT17]’s proof with the one present in [TZ23], which is
more efficient and used in the current BBS draft [LKWL].

2.3.2 Limitations in practice

In BBS+’s blind issuance protocol, the server signs a commitment of the form G0 +m1G1 + · · ·+
mnGn +sG, where the blinding factor s cannot be later ”unblinded” by the user. This blinding factor
serves no purpose for the security of the MAC itself (as suggested by the analysis in [TZ23]), yet it
must be carried with the signature since it’s essential for hiding the attributes during issuance. This
creates a significant limitation: when proving knowledge of attributes, the user must always include
s while treating it differently from other attributes, as revealing s would immediately compromise
anonymity. Furthermore, this structure is incompatible with the RFC draft specification [LKWL],
creating an interoperability gap between blind and plain signatures in the BBS+ ecosystem.

2.3.3 Revisiting BBS
Keyed-verification credential µBBS

Base MAC
Key generation: µBBS.K(crs)
return x←$ Zp, X = xG

MAC verify: µBBS.V(x, m⃗, (A, e))
return xA = (G0 +

∑n
i=1 miGi)− eA

MAC sign: µBBS.M(x, m⃗)
e←$ Zp

A = (x+ e)−1(G0 +
∑n

i=1 miGi)
return (A, e)

Credential Issuance: User (left) and Server (right)

µBBS.I.Usr(X, m⃗) µBBS.I.Srv(x)

s←$ Zp; C ′ = s−1(
∑

i miGi +G0)
πiu ← PoK

{
(m⃗,s):
sC′−

∑
i

miGi=G0

}
C ′, πiu check C ′ ̸= 0G ∧ πiu

e←$ Zp

A′ = (x+ e)−1C ′

check πis
e,A′, πis πis ← PoK

{
x: xG=X ∧
C′−eA′=xA′

}
return (A = sA′, e)

Credential Presentation: User (left) and Server (right)

µBBS.P.Usr(X, m⃗, (A, e)) µBBS.P.Srv(x)

r, r′ ←$ Zp; A′ = rr′A

D′ = r(G0 +
∑

i miGi)
B′ = r′D′ − eA′

πp ← PoK
{

(m⃗,e,r−1,r′):
B′=r′D′−eA′

G0=r−1D′−
∑

i
miGi

}
A′, D′, πp B′ = xA′

check πp ∧ A′ ̸= 0G

Figure 2: Summary of our BBS variant, µBBS.

We propose a variant of BBDT’s MAC scheme
fixing s = 0 and thus consider the shorter MAC
(A, e). This change is inspired by Tessaro and
Zhu [TZ23], and the recent BBS draft [LKWL].
The main challenge here is to “unblind” the s
term once signed, without carrying it along as
part of the final MAC. We show how to do so
considering multiplicative (instead of additive)
blinding4: C = s−1(∑imiGi + G0) for a uni-
formly random s ̸= 0. A representation proof
can still be given, proving knowledge of m⃗, s
such that sC −∑imiGi = G0. (This is needed
to reduce blind issuance of a credential to un-
forgeability of the underlying MAC scheme.)
The commitment C is statistically close to uni-
formly distributed and perfectly hiding m⃗, unless
4A similar approach, for a specific application of anonymous tokens, has been taken in parallel by Durak et al. [DMTV24].

13

∑
imiGi = −G0, in which case a solution for DL has been found. The issuer computes the MAC

as before, that is (A = (x + e)−1(C + G0), e) for a random e ←$ Zp. The issuer’s computation
must be shown to have been done using x = logGX, which is generally done with the help of a
zero-knowledge proof. The user can unblind the MAC by multiplying A by s.

Looking ahead, in Section 8.3 we also show how it is possible to let the server set some of the
attributes to random values in this setting.
Anonymity. The resulting scheme still satisfies statistical anonymity for unbounded adversaries,
except for the edge case described above where, at issuance time, the user’s commitment is zero.
Here, the simulator won’t be able to reproduce the user distribution. However, it is possible to build
a reduction to DL. To circumvent the problem, one may decide to exclude this bad case from the
attribute space (that is, the user and server do not consider such message to be valid). We study
this in more detail in Theorem 6.10.
Unforgeability. We prove µBBS is unforgeable in the algebraic group model under the q-DL
assumption in Lemmas 6.8 and 6.9. The proof is done in two parts, Lemmas 5.4 and 5.5, by first
proving security for the special case n = 1 (where the bounds are lower), and then reducing the
case of n > 1 to the case of n = 1.

Differently from the (public-verification) BBS proof of Tessaro and Zhu [TZ23], here we work
in the keyed-verification setting, and we lack a pairing map for checking MAC validity. This will
require a higher degree for the discrete logarithm challenge in the q-DL assumption. Additionally,
we provide a more clean distinction for the reduction when n = 1.
Extractability. Proving extractability, just as in the previous section, can’t be done relying only
on the MAC unforgeability. To prove the security of the keyed-verification scheme, a reduction to
unforgeability would also need to re-compute, during a presentation query, the term B′ without
knowledge of the secret key x. We circumvent this problem in similar way to CMZ credentials,
assuming that it is possible to retrieve a candidate instance from the proof itself, and proving a
slightly stronger unforgeability game where the adversary is also given a DDH oracle Ddh(A,Z)
that returns 1 if Z = xA. Such oracle can be implemented trivially in the algebraic group model
and does not affect the security bounds.
One-more unforgeability. Just like the previous scheme, also in this MAC it is possible to remove
the user’s issuance proof πiu, maintaining one-more unforgeability. However, without any guarantee
of the actual form of the user’s message, a concrete attack (Section 6.6) relying on Cheon [Che06]
can be shown (nota bene, the reduction still relies on q-DL). The only way in which we know to break
µBBS (with πiu) and BBS signatures is the reduction by Jao and Yoshida [JY09], which requires all
signatures to be on the same message, an important restriction of real-world cases. In the one-more
unforgeability setting, this restriction is lifted (cf. Lemma 6.13). When concretely evaluating the bits
of security, the best attack known for the q-DL assumption is O(

√
d+

√
(p± 1)/d) where d | p± 1 is

the number of issuance sessions required. Realistically, d can be upper-bounded at 240 and around
20 bits of security are lost.

2.4 Extensions beyond selective disclosure

At credential issuance and presentation time, the zero-knowledge proofs πiu and πp prove knowledge
of some attributes m⃗ (in the case of credential presentation, also knowledge of a valid MAC). The
relation family supported by the proof system determines which predicates can be proven about
authenticated attributes. For instance, if the proof system supports arithmetic relations, one can

14

prove that an authenticated age attribute is greater than 18, while if it only supports equality
relations, such range proofs would not be possible. We denote such predicates as ϕ(m⃗), and in the
formal descriptions of µCMZ and µBBS (Figures 9 and 10) they will be embedded in the credential
issuance and presentation protocols.

Extension example: pseudonyms

Setup: µCMZ credential with n = 1 attributes.
Server has: (xr, x0, x1) associated to (X0 = x0H,Xr = xrG,X1 = x1G).
User has: (U, V = (x0 + k · x1)U) valid for a hidden attribute k ∈ Zp.
User wants to access some “scope” scp ∈ {0, 1}∗ with a unique identity.
H is a random oracle with output in G.

P.Usr((X0, X1), k, (U, V)) P.Srv((xr, x0, x1))

nym = k · HG(scp)
r ←$ Zp; (U ′, V ′) = (rU, rV)
r′ ←$ Zp;CV = V ′ + r′H

r1 ←$ Zp; C1 = kU ′ + r1G

Z = r1X1 − r′H

πp ← PoK
{

(r′,r⃗,k): nym=kHG(scp)
Z=r1X1−r′H

C1=kU ′+r1G

}
nym, U ′, CV , C1, πp Z = x0U

′ + x1C1 − CV

check πp ∧ U ′ ̸= 0G

Figure 3: A pseudonym system using µCMZ.

Pseudonyms. Camenisch et al. [CHKLM06]
showed that, if the proof system allows proving
PRF evaluations, various interesting credential
extensions are possible. One such example are
pseudonyms (Section 8.3). In this scenario, the
user possesses (as an attribute) a PRF key k
generated (and MAC’d) at issuance time during
a credential issuance protocol. The PRF key is
used to generate context-based identities. Upon
presenting the credential e.g. for accessing a
website URL (a scope) identified by a string scp,
the user can produce a random and unlinkable
pseudonym via nym = PRF(k, scp). Upon logging in, the user presents a valid credential for the
PRF key (without revealing it) and proves that nym has been evaluated correctly. On the right,
we provide an illustration of how presentation can be done for CMZ credentials highlighting the
additional presentation material. The intuition behind the security of this system is that, since
the PRF is a function, one cannot produce more than one identity for the same scope; since the
PRF is pseudorandom, the ephemeral identities look random to any adversary that does not possess
the key k. Some simple PRF choices, such as Naor–Pinkas–Reingold NPR(k, scp) = kH(scp) are
particularly efficient [NPR99], and is the one used on the right.
Rate-limiting. Another example, relevant in practice, is rate-limiting anonymous tokens (Section 8.2).
In this scenario, a server wants to budget the number of requests users can make, without tracking
them. In other words, we are looking for an efficient credential that is keyed-verification and
allows users to present many times. The protocol must be correct (all tokens issued to honest
users verify), unforgeable (users cannot present more tokens than allowed by the system), and
unlinkable (all tokens are indistinguishable, even if coming from the same user). A common
approach here is to issue many blind signatures (or verifiable oblivious random functions) upon
authentication: the issuer holds a list of “spent tokens”, and issues batches of credentials to users,
each for a different hidden attribute (a token), that is revealed upon presentation [HIPVW24].

Extension example: rate limiting

Setup: µCMZ credential with n = 1 attributes.
Access at most ℓ times a server, each time spending a token “tkn”.
Server has: (xr, x0, x1) associated to (X0 = x0H + xrG,X1 = x1G).
User has: (U, V) = (x0 + k · x1)U valid for a hidden attribute k ∈ Zp.
User wants to access some “scope” scp ∈ {0, 1}∗ for the i-th time (i ≤ ℓ).
H is a random oracle with output in G.

P.Usr((X0, X1), k, (U, V)) P.Srv((xr, x0, x1))

tkn = (k + i)−1 · Hg(scp)
r ←$ Zp; (U ′, V ′) = (rU, rV)
r′ ←$ Zp;CV = V ′ + r′H

r1 ←$ Zp; C1 = kU ′ + r1G

Z = r1X1 − r′H

πp ← PoK
{

(r′,r⃗,m⃗,i):Z=r1X1−r′H

Hg(scp)=k·tkn+i·tkn ∧ i≤ℓ

C1=kU ′+r1G

}
tkn, U ′, CV , C1, πp Z = x0U

′ + x1C1 − CV

check πp ∧ U ′ ̸= 0G

Figure 4: A rate-limiting system using µCMZ.

However, this approach is very expensive,
and different techniques have been intro-
duced to scale this solution in large ser-
vices doing rate-limiting across different
scopes (e.g., a URL) [SS22; AYY23]. An
alternative approach, initially described
in the context of k-times anonymous cre-
dentials [TFS04; CHKLM06], is to use a
PRF evaluation over the pair (scp, i), where
0 ≤ i < ℓ is a counter kept by the user for
each access in scp.

A variant of Dodis–Yampolskiy [DY05]

15

HashDY(k, (i, scp)) = (k + i)−1H(scp) allows for even easier proofs in cases where parts of the scope
(e.g. “i ”, a rate-limit counter) are meant to be hidden. The use of Dodis–Yampolskiy in the way we
describe it has been introduced in [ASM06], but we give a formal proof of its security in Theorem 8.7
with more precise security bounds.

2.5 Instantiating the zero-knowledge proofs

Straight-line extraction for Σ-protocols. For all above proofs, Σ-protocols are the go-to choice
given the simplicity of the relations. However, formally the security of the resulting system is
tedious to argue. Σ-protocols have been historically studied using rewinding, whereas credentials
often times need to rely on straight-line extraction techniques. Theoretically, this problem has been
circumvented with the Fischlin transform [Fis05] but, due to the lack of concrete attacks over the
strong Fiat–Shamir heuristic [FS87; BPW12] its adoption has been underwhelming. To fill the gap
between theory and practice, we show straight-line extractability in the algebraic group model for
linear relations:

RF =
{

(x⃗, X⃗) ∈ Zn
p ×Gm :

n∑
k

xkF1,k = X1 ∧ · · · ∧
n∑
k

xkFm,k = Xm

}
,

where:
− each linear constraint F⃗j is hard: it is computationally hard to find a non-zero vector w⃗ ∈ Zn

p

such that ∑k wkFj,k = 0G;
− all non-trivial group elements appearing in the matrix are independent. In other words, for

any p.p.t. adversary A, it is computationally hard to find a non-zero vector w⃗ such that∑
k wkGk = 0, where (Gk)k are the distinct non-zero elements appearing in F.

Informally, the above conditions are necessary to avoid the adversary “malleating” a simulated proof.
For instance, given a proof (R⃗, s⃗) consisting of commitment and response of the Σ-protocol, with
w⃗ ∈ ker(F) it is possible to produce a new valid proof (R⃗, s⃗+ w⃗). While not all our instantiations
rely on statements of this form, we restrict the possible attack vectors, and consider it to be of
independent interest.
Compatibility with modern SNARKs. For keyed-verification credentials, since the verifier is known
in advance, designated-verifier zero-knowledge proofs are sufficient for issuance and presentation.
We present a slightly modified version of Kate–Zaverucha–Goldberg’s commitment [KZG10] that is
designated verifier and does not rely on pairing-friendly groups. Consider the KZG commitment
scheme, where the commitment key is:

pk = (G, τG, τ2G, . . . , τn−1G) (5)

and the trapdoor τ is set to be the verification key. A KZG commitment to a polynomial f ∈ Zp[x]
is a group element C = f(τ)G computed via add-and-multiply operations over the commitment key.
An opening proof for z ∈ Zp, that is, a proof that f(z) = y is

Q = q(τ)G

where q(x) is the quotient of the Euclidian division of f(x)− y by (x− z). The proof can be trivially
checked in the group using the trapdoor, and soundness follows the same argument given in [KZG10].
Kohrita and Towa [KT23] provide an efficient way for hiding KZG commitments. The user now

16

“blinds” f committing to it as f(τ)G + rH for r ←$ Zp, and proceeds similarly for the quotient
polynomial. An evaluation proof now has an additional term to “balance out” the blinding factors
of the verification equation.

Designated-verifier polynomial commitment dvKZG

Parameter generation

dvKZG.K(((G, p,G), d))

τ, η ←$ Z×
p

T0 = G

for i ∈ [d] : Ti = τTi−1

R = ηG

check T1, R ̸= 0G T⃗ ,R, πkzg.s πkzg.s ← PoK
{

(τ):
∀i∈[d] : Ti=τTi−1

}
check πkzg.s

return pk = (T⃗ , R) return vk = (τ, η)

Commitment to a polynomial f(x) of degree d

dvKZG.C((T⃗ , R), f(x))

s←$ Zp

C =
∑

i fiTi + sR C

Evaluation proof f(z) = y with opening information s

dvKZG.E((T⃗ , R), f(x), s, z, y) dvKZG.V((τ, η), C, z, y)

q(x) = (f(x)− y)/(x− z)
δ(x) = s− s′(x− z) where s′ ←$ Zp

Q =
∑

i qiTi + s′R

D =
∑

i δiTi
(Q,D) check (τ − z)Q+ yG+ ηD = C

In the designated-verifier case, the (mali-
cious) verifier can build the trapdoor informa-
tion itself, preserving extractability of the com-
mitment. But zero-knowledge doesn’t hold! In
fact, we have no guarantees that the proving
key doesn’t come from a bad distribution that
does not preserve hiding (a trivial example is
when H = 0G). We show that it is possible to
prove zero-knowledge (see Theorem 7.3) for any
proving key that is “well-formed”, independently
of its distribution.

One can prove that the commitment key is
well-formed (and argue security against mali-
cious verifiers) by equipping pk with a proof
that the powers of τ have been correctly en-
coded. Concretely, this amounts to 1 DLEQ proof (2 group elements). Upon receiving pk, a user
would check that the proof is valid, and that no trivial (identity) elements are present in pk.

The most common ingredients for building non-interactive SNARKs today are interactive oracle
proofs (IOPs) [BCS16] and commitment schemes. In an IOP, the prover may send field elements
as messages, as well as special “oracle messages”, that the verifier can query. Roughly speaking,
the “IOP oracles” are replaced by commitments to instantiate the protocol and build an argument.
Among the most common combinations of IOP+commitment we have polynomial IOPs (PIOPs),
where the prover may send polynomials as oracle messages and the verifier may ask for polynomial
evaluations to those oracles, and polynomial commitment scheme (PCS). We show that, in the
designated-verifier case, one can build a designated-verifier argument via a variant of the IOP
compiler given in [CHMMVW20], that uses a polynomial IOP and a designated-verifier commitment
scheme. See Theorem 7.5.

As an example application, we provide a constant-size range proof protocol that is both
asymptotically and concretely more efficient than generic algebraic approaches for keyed-verification
credentials. The LegoSNARK framework [CFQ19] is a helpful tool to bridge presentation proofs
(which are generally done with Σ-protocols over generic linear relations) with the arguments resulting
from our compiler, via the commit-then-prove paradigm.

17

3 Preliminaries

Notation. The security parameter is denoted λ. We consider the group generation procedure
GrGen(1λ) which takes as input the security parameter in unary form 1λ and outputs a group
description Γ = (G, p,G) consisting of a group G of odd prime order p generated by G ∈ G where
discrete logarithm (DL) is hard. Throughout this work we will use two random oracles: Hp, with
image over the field Zp, and HG, with image over the group G. The domain of both oracles is the
set of strings of arbitrary length.

Let [n] denote the range {1, . . . , n}, and [n,m] denote the range {n, n+ 1, . . . ,m} if n ≤ m,
and ∅ otherwise. Assignment is denoted “:=”, which we distinguish from assignment of the output
of a randomized algorithm, where we use the symbol “←” to underscore the sampling of random
coins before assignment. The range of a p.p.t. algorithm A (that is, the set of possible outputs that
happen with non-zero probability) is denoted [A(x)]; the length of the random coins as A.rl(λ). The
notation z ← (A(x) ⇌ B(y)) denotes the interaction of the interactive Turing machine A on the
input x with the (interactive) Turing machine B on input y. The output of A (the machine on the
left-hand side) is assigned to z. When both machines return some value, respectively z0 for A and
z1 for B, we separate them with the semicolon, i.e. (z0; z1)← (A(x) ⇌ B(y)).

3.1 Cryptographic assumptions

The discrete logarithm (DL) assumption is holds for GrGen if it is computationally hard, given
X ←$ G uniformly distributed, to compute x ∈ Zp such that xG = X, where (G, p,G) is output by
GrGen. The decisional Diffie–Hellman (DDH) assumption holds for GrGen if it is hard to distinguish
the tuple (P, aP, bP, abP) from (P, aP, bP, cP) with a, b, c←$ Zp and P ∈ G. The advantage for an
adversary A will be denoted respectively as Advdl

GrGen,A(λ), Advddh
GrGen,A(λ). The gap discrete logarithm

assumption is hard if DL is hard even in the presence of a DDH oracle for the DL challenge.
q-type Assumptions. The q-discrete logarithm (q-DL) assumption holds for the group generator
GrGen if it is hard for any p.p.t. adversary to recover x uniformly distributed over Zp given as input
(G, xG, x2G, . . . , xqG). Its advantage w.r.t. an adversary A is denoted Advq-dl

GrGen,A(λ). The q-DDHI
assumption holds for the group generator GrGen if it is hard for any p.p.t. adversary to distinguish
(xG, x2G, . . . , xqG, x−1G) from (xG, x2G, . . . , xqG,Z) for x←$ Zp and Z ←$ G. Its advantage w.r.t.
an adversary A is denoted Advq-ddhi

GrGen,A(λ).
Algebraic Group Model. In the algebraic group model [FKL18], adversaries are assumed to
know a representation of any group element they return. This means that, after having received
group elements Z1, . . . , Zn, whenever the adversary returns a group element X, it must also return
coefficients ζ1, . . . , ζn so that X = ∑

i ζiZi. We call such adversaries algebraic.
Generic Group Model. In the generic group model [Sho97] the adversary is only given access to
randomly chosen encodings of group elements, and an oracle that executes the group operation: the
oracle takes two encodings and returns the encoding of the sum. If the oracle supports a pairing
operation, an oracle for the pairing map is also given.

3.2 Algebraic message authentication codes

Definition 3.1. An algebraic message authentication code (MAC) for n attributes over message
family M = {Mλ}λ is a tuple MAC = (S,K,M,V):

18

Game UF-CMVAMAC,A (λ, n)
Qrs := ∅; crs← MAC.S(λ, n)
(sk, pp)← MAC.K(crs)
(m⃗∗, σ∗)← ASign,Verify(pp)
return m⃗∗ ̸∈ Qrs ∧ MAC.V(pp, m⃗∗, σ∗) = 1

Oracle Sign(m⃗)
Qrs := Qrs ∪ {m⃗}
return MAC.M(sk, m⃗)
Oracle Verify(m⃗, σ)
return MAC.V(sk, m⃗, σ)

Figure 5: Unforgeability of an algebraic message authentication code MAC.

• crs← MAC.S(1λ, n) The setup algorithm, which takes as input the security parameter in unary
form and the number of attributes, and outputs a common-reference string crs.
The setup algorithm implicitly defines an attribute space Mcrs = M (we drop the “index” crs to
ease notation) describing the family of messages supported by the MAC scheme.

• (sk, pp)← MAC.K(crs) The key generation algorithm, which takes as input the crs and outputs
a secret key sk and some public parameters pp.
In the remainder of this paper, we will omit crs from inputs of the algorithms below for brevity,
and assume that it can be implicitly derived from either sk or pp.

• σ ← MAC.M(sk, m⃗) The MAC algorithm, which takes as input the signing key sk and attributes
m⃗ ∈Mn and outputs a message authentication code σ.

• 0/1 := MAC.V(sk, m⃗, σ) The (deterministic) verification algorithm, which takes as input the
signing key sk, a message m⃗, and a MAC σ, and outputs 1 if the MAC is valid, and 0 otherwise.

MAC must satisfy correctness (every honestly generated MAC verifies) and unforgeability (it is hard
to forge MACs). We denote the unforgeability advantage of A with respect to the algebraic message
authentication code MAC on n attributes as Advufcmva

MAC,A(λ, n) := |Pr
[
UF-CMVAMAC,A (λ, n)

]
|, where

UF-CMVAMAC,A (λ, n) is illustrated in Figure 5.

Remark 3.2. Differently from MACs, algebraic MACs are randomized algorithms. It is possible to
construct a “de-randomized” algebraic MAC in the random oracle model using the message to seed
the randomness, i.e. letting H(m⃗) be the random coins for the MAC algorithm.

3.3 Zero-knowledge arguments

A non-interactive proof system ZKP for a relation family R = {Rλ}λ consists of the following three
algorithms:

• crs← ZKP.S(1λ), the setup algorithm, which takes as input the security parameter in unary
form and outputs a common reference string crs. It implicitly selects a relation R ∈ R.

• π ← ZKP.P(crs, x, w), a prover which takes as input (x,w) ∈ R and outputs a proof π.

• 0/1← ZKP.V(crs, x, π), a verifier that, given as input an instance x together with a proof π
outputs 0 if the proof is rejected and 1 otherwise.

19

Game OMUFAT,A (λ, n)
q := 0
crs← AT.S(1λ, n)
(sk, pp)← AT.K(crs)
(m⃗i, σi)q+1

i=1 ← ASign,Verify(pp)
return ∀i ̸= j : m⃗i ̸= m⃗j ∧ ∀i ∈ [q + 1] : AT.V(sk, m⃗i, σi) = 1

Oracle Sign(µ)
q = q + 1
return AT.I.Srv(sk, µ)

Oracle Verify(m⃗, σ)
return AT.V(sk, m⃗, σ)

Figure 6: One-more unforgeability game for an anonymous token scheme AT with non-interactive issuance.
The variable “µ” denotes the issuance request message from the user.

For clarity, we will talk about a relation R assuming it is indexed by the range of crs, and omit the
common reference string from the prover and verifier algorithms. A proof system is complete if
every correctly-generated proof for an element of R verifies.

A proof system is a knowledge-sound argument [BLCL91] if there exists an extractor Ext that
takes as input the random coins and the code of the p.p.t. adversary A (optionally, a trapdoor for
the crs, bot not required in our instantiations) such that, whenever A(crs) outputs (x, π), then
Ext outputs w. The adversary wins if ZKP.V(crs, x, π) = 1 ∧ (x,w) ̸∈ R. The advantage is
denoted as Advksnd

ZKP,Ext,A(λ). In the proof of MAC unforgeability, we will require a stronger notion of
knowledge-soundness, where the adversary is allowed to output simulated proofs, and the extractor
has to provide (in addition to the witness), a candidate statement. See Section 6.5 and ̸↷??.

A proof system is zero-knowledge [GMR89] if there exists a simulator Sim such that, for any
adversary A,

Advzk
ZKP,A(λ) :=

∣∣∣∣∣Pr
[
b′ = 1 : crs← ZKP.S(1λ)

b′ ← AProve0(crs)

]
− Pr

[
b′ = 1 : crs← ZKP.S(1λ)

b′ ← AProve1(crs)

]∣∣∣∣∣ ≤ negl(λ) .

where Proveb(x,w) checks if (x,w) ∈ R and outputs ZKP.P(crs, x, w) if b = 0 and Sim(crs, x)
if b = 1. We assume that both adversary and simulator have access to a random oracle, and
that the simulator can explicitly re-program the random oracle. A proof system is (strongly)
simulation-extractable if it is knowledge-sound even when the adversary has access to simulated
proofs, and the output pair (x, π) was not previously returned by the zero-knowledge simulator. For
the formal definitions, see Dao and Grubbs [DG23, Fig. 2, 3, and 4].

3.4 Anonymous Tokens

An anonymous token [KLOR20] is a “blind MAC” (with an optional private metadata bit). More
formally, an anonymous token scheme AT for n > 0 attributes over attribute family M is a tuple
AT = (S,K, I,V) where AT.S(1λ, n) outputs a crs; AT.K(crs) outputs a signing key sk and some public
parameters pp; the issuance protocol involves a user AT.I.Usr(pp, m⃗) and a server AT.I.Srv(sk) and
produces a token σ for the user; the verification algorithm AT.V(sk, m⃗, σ) returns 0/1 if the token is
accepted for the message m⃗. We demand anonymous tokens to be correct, one-more unforgeable,
and unlinkable.

