
Scalable Two-Round n-out-of-n and
Multi-Signatures from Lattices in the Quantum

Random Oracle Model

Qiqi Lai1, Feng-Hao Liu2,Yang Lu1, Haiyang Xue3,Yong Yu1

1 School of Computer Science, Shaanxi Normal University, Xi’an, China.
laiqq@snnu.edu.cn, luyang@snnu.edu.cn, yuyong@snnu.edu.cn.

2 Washington State University, Pullman, WA, USA. feng-hao.liu@wsu.edu.
3 Singapore Management University, Singapore. haiyangxc@gmail.com.

Abstract. In this paper, we construct the first asymptotically efficien-
t two-round n-out-of-n and multi-signature protocols from lattices in
the quantum random oracle model (QROM), using the Fiat-Shamir with
Aborts (FSwA) paradigm. Our protocols can be viewed as the improve-
ment of the two-round protocols by Damg̊ard et al. (JoC 2022). A notable
feature of our protocols, compared to other counterparts in the classical
random oracle model, is that each party performs an independent abort
and still outputs a signature in exactly two rounds, making our schemes
significantly more scalable.
From a technical perspective, the simulation of QROM and the efficient
reduction from breaking underlying assumption to forging signatures are
the essential challenges to achieving efficient QROM security for the pre-
viously related works. In order to conquer the former one, we adopt the
quantum-accessible pseudorandom function (QPRF) to simulate QROM.
Particularly, we show that there exists a QPRF, which is not only both
invertible and programmable, but also its output space is separable, even
against a quantum adversary. For the latter challenge, we tweak and ap-
ply the online extractability by Unruh (Eurocrypt 2015).

1 Introduction

Due to the applications in the decentralized scenarios, distributed signing proto-
cols have recently received wide attentions. Threshold signature [20] and multi-
signature [35] are two similar classes of distributed signing protocols.

In a nutshell, a t-out-of-n threshold signature involves a distributed key gen-
eration process, where each user obtains a share, say ski, of the single signing
key sk, effectively distributing signing power among n participants, such that a
message can only be signed if t or more participants agree to do so. The special
case of n-out-of-n signature is achieved by setting t = n, which is also called as
decentralized signature (DS).

On the other hand, a multi-signature (MS) allows a group of n users, each
holding signing key pairs (ski, pki), to collectively sign the same message and

obtain a single signature. It differs from threshold signature in several ways: (i)
there is no distributed key generation, as each participant generates their own
key pairs; (ii) the group of participants is dynamically formed from certain sets;
(iii) as a result, the verification process does not rely on a fixed public key, but
rather on the list or aggregation of public keys of the participants.

State-of-the-art of Thershold/Multi signature. Numerous recent studies
have focused on Schnorr-type schemes, such as the threshold version of ECDSA
[14, 22, 58, 59], threshold Schnorr [39, 41], and multi-signing of Schnorr [3, 6, 48,
50,53]. However, Schnorr-type constructions are vulnerable to quantum attacks,
it is crucial to investigate the threshold and multi-signature of post-quantum
alternatives. Significant attention has been directed towards lattice-based digital
signatures, particularly variants of Dilithium [27, 28], which has been chosen as
a standard by NIST [52].

Dilithium is based on the “Fiat-Shamir with Aborts” (FSwA) technique of
Lyubashevsky [44], which employs rejection sampling to guarantee security. How-
ever, unlike Schnorr, thresholding Dilithium presents greater challenges due to
the adoption of the “Aborts” and small Gaussian distributions. Several schemes
with other technique routes have been proposed, but they either rely on costly
primitives, such as fully homomorphic encryption in [2,11,33], or fail to achieve
comparable efficiency and full security based on standard assumptions [30].

Damg̊ard, Orlandi, Takahashi, and Tibouchi [18] address the challenge by
using homomorphic trapdoor commitment schemes as a building block. They
proposed threshold signatures (specifically, n-out-of-n) and multi-signatures in
both two-round and three-round, denoted as DS2/MS2 and DS3/MS3, respec-
tively. Notably, DS2 and MS2 are the first lattice-based two-round schemes.

Subsequently, MulSig-L by Boschini et al. [13] and DualMS by Chen [15] im-
proved upon DS2/MS2. Compared with DS2/MS2, MulSig-L does not rely on
additional lattice-based trapdoor commitments and benefits from preprocess-
ing in the first round. DualMS further enhances the construction by utilizing
a trapdoor-free “dual signing simulation” technique, resulting in smaller public
keys, signatures, and reduces communication.

Common problems in lattice-based setting. All these two-round FSwA
paradigm protocols with polynomial modulus can only been proven to be secure
in the classical random oracle model (ROM), through using the currently known
techniques. Additionally, all the protocols must be restarted until all partici-
pants pass the rejection sampling step (i.e., without abort) simultaneously. This
will lead to an exponential increase (in the number of participants) in expected
communication, computation, and rounds, which makes them “non-scalability”.4

Quantum ROM. For post-quantum cryptographic constructions in the ROM, we
need to further consider that the quantum adversary might conduct arbitrary

4 Of course, we can trivially make all these existing two-round schemes “scalability”,
through directly using the noise flooding technique, instead of rejection sampling
technique. But, the corresponding cost is super-polynomial modulus, which will re-
sults in bad efficiency. Thus, we just focus on FSwA paradigm constructions with
polynomial modulus in this paper.

2

superposition queries to ROM, which is further called QROM and first proposed
by Boneh et al. in [10]. Currently, for DS and MS, only three-round schemes
DS3 and multi-signature in [30] achieve security in the QROM by utilizing the
technique of lossy identification [38]. The QROM security for all known existing
two-round schemes, DS2/MS2, MulSig-L, and DualMS, remains an open problem.

Independent Abort. Another drawback is that, due to the requirement of
abort, the final round of these schemes will not output the final signature until
non-abort happens to all of the participants. Thus, the probability of successfully
outputting a signature decreases with an exponential in the number n of parties.
Specifically, assuming the non-abort probability of each party is 1/M , the success
probability will be reduced to 1/Mn when n parties are involved. In this case,
the expected communication round will increase to Mn from 2. While parallel
executions can be applied to reduce the round, it still results in an increase in
the expected communication and computation overheads. Particularly, the whole
protocol need to be parallel run about τ = λ/(log M

M−1) times, in order to ensure
the parties output a signature with overwhelming probability. In this case, the
final communication and computation overheads of each party will expand about
τ times, contrasted to the originally theoretical ones.

One might consider to reduce 1/Mn to 1/M again, by setting the standard
deviation σ′ of the discrete Gaussian distribution to be n ·σ, where σ denotes the
original standard deviation for the non-distributed signature. However, just as
pointed out in [18], this method will increase the size of each signature share, and
affect the parameters of the underlying hard problem in the security reduction.
Besides, this makes the choice of concrete parameters, especially the the standard
deviation σ′, inflexible with the number of involved parties scales. In summary,
current schemes are not “scalable”, when deploying with polynomial modulus.

1.1 Our Goals

Therefore, the motivation of this paper is to design two round n-out-of-n and
multi-signatures for Dilithium, which benefit from QROM security, round effi-
ciency, and polynomial modulus properties.

– QROM security : The security of these protocols are proved in the QROM.

– Round-efficiency: We focus on efficient protocols with exact two-round. In
this case, the communication complexity of each party will remain to be
unchanged, even when the participant number increases. As a result, our
schemes will be much more scalable, compared with other related works.

– Polynomial modulus: The final protocols can be instantiated with polynomial
modulus, which will have much better asymptotical efficiency.

This work aims to solve these challenges with the following particular goals.

(Main Goal 1 (for Security)) Design FSwA-style two-round n-out-of-
n and multi-signatures from lattices in the QROM.

3

(Main Goal 2 (for Efficiency)) Design efficient FSwA-style two-round
n-out-of-n signatures and multi-signatures, in which each party’s com-
munication overhead remains to be independent of the number of parties,
in the case of broadcast channel.

1.2 Our Contributions

This work aims at the two main goals and makes the following three major
contributions.

Contribution 1. We construct the first two-round n-out-of-n signature from
lattices in the QROM, which can be viewed as the significant improvements of
two-round protocol by Damg̊ard et al. in [18]. For the security proof of our
new construction, we leverage the online extractability technology by Unruh
in [57] and our newly modified QPRF (which is introduced as the independent
technique contribution in the following Contribution 3). Besides, our new con-
struction has much lower security loss, as we use online extractability instead of
usual rewinding method. Particularly, we improve the adversary’s advantage for

forging a signature from Θ(ε
1/2
MSIS) or Θ(ε

1/4
MSIS) to Θ(εMSIS), where εMSIS denotes

the hardness of the underlying MSIS assumption.
Besides, our new n-out-of-n signature is the first lattice-based FSwA-style

construction with both exact two-round and polynomial modulus. All previ-
ously known FSwA-style distributed protocols parameterized with polynomial
modulus output a signature only with certain probability. The advantage of our
exact two-round protocol is that each party’s communication and computation
overhead will be almost unchanged, even with the increasing of the participant
number in the protocols. Thus, our constructions are more scalable than all other
related constructions. From the perspective of technique, such exact two-round
is obtained through embedding the protocol challenge in cut-and-choose way,
rather than every participant directly choosing small ring elements as indepen-
dent challenges.

Contribution 2. We construct the first two-round FSwA-style multi-signature
from lattices in the QROM, which has the same properties (i.e., exact two-round,
lower security loss, and polynomial modulus) as the above mentioned n-out-of-n
signature. However, compared with n-out-of-n signature, there is an additional
obstacle in the security proof. In order to conquer it, we prove the security in
the key-verification model, rather than the plain public key model. In the key-
verification model, we use a multi-proof straight-line extractable non-interactive
zero knowledge proof of knowledge (NIZKPoK) as an additional building block.
Although such NIZKPoK will induce many more overheads, it gives another nice
property, key aggregation.

Contribution 3. As a technical contribution, we make essential modifications
on the direct QPRF construction in [60], which was originally proposed by Baner-
jee et. al.’s in [7], such that it becomes to be an invertible variant. Besides, we

4

show that the invertible QPRF is programable simultaneously against efficient
quantum adversary conducting superposition queries.

With such QPRF, we can prove the security of our two-round protocols in
the QROM. Particularly, we can efficiently simulate the adversary’s view even
without the real secret key, and then establish the efficient reduction from the
underlying assumptions to the security of our constructions. We believe such a
new QPRF should be of independent interest.

Overall, we list the detailed comparisons with the most related works in Table
1.

QROM Round Scalable
Reduc.-
Appro.

Assumptions

[30] X 3 × Lossy MLWE,rMLWE
DS3 [18]+ [30] X 3 × Lossy MLWE

DS2 [18] × 2 × Rewinding MLWE,MSIS
MS2 [18] × 2 × Rewinding MLWE,MSIS

[13] × 2 × Rewinding MLWE,MSIS
[15] × 2 × Rewinding MLWE,MSIS

Our DS2 X 2 X
Online-

Extractability
MLWE,MSIS

Our MS2 X 2 X
Online-

Extractability
MLWE,MSIS

Table 1. Comparison with previous FSwA-based distributed and multi-signatures.
The column “Reduc. Appro.” indicates the security reduction approach.

Moreover, after an integrated evaluation, we conclude that the asymptoti-
cal communication overhead of our protocols is comparable with that of [18],
especially when a large number of participants are involved. More details are de-
ferred to Section 5.3. Besides, our constructions have the nice property of highly
parallelization. For any P up to the security parameter λ, each participant can
allocate O(λ/P) of its computations to each of P processors.

2 Technical Overview

In this section, we present an overview of our techniques. In fact, our intuition
is quite simple: analyze the essential obstacles to proving the existing two-round
signatures to be secure in the QROM, then overcome them to achieve the desired
security relying on the MLWE, MSIS and DSPR assumptions.

2.1 Recall the existing protocol in [18].

To present our techniques in a natural way, we first recall Damg̊ard et al.’s elegant
two-round distributed n-out-of-n protocol, called DS2, in [18].5 The protocols

5 Here, we are just interested in two-round protocols, even our techniques can also
apply to their three-round setting. Besides, such n-out-of-n construction can be
easily extended to the setting of multi-signature.

5

in [18] are based on Dilithium signature scheme [27, 28], and thus work over
cyclotomic rings R = Z[X]/(f(X)) and Rq = Zq[X]/(f(X)), where N is a power
of 2, and f(X) = XN + 1 is the 2N -th cyclotomic polynomial. For simplicity,
here we just consider the case of 2 parties, which can be naturally generalized to
the case of n-party setting. Particularly, we assume each party Pj has a secret
vector sj ∈ R`+k and a matrix Aj ∈ Rk×`q , where j ∈ {1, 2}, sj consists of

small coefficients, and Aj is randomly sampled from Rk×`q . Then, P1 and P2

interactively generate the finally joint public verification key pk := (Â, t) =
([A1 + A2, I], [A1 + A2, I] · (s1 + s2)), through using the simple random oracle
commitments as in left hand side of Figure 1.

KeyGen of DS2 executed by P2(pp)

Sample A2
$←− Rk×`q , compute g2 ← H1(A2, 2)

g2−→
g1←−
A2−−→
A1←−−

Check g1
?
= H1(A1, 1)

If YES, compute A = A1 + A2

and set Â = [A, I] ∈ Rk×(`+k)
q

Sample s2
$←− S`+kβ , compute t2 := Â · s2,

g′2 ← H2(t2, 2)
g′2−→
g′1←−
t2−→
t1−→

Check g′1
?
= H2(t1, 1)

If YES, set t = t1 + t2

DS2 executed by P2(s2, pk := (A, t), µ)

y2
$←− D`+k;w2 ← Ây2 mod q

ck← H3(µ, pk)

com2 ← Commitck(w2, r2)

com2−−−→
com1←−−−

c← H0(com1 + com2, µ, pk)
z2 ← cs2 + y2

If RejSamp (cs2 + z2) = 0;
(z2, r2)← (⊥,⊥)

z2,r2−−−−→
z1,r1←−−−−

If z1 = ⊥ ∨ z2 = ⊥: restart
Output (com1 + com2,z1 + z1, r1 + r2)
as a signature

Fig. 1. Simple description of DS2 Protocol in [18]. Here, we just describe the behaviors
of P2 for saving space, due to the fact that the computations and communications of
P1 are symmetrically equivalent to these of P2.

The signature phase of DS2 is described as in the right hand side of Figure
1. Particularly, DS2 utilizes as a building block a homomorphic (equivocation)-
trapdoor commitment scheme, which is the core tool to enable the full securi-
ty proof from lattices. In the first round, given message µ, secret key sj and

the joint public key pk := (Â, t), the party Pj first samples small vector yj ,

and computes comj ← Commitck(wj ; r2), where ck ← H3(µ, pk), wj = Âyj
mod q and r2 is the randomness sampled from the corresponding set. Then, af-
ter exchanging their commitments com1 and com2, the party Pj computes the
challenge c ← H(com1 + com2, µ, pk), through using the linearly homomorphic
property of trapdoor commitment. Moreover, Pj computes the response vector
zj = c ·sj +yj and conducts the rejection sampling algorithm to decide whether

6

output zj or not. If all parties output successfully, then they exchange the pairs
(zj , rj)j∈{1,2}. The final signature is the addition of individual signature shares,
i.e., Sig = (com1 + com2, z1 + z2, r1 + r2).

Security analysis of DS2. In order to establish the security reduction for DS2,
there are the following important items need to be considered:

1. For the key generation, the simulator utilizes the invertible (or called pre-
image extractable in certain previous papers) and programable properties of
classical ROM (H1 and H2) to answer the adversary’s key query and embed
the MSIS challenge into the public key of DS2.

2. For the signature queries, the simulator employs a homomorphic trapdoor-
equivocation commitment scheme to enable the successful simulation of sig-
natures, and thus achieves the full security proof in the ROM.

3. For the reduction from solving hard problems to forging signature, the sim-
ulator needs to simulate H3 such that its output space is separable, i.e., the
output space of H3 can be divided into two parts: the normal commitment key
ck and the trapdoor commitment key tck. Particularly, the indistinguisha-
bility of ck and tck allows the adversary to use ck for the challenge message
µ∗, but use tck for all the signature generation queries, with a non-negligible
probability. Then, assuming the binding property of the commitment scheme
with normal key ck, the simulator can solve an underlying MSIS problem,
through using rewinding technique.

2.2 Enhancing the security of DS2 into the QROM

Based on the above analyses, we know that there are two main parts for the
security proof of DS2: the efficient simulations of random oracles and the efficient
reduction through rewinding. Thus, a straight way to extend the security of DS2

into the QROM is that: we need to ensure all the above techniques have the
corresponding counterparts for the quantum adversary and the QROM setting.
Below, we analyze the above security items one by one. Among this process, we
will also insert our considerations on how to obtain much better efficiency.

Simulation of QROM. Clearly, we need to consider how to simulate QROM
efficiently, such that not only it can be both invertible and programmable, but
also its output space is separable, following the proof strategy of [18]. Up until
now, there are two types of simulation approaches for QROM: stateless simulation
(e.g. quantum-secure pseudorandom functions [10,60] and 2Q-wise independent
functions [23,61]), and stateful simulation (e.g. the compressed oracle [25,42,62]).

Among them, the compressed oracle is the most powerful simulation tech-
nique, which can import almost all classical ROM security proof into the QROM
setting. Particularly, the compressed oracle can be roughly viewed as the on-
the-fly simulation of QROM, which supports both inversion and reprogram-
ming [24, 25, 42], without previously bounding the adversary’s queries times.
However, it seems that we can not apply the compressed oracle to directly
achieve the desired separable property, due to the inconsistency between the
commitment key space Sck of ck, tck and the output of compressed oracle.

7

Particularly, the output of compressed oracle is inherently uniform over
{0, 1}n.6 But, in the known instantiations of trapdoor commitment scheme as
in Section A.7, the commitment keys ck, tck indeed have the particular format,
such that they are just uniform over the key space Sck, a subspace of {0, 1}n.
To make matters even more complicated, when H3 outputs a tck, the simulator
also need the corresponding trapdoor td to generate the simulated signature.
But, the adversary can only obtain tck from H3. If using compressed oracle to
simulate H3, tck and td should be stored as superpositions over different regis-
ters, and thus it might need complex strategies to deal with the above different
requirements between simulator and the adversary.

In contrast, a stateless simulation method, say QPRF, might be compatible
with the separable property, as it is possible to use two different but related
functions to deal with the consistency of tck and td. But, for QPRF, it is still
not clear how to make it to be both invertible and programmable. Besides, we
also need to consider how to limit the output of QPRF into the key space Sck.

Notice also that, the technical details of the compressed oracle [62] and even
its further simplified exposition in [16] are relatively complicated. One always
needs additional investigations on the related backgrounds. So, as the main tech-
nic challenge in this paper, we want to ask

Is there much simpler and stateless simulation approach for QROM,
which is not only both invertible and programmable, but also its output s-
pace is separable, just through using the simple and classical lattice-based
concepts and techniques?

In this paper, our answer is positive. Particularly, our choice is QPRF [60].
[60]. We illustrate the high-level idea for using QPRF in the security proof in Fig-
ure 2. Of course, we require the concrete instantiation of QPRF is both invertible
and programmable, even against quantum adversaries, which are significantly
non-trivial. As far as we know, it seems that this is the first time to consider
how to program and invert QPRF simultaneously in the literature, even the in-
vertible property for PRF has been defined previously in [12,34]. We believe such
QPRF is of independent interest, and can be used on other applications, such as
PIR [34].

More precisely, we choose to use the following direct construction of QPRF
in [7, 60]: for a key k := ({ai}i∈[m̄], {si}i∈[¯̀]) ∈ K and input x := (x1, . . . , x¯̀) ∈
{0, 1}¯̀

, let

QPRFk(x) = QPRF{ai},{si}(x1, . . . , x¯̀) =

(a1, . . . , am̄) ·
¯̀∏

i=1

sxii


q̄

p̄

, (1)

6 In the compressed oracle simulation of QROM H : {0, 1}m → {0, 1}n, if the adver-
sary query |x, y〉 but a tuple (x, ·) is not found in the compressed database D (D
is initialized to be an empty database), then the simulator will create a uniform
superposition 1√

2n

∑
αx∈{0,1}n |αx〉 in new registers (this corresponds to choose αx

uniformly at random from {0, 1}n). Then the simulator adds (x, αx) into D, and
responds the query with |x, y ⊕ αx〉.