Correctness means that all tokens generated via AT.I.{Usr, Srv} for messages in the family
successfully verify. One-more unforgeability asks that, after blindly issuing at most q tokens, no
adversary can successfully present q + 1 valid message/token pairs. More formally, for a two-move

20

Game UNFKVAC,A (λ, n)
Qrs := ∅
crs← KVAC.S(1λ, n)
(sk, pp)← KVAC.K(crs)
(ϕ∗, ρ∗)← ASign,Present(pp)
b← KVAC.P.Srv(sk, ϕ∗, ρ∗)
return (b = 1) ∧ (∀m⃗ ∈ Qrs : ϕ∗(m⃗) = 0)

Oracle Sign(m⃗)
Qrs := Qrs ∪ {m⃗}
return KVAC.M(sk, m⃗)

Oracle Present(ϕ, ρ)
return KVAC.P.Srv(sk, ϕ, ρ)

Figure 7: Canonical unforgeability game for a keyed-verification credential system KVAC [CMZ14]. The
variables “ϕ, ϕ∗” denotes the credential predicate to be shown on m⃗ (cf. Definition 4.1) while “ρ” denotes the
presentation message.

protocol, given an anonymous token scheme AT for n > 0 attributes over attribute family M, an
adversary A has one-more unforgeability advantage

Advomuf
AT,A(λ) := Pr

[
OMUFAT,A (λ, n) = 1

]
where OMUFAT,A (λ, n) is illustrated in Figure 6.

Unlinkability (similarly to blindness for blind signatures) demands that any malicious issuer,
after blindly issuing q tokens to honest users and then observing a permutation of the issued
tokens, cannot do better than guessing the link between a token and its issuance. Looking ahead,
keyed-verification token systems (Definition 4.2) are also anonymous tokens: the syntax is the same
(except for predicates) but the security guarantees are stronger: instead of asking for one-more
unforgeability, we demand extractability (Definition 4.5). We will exploit the weaker security
requirements of unforgeability to design more efficient schemes, but will maintain the stronger
anonymity properties and therefore omit the definition of unlinkability in this work, and direct the
curious reader to Kreuter et al. [KLOR20, Fig. 4] and Chase, Durak, Vaudenay [DVC22, Fig. 3].

21

4 Keyed-verification credential systems
We first generalize the issuance algorithm of credential systems (procedures BlindIssue and BlindObtain
in Chase et al. [CMZ14] and here KVAC.I.{Usr,Srv}) so that arbitrary predicates about the attributes
over which a credential is about to be issued can be proven. Then, we re-define security and give a
unique notion unforgeability and anonymity.

4.1 Syntax

We enrich the classical definition of keyed-verification anonymous credentials (KVAC) with issuance
with predicates beyond partial disclosure of attributes. In this setting, at issuance time the user can
partially disclose some attributes satisfying a predicate ϕ ∈ Φ over them. For the sake of simplicity,
we use the same predicate family employed in the presentation protocol, and make it explicit when
they are not. This is a generalization of the traditional definition, where the predicate ϕ is concerned
with disclosure of only some attributes, and where the issuer has no memory of previously seen
credentials.

Definition 4.1. A credential predicate is an efficiently-computable function ϕ mapping some elements
m⃗ ∈ Mn (M referred to as attribute space) to a boolean value (1 if the predicate is satisfied, 0
otherwise). With ϕ1 we denote the trivial predicate that always returns 1. A predicate family is a
non-empty set of credential predicates Φ = {ϕ : Mn → {0, 1}} containing the trivial predicate and
closed under conjunction of statements (i.e., if ϕ, ϕ′ ∈ Φ then ϕ ∧ ϕ′ ∈ Φ).

Definition 4.2. A keyed-verification credential system KVAC = (S,K, I,P) for predicate family Φ
over a message family M = {Mλ}λ for n ∈ N attributes is a tuple of algorithms:

• crs ← KVAC.S(1λ, n) The setup algorithm, which takes as input the security parameter in
unary form and the max number of attributes n > 0, and outputs a common-reference string
crs.
The setup algorithm implicitly defines an attribute space M and a predicate family Φ.

• (sk, pp)← KVAC.K(crs) The key generation algorithm, which given as input the crs, produces
a signing key sk and some public issuer parameters pp.
In the remainder of this work, we will omit crs from inputs to the algorithms below for brevity,
and assume that it can be implicitly derived from either sk or pp. We will also assume
that it is possible to efficiently test whether some given keypair (sk,pp) is correctly generated,
i.e.,(sk,pp) ∈ [KVAC.K(crs)]. This is without loss of generality: it is always possible to consider
the secret key sk as the random coins used in the key generation algorithm as a syntactical
change.

• σ ← (KVAC.I.Usr(pp, m⃗, ϕ) ⇌ KVAC.I.Srv(sk, ϕ)) The issuance algorithm allows a user to
obtain a credential σ for a set of attributes m⃗, kept hidden from the issuer, but satisfying a
predicate ϕ ∈ Φ.
All future issuance algorithm will be one-round, i.e. the issuer will receive a message from the
user and respond with a (blinded) credential, that will be further processed by the user. Therefore,
to simplify the description, we will split the protocol into 3 non-interactive algorithms:

22

− (stu, µ) ← KVAC.I.Usr1(pp, m⃗, ϕ), producing the first protocol message µ and the user
state stu.

− σ′ ← KVAC.I.Srv(sk, ϕ, µ), producing the issuer’s blinded credential σ′.
If the issuer does not accept the user’s message, the issuer will return σ′ = ⊥.

− σ ← I.Usr2(stu, σ
′), producing the credential σ given as input the state stu and the issuer

message σ′.
The canonical definition of keyed-verification anonymous credentials admits selective disclosure
of attributes, which is a special case of our definition. That is, for a vector a⃗ ∈ (M ∪ {⋆})n

(where ⋆ denotes the positions to be hidden), the predicate of partial disclosure is ϕa⃗(m⃗) :=
(∀j ∈ [n] : aj = mj ∨ aj = ⋆).

• 0/1 ← (KVAC.P.Srv(sk, ϕ) ⇌ KVAC.P.Usr(pp, m⃗, σ, ϕ)) The present (or show) algorithm
allows a user to prove possession of a credential σ over some attributes satisfying a predicate
ϕ ∈ Φ, without revealing any information other than what can be explicitly inferred from ϕ.
Optimizations related to the above special case of partial disclosure are generally straightforward
to obtain and, for the schemes we present, presentation proof will depend solely on the number
of hidden attributes.
All presentation algorithms in this work are one-round, i.e. the user will send a single message
to the issuer, and the issuer will output a single bit. Consequently, we will split the protocol
into two non-interactive algorithms:

– ρ← KVAC.P.Usr(pp, m⃗, σ, ϕ), producing the presentation message ρ.
– 0/1← KVAC.P.Srv(sk, ϕ, ρ), verifying the presentation message ρ for ϕ with sk.

A keyed-verification credential system KVAC satisfies correctness, anonymity, and unforgeability.

Similarly to previous works [CMZ14; CR19], we define two extra algorithms to simplify formalism:
• σ ← KVAC.M(sk, m⃗) generates a credential σ for the attributes (m1, . . . ,mn). This is a

shorthand for running (µ, st) ← KVAC.I.Usr1(pp, m⃗, ϕm⃗), σ′ ← KVAC.I.Srv(sk, ϕm⃗, µ), and
returning σ ← KVAC.I.Usr2(st, σ′).

• 0/1← KVAC.V(sk, m⃗, σ) verifies that the credential σ for the attributes m⃗ using sk. This is a
shorthand for running ρ← KVAC.P.Usr(pp, m⃗, σ, ϕm⃗) and returning KVAC.P.Srv(sk, ϕm⃗, ρ).

The notation clash with the MAC and verification algorithms of a MAC scheme is on purpose, as
we will focus on credentials derived from algebraic MACs.

4.2 Correctness

Correctness informally states that messages satisfying the issuance predicate should lead to correct
credential issuance, and credential presentation should succeed for any valid statement.
Definition 4.3 (Correctness). A keyed-verification credential system KVAC for a family of n ≤ poly(λ)
attributes and nontrivial predicates ϕ ⊇ {ϕa⃗ : a⃗ ∈ (M ∪ ⋆)n} and a non-empty message family M is
correct if for any p.p.t. adversary A, for any crs ∈ [KVAC.S(1λ, n)] and (sk,pp) ∈ [KVAC.K(crs)]
and for any ϕ, ϕ′ ∈ Φ, m⃗ ∈Mn such that ϕ(m⃗) = ϕ′(m⃗) = 1:

Pr
[
b = 1 : σ ← (KVAC.I.Usr(pp, m⃗, ϕ) ⇌ KVAC.I.Srv(sk, ϕ))

b← (KVAC.P.Srv(sk, ϕ′) ⇌ KVAC.P.Usr(pp, m⃗, σ, ϕ′))

]

23

is overwhelming in λ.

4.3 Anonymity

Anonymity is captured by an indistinguishability game where the adversary, given as input crs, is
asked to distinguish between the interaction with an honest user and a simulator that does not know
any of the attributes (for issuance and presentation). Users for which the issuance/presentation
predicates hold are then indistinguishable. More formally, the simulator is a pair of procedures
Sim = (Sim.I, Sim.P) where Sim.I(pp, ϕ) is an interactive procedure whose distribution is meant to
be indistinguishable from KVAC.I.Usr, returning at the end some simulator state stSim, and similarly
Sim.P(stSim, ϕ) returns a “simulated” presentation that is meant to be indistinguishable from KVAC.I.
The adversary has also access to a presentation oracle, either consisting of the user procedure or of
Sim.P.

Definition 4.4. A keyed-verification credential system KVAC for a family of n ≤ poly(λ) attributes,
predicate family Φ, and a non-empty message family M is anonymous if there exists a simulator
Sim = (Sim.I, Sim.P) such that, for all crs ∈ [KVAC.S(1λ, n)] and (sk, pp) ∈ [KVAC.K(crs)], m⃗ ∈Mn

crs,
ϕ ∈ Φ such that ϕ(m⃗) = 1, adversaries A,D, the advantage Advanon

KVAC,A,D(λ, n) defined as:

∣∣∣Pr
[
b′ = 1 : (σ; stA)← (KVAC.I.Usr(pp, m⃗, ϕ) ⇌ A(sk, pp, ϕ, m⃗))

b′ ← DPresent0(stA)

]
−

Pr
[
b′ = 1 : (stSim; stA)← (Sim.I(pp, ϕ) ⇌ A(sk, pp, ϕ, m⃗))

b′ ← DPresent1(stA)

]∣∣∣
is negligible in λ, where the Presentb(ϕ′) oracle checks if ϕ′(m⃗) holds for m⃗, and if so returns
KVAC.P.Usr(pp, m⃗, σ, ϕ) outputs (if b = 0) or Sim.P(stSim, ϕ) (if b = 1)

KVAC has statistical anonymity if Advanon
KVAC,A,D(λ, n) is negligible for unbounded adversaries A,D.

A KVAC has everlasting forward anonymity if Advanon
KVAC,A,D(λ) is negligible when D is unbounded.

Comparison with original KVACs [CMZ14]. The canonical definition of anonymity for keyed-
verification credentials is concerned solely with the anonymity of different presentation sessions. It
seems quite weak since it doesn’t consider the server that issues malicious credentials leading to
non-anonymous showings. This is in (only in part) part deferred to the “blind issuance” property,
which has never been formally proven for the schemes we examine. Formally, it asks that for any
p.p.t. adversary A, for any crs ∈ [KVAC.S(1λ, n)] and (sk,pp) ∈ [KVAC.K(crs)] and for any ϕ ∈ Φ,
m⃗ ∈Mn

crs such that ϕ(m⃗) = 1,∣∣∣∣∣Pr
[
A(sk, pp, ϕ, ρ) = 1 : σ ← KVAC.M(sk, m⃗)

ρ← KVAC.P.Usr(pp, m⃗, σ, ϕ)

]
− Pr

[
A(sk, pp, ϕ, ρ) = 1 : ρ← Sim.P(sk, ϕ)

]∣∣∣∣∣
is negligible in λ. In some credentials such as Chase–Meiklejohn–Zaverucha, where anonymity is
only computational, this difference is perceptible. (In [CMZ14], other notions such as key-parameter
consistency and blind issuance are concerned with user anonymity.)

4.4 Extractability

In keyed-verification credential systems, unforgeability states that an adversary should not be able to
present a credential for a predicate ϕ that does not hold over any of the previously issued credentials.

24

Game EXTKVAC,Ext,A (λ, n)
Qrs := ∅; PQrs := []; Usrs := []; ctr := 0

crs← KVAC.S(1λ, n)
(sk, pp)← KVAC.K(crs)

(ϕ∗, ρ∗)← AIssue,Present , NewUsr, PresentUsr (pp)
m⃗∗ := Ext.P(sk, ϕ∗, ρ∗)
return KVAC.P.Srv(sk, ϕ∗, ρ∗) = 1 ∧ (ϕ∗, ρ∗) ̸∈ PQrs ∧

(m⃗∗ ̸∈ Qrs ∨ ϕ∗(m⃗∗) = 0)

Oracle NewUsr(m⃗)
σ ← KVAC.M(sk, m⃗)
Usrs[ctr] := (m⃗, σ)
return ctr := ctr + 1
Oracle PresentUsr(i, ϕ)
(m⃗, σ) := Usrs[i]
ρ← KVAC.P.Usr(pp, m⃗, σ, ϕ)
PQrs := PQrs ∪ {(ϕ, ρ)}
return ρ

Oracle Issue(ϕ, µ)
σ′ ← KVAC.I.Srv(sk, ϕ, µ)
if σ′ = ⊥ : return ⊥
m⃗ := Ext.I(sk, ϕ, µ)
if ϕ(m⃗) = 0 : abort
Qrs := Qrs ∪ {m⃗}
return σ′

Oracle Present(ϕ, ρ)
return KVAC.P.Srv(sk, ϕ, ρ)

Figure 8: Extraction game for a keyed-verification credential system KVAC with extractors Ext.I and Ext.P,
and adversary A. The variables “ϕ” and “ϕ∗” denote the predicate to be shown on m⃗ (cf. Definition 4.1)
whereas “µ” denotes the issuance message, and “ρ” the presentation message. Boxed , the experiment in the
multi-user setting with man-in-the-middle attacks.

The notion we propose is stronger: we require an extractor that can recover the attributes from
issuance/presentation messages, and consider man-in-the-middle adversaries. The adversary wins
if at the end of the game it presents a valid credential from which the extracted message was not
previously issued to them. The adversary is allowed to observe and copy presentation messages
from honest users on arbitrary attributes.

Definition 4.5. A keyed-verification credential system KVAC for a family of n ≤ poly(λ) at-
tributes, predicate family Φ, and a non-empty message family M is extractable if there exists
Ext = (Ext.I,Ext.P) such that, for any p.p.t. adversary A:

Advext
KVAC,Ext,A(λ) := Pr

[
EXTKVAC,Ext,A (λ, n) = 1

]
is negligible in λ, where EXTKVAC,Ext,A (λ, n) is defined in Figure 8.

In the game, the adversary receives as input some public parameters (from which it is possible
also to infer the common reference string crs) and can interact with issuance and presentation
oracles. The oracles NewUsr and PresentUsr deal with issuance and presentation of credentials
of other users, and are meant to model man-in-the-middle attackers that might re-use presentation
messages for other presentation predicates. The oracles Issue and Present instead deal with
issuance and presentation of a credential: the Issue oracle returns a server message σ′ representing
the blinded credential that the adversary may unblind. The Present oracle returns the result of
the presentation protocol. The adversary is then asked to output a presentation message ρ∗ and a
predicate ϕ∗ that was not queried to the oracles, and that satisfies the presentation algorithm.
Comparison with original KVACs [CMZ14]. The original definition of unforgeability for keyed-
verification anonymous credentials (illustrated in Figure 7) is implied by extractability.

Any q-query bound adversary A for the game UNFKVAC,A (λ, n) can be used to construct an
adversary B for the game EXTKVAC,Ext,B (λ, n). B will receive as input pp and internally run A(pp).
For every query of the form Sign(m⃗) made by A, then B will run µ ← KVAC.I.Usr1(pp, m⃗, ϕm⃗)
and query the issuance oracle. Let m⃗∗ be the extracted message. If m⃗∗ ̸∈ Qrs then B wins.
Otherwise, m⃗∗ = m⃗j for some j ∈ [q] and ϕ∗(m⃗) = ϕ(m⃗j) = 0 and thus B wins. Therefore
Advunf

KVAC(λ) ≤ Advext
KVAC(λ).

25

Comparison with PABSs [CKLMNP16]. Extraction is similar to the unforgeability experiment
for privacy-enhancing attribute-based signatures (PABSs), with some syntactical differences, mostly
due to the modularity of PABSs, where each attribute is committed with an opening extractable
commitment (a commitment equipped with a zero-knowledge proof of knowledge for the opening
relation). Their notion of unforgeability schemes demands that there exist extractors (Ec,Es)
recovering the attributes from respectively issuance and presentation. For any adversary that
outputs a valid credential presentation message (composed of a signature presentation token spt
satisfying SignTokenVf for public attributes a⃗, committed attributes c⃗, and a message M), one of the
following is true: (i) the extractor Es failed to recover a valid opening for one of the commitments
returned by the adversary (ComOpenVf); (ii) the extractor Es failed to recover a valid signature
from the adversary’s output (SigVf); (iii) the message and credentials (as extracted from Ec) were
not previously queried. Throughout the game, the issuance oracle checks that the commitment
verification proof is satisfied, which by opening extraction, implies that the issuance message is
correctly extracted similarly to the abort condition in Issue. Items (i) and (ii) ask that a valid
message is extracted every time that the credential verification equation is successful (similarly to
our request on Ext.P); item (iii) is similar to our request of the forgery not being present in Qrs, the
set of credentials extracted from Ext.I.
Strategy employed in our analysis. When proving our keyed-verification credential systems, we do
not consider the multi-user setting. All credentials that we study (the ones including the boxed
lines in the figures) rely on a proof system ZKP that is zero-knowledge and knowledge-sound, and
it is sufficient to replace knowledge-soundness with strong simulation extractability to prove the
definition of extractability as presented in Figure 8. In fact, the output of PresentUsr is always a
prover message ρ composed of commitments and proofs (the commitments, included in ρ, are part
of the statement of the proofs). Therefore, the additional winning condition guarantees extraction
in the strong simulation extractability game.

26

5 Chase–Meiklejohn–Zaverucha credentials
Figure 9 formally illustrates our credential system µCMZ. It can be seen as a variant of MACGGM,
secure in the generic group model, as introduced by Chase, Meiklejohn, and Zaverucha [CMZ14].

5.1 Protocol description

Message authentication code. The key generation procedure samples random (x0, xr, x⃗)←$ Zn+1
p ,

and sets the public parameters (X0 = x0H,Xr = xrG,X1 = x1G, . . . ,Xn = xnG). The signing
algorithm computes V = (x0 + xr + ∑

imixi)U . The special property of this MAC is that
they are randomizable, i.e. given a MAC (U, V) for m⃗, then (U ′, V ′) := (rU, rV) for r ̸= 0
still satisfies the verification equation V ′ = (x0 + xr + ∑

imixi)U . The verification algorithm
µCMZ.V((x0, xr, x⃗), m⃗, (U, V)) checks U ̸= 0G and V = (x0 + xr +∑

i ximi)U .
Blind issuance. The user commits to the attributes as C = ∑

imiXi + sH, where s is sampled
uniformly at random in Zp. Then, it proves that m⃗ satisfies the issuance predicate ϕ, i.e., that
((C, X⃗, ϕ), (m⃗, s)) is in the relation:

Rcmz.iu :=
{

((C ′, X⃗, ϕ), (m⃗, s)) : C ′ = ∑
imiXi + sG ∧ ϕ(m⃗) = 1

}
(6)

and sends a proof of knowledge πiu for (m⃗, s). Public messages don’t need to be committed (nor
proven in zk) and the server can add them itself using the homomorphic properties of C ′. The issuer
computes a MAC for the message m⃗ and proves its correctness via a proof πis for the relation:

Rcmz.is :=
{

((X0, C
′′, U ′, V ′), (x0, u)) : U ′ = uG ∧ X0 = x0H ∧

V ′ = x0U ′ + uC ′′

}
(7)

Credential presentation. To present a credential, the user first re-randomizes the MAC σ = (U, V)
into σ′ = (U ′ = rU, V ′ = rV) with r ←$ Z×

p , produces commitments Ci to each message mi, and
finally prove that the committed messages satisfy a predicate ϕ.5 The user will prove the relation:

Rcmz.p :=
{

((U ′, X1, . . . , Xn, C1, . . . , Cn, Z, ϕ), (r′, r⃗, m⃗)) :
(∀i ∈ [n] Ci = miU

′ + riG) ∧ Z = ∑n
i=1 riXi − r′H ∧ ϕ(m⃗) = 1

}
. (8)

Efficient partial disclosure. The case of partial disclosure of attributes, where only a subset of
attributes J ⊆ [n] is meant to be hidden, can be optimized in a straightforward way: the user will
commit only to the attributes in J and the server will compute Z = (x0 + x1)U ′ +∑

i∈J xiCi +∑
i∈[n]\J miU

′ − CV , using the hidden attributes as input to the proof. The case of full disclosure
of messages is also straightforward: it consists in sending (U ′, V ′ + r′G) and proving the relation
fixing ri = 0 for all i ∈ [n].

Moreover, if the predicate is ϕa⃗ for some a⃗ ∈ (M∪{⋆})n, then the presentation proof message can
be simplified via standard batching techniques. The user will still send to the server commitments
for all hidden attributes, but instead of proving knowledge of an opening for each Ci, proceeds as
follows. Compute Ĉ = ∑

i∈J µ
iCi where µ := H(C⃗) and prove knowledge instead of m̂ = ∑

i∈J µ
imi

and r̂ = ∑
i∈J µ

iri.
5Despite not explicit in [CMZ14], the check U ′ ̸= 0G is required as otherwise a user having a credential for m⃗ = 0 will
verify for m⃗ = 0⃗, r′ = 0, ri = 0.

27

Keyed-verification credential µCMZ

Base MAC
Procedure µCMZ.S(1λ, n)
(G, p,G) := Γ← GrGen(1λ)
H ←$ G
return crs := (Γ, H)

Procedure µCMZ.K(crs)
sk := (x0, xr, x1, . . . , xn)←$ Zn+2

q

X0 := x0H; Xr := xrG

Xi := xiG for i ∈ [n]
return sk, pp := (X0, Xr, X⃗)

Procedure µCMZ.M((x0, xr, x⃗), m⃗)
U ←$ G
V := (x0 + xr +

∑
i mixi)U

return σ := (U, V)

Procedure µCMZ.V((x0, xr, x⃗), m⃗, (U, V))
return U ̸= 0G ∧ V = (x0 + xr +

∑
i mixi)U

Credential Issuance
µCMZ.I.Usr((X0, Xr, X⃗), m⃗, ϕ) µCMZ.I.Srv((x0, xr, x⃗), ϕ)

C ′ :=
∑

i miXi + sG where s←$ Zp

πiu ← ZKPcmz.iu.P((C ′, X⃗, ϕ), (m⃗, s)) C ′, πiu check ZKPcmz.iu.V((C ′, X⃗, ϕ), πiu)

C ′′ := C ′ +Xr

U ′ := uG where u←$ Zp

V ′ := x0U
′ + uC ′′

check U ′ ̸= 0G U ′, V ′, πis πis ← ZKPcmz.is.P((X0, C
′′, U ′, V ′), (x0, u))

check ZKPcmz.is.V((X0, C
′ +Xr, U

′, V ′), πis)
U := rU ′ where r ←$ Zp

V := r(V ′ − sU ′)
return σ := (U, V)

Credential Presentation
µCMZ.P.Usr((X0, Xr, X⃗), m⃗, (U, V), ϕ) µCMZ.P.Srv((x0, xr, x⃗), ϕ)

(U ′, V ′) := (rU, rV) where r ←$ Zp

CV := V ′ + r′H where r′ ←$ Zp

for i ∈ [n]
Ci := miU

′ + riG where ri ←$ Zp

Z :=
∑n

i=1 riXi − r′H

πp ← ZKPcmz.p.P((U ′, X⃗, C⃗, Z, ϕ), (r′, r⃗, m⃗)) U ′, CV , C⃗, πp Z := (x0 + xr)U ′ +
∑n

i=1 xiCi − CV

return
(
U ′ ̸= 0G ∧
ZKPcmz.p.V((U ′, X⃗, C⃗, Z, ϕ), πp)

)

Figure 9: The keyed-verification credential system µCMZ. Boxed , the part that may be removed for
anonymous tokens (one-more unforgeability). The variable ϕ denotes the arbitrary predicates that must
be enforced on the attributes during issuance or presentation. The relations to be proven are defined in
Equations (6) to (8).

28

5.2 Theorems

We formally state (below) the core theorems of µCMZ, starting from the underlying MAC, then
prove them.
Algebraic MAC. The core theorem resulting from Lemma 5.4 and Lemma 5.5 is the following.

Theorem 5.1. In the algebraic group model, µCMZ is an algebraic MAC for n = poly(λ) attributes
over Zp with advantage:

Advufcmva
µCMZ (λ, n) ≤ Adv3-dl

GrGen(λ) + Advdl
GrGen(λ) + 3

p
,

The proof is done in two parts: we first study the case n = 1 (Lemma 5.4) and then reduce the
case n > 1 to the case n = 1 (Lemma 5.5). We acutally will prove a stronger claim: the scheme is
unforgeable even if the adversary is given one additional oracle Help(A0, A⃗, Z) that returns 1 if
Z = (x0 + xr)A0 +∑i xiAi and 0 otherwise. This additional requirement does not change affect the
bound and it will simplify the future analysis of the keyed-verification credential scheme.
Keyed-verification credential. Let Rcmz := Rcmz.iu ∪ Rcmz.is ∪ Rcmz.p. We prove the following:

Theorem 5.2. If ZKP is a proof system for the relation R ⊇ Rcmz, then µCMZ is a keyed-verification
extractable credential for n = poly(λ) attributes with anonymity advantage:

Advanon
µCMZ(λ, n) ≤ Advzk

ZKPcmz.iu(λ) + Advzk
ZKPcmz.p(λ) + Advksnd

ZKPcmz.is(λ) ,

and extractability advantage:

Advext
µCMZ(λ, n) ≤ Advufcmva

µCMZ (λ, n) + Advzk
ZKPcmz.is(λ) + Advksnd

ZKPcmz.iu(λ) + Advksnd
ZKPcmz.p(λ) .

In particular, µCMZ[ZKP = Σ] has statistical anonymity if we assume that Σ is statistically knowl-
edge sound.
Anonymous token. Let µCMZAT denote the variant of µCMZ in Figure 9 where the issuance
algorithm does not return the proof πiu (that is, the boxed areas are removed). From the above,
and Theorem 5.11, we also have:

Theorem 5.3. If ZKP is a proof system for the relation R ⊇ Rcmz.p ∪ Rcmz.is, then µCMZAT is an
anonymous token for n = poly(λ) attributes with anonymity advantage:

Advanon
µCMZAT

(λ, n) ≤ Advzk
ZKPcmz.iu(λ) + Advzk

ZKPcmz.p(λ) + Advksnd
ZKPcmz.is(λ) ,

and (in the algebraic group model) one-more unforgeability advantage:

Advomuf
µCMZAT

(λ, n) ≤ Adv2dl
GrGen(λ) + qAdvdl

GrGen(λ) + q + 5
p

,

where q is the number of queries to the issuance oracle.

29

5.3 Algebraic MAC

We prove that µCMZ is an algebraic MAC first for the special case n = 1 in Lemma 5.4, and then
reduce the case n > 1 to the case n = 1 in Lemma 5.5.
Lemma 5.4. In the algebraic group model, µCMZ is an algebraic MAC for n = 1 attributes in Zp

with advantage:
Advufcmva

µCMZ (λ, 1) = Adv3-dl
GrGen(λ) + Advdl

GrGen(λ) + 1
p
.

The unforgeability security experiment (Figure 5) provides the adversary with access to signing
and verification oracles. In the proof below, the adversary has also access to an oracle Help(A0, A1, Z)
which checks wether Z = (x0 + xr)A0 + x1A1. The oracle returns 1 if the equation is satisfied and 0
otherwise. This stronger notion will simplify the proof of Theorem 5.11.

Proof. Statistical correctness follows by inspection; we prove unforgeability. Let A be an adversary
that receives as input some public parameters pp = (X0, Xr, X⃗) has access to a sign oracle Sign, a
verification oracle Verify, and a helper oracle Help. It outputs a forgery (m∗, (U∗, V ∗)). The j-th
oracle query to Sign(mj) takes as input mj ∈ Zp and outputs a MAC σj = (Uj , Vj). Let q be the
number of signing queries made during the execution of the adversary. The output of an algebraic
adversary is accompanied by an algebraic representation α⃗, β⃗ of the form

U∗ = αgG+ αhH + α0X0 + αxrXr + α1X1 +
q∑
j

αu,jUj + αv,jVj ,

V ∗ = βgG+ βhH + β0X0 + βxrXr + β1X1 +
q∑
j

βj,uUj + βj,vVj .

The verification equation requires that U∗ is non-zero and that the following polynomial equation
in Zp[η,x0,xr,x1,u1, . . . ,uq](
αg + αhη + α0x0η + αrxr + α1x1 +∑q

j αu,juj + αv,juj(x0 + xr +mjx1)
)

(x0 + xr +m∗x1) =

βg + βhη + β0x0η + βrxr + β1x1 +∑q
j βu,juj + βv,juj(x0 + xr +mjx1)

(9)
holds when evaluated in x0 = logH X0, x1 = logGX1, η = logGH and uj = logG Uj . We first study
the case that Equation (9) holds over the polynomial ring, and then argue equality over the field.
For the equation to hold, we must have that all monomials on the left-hand side must appear also
on the right-hand side of the equation. In particular this implies:

• βg = 0, βh = 0, βu,j = 0 since no monomials in (respectively) 1, η, and uj (for j ∈ [q] appear
on the left-hand side of the equation;

• αg = 0, αh = 0, α0 = 0, αr = 0, α1 = 0, αv,j = 0 since no monomials in (respectively) x0,
ηxr, x2

0η, xrx0, x1x0 and ujx2
0 appear on the right-hand side of the equation.

Thus, it can be re-written as:

(
∑

j

αu,juj)(x0 + xr +mjx1) = β0x0η + βrxr + β1x1 +∑q
j βv,juj(x0 + xr +m∗x1) ,

which can be further simplified to

(
q∑
j

αu,juj)(x0 + xr +m∗x1) =
q∑
j

βv,juj(x0 + xr +mjx1) .

30

which in turn means that αu,j = βv,j and αu,j ·m∗ = αu,j ·mj for all j ∈ [q]. m∗ = mj for some j.
Since U∗ is not the identity (by MAC verification), then ∃ j ∈ [q] : αu,j ̸= 0, and therefore m∗ = mj

for some j. This is not possible, since m∗ was not queried to the signing oracle. It must therefore be
the case that, for a winning adversary, Equation (9) does not hold over Zp[η,x0,xr,x1,u1, . . . ,uq]
but does hold when evaluated in the relative discrete logarithms.

We build a reduction B to 3-DL. The adversary B takes as input some group description Γ and
(X,X ′, X ′′) ∈ G3. It samples random ah, bh, a0, b0, ar, br, a1, b1 ←$ Zp and invokes A with public
parameters

pp := (Γ,
H = ahG+ bhX,

X0 = aha0G+ (ahb0 + bh)X + bhb0X
′,

Xr = arG+ brX,

X1 = a1G+ a1X) ,

(10)

which is identically distributed to the one of an honest signer. The adversary can make queries to
the oracles Sign,Verify,Help.

• For the j-th signing query on a message mj , the reduction B samples au,j , bu,j ←$ Zp and
returns

(Uj := au,jG+ bu,jX,

Vj := au,j(aha0 + ah + a1mj)G+
(bu,j(a0 + ar + a1mj) + au,j(b0 + br + b1mj))X+

bu,j(b0 + br + bjmj)X ′) .

(11)

The distribution of Uj , Vj is identically distributed to the one of the security experiment.
• A query to the verification oracle Verify receives as input a message m and a MAC (U, V),

accompanied by the algebraic representation α⃗, β⃗ such that:

U = αgG+ αhH + α0X0 + αrXr + α1X1 +
ns∑
j

αu,jUj + αv,jVj ,

V = βgG+ βhH + β0X0 + βrXr + β1X1 +
ns∑
j

βu,jUj + βv,jVj

where ns < q is the current number of queries made to Sign. The oracle tests the verification
equation plugging Equations (10) and (11) into the verification equation and checking it using
(X,X ′) as the maximum degree of the resulting polynomial is 2. If the equation is not satisfied,
the oracle returns 0. Otherwise, it returns 1. The output is the same as the one of the security
experiment.

• Any Help query of the form (A0, A1, Z) ∈ G3 has algebraic representation:

A0 = γ(0)
g G+ γ

(0)
h H + γ

(0)
0 X0 + γ(0)

r Xr + γ
(0)
1 X1 +

∑
j

γ
(0)
u,jU + γ

(0)
v,jV ,

A1 = γ(1)
g G+ γ

(1)
h H + γ

(1)
0 X0 + γ(1)

r Xr + γ
(1)
1 X1 +

∑
j

γ
(1)
u,jU + γ

(1)
v,jV ,

Z = δgG+ δhH + δ0X0 + δrXr + δjX1 +
∑

j

δu,jU + δv,jV ,

(12)

31

and, similarly to the verification oracle, B can respond to the query evaluating the associated
polynomial in X via (G,X,X ′, X ′′), as the maximum degree of the resulting expression is 3.

At the end, the adversary A returns a forgery (m∗, (U∗, V ∗)) satisfying the verification equation and
such that m∗ ̸= mi for all i ∈ [q]. From Equation (9) we know that (since m∗ ̸= mi for all i’s) the
polynomial of Equation (9)

φ(η,x0,x1,u1, . . . ,uq) :=
(
αg + αhη + α0x0η + αrxr + α1x1+∑q

j αu,juj + αv,juj(x0 + xr +mjx1)
)
(x0 + xr +m∗x1)−

βg + βhη + β0x0η + βrxr + β1x1 +∑q
j βu,juj + βv,juj(x0 + xr +mjx1)

is non-zero. Since the bh, b0, br, b1, bβu,u,1 , . . . , bu,q’s are all uniformly random and perfectly hidden
by the respective ah, a0, a1, au,1, . . . , au,q’s, the partial evaluation

ψ(χ) = φ(ah + χbh, a0 + χb0, ar + χbr, a1 + χb1, au,1, . . . , au,q + χbu,q) (13)

is still a non-zero polynomial in Zp[χ], of degree at most 3, except with probability 1
p . If the given

polynomial is nontrivial, since the verification equation is satisfied, ψ(logGX) = 0. Therefore, one
of the roots of ψ is in the field and is the discrete logarithm of X with respect to G. The reduction
finds the root of ψ satisfying the discrete logarithm of X, and returns it.

Lemma 5.5. µCMZ is an algebraic MAC for n = poly(λ) attributes in Zp with advantage:

Advufcmva
µCMZ (λ, n) = Adv3-dl

GrGen(λ) + Advdl
GrGen(λ) + 3

p
.

The unforgeability security experiment (Figure 5) provides the adversary with access to signing
and verification oracles. In the proof below, the adversary has also access to an oracle Help(A0, A⃗, Z)
which checks wether Z = (x0 + xr)A0 +∑

i xiAi. The oracle returns 1 if the equation is satisfied
and 0 otherwise. This stronger notion will simplify the proof of Theorem 5.11.

Proof. Let A be an adversary against MAC unforgeability, taking as input the public parameters
(Γ, H,X0, . . . , Xn) and outputting some forgery (m⃗∗, (U∗, V ∗)). A has access to the oracles Sign,
Verify, and Help. Sign outputs a MAC (Uj , Vj) for a queried message m⃗j . Verify outputs the
verification output of µCMZ. Let q be the number of queries to Sign. We distinguish two valid
forgeries:

(i) ∑n
i=1m

∗
iXi = ∑n

i=1mj,iXi for some previously queried message m⃗j (j ∈ [q]). In this case, by
Claim 5.6 below, the adversary A can solve the gap DL problem with advantage

Advgapdl
GrGen(λ) + 1

p
.

(ii) ∑n
i=1m

∗
iXi ̸=

∑n
i=1mj,iXi for all j ∈ [q]. In this case, by Claim 5.7, the adversary A can forge

a MAC with advantage
Advufcmva

µCMZ (λ, 1) + 1
p
.

32

Thus, the overall advantage is

Advufcmva
µCMZ (λ, n) =Advufcmva

µCMZ (λ, 1) + Advgapdl
GrGen(λ) + 2

p
(by Claims 5.6 and 5.7)

=Adv3-dl
GrGen(λ) + Advdl

GrGen(λ) + 3
p
. (by Lemma 5.4)

Claim 5.6. Item (i) happens with advantage Advgapdl
GrGen(λ) + 1/p.

We build a reduction B that solves gap DL for GrGen every time A returns a forgery m⃗∗ such
that ∑im

∗
iXi = ∑

imj,iXi for some j ∈ [q]. The adversary B has access to an oracle Ddh(A,Z)
that returns 1 if Z is the DH of X and A. B takes as input (Γ, X) with X ∈ G and samples
ai, bi ←$ Zp and computes Xi = aiG+ biX for i ∈ [n] and X0 = zH for some z ←$ Zp. It invokes A
with pp = (Γ, (X0, Xr, X1, . . . , Xn)). The reduction B treats the oracle queries as follows:

• For every signing query on message m⃗j , B returns

(U := uG, V := (z +∑
i aimj,i)U + u (∑i bimi)X)

for u←$ Zp.
• For every Verify(m⃗, (U, V)) query, it checks if ∑i bimi = 0. If ∑i bimi = 0, it returns

1 if zU + ∑
i aimiU = V and 0 otherwise. If ∑i bimi ≠ 0, it returns the output bit of

Ddh(U, (∑i bimi)−1V − zU).
• For every Help(A0, A⃗, Z) query, it returns the output bit of Ddh(∑i biAi, Z−zA0−

∑
i aiAi).

At the end, if the adversary A returns m⃗∗ and a forged MAC (U∗, V ∗) satisfying∑
i

mj,i(aiG+ biX) =
∑

i

m∗
i (aiG+ biX)

and m⃗∗ ̸= m⃗j , for some j ∈ [q]. Thus, (∑i(mj,i −m∗
i)ai)G = (∑i(mj,i −m∗

i)bi)X. The equation is
non-trivial with overwhelming probability 1/p, since the bi’s are uniformly random and perfectly
hidden in Xi’s by ai. Therefore, except with negligible probability 1/p the reduction B solves the
above equation and returns x = (∑i ai(mj,i −m∗))(∑i bi(mj,i −m∗))−1, the discrete logarithm of
X. It follows that the adversary wins (i) with advantage at most

Advgapdl
GrGen(λ) + 1/p .

Claim 5.7. Item (ii) happens with advantage at most Advufcmva
µCMZ (λ, 1) + 1/p.

We reduce to the security of µCMZ for n = 1. The reduction B gets as input the public parameters
(Γ, H,X0, Xr, X1). Sample zi ←$ Zp and compute Xi = ziX1 for i ∈ [2, n]. Assuming X1 ̸= 0G
(which happens with probability 1/p), all the Xi’s are uniformly distributed. The reduction then
internally runs the adversary A for the unforgeability game with public parameters (X0, X1, . . . , Xn).
The reduction treats the oracle queries as follows:

• For every MAC query of the form m⃗, forward the query to the oracle Sign at disposal to B
for the message m1 +∑n

i zimi, obtaining (U, V). Return (U, V) to A.
• For every verification query for a message m⃗ and a MAC (U, V), forward the query to the

oracle Verify with (m1 +∑
i zimi, (U, V)).

33

• Similarly, proceed for Help queries.
Given an output forgery (U∗, V ∗) for a message m⃗∗, we have that ∑im

∗
iXi ̸=

∑
imj,iXi for all

j ∈ [q], B outputs the forged message m1 +∑n
i=2 zimi along with the MAC (U∗, V ∗). Therefore,

m∗
1 +∑n

i=2m
∗
i zi ̸= mj,1 +∑

i=2mj,izi for all j ∈ [q] and thus the output message was never queried
to the Sign oracle; by construction of the Xi’s we have that

(U∗, V ∗) = (U, x0U +
n∑

i=1
m∗

ixiU) = (U, x0U + (m∗
1 +

n∑
i=2

zim
∗
i)x1U)

where x0 = logH X0, x1 = logGX1, and zix1 = logGXi for i ∈ [2, n]. Hence, the forgery is valid and
B produces a forgery every time A produces a forgery.

5.4 Anonymity

Theorem 5.8. If ZKP a proof system for the relation R ⊇ Rcmz, then µCMZ is anonymous for
n = poly(λ) attributes with advantage:

Advanon
µCMZ,A,D(λ, n) ≤ Advzk

ZKPcmz.iu,A′(λ) + Advzk
ZKPcmz.p,D′(λ) + Advksnd

ZKPcmz.is,A′′(λ) ,

where A,D are adversaries in the anonymity game and A′,A′′,D′ are described in the proof.

Overall, the technical challenges here is making sure that extracting x0 is sufficient for simulating
proofs (it is the only witness of πis), and keeping track of the different adversaries in the game.

Proof. We define the simulator Sim as:

− The issuance simulator Sim.I((Xr, X0, X⃗), ϕ) samples a random group element C ′ ←$ G and
simulates a representation proof πiu for the instance (C, X⃗, ϕ)). Upon receiving the response
from the server (U ′, V ′, πis), the simulator checks if the proof is valid and U ′ ̸= 0. If so, it
invokes the extractor for the instance (X0, U ′, V ′) and proof πis recovering (x0, u) satisfying
x0 = logH X0 and u = logG U . Note that x0 is the unique value associated to the public
parameter’s X0. Finally, it stores the state as stSim = (x0, X⃗).

− The presentation simulator Sim.P((X0, Xr, X⃗), m⃗), which does not know the message. It
samples random group elements U ′, CV ←$ G2, and (C1 = γ1G, . . . , Cn := γnG) where
γi ←$ Zp for i ∈ [n], and computes πp via ZKPcmz.p.Sim((U ′, X0, X⃗, C⃗, Z)) where Z =
x0U ′ +∑

i γiXi − CV . The simulator outputs (U ′, CV , C⃗, πp).

Let A be a p.p.t. machine taking as input a keypair (sk, pp), a predicate ϕ ∈ Φ, and a message m⃗
such that ϕ(m⃗) = 1.

Indistinguishability is shown via a hybrid argument.

H0 This is the real interaction.

H1 Instead of generating πiu using the witness, do so via the zero-knowledge simulator Sim with
input (C ′, X⃗, ϕ). If A’s output is noticeably different after this hybrid change, then it is
possible to build an adversary A′ that is able to distinguish real from simulated proofs from
ZKPcmz.iu. Therefore:

AdvH1
A,D(λ, n) ≥ AdvH0

A,D(λ, n)− Advzk
ZKPcmz.iu,A′(λ) .

34

H2 Instead of generating πp using the attributes m⃗ and MAC σ, use the zero-knowledge simulator
Sim with input (U ′, X0, X⃗). Similarly to the previous hybrid, there exists an adversary D′

that wins every time D’s output is noticeably different. Therefore:

AdvH2
A,D(λ, n) ≥ AdvH1

A,D(λ, n)− Advzk
ZKPcmz.iu,D′(λ) .

H3 Use the extractor of πis for the statement (X0, U ′, V ′) and check its validity.
The extractor will produce a witness (x0, u) satisfying:H 0

0 G
U ′ C ′′

[x0
u

]
=

X0
U ′

V ′


except with probability Advksnd

ZKPcmz.is,A′′(λ), where A′′ is the adversary in the knowledge soundness
game that runs A internally and returns the proof πis for which extraction fails. In other
words,

AdvH3
A,D(λ, n) ≥ AdvH2

A,D(λ, n)− Advksnd
ZKPcmz.is,A′′(λ) .

H4 At issuance time, instead of computing C ′ using the message as C ′ = ∑
imiXi + sG for some

s←$ Zp, send a random element C ′ ←$ G and extract from the response πis the witness (u, x0).
Then, using the extracted witness, compute a fresh MAC (U = ruG, x0U+urXr +∑i rumiXi)
for r ←$ Zp and return it. The distribution in this hybrid is identical to the previous
one: U is distributed identically, and V is the (unique) group element satisfying V =
(logH X0)U + (logG U) · (Xr +∑

imiXi). Hence:

AdvH4
A,D(λ, n) = AdvH3

A,D(λ, n) .

H5 At presentation time, sample U ′, CV ←$ G2 and C⃗ such that Ci = γiG with γi ←$ Zp. The
(simulated) proof πp is made for the statement (U ′, CV , C⃗, Z) where Z is computed as:

Z = x0U
′ +

∑
i

γiXi − CV .

The elements C⃗, CV are identically distributed to the real ones, by the perfect hiding property
of Pedersen commitments. The element U ′ is also perfectly indistinguishable from the real one,
since r is uniformly distributed and U ̸= 0G. Finally, the value Z, despite being computed
differently, is exactly the same in both distributions since γiXi = xiCi where xi = logGXi.
Hence:

AdvH5
A,D(λ, n) = AdvH4

A,D(λ, n) .

The last hybrid is the simulated interaction; the result follows.

Remark 5.9 (Knowledge soundness vs simulation extractability). To extract from πiu after seeing
(simulated) issuance proofs πis, one would formally need to make sure that the proofs πis cannot be
turned into proofs for Rcmz.iu. This is generally achieved by proofs that are simulation extractable,
by making sure that different proof types are with respect to different setup strings (or random
oracles). In many cases the actual requirement can be weaker. For instance, in Schnorr proofs, the
vector sizes mismatch and thus knowledge soundness suffices.

35

5.5 Extractability

Theorem 5.10. If ZKP is a proof system for the relation R ⊇ Rcmz, then µCMZ is extractable for
n = poly(λ) attributes with advantage:

Advext
µCMZ(λ, n) ≤ Advufcmva

µCMZ (λ, n) + Advzk
ZKPcmz.is(λ) + Advksnd

ZKPcmz.iu(λ) + Advksnd
ZKPcmz.p(λ) .

Roughly speaking, the extractor matches the zero-knowledge extractor and a reduction is made
to unforgeability of the underlying MAC. However, the term “Z” is computed during presentation
verification using the MAC key (x0, xr, x⃗), which is not available to the reduction to unforgeability.
To circumvent this, we are going to assume that the proof itself can provide a candidate instance “Z”,
and that the instance can be check for correctness via the oracle Help (introduced in Section 5.3).
In practice, this requirement is trivially satisfied for Schnorr proofs, where it is possible to recover
the statement from the actual proof by looking at the trace of random oracle queries.

Proof. We use the extractors of ZKP to define the extractors for the credential system.

− Ext.I(ϕ, (C ′, πiu)) is the zero-knowledge extractor of ZKPcmz.iu which takes as input the proof
πiu and an instance (C ′, X, ϕ) and (m⃗, s) such that ϕ(m⃗) = 1 and

[
X1 X2 . . . Xn G

]

m1
m2
...
mn

s

 = C ′ .

If no such message is found, the extractor returns ⊥ and the game aborts.
− Ext.P(ϕ∗, (U ′, CV , C⃗, πp)) runs the extractor of ZKPcmz.p, which takes as input the proof πp,

and recovers an instance (U ′, X⃗, C⃗, Z, ϕ∗) and a witness (m⃗, r⃗, r′) such that ϕ(m⃗) = 1 and


U ′ G

U ′ G
.

X1 X2 . . . Xn −H





m1
...
mn

r1
...
rn

r′


=


C1
...
Cn

Z

 .

If the extracted witness does not satisfy the above, the extractor returns ⊥ and the game
aborts. Internally, the extractor checks that Z was correctly computed via the secret key
(x0, xr, x⃗).

Let A be an adversary for extraction that gets as input ((Γ, H), (X0, Xr, X1, . . . , Xn)) and has
access to oracles Issue,Present. At the end the adversary wins if one of the following holds:

(i) There exists a query to Issue of the form (ϕ, (C ′, πiu)) such that ZKPcmz.iu.V((C ′, X⃗, ϕ), πiu),
but extraction failed (in particular this happens if ϕ(m⃗) = 0);

36

(ii) The adversary returned a pair (ϕ∗, ρ∗ = (U ′, CV , C1, . . . , Cn, πp)) such that πp verifies, but
extraction failed (in particular this happens if ϕ∗(m⃗) = 0);

(iii) The adversary returned a pair (ϕ∗, ρ∗ = (U ′, CV , C1, . . . , Cn, πp)) and extraction recovered a
valid witness (m⃗∗, r⃗, r′) such that ϕ∗(m⃗) is satisfied and m⃗∗ has not been previously queried.

From Items (i) and (iii) it is immediate to build an adversary for knowledge soundness of the
zero-knowledge proof system ZKP. Item (iii) can be reduced to unforgeability of the underlying
MAC as follows. Let B be an adversary that gets as input pp = ((Γ, H), (X0, Xr, X1, . . . , Xn)) and
has access to the oracles Sign,Verify of the MAC unforgeability game. B internally runs A(pp)
and handles oracle queries as follows:

• For every Issue(C ′, πiu) query, it recovers a valid witness m⃗, s. It queries Sign(m⃗) and obtains
(U, V). Returns (U, V + sU) and simulates the proof πis.

• For every query Present(ϕ, (U ′, CV , C⃗, πp)) from the adversary, B uses the zero-knowledge
extractor to recover (m⃗, r⃗, r′) and returns Verify(m⃗, (U ′, CV − r′H)). At the end A returns a
value ϕ∗, ρ∗ = (U ′, CV , C⃗, πp). B runs the extractor to obtain m∗ and returns (U ′, CV − r′H).
For presentation messages, we have:

CV − r′G = (x0 + xr)U ′ +
∑

i

xiCi − Z − r′H = (x0 + xr +
∑

i

ximi)U ′ ,

where the first equality follows from the answer of Help and the second follows from the
representation proof πp.

• Signing queries are handled in the same way as above.

Thus, the output (U ′, CV − r′G) is a valid MAC only if CV is a valid presentation message that
the server accepted. Validity of the returned forgery from B follows from the winning condition
m⃗∗ ̸∈ Qrs.

5.6 One-more unforgeability

Let µCMZAT be the µCMZ scheme of Figure 9 where the boxed parts are removed.

Theorem 5.11. In the algebraic group model, µCMZAT is an anonymous token for n = poly(λ)
attributes in Zp with advantage:

Advomuf
µCMZAT

(λ, n) ≤ q + 6
p

+ (q + 1)Advdl
GrGen(λ) + 3Adv2-dl

GrGen(λ) + Advgapdl
GrGen(λ) ,

where q is the number of signing queries allowed to the adversary.

Proof. Anonymity follows from Theorem 5.8. We are left with one-more unforgeability. We prove
first the case n = 1, as the case for n = poly(λ) can be shown later using techniques similar to the
ones of the previous section.
The case n = 1. Let A be an q-query bound algebraic adversary that receives as input
(Γ, H, (X0, Xr, X1)). Each query to Sign has as input Cj ∈ G (for j ∈ [q]), accompanied by
an algebraic representation γ⃗(j) satisfying:

Cj = γ(j)
g G+ γ

(j)
h H + γ

(j)
0 X0 + γ(j)

r Xr + γ
(j)
1 X1 +

∑
k<j

γ
(j)
u,kUk + γ

(j)
v,kVk (14)

37

Consider the associated polynomial in Zp[η,x0,xr,x1,u1, . . . ,uq]:

cj(η,x0,x1,u1, . . . ,uj−1) = γ(j)
g +γ(j)

h η+γ(j)
0 x0η+γ(j)

r xr+γ(j)
1 x1+

∑
k<j

γ
(j)
u,kuk+γ(j)

v,kuk(x0+xr+ck)

(15)
where η = logGH,x0 = logH X0,xr = logGXr,x1 = logGX1,uk = logG Uk As an example, for the
first 3 queries we have:

c1(η,x0,xr,x1) = γ(1)
g + γ

(1)
h η + γ

(1)
0 x0η + γ(1)

r xr + γ
(1)
1 x1

c2(η,x0,xr,x1,u1) = γ(2)
g + γ

(2)
h η + γ

(2)
0 x0η + γ(2)

r xr + γ
(2)
1 x1 + γ

(2)
u,1u1 + γ

(2)
v,1u1(x0 + xr + c1)

c3(η,x0,xr,x1,u1,u2) = γ(3)
g + γ

(3)
h η + γ

(3)
0 x0η + γ(3)

r xr + γ
(3)
1 x1+

γ
(3)
u,1u1 + γ

(3)
v,1u1(x0 + xr + c1) + γ

(3)
u,2u2 + γ

(3)
v,2u2(x0 + xr + c2)

and so on. Equation (15) lives in Zp[η,x0,xr,x1,u1, . . . ,uj−1], no (individual) quadratic terms
are present, and the total degree of at most i+ 1. At the end of the execution, A returns the MACs
(m∗

i , (U∗
i , V

∗
i))q+1

i=1 followed by algebraic representations α⃗(i), β⃗(i) such that

U∗
i = α(i)

g G+ α
(i)
h H + α

(i)
0 X0 + α(i)

r Xr + α
(i)
1 X1 +

q∑
j

α
(i)
u,jUj + α

(i)
v,jVj ,

V ∗
i = β(i)

g G+ β
(i)
h H + β

(i)
0 X0 + β(i)

r Xr + β
(i)
1 X1 +

q∑
j

β
(i)
u,jUj + β

(i)
v,jVj .