8

π

hash function

Real Construction

π

QROM

π

QPRF

Ideal Proof

A

superp
osit

ion queri
es

superposition queries

Security Proof Simulation

Fig. 2. Illustration of the high-level idea of using QPRF. Clearly, such QPRF is only
used in the ideal security proof. In the real constructions, it will be replaced with a
good hash function, such as SHA-256. And thus, the instantiation of QPRF will not
affect the practical efficiency of our QDS2 or QMS2.

where p̄, q̄, m̄, ¯̀ are integers such that q̄ > p̄, ai is chosen from a ring R̄q̄ =

Zq̄[X]/(XN̄ + 1), and si is chosen from a small distribution χ over R̄.7 For
certain parameter settings, such QPRF can be proven to be secure, just as in
Theorem 4.3. Below, we sketch how to prove the properties of (1).

Inversion. For the invertible property of QPRF, it is essentially non-trivial.
This is because the pseudorandomness of QPRF implicitly implies the one-way
property, and it should be impossible to invert the input from certain QPRF
output value. But, the situation might be quite different, when the simulator
just uses it to simulate QROM. Here the simulator holds the secret key for
QPRF, and the adversary can only get outputs through querying the simulator.
Even with such new application scenario in our security proof, all existing known
QPRFs, including the above (1), still do not satisfy our requirement of inversion.

As one of our significant technical contribution, we tweak the direct QPRF in
[60], through (i) embedding a MP trapdoor [49] in the vector a> = (a1, . . . , am̄);
(ii) choosing the specific ring structure such that the small ring element are
invertible over R̄q̄. Notice that, such a modification will not affect the security of
the direct QPRF, as the ring-based learning with errors (RLWE) assumption still
holds. Moreover, we can invert such QPRF, i.e., get x from y> = QPRF(x) ∈
R̄m̄p̄ = (Zp̄[X]/(XN̄+1))m̄, in the following way: (i) with the MP trapdoor in a>,

we can first get ŝ0 =
∏`
i=1 s

xi
i from y>, through using the inversion algorithm for

the ring-based learning with round (RLWR) problem; (ii) in order to determine
x1 = 0 or 1, we directly compute ŝ1 = s−1

1 · ŝ0. Notice that if x1 = 1, then

ŝ1 =
∏`
i=2 s

xi
i , whose norm should be upper bounded by certain value B with

overwhelming probability. Otherwise, ŝ1 = s−1
1 ·

∏`
i=2 s

xi
i , whose norm will be

larger than B with overwhelming probability, according to the decisional small
polynomial rate (DSPR) assumption [43]. The detailed inversion algorithm and
the related proof are given in Algorithm 1 and Theorem 4.7, respectively.

7 Here, we use the bar notation to distinguish the notations of QPRF from those
of the protocols DS,MS,QDS,QMS. Particularly, the parameter setting of QPRF
is independent of those of protocols in this paper. And thus, the modulus of our
protocols is still considered to be polynomial, regardless of the modulus of QPRF.

9

Reprogramming. In order to prove the reprogramable property for QPRF,
we resort to the existing adaptive programming result and technique for random
function in [32,57]. The high level technique route can be described as follows:

QPRFk(·)
(i)
≈ RF(·)≈RF′(·)

(ii)
≈ QPRF′k(·). (2)

Here, we use the box to indicate the existing result about the adaptive program-
ming for random functions in [32, 57]. RF(·) denotes a random function. RF′(·)
and QPRF′k(·) denote the programmed functions at certain points. Below, we
just need to consider how to prove the steps (i) and (ii) in the above (2).

At the first glance, it seems that the standard security of QPRF, i.e., oracle
indistinguishability in [60], is sufficient. However, there is still a tiny mismatch-
ing! This is because for the box part in the above (2), the adversary not only
accesses RF as an oracle, but also takes as input certain pairs (x,RF(x)), where
x has sufficient entropy. As a result, it is necessary to introduce a “seemingly”
strong definition, oracle-and-input indistinguishability, for QPRF as in Definition
3.7. Furthermore, as a justification of such strong security notion, we show that
it can be derived from standard oracle indistinguishability in Lemma 3.8.

The separable property. In order to simulate the signature successfully
even without secret key, we need to rely on the separable property of H3, i.e., its
output separates the normal commitment key ck from the trapdoor commitment
key tck. For an instantiation of QPRF, its output space is determinate. And thus,
we can not directly match the output of QPRF with the spaces of valid ck and

tck. In order to conquer this challenge, we first choose a specific key k3
$←− K,

and then divide the output of QPRF into two parts: {0, 1}`ra1 and {0, 1}`ra2 .
Particularly, we define

QPRFk3
(·) : {0, 1}l

∗
3 → ({0, 1}lra1 × {0, 1}lra2),

and compute
(ra1, ra2) = QPRFk3

(µ, pp, pk),

where µ denotes the signing message, pp and pk are public parameter and the
generated public key by KeyGen. Then, if the number of 1 in ra1 is larger than
certain value num, then we compute (tck, td) ← Eqv-TCGen(cppEqv, ra2), and
return tck. Otherwise, compute ck ← Eqv-CGen(cppEqv, ra2), return ck. Here,
num is set to separate tck and ck with certain probability. cppEqv are public
parameter of trapdoor commitment scheme. Eqv-TCGen and Eqv-CGen are two
modes of trapdoor commitment scheme.

Moreover, as the above simulation of H3 is stateless and a fixed function, we
can easily define another fixed function H′3, which will be consistent with H3 and
return the corresponding trapdoor td for simulation purpose. More details are
presented in Figure 15.

Notice that the above partitioning argument inherently lead to a security
loss linear in the number of signing queries. In [53, 54], Pan and Wagner have
successfully remove such reduction loss through using pseudorandom match-
ing/path technique. But, there are still other technical obstacles to instantiate
their elegant approaches in the lattice-based settings. We leave it as future work.

10

Furthermore efficiency consideration. Up until now, we have suc-
cessfully obtained the desired QPRF in theory, which satisfies inversion, repro-
gramming and separation, simultaneously. However, after analyzing it deeply, we
find its drawback on the input length. Particularly, according to Theorem 4.3,
the parameters need to satisfy q̄ ≥ O(¯̀· (

√
2(N̄ + ¯̀))

¯̀ · N̄ω(1)), and the security
of such QPRF is based on the RLWEq̄,1,m̄,χ assumption. Thus, in order to ensure
its security, there should be an implicitly upper bound for the input length ¯̀,
say ¯̀≤ O(N̄1/6). On the other hand, according to the KeyGen protocol in the
left hand side of Figure 1, the input length of random oracles H1,H2 should be
(`kN · log q) and (kN · log q), respectively. If directly using the same QPRF to
simulate H1 and H2, we need to ensure `kN · log q ≤ O(N̄1/6), through setting
sufficiently large N̄ . But, such a large N̄ will significantly affect the computation
efficiency of the used QPRF, which further affect reduction loss. So, we want to
ask if we can design more efficient KeyGen protocol, such that we can reduce the
input length of the random oracle H1. The answer is affirmative.

In order to compress the input length of H1, our general idea is to introduce
another random oracle H′1. And each participant’s random matrix Au is generat-

ed as Au ← H′1(su), where su
$←− {0, 1}l∗2 is a random seed with u ∈ {1, 2}. In this

case, the participants just need to interactively send the H1(su) and su, rather
than H1(Au) and Au. Clearly, su is significantly shorter than Au. Thus, the
most significant benefit of the above usage of H′1 is that the new key generation
protocol is more efficient in practice. Besides, in the security proof, we just need
to invert H1 and reprogram H′1, rather than both inversion and reprogramming.
Particularly, our modified protocol is described in Figure 3.

Modified KeyGen Protocol of QDS2

Sample s2
$←− {0, 1}`

∗
2 , compute g2 ← H1(s2, 2)

g2−→
g1←−
s2−→
s1←−

Check g1
?
= H1(s1, 1)

If YES, compute Au = H′1(su), A = A1 + A2, and set Â = [A, I] ∈ Rk×(`+k)
q

Sample s2
$←− S`+kβ , compute t2 := Â · s2, g′2 ← H2(t2, 2)

g′2−→
g′1←−
t2−→
t1−→

Check g′1
?
= H2(t1, 1), If YES, set t = t1 + t2

Fig. 3. Simple description of our modified KeyGen protocol for QDS2 Protocol. Similar
to Figure 1, we just describe the behaviors of P2 for saving space.

11

With such KeyGen protocol, we can set N̄ , such that kN · log q ≤ O(N̄1/6).
Moreover, if with k = 1, then we just need to set N · log q ≤ O(N̄1/6), which will
significantly reduce the value of N̄ , and thus improve reduction efficiency.

For security reduction of DS2. One of essential obstacles for proving the
QROM security of two round n-out-of n distributed signatures is the application
of rewinding techniques, just as pointed out by [13, 18]. This is because the
operation of measuring the state of the quantum adversary A before rewinding
will essentially disturb the state of A. And thus, the rewinding will return to an
undefined earlier state [57].

Notice that in order to conquer this dilemma on quantum rewinding, Liu and
Zhandry have proposed the collapsing technique [42], which can generally derive
the QROM security of the existing lattice-based FSwA-style signatures, such as
Dilithium-G signature scheme [27,28]. However, we can not apply this collapsing
technique [42] to the settings of distributed signatures and multi-signatures. This
is because we do not know how to define the compatible lossy/separable functions
just as in [42]. Furthermore, the measure-and-reprogram technique has been
proposed to prove the QROM security of Fiat-Shamir signature [23] and directly
evaluate the QROM security of Dilithium [36]. But such elegant technique can
not be applied to the QROM security of the distributed signature.

Another widely used approach of obtaining lattice-based distributed signa-
tures in the QROM is the lossy ID technique [1, 18, 30, 38], which can obtain
much tighter security proof. One implicit but crux point in this lossy ID tech-
nique is that there should be statistical security in the simulated experiment,
i.e., the probability of forging a valid signature should be negligible, even for
computationally unbounded adversary.

Recall that the homomorphic trapdoor-equivocation commitment scheme
used in the DS2 protocol just inherently satisfies computational binding, and
do not satisfy the essential requirement of lossy technique. Thus, it seems that
we need new security proof techniques for proving the security of two-round
distributed signature protocol in the QROM.

2.3 New idea: Online extractability allowing security proof in the
QROM.

Online extractability is another reasonable candidate direction to achieve secu-
rity in the QROM. We notice an existing online extractability technique by Pino
and Katsumata in [19,37].8 Particularly, they proposed a semi-generic transfor-
mation, which compiles lattice-based Σ-protocol into QROM-secure NIZKPoK. It
seems that such an online extractability method can be adapted to the settings of
distributed signature. However, their online extractability technique relies heav-
ily on a primitive called extractable linear homomorphic commitment. And it
seems that the extractable property of such commitment scheme is inherently not
compatible with the equivocation property required for DS2 in Figure 1. Thus,
it is still not clear how to directly apply this online extractability technique to
our desired settings.

8 In their paper, such a property is named as straight-line extractability.

12

Let us recall the online extractability in [19, 37] again, whose intuitive is to
efficiently find more than one valid response z with respect to different challenges
such as c and c′, from just one valid z. So, inspired by Pino and Katsumata’s
technique, one crucial observation is that the party P2 can directly generate more
than one response z2,j with respect to the same vector w2 = A · y2, where each
different z2,j is computed with different challenge c2,j . I.e., z2,j = y2 + c2,j · s2

and z2,j′ = y2 + c2,j′ · s2. Based on this, given one forged signature, if we can
find two valid responses for two different challenges, we can extract the witness
through using the special soundness extractor of the underlying Σ-protocol.

Of course, in order to avoid the trivial extractability from normal valid sig-
nature, we need to first hide all different responses by certain hash function, i.e.,
just send out h2,j = H(z2,j) rather than sending all z2,j in clear.9 Then, we can
use the idea of cut-and-choose to decide which z2,j will be disclosed. Notice that
if the value j is randomly chosen, we can easily prove its soundness. More im-
portantly, such a new cut-and-choose proof idea provide a chance to allow each
participant conducting rejection sampling independently, which is the essential
idea to make our protocols to be exact two-round and scalable.

In fact, the above analysis is matched with the essential idea of Unruh in [57].
Notice that in [24], Don et al. further propose a much better technique to improve
the framework of [57]. However, such an improvement can not apply to our
distributed signatures.

One more subtlety. Even almost all security targets for two-round protocols
have been achieved, there is still one subtlety: the hash function used to hide
the responses zj . Here, as we consider for the case of all parties cooperating to
sign message µ, we require it satisfy the linear homomorphic property. Besides,
we also need such a hiding function to have binding and trapdoor-inversion
properties, for the reason of security proof. So, we replace the hash function
with a homomorphic trapdoor-inversion commitment scheme.

Putting all above ingredients together. We present our main two-round
protocol QDS2 in Figure 4. Below, we slightly analyze QDS2. Compared with
the sign protocol in the right hand side of Figure 1, there are several differences
deriving some extra efficiency advantages. First, we notice that the real challenge
for our QDS2 is J output by the random oracle H5. And the challenges {cj}j∈[m]

outputted by H0 are just required to be different from each other, rather than
ensuring enough soundness for the underlying Σ-protocol. 10 In this case, the
parties in QDS2 first run the rejection sampling algorithm, and then interactive-
ly send transcripts, in contrast to the reverse order in DS2. With this particular

9 The other one desired property of such a hash function H is collision resistance,
which details are deferred to the security proof in Section 5.2.

10 Here is another difference, that is cj does not depend on any w
(2)
j or com(2). But

this will not affect our security, due to the following two reasons: (1) the output
distribution of rejection sampling algorithms is still simulateable; (2) for the under-
lying Σ-protocol, the adversary can not forge the valid responses with respect to two
different challenges cj1 , cj2 , with j1 6= j2.

13

feature, the outcome of each party’s rejection sampling will not affect other par-
ties. And regardless of the number of parties in the system, the whole distributed
signature protocol will determinedly output the correct signature, after exactly
two round interactions. This makes our QDS2 has the incomparable advantage
on the round complexity over other related two-round FSwA-style distributed
signature protocols.

QDS2 executed by P2(sk := s2, pk := (A, t), µ)

i. ck← H3(µ, pk), ck′ ← H4(µ, pk)

ii. y2 ← D`+k
σ ,w2 = Â · y2 mod q

iii. Sample r2 and compute com2 ← Eqv.Commitck(w2; r2)
iv. For j = 1 to m, conduct as follows:

A. cj ← H0(µ, j, pk, ck, ck′)
B. z2,j = cj · s2 + y2

C. run Rej(z2,j , cj · s2, σ)→ b2,j
v. If b2,j = 0 for certain j ∈ [m], then go to Step(ii)
vi. Sample r′2,j and compute c̃om2,j ← Inv.Commitck′(z2,j ; r

′
2,j)

com2,{c̃om2,j}j∈[m]−−−−−−−−−−−−−→
com1,{c̃om2,j}j∈[m]←−−−−−−−−−−−−−

vii. com = com1 + com2, c̃omj = c̃om1,j + c̃om2,j

J ← H5(pk, µ, com, {cj} , {c̃omj})
z2,J ,r2,r

′
2,J−−−−−−−−→

z1,J ,r1,r
′
1,J←−−−−−−−−

viii. Output Sig :=
(
com, r = r1 + r2, {c̃omj} , {zJ = z1,J + z2,J}, {r′J = r′1,J + r′2,J}

)
as a signature

Fig. 4. Our Two-Round n-out-of-n Distributed Signature Protocol

Second, in order to ensure the domain of J is large enough, we might need
to set the parameter m in Figure 4 to be at least equivalent to the security pa-
rameter λ. This will clearly cause the significantly size expansion, which seems
to be unavoidable. Fortunately, we can first set a relative small value for m, and
then conduct the parallelization to the current protocol for enough times. In this
way, with the almost same size overhead, we can make our protocol to be highly
parallelizable. This means for any P up to the security parameter λ, each par-
ticipant can allocate O(λ/P) of its computations to each of P processors. In this
case, the overall computation time of our protocol will be reduced significantly.

Third, as we adopt the online extractability, instead of rewinding, to estab-
lish the reduction from the underlying MSIS problem to the unforgeability, our
protocol should have much lower security loss than others with rewinding. This
means that in theory, we can set much better parameters for the fixed security
level.

2.4 Two-round multi-signature in the QROM.

Similar to [18], we can also convert the above QDS2 into a two-round multi-
signature protocol QMS2 following [26], where our QMS2 has the nice property

14

of key aggregation. However, after applying all above mentioned techniques,
there is still one reduction gap from the fully secure multi-signature. Particularly,
through using the above online extractability technique, we can solve the MSIS
problem with respect to [Â,

∑
i∈|L| tji] from the forged signature Sig∗ output by

the adversary, where L is the set of participants in the current running of QMS2.
Without loss of generality, for multi-signature protocol, we suppose the j1-th
participant is honest and all others are corrupted together with the adversary. In
this case, we should use the reduction algorithm to solve the MSIS problem with
respect to [Â, tj1], rather than [Â,

∑
i∈|L| tji]. And it seems to be an inherent

obstacle for obtaining solutions of MSIS with respect to [Â, tj1], from that of

[Â,
∑
i∈|L| tji].

In order to conquer this dilemma, we try to enhance the multi-signature
protocol into the key-verification model, where we require each participant to
publish a multi-proof straight-line extractable NIZKPoK on his/her secret key
skj with respect to the corresponding public key pkj . Then, through using the
extractability property of NIZKPoK, we can patch the above mentioned reduction
gap, and thus obtain a provably secure multi-signature protocol in the key-
verification model. In practice, one participant might want to ensure that the
public keys of all his parters are well-formed, before jointing into one multi-
party protocol. And thus, we believe such a key-verification model is reasonable,
even it implicitly implies slightly many more overheads. The formal and detailed
protocol of our two-round multi-signature is presented in Section D.

2.5 Other Related Work

Notice that MulSig-L in [13] and DualMS in [15] can be viewed as significant im-
provements over MS2 in [18]. Thus, one might hope to apply our new techniques
to [13, 15], which will derive more efficient two-round QMS2. But, it seems that
the double-forking technique used in [13, 15] is inherently not compatible with
the online extractability in [57]. Of course, if we abandon the key-aggregation
property in [13, 15], i.e., just use one-forking in the security proof, it is possible
to leverage our techniques in this paper to obtain QROM security. But, this still
need further analyses. We left it as future directions.

3 Preliminaries

Due to space limit, we defer the detailed descriptions on the notations, back-
grounds on discrete gaussian distribution, definitions on underlying assumptions
such as MSIS,MLWE,DSPR, and rejection sampling together with the signature
scheme Dilithium in Sections A.1, A.2, A.3, and A.4, respectively.

3.1 Quantum Computation and Quantum Random Oracle Model

In this Section, we recall several basic results on Quantum Computation and
Quantum Random Oracle Model.

15

Fact 3.1 (Fact 1 in [60]) For any classical efficiently computable function f ,
we can efficiently implement it by a quantum computer. Moreover, f can be
implemented as an oracle which can be queried on quantum superpositions.

Definition 3.2 (Quantum Random Oracle, QROM) Given sets X and Y ,
let Fun(X,Y) be the set of all functions H : X → Y . The quantum random
oracle model (QROM) is a security model, in which any adversary A gets hash
values from the random oracle by querying the oracle on quantum superpositions.
Moreover, for a random hash function H ∈ Fun(X,Y), we write A|H〉 to denote
that A can query the random oracle H in superpositions.

There are several ways to simulate the QROM. Here, we recall techniques of
replacing the random oracle with quantum-secure pseudorandom function (called
QPRF, defined in Section 3.2)

Fact 3.3 ([10, 60]) For any sets X and Y , we can use quantum-secure pseu-
dorandom function to efficiently simulate quantum random oracle from X to Y ,
when considering efficient quantum adversary.

3.2 Quantum-Secure Pseudorandom Function

Definition 3.4 (PRF [60]) A pesudorandom function is a function PRF : K ×
X → Y, where K,X ,Y are the key-space, domain and range, respectively. Im-
plicitly, the settings of K,X ,Y depend on the security parameter λ. Given any
pair (k, x) ∈ K × X , there exists y ∈ Y, which can be written as y = PRFk(x).

Definition 3.5 (Classical Security) A pseudorandom function PRF is clas-
sical security, if no efficient quantum adversary A making classical queries can
distinguish between a truly random function and the function PRFk for a ran-
dom k ∈ K. More formally, for any efficient quantum adversary A, there exists

a negligible function ε = ε(λ) such that
∣∣∣Pr

k
$←−K[APRFk(·) = 1]−Pr

O
$←−YX [AO(·)

= 1]
∣∣∣ < ε, where YX denotes the class of all functions from X to Y.

Notice that in Definition 3.5, we only allow A to conduct classical queries, even
A itself is a quantum algorithm. Below, we generalize the definition to allow A
to conduct quantum queries, i.e., directly query one superposition of all x ∈ X
each time.

Definition 3.6 (Quantum Security) A pseudorandom function PRF is quan-
tum security, if no efficient quantum adversary A making quantum queries can
distinguish between a truly random function and the function PRFk for a random
k ∈ K. More formally, for any efficient quantum adversary A, there exists a neg-

ligible function ε = ε(λ) such that
∣∣∣Pr

k
$←−K[A|PRFk〉(·) = 1]− Pr

O
$←−YX [A|O〉(·)

= 1]
∣∣∣ < ε.

16

Such quantum secure pseudorandom functions are called Quantum Pseudo-
random Functions, or QPRF. In fact, the above security in Definitions 3.5 and
3.6 are called as Oracle-Indistinguishability, as in [60]. In this paper, we need to
use the following “seemingly” strong quantum security: Oracle-and-input indis-
tinguishability.

Definition 3.7 (Strong Quantum Security) A QPRF is strong quantum se-
curity, if no efficient quantum adversary A making quantum queries and taking
several random input-output pairs as input can distinguish between a truly ran-
dom function and the function PRFk for a random k ∈ K. More formally, for
any efficient quantum adversary A, there exists a negligible function ε = ε(λ)
such that∣∣∣ Pr

(k,x1,...,xn)
$←−K×Xn

[
A|PRFk〉

(
(xi,PRFk(xi))i∈[n]

)
= 1
]

− Pr
(O,x1,...,xn)

$←−YX×Xn

[
A|O〉

(
(xi, O(xi))i∈[n]

)
= 1
] ∣∣∣ < ε.

Lemma 3.8 (Oracle-and-input Indistinguishability) If one PRF satisfies
the standard quantum security as in Definition 3.6, then such PRF also satisfies
the strong quantum security as in Definition 3.7.

Proof. In order to prove such lemma in a more clear way, we first notice the
following facts: Definitions 3.5, 3.6, and 3.7 can be depicted equivalently as the
corresponding interactive experiments between the adversary A and the chal-
lenger C. Taking Definition 3.7 as example, we denote its interactive experiment
as ExpS-IND

QPRF(A), and a secure QPRF implies that for any efficient A, the proba-

bility AdvS-IND
QPRF(A) := Pr

[
ExpS-IND

QPRF(A)→ 1
]
≤ 1

2 + negl(λ).

Suppose ExpInd
QPRF(A) and ExpS-IND

QPRF(A) are the corresponding interactive
experiments for Definitions 3.6 and 3.7, respectively. It suffices to show that
if there is an efficient adversary A such that ExpS-IND

QPRF(A) → 1, then there is

another efficient adversary Â such that ExpInd
QPRF(Â)→ 1. I.e., we need to prove

Pr
[
ExpS-IND

QPRF(A)→ 1
]
≤ Pr

[
ExpInd

QPRF(Â)→ 1
]
. (3)

For (3), we need to establish the following reduction: given an unknown
oracle, the algorithm Â can invoke the algorithm A as a subroutine to distinguish
QPRF and O. And thus, we need to show that Â could simulate the environment
of A and answer the queries of A.

Particularly, let A to be an algorithm making q times quantum queries and
taking n additional inputs (x∗i , O(x∗i))i∈[n] as input, where each x∗i is randomly

chosen from the domain X , and q, n are polynomial in λ. And let Â to be an
algorithm directly making (q + n) times quantum queries.

As q times quantum queries of A can be easily simulated through querying
the unknown oracle directly, we just need to consider how to provide n additional
inputs (x∗i , O(x∗i))i∈[n] to A. During all these additional n times superposition

17

queries, Â can make and query the particular superpositions
∑
xj∈X |xj〉, such

that the function values of (O(x∗i))i∈[n] or (QPRFk(x
∗
i))i∈[n] can be measured

from the returned superpositions
∑
xj∈X |O(xj)〉 or

∑
xj∈X |QPRFk(xj)〉 with

overwhelming probability. For example, given a randomly chosen x∗i ∈ X , Â can
directly generate the pure state of x∗i or a superposition with most of wight over
x∗i , rather than an uniform position, such that the value of x∗i can be successfully
measured at least with overwhelming probability. And thus, for any {x∗i }i∈[n],

Â can provide n additional inputs (x∗i , O(x∗i))i∈[n] or (x∗i ,QPRFk(x
∗
i))i∈[n] to A.

ut

3.3 Trapdoor Homomorphic Commitment Scheme

In this section, we recall the notion of trapdoor commitment scheme. Accord-
ing to the functionality of the trapdoor td, we can divide it into two different
paradigms: Eqv-Trapdoor Commitment Scheme (Eqv-TCOM) and Inv-Trapdoor
Commitment Scheme (Inv-TCOM). Particularly, for the case of Eqv-trapdoor,
td is used to equivocate a commitment to an arbitrary message. But, for the
case of Inv-trapdoor, td is used to invert a commitment to the underlying com-
mitted message. Of course, regardless of Eqv-case or Inv-case, the commitment
scheme always satisfies the hiding and binding properties. Below, we present the
syntaxes for Inv/Eqv-trapdoor commitment scheme.

Definition 3.9 (Eqv/Inv-Trapdoor Commitment Scheme [17]) A trap-
door commitment scheme Eqv/Inv-TCOM consists of seven algorithms (CSetup,
CGen,Commit,Open,TCGen,Eqv-TCommit,Eqv, Inv) as follows.

– CSetup(1λ) → cpp: The setup algorithm takes the security parameter λ as
input, and outputs a public parameter cpp defining sets Sck, Smsg, Sr, Scom,
and Std and the distribution D(Sr) from which the randomness is sampled.

– CGen(cpp)→ ck: The key generation algorithm takes cpp as input, and out-
puts a commitment key from Sck.

– Commitck(msg;Rand) → com: The commit algorithm takes as input a mes-
sage msg ∈ Smsg and randomness Rand ∈ Sr, and outputs commitment
com ∈ Scom.

– Openck(com,Rand,msg) → b: The opening algorithm outputs b = 1 if the
input tuple is valid, and b = 0 otherwise.

– TCGen(cpp)→ (tck, td): The trapdoor key generation algorithm takes cpp as
input, and outputs tck ∈ Sck and the trapdoor td ∈ Std.

– Eqv-TCommittck(td)→ com: The trapdoor committing algorithm takes tck, td
as input, and outputs a commitment com ∈ Scom.

– Eqvtck(td, com,msg) → Rand: The equivocation algorithm takes as input
(td, com,msg), outputs randomness Rand ∈ Sr, such that Opentck(com,Rand,
msg)→ 1.

– Invtck(td, com) → msg: The invert algorithm takes (td, com) as input, and
outputs the underlying message msg ∈ Smsg of com.

18

A usual commitment scheme COM is a special case of Eqv/Inv-TCOM: it only
consists of CSetup,CGen,Commit, and Open. Of course, a concrete Eqv-TCOM
scheme consists of seven algorithms: (CSetup, CGen, Commit, Open, TCGen, Eqv-
TCommit, Eqv). And, a concrete Inv-TCOM scheme consists of six algorithms:
(CSetup, CGen, Commit, Open, TCGen, Inv).

Due to space limitation, we defer the formal presentations of the correctness,
hiding, binding, key uniformness, and additive homomorphism to Section A.5,
and present the detailed instantiations in Section A.7.

3.4 n-out-of-n Signature and Multi-Signature

Definition 3.10 (Distributed Signature Protocol) A distributed signature
protocol QDS consists of the following algorithms.

– Setup(1λ) → pp: The algorithm takes a security parameter λ as input, and
outputs public parameters pp.

– Genj(pp) → (skj , pk) for every j ∈ [n]: The interactive key generation algo-
rithm that is run by party Pj. Each Pj runs the protocol on public parameters
pp as input. At the end of the protocol Pj obtains a secret key share skj and
public key pk.

– Signj(sid, skj , pk, µ)→ Sig for every j ∈ [n]:The interactive signing algorith-
m that is run by party Pj. Each Pj runs the protocol on session ID sid, its
signing key share skj, public key pk, and message to be signed µ as input.
We also assume that the algorithm can use any state information obtained
during the key generation phase. At the end of the protocol Pj obtains a
signature Sig as output.

– Ver(Sig, µ, pk) → b : The verification algorithm that takes a signature, mes-
sage, and a single public key pk and outputs b = 1 if the signature is valid
and otherwise b = 0.

Definition 3.11 (Multi-signature Protocol) A multisignature protocol QMS
consists of the following algorithms.

– Setup(1λ) → pp : The set up algorithm that outputs a public parameter pp
on a security parameter λ as input.

– Gen(pp)→ (sk, pk, π): Given a public parameter pp as input, the non-interactive
key generation algorithm outputs a key pair (sk, pk), together with an NIZKPoK
proof of validity of the public key pk, denoted as π.

– Sign(pp, sid, sk, pk, µ, L)→ Sig: The interactive signing algorithm that is run
by a party P holding a key pair (sk, pk) . Each P runs the protocol on session
ID sid, its signing key sk, public key pk, message to be signed µ, and a set
of co-signers public keys L as input. At the end of the protocol P obtains a
signature Sig as output.

– Ver(pp,Sig, µ, L) → b :The verification algorithm that takes pp, a signature,
message, and a set of public keys and outputs b = 1 if the signature is valid.
Otherwise b=0.

19

– KVer(pp, pk, π) → b : The key verification algorithm that takes as input
pp, pk, and a proof π, and outputs b = 1 if pk is a valid public key. Oth-
erwise b=0.

Notice that in order to prove the security of our QMS against quantum access
adversary, we redefine the multi-signature protocol in a more stronger model,
i.e., the key-verification model as in [6,26]. Compared with the plain public key
model, this model additionally ask every participant to prove the knowledge of
secret key, i.e., publish a NIZKPoK of the used secret key. In this paper, we just
focus on how to design the multi-signature protocol itself, since there are existing
efficient multi-proof straight-line extractable NIZKPoK protocols for MSIS in the
QROM [19], which can be used in a black-box way.

Due to space limitation, we defer the formal security notions for n-out-of-n
signature and multi-signature to Section A.6.

4 Simulation of Quantum Random Oracle

In this section, we consider how to simulate QROM through using Quantum
secure PRF (QPRF), such that it can be programable and invertible. Particularly,
we notice that the direct QPRF construction in [60], which was first proposed
by Banerjee et. al. in [7], can be used to simulate QROM, according to [10, 60].
Thus, the core target of this section is to show that for any efficient quantum
adversary conducting superposition queries, the above mentioned direct QPRF
construction can be reprogramable and invertible.

Below, we first recall a ring-based variant of concrete construction of QPRF
in [7, 60]. Then we define a new “injective mode” for such a QPRF, which is
computationally close to the original “normal mode”, following from the RLWE
assumption. Moreover, for such “injective mode” QPRF, we present an efficient
algorithm, which could invert successfully with certain parameter setting. Final-
ly, with the same parameter settings, we show that such QPRF is reprogramable,
i.e., any efficient adversary can not distinguish whether the value QPRFk(x) has
been redefined or not, when x has sufficient entropy. Besides, we add bar symbol
for the variables in this section, in order to indicate that the parameters are
locally defined and independent of other parts in this paper.

Construction 4.1 (Direct QPRF in [7, 60]) Let p̄, q̄, d̄, m̄, N̄ , ¯̀be integers with
q̄ > p̄, d̄ = dlog q̄e, and m̄ = d̄+2. Let R̄ = Z[X]/(XN̄+1) be a 2N̄ -th cyclotomic
ring with N̄ being power of 2 and R̄q̄ = R̄/q̄R̄. Let χ be a small distribution over

R̄. We define QPRF : K × {0, 1}¯̀→ R̄1×m̄
p̄ as follows:

For a key k := ({ai}i∈[m̄], {si}i∈[¯̀]) ∈ K and input x := (x1, . . . , x¯̀) ∈ {0, 1}¯̀
,

let QPRFk(x) = QPRF{ai},{si}(x1, . . . , x¯̀) =
⌊
(a1, . . . , am̄) ·

∏`
i=1 s

xi
i

⌉
p
, where

ai ← R̄q, si ← χ.

Remark 4.2 Notice that if q̄ is chosen such that XN̄ + 1 splits into very few
irreducible factors modulus q̄, and χ is concentrated on ‘small’ elements, then
each independent si ← χ is invertible over R̄q̄, according to Corollary 1.2 in [47].

20

For the security of the above Construction 3.1, we have the following theorem.

Theorem 4.3 (Generalization of Theorem 6.1 in [60]) Let χ = DR̄,r̄ be a
small distribution over R̄, where all coefficients of each polynomial are chosen
independently from DZ,r̄. Let q̄ ≥ p̄ · ¯̀· (r̄ ·

√
2(N̄ + ¯̀) ·ω(

√
log(N̄ + ¯̀)))

¯̀· N̄ω(1).
Let QPRF be as in Construction 4.1. If the RLWEq̄,1,m̄,χ holds, then Construction
4.1 is a secure QPRF.

Generally, the proof idea of this theorem is quite similar to that of Theorem 6.1
in [60], except with the replacement of matrices from Dn×n

Z,r̄ with ring elements
from χ = DR,r̄. In this case, we can still show the security of QPRF through using
RLWE. Here, due to space limitation, we defer the detailed proof to Section B.1.

4.1 Inversion of Construction 4.1

In this section, we show that if the vector a ∈ R̄m̄q̄ is generated together with

the trapdoor T as in [49] and each si ← χ is invertible over R̄q̄, then QPRF in
Construction 4.1 can be inverted efficiently. Basically, this is due to the fact that
Construction 4.1 is corresponding to the ring learning with rounding (RLWR)
problem, which can be inverted efficiently with the related trapdoor.

Particularly, we have the following formal theorems on the RLWR.

Lemma 4.4 (Trapdoors for RLWR [4, 49]) For any N̄ ≥ 1, q̄ ≥ 2, d̄ = dlog q̄e,
m̄ = d̄+ 2, p̄ ≥ 3 ·

√
m̄N̄ · (

√
2N̄ +

√
d̄N̄), there exist the following two efficient

algorithms (TrapGen, RLWRInvert).
TrapGen(1N̄ , q̄, m̄, d̄): A ppt algorithm which on input positive integers N̄ , q̄, m̄, d̄,

first samples a vector (a1, a2) ∈ R̄2
q̄ and trapdoor T ∈ S2×d̄

1 , where R̄q̄ =

Zq̄[X]/(XN̄+1). Furthermore, the algorithm computes (a3, . . . , am̄) = (a1, a2)T+

g>, where g> = (1, 2, . . . , 2d̄−1). In this case, a> = (a1, . . . , am̄)> is computa-
tionally close to uniform over Rm̄q , according to the RLWE assumption. Clearly,

it holds a> ·
[
−T
Id̄×d̄

]
= g>, where Id̄×d̄ ∈ R̄d̄×d̄q̄ is an identity matrix.

RLWRInvert(T,a, b): An algorithm taking as input (a,T) output by TrapGen(1n̄, q),
and some value b ∈ Rm̄p̄ such that b> = ba> · sep̄ for some s ∈ R̄q̄, outputs s.

Due to space limitation, we defer the detailed proof to Section B.1.

Based on the above result in Lemma 4.4, we can define the following injective
mode for Construction 4.1, which is almost identical to Construction 4.1 except
that A is generated from the algorithm TrapGen.

Construction 4.5 (Injective mode of Construction 4.1) Let p̄, q̄, d̄, m̄, N̄ , ¯̀

be integers with q̄ > p̄, d̄ = dlog q̄e, and m̄ = d̄+ 2. Let R̄ = Z[X]/(XN̄ + 1) be a
2N̄ -th cyclotomic ring with N̄ being power of 2 and R̄q̄ = R̄/q̄R̄. Let χ = DR̄,r̄ be

a small distribution over R̄. We define QPRF : K × {0, 1}¯̀→ R̄1×m̄
p̄ as follows:

21

For a key k := ({ai}i∈[m̄], {si}i∈[¯̀]) ∈ K and input x := (x1, . . . , x¯̀) ∈ {0, 1}¯̀
,

let QPRFk(x) = QPRF{ai},{si}(x1, . . . , x¯̀) =
⌊
(a1, . . . , am̄) ·

∏¯̀

i=1 s
xi
i

⌉
p̄
, where

the vector a ∈ Rm̄q̄ is generated through running the algorithm TrapGen(1N̄ , q̄),

i.e., (a,T)← TrapGen(1N̄ , q̄), and si ← χ.

Clearly, for the adversary without the trapdoor matrix T, this injective mode
is computationally close to the original normal mode in Construction 4.1. Be-
sides, Theorem 4.3 should be still set up in the injective mode, for the adversary
without the trapdoor T.

Lemma 4.6 (Indistinguishability of Normal/Injective modes) For the ad-
versary A without the trapdoor T of the vector a, if the RLWEq̄,1,1,S1

assump-
tion holds, then Constructions 4.1 and 4.5 are computational indistinguishability,
even A queries the functions in a superposition for any polynomial times.

Due to space limit, we defer the detailed proof to Section B.1.
Below, we describe the concrete invert algorithm for Inj-QPRF in the injective

mode.

Algorithm 1: Efficient algorithm InvertORLWRInvert(T, {ai}, {si}, {bi}) for in-
verting the function Inj-QPRF{ai},{si}(x1, ..., x¯̀)

Input: An oracle ORLWRInvert for inverting b(a1, . . . , am̄) · sep̄, when p̄ is large enough.

• PRFKey : vector a = (a1, . . . , am̄)> ∈ R̄1×m̄
q̄ and {si}i∈[¯̀];

• Trapdoor T ∈ R̄2×d̄ for (a1, . . . , am̄);

• Vector b =
⌊
a> ·

∏¯̀

i=1 s
xi
i

⌉
p̄

for any xi ← {0, 1} .

Output: The vector x = (x1, ..., x¯̀) ∈ {0, 1}
¯̀
.

1. Get s← ORLWRInvert(T,a, b), s.t. b =
⌊
a> · s

⌉
p̄
, where s ∈ R̄q̄;

2. Set ŝ = s, if ‖ŝ‖ ≥ r ¯̀ · (2N̄)
¯̀/2, return ⊥;

3. Set s′0 = ŝ, for i = 1, ..., (¯̀− 1), conduct the following steps:
(i) Compute s−1

i , set s′i = s−1
i · s

′
i−1, where the computation is conducted

over R̄q̄.

(ii) If ‖s′i‖ ≤ (r̄
√

2N̄)
¯̀−i, set xi = 1; Otherwise set xi = 0;

4. Check if s′¯̀−1 = s¯̀, set x¯̀ = 1; Otherwise set x¯̀ = 0;
return x = (x1, ..., x¯̀) .

Theorem 4.7 For some a ∈ Rm̄q̄ and integers p̄, q̄, d̄, N̄ , m̄ such that q̄ ≥ p̄· ¯̀·(r̄ ·√
2(N̄ + ¯̀) ·ω(

√
log(N̄ + ¯̀)))

¯̀· N̄ω(1) ≥
(
r̄ ·
√

2N̄
)¯̀

, d̄ = dlog q̄e, and m̄ = d̄+2

and p̄ ≥ 3 ·
√
m̄N̄ · (

√
2N̄ +

√
d̄N̄), suppose the oracle ORLWRInvert in Algorithm

1 correctly invert
⌊
a> · s

⌉
p̄

for any s ∈ R̄q̄. Then, for any invertible si ∈ R̄q̄,

Algorithm 1 correctly inverts Inj-QPRFa,{si} =
⌊
a> ·

∏¯̀

i=1 s
xi
i

⌉
p̄
, assuming the

DSPRq̄,R̄,χ assumption.

22

Due to space limitation, we defer the detailed proof to Section B.1.

4.2 Adaptive Programming for QPRF in Construction 4.1

In this section, we need to prove that when using the QPRF to simulate QROM,
we can conduct adaptive programming similar to the results in [32,56,57], which
is needed for the security proof of our two-round threshold signature in the
QROM. Particularly, we show that even when conducting quantum queries, an
efficient quantum adversary can not distinguish whether the value QPRFk(x) in
Construction 4.1 has been redefined or not, where x has sufficient entropy.

Overall, the result of this section can be viewed as a generalization of the
existing results in [32, 57]. Particularly, in this section, we consider the oracle
algorithms A := (A1,Ac,A2) essentially access QPRFk(·), rather than the ran-
dom function as in [32, 57]. Moreover, we just consider A := (A1,Ac,A2) to be
computationally bound adversaries, as QPRF itself is a computational notion.

Theorem 4.8 (QPRF programming, adaptive) Let QPRF : K × X → Y be
a quantum secure pseudorandom function for certain sets K,X ,Y. For a random

key k
$←− K, consider the following algorithms:

– The oracle algorithm A1 making at most q queries to QPRFk.
– The classical algorithm Ac may access the classical part of the final state

of A1. Assume that for all initial states, the output of Ac has the collision
entropy at least κ.