(16)

From the verification equation and Equation (15), U∗ ̸= 0G and the following polynomial equality:(
α(i)

g + α
(i)
h η + α

(i)
0 x0η + α(i)

r xr + α
(i)
1 x1 +∑q

j=1 α
(i)
u,juj + α

(i)
v,juj(x0 + xr + cj)

)
(x0 + xr +m∗

i x1) =

β(i)
g + β

(i)
h η + β

(i)
0 x0η + β(i)

r xr + β
(i)
1 x1 +∑q

j=1 β
(i)
u,juj + β

(i)
v,juj(x0 + xr + cj)

(17)
holds for j ∈ [q + 1] when evaluated in η = logGH,x0 = logH X0,xr = logGXr,x1 = logGX1 and
uj = logG Uj . We study the equation in the polynomial ring Zp[η,x0,xr,x1,u1, . . . ,uq] first. For
the equation to hold:

• For all i ∈ [q + 1], β(i)
g = 0, β(i)

h = 0, since no monomials in (respectively) 1, η (for j ∈ [q]
appear on the left-hand side of the equation;

• For all i ∈ [q + 1] α(i)
g = 0, α(i)

h = 0, α(i)
0 = 0, α(i)

r = 0, α(i)
1 = 0, since no monomials in

(respectively) x0, ηxr, x2
0η, xrx0, x1x0 appear on the right-hand side of the equation.

• For all i ∈ [q + 1] and j ∈ [q], α(i)
v,j = 0 since no term x2

0uj is present on the right-hand
side. (In particular, cj is defined in Equation (15) and by inspection one can observe that the
right-hand side equation has no monomials in x2

0.)
We therefore have:  q∑

j=1
α

(i)
u,juj

 (x0 + xr +m∗
i x1) =

β
(i)
0 x0η + β(i)

r xr + β
(i)
1 x1 +

q∑
j=1

β
(i)
u,juj + β

(i)
v,juj(x0 + xr + cj) ,

(18)

38

which in turn implies that β(i)
0 = 0, β(i)

r = 0 and β
(i)
1 = 0, since no monomials in x0η, xr, and x1

appear on the left-hand side of the equation. Plugging Equation (15) in the above, for all i ∈ [q + 1]
and j ∈ [q]:

• β
(i)
v,jγ

(j)
u,k = 0, β(i)

v,jγ
(j)
v,k = 0, β(i)

v,jγ
(j)
g = 0 for all k < j, since no monomial in (respectively) ujuk,

uj appears on the left-hand side (cf. Equation (15)).

• β
(i)
v,jγ

(j)
h = 0, and β(i)

v,jγ
(j)
0 = 0 since no monomial in (respectively) ujη, and ujηx0 appears on

the left-hand side of the equation.

Therefore:
q∑

j=1
α

(i)
u,jujx0+α(i)

u,jujxr+α(i)
u,jm

∗
i ujx1 =

q∑
j=1

(β(i)
u,j+β(i)

v,jγ
(i)
g)uj+β(i)

v,jujx0+β(i)
v,jγ

(j)
r ujxr+β(i)

v,jγ
(j)
1 ujx1

which implies that α(i)
u,j = β

(i)
u,j (when looking at the terms in ujx0) and there exists at least one

non-zero j-indexed term since U∗
i ̸= 0G. Furthermore, m∗

iαu,j = βv,jγ
(j)
1 (looking at the terms in

ujx1) implies m∗
i = γ

(j)
1 . By the pigeonhole principle, since i ∈ [q + 1] and j ∈ [q], two forgeries

must be on the same message, which contradicts the winning condition that requires all forgeries to
be on distinct messages. It must therefore be the case that, for a winning adversary, Equation (9)
does not hold over Zp[η,x0,xr,x1,u1, . . . ,uq] but does hold when evaluated in the relative discrete
logarithms.

Denote with α⃗(i), β⃗(i) the algebraic representation of the i-th forgery of the adversary (U∗
i , V

∗
i).

Form the above argument we have that for the (non-zero) polynomial

φi(η,x0,xr,x1,u1, . . . ,uq) :=(
α(i)

g + α
(i)
h η + α

(i)
0 x0η + α(i)

r xr + α
(i)
1 x1 +∑q

j=1 α
(i)
u,juj + α

(i)
v,juj(x0 + xr + cj)

)
(x0 + xr +m∗

i x1)−(
β(i)

g + β
(i)
h η + β

(i)
0 x0η + β(i)

r xr + β
(i)
1 x1 +∑q

j=1 β
(i)
j,uβ

(i)
u,juj + β

(i)
v,juj(x0 + xr + cj

)
(19)

the evaluation in logGH, logH X0, logGXr, logGX1, logG U1, . . . , logG Uq is zero. The polynomials
φ1, . . . , φq+1 are all multivariate polynomials of maximum total degree q + 1. Let i ∈ [q + 1].

(i) In Claim 5.12, we show that A wins unforgeability and φi has a non-zero monomial in uj for
j ∈ [q] with advantage:

q

(1
p

+ Advdl
GrGen(λ)

)
.

(ii) In Claim 5.13, we show that A wins unforgeability and φi has a non-zero monomial in η with
advantage:

1
p

+ Advdl
GrGen(λ) .

(iii) In Claim 5.14, we show that A wins unforgeability and φi has a non-zero monomial in x0, x1,
or xr with advantage:

3
(1
p

+ Adv2-dl
GrGen(λ)

)
.

39

Since at least one of the above coefficients must be non-zero, we have a bound on the adversary’s
winning probability and therefore:

Advomuf
µCMZAT

(λ, 1) ≤ q + 4
p

+ (q + 1)Advdl
GrGen(λ) + 3Adv2-dl

GrGen(λ) . (20)

The general case n > 1. The strategy is to distinguish the two winning events:

(i) The adversary returns forgeries (m∗
k, (U∗

k , V
∗

k))q+1
k=1 such that ∀k1 ̸= k2 : ∑im

∗
i,k1

Xi ≠∑
im

∗
i,k2

Xi.
(ii) The adversary returns forgeries (m∗

k, (U∗
k , V

∗
k))q+1

k=1 such that ∃k1 ̸= k2 : ∑im
∗
i,k1

Xi =∑
im

∗
i,k2

Xi.

The first case reduces to Theorem 5.11, while the second case can be reduced to DL using an
argument similar to Lemma 5.5. Therefore:

Advomuf
µCMZAT

(λ, n) =Advomuf
µCMZ(λ, 1) + Advgapdl

GrGen(λ) + 2
p

(by Lemma 5.5)

=q + 6
p

+ (q + 1)Advdl
GrGen(λ) + 3Adv2-dl

GrGen(λ) + Advgapdl
GrGen(λ) .

(from Equation (20))

Claim 5.12. Item (i) happens with probability at most q
(
1/p+ Advdl

GrGen(λ)
)
.

Proof. We seek a reduction B that turns an adversary A providing forgeries satisfying Item (i) into
a solution for DL. Fix ι ∈ [q]. This index will determine the coefficient where we embed the DL
challenge.

B receives as input a group description Γ and a DL challenge X ∈ G. The adversary samples
at random a, b←$ Zp. B internally runs A with public parameters generated as in µCMZ: sample
η, x0, xr, x1 ←$ Zp and invoke A(Γ, H := ηG,X0 = x0H,X1 = x1G). Queries to Sign(Cj , γ⃗

(j)) –
where γ⃗(j) being the algebraic representation of Cj – are responded as follows:
− For all j < ι, the j-th query is responded following the issuance procedure: sample uj ←$ Zp

and return (Uj := ujG,Vj := (x0 + xr)Uj + ujCj). Note that each signing or verification query
up to this point contains an algebraic representation in H,X0, Xr, X1, U1, . . . , Uι−1 and that
therefore the discrete logarithm of every group element sent by the adversary is known. We
denote by γ̂(j) = logGCj (for j ≤ ι) the discrete logarithm of the j-th queried element. γ̂(j) is
computed with the inner product ⟨γ⃗, (1, η, x0, xr, x1, u1, . . . , uj−1)⟩.

− Upon receiving the ι-th query, return (Uι = aG+ bX, Vι = x0aG+ x0bX + aC + bγ̂(ι)X)
− For all ι < j ≤ q, the j-th query is responded as in the issuance procedure. Sample uj ←$ Zp

and return (Uj = ujG,Vj = x0Uj + ujCj).
Each Verify(m, (U, V)) query is responded with 1 if U ̸= 0 and V = (x0 +xr +mx1)U , 0 otherwise.
At the end of the execution, A returns forgeries (m∗

i , (U∗
i , V

∗
i))q+1

i=1 and algebraic representations
α⃗(i), β⃗(i). If ∃i ∈ [q + 1] such that

ϕ
(u,ι)
i (χ) = φi(η, x0, xr, x1, u1, . . . , a+ bχ, uι+1, . . . , uq) ̸= 0 ,

40

then it is possible to solve the linear equation and find the discrete logarithm of X. Note that, if
φ of Equation (19) has a monomial in uι with a non-zero coefficient, then the polynomial ϕ(x) is
non-zero with high probability, since b is uniformly distributed and perfectly hidden by a. Therefore,
Item (i) happens with probability at most

q

(1
p

+ Advdl
GrGen(λ)

)
.

Claim 5.13. Item (ii) happens with probability at most 1/p+ Advdl
GrGen(λ).

Proof. We now prove that if φ has a monomial in η, then a solution for DL can be found. Similarly
to before, let X ∈ G be a DL challenge. The adversary B samples a, b ←$ Zp and invokes
A(Γ, H := aG+ bX,X0 = x0aG+ x0bX,X1 = x1G). Signing and verification queries are responded
as prescribed in the protocol description. At the end, if ∃i ∈ [q + 1] such that

ϕ
(h)
i (χ) = φi(a+ bχ, x0, xr, x1, u1, . . . , . . . , uq) ̸= 0 ,

it is possible to solve the linear equation and find the discrete logarithm of X with overwhelming
probability. (As before, since b is uniformly distributed and perfectly hidden by a.)

Claim 5.14. Item (iii) happens with probability at most 3(1/p+ Adv2-dl
GrGen(λ)).

Proof. We prove that if φ has a monomial in x0, then a solution for 2-DL can be found. (The
cases xr and x1 are almost identical.) Let B(Γ, X,X ′) be an adversary for 2-DL. The adversary
samples η, a, b, xr, x1 ←$ Zp and internally runs the one-more unforgeability adversary as A(Γ, H :=
ηG,X0 := aH + bηX,Xr := xrG,X1 := x1G). During its execution, the adversary may query the
signing oracle with query Sign(Cj) which is responded as (Uj := ujG, (a + xr)Uj + bujXujCj).
The adversary may also query the verification oracle with query Verify(mi, (Ui, Vi)) which is
responded with the help of the algebraic representation and X,X ′: if Ui ̸= 0 then its algebraic
representation has degree one in x0 at most, and therefore the verification equation can be tested
with the help of X ′ for the quadratic term. At the end of the execution, the adversary returns
forgeries (m∗

i , (U∗
i , V

∗
i))q+1

i=1 and, if ϕ(x0)
i (x) similar to the above is non-zero, then a solution for DL

can be found with high probability.

41

Keyed-verification credential µBBS

Public parameters

Procedure µBBS.S(1λ, n)
(G, p,G) := Γ← GrGen(1λ)
(G0, G1, . . . , Gn)←$ Gn+1

return crs = (Γ, G0, . . . , Gn)

Procedure µBBS.K(crs)
sk := x←$ Zp

X := xG

return sk := x, pp := X

Procedure µBBS.M(x, m⃗)
e←$ Zp

A := (x+ e)−1(G0 +
∑n

i=1 miGi)
return σ := (A, e)

Credential Issuance
µBBS.I.Usr(X, m⃗, ϕ) µBBS.I.Srv(x, ϕ)

C ′ := s−1(
∑

i miGi +G0) where s←$ Zp

πiu ← ZKPbbs.iu.P((C ′, ϕ), (m⃗, s)) C ′ , πiu check C ′ ̸= 0G ∧ ZKPbbs.iu.V((C ′, ϕ), πiu)

A′ := (x+ e)−1C ′ where e←$ Zp

check ZKPbbs.is.V((e,X,C ′, A′), πis) e,A′, πis πis ← ZKPbbs.is.P((e,X,C ′, A′), x)
return σ := (A := sA′, e)

Credential Presentation
µBBS.P.Usr(X, m⃗, σ = (A, e), ϕ) µBBS.P.Srv(x, ϕ)

A′ := rr′A where r, r′ ←$ Zp

D′ := r(G0 +
∑

i miGi)
B′ := r′D′ − eA′

πp ← ZKPbbs.p.P((X,A′, D′, B′, ϕ), (m⃗, e, r−1, r′)) A′, D′, πp check A′ ̸= 0G
B′ := xA′

return ZKPbbs.p.V((X,A′, D′, B′, ϕ), πp)

Figure 10: The keyed-verification credential system µBBS. The variable ϕ denotes the arbitrary predicates
that must be enforced on the attributes during issuance or presentation. Boxed , the part that may be
removed for anonymous tokens (one-more unforgeability). The zero-knowledge relations associated to the
proof system (for user issuance, server issuance, and presentation respectively) are defined in Equations (21)
to (23).

6 Boneh–Boyen–Shacham credentials
Anonymous credentials from Boneh–Boyen–Shacham signatures were first introduced as BBS+
within the framework of k-times anonymous authentication primitive [ASM06], and as algebraic
MACs by Barki et al. [BBDT17]. We propose a variant in Figure 10 and study it in the algebraic
group model.

6.1 Protocol description

Message authentication code. A µBBS signature is similar to BBS signatures: a MAC (A, e) for a
message m⃗ is

(A = (x+ e)−1(G0 +∑n
i=1miGi), e←$ Zp) .

Verification consists in checking (x+e)A = G0s+∑n
i=1miGi. This is identical to the MAC presented

by Barki et al. [BBDT17] when setting s = 0. For the purpose of the proof, it is actually not needed
that e is randomly chosen and the sole requirement for it is that they are different for different
MACs. This property can be formalized with a stateful procedure EGen that takes as input some
internal state, the input message m⃗, and outputs an e-value for m⃗. Some examples are:

42

• The issuer picks e uniformly at random from Zp for each signature (as displayed in Figure 10).
In this case, EGen does not require a state nor a message. In the case where p > 22λ, EGen
may just sample a uniformly random string of length 2λ and read it as an integer modp.

• The issuer can hash the message into e = Hs(m⃗). In this case, EGen does not require a state.
• The issuer can be stateful and set e to be a counter. In this case, EGen does not require a

message, but it is stateful; the counter concretely may be much smaller than 2λ bits – e.g., 64
bits would suffice, and the probability that any two e-values are equal is zero.

We denote the collision advantage for this procedure as δ(λ, q), that is, the probability that a q-query
bound adversary A with oracle acess to He : Mn → {0, 1}λ makes two different queries that collide
under He. In [TZ23], this quantity is indicated as δeS,eG.

A special property of BBS signatures is that it is possible to extend the credential system for
more attributes without requiring a new key generation or re-issuance of a credential, and that the
public parameters pp are a single element. We prove the following theorem:

Theorem 6.1. In the algebraic group model, µBBS is an algebraic MAC for n = poly(λ) attributes
in Zp with advantage:

Advufcmva
µBBS (λ, n) = Adv(q+2)-dl

GrGen (λ) + Advdl
GrGen(λ) + 3

p
+ δ(λ, q) ,

where q is the number of signing queries made by the adversary.

In particular, when e is sampled as a uniformly-random 2λ-bit string, we have δ(λ, q) ≤ q2/22λ.
The major difference with the previous proof of Tessaro and Zhu [TZ23] is that we need to provide
the adversation additional oracles: one for (keyed-)verification, and a helper oracle that will be
required for proving the credential system.
Blind issuance. The user commits to the message as C ′ = s−1(∑imiGi +G0) where s←$ Zp, and
proves a representation of C ′ in bases (G0, G1, . . . , Gn) via ZKPbbs.iu, a simulation-extractable proof
system for the relation

Rbbs.iu :=
{
((C ′, ϕ), (m⃗, s)) : G0 = sC ′ −

∑
imiGi ∧ ϕ(m⃗) = 1

}
(21)

The issuer then computes A′ = (x + e)−1C ′ and proves knowledge of the discrete logarithm of
(e,X,C ′, A′) via ZKPbbs.is, a simulation-extractable proof system for the relation:

Rbbs.is :=
{
((e,X,A′, C ′), x) : X = xG ∧ C ′ − eA′ = xA′} . (22)

Remark 6.2. This is different from the original approach of Barki et al. [BBDT17] where the user
commits to the message as C ′ = ∑

imiGi + sG and proves knowledge of a representation of C ′

under (G0, G1, . . . , Gn).

Presentation. The core idea for presentation is to note that:

xA−G0 =
n∑

i=1
miGi − eA

where the left-hand side is can be computed by the issuer. So, all the user has to do is provide a
proof of knowledge of the discrete logarithm of xA−G0 in basis G1, . . . , Gn, A.

43

To provide anonymity across presentation, the user must also “blind’ A. More formally πp is a
zero-knowledge proof of knowledge for:

Rbbs.p :=
{

((X,A′, D′, B′, ϕ), (m⃗, e, r′′, r′)) : B′ = r′D′ − eA′ ∧ G0 = r′′D′ −
∑

imiGi ∧
ϕ(m⃗) = 1

}
(23)

as shown by Tessaro and Zhu [TZ23].

Remark 6.3 (Difference with [BBDT17]). In Barki et al., the user algorithm takes as input the
private attributes m⃗ along with the tuple (A, e, s, C), where (A, e) ∈ G × Zp is the standard
BBS signature (denoted “(A, r)”), s ∈ Zp is the nonce attribute (denoted “su”), and C ∈ G
is the commitment to the message (denoted “C̃m”). To present the credential, the user sends
(B0 := lA, C0 := lC − eB0, E := l−1C0 + tF) for l, t←$ Zp. The guarantees are the same, the proof
is only slightly less efficient.

Remark 6.4 (Differences with [BBS04]). The original BBS paper introduces a protocol for proving
knowledge of a signature in the scope of group signatures. The main difference is in that the
honest-verifier zero-knowledge of their protocol is only computational while here it is perfect.

6.2 Theorems

We formally state (below) the core theorems of µBBS, starting from the underlying MAC, then
prove them.
Algebraic MAC. The core theorem resulting from Lemma 6.8 and Lemma 6.9

Theorem 6.5. µBBS is an algebraic MAC for n = poly(λ) attributes in Zp with advantage:

Advufcmva
µBBS (λ, n) ≤ Advufcmva

µBBS (λ, 1) + Advdl
GrGen(λ) + 2

p
.

Keyed-verification credential. Let Rbbs := Rbbs.iu∪Rbbs.is∪Rbbs.p. We prove the following theorems.

Theorem 6.6. If ZKP is a proof system for R ⊇ Rbbs, then µBBS is a keyed-verification extractable
credential for n = poly(λ) attributes with anonymity advantage:

Advanon
µBBS(λ, n) ≤ Advzk

ZKPbbs.iu(λ) + Advzk
ZKPbbs.p(λ) + Advksnd

ZKPbbs.is(λ) + Advdl
GrGen(λ) + 1

p
,

and extractability advantage:

Advext
µBBS(λ, n) ≤ Advufcmva

µBBS (λ, n) + Advksnd
ZKPbbs.iu(λ) + Advksnd

ZKPbbs.p(λ) .

In particular, µBBS[ZKP = Σ] has everlasting forward anonymity.6

Anonymous token. Let µBBSAT denote the variant of µBBS in Figure 10 where the issuance
algorithm does not return the proof πiu (that is, the boxed areas are removed). From the above and
Theorem 6.12 we also have
6Recall that forward anonymity is concerned with unbounded presentation distinguishers.

44

Theorem 6.7. If ZKP is a proof system for the relation R ⊇ Rbbs.is ∪ Rbbs.p, them µBBSAT is an
anonymous token system for n = poly(λ) attributes with anonymity advantage:

Advanon
µBBSAT

(λ, n) ≤ Advzk
ZKPbbs.iu(λ) + Advzk

ZKPbbs.p(λ) + Advksnd
ZKPbbs.is(λ) + Advdl

GrGen(λ) ,

and (in the algebraic group model) one-more unforgeability advantage:

Advomuf
µBBSAT

(λ, n) ≤ Adv(q+2)-dl
GrGen (λ, 1) + Advdl

GrGen(λ) + 1
p
.

6.3 Algebraic MAC

We prove that µBBS is a MAC for n = 1 attributes and then reduce the case of n = poly(λ)
attributes to it. The proof will actually be about a stronger game where the adversary may also
query an oracle Ddh(A,B) to check if B = xA.

Lemma 6.8. In the algebraic group model, µBBS is an algebraic MAC for n = 1 attributes in Zp

with advantage:
Advufcmva

µBBS (λ, 1) ≤ Adv(q+2)-dl
GrGen (λ) + 1

p
+ δ(λ, q) ,

where q is the number of signing queries made by the adversary.

Proof. An algebraic adversary A for the unforgeability game receives as input the public parameters
((Γ, G0, G1, . . . , Gn), X) and during its execution can query an oracle Sign(m⃗) that returns a MAC
(A, e) valid on m⃗ and a verification oracle Verify(m⃗, (A, e)) that returns 1 if the MAC is valid and
0 otherwise. During its execution, it makes at most q queries to the oracle Sign. The output forgery
is a message m∗ not previously queried, a MAC (A∗, e∗) accompanied by an algebraic representation
α⃗ such that

A∗ = αg,0G0 + αg,1G1 + αgG+ αxX +
q∑

j=1
αa,jAj , (24)

where q is the number of MACs produced so far. Form the verification equation, we have that the
equality

A∗ = g0 +m∗g1
x + e∗ G (25)

holds when g0, g1,x are the discrete logarithms of the respective group elements G0, G1, X base G.
Putting together Equations (24) and (25), we obtain the rational function in g0, g1,x over Zp

g0 +m∗g1
x + e∗ = αg + αg,0g0 + αg,1g1 + αxx +

q∑
j=1

αa,j
g0 +mjg1

x + ej

we have two possibilities: e∗ ∈ {e1, . . . , eq} or e∗ ̸∈ {e1, . . . , eq}.
In the first case, let f(x) = ∏

j(x + ej) and fk(x) = ∏
j ̸=k(x + ej) = f(x)/(x + ek). Let the ei’s

be all different (this will always happen except with probability δ(λ, q)). Without loss of generality,
let e∗ = e1. We have:

((1− αa,1)g0 + (m∗ − αa,1m1)g1) f1(x) = (αg+αg,0g0+αg,1g1+αxx)f(x)+
q∑

j=2
αa,j(g0+mjg1)fj(x)

45

and since (x + e1) divides the right-hand side but not the left-hand side, then αa,1 = 1 and m1 = m∗

which leads to a contradiction.
If e∗ ̸∈ {e1, . . . , eq}, then let for simplicity eq+1 = e∗ and let f∗ = ∏q+1

j (x + ej) and, similarly
to before, f∗

k = f(x)/(x + ek). Then we have

(g0 +m∗g1)f∗
q+1(x) = (αg + αg,0g0 + αg,1g1 + αxx)f∗(x) +

q∑
j=1

αa,j(g0 +mjg1)f∗
j (x)

Similarly to the previous case, we have that the right-hand side is divisible by (x + eq+1), but the
left-hand side is not, leading to a contradiction. This implies that, in the above polynomial equation,
at least two monomials are different.

We build a reduction to (q+2)-DL. The reduction B receives as input (Γ = (G, p,G), X(1), X(2), . . . ,
X(q+1), x(q+2)). Let X(0) := G. B samples e1, . . . , eq from EGen. (In the figure, ei ←$ Zp.) In the
fortunate case where logGX ∈ {0, 1,−e1, . . . ,−eq}, B stops and returns the discrete logarithm found.
Let f = ∏q

j=1(x + ej) and fk = f(x)/(x + ek) for k ∈ [q]. Note that, f and fk can be evaluated the
group G using the “powers of X” (the X(j)’s) given as input. Sample a0, b0, a1, b1 ←$ Zp and let
G′ := f(X), X := X(1), G0 := ((a0 + xb0)f) (X) and G1 := ((a1 + xb1)f) (X).(By f(X) we mean∑

i fiX
(i).) The degree of both polynomials is at most q + 1. Invoke A with public parameters

((Γ, G0, G1), X). To respond the j-th query to the signing oracle, denoted Sign(mj), compute

Aj = (a0 +mja1)
q∑

i=0
fj,iX

(i) + (b0 +mjb1)
q∑

i=0
fj,iX

(i+1)

and return (Aj , ej). For any verification query Verify(m, (A, e, α⃗)), where α⃗ denotes the algebraic
representation of A (similar to Equation (24)) check the verification equation over the algebraic
representation. To do so, consider the following multivariate polynomial in Zp[g0, g1,x]

φm,e(g0, g1,x) := (g0+mg1)f(x)−(x+e)
(
αgf(x) + αg,0g0 + αg,1g1 − αxx +∑

j αa,j(g0 + g1mj)fj(x)
)

The polynomial φm,e(a0 + xb0, a1 + xb1,x) can be tested for zero when evaluated in logGX using
the inputs G,X(1), . . . , X(q+2) since the resulting polynomial is of degree at most q + 2. For every
Ddh oracle (A,B), consider the algebraic representation of A, which is similar to Equation (24).
Replacing each group element with its representation in the DL challenge (G,X(1), X(2), . . . , X(q+1))
we obtain a vector α⃗′ such that A = α′

0G+∑q+1
j=1 α

′Xj). Return 1 if B = ∑q+2
j=1 α

′
jX

(j). At the end
the adversary returns a forgery (m∗, (A∗, e∗)).

From the argument at the beginning of the proof, we have φm∗,e∗(g0, g1,x) ̸= 0. Consider then
the partial evaluation ϕ(x) := φ((a0 + b0x), (a1 + b1x),x) and note that the resulting polynomial is
of degree at most q+2 and is with overwhelming probability non-trivial too since b0, b1 are uniformly
random and perfectly hidden in G0, G1 by a0, a1. One of the root of this polynomial must be the
discrete logarithm of X. The reduction B uses Berlekamp’s algorithm to factor ϕ and recovers the
discrete logarithm of X.

Lemma 6.9. µBBS is an algebraic MAC for n = poly(λ) attributes in Zp with advantage:

Advufcmva
µBBS (λ, n) = Advufcmva

µBBS (λ, 1) + Advdl
GrGen(λ) + 2

p
.