– The oracle algorithm A2 may access the final states of A1, and perform any
polynomial times queries to QPRFk.

Let

P 1
A := Pr[b′ = 1 : A|QPRFk〉

1 (), x← AC(), b′ = A|QPRFk〉
2 (x,QPRFk(x))]

P 2
A := Pr[b′ = 1 : A|QPRFk〉

1 (), x← AC(), B∗
$←− Y,QPRFk(x) = B∗, b′ = A|QPRFk〉

2 (x,B∗)]

Then ∣∣P 1
A − P 2

A
∣∣ ≤ 3

2

√
q2
−κ
2 + 2εQPRF, (4)

where εQPRF is the probability for the efficient quantum adversary to distinguish
QPRF and random function.

Proof. For a random function H
$←− (X → Y), we first define two probabilities

P̂ 1
A and P̂ 2

A as follows:

P̂ 1
A := Pr[b′ = 1 : H

$←− (X −→ Y),A|H〉0 (), x← AC(), b′ = A|H〉1 (x,H(x))].

and

P̂ 2
A := Pr

[
b′ = 1 : H

$←− (X −→ Y),A|H〉0 (), x← AC(), B∗
$←− Y,H(x) = B∗, b′ = A|H〉1 (x,B∗)

]
.

According to Theorem 6 in [32], it holds
∣∣∣P̂ 1
A − P̂ 2

A

∣∣∣ ≤ 3
2

√
q2
−κ
2 .

23

Thus, in order to prove (4), it suffices to prove∣∣∣P 1
A − P̂ 1

A

∣∣∣ ≤ εQPRF and
∣∣∣P 2
A − P̂ 2

A

∣∣∣ ≤ εQPRF. (5)

Furthermore, we just need to focus on the left-hand side of (5), as the right-
hand side of (5) will be set up for the similar argument. Particularly, we could
establish the following reduction: suppose there is an efficient quantum adversary
D distinguishing P 1

A and P̂ 1
A with probability ε, then we can construct another

quantum adversary B breaking the stronger security of QPRF with probability
ε. More precisely, according to Definition 3.7, suppose there is an oracle H∗, the

goal of B is to distinguish H∗ = QPRFk(·) or H∗
$←− (X → Y). Now, D just needs

to answer all B’s queries through further querying H∗, and return the answer of
H∗ as his answer. Clearly, if H∗ = QPRFk(·), then D is interacting with the case
of P 1

A; Otherwise, D is interacting with the case of P̂ 1
A.

Furthermore, combining with the stronger security of QPRF in Definition 3.7
and Lemma 3.8, we know that ε ≤ εQPRF for all efficient quantum algorithm
B, and thus the left-hand side of (5) is set up. So, the right-hand side of (5)
is set up too. Summing up all above analysis, for any efficient adversary A :=
(A1,AC ,A2), (4) holds. ut

5 Two Round n-out-of-n Threshold Signature from
lattices in the QROM

In this section, we present our main construction: two-round n-out-of-n thresh-
old signature, which is provably secure based on MSIS and MLWE in the QROM.
Below, we first describe our protocol in Section 5.1, and then prove the correct-
ness and the security of strong unforgeability in Section 5.2. Finally, in Section
5.3, we analyze the efficiency and compare it with other related work.

5.1 Construction

Generally, our protocol can be viewed as enhancing the security of the exist-
ing protocol by Damg̊ard et al. in [18] from classical ROM into the QROM,
through leveraging the online extractability technology by Unruh in [57] and
our modified QPRF in Construction 4.5. Similar to [18], we need to use as a
building block an additively homomorphic trapdoor-equivocation commitment
scheme Eqv-TCOM with uniform keys, where the trapdoor can be used to equiv-
ocate a random commitment to an arbitrary message, according to Definition
3.9. Besides, we also need to use as a building block another type of additive-
ly homomorphic trapdoor-inversion commitment scheme Inv-TCOM, where the
trapdoor can be used to invert the committed message from the commitment,
according to Definition 3.9. Notice that both of above mentioned commitmen-
t schemes can be efficiently instantiated by BDLOP commitment in [8] or its
variants, just as presented in Section A.7.

Particularly, our construction of two-round threshold n-out-of-n signature
QDS2 = (Setup, (Genu)u∈[n], (Signu)u∈[n],Ver) is formally specified in Figures 5-
7. Here, as in Definition 3.10, all players have the same role, and hence we just

24

Parameter Description

n Number of parties
N A power of two defining the degree of f(X)

f(X) = XN + 1 The 2N-th cyclotomic polynomial
q Prime modulus
R = Z[X]/(f(X)) Cyclotomic ring
Rq = Zq [X]/(f(X)) Ring
k The height of random matrices A
` The width of random matrices A

B = σ
√

2N(`+ k) The upper bound of ‖z(u)
i,Ji
‖

Bn =
√
nB The upper bound of ‖zi,Ji‖, with zi,Ji =

∑n
u=1 z

(u)
i,Ji

C = {c ∈ R : ||c||∞ = 1 ∧ ||c||1 = κ} Challenge space where |C| =
(N
n

)
2κ

M Message space
κ The `1-norm of challenge c ∈ C
Sη = {x ∈ R : ||x||∞ ≤ η} Set of small secrets
m, t Iteration parameters for Sign protocol

T = κη
√
m ·N(`+ k) The upper bound of ‖(ci,jsn)j∈[m]‖

α Parameter defining σ and M , according to Lemma A.8

σ = αT Standard deviation of the Gaussian distribution of y
(n)
i

M = exp

(√
2(λ+1)
log e ·

1
α + 1

2α2

)
The expected number of restarts until Rej output 1.

cppEqv, cppInv Public parameters for commitment schemes, honestly
generated by Eqv-CSetup and Inv-CSetup

l0, l1, l
′
1 = k · ` ·N · log q, l2, l5 = t logm Output bit lengths of random oracles

H0,H1,H
′
1,H2,H5

l∗0 = log(m · t · |M|) + k ·N · log q · (`+ 1) Input bit lengths of random oracles H0, where Eqv-Sck

+ log |Eqv-Sck|+ log |Inv-Sck| and Inv-Sck are specified by cppEqv and cppInv, respectively
l∗1 Input bit lengths of random oracles H1,H

′
1

l∗2 = k ·N · log q + logn Input bit lengths of random oracles H2

l∗3 = l∗4 = log |M|+ k ·N · log q · (`+ 1) Input bit lengths of random oracles H3,H4

l∗5 = k ·N · log q · (`+ 1) + log |M| Input bit lengths of random oracles H5, where Eqv-Scom

+t log |Eqv-Scom|+mt log(2Nκ|Inv-Scom|) and Inv-Scom are specified by cppEqv and cppInv respectively.

Table 2. Parameters of Our Two Round n-out-of-n Threshold Signature

Protocol QDS2.Genn(pp):
The protocol is parameterized by public parameters described in Table 2 and relies on the random

oracles: H1 : {0, 1}l
∗
1 → {0, 1}l1 ,H′1 : {0, 1}l

∗
1 → {0, 1}l

′
1 , H2 : {0, 1}l

∗
2 → {0, 1}l2 .

Matrix Generation
1. Sample a random seed sn ∈ {0, 1}l

∗
1−logn, and generate a random oracle commitment gn ←

H1(sn, n). Send out gn.
2. Upon receiving gu for all u ∈ [n− 1], send out the seed sn.
3. Upon receiving su for all u ∈ [n− 1]:

(a) If H1(su, u) 6= gu for some u, then send out ⊥.

(b) Otherwise compute Au = H′1(su, u) for all u ∈ [n]. And set public random matrix A :=

[A|I] ∈ Rk×(`+k)
q , where A :=

∑
u∈[n]Au.

Key Pair Generation

1. Sample a secret key shares sn
$←− S`+kη and compute a public key share tn := Asn, respectively,

and generate a random oracle commitment g′n ← H2(tn, n). Send out g′n.
2. Upon receiving g′u for all u ∈ [n− 1], send out tn.
3. Upon receiving tu for all u ∈ [n− 1]:

(a) If H2(tu, u) 6= g′u for some u then send out ⊥.
(b) Otherwise set a combined public key t :=

∑
u∈[n]tu.

If the protocol does not abort, Pn obtain (skn, pk) = (sn, (A, t)) as local output.

Fig. 5. Gen Protocol of Our Two-Round n-out-of-n Threshold Signature Scheme

describe the n-th player’s behavior. In order to help the readers to understand
Figures 5-7 more easily, we go over the high-level ideas for each step as follows.

Parameter setup. According to Definition 3.10, the algorithm QDS2.Setup
should be invoked by a trusted party, and outputs a set of public parameters as

25

in Table 2. Notice that most of our parameters follow from those of [18], except
with the following case:

– As we want to generalize the framework of Unruh in [57] into the threshold
setting, it is necessary to replace the random oracle for hashing the signa-
tures of Dilithium-G as an additively homomorphic trapdoor-inversion com-
mitment scheme. Thus, we need to run the algorithm Inv-TCOM.CSetup(1λ)
to generate an additional public parameter cppInv for Inv-TCOM. Besides, for
the reason of security proof in Lemma C.2, we require Inv-TCOM satisfies
the binding property too. And, we can set suitable parameters such that the
binding of Inv-TCOM is statistical, which is necessary for security proof in
Lemma C.3.

Key generation. The key generation algorithm QDS2.Gen almost follows that
of [18], except that we introduce another random oracle H′1 as the randomness
generator. Particulary, in order to interactively generate a random matrix A ∈
Rk×`q in a secure way, the n-th participant employs the following random oracle

commitments: first choose his random seed sn
$←− {0, 1}l∗1 , then compute and

send out gn ← H1(sn, n). Then with su for all u ∈ [n], any one can generate the

random matrix Au
$←− H ′1(su, u). Due to the uniform and random distribution

of sn, the input of H′1 has sufficient entropy, thus we can reprogram H′1 in the
security proof. Notice that in this case, the participants just need to send out
the seed su ∈ {0, 1}l

∗
2 , rather than Au ∈ Rk×`q , in the public channel. Clearly,

this will significantly reduce the communication overhead of our construction.
Similarly, the n-th participant directly utilize H2 to generate random oracle

commitment g′n.
Signature generation. One important point for the QDS2.Signn algorithm
in Figure 6 is the iterations at (1.a) of Signature generation. With these
steps, we can realize online extractability, according to [57]. And thus, we can
circumvent the essential obstacle, rewinding, for the security proof of signature
in the QROM.

The other one crucial point is the computation of ci,j , i.e., ci,j ← H0(i, j, µ, pk,
ck, ck′). In fact, this step has at least two significance:

– For fixed i and different j and j′, ci,j 6= ci,j′ . This is necessary for success-
ful extractability through using the extractor Ext presented in Figure 12,
according to [57].

– The computation of ci,j does not rely on com
(u)
i or w

(u)
i . And thus, for each

(i, j) ∈ [t] × [m], all participants will use the same challenge ci,j for the
related individual running of underlying underlying Dilithium-G signature
scheme. Clearly, only with such condition, {zi,Ji}i∈[t] in the final signature
can be verified successfully with respect to public key (A, t), according to
the step (2.c) of the algorithm QDS2.Ver in Figure 7.

Verification. Thanks to the linearity of the underlying Dilithium-G signature
scheme, and additive homomorphism of Eqv-TCOM and Inv-TCOM with respec-
t to both message and randomness, the verifier just need to verify the sum

26

Protocol QDS2.Signn(sid, skn, pk, µ)
The protocol is parameterized by public parameters described in Table 2 and relies on the random

oracles H0 : {0, 1}l
∗
0 → C, H3 : {0, 1}l

∗
3 → Eqv-Sck,H4 : {0, 1}l

∗
4 → Inv-Sck and H5 : {0, 1}l

∗
5 →

{0, 1}l5 . The protocol assumes that QDS2.Genn(pp) has been previously invoked.
Inputs

1. Pn receives a unique sessions ID sid, skn = sn, pk = (A, t) and message µ ∈M as input.
2. Pn verifies that sid has not been used before (if it has been, the protocol is not executed).
3. Pn locally computes per-message commitment keys ck← H3(µ, pk), ck′ ← H4(µ, pk).

Signature Generation Pn works as follows:
1. Compute the first group messages as follows:

(a) for i = 1 to t; conduct as follows:

i. Sample y
(n)
i ← D`+kσ and compute w

(n)
i := Ay

(n)
i .

ii. Compute com
(n)
i ← Eqv-Commitck(w

(n)
i , r

(n)
i) with r

(n)
i

$←− Eqv-Sr.
iii. for j = 1 to m; conduct as follows:

A. Derive challenges ci,j ← H0(i, j, µ, pk, ck, ck′).

B. Compute signature shares z
(n)
i,j = ci,jsn + y

(n)
i .

C. Run the rejection sampling Rej(z
(n)
i,j , ci,jsn, σ)→ {0, 1}.

iv. If the above rejection sampling algorithm outputs 0 for certain j ∈ [m], then go to
the Step i.

(b) Compute c̃om
(n)
i,j ← Inv-Commitck′ (z

(n)
i,j , r

′(n)
i,j) where r

′(n)
i,j

$←− Inv-Sr for all i ∈ [t], j ∈ [m].

(c) Send out ({com(n)
i }i∈[t], {c̃om

(n)
i,j }i∈[t],j∈[m]).

2. Upon receiving ({com(u)
i }i∈[t], {c̃om

(u)
i,j }i∈[t],j∈[m]) for all u ∈ [n − 1], compute the signature

shares as follows:
(a) Set comi :=

∑
u∈[n]com

(u)
i and c̃omi,j :=

∑
u∈[n] c̃om

(u)
i,j for all i ∈ [t], j ∈ [m].

(b) Get challenges J1||...||Jt ← H5(pk, µ, {comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m]).

(c) Send out ({z(n)
i,Ji
}i∈[t], {r

(n)
i }i∈[t], {r

′(n)
i,Ji
}i∈[t]).

3. Upon receiving ({z(u)
i,Ji
}i∈[t], {r

(u)
i }i∈[t], {r

′(u)
i,Ji
}i∈[t]) for all u ∈ [n] compute the combined

signature as follows:

(a) For each u ∈ [n − 1], compute Ji and ci,Ji as before, and reconstruct w
(u)
i := Az

(u)
i,Ji
−

ci,Jitu, then validate the signature shares

||z(u)
i,Ji
|| ≤ B, Eqv-Openck(com

(u)
i , r

(u)
i ,w

(u)
i) = 1

and
Inv-Openck′ (c̃om

(u)
i,Ji

, r
′(u)
i,Ji

, z
(u)
i,Ji

) = 1.

for all i ∈ [t]. If the check fails for some u then send out ⊥.

(b) Compute zi,Ji :=
∑
u∈[n]z

(u)
i,Ji

, ri :=
∑
u∈[n]r

(u)
i and r′i,Ji

:=
∑
u∈[n]r

′(u)
i,Ji

for all i ∈ [t].
If the protocol does not abort, Pn obtains a signature:
Sig := ({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi,Ji}i∈[t], {ri}i∈[t], {r′i,Ji}i∈[t]) as local output.

Fig. 6. Sign Protocol of Our Two-Round n-out-of-n Threshold Signature Scheme

of signature shares, i.e.,
∑n
u=1 Sig

(u), where each signature share Sig(u) con-

sists of commitments
(
{com(u)

i }i∈[t], {c̃om
(u)
i,j }i∈[t],j∈[m]

)
, underlying responses

{z(u)
i,Ji
}i∈[t] and randomness

(
{r(u)
i }i∈[t], {r

′(u)
i,Ji
}i∈[t]

)
.

5.2 Correctness and Security

Theorem 5.1 (Correctness) For public parameters as in Table 2, two-round
threshold n-out-of-n signature QDS2 = (Setup, (Genu)u∈[n], (Signu)u∈[n],Ver) in
Figures 5, 6, 7 satisfies the correctness. In other word, suppose the underlying
Dilithium scheme is correct, and the trapdoor commitment schemes Inv-TCOM
and Eqv-TCOM are correct and additively homomorphic, then a valid generated

27

signatures must be accepted by the verification algorithm, except with a negligible
probability.

Proof. Notice that the algorithm Ver in Figure 7 needs to conduct four checks.
Thus, below we will discuss them one by one.

1. Due to the collision resistance of random oracle, it will output different
values for different inputs, except with a negligible probability. Thus, for
ci,j ← H0(i, j, µ, pk, ck, ck′), all ci,1, ..., ci,m are pairwise distinct except with
the probability m · negl(λ). Clearly, this is still negligible in λ, when m is a
polynomial.

2. For y
(n)
i ← D`+k

σ , z
(n)
i,j = ci,jsn + y

(n)
i and Rej(z

(n)
i,j , ci,jsn, σ) → 1, we

know that the distribution of z
(n)
i,Ji

is statistically close to D
(`+k)
σ , according

to Lemma A.8. Thus, we have ‖z(n)
i,j ‖ ≤ σ

√
2 · (`+ k) ·N = B with over-

whelming probability, according to Lemma A.3. Furthermore, according to

Lemma A.4, we know that the distribution of zi,Ji :=
∑
u∈[n]z

(u)
i,Ji

is statisti-

cally close to D
(`+k)

σ
√
n

. And thus, it holds ‖zi,Ji‖ ≤ σ
√

2 · n · (`+ k) ·N = Bn,

except with a negligible probability.
3. Due to the correctness of the underlying Dilithium-G scheme, we know that

Az
(u)
i,Ji

= w
(u)
i + ci,Jitu for each honest participant Pu with u ∈ [n]. Then,

it holds Azi,Ji = wi + ci,Jit, according to wi =
∑

w
(u)
i , zi =

∑
z

(u)
i ,

and t =
∑

tu from the Sign and Gen protocols in Figures 6 and 5. Then,
Verifier can reconstruct wi := Azi,Ji − ci,Jit. And according to the ho-
momorphic property and correctness of the used Eqv-TCOM, it holds Eqv-
Openck(comi, ri,Azi − ci,Jit) = 1, except with a negligible probability.

4. According to the homomorphic property and correctness of the used Inv-
TCOM, for all honestly generated signatures, it holds Inv-Openck′(c̃omi,Ji , r

′
i,Ji

,
zi) = 1, except with a negligible probability.

Summing up all above analysis, the honestly generated signatures should be
accepted, except with at most a negligible probability. ut

Below, we focus on the security of our QDS2 construction. Just as analysis
in Remark A.14, we know that for QDS2, the SUF-CMA security implies the
UF-CMA security. Thus, in the following theorem, we just focus on the much
stronger one, SUF-CMA security.

Theorem 5.2 Suppose the trapdoor commitment schemes Inv-TCOM and Eqv-
TCOM are secure, additively homomorphic, have uniform keys and uniform
commitment. Particularly, the output of Eqv-TCommittck(td) has sufficient min-
entropy ϑ. And suppose there exists QPRF that can be programable and invertible
simultaneously. For any quantum polynomial-time adversary A that initiates a
single key generation protocol by querying OQDS2

n with sid = 0, initiates Qs
signature generation protocols by querying OQDS2

n with sid 6= 0, and makes Qh
quantum superpositions queries to random oracle H0,H1,H

′
1,H2,H3,H4,H5, the

protocol QDS2 of Figures 5, 6, 7 is QDS-SUF-CMA secure under MSISq,k,`+1,β

and MLWEq,k,`,η assumptions in the QROM, where β = 2
√
B2
n + κ. Concretely,

28

Algorithm QDS2.Ver(({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi}i∈[t], {ri}i∈[t], {r′i,Ji}i∈[t]), µ, pk)

Upon receiving a message µ, signature ({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi}i∈[t],
{ri}i∈[t], {r′i,Ji}i∈[t]), and combined public key pk := (A, t) works as follows:

1. Generate commitment keys ck ← H3(µ, pk), ck′ ← H4(µ, pk), derive ci,j ←
H0(i, j, µ, pk, ck, ck′) for all i ∈ [t], j ∈ [m] and compute J1||...||Jt ←
H5(pk, µ, {comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m]) .

2. Perform the checks as follows:
(a) for i = 1 to t do:

Check that ci,1, ..., ci,m pairwise distinct.
(b) for i = 1 to t do:

Check that ||zi|| ≤ Bn.
(c) for i = 1 to t do:

Reconstruct wi := Azi − ci,Jit, and check Eqv-Openck(comi, ri,wi) = 1.
(d) for i = 1 to t do:

Check Inv-Openck′ (c̃omi,Ji , r
′
i,Ji

, zi) = 1.
If all checks succeed then return 1, otherwise, return 0.

Fig. 7. Ver Algorithm of Our Two-Round n-out-of-n Threshold Signature Scheme

using other parameters specified in Table 2, the advantage of A is bounded as
follows.

AdvQDS-SUF-CMA
QDS2

(A) ≤ 2εInj-QPRF + 5εQPRF + e(Qh +Qs + 1)
[
(Qh +Qs)(εtd + εtd′)

+ 2(Qh +Qs) · εQPRF +
3

2

√
Qh2

−t·ϑ
2 + 2εQPRF + t ·Qs · (m− 1) · negl(λ)

+ t ·Qs · εRej +
3

2

√
Qh(2

−qklN
2 + 2

−qkN
2) + 4(εQPRF + εInj-QPRF)

+ AdvMLWEq,k,`,η + 2(Qh + 1)2−(t logm)/2 +Qs · t · ε′bind +
Qs(Qs + 1)

2
· 2−t·ϑ

+ AdvMSISq,k,`+1,β

]
Here, εQPRF denotes the advantage for an efficient quantum adversary distin-
guishing QROM and QPRF in Construction 4.1. εInj-QPRF denotes the advantage
distinguishing injective QPRF in Construction 4.5 from the direct Construction
4.1. εtd (or εtd′) is the statistical distances of true commitment key (or trapdoor
commitment key) for Eqv-TCOM (or Inv-TCOM) and the uniform. εRej is the
statistical distances of the output distribution of rejection sampling algorithm
and the ideal distribution. ε′bind is the advantages of breaking Inv-TCOM for any
efficient quantum adversary. Moreover, all these values are negligible according
to the related instantiations in this paper.

Below, we first sketch the proof idea, before presenting the formal proof.
According to Definition A.12, we need to prove that for any efficient adversary
A against QDS2, its advantage AdvQDS-UF-CMA

QDS2
(A) is negligible. In order to do

this, we conduct the following two steps:

– We first show that the party Pn in the experiment AdvQDS-SUF-CMA
QDS2

(A) can
be simulated by a simulator B defined in Figure 11, together with its sub-
routines Figures 13 to 16. And B do not have any secret key, through using
a sequence of hybrid experiments. Particularly, in the key generation and
signature query phases, we use the QPRF to simulate the quantum random

29

oracle, which satisfy the requirements of extraction and reprogrammability.
In the signature query phase, we use the trapdoor-equivocation commitment
scheme and the adaptive programming of H5 to simulate the signature.

– Then, we show that in such a simulated experiment, the signature is strong
unforgeability, through establishing a reduction from MSIS and the binding
properties of Inv-TCOM, following from the similar proof idea of [57]. Partic-
ularly, we first show that there is an efficient extractor Ext in Figure 12, such
that given a valid forged message-signature pair (µ∗,Sig∗) /∈ MSset, Ext can
output a solution for MSIS problem, if the used Inv-TCOM scheme satisfies
the binding property. And then, we bound the probability of generating a
valid forged message-signature pair (µ∗,Sig∗) /∈ MSset by the union bound
of two events happen: Ext succeeds and Ext fails.

Due to space limitation, we defer the detailed proof of this theorem to Section
C.

5.3 Asymptotical Efficiency and Comparison with [18]

In this paper, we focus on constructing the first asymptotically efficient n-out-of-
n and multi-signature protocols in the QROM, rather than striving for concrete
efficiency. Thus, in this section, we just analyze the asymptotical efficiency of
our protocol in Section 5.1, and then compare it with [18].

In order to take advantage of our parallelizable property, we would like to
set m = 2 and t = λ, which will ensure the domain of (J1, . . . , Jt) is large
enough. Similar to the optimization in [18], we can replace (comi, ri, zi,Ji) with
(ci,Ji , ri, zi,J). Even in our case, ci,Ji can be omitted, due to its computation
process. Thus, the final signature size for each party is about λ · (|ri|+ (`+ k) ·
N log(12σ) + |r′i|+ 2|c̃omi,j |).

In order to ensure a relatively fair comparison, we should enhance the proto-
col in [18] as follows: (i) enlarge the standard deviation σ about n times, when
dealing with all n parties. In this case, we can ensure the whole expected abort
time is about 1/M , rather than 1/Mn. (ii) run τ = λ/(log M

M−1) parallel ex-
ecutions simultaneously. In this case, we can ensure that the parties output a
signature with overwhelming probability, after two round interactions. Thus, the
final signature size for each party is about λ(|ci,j |+ |ri|+ (`+k) ·N · log(12nσ)).

Clearly, the main additional overheads of our construction are the size of |r′i|+
2|c̃omi,j |. However, further considering the reduction loss for the underlying MSIS
problem, the protocol in [18] need to use much larger parameters to compensate
such security loss. Overall, conditioned on our QROM security, we believe that
such slightly more overheads on signature size are completely acceptable.

6 Two Round Multi-Signature from lattices in the
QROM

We can construct a multi-signature scheme QMS2 in the QROM through using
the similar processes for QDS2 in Section 5, besides with an additional multi-
proof straight-line extractable NIZKPoK system in the QROM in the key gener-
ation algorithm. Such QMS2 supports key aggregation and can be proven secure

30

relying on essentially the same idea as QDS2. The main difference from QDS2 is
that, the protocol requires no interactive key generation at all, and instead for
each signing execution a party receives a set of public keys L together with a
message to be signed. Particularly, our construction of two-round multi-signature
QMS2 = (Setup,Gen,Sign,Ver,KVer) is formally specified in Figures 17, 18, 19.
Due to space limit, we defer to Section D the detailed presentations of our multi-
signature construction together with the related security proof.

References

1. M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly secure
signatures from lossy identification schemes. Journal of Cryptology, 29(3):597–631,
July 2016.

2. S. Agrawal, D. Stehlé, and A. Yadav. Round-optimal lattice-based threshold signa-
tures, revisited. In M. Bojanczyk, E. Merelli, and D. P. Woodruff, editors, ICALP
2022, volume 229 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

3. H. K. Alper and J. Burdges. Two-round trip schnorr multi-signatures via delin-
earized witnesses. In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 157–188, Virtual Event, Aug. 2021. Springer, Cham.

4. J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs. Learning with rounding, revisited
- new reduction, properties and applications. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 57–74. Springer,
Berlin, Heidelberg, Aug. 2013.

5. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In S. Halevi,
editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–618. Springer, Berlin,
Heidelberg, Aug. 2009.

6. A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma. In P. Ning, P. F.
Syverson, and S. Jha, editors, ACM CCS 2008, pages 449–458. ACM Press, Oct.
2008.

7. A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In
Pointcheval and Johansson [55], pages 719–737.

8. C. Baum, I. Damg̊ard, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient
commitments from structured lattice assumptions. In D. Catalano and R. De
Prisco, editors, SCN 18, volume 11035 of LNCS, pages 368–385. Springer, Cham,
Sept. 2018.

9. A. Boldyreva and D. Micciancio, editors. CRYPTO 2019, Part II, volume 11693
of LNCS. Springer, Cham, Aug. 2019.

10. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry.
Random oracles in a quantum world. In D. H. Lee and X. Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Berlin, Heidelberg,
Dec. 2011.

11. D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen, and
A. Sahai. Threshold cryptosystems from threshold fully homomorphic encryption.
In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991
of LNCS, pages 565–596. Springer, Cham, Aug. 2018.

31

12. D. Boneh, S. Kim, and D. J. Wu. Constrained keys for invertible pseudorandom
functions. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 237–263. Springer, Cham, Nov. 2017.

13. C. Boschini, A. Takahashi, and M. Tibouchi. MuSig-L: Lattice-based multi-
signature with single-round online phase. In Dodis and Shrimpton [21], pages
276–305.

14. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-
efficient threshold EC-DSA. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
editors, PKC 2020, Part II, volume 12111 of LNCS, pages 266–296. Springer,
Cham, May 2020.

15. Y. Chen. DualMS: Efficient lattice-based two-round multi-signature with trapdoor-
free simulation. In H. Handschuh and A. Lysyanskaya, editors, CRYPTO 2023,
Part V, volume 14085 of LNCS, pages 716–747. Springer, Cham, Aug. 2023.

16. K.-M. Chung, S. Fehr, Y.-H. Huang, and T.-N. Liao. On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In A. Canteaut
and F.-X. Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS,
pages 598–629. Springer, Cham, Oct. 2021.

17. I. Damg̊ard, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. In J. Garay, editor,
PKC 2021, Part I, volume 12710 of LNCS, pages 99–130. Springer, Cham, May
2021.

18. I. Damg̊ard, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n and
multi-signatures and trapdoor commitment from lattices. Journal of Cryptology,
35(2):14, Apr. 2022.

19. R. del Pino and S. Katsumata. A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In Dodis and
Shrimpton [21], pages 306–336.

20. Y. Desmedt. Threshold cryptosystems. In International Workshop on the Theory
and Application of Cryptographic Techniques, pages 1–14. Springer, 1992.

21. Y. Dodis and T. Shrimpton, editors. CRYPTO 2022, Part II, volume 13508 of
LNCS. Springer, Cham, Aug. 2022.

22. J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security and
Privacy, pages 1051–1066. IEEE Computer Society Press, May 2019.

23. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir trans-
formation in the quantum random-oracle model. In Boldyreva and Micciancio [9],
pages 356–383.

24. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Efficient NIZKs and signatures from
commit-and-open protocols in the QROM. In Dodis and Shrimpton [21], pages
729–757.

25. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Online-extractability in the quan-
tum random-oracle model. In O. Dunkelman and S. Dziembowski, editors, EURO-
CRYPT 2022, Part III, volume 13277 of LNCS, pages 677–706. Springer, Cham,
May / June 2022.

26. M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs.
On the security of two-round multi-signatures. In 2019 IEEE Symposium on Se-
curity and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages
1084–1101. IEEE, 2019.

27. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):238–268, 2018.

32

28. L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.
CRYSTALS – Dilithium: Digital signatures from module lattices. Cryptology
ePrint Archive, Report 2017/633, 2017.

29. L. Ducas and D. Micciancio. Improved short lattice signatures in the standard
model. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 335–352. Springer, Berlin, Heidelberg, Aug. 2014.

30. M. Fukumitsu and S. Hasegawa. A lattice-based provably secure multisignature
scheme in quantum random oracle model. In K. Nguyen, W. Wu, K.-Y. Lam, and
H. Wang, editors, ProvSec 2020, volume 12505 of LNCS, pages 45–64. Springer,
Cham, Nov. / Dec. 2020.

31. N. Genise and D. Micciancio. Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In Nielsen and Rijmen [51], pages 174–203.

32. A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. Tight adaptive reprogram-
ming in the QROM. In M. Tibouchi and H. Wang, editors, ASIACRYPT 2021,
Part I, volume 13090 of LNCS, pages 637–667. Springer, Cham, Dec. 2021.

33. K. D. Gur, J. Katz, and T. Silde. Two-round threshold lattice signatures from
threshold homomorphic encryption. Cryptology ePrint Archive, 2023.

34. A. Hoover, S. Patel, G. Persiano, and K. Yeo. Plinko: Single-server PIR with
efficient updates via invertible PRFs. Cryptology ePrint Archive, Report 2024/318,
2024.

35. K. Itakura. A public-key cryptosystem suitable for digital multisignature. NEC
research and development, 71:1–8, 1983.

36. K. A. Jackson, C. A. Miller, and D. Wang. Evaluating the security of CRYSTALS-
dilithium in the quantum random oracle model. In M. Joye and G. Leander, editors,
EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 418–446. Springer,
Cham, May 2024.

37. S. Katsumata. A new simple technique to bootstrap various lattice zero-knowledge
proofs to QROM secure NIZKs. In T. Malkin and C. Peikert, editors, CRYP-
TO 2021, Part II, volume 12826 of LNCS, pages 580–610, Virtual Event, Aug.
2021. Springer, Cham.

38. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In J. B. Nielsen and V. Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 552–586.
Springer, Cham, Apr. / May 2018.

39. C. Komlo and I. Goldberg. FROST: Flexible round-optimized Schnorr threshold
signatures. In O. Dunkelman, M. J. J. Jr., and C. O’Flynn, editors, SAC 2020,
volume 12804 of LNCS, pages 34–65. Springer, Cham, Oct. 2020.

40. A. Langlois and D. Stehle. Worst-case to average-case reductions for module lat-
tices. Designs, Codes and Cryptography, 2015.

41. Y. Lindell. Simple three-round multiparty schnorr signing with full simulatability.
Cryptology ePrint Archive, 2022.

42. Q. Liu and M. Zhandry. Revisiting post-quantum Fiat-Shamir. In Boldyreva and
Micciancio [9], pages 326–355.

43. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In H. J. Karloff and
T. Pitassi, editors, 44th ACM STOC, pages 1219–1234. ACM Press, May 2012.

44. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS,
pages 598–616. Springer, Berlin, Heidelberg, Dec. 2009.

45. V. Lyubashevsky. Lattice signatures without trapdoors. In Pointcheval and Jo-
hansson [55], pages 738–755.

33

46. V. Lyubashevsky, N. K. Nguyen, M. Plançon, and G. Seiler. Shorter lattice-based
group signatures via “almost free” encryption and other optimizations. In M. Ti-
bouchi and H. Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS,
pages 218–248. Springer, Cham, Dec. 2021.

47. V. Lyubashevsky and G. Seiler. Short, invertible elements in partially splitting
cyclotomic rings and applications to lattice-based zero-knowledge proofs. In Nielsen
and Rijmen [51], pages 204–224.

48. G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple schnorr multi-signatures
with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018.

49. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, s-
maller. In Pointcheval and Johansson [55], pages 700–718.

50. J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. In J. Ligatti, X. Ou, J. Katz, and G. Vigna,
editors, ACM CCS 2020, pages 1717–1731. ACM Press, Nov. 2020.

51. J. B. Nielsen and V. Rijmen, editors. EUROCRYPT 2018, Part I, volume 10820
of LNCS. Springer, Cham, Apr. / May 2018.

52. NIST. Post-quantum cryptography project.
53. J. Pan and B. Wagner. Chopsticks: Fork-free two-round multi-signatures from non-

interactive assumptions. In C. Hazay and M. Stam, editors, EUROCRYPT 2023,
Part V, volume 14008 of LNCS, pages 597–627. Springer, Cham, Apr. 2023.

54. J. Pan and B. Wagner. Toothpicks: More efficient fork-free two-round multi-
signatures. In M. Joye and G. Leander, editors, EUROCRYPT 2024, Part I,
volume 14651 of LNCS, pages 460–489. Springer, Cham, May 2024.

55. D. Pointcheval and T. Johansson, editors. EUROCRYPT 2012, volume 7237 of
LNCS. Springer, Berlin, Heidelberg, Apr. 2012.

56. D. Unruh. Quantum position verification in the random oracle model. In J. A.
Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 1–18. Springer, Berlin, Heidelberg, Aug. 2014.

57. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle
model. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 755–784. Springer, Berlin, Heidelberg, Apr. 2015.

58. H. Xue, M. H. Au, M. Liu, K. Y. Chan, H. Cui, X. Xie, T. H. Yuen, and C. Zhang.
Efficient multiplicative-to-additive function from joye-libert cryptosystem and its
application to threshold ecdsa. In CCS 2023, pages 2974–2988, 2023.

59. H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui. Efficient online-friendly two-
party ECDSA signature. In G. Vigna and E. Shi, editors, ACM CCS 2021, pages
558–573. ACM Press, Nov. 2021.

60. M. Zhandry. How to construct quantum random functions. In 53rd FOCS, pages
679–687. IEEE Computer Society Press, Oct. 2012.

61. M. Zhandry. Secure identity-based encryption in the quantum random oracle mod-
el. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of
LNCS, pages 758–775. Springer, Berlin, Heidelberg, Aug. 2012.

62. M. Zhandry. How to record quantum queries, and applications to quantum indif-
ferentiability. In Boldyreva and Micciancio [9], pages 239–268.

34

A Supplementary for Preliminaries

Due to the space limitation in the main body, we present many more supple-
mentary materials for Preliminaries in Section 3

A.1 Notations

In this paper, Z and R denote the sets of integers and real numbers. For positive
integers n, q, let [n] denotes the set {1, ..., n} and Zq denotes the ring of integers
modulo q. We use λ to denote the security parameter, which is the implicit input
for all algorithms presented in this paper. A function f(λ) > 0 is negligible and
denoted by negl(λ) if for any c > 0 and sufficiently large λ, f(λ) < 1/λc. A
probability is called to be overwhelming if it is 1 − negl(λ). A column vector
is denoted by a bold lower case letter (e.g., x). A matrix is denoted by a bold
upper case letter (e.g., A), and its transposition is denoted by A>. Let R =
Z[x]/(xN + 1) be a cyclotomic ring, with N be a power of 2. The norm of an
element in Rq = Zq[x]/(xN+1) will be the norm of its unique representative with
coefficients in [−(q−1)/2, (q−1)/2]. For positive β ∈ R, we use Sβ to denote the
set of all polynomials of infinity norm less than β, i.e., Sβ = {a ∈ R | ‖a‖∞ ≤ β}.

We define a rounding function b·ep : Zq → Zp for q ≥ p ≥ 2 as bxeq→p =
b(p/q)x̄eq→p, where x̄ ∈ Z is any integer congruent to x mod q. Furthermore,
b·eq→p can be extended component-wise to vectors and matrices over Zq. Espe-
cially, for a ring element a ∈ R represented as coefficient embedding, we first
view it as the vector consisting of all its coefficients, and then conduct rounding
function to such vector. In places where the context is clear about the modulus
q, we would omit q in the notation as b·ep for simplicity of presentation.

For a distribution or a set D, we write x
$←− D to denote the operation of

sampling an uniformly random x according to D. We denote as Supp(D) the sup-
port of a distribution D. For two distributions D1, D2, we let SD(D1, D2) denote

their statistical distance. We write D1
s
≈ D2 to mean that they are statistical-

ly close, and D1
c
≈ D2 to say that they are computationally indistinguishable.

The collision entropy of a random variable X is − log Pr[X = X ′] where X ′

is independent of X and has the same distribution. The min-entropy of X is
minx(− log Pr[X = x]).

Matrix norms. For a vector x, its Euclidean norm (also known as the `2 norm)
is defined as ‖x‖ = (

∑
i x

2
i)

1/2. For a matrix R, we denote its i-th column vector

as ri, and use R̃ to denote its Gram-Schmidt orthogonalization. In addition,

– ‖R‖ denotes the Euclidean norm of R, i.e., ‖R‖ = maxi ‖ri‖.
– s1(R) denotes the spectral norm of R, i.e., s1(R) = sup‖x‖=1‖Rx‖, with

x ∈ Zm.

Besides, we have the following lemma for the bounding spectral norm.

Lemma A.1 ([29]) Let X ∈ Rn×m be a subgaussian random matrix with pa-
rameter s. There exists a universal constant c ≈ 1/

√
2π such that for any t > 0,

we have s1(X) ≤ c · s · (
√
m+

√
n+ t) except with probability at most 2

eπt2
.

35

A.2 Discrete Gaussian Distribution

For a ring R of degree N , we can define the discrete Gaussian distribution over
it in the following way.

Definition A.2 (Definition 4.2 in [45]) For any positive integer `, the dis-
crete Gaussian distribution over R` centered around v ∈ R` with standard devi-

ation σ > 0 is given by D`·N
v,σ (z) = e−‖z−v‖2/2σ2∑

z′∈R` e
−‖z′‖2/2σ2 . When v = 0, we just write

D`·N
σ for simplicity. Particularly, we write DZ,σ to denote the discrete Gaussian

distribution over Z with standard deviation σ.

We also need to use the following facts about the discrete Gaussian distribution.

Lemma A.3 (Lemma 4.4 in [45]) For any positive integer ` and any real
σ > 0, and a sample sampled from D`·N

σ defined as above. Then for x← D`·N
σ ,

it holds Pr
[
‖x‖ > t · σ

√
`N
]
≤
(
te

1−t2
2

)`N
, where t is any constant value.

Lemma A.4 (Sum of Discrete Gaussian Samples) Let xi for i ∈ [n] be
vectors sampled independently from Dm

σ . Suppose σ ·
√

2π ≥
√

2 · ω(logm), then
the distribution of

∑
i xi is statistically close to Dm

σ
√
n

.

A.3 Lattices Problems and Underlying Assumptions

Definition A.5 (MSIS [40]) The MSISq,`,m,β problem (over an implicit ring
R) is defined as follows. Given an uniformly random matrix A ∈ R`×mq , output
vector z ∈ Rm such that Az = 0 and 0 < ‖z‖ ≤ β.

Definition A.6 (MLWE [40]) For an error distribution χ over R, the decision

MLWEq,`,m,χ problem (over an implicit ring R) is defined as follows. For s
$←− χ`,

use Aq,s to denote the distribution of (a, 〈a, s〉 + e) ∈ R`q × Rq, where a
$←− R`q

and e
$←− χ. The goal is to distinguish m samples from either Aq,s or U(R`q, Rq),

i.e., distinguish (A,A · s+ e) from (A,u), where A
$←− Rm×`q ,u

$←− Rmq , s← χ`,
and e← χm.