46

Proof. Let A be a p.p.t. adversary for unforgeability. It receives as input the public parameters
pp = (Γ, (G0, . . . , Gn), X), during its executions it queries Sign with messages m⃗j for j ∈ [q] (q
denoting the number of queries of A); finally, it returns a forgery satisfying one of the following:

(i) the output (m⃗∗, (A∗, e∗)) is a valid forgery and ∑im
∗
iGi = ∑

imj,iGi for some j ∈ [q]
(ii) the output (m⃗∗, (A∗, e∗)) is a valid and ∑im

∗
iGi ̸=

∑
imj,iGi for all j ∈ [q]

We claim that (i) happens at most with negligible probability. To do so, we build an adversary B
that solves DL every time A wins the game with a forgery satisfying ∑i(m∗

i −mj,i)Gi = 0G. Let
B(Γ, Y) be an adversary for DLGrGen (λ). B samples at random a0, a1, . . . , an, b1, . . . , bn, x ←$ Zp

and sets G0 := a0, Gi = aiG+ biY for all i ∈ [n], and finally sets X := xG for a random x←$ Zp.
It invokes A((Γ, G0, G⃗), X). Queries to the oracles Sign(m⃗j) are answered with (Aj , ej), where
ej ←$ Zp and Aj = (x+ ej)−1(G0 +∑

imiGi); queries Verify(m⃗, (A, e)) are answered testing the
equality (x+ e)A = G0 +∑

imiGi. To any Ddh(A,B) query, it responds 1 if xA = B. Given as
output a forgery satisfying Item (i), we have that there exists a j ∈ [q] such that:

n∑
i=1

(m∗
i −mj,i)aiG =

n∑
i=1

(m∗
i −mj,i)biY

and the above equation is non-trivial with overwhelming probability since m⃗∗ ̸= m⃗j (and thus
∃i.m∗

i ̸= mj,i) and the bi’s are uniformly distributed and perfectly hidden. Therefore, with
overwhelming probability B can compute logG Y = (∑i(m∗

i −mj,i)bi)−1(∑i(m∗
i −mj,i)ai).

The claim Item (ii) reduces to unforgeability of µBBS for n = 1. Let B be an unforgeability
adversary receiving as input Γ, G0, G1, X. Let Gi = aiG1 for i ∈ [2, n] with ai ←$ Zp. The two are
identically distributed if G1 ̸= 0G. Invoke A((Γ, G0, G1, . . . , Gn), X). For every signing query for a
message m⃗j , respond with Sign(∑i aimj,i). For every verification query for a message m⃗, respond
with Verify(∑i aimi). All Ddh queries are sent to the challenger as-is. At the end, we obtain an
output forgery satisfying Item (ii) and therefore (∑i aim

∗
i , (A∗, e∗)) is a valid forgery also for µBBS

for n = 1.

6.4 Anonymity

Theorem 6.10. Let ZKP be a proof system for the relation R ⊇ Rbbs, then µBBS is anonymous for
n = poly(λ) attributes over Zp with advantage:

Advanon
µBBS,A,D(λ, n) ≤ Advzk

ZKPbbs.iu,A′(λ) + Advksnd
ZKPbbs.is,A′′(λ) + Advzk

ZKPbbs.p,D′(λ) + Advdl
GrGen,A′′′(λ) + 1

p
,

where A,D are adversaries in the anonymity game and A′,A′′,A′′′,D are described in the proof.

Proof. We define the simulator Sim as follows.

− Let Sim.I sample a uniformly-random group element C ′ ←$ G and invoke ZKPbbs.iu.Sim on
the statement (C ′, ϕ) obtaining a simulated proof πiu. Upon receiving the server response
(e,A′, πis), verify the zero-knowledge proof via ZKP.V((e,X,A′, C ′), πis) and (if the output is
1) proceed extracting a witness x from πis via the extractor for ZKPbbs.is for the statement
(e,X,A′, C ′). Store the simulator state stSim = (x).

− The presentation simulator Sim.P(x, ϕ) samples randomA′, D′ and simulates the zero-knowledge
proof πp for the statement (X,A′, D′, B′, ϕ) where B′ = xA′. It returns (A′, D′, πp).

47

We show that the real and simulated distributions are indistinguishable via a hybrid argument.

H0 This first hybrid is the honest interaction, where issuance and presentation are done honestly
using the input message m⃗.

H1 Instead of generating πiu using the witness, we do so via the zero-knowledge simulator of
ZKPbbs.iu with input (C ′, ϕ). If A’s output is noticeably different after this hybrid change,
then it is possible to build an adversary A′ that is able to distinguish real from simulated
proofs for ZKPbbs.iu. Therefore:

AdvH1
A,D(λ, n) ≥ AdvH0

A,D(λ, n)− Advzk
ZKPbbs.iu,A′(λ) .

H2 Instead of generating πp using the attributes m⃗ and MAC σ, use the zero-knowledge simulator
of ZKPbbs.p with input (X,A′, D′, B′, ϕ). Similarly to the previous hybrid, there exists an
adversary D′ that wins every time D’s output is noticeably different. Therefore:

AdvH2
A,D(λ, n) ≥ AdvH1

A,D(λ, n)− Advzk
ZKPbbs.p,A′(λ) .

H3 Extract from πis a witness for the statement (e,X,A′, C ′) and check its validity.
The extractor will produce a witness x satisfying:

x

[
G
A′

]
=
[

X
C ′ − eA′

]
,

except with probability Advksnd
ZKPbbs.is,A′′(λ) where A′′ is the adversary in the knowledge soundness

game that runs A internally and returns the proof πis for which extraction fails. In other
words:

AdvH1
A,D(λ, n) ≥ AdvH3

A,D(λ, n)− Advksnd
ZKPbbs.is,A′′(λ) .

H4 If G0 +∑
imiGi = 0G, abort.

In the real distribution, if G0 +∑
imiGi = 0G the user will always send C ′ = 0G, whereas in

the simulated case the simulator aborts. The above bad event happens only with advantage
Advdl

GrGen(λ). Let (Γ, Y) be a DL challenge and A be an adversary for the anonymity game.
The reduction A′′′ invokes A with inputs

pp := (Γ, X := xG,G0 = a0G+ b0Y, . . . , Gn := anG+ bnY)

where x, a0, . . . , an, b0, . . . , bn ←$ Zp. At issuance time the adversary makes queries a message
m⃗ and A′′′ checks if G0+∑imiGi = 0G. If so, then we have (a0+∑imiai)G = (b0+∑imibi)Y
and the equation is non-trivial with overwhelming probability 1/p. The reduction A′′′ can
thus recover the discrete logarithm of Y . Therefore:

AdvH3
A,D(λ, n) ≥ AdvH4

A,D(λ, n)− Advdl
GrGen,A′′′(λ) .

H5 Replace C ′ with a uniformly-distributed group element C ′ ←$ G. The two distributions are
perfectly indistinguishable, that is:

AdvH4
A,D(λ, n) = AdvH5

A,D(λ, n) .

48

H6 Finally, we replace the responses of the presentation oracle. Sample A′, D′ ←$ G and compute
B′ differently: instead of setting B′ := rr′((G0 +∑

imiGi)− eA) with r, r′ ←$ Zp and (A, e)
the MAC obtained from the server, we set B′ := xA′. The distribution of the two is exactly
the same. In fact, fixed A′, D′, for any message m⃗ ∈ Zn

p and e ∈ Zp there exist (ρ′, ρ′′) ∈ Z2
p

such that:
B′ = xA′ = ρ′D′ − eA′ ,

ρ′′D′ =
∑

i

miGi +G0 ,

if D′ ̸= 0G. Thus:
AdvH5

A,D(λ, n) = AdvH6
A,D(λ, n) + 1

p
.

The last hybrid is running the simulator code. By the difference lemma, the result follows.

6.5 Extractability

Theorem 6.11. If ZKP is a proof system for the relation R ⊇ Rbbs, then µBBS for n = poly(λ) is
extractable with advantage:

Advext
µBBS(λ, n) ≤ Advufcmva

µBBS (λ, n) + Advksnd
ZKPbbs.iu(λ) + Advksnd

ZKPbbs.p(λ) .

Roughly speaking, the extractor matches the zero-knowledge extractor and a reduction is made
to unforgeability of the underlying MAC. However, the term “B′” is computed during presentation
verification using the MAC key x, which is not available to the reduction to unforgeability. To
circumvent this, we are going to assume that the proof itself can provide a candidate instance “B′”,
and that the instance can be check for correctness via the oracle Ddh. In practice, this requirement
is trivially satisfied for Schnorr proofs, where it is possible to recover the statement from the actual
proof by looking at the trace of random oracle queries.

Proof. We define the extractors for the credential system as follows.

− Ext.I receives as input (x, ϕ,C ′, πiu) and recovers a witness (m⃗, s) for the instance (C ′, ϕ) such
that ϕ(m⃗) = 1 and

[
C ′ −G1 · · · −Gn

]

s
m1
...
mn

 = G0 . (26)

If extraction fails the extractor aborts and the adversary wins.
− Ext.P receives as input (x, ϕ) and a prover message (A′, D′, πp, B

′). It checks if B′ is well-formed
via Ddh and, if that is the case, it internally runs ZKPbbs.p.Ext on input (X,A′, D′, B′, ϕ)
where X = xG and obtain a witness (m⃗, e, r′′, r′) such that ϕ(m⃗) = 1 and

[
−G1 −G2 · · · −Gn D′

D′ −A′

]


m1
...
mn

e
r′′

r′


=
[
G0
B′

]
. (27)

49

If the recovered witness does not satisfy the above equation, return ⊥. A wins if one of the following
happens:

(i) The adversary returns (ϕ, µ = (C ′, πiu)) such that ZKPbbs.iu verifies πiu for the statement
(C ′, ϕ) but extraction failed.

(ii) The adversary returns (ϕ∗, ρ∗ = (A′, D′, πp, B
′)) such that extraction fails for the instance

(A′, D′, B′, ϕ∗).
(iii) The presentation message returned by the adversary ρ∗ = (A′, D′, πp, B

′) satisfies µBBS.P.Srv(x, ϕ∗,
ρ∗) and the message m⃗∗ extracted from πp is such that m⃗ ̸∈ Qrs.

Items (i) and (ii) can be reduced to knowledge soundness of the proof system. We are left with
Item (iii), which reduces to unforgeability of µBBS. We do so by building an adversary B for
unforgeability that internally uses the adversary A.

The reduction B receives as input the public parameters pp = (Γ, G0, G1, . . . , Gn, X) and
internally invokes the adversary A. For every Issue(ϕ, (C ′, πiu)) query, it runs the extractor and
obtains (m⃗, s) satisfying Equation (26). It queries Sign(m⃗) obtaining a MAC (A, e). Returns
(A′ := s−1A, e) (or ⊥ if s = 0). For every Present(ϕ∗, (A′, D′, πp)) query, B runs the extractor to
obtain a candidate instance B′′ – which is cheched via a query Ddh(A′, B′) to ensure B′′ = xA –
and a witness (m⃗, e, r′′, r′) satisfying Equation (27). It queries the verification oracle on the message
m⃗ and MAC (A = r′′/r′A′, e). It proceeds similarly for the returned message, outputting a forgery
m⃗∗ (the message extracted from ρ∗) and (A = r′′/r′A′, e).

The output of Sign follow exactly the same distribution as in the original game, since from
Equation (26) (and commutativity in Zp)

1
x+ e

C ′ = s−1
(

1
x+ e

(G0 +
n∑

i=1
miGi)

)

The unfortunate case where s = 0 implies (via Equation (26)) that G0 +∑imiGi = 0 and therefore
C ′ = 0, so we return ⊥ in both cases. The output of Verify is also well-formed since, from πp:

B′ = xA′ = r′D′ − eA′ = r′

r′′ (
∑

i

miGi +G0)− eA′ =⇒ A′ = r′

r′′ ·
1

x+ e
· (
∑

i

miGi +G0) .

The claim follows.

6.6 One-more unforgeability analysis

Theorem 6.12. In the algebraic group model, µBBSAT is one-more unforgeable with advantage:

Advomuf
µBBSAT

(λ, n) ≤ Adv(q+2)-dl
GrGen (λ) + Advdl

GrGen(λ) + 1
p
.

Lemma 6.13. There exists a reduction for the game OMUFµBBSAT,A (λ, n) to q- DLGrGen,A (λ) with:
q signing queries, O(q3) group operations, O(q) space.

We construct an adversary A that, given as input X ∈ G and access to a signing oracle Sign(·)
performing a MAC on the input group element, outputs a q-DL challenge (P, xP, . . . , xqP) for some
generator P ∈ G.

50

Let A0 := G. For each i ∈ [q], the attacker A queries Sign(Ai−1) obtaining the MACs (Ai, ei).
We have the invariant

xAi = Ai−1 − eiAi , (28)

for each i ∈ [q], with x denoting the unknown. In particular, we have that:

Aq−k =
q∏

i=k

(x + ei)Aq =
∑

i

ν
(k)
i xiAq

where the polynomial coefficients ν(k)
i can be computed in time O(q2) näıvely for each k ∈ [q]. In

particular, the k-th polynomial is monic, and the leading term can always be isolated by recursively
applying Equation (28) to obtain an expression independent of x, that is:

xAq = Aq−1 − eqAq =: B1

x2Aq = Aq−2 − eq−1Aq−1 − eqB1 =: B2
...

(Since i < q, then xiAq will stop when replacing the term Aq−i). A returns (Aq, B1, B2, . . . , Bq−1).

Corollary 6.14. There exists a p.p.t. adversary A for one-more unforgeability of µBBSAT that can
recover the signing key in time O(

√
p/d +

√
d) and space max

{√
p/d,
√
d
}

where d | p ± 1 is the
number of signing queries allowed.

51

7 Designated-verifier fully-succinct SNARKs without pairings
A polynomial commitment scheme (PCS) is designated-verifier (dv) if only the holder of the
secret verification key vk can verify the proof, as opposed to standard PCS definitions where vk
can be efficiently computed from the proving key pk. The definition below, is an adaptation of
[CHMMVW20].

Definition 7.1. A designated-verifier polynomial commitment scheme (PCS) over the field family
F = {Fλ}λ∈N is a tuple of algorithms PCS = (S,K,C,E,V) where

• crs ← PCS.S(1λ, d) given as input the security parameter in unary form and a maximum
degree d > 0, outputs a common reference string crs and defines the field F ∈ F .

• (pk, vk) ← PCS.K(crs, d) outputs a key pair (pk, vk) called respectively proving key and
verification key. The proving key allows committing to polynomials over F up to degree d.

• (C, r)← PCS.C(pk, f) outputs a commitment C to a polynomial f(x) ∈ F[x] represented via
its coefficients fi’s, together with some opening information r.
When clear from the context, to facilitate exposition, we will write C ← PCS.C(f ; r), omit pk
and using the random coins r.

• π ← PCS.E(pk, (f, r), z, y) outputs an evaluation proof π, showing that y = f(z).

• 0/1← PCS.V(vk, C, z, y, π) outputs 1 if the evaluation proof is correct and 0 otherwise.

A PCS satisfies completeness, extractability, and hiding.

Completeness requires that all honestly-generated proofs verify. More precisely, for any f ∈ Zp[x]
of degree d > 0, z ∈ Zp and y = f(z):

Pr

PCS.V(vk, C, z, y, π) = 1 :

crs← PCS.S(1λ, d)
(pk, vk)← PCS.K(crs)
(C, r)← PCS.C(pk, f)
π ← PCS.E(pk, (f, r), z, y)

 = 1 .

Extractability asks that there exists an extractor Ext such that, for any p.p.t. adversary A, B, and
query sampler Q7 sharing the same random coins:

Pr


PCS.V(vk, C, z, y, π) = 1

⇓
deg(f) ≤ d ∧ y = f(z)

:

crs← PCS.S(1λ, d)
(pk, vk)← PCS.K(crs)
ρ←$ {0, 1}A.rl(λ)

C := A(pk; ρ)
f := Ext(pk; ρ)
z := Q(pk; ρ)
(π, y) := B(pk; ρ)


≤ negl(λ) .

7A query samples for an interactive oracle proof is an efficient algorithm that, given as input the random coins of
the verifier, returns the point at which the oracle messages of the prover is queried. See [CHMMVW20] for a more
formal definition.

52

Hiding asks that for any d > 0, adversaries A, D, and any crs ∈ [PCS.S(1λ, d)], (pk, vk) ∈ [PCS.K(crs)]
following experiments are indistinguishable:∣∣∣∣∣∣∣Pr

b′ = 1 :
f ← A(pk, vk)
(C, r)← PCS.C(pk, f)
b′ ← DEval(pk, C)

− Pr

b′ = 1 :
f ← A(pk, vk)
C ← Sim.C(vk,deg(f))
b′ ← DEval(pk, C)


∣∣∣∣∣∣∣ ≤ negl(λ) ,

where Eval(z) sets y := f(z) and, if the condition holds, in the real game returns PCS.E(pk, (f, r), z, y)
and in the simulated game Sim.E(vk, z, y).

For the remainder of this work, we will consider homomorphic polynomial commitments, that
is, PCS.C(f ; r) + PCS.C(g; s) = PCS.C(f + g; r + s), where r, s are the randomness of the commit
algorithms In particular the opening algorithm trivially recomputes the commitment with the
randomness provided and checks that it matches the commitment given as input.
Malicious designated-verifier zero-knowledge [QRW19]. In practical applications, we would like
the verifier to publish the proving key pk and privately store the secret key sk without relying on
a trusted third party. In the context of keyed-verification credential systems, in fact, the verifier
is also the entity publishing the public parameters. While the definition of hiding above holds for
every keypair (pk, vk), one must make sure that the keypair is in the range of the setup algorithm
to guarantee that hiding holds against malicious servers. (The proving key of the next section, for
instance, holds a specific structure and proving pk is a correct output of the key generation is not
immediate.) Our approach here will be to prove security for a proving key that is within the range
of PCS.S, and then expect the verifier publishing the proving key to prove that it is indeed in the
range of PCS.S.

Remark 7.2. The compiler of Chiesa et al. [CHMMVW20] introduces another procedure Trim which,
given as input a prover key pk for a PCS of size D, and an integer d < D, it returns a new prover
key pk′ for a PCS of size d. This is trivial to implement for our schemes and is a technicality of the
compiler, which requires the prover key to be generated before seeing the actual size of the index.
The opening algorithm PCS.O and verification algorithms PCS.V (called Open and Check in the
literature) can also be generalized as in [CHMMVW20; BDFG20] to allow for batch opening and
evaluation checking. Given polynomials f1(x), . . . , fm(x) ∈ F[x] claimed to evaluate in y1, . . . , ym

in points z1, . . . , zm, and given a random challenge r ∈ F one can consider euclidean division of the
batch polynomial f(x) := ∑

i r
ifi(x) by Z(x) = ∏

i(x− zi):

f(x) = Z(x)q(x) + r(x) ,

where q(x) is the polynomial that will be sent as proof to the verifier, and the polynomial r(x) of
degree m− 1 is the polynomial defined by interpolation as r(zi) = yi.

7.1 Designated-verifier Kate–Zaverucha–Goldberg commitments

We describe a variant of KZG meant for designated-verifier proof systems. We assume that the
polynomial is given in coefficient form as a vector of field elements.

53

Procedure dvKZG.S(1λ, d)
Γ := GrGen(1λ)
return crs := (Γ, d)

Procedure dvKZG.K(crs)
τ ←$ Z×

p

Ti := τ iG for i ∈ [0, d+ 1]
T⃗ := (T0, . . . , Td)
R := ηG where η ←$ Z×

p

return pk := (T0, T⃗ , R), vk := (pk, τ, η)

Procedure dvKZG.C(pk, f(x))
s←$ Zp

return C :=
∑d

i=0 fiTi + sR

The idea for evaluation proofs stems from the observation that for a polynomial f ∈ Zp[x], the
Euclidian division by (x− z) has reminder y = f(z):

f(x) = (x− z)q(x) + y

The proof consists into exhibiting a quotient polynomial q(x) satisfying the above (and accounting
for the additional term r(z) introduced in the commitment).

Procedure dvKZG.E(pk, f(x), s, z, y)
q(x) := (f(x)− y)/(x− z)
Q :=

∑
i qiTi + s′R where s′ ←$ Zp

D :=
∑

i δiTi where δ(x) := s− s′(x− z)
return π := (Q,D)

Procedure dvKZG.V(vk, C, z, y, (Q,D))
return (τ − z)Q+ yG+ ηD = C

Knowledge soundness holds in the algebraic group model under the (q + 1)-DL assumption, and
the proof is the same as [KT23, B.2.2]. We now focus on hiding.
Theorem 7.3. dvKZG is a perfectly hiding polynomial commitment scheme.

Proof. The simulator Sim obtains as input vk = (pk = (T0, . . . , Td, R), (τ, η)) such that:

η, τ ∈ Z×
p ⇐⇒ T1, R ̸= 0G ∧
∀τ ∈ [d] : τTi−1 = Ti

(29)

Given vk along with a commitment C and an evaluation proof y, samples uniformly at random
Q←$ G and computes D := η−1(C − (τ − z)Q− yG).

We have thus a distinguishing game where an adversary A returns a polynomial f and pk =
(T0, T⃗ , R), vk = (τ, η) are well-formed and satisfying Equation (29). A has to distinguish between:

• a real interaction, where:

C =
∑

i

fiTi + sR = (f(τ) + rη)G

with s ←$ Zp, τ := logG T1 and η := logGR with τ, η ̸= 0. A can query on any point z the
evaluation oracle for Eval(z) which in turn computes dvKZG.E(pk, (f, s), z, f(z)) returning
(Q,D) such that:

Q =
∑

i

qiTi + s′H = (q(τ) + s′η)G

D = (r + s′z)T0 − s′T1 = (s+ s′z − s′τ)G
(30)

where the right-hand side is given by Equation (29). From correctness, we have:

(τ − z)(q(τ) + s′η) + y + η((s+ s′z)− s′τ) = f(τ) + ηs

54

• a simulated interaction, where the simulator Sim returns a commitment C = αG with α←$ Zp

as a commitment, and, for every evaluation query on z ∈ Zp and y, the proof returned is:

Q = βG

D = η−1(C − (τ − z)Q− y) = η−1(α− (τ − z)β − y)G

which satisfies the verification equation since:

(τ − z)β + y + (α− (τ − z)β − y) = α

(note that, since R ̸= 0G, η is invertible).

The two distributions are perfectly indistinguishable: both α and f(τ)+sη are uniformly distributed
(since η ̸= 0 and s is uniformly distributed), and the same can be argued about β and q(τ) + s′η.
Finally, D is uniquely determined by τ, η, C,Q, z, y and the verification equation is satisfied in both
cases.

Degree-check for polynomials whose degree may be less than d can be enforced using standard
techniques as described in Kohrita and Towa [KT23, p. 5.2], roughly speaking by checking instead
the equation:

(f − z)xd−deg(f) = qxd−deg(f)(x− y) ,

by having the prover commit to the polynomial f(x)xd−deg(f).

7.2 IOP compiler for designated-verifier polynomial commitments

An indexed relation is a relation R = {((i, x), w)} consisting of an index i, an instance x, and a
witness w. An interactive proof for an indexed relation generally has the prover’s first message
depend only on the index i and not depending on the prover’s randomness. The first-message
function is called indexer, and is relevant in the context of preprocessing SNARKs [CHMMVW20].

Definition 7.4 (PIOP). A polynomial interactive oracle proof for an indexed relation R over a
field family F is a tuple IOP = (k, o, d, I,P,V) where k, o, d are maps {0, 1}∗ → N and I,P,V are
algorithms called respectively indexer, prover, and verifier. The map k specifies the number of
interaction rounds, o the number of polynomials in each round, and d the degree bound of these
polynomials.

In the 0-th round (offline phase), the indexer IOP.I receives as input a field F ∈ F and an index i
for R, and outputs o(0) polynomials p(0)

1 (x), . . . , p(0)
o(0) ∈ F[x] of degree at most d(|i|, 0, 1), . . . , d(|i|, 0, o(n))

respectively.8
In any other round (online phase), given an instance x and a witness w such that (i, x, w) ∈ R,

the prover IOP.P receives as input (F, i, x, w) and IOP.V receives as input oracle access to the
polynomials output by IOP.I(F, i). The prover IOP.P and the verifier IOP.V interact over k(|i|)
rounds. For j ∈ [k(i)], in the j-th round of interaction the verifier IOP.V sends messages mj ∈ F
to the verifier IOP.P; the prover then replies with o(j) oracle polynomials p(j)

1 , . . . , p
(j)
o(j)−1 ∈ F[x].

The verifier may query any of the polynomial it has received any number of times. A query consists
8The 0-th round does not depend on any particular instance or witness, and merely considers the task of encoding a
given index i.

55

of a point z ∈ F and the prover replies with the evaluation of the polynomial at that point. After
the interaction the verifier accepts or rejects. The function d determines which prover to consider
for the completeness and soundness properties of the proof system. In more detail, a prover P is
admissible if for every j ∈ [k(|i|)] and i ∈ [o(j)] the degree of p(j)

i is at most d(|i|, j, i).

Construction. The compiler ARK[IOP,PCS] that transforms the polynomial IOP IOP into an
interactive argument of knowledge using the polynomial commitment scheme PCS.is almost identical
to the one of Chiesa et al. [CHMMVW20] with minimal syntactical variations.

• The trusted party invokes crs← PCS.S(1λ). Then computes (pk, vk)← PCS.K(crs, d) where
the integer d is computed as the maximum degree bound of the polynomial degrees of IOP of
indices of size at most N :

d := max{d(N, j, i) : j ∈ [k(|i|)], i ∈ [o(j)]}

It publishes the proving key pk and stores the (secret) verification key vk.9

• The indexer, given as input the index in a relation R computes the commitment to any
polynomials in the 0-th round using no randomness as C0,i := PCS.C(pk, p(0)

i ; 0) for i ∈ [o(0)].
The indexer returns ρ0 = (i, C0,i, . . . , C0,o(0)).

• The prover P(pk, ρ0, x, w) receives as input the proving key pk and the indexer’s output ρ0,
the instance x and witness w. The verifier V(vk, ρ0, x) receives as input the verification key
vk, the indexer’s output and the instance.
At the i-th round, the verifier internally runs the verifier to receive the challenge ci and
sends it to the prover. The prover internally runs the next-message function of the prover
IOP.P obtaining the polynomials p(j)

i for i ∈ [o(n)]. It commits to each of them running
C

(i)
j ← PCS.C(pk, p(j)

i). The verifier notifies IOP.V that the round has finished.
At the end of the interactive phase, the verifier sends the randomness for the query phase
ck(|i|)+1. The verifier computes the query set Q = QIOP.V(x; c1, . . . , cn+1) and sends those
to the prover. The prover responds with claimed evaluations z(j)

i for each polynomial p(j)
i

queries at location y
(j)
i from the query set. The verifier sends a batch opening challenge ζ

and the prover replies with the batch open procedure using pk, the list of polynomials sent
throughout the protocol (p(j)

i)j∈[k(|i|)],i∈[o(j)], their respective degree d, the query set Q and
the batch opening challenge ζ. The verifier accepts if the verification equation is satisfied and
the polynomial verification is correct with respect to PCS.V.