Moreover, the MLWEq,`,m,χ problem defined above are the so-called “Hermite
Normal Form” version, as its secrete key and error are chosen from the identical
“small” distribution χ. And such an “Hermite Normal Form” can be easily re-
duced to the standard MLWE via the approach in [5]. For standard MLWE and
the above defined MSIS, it is known to be at least as hard as certain standard
lattice problems over ideal lattice in the worst case [40]. It should be pointed out
that the ring learning with errors problem (RLWE) is the special case of MLWE
for ` = 1. Particularly, we denote the corresponding problem as RLWEq,1,m,χ.
More generally, for a small set Sβ , we use RLWEq,1,m,Sβ to denote that both
secret key and error are sampled uniformly at random from Sβ .

36

Definition A.7 (DSPR [43]) For an error distribution χ over R, the decision-
al small polynomial ratio (DSPR) assumption DSPRq,R,χ says that the following
two distributions are indistinguishable:

– a polynomial h = g · f−1 ∈ Rq, where g, f ← χ.

– a polynomial u
$←− Rq.

A.4 Rejection Sampling and Dilithium-G

In this paper, we use the well-known Dilithium-G signature scheme the basis
for our distributed signature protocols. Thus, for completeness, we present the
non-optimized version of Dilithium-G signature scheme in Algorithms 2 to 4.

Algorithm 2: Key generation

Input: pp = (Rq, k, `, η, B, s,M)
Output: (sk, pk)

1. A
$←− Rk×`

2. A := [A|I] ∈ Rk×(`+k)

3. (s1, s2)
$←− S`η × Skη ; s :=

(
s1

s2

)
.

4. t := As
5. sk := s
6. pk := (A, t)

return (sk, pk)

Algorithm 3: Signature generation

Input: sk, pk, µ, pp = (Rq, k, `, η, B, s,M)
Output: valid signature pair (z, c)

1. (y1,y2)
$←− D`

s ×Dk
s ;y :=

(
y1

y2

)
2. w = Ay
3. c← H0(w, µ, pk)
4. z := cs + y
5. With prob. min (1, D`+k

s (z))/(M ·D`+k
cs,s(z)) :

6. return (z, c)
7. Restart otherwise

Besides, we recall the rejection sampling algorithm as in Lemma A.8, which
is important for the security of the FSwA-style signature such as Dilithium-G.

37

Algorithm 4: Signature verification

Input: pk, (z, c), µ, pp = (Rq, k, `, η, B, s,M)
1. If ||z|| ≤ B and c = H0(Az − ct, µ, pk) :
2. return 1
3. Otherwise:
4. return 0

Lemma A.8 (Rejection Sampling [45]) Let V be a subset of Rm in which all
elements have norms less than T , and ρ : V → [0, 1] be a probability distribution.
Let σ = αT for α = O(

√
λ) and

M = exp

(√
2(λ+ 1)

log e
· 1

α
+

1

2α2

)
= O(1).

Now, sample v
$←− ρ and y

$←− Dm
σ , set z = y+v, and run b← Rej(z,v, σ) defined

in Table 3. Then, the probability that b = 1 is at least 1−2−λ

M . And conditioned

on b = 1, the distribution of (v, z) is within statistical distance of εRej = 2−λ

M of
the product distribution ρ×Dm

σ .

Rej(z,v, σ)

01 u
$←− [0, 1)

02 If u > 1
M · exp(−2〈z,v〉+‖v‖2

2σ2)
03 return 0 (i.e. abort)
04 Else
05 return 1 (i.e. non-abort)

Table 3. Standard rejection sampling algorithm in [45].

A.5 Supplementary for Trapdoor Homomorphic Commitment
Scheme in Section 3.3

In this section, we present the properties of trapdoor homomorphic commitment
scheme as follows.

Correctness. Eqv/Inv-TCOM (resp. COM) is correct if for any msg ∈ Smsg

Pr

Openck(com,Rand,msg)→ 1 :

cpp← CSetup(1λ); ck← CGen(cpp)

Rand
$←− D(Sr);

com← Commitck(msg;Rand)

 = 1.

38

Hiding. Eqv/Inv-TCOM (resp. COM) is unconditionally (resp. computation-
ally) hiding if the following probability is negligible in λ for any probabilistic
adversary (resp. probabilistic polynomial-time adversary) A = (A1,A2).

εhide :=

∣∣∣∣∣∣∣∣Pr

b = b′ :

cpp← CSetup(1λ); ck← CGen(cpp)
(msg0,msg1)← A1(ck, cpp)

b
$←− {0, 1}; com← Commitck(msgb)

b′ ← A2(com)

− 1

2

∣∣∣∣∣∣∣∣
Binding. Eqv/Inv-TCOM (resp. COM) is unconditionally (resp. computa-

tionally) binding if the following probability is negligible in λ for any probabilis-
tic adversary (resp. probabilistic polynomial-time adversary) A.

εbind := Pr

[
msg 6= msg′

:
cpp← CSetup(1λ)

∧Openck(com,Rand,msg)→ 1 ck← CGen(cpp)
∧Openck(com,Rand

′,msg′)→ 1 (com,msg,Rand,msg′,Rand′)← A(ck)

]

In particular, unconditionally binding implies that the following probability
is also negligible in λ, since otherwise unbounded adversaries can simply check
all possible values in Scom, Smsg and Sr to find a tuple that breaks binding.

εubind := Pr


∃(com,Rand,msg,Rand′,msg′) :

:msg 6= msg′ cpp← CSetup(1λ)
Openck(com,Rand,msg)→ 1 ck← CGen(cpp)
∧Openck(com,Rand

′,msg′)→ 1


Secure Trapdoor. Eqv/Inv-TCOM has the secure trapdoors if Eqv-TCOM

and Inv-TCOM each has a secure trapdoor.
Eqv-TCOM has a secure trapdoor if for any msg ∈ Smsg, the statistical dis-
tance εtd between (ck,msg, com,Rand) and (tck,msg, com∗,Rand∗) is negligible

in λ, where cppEqv ← CSetup(1λ); ck ← CGen(cppEqv);Rand
$←− D(Sr); com ←

Commitck(msg;Rand) and (tck, td)← TCGen(cppEqv); com
∗ ← Eqv-TCommittck(td);

Rand∗ ← Eqvtck(td, com
′,msg), com← Commitck(msg;Rand).

Inv-TCOM has a secure trapdoor if for any msg ∈ Smsg, the statistical distance
εtd′ between (ck′,msg, com′,Rand′) and (tck′,msg, com′∗,Rand′∗) is negligible in

λ, where cppInv ← CSetup(1λ), ck′ ← CGen(cppInv),Rand
′ $←− D(Sr); com′ ←

Commitck′(msg;Rand′). And
(
tck′, td′

)
← TCGen(cppInv), com

′∗ ← Committck′(msg;Rand′∗)

and Rand′∗
$←− D(Sr).

Definition A.9 (Uniform Key) A commitment key is said to be uniform if
the output of CGen(cpp) follows the uniform distribution over the key space Sck.

Definition A.10 (Additive Homomorphism) A commitment scheme is said
to be additively homomorphic if for any msg,msg′ ∈ Smsg

39

Pr


:

cpp← CSetup(1λ)
Openck(com + com′,Rand + Rand′, ck← CGen(cpp)

msg + msg′)→ 1 Rand
$←− D(Sr);Rand

′ $←− D(Sr)
com← Commitck(msg;Rand)
com′ ← Commitck(msg′;Rand′

 = 1

Moreover, in the following detailed security proof for our constructions, we
additionally need the commitment of Eqv/Inv-TCOM satisfies statistic/computational
uniform property, which is much more stronger than the previously defined
hiding property. Particularly, for Inv-TCOM, we require that the distribution
of com′∗ ← Committck′(msg;Rand′∗) is computationally indistinguishable from
the uniform one. On the other hand, for Eqv-TCOM, we require that com∗ ←
Eqv-TCommittck(td) has sufficient min-entropy, say, follows the uniform distri-
bution.

Definition A.11 (Uniform Commitment) For a Eqv-TCOM scheme, it is
said to be uniform commitment if com∗ ← Eqv-TCommittck(td) follows the uni-
form distribution over the commitment space Scom.

For a Inv-TCOM scheme, it is said to be computationally uniform commit-
ment if the distribution of com′∗ ← Committck′(msg;Rand′∗) is computationally
indistinguishable from the uniform distribution over the commitment space Scom.

40

A.6 Supplementary for n-out-of-n Signature and Multi-Signature
in Section 3.4

Algorithm 5: Exp
(S)UF-CMA
QDS (A)

1 : Mset← ∅ (or MSset← ∅)
2 : pp← Setup(1λ)

3 : (µ∗,Sig∗)← AO
QDS
n (·,·)(pp)

4 : b← Ver(µ∗, Sig∗, pk)
5:return (b = 1) ∧ µ∗ /∈ Mset
(or(µ∗,Sig∗) /∈ MSset)

Algorithm 6: Exp
(S)UF-CMA
QMS (A)

1 :
Mset← ∅ (or MSset← ∅),Kset← ∅
2 : pp← Setup(1λ)
3 : {(ski, pki)}i∈[t] ← Gen(pp)
4 : (µ∗, Sig∗, L∗)←
AO

QMS(·,·)({pki}, pp)
5 : b← Ver(µ∗, Sig∗, L∗)
6:return
(b = 1) ∧ pk ∈ L∗ ∧ (µ∗, L∗) /∈ Mset
(or (µ∗,Sig∗, L∗) /∈ MSset)

Fig. 8. QDS-(S)UF-CMA and QMS-(S)UF-CMA experiments. Here, we use UF and SUF
to distinguish the settings of unforgeability and strong unforgeability, respectively. Par-
ticularly, for the case of UF, in the left (resp. right) experiment, Mset is the set of
all inputs µ such that (sid, µ) was queried by A to its oracle as the first query with
identifier sid 6= 0 (resp.with any identifier sid). Note that pk in the left experiment
is the public verification key output by Pn when it completes Genn(pp). Besides, the
oracles OQDS

n and OQMS are described in Figure 9 and Figure 10. Furthermore, the
case of SUF can be described similarly, except that MSset is composed of not only the
queried messages but also the corresponding signatures.

Definition A.12 (QDS-(S)UF-CMA Security) A distributed signature pro-
tocol QDS is said to be QDS-(S)UF-CMA, i.e., distributed signature (strong)
unforgeability against chosen message attacks, secure, if for any quantum poly-
nomial time adversary A, its advantage

Adv
QDS-(S)UF-CMA
QDS (A) := Pr

[
Exp

QDS-(S)UF-CMA
QDS (A)→ 1

]
is negligible in λ, where Exp

QDS-(S)UF-CMA
QDS (A) is described in Figure 8.

Definition A.13 (QMS-(S)UF-CMA Security) A multisignature protocol QMS is
said to be QMS-(S)UF-CMA, i.e., multisignature (strong) unforgeability against
chosen message attacks, secure, if for any quantum polynomial time adversary
A, its advantage

Adv
QMS-(S)UF-CMA
QMS (A) := Pr

[
Exp

QMS-(S)UF-CMA
QMS (A)→ 1

]
is negligible in λ, where Exp

QMS-(S)UF-CMA
QMS (A)) is described in Figure 8.

41

Oracle OQDS
n (sid,m)

The oracle is initialized with public parameters pp generated by Setup algorithm. The variable flag
is initially set to false.
Key Generation. Upon receiving (0,m), if flag = true then return ⊥. Otherwise do the following:

– If the oracle is queried with sid = 0 for the first time then it initializes a machine M0 running
the instructions of party Pn in the distributed key generation protocol Genn(pp). If Pn sends
the first message in the key generation protocol, then this message is the oracle reply.

– If M0 has been already initialized then the oracle hands the machine M0 the next incoming
message m and returns M0’s reply. If M0 concludes with local output (skn, pk), then set
flag =true.

Signature Generation. Upon receiving (sid,m) with sid 6= 0, if flag =false then return ⊥. Oth-
erwise do the following:

– Initializes a machine Msid running the instructions of party Pn in the distributed signing
protocol Signn(sid, skn, pk, µ), which will finally output a signature Sigµ. The machine Msid is
initialized with the key share and any state information stored by M0 at the end of the key
generation phase. The message µ to be signed is included in Mset (or MSset). If Pn sends the
first message in the signing protocol, then this message is the oracle reply.

– IfMsid has been already initialized then the oracle hands the machineMsid the next incoming
message m and returns the next message sent by Msid. If Msid concludes with local output
Sig, then the output obtained by Msid is returned, (and append such Sigµ as the signature of

µ in MSset).

Fig. 9. Honest party oracle for the distributed signing protocol

Oracle OQMS(sid,m)
The oracle is initialized with public parameters pp generated by Setup algorithm.
Signature Generation Upon receiving (sid,m) do the following:

– If the oracle is queried with sid for the first time, then parse the incoming message m as (µ,L).
If pk /∈ L, then it returns ⊥. Otherwise it initializes a machine Msid running the instructions
of party P in the multi-signature protocol Sign(sid, sk, pk, µ, L), which will finally output a
signature Sigµ,L. The machine Msid is initialized with the key pair (sk, pk) and any state

information obtained during Gen(pp). The pair (µ,L) is included in Mset (or MSset). If P sends
the first message in the signing protocol, then this message is the oracle reply.

– IfMsid has been already initialized, then the oracle hands the machineMsid the next incoming
message m and returns the next message sent by Msid. If Msid concludes, then the output
obtained by Msid is returned, (and append such Sigµ,L as the signature of (µ,L) in MSset).

Fig. 10. Honest party oracle for the multi-signature protocol

42

Remark A.14 For QDS and QMS, the SUF-CMA security implies the UF-CMA
security. This is because for any (µ∗,Sig∗), it always holds that µ∗ /∈ Mset implies
(µ∗,Sig∗) /∈ MSset. In this paper, we will focus directly on the SUF-CMA for our
constructions.

A.7 Concreted Instantiations of Trapdoor Commitment Schemes

Two types of trapdoor commitment schemes can be instantiated using the com-
mitment schemes of [17] and [46], respectively. Below, we provide brief descrip-
tions of these two trapdoor commitment schemes.

Eqv-Commitment Scheme

The used Eqv-COM scheme can be instantiated using the commitment scheme in
Section 5.2 of [17]. Particularly, the commitment scheme includes the following
algorithms.

– CSetup(1λ) takes a security parameter as input, and outputs cpp = (N, q, s, s,
B, `, w).

– CGen(cpp) takes a commitment parameter as input, and samples â1,1
$←− R×q

(a uniform invertible element of Rq) and â1,j
$←− Rq for j = 2, ..., ` + 2w,

â2,j
$←− Rq for j = 3, ...`+ 2w. It then outputs:

Â =

[
â1,1 â1,2 â1,3 ... â1,`+2w

0 1 â2,3 ... â2,`+2w

]
as ck.

– Commitck(x; r) takes x ∈ Rq and r
$←− D`+2w

s as input, and outputs

f = Â · r +

[
0
x

]
∈ R2

q .

To ensure perfect correctness, retry unless ||r|| ≤ B.
– Openck(f , r, x) takes commitments, randomness and message as input, and

checks that

f = Â · r +

[
0
x

]
and ||r|| ≤ B.

– TCGen(cpp) takes a commitment parameter as input, and samples A of the
form:

A =

[
a1,1 a1,2 a1,3 ... a1,`

0 1 a2,3 ... a2,`

]
where all the ai,j are uniform in Rq, except a1,1 which is uniform in R×q . It

also samples R
$←− D`×2w

s with discrete Gaussian entries. It then outputs A

as the trapdoor td and Â = [A|G−AR] as the commitment key tck, where
G is given by:

G =

[
1 2 ... 2w−1 0 0 ... 0
0 0 ... 0 1 2 ... 2w−1

]
∈ R2×2w.

43

– Eqv-TCommittck(td) simply returns a uniformly random commitment f
$←−

R2×1
q . There is no need to keep a state.

– Eqvtck(R,f , x) uses the trapdoor discrete Gaussian sampling algorithm of
Micciancio-Peikert [[49], Algorithm 3] (or faster variants such as the one

described in [31]) to sample r
$←− DΛ⊥u (Â,s) according to the discrete Gaussian

of parameter s supported on the lattice coset:
Λ⊥u (Â) = {z ∈ R`+2w : Â · z ≡ u(mod q)} where u = f −

[
0 x
]

Theorem A.15 (Theorem 3 of [17]) The trapdoor commitment scheme of above,
with the following choice of parameters:

s = Θ(N) s = Θ(N3/2 log2N) B = Θ(N2 log3N)
` = w = dlog2 qe q = N2+ε (ε > 0, q prime)

is a secure trapdoor commitment scheme assuming that the MSISq,1,`+2w−1,2B

problem is hard.

Inv-Commitment Scheme

The used Inv-COM scheme can be instantiated using the commitment scheme in
Section 5.2 of [46]. Particularly, the commitment scheme includes the following
algorithms.

Construction A.16 (Inv-COM Scheme) The scheme consists of six algorith-
m as follows.

– CSetup(1λ): Taking a security parameter λ as input, the algorithm conducts
the following steps:

1. Choose two integers N, q, where N is a power of 2, and q is a prime with
q = 5 mod 8;

2. Set n, k, λ̂ be integers satisfying k = n+ 2 + λ̂;
3. Output cpp = (N, q, n, k, λ̂).

– CGen(cpp): Given the public parameter cpp, the algorithm conducts the fol-
lowing steps:

1. For the ring R = Z[X]/(XN + 1), and let Rq = Zq[X]/(XN + 1).

2. Sample A
$←− Rn×kq , and sample B

$←− R2×k
q .

3. Output ck := (A,B).

– Commitck(x; r): Given the message vector x ∈ Rq and randomness r
$←− Rkq ,

the algorithm conducts the following steps:

1. Compute

com =

t0

t1
t2

 =

[
A
B

]
· r +

 0
x

x · b√qe


2. Output com.

To ensure perfect correctness, retry unless ||r|| ≤ B′.

44

– Openpk(com, x, r): Given the commitment com, message x, and randomness
r, the algorithm checks if

com =

t0

t1
t2

 =

[
A
B

]
· r +

 0
x

x · b√qe

 , and ‖r‖ ≤ B′.

– TCGen(cpp): Given the public parameter cpp, the algorithm conducts the
following steps:
1. For the ring R = Z[X]/(XN + 1), and let Rq = Zq[X]/(XN + 1).

2. Sample A
$←− Rn×kq , si ← Sn1 , ei ← Sk1 for i ∈ [2], where si, ei are

vectors over Rq.
3. Compute bi = A> · si + ei(modq). And set B = [b1, b2]>.
4. Output tck := (A,B), td := (s1, s2).

– Invtck(com, td): On input the key tck, com = (t0, t1, t2) and td, the algorithm
conducts the following steps:
1. Compute u1 = t1 − 〈t0, s1〉 and u2 = t2 − 〈t0, s2〉.
2. Compute ∆2 = u2 − u1 · b

√
qe(modb√qe).

3. Compute and output m′ =
u2−∆2,

b√qe .

Below, we present the security and correctness of Construction A.16.

Correctness. The correctness consists of two respects: a valid commitment can
be opened correctly, and a valid commitment generated with tck can be inverted
successfully through using sk := (s1, s2). As the former one is trivial, below we
just focus on the latter one. Suppose com = (t0, t1, t2) is a valid commitment,
then for the valid commitment key and secret key tck := (A,B = [b1, b2]>),
td := (s1, s2), it holds

u1 = t1 − 〈t0, s1〉 = 〈e1, r〉+ x (modq)

u2 = t2 − 〈t0, s2〉
= 〈e2, r〉+ x · b√qe (modq)

(6)

In this case, we denote 〈ei, r〉 and 〈e2, r〉 as ∆1 and ∆2, respectively. Thus, we
have {

u1 = ∆1 + x (modq)

u2 = ∆2 + x · b√qe (modq)
(7)

Then after multiplying b√qe into both sides of the first equation, we can get{
u1 · b

√
qe = ∆1 · b

√
qe+ x · b√qe (modq)

u2 = ∆2 + x · b√qe (modq)
(8)

Furthermore, we can get

k = u2 − u1 · b
√
qe = ∆2 −∆1 · b

√
qe(modq). (9)

45

Notice that each coefficient of 〈e1, r〉 =
∑
j∈[k](e1,j · rj) is upper bounded by

k ·N . Notice that if ∆1, ∆2 are small enough such that ‖∆i‖∞ ≤ b
√
qe/4, then

no reduction modulo q takes place in the Equation (9).
In this case, ∆2 can be easily recovered by further modulo b√qe for Equation

(9), i.e., ∆2 = k(modb√qe). Finally, we can obtain that

x =
u2 −∆2

b√qe
mod q.