The proof of the following theorems is omitted as mostly identical to the one of Chiesa et
al. [CHMMVW20, Thm. 8.3, 8.4].

Theorem 7.5. Let IOP be a knowledge-sound, polynomial interactive oracle proof over field family F
for R, and PCS be a designated-verifier extractable polynomial commitment scheme over F . Then
ARK[IOP,PCS] is a designated-verifier argument of knowledge for the relation R.
9In practice, we seek PCS.K to be generated by the (potentially malicious) verifier. The verifier will then prove that
the key is well-formed.

56

Theorem 7.6. Let IOP be a q-query bounded zero-knowledge polynomial interactive oracle proof for
R over field family F , and PCS be a designated-verifier hiding polynomial commitment scheme over
F . Then ARK[IOP,PCS] is a designated-verifier argument of knowledge for the relation R. Let PCS
be a designated-verifier zero-knowledge proof system.

Let ZKPpcs.k be a designated-verifier zero-knowledge proof system for the relation Rpcs.k =
{(vk,pk) : (vk,pk) ∈ [PCS.K(crs)]}. Let ARK[IOP,PCS,ZKPpcs.k] denote the compiler above where
PCS.K is performed by the verifier, and pk is accompanied by a proof πpcs.k that pk lives in the range
of the key generation algorithm. Then, we have the following corollary.

Corollary 7.7. Let IOP be a q-query bounded zero-knowledge polynomial interactive oracle proof
for R over field family F , and PCS be a designated-verifier hiding polynomial commitment scheme
over F , and ZKPpcs.k as above. Then ARK[IOP,PCS,ZKPpcs.k] is a designated-verifier argument of
knowledge for the relation R.

Example 7.8 (A designated-verifier range proof RAP). We consider the protocol sketched by Boneh,
Fisch, Gabizon, Williamson10 to prove that a committed value v is in a range [0, 2d]. Let H := ⟨ω⟩
be a subgroup of F× of size d and Z(x) be the polynomial where H vanishes. A common choice
here is to select the group of the d-th roots of unity for which the vanishing polynomial can be
computed in log d field operations.

The proof RAP is for a witness v ∈ [0, 2d − 1] opening a previously committed polynomial
such that f(ωd) = v. (The polynomial f is committed using the designated-verifier polynomial
commitment scheme; proving that the commitment opens to a signed value boils down to a DLEQ
proof.) A common choice is d = 64 to prove 64-bit integers.

At a high level, the verifier generates the proving key vk, pk via dvKZG.S(1λ, d+ 2) and then
proves in πkzg.s knowledge of τ such that:

τ ·
(

n∑
i=0

µiGi

)
=

n−1∑
i=0

µiGi+1

where µ := Hs(pk). Upon downloading the proving key, the prover checks that none of the elements
in pk is zero and πkzg.s is verified. The prover RAP.P considers the binary decomposition (b0, . . . , bd−1)
of v and define the polynomial g(x) such that g(ωi) = ∑

j<i 2jbj for i ∈ [0, d]. The polynomial
satisfies:

g(ω0) ∈ {0, 1}
g(ωd) = f(ωd)

g(ωi+1)− 2g(ωi) ∈ {0, 1}
(31)

To provide zero-knowledge for the query bound of this interactive oracle proof, interpolate g on two
additional random points δ1, δ2 ̸∈ H such that g(δ1) = α1 ←$ Zp and g(δ2) = α2 ←$ Zp. The prover
commits to g(x) via dvKZG.C.
The verifier samples ρ←$ Zp and sends it to the prover.
10Descriptions of the protocols can be found in https://hackmd.io/@dabo/B1U4kx8XI, https://decentrali

zedthoughts.github.io/2020-03-03-range-proofs-from-polynomial-commitments-reexplained/
and the SoK of Christ et al. [CBCMRW24, sec. 3.2].

57

https://hackmd.io/@dabo/B1U4kx8XI
https://decentralizedthoughts.github.io/2020-03-03-range-proofs-from-polynomial-commitments-reexplained/
https://decentralizedthoughts.github.io/2020-03-03-range-proofs-from-polynomial-commitments-reexplained/

Table 4: Table of range proof sizes for 64-bit integers fit for credentials applications. The column |π| indicates
the size of the range proof over a 64-bit integer, and in parentheses is the size of the range proof over
secp256k1. In Sharp, which involves check of small norm for scalar elements, only concrete size is given as it
can’t be expressed simply in terms of group elements. Note that batch range proofs will be more performing
than the näıve approach. We omit the proving key from the table, which in our case amount to at least 64g.
Timing estimates are based on zka.lc [Ern+23].

Scheme |π| (64-bits) P time V time Notes
Bulletproofs++ [Eag22] 10g + 3s (416B) 4ms 1.8ms

Sharp [CGKR22] n/a (389B) 1.17ms 0.75ms Requires fine-tuning on the chosen elliptic curve
HashWires [CCLMR21] n/a (200B) 0.65ms 0.61ms Relies on a trusted party generating the commitment

This example (RAP) 6g (192B) 1.16ms 0.752ms Designated-verifier NIZK

The prover computes:

w1(x) := Z(x)
xω0 · g(x) · (1− g(x))

w2(x) := Z(x)
xωd

· (g(x)− f(x))

w3(x) := Z(x)∏
i ̸=d−1 ω

ix
(g(ωx)− 2g(x))(1− g(ωx) + 2g(x))

and “batches” them into w(x) = w1 +ρw2 +ρ2w3. To show that Z | w (which implies Equation (31))
it is sufficient to exhibit q(x) such that:

q(x)Z(x) = w(x) (32)

= Z(x)
xω0 · g(x) · (1− g(x)) + Z(x)

xωd
· (g(x)− f(x))+ (33)

Z(x)∏
i ̸=d−1 x− ωi

(g(ωx)− 2g(x))(1− g(ωx) + 2g(x)) (34)

The prover sends a commitment to q(x) to the verifier.
The verifier samples r ←$ Zp and the proves sends openings of g(ωr), g(r), q̂(r) where:

q̂(x) := Z(r)
r − ωd

f(x) + q(x)Z(r) (35)

The verifier checks the polynomial openings well-formedness of Equation (32) Performances of
the above range proof and comparisons are displayed in Table 4.

58

zka.lc

8 Building on keyed-verification credential systems
In this section we gather some simple extensions and techniques that could be of interest for future
applications.

8.1 Time-based policies

To limit the lifetime of a credential and guarantee safe expiry without key rotation is a desirable
feature in many applications. As a warm-up example, we study the case of credentials subject to
time-based policies such as expiry.

Let KVAC be a keyed-verification credential over message family the integers modulo p satisfying
64 < ⌈log p⌉, and assume time is represented in unix time as a 64-bit signed integer. During issuance,
server and user agree on a timestamp t and run the issuance protocol with attributes (m⃗, t). At
presentation time, the user proves that the credential is not yet expired (that is, t < e where e
denotes the expiry time) via:

ϕe
exp(m⃗) :=

(
(e− t) mod p ∈ {0, . . . , 264−1}

)
where t denotes the timestamp attribute and e denotes the expiry timestamp, after which credentials
are to be considered stale. Christ et al. [CBCMRW24] present and detail state-of-art range proofs
and the trade-offs between them. In Example 7.8 we present an example range proof.

No adversary in possession of an expired credential (that is, with attribute t > e) can have a
successful presentation for the above statement as long as log p > 64. Any two users with valid
attributes for which ϕexp holds are indistinguishable to the server, by anonymity (which in turn
implies indistinguishability of two credentials satisfying the same predicate)

Therefore, any keyed-verification credential system supporting n > 1, attribute space M = Zp

with ⌈log p⌉ > 64 and a predicate space Φ sufficiently expressive, can be used to implement the
above feature.

Remark 8.1. Other ways are possible to enforce expiry of a credential. One of them is to partition
expiration into time frames. When issuing a credential, the user is associated to an expiration time
frame and their credential embedded with it. This approach, while simpler, entails a more complex
trade-off with anonymity as it may fraction the anonymity set into users per time-frame.

8.2 Rate-limiting

In keyed-verification credentials, authorizations can be presented an indefinite number of times
while preserving privacy. A valid specialization of the authorization case is to control the limited
use of some finite resource, while preserving anonymity of the users. This problem is treated in
k-times anonymous authentication [CHKLM06; TFS04; NS04], a credential system where users, a
group manager (in charge of distributing credentials), and some application providers (in charge of
moderating accesses) enforce rate-limiting access to users.

Here we work in a simple scenario composed only of a server and a user, without revocation
to target a simple and efficient rate-limiting system similar to Privacy Pass [DGSTV18]. In this
model, we don’t consider revocation, nor credential hijacking. At a high level, the approach here is
to have the user get a credential for a PRF key k and evaluate the PRF over a counter to generate
pseudorandom “tokens” that are unlinkable. The issuer maintains a list of “spent tokens” and

59

enforces double-spending by ensuring no token is ever re-used for the same scope. The user, to
present a valid token, proves the PRF has been correctly evaluated and that its input is “small”.

8.2.1 Syntax

A rate-limiting anonymous token RTL = (S,K, I,P) is composed of:

• crs← RTL.S(1λ) the setup algorithm, which generates a common reference string.

• (sk, pp)← RTL.K(crs) the key generation algorithm, which produces a secret key sk and some
public parameters pp.

• σ̂ ← (RTL.I.Usr(pp) ⇌ RTL.I.Srv(sk)) the issuance algorithm, which produces a credential
σ̂. We consider the procedure to be non-interactive, that is, we consider the following 3
algorithms:

– (µ, st)← RTL.I.Usr1(pp) the first part of the issuance algorithm, returning µ and some
user state st.

– σ′ ← RTL.I.Srv(sk, µ), the server signing algorithms, which returns a blinded credential
σ′.
If the input was malformed, σ′ = ⊥.

– σ̂ ← RTL.I.Usr2(st, σ′) the second part of the user issuance algorithm, which returns the
credential σ̂.

• 0/1← (RTL.P.Usr(pp, σ̂, (ℓ, scp, i)) ⇌ RTL.P.Srv(sk, ℓ, scp)) the presentation algorithm, which
takes as input a scope scp ∈ {0, 1}∗ identifying the resource and (for the user) a counter i
for generating the i-th token. It returns a bit (and updates the server state). We assume
presentation to be non-interactive and thus consider the following two algorithms:

– (t, ρ)← RTL.P.Usr(pp, σ, (ℓ, scp, i)) the user presentation algorithm, which returns a pair
(t, ρ) where t identifies the token.

– 0/1← RTL.P.Srv(sk, (ℓ, scp, t), ρ) the server presentation algorithm, which returns 1 if
the token (t, ρ) is considered valid and for at most ℓ accesses and 0 otherwise.

Similarly to the case of keyed-verification credentials, we will consider the procedure RTL.M(sk)
that generates a fresh credential using sk interacting with a mock user. This is a shorthand of a
server emulating the user and returning its result.

A rate-limiting scheme must be correct, unforgeable, and unlinkable. Correctness means that for
every crs ∈ RTL.S(1λ)], (sk,pp)← RTL.K(crs), ℓ > 0 and 0 ≤ i < ℓ, scp ∈ {0, 1}∗

Pr
[
b = 1: σ̂ ← (RTL.I.Usr(pp) ⇌ RTL.I.Srv(sk))

b← (RTL.P.Usr(pp, σ̂, (ℓ, scp, i)) ⇌ RTL.P.Srv(sk, (ℓ, scp)))

]
= 1 .

A rate-limiting anonymous token is one-more unforgeable if for every ℓ ≥ 0, and any adversary
A, the advantage Advomuf

RTL,A(λ) := Pr
[
OMUFRTL,A (λ, ℓ) = 1

]
(defined in Figure 11) is negligible in

λ. A rate-limiting anonymous token is unlinkable if for any ℓ > 0 and (stateful) adversary A, the
advantage Advunlink

RTL,A(λ, ℓ) defined in Figure 11 is negligible in λ.

60

Game UNFRTL,A (λ, ℓ)
q := 0; ctr := 0; Qrs := []
crs← RTL.S(1λ)
(sk, pp)← RTL.K(crs)
(scp∗, (t∗i , ρ∗

i)ℓq+1
i=1)← AIssue,Present,NewUsr,PresentUsr(pp)

return ∀i : RTL.P.Srv(sk, ℓ, scp∗, t∗i , ρ
∗
i) = 1

∀i ̸= j : ti ̸= tj ∧
∀i : (t∗i , ρ∗

i) ̸∈ Qrs

Game UNLINKb
RTL,A,D (λ, ℓ)

crs← RTL.S(crs)
Ctr := []
(pp, stA)← A(crs)
(σ0; st′

A)← (RTL.I.Usr(pp) ⇌ A(stA))
(σ1; stD)← (RTL.I.Usr(pp) ⇌ A(st′

A))
b′ ← DGet,Chal(stD)
return b′ = 1

Oracle NewUsr()
σ̂ := RTL.M(sk)
Usrs[ctr] := σ̂

ctr := ctr + 1
return ctr

Oracle PresentUsr(i, scp)
(t, ρ)← RTL.P.Usr(pp,Usrs[i], ℓ, scp, i)
Qrs := Qrs ∪ {(t, ρ)}

Oracle Get(β, scp)
Ctr[scp][β] := Ctr[scp][β] + 1 or 1
if Ctr[scp][0] > ℓ ∨ Ctr[scp][1] > ℓ : return ⊥
return RTL.P.Usr(sk, σ̂β , (ℓ, scp,Ctr[scp][β]))

Oracle Chal(scp)
return (Get(b, scp),Get(1− b, scp))

Oracle Issue(µ)
q := q + 1
return RTL.I.Srv(sk, µ)

Oracle Present(scp, t, ρ)
return RTL.P.Srv(sk, ℓ, scp, t, ρ)

Figure 11: Unforgeability and unlinkability game for a rate-limiting anonymous token RTL. The adversary of
unlinkability is assumed to be stateful and to preserve state across calls.

8.2.2 Our compiler

Let ϕℓ
range denote the predicate that checks if the input is in the range [0, ℓ− 1]. Let PRF(k, (x, y))

denote a pseudo-random function (PRF) evaluation on key k and message (x, y). The message is
presented as a pair so to make it easy to prove statements about parts of the rate-limiting input. A
PRF is compatible with the keyed-verification credential KVAC if the message space of the credential
system is equal to the key space of the PRF, and ϕm,e

prf (k) := (PRF(k,m) = e) is part of the predicate
family. The more general case is easy to derive from this one.

We describe a compiler that, given a keyed-verification credential KVAC and a pseudorandom
function PRF compatible with KVAC, produces a rate-limiting scheme. We denote such system as
cRTL[KVAC,PRF] and define it as follows:

• cRTL.S(1λ), the setup algorithm runs crs← KVAC.S(1λ, 1) and returns crs.
• cRTL.K(crs), the key generation algorithm returns (sk, pp)← KVAC.K(crs).
• (cRTL.I.Usr(pp) ⇌ cRTL.I.Srv(sk)), the credential issuance algorithm has the server run

KVAC.I.Srv(sk, st, ϕ1), while the user algorithm samples a random k ←$ M and runs KVAC.I.Usr(pp, k, ϕ1).
At the end of the interaction, the user obtains a credential σ and returns the pair σ̂ := (k, σ).

• (cRTL.P.Usr(pp, σ̂ = (k, σ), (ℓ, scp, i)) ⇌ cRTL.P.Srv(sk, (ℓ, scp))), the credential presenta-
tion algorithm has the server run KVAC.P.Srv(sk, ϕscp,t

prf ∧ ϕℓ
range), while the user runs

KVAC.P.Usr(pp, k, σ, ϕscp,t
prf ∧ ϕℓ

range).
The next section is devoted to proving the following:

Theorem 8.2. Let ℓ > 0, and Φ ⊃ {ϕprf , ϕrange}. If KVAC be a keyed-verification credential for n = 1
attributes and predicate family Φ, and PRF is a pseudorandom function compatible with KVAC, then
cRTL[KVAC,PRF] is a rate-limiting anonymous token with one-more unforgeability advantage:

Advomuf
cRTL[KVAC,PRF](λ, ℓ) ≤ (qℓ+ 1)Advext

KVAC(λ, 1) + qAdvanon
KVAC(λ, 1) + qAdvprnd

PRF (λ) ,

(where q is the number of queries to the issuance oracles) and unlinkability advantage:

Advunlink
cRTL[KVAC,PRF](λ, ℓ) ≤ 2(Advanon

KVAC(λ, 1) + Advprnd
PRF (λ)) .

61

Remark 8.3. The restriction on the PRF being compatible with KVAC may be lifted, provided that
the user proves at issuance time well-formedness of the PRF key.

Remark 8.4. In the proof, extraction is required solely to carry out a counting argument after
making sure that all tokes are evaluated from keys issued to the user. In fact, for the credentials
µCMZ and µBBS it is still possible to extract from the zero-knowledge proofs sent at presentation
time and carry out a reduction to one-more unforgeability.

Corollary 8.5. Let ℓ > 0, and Φ ⊃ {ϕprf , ϕrange}. Consider a one-more unforgeable keyed-verification
credential KVACAT ∈ {µCMZAT,µBBSAT}, for attribute damily Φ and let PRF be a pseudorandom
function compatible with KVACAT, then cRTL is a rate-limiting anonymous token with one-more
unforgeability advantage:

Advomuf
cRTL[KVACAT[ZKP],PRF](λ, ℓ) ≤ Advomuf

KVACAT(λ, 1)+(qℓ+1)Advksnd
ZKP(λ)+qAdvanon

KVACAT(λ, 1)+qAdvprnd
PRF (λ) ,

and unlinkability advantage:

Advunlink
cRTL[KVACAT,PRF](λ, ℓ) ≤ 2(Advanon

KVACAT(λ, 1) + Advprnd
PRF (λ)) ,

where q is the number of oracle queries made by the adversary.

8.2.3 Analysis

Correctness follows by inspection; unlinkability follows directly from pseudorandomness and
anonymity. We focus on unforgeability.

Lemma 8.6. Let ℓ > 0, and Φ ⊃ {ϕprf , ϕrange}. If KVAC be a keyed-verification credential for
n = 1 attributes and predicate family Φ, and PRF is a PRF, then cRTL[KVAC,PRF] has one-more
unforgeability advantage:

Advomuf
cRTL[KVAC,PRF](λ, ℓ) ≤ (qℓ+ 1)Advext

KVAC(λ, 1) + quAdvanon
KVAC(λ, 1) + quAdvprnd

PRF (λ) ,

where q is the number of queries to Issue and qu is the number of queries to NewUsr.

Proof. Consider an adversary A for OMUFcRTL[KVAC,PRF] (λ). A receives as input pp and during the
execution has access to oracles:
− Issue, to issue a credential to the adversary;
− Present, to present a credential to the adversary;
− NewUsr, and PresentUsr, to respectively create new honest users, and have them produce

a new presentation token.
We build a reduction B for extractability of KVAC. B receives as input pp and initializes a list
Keys = []. It runs internally A(pp), responding to each oracle query as follows:

• each issuance query with input µ is responded with Issue(µ, ϕ1) (Issue being the issuance
oracle of the extractability game);

• each present query with input (scp, t, ρ) is responded with Present(ϕscp,t
prf ∧ ϕℓ

range, ρ);
• each new user query is responded by sampling k ←$ M, appending it to Keys, and querying

NewUsr(k);
• each user presentation query with input (i, scp) has the adversary B compute t := PRF(Keys[i], scp)

and respond with the answer of PresentUsr(i, ϕscp,t
prf ∧ ϕℓ

range).

62

At the end of the execution, A outputs valid (for scp∗) forgeries (t∗i , ρ∗
i)ℓq+1

i such that t∗i ̸= t∗j for all
i ̸= j and (t∗i , ρ∗

i) was not previously queried. We distinguish the following events:

• ∃i ∈ [ℓq + 1] : t∗i ̸= PRF(k∗
i , scp∗, j∗

i) (for some j∗
i ∈ [0, ℓ− 1]), in which case extraction failed,

and the predicate does not hold. This can be shown with a reduction to the extractability
game, where the reduction at the end guesses the presentation message of the adversary output
that constitutes a valid forgery.

• ∃i ∈ [ℓq + 1] : k∗
i ∈ Keys, which means that a forgery was made from an honest user. However,

it can be shown that since the PRF evaluations are pseudorandom (and independent of the
keys), satisfying this event is equivalent to guessing the PRF key of a user. This can be shown
with a hybrid argument, first replacing the honest user issuance and presentation sessions with
simulated ones, and then replacing the PRF evaluations with random ones. At the end of both
changes, the NewUsr and PresentUsr oracles do not create any PRF key, nor credentials.
The resulting proofs are not part of the (winning) adversary output (as they are not part of
PQrs).

By the pigeonhole principle on PRF(·, scp, ·), where the first argument is Qrs (the set of issued
credentials in the extractability game, of size q) and the last argument is in [0, ℓ− 1] (of size ℓ), it
must be that ∃i, j ∈ [ℓq + 1] : k∗

i = k∗
j (which contradicts one of the winning conditions) and so the

adversary can never win the game in this case.

8.2.4 Instantiation

We describe a variation of the Dodis–Yampolskiy’s PRF [DY05] that makes it easy to reason and
prove statements on the counter. The PRF is defined as:

HashDY(k, (scp, ctr)) := (k + ctr)−1 · HG(scp)

for ctr ∈ Zp and ctr ≤ ℓ = poly(λ) and HG : {0, 1}∗ → G a hash that maps elements in the group.
In this case, a “token” is T ∈ G (indicated here in uppercase to match the group description). Note
that the predicate:

ϕscp,T,ℓ
prf (m⃗, k, i) := ((k + i)T = HG(scp) ∧ 0 ≤ i < ℓ)

can be proven easily within Schnorr proofs, with the help of a range proof. We prove that HashDY
is a PRF.

Theorem 8.7. In the random oracle model, if q-DDHI holds over GrGen, then HashDY is pseudoran-
dom with advantage:

Advprnd
HashDY,A(λ) ≤ qAdvq-ddhi

GrGen (λ) + q2

p
,

where q is the number of evaluation queries.

Proof. Let A be a p.p.t. adversary for pseudorandomness. A has access to an oracle Eval for
arbitrary scp ∈ {0, 1}∗ and counters 0 ≤ i < ℓ. Consider a hybrid argument where, in the i-th
step, we replace the Eval responses up to the i-th query with uniformly random group elements.
Consider an adversary Ai able to distinguish the i-th hybrid. We construct an adversary Bi for the

63

i-th hybrid able to distinguish every time that the adversary Ai’s output is different during the i-th
hybrid change.

Bi receives as input a group description Γ and a q-DDHI challenge G⃗ = (G, τG, τ2G, . . . , τ qG)
and P ∈ G (either P = 1/τ ·G in q- DDHI0

A,GrGen (λ), or a uniformly distributed random element
P ←$ G in q- DDHI1

A,GrGen (λ)), with q ≤ ℓ. Let α := τ − i and define A⃗ := (G,αG,α2G, . . . , αqG).
These can be computed using the binomial theorem using G⃗ only. Once computed, B internally
runs the adversary A using the crs received as input. During its execution, the adversary A query
to HG and Eval:

• Upon receiving the j-th query to the random oracle HG of the form HG(scpj) such that
scpj ∈ {0, 1}∗, B checks if the element was previously queried. If that is not the case, B
computes the polynomial f(x) := ∏ℓ

ι=1
ι̸=i

(x+ ι) = ∑
k fkx

k and samples θj ←$ Zp. Finally, it

computes Tj = θjf(α)G = θj ·
∑

k fkAk and stores in a table (scpj , θj , Tj) and returns to the
user Tj . If such a query was already made, B fetches Tj from its records and returns it the
same value as before.

• Upon receiving the j-th Eval query of the form (scpj , ιj) from the adversary A, the reduction
B checks if scpj was already queried in HG and, if not, proceeds doing so. Then, it checks if ιj
is equal to i. If it is not equal, it retrieves the record (scpj , θj , Tj) and returns (τ + ιj)−1 · Tj ,
computed via h(x) := ∏

ι̸=i,ιj
(x+ ι) and returning θj ·

∑
k hkGk. If ιj = i, then by euclidean

remainder we can write f(x) = h(x)(x+i)+r where r = f(i). Therefore, (α+i)−1 ·θj ·f(α)·G =
θj · (h(α) + r/(α+ i))G = θj(∑k hkAk + f(i)P).

The output distribution of HG is uniformly random except with statistically negligible probability
(when α is a root of f). n the case q- DDHI0

A,GrGen (λ) the output distribution of Eval is identically
distributed, while it is uniformly distributed in q- DDHI1

A,GrGen (λ). (Recall that P = 1/τG =
1/(α+ i)G in q- DDHI0

A,GrGen (λ) and Ai = αiG.) Indistinguishability then is straightforward by the
distance lemma over each of the hybrid changes.

8.2.5 Other methods for rate-limiting

We briefly mention below other approaches that may be used to enforce rate limiting.
Grinding. Simpler methods for rate-limiting are folklore, such as providing a proof of work associated
with the request. This technique can be embedded in the rate-limiting token part t: roughly speaking,
upon presentation the token t must also satisfy that t is “small”. This is sometimes referred to as
grinding in the literature and may be implemented appending a random nonce to the scope, having
then the user attempt to find a nonce such that the PRF output is small.
Batch issuance of spend-once credentials. Another common approach is to issue multiple spend-once
credentials: the user sets (at issuance time) a blind attribute to be a nonce, and fully discloses it to
the server upon presentation. The issuer, on the other hand, keeps a list of previously spent nonces
and enforces rate-limiting by adjusting the number of spend-once credentials. This approach näıvely
incurs in a n-times communication and computation overhead in the issuance phase for limiting
n-accesses per-user, but classical batching techniques may be available to partially reduce this cost.

64

Game ANONb
NYM,A,D (λ)

crs← NYM.S(λ)
(pp, stA)← A(crs)
(σ0; st′

A)← (NYM.I.Usr(pp) ⇌ A(stA))
(σ1; stD)← (NYM.I.Usr(pp) ⇌ A(stA))
b′ ← DGet,Chal(stD)
return b′

Oracle Get(scp,m)
Qrs := Qrs ∪ {(scp,m)}
for β ∈ {0, 1}

nymβ := NYM.E(pp, kβ , scp)
ρβ ← NYM.P.Usr(pp, (kβ , σβ), (scp, nymβ ,m))

return ((nym0, ρ0), (nym1, ρ1))

Oracle Chal(scp,m)
if (scp,m) ∈ Qrs : return ⊥
(α0, α1)← Get(scp,m)
return (αb, α1−b)

Figure 12: Anonymity game for a keyed-verification pseudonym system NYM.

8.3 Pseudonyms

In some cases, the server might require the user to adopt an identity for a specific resource denoted
scp ∈ {0, 1}∗, and have that identity be otherwise unlinkable. Such pseudonym can be used for
blocking and logging in users in a specific service seamlessly (that is, without making requests to
third-party services or requiring another registration process.). The scope scp ∈ {0, 1}∗ identifies
the scope to be accessed, but one may also make other valid choices. For instance, a timestamp
can restrict access over time, a unique random nonce for spend-once credentials, the identifier of a
group chat to select a group-dependent pseudonym, etc.

8.3.1 Syntax

A keyed-verification pseudonym system NYM consists of the following efficient procedures:

• crs← NYM.S(1λ), the setup algorithm, getting as input the security parameter in unary form
and returning a common reference string crs;

• (sk, pp)← NYM.K(crs), the key-generation algorithm produces a signing key sk together with
some public parameters pp;

• (k, σ) ← (NYM.I.Usr(pp) ⇌ NYM.I.Srv(sk)), the issuance algorithm, producing an identity
key k and a credential σ over it. We consider the issuance to be non-interactive, that is, we
consider the following 3 algorithms:

– (µ, st)← NYM.I.Usr1(pp) the first part of the issuance algorithm, returning µ and some
user state st.

– σ′ ← NYM.I.Srv(sk, µ), the server signing algorithms, which returns a blinded credential
σ′.
If the input was malformed, σ′ = ⊥.

– (k, σ)← NYM.I.Usr2(st, σ′) the second part of the user issuance algorithm, which returns
the identity key k and credential σ.

65

Game UNFNYM,A (λ)
PQrs := []; Creds := []; Keys := []; q := 0
crs← NYM.S(1λ)
(sk, pp)← NYM.K(crs)
(scp∗, (nym∗

i ,m
∗
i , ρ

∗
i)n

i=1)← AIssue,Present,NewUsr,PresentUsr(pp)
return ∀i ∈ [n] : NYM.P.Srv(sk, (scp∗

i , nym∗
i ,m

∗
i), ρi) = 1 ∧

(scp∗, nym∗
i ,m

∗
i) ̸∈ PQrs ∧(

(∀i ̸= j : nym∗
i ̸= nym∗

j ∧ n > q) ∨

∃i, j : nym∗
i = NYM.E(pp,Keys[j], scp∗)

)

Oracle Issue(µ)
q := q + 1
return NYM.I.Srv(sk, µ)

Oracle Present((scp,nym,m), ρ)
return NYM.P.Srv(sk, (scp, nym,m), ρ)

Oracle Eval(i, scp)
return NYM.E(pp,Keys[i], scp)

Oracle NewUsr()
k ←$ M
σ ← NYM.M(sk, k)
(Keys[q],Creds[q]) := (k, σ)
return 1

Oracle PresentUsr(i, scp,m)
nym := NYM.E(Keys[i], scp)
PQrs := PQrs ∪ {(i, scp,nym,m)}
ρ← NYM.P.Usr(pp, (scp, nym,m))
return (nym, ρ)

Figure 13: Unforgeability for a keyed-verification pseudonym system NYM.

• nym := NYM.E(pp, k, scp) the evaluation algorithm generates a pseudonym nym for the scope
scp ∈ {0, 1}∗.

• 0/1 ← (NYM.P.Srv(sk, (scp,nym,m)) ⇌ NYM.P.Usr(pp, (k, σ), (scp, nym,m))) the presenta-
tion algorithm, which authenticates as message m for an authorized identity nym within
the scope scp, using the identity key k and credential σ. Since we consider non-interactive
presentations, we can simplify the above as:

– µ← NYM.P.Usr(pp, (k, σ), (scp, nym,m)),
– 0/1← NYM(sk, (scp, nym,m), µ).

The core security requirements of a pseudonym system are correctness (all honestly-generated
nyms verify), unforgeability (that is, a user cannot generate multiple identities for the same scope
or act of behalf of another user), and anonymity (that is, two users are indistinguishable across
different scopes). More formally, correctness requires that, for all scp,m ∈ {0, 1}∗:

Pr

b = 1:

crs← NYM.S(1λ)
(sk, pp)← NYM.K(crs)
(k, σ)← (NYM.I.Usr(pp) ⇌ NYM.I.Srv(sk))
nym := NYM.E(pp, k, scp)
b← (NYM.P.Srv(sk, (scp,nym,m)) ⇌ NYM.P.Usr(pp, (k, σ), (scp,nym,m)))


is overwhelming in λ. Unforgeability asks that Advunf

NYM,A(λ) := Pr
[
UNFNYM,A (λ) = 1

]
is negligible

in λ, where UNFNYM,A (λ) is defined in Figure 13. Anonymity requires that Advanon
NYM,A(λ) is negligible

in λ, where the distinguishing game ANONb
NYM,A (λ) is illustrated in Figure 12.

Remark 8.8 (Differences with VRFs.). It is possible to re-state those properties in terms of verifiable
random functions, but the syntax here is slightly different. Verifiable random functions have a
verification algorithm that relies on a “public key” (which here is not used) and require uniqueness,
that is, it is not possible to prove two different VRF outputs are valid for the same input and
the same secret key. Pseudonym evaluation is a deterministic algorithm, and therefore uniqueness
perfectly holds.

8.3.2 Our compiler

We say that a keyed-verification credential KVAC supports labelled presentation if the presentation
message of the user can be labeled. This is denoted as a “dummy predicate” ϕm

lbl. For the credentials

66

we present, this boils down to demading ZKP to supporting labelling, e.g. with a message embedded
in the Fiat–Shamir transformation.

As in the previous section, we say that a pseudorandom function PRF is compatible with a
keyed-verification credential KVAC if the attribute space of the credential system is equal to the key
space of the PRF and ϕm,e

prf is in the predicate family of KVAC.
We say that a keyed-verification credential KVAC supports i-rerandomizable issuance if there

exists an issuance protocol KVAC.Irnd which, as long as at least one of the two participants (user or
server) is honest, the credential at the end of the protocol is such that the i-th attribute is uniformly
distributed over M.

Let KVAC be a keyed-verification credential for n = 1 attributes supporting re-randomizable
issuance and labels. Let PRF be a pseudorandom function compatible with KVAC. We describe a
compiler cNYM[KVAC,PRF] and define it as follows:

• crs← cNYM.S(1λ), the setup algorithm internally runs KVAC.S(1λ, 1) and return its common
reference string;

• (sk, pp)← cNYM.K(crs) returns the output of the keyed-verification credential key generation;

• (k, σ)← (cNYM.I(pp) ⇌ cNYM.I.Srv(sk)), the issuance algorithm has the user run KVAC.Irnd.Usr(pp, [],
ϕ1) and the server KVAC.Irnd.Srv(sk, ϕ1). At the end of the protocol execution, the user gets a
uniformly-distributed attribute k and a credential σ on it.

• nym := cNYM.E(pp, k, scp), the pseudonym evaluation function returns nym := PRF(k, scp).

• 0/1 ← (cNYM.P.Usr(pp, (k, σ), (scp, nym,m) ⇌ cNYM.P.Srv(sk, (scp,nym,m))), the presen-
tation algorithm has the user receive as input a pseudonym nym := PRF(k, scp) and a message
m to be authenticated. It runs KVAC.P.Usr(pp, k, σ, ϕscp,nym

prf ∧ ϕm
lbl), while the server responds

with whatever the underlying protocol KVAC.P.Srv(sk, (scp, nym,m)) returns.

Theorem 8.9. Let KVAC be a keyed-verification credential for n = 1 attributes, with re-randomizable
issuance and labelled presentation, for predicate family Φ ⊃ {ϕprf}. Let PRF be a pseudorandom
function compatible with KVAC. Then, cNYM[KVAC,PRF] is a keyed-verification pseudonym system
with unforgeability advantage:

Advunf
cNYM[KVAC,PRF](λ) ≤ qAdvext

KVAC(λ, 1) + qAdvanon
KVAC(λ) + qAdvprnd

PRF (λ) + q2

|M|
,

(where q is the number of oracle queries) and unlinkability advantage:

Advunlink
cNYM[KVAC,PRF](λ) ≤ 2(Advanon

KVAC(λ, 1) + Advprnd
PRF (λ)) .

Remark 8.10. The requirement of PRF compatibility and re-randomization of KVAC can be relaxed
with an alternative construction, that we sketch below.

At issuance time, the user generates a key k ← NYM.K(crs) and an evaluation nym0 ←
NYM.E(k, ε) (where ε denotes the empty string). At issuance time, the user sets the key k to be
one of the (hidden) credential attributes, and adds to the user message the registration identity
nym0. Along with the predicate associated with the other attributes, the user proves knowledge of
a valid PRF key k ∈ K (a hidden attribute) and that nym0 is well-formed (via the predicate ϕnym).
The issuer, on the receiving side, checks that nym0 has not already been used in the past and that

67

it is indeed correctly generated by verifying the predicate (via ϕnym). If both checks pass, the server
proceeds with the issuing of a credential. Upon accessing any other resource scp ̸= ε the user can
provide an identity associated to that resource computing nym← NYM.E(k, scp) and proving via
the predicate ϕnym that the computation was done correctly.

Remark 8.11. In the proof, extraction is used to carry out a counting argument after making sure
that nym∗

i are all correct evaluations of the function PRF(·, scp∗). Therefore, one may wonder if
one-more unforgeability is sufficient for proving security. While we don’t have at disposal the final
messages, the credentials µCMZ and µBBS both rely on a presentation message that is sound, and
therefore the argument still applies. In fact, by relying on knowledge soundness of the proofs πp in
both protocols, one can show that µCMZAT and µBBSAT (the schemes without the issuance user
proofs) are sufficient for achieving the desired security properties. Note that the “q” factor required
to “guess” the forgery is now moved to the knowledge soundness experiment.

Corollary 8.12. Consider a one-more unforgeable keyed-verification credential KVACAT ∈ {µCMZAT,µBBSAT},
for predicate family Φ ⊃ {ϕprf}. Let PRF be a pseudorandom function compatible with KVACAT.
Then, cNYM[KVACAT,PRF] is a keyed-verification pseudonym system with unforgeability advantage:

Advunf
cNYM[KVACAT,PRF](λ) ≤ Advomuf

KVACAT(λ, 1) + qAdvksnd
ZKP(λ) + qAdvanon

KVACAT(λ) + Advprnd
PRF (λ) + q2

|M|
,

(where q is the number of oracle queries) and unlinkability advantage:

Advunlink
cNYM[KVAC,PRF](λ) ≤ 2(Advanon

KVACAT(λ, 1) + Advprnd
PRF (λ)) .

8.3.3 Analysis

Correctness follows by inspection; unlinkability follows directly from pseudorandomness and
anonymity. We focus on unforgeability.

Lemma 8.13. Let KVAC be a keyed-verification credential for n = 1 attributes, with re-randomizable
issuance and labelled presentation, for predicate family Φ ⊃ {ϕprf}. Let PRF be a pseudorandom
function compatible with KVAC. Then, cNYM[KVAC,PRF] is a keyed-verification pseudonym system
with unforgeability advantage:

Advunf
cNYM[KVAC,PRF](λ) ≤ qAdvext

KVAC(λ, 1) + qAdvanon
KVAC(λ) + qAdvprnd

PRF (λ) + q2

|M|
,

where q is the number of queries to the issuance oracles.

Proof. We consider, without loss of generality, two types of adversaries:

• a “one-more” adversary A1(pp) that returns (scp, (nym∗
i ,m

∗
i , ρ

∗
i)q+1

i=1), such that (nymi)i are
all different and q is the number of queries to the Issue oracle. This attacker can be reduced
to extractability of the underlying keyed-verification credential system. To do so, we build a
reduction B for the extraction game EXTKVAC,Ext,A (λ, 1).
B receives as input pp and internally runs A1, mapping each oracle query to the respective
one in the extractability game:

– each issuance query with adversarial user message µ is forwarded as Issue(ϕscp,nym
prf , µ)

68

– each presentation query of the form (scp, nym,m), ρ is forwarded as Present(ϕscp,nym
prf ∧ ϕm

lbl, ρ)
– each new user query has B sample k ←$ M, runs NewUsr(k) and upon receiving a

counter ctr for the given user, it stored Keys[ctr] := k. Finally, returns ctr.
– each user presentation query of the form (i, scp,m) is forwarded to the extractability

oracle as PresentUsr(i, ϕscp,nym
prf ∧ ϕm

lbl) where nym := NYM.E(Keys[i], scp). (If the
index is invalid, we assume the oracle returns ⊥).

– finally, for each Eval(i, scp), returns PRF(Keys[i], scp).
The oracles provide the exact same output distribution as in the original game. At the end,
the adversary B guesses an index j ∈ [q + 1] and returns (scp∗,nym∗

j ,m
∗
j , ρ

∗
j).

Since there are at most q different issuance queries, at most q keys have been issued. However,
the adversary produced q + 1 different evaluations of the function PRF(·, scp). This implies
that either one of the keys is not present as a part of the issued credentials (and the winning
condition “m⃗ ̸∈ Qrs” in the extractability game is satisfied) or an extracted credential does
not satisfy the pseudonym predicate (so the condition “ϕ(m⃗) = 0” in the extractability game
is satisfied).

• an adversary stealing pseudonyms from honest users A2(pp) that returns a valid forgery
(scp∗, nym∗,m∗, ρ∗) not previously queried, and such that there exists an index j ∈ [qu] (qu

being the number of queries to NewUsr) such that nym∗ = NYM.E(Keys[j], scp∗). This can
be proven via a hybrid argument:
H0 the first hybrid runs the extractor for the credential presentation and checks if the extracted

values satisfy the predicate. Similarly to the previous argument, if the extracted values
are not correct PRF evaluation then it is possible to build a reduction to extractability
of the underlying credential system.

H1, . . . ,Hqu replace the i-th query to NewUsr() and queries of the form PresentUsr(i, ·)
to simulated responses. Upon receiving a NewUsr() query, sample ki ←$ M and run
sti ← Sim.I(pp, ϕ1). Store ki in Keys and the simulator state sti in Creds. Upon
receiving a PresentUsr(i, scp,m), run the pseudonym evaluation using ki and return
the simulated proof via Sim.P(pp, ϕscp,nym

prf ∧ ϕm
lbl). Evaluation queries are dealt as before

using the relative PRF key.
If the adversary’s output is distinguishable with non-negligible probability then it is
possible to build a distinguisher for anonymity of KVAC.

Hqu+1, . . . ,H2qu replace all pseduonyms with uniformly-random PRF images. The challenger
now holds a table Nyms of evaluations and each Eval(i, scp) query is responded as
follows: if Nyms[i, scp] has associated a pseudonym already, then return it; if no such
entry exists, then sample a fresh pseudonym nym←$ I, where I is the image of the PRF.

At this point we have that the returned pseudonyms collides with a random string only if
there is a collision within PRF. The probability that this bad event occurs is upper bounded
by q2/|I|.

69

Credential Issuance with (n+ 1)-rerandomization

µCMZ.Irnd.Usr((Xr, X0, X⃗), m⃗, ϕ) µCMZ.Irnd.Srv((x0, xr, x⃗), ϕ)

C ′ :=
∑

i miXi+k′Xn+1 + sG where s, k′ ←$ Zp

πiu ← ZKPcmz.iu.P((C ′, X⃗, ϕ), (m⃗, k, s)) C ′, πiu check ZKPcmz.iu.V((C ′, X⃗, ϕ), πiu)

U ′ := uG where u←$ Zp

V ′ := x0U + u(C ′ + k′′Xn+1) where k′′ ←$ Zp

check U ′ ̸= 0G U ′, V ′, πis, k′′
πis ← ZKPcmz.is.P((X0, C

′+k′′Xn+1, U
′, V ′), (xr, x0, u))

check ZKPcmz.is.V((X0, C
′+k′′Xn+1, U

′, V ′), πis)
U := rU ′ where r ←$ Zp

V := r(V ′ − sU ′)
return (k := k′ + k′′,σ := (U, V))

µBBS.Irnd.Usr(X, m⃗, ϕ) µBBS.Irnd.Srv(x, ϕ)

s, k′ ←$ Zp

C ′ := s−1(
∑

i miGi + k′Gn+1+G0)

πiu ← ZKPbbs.iu.P((C ′, ϕ), (m⃗, k,s)) C ′ , πiu check C ′ ̸= 0G ∧ ZKPbbs.iu.V((C ′, ϕ), πiu)

A′ := (x+ e)−1(C ′+k′′Gn+1) where e, k′′ ←$ Zp

check ZKPbbs.is.V((e,X,C ′+k′′Gn+1, A
′), πis) e,A′, πis, k′′

πis ← ZKPbbs.is.P((e,X,C ′, A′), x)
A := sA′

return (k := k′ + sk′′,σ := (A, e))

Figure 14: Randomized issuance of µCMZ and µBBS credentials. The relation πis is defined in Equations (7)
and (22) for µCMZ and µBBS respectively. Highlighted, the differences with the vanilla protocol; boxed ,
the parts that may be removed for one-more unforgeability.

8.3.4 Instantiation

A suitable PRF that composes well with the studied keyed-verification systems is the PRF from
Naor, Pinkas, and Reingold [NPR99]:

NPR(k, scp) := k · HG(scp) (36)

The PRF is secure in the random oracle model under the DDH assumption: distinguishing a tuple
(HG(scp0), kHG(scp0),HG(scp1), kHG(scp1)) from a uniformly random element of G4 is equivalent to
solving the DDH problem: given a DDH challenge (with generator) (P,U,Q, V), set HG(scp0) = P ,
HG(scp1) = Q, and k = logP U .

8.3.5 One-time linking

It is also possible to upgrade to statistical anonymity in a different model. Instead of providing
a nym, the user can commit to it and prove it has the same value of a commitment sent in a
previous interaction. Given two pseudonyms C0 = kHG(scp) + rH and C1 = kHG(scp) + r′H the
user can prove knowledge of the discrete logarithm of C0 − C1 base H and that C0, C1 are correct
commitments to nym evaluations. The advantage of this last approach is that the user has perfect
hiding.

70

9 Straight-line extraction from Σ-protocols
The notion of soundness required for credentials that we use is strong, as it demands that the
simulator is able to extract a witness from an oracle query in order to properly answer the challenge.
In the literature, it has sometimes been called online [Fis05] or straight-line [GMY06; Sah99]
extraction, and is believed not to be satisfied by traditional non-interactive Schnorr proofs relying
on rewinding techniques.

The Fiat–Shamir transform of a Σ-protocol is however the most common tool for instantiating
the NIZK in credential systems. To complement this heuristic and resolve the theoretical gap, we
prove that representation proofs are straight-line extractable in the algebraic group model.

We denote with Σ such a protocol for generic linear relations (m of them) over vectors of size n:

RF :=
{

(X⃗, x⃗) ∈ Zn
p ×Gm :

n∑
k

xkF1,k = X1 ∧ · · · ∧
n∑
k

xkFm,k = Xm

}

We will employ the more compact matrix-vector notation Fx⃗ = X⃗ where F ∈ Gm×n denotes the
matrix whose j-th row vector is F⃗j . Denote with Uniq(F) the list G1, . . . , Gℓ with ℓ ≤ |F| the
non-trivial group elements appearing in F, repeated only once.

Definition 9.1. A relation family RF is admissible if: for any p.p.t. adversary A, it is computationally
hard to find a non-zero vector in ker(F⃗j) (for j ∈ [m]) or in ker(Uniq(F)), where Uniq denotes the
set of non-trivial group elements appearing in F.

We recall here the protocol Σ for the relation RF:

Procedure Σ.P(X⃗, x⃗)
R⃗ := Fr⃗ where r ←$ Zn

p

c := Hp(X⃗, R⃗)
s⃗ := r⃗ + cx⃗

return (R⃗, s⃗)

Procedure Σ.V(X⃗, (R⃗, s⃗))
c := Hp(X⃗, R⃗)
return Fs⃗ = R+ cX⃗

in the above, the notation Fr⃗ indicates standard matrix-vector product, i.e., R⃗ is the vector of
m elements indexed in j ∈ [m] such that Rj := ∑

k Fj,krk. Similarly one proceeds for Fs⃗. This
protocol is a standard Fiat–Shamir transform for a Σ-protocol proving knowledge of a group
morphism [Mau09]. The transform as presented here is sometimes also known as “strong Fiat–
Shamir transform” [BPW12]. It is a well-known result in the literature that such protocol is
zero-knowledge in the random oracle model: the simulator samples s⃗, c at random from Zn

p ,Zp

respectively and sets R⃗ := Fs⃗− cX⃗. Finally, it programs the random oracle to respond with c for
the query (X⃗, R⃗) finally returns (R⃗, s⃗). The proof distribution is identical to the one generated by
the prover: R⃗ and s⃗ are uniformly distributed satisfying the verification equation.

Theorem 9.2. The protocol Σ for an admissible relation RF is strongly simulation-extractable in the
algebraic group model and the random oracle model.

71

Proof. Let A be the algebraic adversary in the game for simulation extractability, and q the number
of queries made to the random oracle during its execution. For a statement (F, X⃗), let F⃗j denote
the j-th row of the matrix F and Xj the j-th element of X. During its execution, the adversary
A queries the simulation oracle for instance X⃗ ∈ Gm and witness x⃗ ∈ Zn

p . Being algebraic, A also
provides an algebraic representation of X⃗. Upon receiving the i-th simulation query, the simulator
picks ci, s⃗i ←$ Zp, sets

R⃗i := Fs⃗i − ciX⃗i (37)
and programs the random oracle to respond to Hp(X⃗i, R⃗i) with ci. If such query exists, the simulator
aborts and the adversary wins. Since Ri is uniformly distributed over G, no such query has been
previously made except with probability at most q/p which is negligible. Finally, the simulator
returns (R⃗i, s⃗i). The algebraic representation (χi, δi) of the i-th queried statement X⃗i is such that:

Xi,j =
ℓ∑
k

χi,j,kGk +
∑
ι<i

κ∈[m]

δi,ι,κRι,κ

where the generators G1, . . . , Gℓ = Uniq(F) are the group elements appearing in F. The elements
Rk,j can be simplified thanks to Equation (37). In fact, for the first query, we have that for every
element j ∈ [m]:

X1,j =
ℓ∑
k

α1,j,kGk where α1,j,k = χ1,j,k

since no previous query has been made. For the second query we can consider:

X2,j =
ℓ∑
k

α2,j,kGk where α2,j,k = χ2,j,k + δ2,1,k(s1 − c1α1,j,k)

and so on. We can partition the indices k ∈ [ℓ] into Ij – the set of indices of Uniq(F) appearing in
F⃗j and Īj the set if indices that do not. We can thus see the i-th simulation query (i ∈ [q]) as:

Xi,j =
∑
k∈Ij

αi,j,kGk +
∑
k∈Īj

αi,j,kGk

for all j ∈ [m], with αi,j,k in Zp. At the end of the execution the adversary returns a final
statement X⃗∗ and a proof π∗ = (K⃗∗, s⃗∗) such that (X⃗∗, R⃗∗, s⃗∗) ̸= (X⃗i, R⃗i, s⃗i) for all i ∈ [q] satisfying
Fs⃗∗ = K⃗∗ + c∗X⃗∗ and c∗ = Hp(X⃗∗, R⃗∗).

We claim that (X⃗∗, R⃗∗) ̸= (X⃗i, R⃗i) for all i ∈ [q]. In fact, by contradiction, if ∃i ∈ [q] such that
s⃗i ̸= s⃗∗ and X⃗i = X⃗∗, R⃗i = R⃗∗ then F(s⃗i − s⃗∗) = 0⃗ and non-trivial element of the kernel was found.
From the algebraic representation we have that, for each j ∈ [m]

R⃗∗
j =

∑
k∈Ij

β∗
j,kGk +

∑
k∈Īj

β̄∗
j,kGk

X⃗∗
j =

∑
k∈Ij

α∗
j,kGk +

∑
k∈Īj

ᾱ∗
j,kGk

(38)

where the algebraic representation already reduced the terms Ri as linear combinations of the Gk’s
in Ij ∪ Īj = Uniq(F) using the verification equation as shown above. We distinguish the following
possibilities:

72

1. If ∃j∗ ∈ [m], k∗ ∈ Īj∗ s.t. ᾱ∗
j∗,k∗ ̸= 0, then plugging Equation (38) into the verification equation

we have that:∑
k∈Ij∗

(
β∗

j∗,k + c∗ · α∗
j∗,k − s∗

k

)
Gk +

∑
k∈Īj∗ \{k∗}

(
β̄∗

j∗,k + c∗ᾱ∗
j∗,k

)
Gk +

(
β̄∗

j∗,k∗ + c∗ᾱ∗
j∗,k∗

)
Gk∗ = 0

and the coefficient of Gk∗ is uniformly distributed and non-zero with overwhelming probability
since c∗ is uniformly distributed and ᾱ∗

j∗,k∗ ≠ 0, β̄∗
j∗,k∗ are chosen before seeing the challenge.

Therefore, we have a non-trivial relation of Uniq(F).

2. If ∀i, j, k : ᾱ∗
j,k = 0 modulo p then we can rearrange the indices of α∗

j,k and can consider vectors
α⃗j (j ∈ [m]) such that X1 = ⟨F1, α⃗1⟩, . . . , Xm = ⟨Fm, α⃗m⟩. We claim that α⃗1, . . . , α⃗m can be
used to reconstruct a unique witness vector.

(a) If ∃j ̸= j′ such that for some k ∈ Ij ∩ Ij′ : αj,k ̸= αj′,k then

F⃗j · (β⃗j + c∗α⃗j − s⃗∗) = 0 and F⃗j′ · (β⃗j′ + c∗α⃗j′ − s⃗∗) = 0

and the adversary found another nontrivial relation of the kernel of F⃗j or F⃗j′ : if (β⃗j +
c∗α⃗j− s⃗∗) ̸= 0 we are done, and if it is instead equal to zero then the term (β⃗j′ +c∗α⃗j′− s⃗∗)
will be also zero only with negligible probability 1/p since (β⃗j′ − β⃗j) + c(α⃗j′ − α⃗j) = 0
only if the adversary guessed c correctly (note that all the terms are sent to the random
oracle before seeing the challenge).

(b) Otherwise, the extractor defines x⃗∗ ∈ Zn
p as the vector whose k-th entry is the (unique)

element αj,k for all j ∈ [m] such that k ∈ Ij . The witness is correct since, by construction,
F⃗j x⃗

∗ = F⃗jα⃗j = Xj for all j ∈ [m].

The witness output from Item 2b is correct, and all other cases happen with negligible probability,
thus the protocol is strongly simulation-extractable.