Security of Construction A.16. Notice that according to the MLWEq,n,k,1
assumption, bi is computational indistinguishability from uniform. Conditioned
on this case, the above encryption scheme can be viewed as a BDLOP commit-
ment scheme with parameter n, k, `, Rq = Zq[X]/(XN + 1), and thus we have
the following theorem.

Theorem A.17 (Theorem 3 of [17]) The trapdoor commitment scheme of above
is a secure trapdoor commitment scheme satisfies binding and hiding properties,
following from MSISq,n,k,8

√
2·α·κ·k·N and MLWEq,λ̂,k,1, respectively. Here, α is the

parameter for rejection sampling as in Lemma A.8, κ is the parameter for the
challenge set of NIZKPoK system as in Table 2, assuming that the MSIS problem
is hard.

B Supplementary for QPRF in Section 4

Due to the space limitation in the main body, we present many more supple-
mentary materials for QPRF in Section 4.

B.1 Detailed Proof for theorems in Section 4.1

Theorem B.1 (Restatement of Theorem 4.3) Let χ = DR̄,r̄ be a smal-
l distribution over R̄, where all coefficients of each polynomial are chosen in-
dependently from DZ,r̄. Let q̄ ≥ p̄ · ¯̀· (r̄ ·

√
2(N̄ + ¯̀) · ω(

√
log(N̄ + ¯̀)))

¯̀ · N̄ω(1).
Let QPRF be as in Construction 4.1. If the RLWEq̄,1,m̄,χ holds, then Construction
4.1 is a secure QPRF.

Proof. Similar to the proof of Theorem 6.1 by Zhandry in [60], we first define a

class of functions G : K × [2]
¯̀→ R̄1×d̄

q̄ as

Gk(x) = (a1, . . . , am̄) ·
¯̀∏

i=1

sxii mod q̄,

where x := (x1, . . . , x¯̀) ∈ {0, 1}¯̀
. Then, we define a related class of functions

G̃(¯̀) in the following recursive way.

– G̃(0) is a function from from [2]0 to R̄1×m̄
q̄ defined as follows: sample a> =

(a1, . . . , am̄)← R̄1×m̄
q̄ , and set G̃(0)(ε) = a>.

46

– G̃(i) is a function from from [2]i to R̄1×m̄
q̄ defined as follows: choose a random

G̃(i−1), sample si ← χ, and for each x′ := (x1, . . . , x¯̀−1) ∈ [2]i−1, sample
ex′ ← χ1×m̄. Then,

G̃(i)(x = (x′|xi)) = G̃(i−1)(x′) · sxii + xi · ex′ mod q̄.

Furthermore, we define two truly random function U : [2]
¯̀ → R̄1×m̄

p̄ and U ′ :

[2]
¯̀→ R̄1×m̄

q̄ .
With above definitions, the high-level proof route is that for any adversary

choosing query x ∈ [2]
¯̀
, it holds

QPRFk(x) := bGk(x)ep̄
(i)
≈c bG̃(¯̀)(x)ep̄

(ii)
≈c bU ′(x)ep̄

(iii)
≈c U(x), (10)

with overwhelming probability.
According to the above definition on G(¯̀)(x), we know that

G̃(x1 · · ·x¯̀) = (· · · ((a> · sx1
1 + x1 · eε) · sx2

2 + x2 · e1) · · ·) · sx¯̀

¯̀ + x¯̀ · ex1···x¯̀−1

= a> ·
¯̀∏

i=1

sxii + x1 · eε ·
¯̀∏

i=2

sxii + x2 · ex1
·

¯̀∏
i=3

sxii + · · ·x¯̀ · ex1···x¯̀−1

= Gk(x) + x1 · eε ·
¯̀∏

i=2

sxii + x2 · ex1 ·
¯̀∏

i=3

sxii + · · ·x¯̀ · ex1···x¯̀−1
,

where the above computations are conducted over R̄q̄. Notice that according to
Lemma 2.3 in [7], for si ← χ, and each error vector ex1···xi−1

← D1×m̄
R̄,r̄

, it holds

the difference between the coefficient of each entry of Gk(x) and the correspond-

ing coefficient of G̃(x) is bounded by B̄ = ¯̀· (r̄ ·
√

2N̄ · ω(
√

log N̄))
¯̀
/
√
N̄ .

Then, in order to ensure the indistinguishability even with all QPRF queries
in [2]

¯̀
by the quantum adversary, just as Zhandry’s argument in [60], we reset

B̄ = ¯̀ · (r̄ ·
√

2(N̄ + ¯̀) · ω(
√

log(N̄ + ¯̀)))
¯̀
/
√
N̄ . With this value B̄, for each

y ∈ Zq̄, we can define BAD(y) to be the event that by + [−B̄, B̄]cp̄ 6= byep̄.
Suppose, we can set q̄ ≥ p̄ · ¯̀ · (r̄ ·

√
2(N̄ + ¯̀) · ω(

√
log(N̄ + ¯̀)))

¯̀ · N̄ω(1) such

that (2B̄+1)p̄
q̄ · m̄ · N̄ = negl(λ). Then, for all coefficients in the output of G̃(¯̀)(x),

the BAD happens with negligible probability. And thus, the step (i) in (10) will
hold.

And the computational indistinguishability of G̃(¯̀)(x) follows from the oracle-
LWE indistinguishability defined by Zhandry in [60], which further follows from
the underlying RLWEq̄,1,m̄,χ assumption, defined in Definition A.7. This also
implies that the step (ii) in (10) holds.

Finally, for the step (iii) in (10), it holds due to the fact that the event
BAD happens with negligible probability. Overall, (10) is set up, and thus the
statement of this theorem holds. ut

Lemma B.2 (Restatement of Lemma 4.4) For any N̄ ≥ 1, q̄ ≥ 2, d̄ =

dlog q̄e, m̄ = d̄ + 2, p̄ ≥ 3 ·
√
m̄N̄ · (

√
2N̄ +

√
d̄N̄), there exist the following

47

two efficient algorithms (TrapGen, RLWRInvert).
TrapGen(1N̄ , q̄, m̄, d̄): A ppt algorithm which on input positive integers N̄ , q̄, m̄, d̄,

first samples a vector (a1, a2) ∈ R̄2
q̄ and trapdoor T ∈ S2×d̄

1 , where Rq̄ =

Zq̄[X]/(XN̄+1). Furthermore, the algorithm computes (a3, . . . , am̄) = (a1, a2)T+

g>, where g> = (1, 2, . . . , 2d̄−1). In this case, a> = (a1, . . . , am̄)> is computa-
tionally close to uniform over R̄m̄q̄ , according to the RLWE assumption. Clearly,

it holds a> ·
[
−T
Id̄×d̄

]
= g>, where Id̄×d̄ ∈ R̄d̄×d̄q̄ is an identity matrix.

RLWRInvert(T,a, b): An algorithm taking as input (a,T) output by TrapGen(1n̄, q̄),
and some value b ∈ Rm̄p̄ such that b> = ba> · sep̄ for some s ∈ R̄q̄, outputs s.

Proof. Given RLWR samples (a>, b> = ba> · sep̄), we first transform it into
RLWE samples (a>,a> · s + e>), and then invert such RLWE problem through
using the trapdoor for a. Thus, we will get the secret s for the original RLWR
samples.

Particularly, given b ∈ Rm̄p̄ , we compute b q̄p̄ ·be ∈ R̄
m̄
q̄ . More precisely, it holds

c = b q̄
p̄
· be = b q̄

p̄
· b p̄
q̄
· a · see = b q̄

p̄
· (p̄
q̄
· a · s+ e′)e = a · s+ e,

where e′ ∈ (− 1
2 ,

1
2]N̄ ·m̄ and e ∈ (− q̄

2p̄ ,
q̄
2p̄]N̄ ·m̄. Then, we compute

ĉ> = c ·
[
−T
Id̄×d̄

]
= s · g> + ê> = s · g> + e> ·

[
−T
Id̄×d̄

]
. (11)

For simplicity, we denote T′ =

[
−T
Id̄×d̄

]
. And it holds s1(T′) =

√
s1(T)2 + 1.

Thus we have ‖ê‖ ≤ s1(T′) · q̄2p̄ ·
√
N̄ · m̄. According to the property of primitive

vector g>, we know that (11) will be successfully inverted if ê ∈ P1/2(q̄ ·B−>),

where B is the basis for the lattice Λ⊥q̄ (g>), satisfying ‖B‖ ≤
√

5. This equiva-

lently implies that ‖ê‖ ≤ q̄

2
√

5
. Thus, it suffices to set s1(T′) · q̄2p̄ ·

√
N̄ · m̄ ≤ q̄

2
√

5
.

Combining s1(T) ≤ (
√

2N̄ +
√
m̄ · N̄) by Lemma A.1, it is sufficient to set

p̄ ≥ 3 ·
√
m̄N̄ · (

√
2N̄ +

√
d̄N̄). ut

Lemma B.3 (Restatement of Lemma 4.6) For the adversary A without the
trapdoor T of the vector a, if the RLWEq̄,1,1,S1 assumption holds, then Con-
structions 4.1 and 4.5 are computational indistinguishability, even A queries the
functions in a superposition for any polynomial times.

Proof. Notice that for any i ∈ [d̄], we know ai+2 = (a1, a2) ·
(
t1,i
t2,i

)
+ 2i mod q̄.

Furthermore, due to the RLWEq̄,1,1,S1 assumption, we know that for uniform and

public ring elements a1, a2, (a1, a2) ·
(
t1,i
t2,i

)
is computationally indistinguishable

from uniform over R̄q̄. As a result, Constructions 4.1 and 4.5 are computational
indistinguishability. ut

48

Theorem B.4 (Restatement of Theorem 4.7) For some a ∈ Rm̄q̄ and inte-

gers p̄, q̄, d̄, N̄ , m̄ such that q̄ ≥ p̄ · ¯̀· (r̄ ·
√

2(N̄ + ¯̀) ·ω(
√

log(N̄ + ¯̀)))
¯̀ · N̄ω(1) ≥(

r̄ ·
√

2N̄
)¯̀

, d̄ = dlog q̄e, and m̄ = d̄+2 and p̄ ≥ 3·
√
m̄N̄ ·(

√
2N̄+

√
d̄N̄), suppose

the oracle ORLWRInvert in Algorithm 1 correctly invert
⌊
a> · s

⌉
p̄

for any s ∈ R̄q̄.
Then, for any invertible ring element si ∈ R̄q̄, Algorithm 1 correctly inverts

Inj-QPRFa,{si} =
⌊
a> ·

∏¯̀

i=1 s
xi
i

⌉
p̄
, assuming the DSPRq̄,R̄,χ assumption.

Proof. From the oracle ORLWRInvert, we can get the correct ring element ŝ =∏¯̀

i=1 s
xi
i mod q̄ from the above Step 1, due to our parameter settings on m̄, N̄ , d̄, ¯̀, q̄

and p̄.
Then, in order to show the correctness of the following Steps 3 and 4, Par-

ticularly, as each si ← DR̄,r̄ is invertible over R̄q̄ with overwhelming probability,
if the matrix s′i−1 = si · sxi+1

i+1 · . . . · s
x¯̀

¯̀ , then it is clearly that the norm of

s′i = s−1
i · s′i−1 = s

xi+1

i+1 · . . . · s
x¯̀

¯̀ will be smaller than (r̄
√

2N̄)
¯̀−i with overwhelm-

ing probability, according to Lemma A.3.
On the other hand, if the matrix s′i−1 does not consist of the i-th small ring

element si, i.e., s′i−1 = s
xi+1

i+1 · . . . · s
x¯̀

¯̀ , then s′i = s−1
i · s′i−1 = s−1

i · s
xi+1

i+1 · . . . · s
x¯̀

¯̀ .
Without loss of generality, we assume xi+1 = 1. In this case, we know

s′i =
si+1

si
· . . . · sx¯̀

¯̀ .

According to the DSPR assumption, we know that si+1

si
is computationally

indistinguishable from uniform over Rq. And thus, s′i is computationally indistin-

guishable from uniform, which implies that ‖s′i‖ > (r̄
√

2N̄)
¯̀−i with overwhelm-

ing probability, according to our parameter setting.
Summing up all above analyzes, we conclude that Algorithm 1 correctly

inverts Inj-QPRFa,{si} =
⌊
a> ·

∏¯̀

i=1 s
xi
i

⌉
p̄
. ut

C Supplementary for QDS2 in Section 5

Due to the space limitation in the main body, we present many more supple-
mentary for QDS2 in Section 5

Theorem C.1 (Restatement of Theorem 5.2) Suppose the trapdoor com-
mitment schemes Inv-TCOM and Eqv-TCOM are secure, additively homomor-
phic, have uniform keys and uniform commitment. Particularly, the output of
Eqv-TCommittck(td) has sufficient min-entropy ϑ. And suppose there exists QPRF
that can be programable and invertible simultaneously. For any quantum polynomial-
time adversary A that initiates a single key generation protocol by querying
OQDS2
n with sid = 0, initiates Qs signature generation protocols by querying
OQDS2
n with sid 6= 0, and makes Qh quantum superpositions queries to ran-

dom oracle H0,H1,H
′
1,H2,H3,H4,H5, the protocol QDS2 of Figures 5, 6, 7 is

49

QDS-SUF-CMA secure under MSISq,k,`+1,β and MLWEq,k,`,η assumptions in the

QROM, where β = 2
√
B2
n + κ. Concretely, using other parameters specified in

Table 2, the advantage of A is bounded as follows.

AdvQDS-SUF-CMA
QDS2

(A) ≤ 2εInj-QPRF + 5εQPRF + e(Qh +Qs + 1)
[
(Qh +Qs)(εtd + εtd′)

+ 2(Qh +Qs) · εQPRF +
3

2

√
Qh2

−t·ϑ
2 + 2εQPRF + t ·Qs · (m− 1) · negl(λ)

+ t ·Qs · εRej +
3

2

√
Qh(2

−qklN
2 + 2

−qkN
2) + 4(εQPRF + εInj-QPRF)

+ AdvMLWEq,k,`,η + 2(Qh + 1)2−(t logm)/2 +Qs · t · ε′bind +
Qs(Qs + 1)

2
· 2−t·ϑ

+ AdvMSISq,k,`+1,β

]
Below, we first sketch the proof idea, before presenting the formal proof.

According to Definition A.12, we need to prove that for any efficient adversary
A against QDS2, its advantage AdvQDS-SUF-CMA

QDS2
(A) is negligible. In order to do

this, we conduct the following two steps:

– We first show that the party Pn in the experiment AdvQDS-SUF-CMA
QDS2

(A) can
be simulated by a simulator B defined in Figure 11, together with its sub-
routines Figures 13 to 16. And B do not have any secret key, through using
a sequence of hybrid experiments. Particularly, in the key generation and
signature query phases, we use the QPRF to simulate the quantum random
oracle, which satisfy the requirements of extraction and reprogrammability.
In the signature query phase, we use the trapdoor-equivocation commitment
scheme and the adaptive programming of H5 to simulate the signature.

– Then, we show that in such a simulated experiment, the signature is strong
unforgeability, through establishing a reduction from MSIS and the binding
properties of Inv-TCOM, following from the similar proof idea of [57]. Partic-
ularly, we first show that there is an efficient extractor Ext in Figure 12, such
that given a valid forged message-signature pair (µ∗,Sig∗) /∈ MSset, Ext can
output a solution for MSIS problem, if the used Inv-TCOM scheme satisfies
the binding property. And then, we bound the probability of generating a
valid forged message-signature pair (µ∗,Sig∗) /∈ MSset by the union bound
of two events happen: Ext succeeds and Ext fails.

Proof. We first begin with the real experiment denoted as G0.

G0 This is the real experiment just as defined in Figure 8. Here B holds the real
random oracles H0,H1,H

′
1,H2,H3,H4,H5, and allows A to query all Hi and

H′1 in superpositions. Besides, with the honestly generated secret key share
sn, B answers A’s key generation and signature generation queries, just as
in Figures 9, which invokes Figures 5 and Figures 6. Let Pr[Gi] denote a
probability that A wins the experiment Gi, i.e., outputs a valid forgery, at
the game Gi.

50

Algorithm B(A, t) The algorithm is initialized with a set MSset = ∅ and a flag BAD4 = false.
Here, MSset is used to store the queried messages together with the related signatures.

Honest party oracle simulation. Upon receiving a query of the form (sid,m) from A, reply

the query as described in SimOQDS2
n (sid,m)(Fig.13). If SimOQDS2

n (sid,m) halts with output ⊥
then B also halts with output ⊥.
Random oracle simulation. Upon receiving a query to the random oracles from A, reply the
query as described in Fig.15.
Forgery. The variable BAD4 is initially set to 0. Upon receiving a forgery (µ∗, Sig∗) =
(µ∗, {com∗i }i∈[t], {c̃om∗i,j}i∈[t],j∈[m], {z∗i }i∈[t], {r∗i }i∈[t], {r∗′i,Ji}i∈[t]) from A, it conducts:

1. If (µ∗, Sig∗) ∈ MSset then B halts with output ⊥.
2. Make queries ck∗ ← H3(µ∗, pk), ck′∗ ← H4(µ∗, pk), c∗i,j ← H0(i, j, µ∗, pk, ck∗, ck′∗) where

i ∈ [t], j ∈ [m] and J1||...||Jt ← H5(pk, {com∗i }i∈[t], {c∗i,j}i∈[t],j∈[m], {c̃om∗i,j}i∈[t]).

3. If ||z∗i || > Bn or Eqv-Openck∗ (com∗i , r
∗
i ,Az∗i − c∗i,Ji

t) 6= 1 or

Inv-Open
ck
′∗ (c̃om∗i,Ji

, r′∗i,Ji
, z∗i) 6= 1, then B halts with output ⊥. Otherwise, B com-

putes H′3(µ∗, pk). If the output of H′3(µ∗, pk) is not ⊥, (i.e., Eqv-TCGen was called), then
set flag BAD4 = 1 and B halts with output ⊥.

4. B halts with output (µ∗, {com∗i }i∈[t], {c̃om∗i,j}i∈[t],j∈[m], {z∗i }i∈[t], {r∗i }i∈[t], {r′∗i,Ji}i∈[t]).

Fig. 11. The algorithm simulating the view of A in ExpQDS-SUF-CMA
QDS2

(A) experiment

Input :H0,H3,H4,H5, pk, µ, Sig =
(
{comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi}i∈[t], {ri}i∈[t], {r′i,Ji}i∈[t]

)
,

compute ck ← H3(µ, pk), td′ ← H4(µ, pk), ci,j ← H0(i, j, µ, pk, ck, ck′) for all i ∈ [t], j ∈ [m], and
J1||...||Jt ← H5(pk, µ, {comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m]) .
Furthermore, conduct the followings, for i = 1 to t do

for j = 1 to m except Ji do
for each z′i,j ← Inv(c̃omi,j , td

′) do

if ||z′i,j || ≤ B ∧ Eqv-Openck(comi, ri,wi := Az′i,j − ci,jt)

return
(zi−z′i,j
ci,Ji

−ci,j

)

Fig. 12. Extractor for G9

Below, we explicit describe the Forgery phase in the experiment as follows, as
we will need to modify its certain steps in the following hybrid experiments.
Forgery. When A outputs a forgery Sig∗ = ({com∗i }i∈[t], {c̃om

∗
i,j}i∈[t],j∈[m]

{z∗i }i∈[t], {r∗i }i∈[t], {r′∗i,Ji}i∈[t]) for µ∗ at the end of experiment, B proceeds
as follows.

1. If (µ∗,Sig∗) ∈ MSset then B halts with output ⊥.
2. Compute ck∗ ← H3(µ∗, pk), ck′∗ ← H4(µ∗, pk), ci,j ← H0(i, j, µ∗, pk, ck∗,

ck′∗) where i ∈ [t], j ∈ [m] and J∗1 ||...||J∗t ← H5(pk, µ∗, {com∗i }i∈[t],
{c∗i,j}i∈[t],j∈[m], {c̃om

∗
i,j}i∈[t]).

3. If ||z∗i || > Bn or Eqv-Openck∗(com
∗
i , r
∗
i ,Az∗i − c∗i,J∗i t) 6= 1 or

Inv-Openck′∗(c̃om
∗
i,J∗i

, r′∗i,J∗i
, z∗i) 6= 1 then B halts with output ⊥.

4. B halts with output (µ∗, {com∗i }i∈[t], {c̃om
∗
i,j}i∈[t],j∈[m], {z∗i }i∈[t], {r∗i }i∈[t],

{r′∗i,J∗i }i∈[t]).

Thus, we have

Pr[G0] = AdvQDS-SUF-CMA
QDS2

(A).