73

10 Acknowledgements
This work would not have been possible without the ideas of Trevor Perrin and Dennis Jackson
(Firefox). We are grateful to Georg Fuchsbauer (TU Wien) for his meticulous proofreading and
for identifying numerous editorial errors. Jacques Traoré (Orange) identified a bug in the initial
version of µCMZ. Geoffroy Couteau (CNRS), Greg Zaverucha (Microsoft Research), Balthazar
Bauer (UVSQ), Alexander Koch (IRIF), Jonathan Katz (Google) provided valuable feedback on the
manuscript.

References
[Aad] A. Aadhaar. Anon Aadhaar: a zero-knowledge protocol that allows Aadhaar ID

owners to prove their identity in a privacy preserving way. url: https://github.c
om/anon-aadhaar/anon-aadhaar.

[AFGHO16] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. “Structure-
Preserving Signatures and Commitments to Group Elements”. In: Journal of
Cryptology 29.2 (Apr. 2016), pp. 363–421. doi: 10.1007/s00145-014-9196-7.

[App] Apple Inc. iCloud Private Relay Overview. url: https://www.apple.com/icloud/d
ocs/iCloud_Private_Relay_Overview_Dec2021.pdf.

[ASM06] M. H. Au, W. Susilo, and Y. Mu. “Constant-Size Dynamic k-TAA”. In: SCN 06.
LNCS. 2006, pp. 111–125. doi: 10.1007/11832072_8.

[AYY23] G. Amjad, K. Yeo, and M. Yung. RSA Blind Signatures with Public Metadata.
Cryptology ePrint Archive, Report 2023/1199. 2023. url: https://eprint.iacr.o
rg/2023/1199.

[BBDT17] A. Barki, S. Brunet, N. Desmoulins, and J. Traoré. “Improved algebraic MACs
and practical keyed-verification anonymous credentials”. In: Selected Areas in
Cryptography–SAC 2016: 23rd International Conference, St. John’s, NL, Canada,
August 10-12, 2016, Revised Selected Papers 23. Springer. 2017, pp. 360–380.

[BBS04] D. Boneh, X. Boyen, and H. Shacham. “Short Group Signatures”. In: CRYPTO 2004.
LNCS. 2004, pp. 41–55. doi: 10.1007/978-3-540-28628-8_3.

[BCKL08] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. “P-signatures and
Noninteractive Anonymous Credentials”. In: TCC 2008. LNCS. 2008, pp. 356–374.
doi: 10.1007/978-3-540-78524-8_20.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In:
TCC 2016-B, Part II. LNCS. 2016, pp. 31–60. doi: 10.1007/978-3-662-53644-5_2.

[BDFG20] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Paper
2020/081. https://eprint.iacr.org/2020/081. 2020. url: https://eprint.iacr
.org/2020/081.

[BEKRS21] J. Bobolz, F. Eidens, S. Krenn, S. Ramacher, and K. Samelin. “Issuer-Hiding
Attribute-Based Credentials”. In: CANS 21. LNCS. 2021, pp. 158–178. doi: 10.10
07/978-3-030-92548-2_9.

74

https://github.com/anon-aadhaar/anon-aadhaar
https://github.com/anon-aadhaar/anon-aadhaar
https://doi.org/10.1007/s00145-014-9196-7
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://doi.org/10.1007/11832072_8
https://eprint.iacr.org/2023/1199
https://eprint.iacr.org/2023/1199
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-662-53644-5_2
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://doi.org/10.1007/978-3-030-92548-2_9
https://doi.org/10.1007/978-3-030-92548-2_9

[Ber06] D. J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: PKC 2006.
LNCS. 2006, pp. 207–228. doi: 10.1007/11745853_14.

[BLCL91] G. Brassard, S. Laplante, C. Crépeau, and C. Léger. “Computationally convincing
proofs of knowledge”. In: STACS 91. Ed. by C. Choffrut and M. Jantzen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1991, pp. 251–262. isbn: 978-3-540-47002-1.

[BLS04] P. S. L. M. Barreto, B. Lynn, and M. Scott. “On the Selection of Pairing-Friendly
Groups”. In: SAC 2003. LNCS. 2004, pp. 17–25. doi: 10.1007/978-3-540-24654-1
_2.

[BN06] P. S. L. M. Barreto and M. Naehrig. “Pairing-Friendly Elliptic Curves of Prime
Order”. In: SAC 2005. LNCS. 2006, pp. 319–331. doi: 10.1007/11693383_22.

[BPW12] D. Bernhard, O. Pereira, and B. Warinschi. “How Not to Prove Yourself: Pitfalls
of the Fiat-Shamir Heuristic and Applications to Helios”. In: ASIACRYPT 2012.
LNCS. 2012, pp. 626–643. doi: 10.1007/978-3-642-34961-4_38.

[Bra00] S. Brands. Rethinking public key infrastructures and digital certificates: building
in privacy. Mit Press, 2000.

[Bra95] S. Brands. “Off-Line Electronic Cash Based on Secret-Key Certificates”. In: LATIN
1995. LNCS. 1995, pp. 131–166. doi: 10.1007/3-540-59175-3_86.

[CBCMRW24] M. Christ, F. Baldimtsi, K. K. Chalkias, D. Maram, A. Roy, and J. Wang. SoK:
Zero-Knowledge Range Proofs. Cryptology ePrint Archive, Paper 2024/430. https:
//eprint.iacr.org/2024/430. 2024. url: https://eprint.iacr.org/2024/430.

[CCLMR21] K. Chalkias, S. Cohen, K. Lewi, F. Moezinia, and Y. Romailler. “HashWires:
Hyperefficient Credential-Based Range Proofs”. In: PoPETs 2021.4 (Oct. 2021),
pp. 76–95. doi: 10.2478/popets-2021-0061.

[CDV23] M. Chase, F. B. Durak, and S. Vaudenay. “Anonymous Tokens with Stronger
Metadata Bit Hiding from Algebraic MACs”. In: CRYPTO 2023, Part II. LNCS.
2023, pp. 418–449. doi: 10.1007/978-3-031-38545-2_14.

[CDVW24] S. Celi, A. Davidson, S. Valdez, and C. A. Wood. Privacy Pass Issuance Protocols.
RFC 9578. 2024. doi: 10.17487/RFC9578. url: https://www.rfc-editor.org/info
/rfc9578.

[CFQ19] M. Campanelli, D. Fiore, and A. Querol. “LegoSNARK: Modular Design and
Composition of Succinct Zero-Knowledge Proofs”. In: ACM CCS 2019. ACM
Press, 2019, pp. 2075–2092. doi: 10.1145/3319535.3339820.

[CGKR22] G. Couteau, D. Goudarzi, M. Klooß, and M. Reichle. “Sharp: Short Relaxed Range
Proofs”. In: ACM CCS 2022. ACM Press, 2022, pp. 609–622. doi: 10.1145/35486
06.3560628.

[Cha82] D. Chaum. “Blind Signatures for Untraceable Payments”. In: CRYPTO’82. Plenum
Press, New York, USA, 1982, pp. 199–203. doi: 10.1007/978-1-4757-0602-4_18.

[Cha85] D. Chaum. “Security without identification: Transaction systems to make big
brother obsolete”. In: Communications of the ACM 28.10 (1985), pp. 1030–1044.

[Che06] J. H. Cheon. “Security Analysis of the Strong Diffie-Hellman Problem”. In: EU-
ROCRYPT 2006. LNCS. 2006, pp. 1–11. doi: 10.1007/11761679_1.

75

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/978-3-540-24654-1_2
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/3-540-59175-3_86
https://eprint.iacr.org/2024/430
https://eprint.iacr.org/2024/430
https://eprint.iacr.org/2024/430
https://doi.org/10.2478/popets-2021-0061
https://doi.org/10.1007/978-3-031-38545-2_14
https://doi.org/10.17487/RFC9578
https://www.rfc-editor.org/info/rfc9578
https://www.rfc-editor.org/info/rfc9578
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1145/3548606.3560628
https://doi.org/10.1145/3548606.3560628
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/11761679_1

[Chi10] A. Chiesa. “Proof-carrying data”. PhD thesis. Massachusetts Institute of Technol-
ogy, 2010.

[CHKLM06] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich.
“How to win the clonewars: Efficient periodic n-times anonymous authentication”. In:
ACM CCS 2006. ACM Press, 2006, pp. 201–210. doi: 10.1145/1180405.1180431.

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. “Marlin: Prepro-
cessing zkSNARKs with Universal and Updatable SRS”. In: EUROCRYPT 2020,
Part I. LNCS. 2020, pp. 738–768. doi: 10.1007/978-3-030-45721-1_26.

[CKLMNP16] J. Camenisch, S. Krenn, A. Lehmann, G. L. Mikkelsen, G. Neven, and M. Ø.
Pedersen. “Formal Treatment of Privacy-Enhancing Credential Systems”. In: SAC
2015. LNCS. 2016, pp. 3–24. doi: 10.1007/978-3-319-31301-6_1.

[CL01] J. Camenisch and A. Lysyanskaya. “An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation”. In: EUROCRYPT 2001.
LNCS. 2001, pp. 93–118. doi: 10.1007/3-540-44987-6_7.

[CL03] J. Camenisch and A. Lysyanskaya. “A Signature Scheme with Efficient Protocols”.
In: SCN 02. LNCS. 2003, pp. 268–289. doi: 10.1007/3-540-36413-7_20.

[CL06] M. Chase and A. Lysyanskaya. “On Signatures of Knowledge”. In: CRYPTO 2006.
LNCS. 2006, pp. 78–96. doi: 10.1007/11818175_5.

[CL19] E. C. Crites and A. Lysyanskaya. “Delegatable Anonymous Credentials from
Mercurial Signatures”. In: CT-RSA 2019. LNCS. 2019, pp. 535–555. doi: 10.1007
/978-3-030-12612-4_27.

[CMZ14] M. Chase, S. Meiklejohn, and G. Zaverucha. “Algebraic MACs and Keyed-
Verification Anonymous Credentials”. In: ACM CCS 2014. ACM Press, 2014,
pp. 1205–1216. doi: 10.1145/2660267.2660328.

[Con] T. H. A. Contributors. Hyperledger Anoncreds CL Signatures. url: https://githu
b.com/hyperledger/anoncreds-clsignatures-rs.

[CPZ20] M. Chase, T. Perrin, and G. Zaverucha. “The Signal Private Group System and
Anonymous Credentials Supporting Efficient Verifiable Encryption”. In: ACM
CCS 2020. ACM Press, 2020, pp. 1445–1459. doi: 10.1145/3372297.3417887.

[CR19] G. Couteau and M. Reichle. “Non-interactive Keyed-Verification Anonymous
Credentials”. In: PKC 2019, Part I. LNCS. 2019, pp. 66–96. doi: 10.1007/978-3-
030-17253-4_3.

[CV02] J. Camenisch and E. Van Herreweghen. “Design and Implementation of The Idemix
Anonymous Credential System”. In: ACM CCS 2002. ACM Press, 2002, pp. 21–30.
doi: 10.1145/586110.586114.

[DG23] Q. Dao and P. Grubbs. “Spartan and Bulletproofs are Simulation-Extractable
(for Free!)” In: EUROCRYPT 2023, Part II. LNCS. 2023, pp. 531–562. doi:
10.1007/978-3-031-30617-4_18.

[DGSTV18] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda. “Privacy
Pass: Bypassing Internet Challenges Anonymously”. In: PoPETs 2018.3 (July
2018), pp. 164–180. doi: 10.1515/popets-2018-0026.

76

https://doi.org/10.1145/1180405.1180431
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1145/2660267.2660328
https://github.com/hyperledger/anoncreds-clsignatures-rs
https://github.com/hyperledger/anoncreds-clsignatures-rs
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1007/978-3-030-17253-4_3
https://doi.org/10.1007/978-3-030-17253-4_3
https://doi.org/10.1145/586110.586114
https://doi.org/10.1007/978-3-031-30617-4_18
https://doi.org/10.1515/popets-2018-0026

[DMTV24] F. B. Durak, L. Marco, A. Talayhan, and S. Vaudenay. “Non-Transferable Anony-
mous Tokens by Secret Binding”. In: Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security. CCS ’24. 2024, 2460–2474.
doi: 10.1145/3658644.3670338. url: https://doi.org/10.1145/3658644.3670338.

[DVC22] F. B. Durak, S. Vaudenay, and M. Chase. Anonymous Tokens with Hidden Meta-
data Bit from Algebraic MACs. Cryptology ePrint Archive, Report 2022/1622.
2022. url: https://eprint.iacr.org/2022/1622.

[DY05] Y. Dodis and A. Yampolskiy. “A Verifiable Random Function with Short Proofs
and Keys”. In: PKC 2005. LNCS. 2005, pp. 416–431. doi: 10.1007/978-3-540-30
580-4_28.

[Eag22] L. Eagen. Bulletproofs++. Cryptology ePrint Archive, Report 2022/510. 2022.
url: https://eprint.iacr.org/2022/510.

[Ern+23] J. Ernstberger et al. zk-Bench: A Toolset for Comparative Evaluation and Perfor-
mance Benchmarking of SNARKs. Cryptology ePrint Archive, Paper 2023/1503.
https://eprint.iacr.org/2023/1503. 2023. url: https://eprint.iacr.org/2023
/1503.

[FHS19] G. Fuchsbauer, C. Hanser, and D. Slamanig. “Structure-Preserving Signatures on
Equivalence Classes and Constant-Size Anonymous Credentials”. In: Journal of
Cryptology 32.2 (Apr. 2019), pp. 498–546. doi: 10.1007/s00145-018-9281-4.

[Fis05] M. Fischlin. “Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors”. In: CRYPTO 2005. LNCS. 2005, pp. 152–168. doi: 10.1007/1
1535218_10.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic Group Model and its
Applications”. In: CRYPTO 2018, Part II. LNCS. 2018, pp. 33–62. doi: 10.1007
/978-3-319-96881-0_2.

[Foua] 0xPARC Foundation. Zupass: Zuzalu Passport. url: https://github.com/proofca
rryingdata/zupass.

[Foub] E. Foundation. Semaphore: A zero-knowledge protocol for anonymous interactions.
url: https://semaphore.pse.dev/.

[FS87] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: CRYPTO’86. LNCS. 1987, pp. 186–194. doi: 10.10
07/3-540-47721-7_12.

[FW24] G. Fuchsbauer and M. Wolf. “Concurrently Secure Blind Schnorr Signatures”. In:
EUROCRYPT 2024, Part II. LNCS. 2024, pp. 124–160. doi: 10.1007/978-3-031-
58723-8_5.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of Interactive
Proof Systems”. In: SIAM Journal on Computing 18.1 (1989), pp. 186–208.

[GMY06] J. A. Garay, P. D. MacKenzie, and K. Yang. “Strengthening Zero-Knowledge
Protocols Using Signatures”. In: Journal of Cryptology 19.2 (Apr. 2006), pp. 169–
209. doi: 10.1007/s00145-005-0307-3.

77

https://doi.org/10.1145/3658644.3670338
https://doi.org/10.1145/3658644.3670338
https://eprint.iacr.org/2022/1622
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://eprint.iacr.org/2022/510
https://eprint.iacr.org/2023/1503
https://eprint.iacr.org/2023/1503
https://eprint.iacr.org/2023/1503
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://github.com/proofcarryingdata/zupass
https://github.com/proofcarryingdata/zupass
https://semaphore.pse.dev/
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/978-3-031-58723-8_5
https://doi.org/10.1007/s00145-005-0307-3

[Goo] Google LLC. Google Cloud VPN. url: https://one.google.com/about/vpn/howit
works.

[Gro15] J. Groth. “Efficient Fully Structure-Preserving Signatures for Large Messages”. In:
ASIACRYPT 2015, Part I. LNCS. 2015, pp. 239–259. doi: 10.1007/978-3-662-48
797-6_11.

[GS08] J. Groth and A. Sahai. “Efficient Non-interactive Proof Systems for Bilinear
Groups”. In: EUROCRYPT 2008. LNCS. 2008, pp. 415–432. doi: 10.1007/978-3-
540-78967-3_24.

[Ham15] M. Hamburg. “Decaf: Eliminating Cofactors Through Point Compression”. In:
CRYPTO 2015, Part I. LNCS. 2015, pp. 705–723. doi: 10.1007/978-3-662-47989-
6_34.

[HIPVW24] S. Hendrickson, J. Iyengar, T. Pauly, S. Valdez, and C. A. Wood. Rate-Limited
Token Issuance Protocol. Internet-Draft draft-ietf-privacypass-rate-limit-tokens-06.
Work in Progress. Internet Engineering Task Force, 2024. 52 pp. url: https://da
tatracker.ietf.org/doc/draft-ietf-privacypass-rate-limit-tokens/06/.

[Ide] Hyperledger Fabric’s MSP Implementation with Identity Mixer. url: https://git
hub.com/hyperledger/fabric/blob/main/docs/source/idemix.rst.

[Irm] IRMA server, client, and tooling. url: https://github.com/privacybydesign/irm
ago.

[JKK14] S. Jarecki, A. Kiayias, and H. Krawczyk. “Round-Optimal Password-Protected
Secret Sharing and T-PAKE in the Password-Only Model”. In: ASIACRYPT 2014,
Part II. LNCS. 2014, pp. 233–253. doi: 10.1007/978-3-662-45608-8_13.

[JY09] D. Jao and K. Yoshida. “Boneh-Boyen Signatures and the Strong Diffie-Hellman
Problem”. In: Pairing-Based Cryptography – Pairing 2009. Ed. by H. Shacham
and B. Waters. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–16.
isbn: 978-3-642-03298-1.

[KB] V. Kalos and G. M. Bernstein. Blind BBS Signatures. Internet-Draft draft-kalos-
bbs-blind-signatures-03. Work in Progress. Internet Engineering Task Force. url:
https://datatracker.ietf.org/doc/draft-kalos-bbs-blind-signatures/03/.

[KLOR20] B. Kreuter, T. Lepoint, M. Orrù, and M. Raykova. “Anonymous Tokens with
Private Metadata Bit”. In: CRYPTO 2020, Part I. LNCS. 2020, pp. 308–336. doi:
10.1007/978-3-030-56784-2_11.

[KLSS17] S. Krenn, T. Lorünser, A. Salzer, and C. Striecks. “Towards Attribute-Based
Credentials in the Cloud”. In: CANS 17. LNCS. 2017, pp. 179–202. doi: 10.1007
/978-3-030-02641-7_9.

[KT23] T. Kohrita and P. Towa. Zeromorph: Zero-Knowledge Multilinear-Evaluation Proofs
from Homomorphic Univariate Commitments. Cryptology ePrint Archive, Paper
2023/917. https://eprint.iacr.org/2023/917. 2023. url: https://eprint.iacr
.org/2023/917.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to
Polynomials and Their Applications”. In: ASIACRYPT 2010. LNCS. 2010, pp. 177–
194. doi: 10.1007/978-3-642-17373-8_11.

78

https://one.google.com/about/vpn/howitworks
https://one.google.com/about/vpn/howitworks
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-662-48797-6_11
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-47989-6_34
https://doi.org/10.1007/978-3-662-47989-6_34
https://datatracker.ietf.org/doc/draft-ietf-privacypass-rate-limit-tokens/06/
https://datatracker.ietf.org/doc/draft-ietf-privacypass-rate-limit-tokens/06/
https://github.com/hyperledger/fabric/blob/main/docs/source/idemix.rst
https://github.com/hyperledger/fabric/blob/main/docs/source/idemix.rst
https://github.com/privacybydesign/irmago
https://github.com/privacybydesign/irmago
https://doi.org/10.1007/978-3-662-45608-8_13
https://datatracker.ietf.org/doc/draft-kalos-bbs-blind-signatures/03/
https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1007/978-3-030-02641-7_9
https://doi.org/10.1007/978-3-030-02641-7_9
https://eprint.iacr.org/2023/917
https://eprint.iacr.org/2023/917
https://eprint.iacr.org/2023/917
https://doi.org/10.1007/978-3-642-17373-8_11

[Lab] D. Labs. url: https://www.dock.io/.
[LKWL] T. Looker, V. Kalos, A. Whitehead, and M. Lodder. The BBS Signature Scheme.

Internet-Draft draft-irtf-cfrg-bbs-signatures-07. Work in Progress. Internet Engi-
neering Task Force. url: https://datatracker.ietf.org/doc/draft-irtf-cfrg-b
bs-signatures/07/.

[Mau09] U. M. Maurer. “Abstraction in Cryptography (Invited Talk)”. In: CRYPTO 2009.
LNCS. 2009, p. 465. doi: 10.1007/978-3-642-03356-8_27.

[NPR99] M. Naor, B. Pinkas, and O. Reingold. “Distributed Pseudo-random Functions and
KDCs”. In: EUROCRYPT’99. LNCS. 1999, pp. 327–346. doi: 10.1007/3-540-489
10-X_23.

[NS04] L. Nguyen and R. Safavi-Naini. “Efficient and Provably Secure Trapdoor-Free
Group Signature Schemes from Bilinear Pairings”. In: ASIACRYPT 2004. LNCS.
2004, pp. 372–386. doi: 10.1007/978-3-540-30539-2_26.

[Nym] Nym Technologies. What are zk-nyms? url: https://nym.com/docs/network/cryp
tography/zk-nym.

[Ope] OpenWallet Foundation. bifold-wallet: an extensible open-source React Native
project designed to enhance the way we interact with digital identities. url: https:
//github.com/openwallet-foundation/bifold-wallet.

[PS16] D. Pointcheval and O. Sanders. “Short Randomizable Signatures”. In: CT-RSA 2016.
LNCS. 2016, pp. 111–126. doi: 10.1007/978-3-319-29485-8_7.

[PS18] D. Pointcheval and O. Sanders. “Reassessing Security of Randomizable Signatures”.
In: CT-RSA 2018. LNCS. 2018, pp. 319–338. doi: 10.1007/978-3-319-76953-0_17.

[QRW19] W. Quach, R. D. Rothblum, and D. Wichs. “Reusable Designated-Verifier NIZKs
for all NP from CDH”. In: EUROCRYPT 2019, Part II. LNCS. 2019, pp. 593–621.
doi: 10.1007/978-3-030-17656-3_21.

[Qu99] M. Qu. Sec 2: Recommended elliptic curve domain parameters. 1999.
[Sah99] A. Sahai. “Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-

Ciphertext Security”. In: 40th FOCS. IEEE Computer Society Press, 1999, pp. 543–
553. doi: 10.1109/SFFCS.1999.814628.

[SB] Data Integrity BBS Cryptosuites v1.0. Tech. rep. url: https://www.w3.org/TR/vc
-di-bbs/.

[Sch01] C.-P. Schnorr. “Security of Blind Discrete Log Signatures against Interactive
Attacks”. In: ICICS 01. LNCS. 2001, pp. 1–12. doi: 10.1007/3-540-45600-7_1.

[Sho97] V. Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In:
EUROCRYPT’97. LNCS. 1997, pp. 256–266. doi: 10.1007/3-540-69053-0_18.

[Sig] Signal Foundation. Technology Preview: Signal Private Group System. url: https:
//signal.org/blog/signal-private-group-system/.

[SLSRSA] M. Sporny, D. Longley, M. Sabadello, D. Reed, O. Steele, and C. Allen. Decentral-
ized Identifiers (DIDs) v1.0. Tech. rep. url: https://www.w3.org/TR/did-1.0/.

79

https://www.dock.io/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/07/
https://doi.org/10.1007/978-3-642-03356-8_27
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/978-3-540-30539-2_26
https://nym.com/docs/network/cryptography/zk-nym
https://nym.com/docs/network/cryptography/zk-nym
https://github.com/openwallet-foundation/bifold-wallet
https://github.com/openwallet-foundation/bifold-wallet
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-76953-0_17
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1109/SFFCS.1999.814628
https://www.w3.org/TR/vc-di-bbs/
https://www.w3.org/TR/vc-di-bbs/
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-69053-0_18
https://signal.org/blog/signal-private-group-system/
https://signal.org/blog/signal-private-group-system/
https://www.w3.org/TR/did-1.0/

[SS22] T. Silde and M. Strand. “Anonymous Tokens with Public Metadata and Applica-
tions to Private Contact Tracing”. In: FC 2022. LNCS. 2022, pp. 179–199. doi:
10.1007/978-3-031-18283-9_9.

[TFS04] I. Teranishi, J. Furukawa, and K. Sako. “k-Times Anonymous Authentication
(Extended Abstract)”. In: ASIACRYPT 2004. LNCS. 2004, pp. 308–322. doi:
10.1007/978-3-540-30539-2_22.

[TG23] L. Tulloch and I. Goldberg. “Lox: Protecting the Social Graph in Bridge Distribu-
tion”. In: PoPETs 2023.1 (Jan. 2023), pp. 494–509. doi: 10.56553/popets-2023-0
029.

[TZ23] S. Tessaro and C. Zhu. “Revisiting BBS Signatures”. In: EUROCRYPT 2023,
Part V. LNCS. 2023, pp. 691–721. doi: 10.1007/978-3-031-30589-4_24.

[Upr] uProve Specification. 2013. url: https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.1.pdf.

80

https://doi.org/10.1007/978-3-031-18283-9_9
https://doi.org/10.1007/978-3-540-30539-2_22
https://doi.org/10.56553/popets-2023-0029
https://doi.org/10.56553/popets-2023-0029
https://doi.org/10.1007/978-3-031-30589-4_24
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.1.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/U-Prove20Cryptographic20Specification20V1.1.pdf

	Abstract
	Contents
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Technical Overview
	2.1 Security
	2.2 Chase–Meiklejohn–Zaverucha credentials
	2.3 Boneh–Boyen–Shacham credentials
	2.4 Extensions beyond selective disclosure
	2.5 Instantiating the zero-knowledge proofs

	3 Preliminaries
	3.1 Cryptographic assumptions
	3.2 Algebraic message authentication codes
	3.3 Zero-knowledge arguments
	3.4 Anonymous Tokens

	4 Keyed-verification credential systems
	4.1 Syntax
	4.2 Correctness
	4.3 Anonymity
	4.4 Extractability

	5 Chase–Meiklejohn–Zaverucha credentials
	5.1 Protocol description
	5.2 Theorems
	5.3 Algebraic MAC
	5.4 Anonymity
	5.5 Extractability
	5.6 One-more unforgeability

	6 Boneh–Boyen–Shacham credentials
	6.1 Protocol description
	6.2 Theorems
	6.3 Algebraic MAC
	6.4 Anonymity
	6.5 Extractability
	6.6 One-more unforgeability analysis

	7 Designated-verifier fully-succinct SNARKs without pairings
	7.1 Designated-verifier Kate–Zaverucha–Goldberg commitments
	7.2 IOP compiler for designated-verifier polynomial commitments

	8 Building on keyed-verification credential systems
	8.1 Time-based policies
	8.2 Rate-limiting
	8.3 Pseudonyms

	9 Straight-line extraction from Sigma protocols
	10 Acknowledgements
	References