G1 This experiment is identical to G0, except that the random oracles H0,H1,H
′
1,H2,H5

are simulated by QPRFs. Among them, H0 : {0, 1}l
∗
0 → C,H′1 : {0, 1}l

∗
1 →

51

Oracle OQDS
n (sid,m)

The simulator takes as input the public parameters pp output by the Setup algorithm. The variable
flag is initially set to be false.
Key Generation. Upon receiving (0,m), if flag = true then return ⊥. Otherwise do the following:

– If the oracle is queried with sid = 0 for the first time then it initializes a machine M0 running
the instructions SimGenn(pp,A, t) (Fig.14). If Pn sends the first message in the key generation
protocol, then this message is the oracle reply.

– If M0 has been already initialized then the oracle hands the machine M0 the next incoming
message m and returnsM0’s reply. IfM0 fails with output ⊥ at any point, then the oracle stops
the simulation with output ⊥. If M0 concludes SimGenn(pp,A, t) with local output (tn, pk),
then set flag =true.

Signature Generation. Upon receiving (sid,m) with sid 6= 0, if flag =false then return ⊥. Oth-
erwise do the following:

– If the oracle is queried with sid for the first time then parse the incoming message m as µ.
It initializes a machine Msid running the instructions of SimSignn(sid, tn, pk, µ)(Fig. 16). The
machine Msid is initialized with the key share and any state information stored by M0 . The
message µ to be signed is included in MSset. If Pn sends the first message in the signing protocol,
then this message is the oracle reply.

– IfMsid has been already initialized then the oracle hands the machineMsid the next incoming
message m and returns the next message sent by Msid. If Msid fails with output ⊥ at any
point then the oracle stops the simulation with output ⊥. If Msid concludes with local output
Sig, then the output obtained by Msid is returned, and append such Sig as the signature of µ
in MSset.

Fig. 13. Honest party oracle simulator for QDS2

Protocol QDS2.SimGenn(pp,A, t). The simulator is parameterized by public parameters described

in Table 2 and relies on the random oracles: H1 : {0, 1}l
∗
1 → {0, 1}l1 ,H′1 : {0, 1}l

∗
1 → {0, 1}l

′
1 ,H2 :

{0, 1}l
∗
2 → {0, 1}l2 . The variables BAD1,BAD2 is initially set to false

Matrix Generation
1. Sample a random seed sn ∈ {0, 1}l

∗
1−logn, generate and output a random oracle commitment

gn ← H1(sn, n).
2. Upon receiving gu for all u ∈ [n− 1],

(a) Invoke Algorithm 1 on input (g1, ..., gn−1) to obtain ((s1, 1), ..., (sn−1, n− 1)).
(b) Compute Au = H′1(su, u) for all u ∈ [n− 1].

(c) Compute An := A−
∑n−1
u=1Au.

(d) Reprogram the random oracle H′1(sn, n) = An and set public random matrix A := [A|I] ∈
Rk×(`+k)
q , where A :=

∑
u∈[n]Au.

(e) Send out the seed sn.
3. Upon receiving su for all u ∈ [n− 1], if H1(su, u) 6= gu for some u, then send out ⊥.

Key Pair Generation

1. Sample g′n
$←− {0, 1}l2 and send out g′n.

2. Upon receiving g′u for all u ∈ [n− 1] proceed as follows.
(a) Invoke Algorithm 1 on input (g′1, ..., g

′
n−1) to obtain ((t1, 1), ..., (tn−1, n− 1)).

(b) Compute tn := t−
∑n−1
u=1tu.

(c) Reprogram the random oracle H2(tn, n) = g′n and then send out tn.
3. Upon receiving tu for all u ∈ [n− 1], if H2(tu, u) 6= g′u for some u then send out ⊥.

If neither the protocol does not output ⊥, the simulator obtains public key share tn and pk = (A, t)
as local output.

Fig. 14. Key generation simulator for QDS2

{0, 1}l
′
1 ,H5 : {0, 1}l

∗
5 → {0, 1}l5 are simulated as QPRFs in Construct 4.1.

According to Theorem 4.3, QPRFs and quantum random oracle are com-
putationally indistinguishable except with a negligible probability εQPRF =

negl(λ), for any efficient quantum adversary. H1 : {0, 1}l
∗
1 → {0, 1}l1 ,H2 :

{0, 1}l
∗
2 → {0, 1}l2 are simulated as Inj-QPRFs in Construct 4.5. According

to Lemma 4.6, Construct 4.1 and Construct 4.5 are computational indistin-

52

Algorithm Random Oracle Simulation
H0(x)

1. Simulate H0 as QPRFk0
: {0, 1}l

∗
0 → {0, 1}l0 , where k0

$←− K
2. Return H0(x)

H1(x)
1. Simulate H1 as Inj-QPRFk1

: {0, 1}l
∗
1 → {0, 1}l1 , where k1

$←− K
2. Return H1(x)

H′1(x)

1. Simulate H′1 as QPRFk′1
: {0, 1}l

∗
1 → {0, 1}l

′
1 , where k′1

$←− K
2. Return H′1(x)

H2(x)

1. Simulate H2 as Inj-QPRFk2
: {0, 1}l

∗
2 → {0, 1}l2 , where k2

$←− K
2. Return H2(tu, u)

H3(x),H′3(x)
1. Parse x as (µ, pk)

2. Invoke QPRFk3
(µ, pk) : {0, 1}l

∗
3 → ({0, 1}lra1 × {0, 1}lra2) , where k3

$←− K and lra1
, lra2

are
the lengths of r1, r2, respectively.

3. Compute (ra1, ra2) = QPRFk3
(µ, pk)

4. If the number of 1 in ra1 is more than num, then compute (tck, td)← Eqv-TCGen(cppEqv, ra2),

return tck and td as H3(µ, pk) and H′3(µ, pk), respectively. Here, num is set to make Pr[‖ra1‖1 >
num] = $

5. Otherwise, compute ck ← Eqv-CGen(cppEqv, r2), return ck and ⊥ as H3(µ, pk) and H′3(µ, pk),
respectively.

H4(x),H′4(x)
1. Parse x as (µ, pk)

2. Invoke QPRFk4
(µ, pk) : {0, 1}l

∗
4 → {0, 1}lr , where k4

$←− K and lr is the length of r.

3. Compute r = QPRFk4
(µ, pk)

4. Then compute (tck′, td′)← Inv-TCGen(cppInv, r), return tck′ and td′ as H4(x) and H′4(x), respec-
tively.

H5(x)

1. Simulate H5 as QPRFk5
: {0, 1}l

∗
5 → {0, 1}l5 , where k5

$←− K
2. Return H5(x)

Fig. 15. Quantum random oracle simulator and the related functions for QDS2

guishability, except with a negligible probability εInj-QPRF = negl(λ), for any
efficient quantum adversary. Thus, we have

|Pr[G1]− Pr[G0]| ≤ 5εQPRF + 2εInj-QPRF.

G2 This experiment is identical to G1, except with the simulation of H3, H4 and
the related several differences in QDS.Signn.
When receiving a query (µ, pk), B run tck′ ← H4(µ, pk) and td′ ← H′4(µ, pk)
as in Figure 15. Particularly, H4 first computes r ← QPRFk4

(µ, pk), where
QPRFk4

is a quantum secure pseudorandom function as Construct 4.1, then
invokes (tck′, td′)← Inv-TCGen(cppInv, r), return tck′ and td′, respectively.

Recall that the core idea of running H3 is to make sure that for all sign
queries, H3 will return a trapdoor commitment key tck, i.e., tck← H3(µ, pk).
Then through using the related td ← H′3(µ, pk), B can equivocate commit-
ments comi ← Eqv-TCommittck(td) to arbitrary plaintexts wi ∈ Rkq later.
And for the forgery submitted by A, H3 will return the actual commitment
key ck, i.e., ck← H3(µ, pk). Thus, we can simulate H3 as in Figure 15. Par-
ticularly, through using QPRF as follows: if receiving a query (µ, pk), H3 first

53

Protocol QDS2.SimSignn(sid, tn, pk, µ)
The simulator is parameterized by public parameters described in Table 2 and relies on the random

oracles H0 : {0, 1}l
∗
0 → C, H3 : {0, 1}l

∗
3 → Eqv-Sck, H4 : {0, 1}l

∗
4 → Inv-Sck and H5 : {0, 1}l

∗
5 →

{0, 1}l5 . The simulator assumes that QDS2.SimGenn(pp) has been previously invokes. If a party halts
with ⊥ at any point, then all SimSignn(sid, tn, pk, µ) executions are aborted. The variable BAD3 is
initially set to false.
Inputs

1. The simulator receives a unique sessions ID sid, tn, pk = (A, t) and message µ ∈M as input.
2. The simulator verifies that sid has not been used before (if it has been, the protocol is not

executed).
3. The simulator locally computes a per-message commitment key by querying a random oracle

tck′ ← H4(µ, pk).
4. The simulator locally computes a per-message commitment key by querying a random ora-

cle tck ← H3(µ, pk). Compute QPRFk3
(µ, pk) = (ra1, ra2). If the number of 1 in ra1 is less

than num, then set BAD3 = 1 and simulation fails with output ⊥. Otherwise obtain trapdoor
(tck, td)← Eqv-TCGen(cppEqv, ra2).

Signature Generation Pn works as follows:
1. Compute the first group messages as follows:

(a) for i = 1 to t; conduct as follows:

i. Sample (J1‖ . . . ‖Jt)
$←− Ztm, where Ji ∈ Zm.

ii. Compute com
(n)
i ← Eqv-TCommittck(td).

iii. for j = Ji, conduct as follows:
A. Derive challenges ci,Ji ← H0(i, Ji, µ, pk, tck, tck

′).

B. Sample z
(n)
i,Ji

$←− D`+ks

C. Output z
(n)
i,Ji

with probability 1/M .

D. If the above z
(n)
i,Ji

does not output, then go to the Step ii.

iv. For j = Ji, compute c̃om
(n)
i,Ji
← Inv-Committck′ (z

(n)
i,Ji

, r
′(n)
i,Ji

) where r
′(n)
i,Ji

$←− Inv-Sr.

v. For all j ∈ [t]\{Ji}, sample c̃om
(n)
i,Ji

$←− SInv-com.

(b) Send out ({com(n)
i }i∈[t], {c̃om

(n)
i,j }i∈[t],j∈[m]).

2. Upon receiving ({com(u)
i }i∈[t], {c̃om

(u)
i,j }i∈[t],j∈[m])for all u ∈ [n − 1], compute the signature

shares as follows:
(a) Set comi :=

∑
u∈[n]com

(u)
i and c̃omi,j :=

∑
u∈[n] c̃om

(u)
i,j for all i ∈ [t], j ∈ [m].

(b) Reprograme H5 as H5(pk, µ, {comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m]) :=

(J1||...||Jt). And derive randomness r
(n)
i ← Eqvtck(td, com

(n)
i ,w

(n)
i = Az

(n)
i,Ji
− ci,Jitn).

(c) Send out ({z(n)
i,Ji
}i∈[t], {r

(n)
i }i∈[t], {r

′(n)
i,Ji
}i∈[t]).

3. Upon receiving ({z(u)
i,Ji
}i∈[t], {r

(u)
i }i∈[t], {r

′(u)
i,Ji
}i∈[t]) for all u ∈ [n], compute the combined

signature as follows:

(a) For each u ∈ [n − 1], reconstruct w
(u)
i := Az

(u)
i,Ji
− ci,Jitu and validate the signature

shares
||z(u)
i,Ji
|| ≤ B, Eqv-Opentck(com

(u)
i , r

(u)
i ,w

(u)
i) = 1

and
Inv-Opentck′ (c̃om

(u)
i,Ji

, r
′(u)
i,Ji

, z
(u)
i,Ji

) = 1.

for all i ∈ [t]. If the check fails for some u then send out ⊥.
(b) Compute zi,Ji :=

∑
u∈[n]z

(u)
i,Ji

, ri :=
∑
u∈[n]r

(u)
i and r′i,Ji

:=
∑
u∈[n]r

′(u)
i,Ji

for all i ∈ [t].

If the protocol does not abort, Pn obtains a signature ({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi,Ji}i∈[t],
{ri}i∈[t], {r′i,Ji}i∈[t]) as local output.

Fig. 16. Signature generation simulator for QDS2

computes (ra1, ra2) ← QPRFk3
(µ, pk), where QPRFk3

is a quantum secure
pseudorandom function as Construct 4.1, then

• If the number of 1 in ra1 is more than num, then B invokes Eqv-TCGen
with cppEqv and ra2 as public parameter and randomness respectively,
to obtain (tck, td). Finally, B returns tck as the output of H3(µ, pk).

54

• Otherwise, B invokes Eqv-CGen with cppEqv and ra2 as public parameter
and randomness respectively, to obtain ck. Finally, B returns ck as the
output of H3(µ, pk).

In the above process, B also runs the H′3 as in Figure 15 to get td = H′3(µ, pk).
Here, we set the value num such that the probability that the number of 1
in ra1 is more than num is $.

Based on the above simulation for H3, H4, G2 has the following concrete
differences with QDS.Signn in G1.
• With respect to Inputs 3: Given (µ, pk), compute (ra1, ra2)← QPRFk3

(µ, pk).
If the number of 1 in ra1 is less than num (i.e., Eqv-TCGen was not
called), then set the flag BAD3 = 1 and halts with output ⊥. Otherwise
obtain the trapdoor (tck, td)← Eqv-TCGen(cppEqv; ra2).

• With respect to Signature Generation 1.(a).ii: Generate com
(n)
i ←

Eqv-TCommittck(td) instead of committing to w
(n)
i , for i ∈ [t]. Besides,

in this step, B does not sample the corresponding randomness r
(n)
i .

• With respect to Signature Generation 2.(b): After getting challenge

J1|| · · · ||Jn, B derives randomness r
(n)
i ← Eqvtck(td, com

(n)
i ,w

(n)
i), where

w
(n)
i has been computed in the step of Signature Generation 1.(a).i.

Moreover, G2 has the following concrete differences with Forgery phase in
G1. Particularly, when A outputs a successful forgery ({comi}∗i∈[t],

{c̃omi,j}∗i∈[t],j∈[m], {zi}
∗
i∈[t], {ri}

∗
i∈[t], {r

′
i,Ji
}∗i∈[t], µ

∗) at the end of the exper-
iment, we modify the step 3 of G2 as follows.

Forgery 3. If ||z∗i || > Bn or Eqv-Openck∗(com
∗
i , r
∗
i ,Az∗i − c∗i,Jit) 6= 1 or

Inv-Openck′∗(c̃om
∗
i,Ji , r

′∗
i,Ji

, z∗i) 6= 1 then B halts with output ⊥. Further-
more, B computes H′3(µ∗, pk). If the output of H′3(µ∗, pk) is not ⊥, (i.e.,
Eqv-TCGen was called), then set flag BAD4 = 1 and B halts with output
⊥.

Note that due to the way H3 is simulated, if B does not output (0,⊥), it is
now guaranteed that ck∗ is generated by Eqv-CGen instead of Eqv-TCGen.
Furthermore, according to the security of Inv/Eqv-TCOM, we have

Pr[G2] ≥ $Qh+Qs ·(1−$)·Pr[G1]−(Qh+Qs)·(εtd+εtd′)−2(Qh+Qs)·εQPRF,

where εtd, εtd′ are the statistical distances of true commitment and trapdoor
commitment for Eqv-TCOM and Inv-TCOM, respectively.
In other word, it is only successful neither BAD3 nor BAD4 is set above.
Note that by setting $ = (Qh + Qs)/(Qh + Qs + 1) since (1/(1 + 1/(Qh +
Qs)))

(Qh+Qs) ≥ 1/e for Qh +Qs ≥ 0 we obtain

Pr[G2] ≥ Pr[G1]

e(Qh +Qs + 1)
− (Qh +Qs) · (εtd + εtd′)− 2(Qh +Qs) · εQPRF.

G3 This game is identical to G2 except at the choice of the challenge J1||...||Jt.
Particularly, instead of getting the challenge J1||...||Jt ← H5(·), B firstly

55

chooses J1||...||Jt at random before choosing y
(n)
i ← D`+k

σ . Then, after the
step of Signature Generation 2.(a), B programs the random oracle H5 at
the particular input x := (pk, µ, {comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m]),
such that H5(x) := J1||...||Jt.
Notice that, according to the properties of Eqv-TCommit, it holds com

(n)
i ←

Eqv-TCommittck(td) has sufficient min-entropy ϑ, so does comi :=
∑
u∈[n]com

(u)
i .

This further implies the programmed point x has sufficient min-entropy.
Thus, according to Theorem 4.8, it holds

|Pr[G3]− Pr[G2]| ≤ (4 +
√

2)
√
Qh2

−t·ϑ
2 + 2εQPRF.

G4 This game is identical to G3 except at the following steps. Particularly, at

Signature Generation 1.(b), for j ∈ [m]\Ji, B directly chooses c̃om
(n)
i,j

uniformly from the corresponding commitment space of Inv-TCommit. For

j = Ji, B still computes c̃om
(n)
i,Ji

in the original way.
Thus, according to the pseudorandomness of Inv-TCommit, it holds

|Pr[G4]− Pr[G3]| ≤ Qs · t · (m− 1) · negl(λ).

G5 This game is identical to G4 except at the following steps. Particularly,
at Signature Generation 1.(a).iii, for j ∈ [m]\Ji, B directly omit the

computations of z
(n)
i,j . For j = Ji, B still computes z

(n)
i,j in the original way.

Thus, as the {z(n)
i,j }j∈[m]\Ji have never been used in the following steps, it

holds it holds
Pr[G5] = Pr[G4].

G6 This game is identical to G5 except at the following points.

Honest party oracle simulatuon. The B doesn’t honestly generate z
(n)
i,Ji

through using the secret key share skn anymore, but instead sampling it
according to the rejection sampling algorithm as follows.

• Signature Generation 1.(a).i. B does nothing here.

• Signature Generation 1.(a).iii. B. Samples z
(n)
i,Ji
← D`+k

σ , output it
with probability 1/M .

The above mentioned z
(n)
i,j sampled from D`+k

σ and then output with prob-
ability 1/M , are statistically indistinguishable from the real ones, according
to the property of rejection sampling in Lemma A.8. Thus, we have

|Pr[G6]− Pr[G5]| = t ·Qs · εRej.

Notice that up until now, i.e., in G6, the signing queries are answered through
using the simulated algorithm SimSignn in Figure 16, and it doesn’t rely on
the actual secret key sn anymore.

G7 This experiment is identical to G6, except with the generation of An. Rather

than directly sampling sn
$←− {0, 1}l∗2 and computing An ← H′1(sn), B first

picks the random matrix A ∈ Rk×`q and a random seed sn
$←− {0, 1}l∗2 ,

56

and send out a random oracle commitment gn
$←− H1(sn). Then, after re-

ceiving all other random oracle commitments gu ∈ {0, 1}l1 , B can extrac-
t the adversary’s corresponding committed seeds s1, ..., sn−1 ∈ Rk×`q , and
compute Au = H′1(su) for all u ∈ [n − 1]. As H1 has been simulated
by Inj-QPRFk1

in Construction 4.5, according to Theorem 4.7, this extrac-
tion can be efficiently done through using Algorithm 1. Furthermore, B
computes An = A −

∑n−1
i=1 Ai. And for the consistency of the follow-

ing queries by A, we need to reprogram QPRFk′1
(H′1) at (sn, n) such that

QPRFk′1
(sn, n) := An (i.e., H′1(sn, n) := An). Note that the distribution of

An are uniform, which follows that of A. The formal simulation strategy is
described in Matrix Generation part of Figure 14.
According to Theorem 4.8, B reprograms the random oracle H′1 to make
An ← H′1(sn, n) will not be noticed by A. Because the distribution of sn are
uniform, we have

|Pr[G7]− Pr[G6]| ≤
(

4 +
√

2
)√

Qh2−
l∗1
2 + 2(εQPRF + εInj-QPRF).

G8 This experiment is identical to G7 except that B simply picks the random

public key share tn
$←− Rkq during the key generation phase, rather than

computing tn = Asn with sn
$←− S`+kη . As A follows the uniform distribution

over Rk×`q , if the adversary A can distinguish G8 and G7 then we can use
A as a distinguisher that breaks MLWEq,k,`,η assumption; hence we have

|Pr[G8]− Pr[G7]| ≤ AdvMLWEq,k,`,η .

G9 This experiment is identical to G8, except with the generation of tn. Rather

than sampling tn
$←− Rkq , B first choose t

$←− Rkq , and send out a random

g′n
$←− {0, 1}l2 . Then, after receiving all others random oracle commitments

g′u ∈ {0, 1}l2 , B can extract the adversary’s corresponding committed shares
t1, ..., tn−1 ∈ Rkq . As H2 has been simulated by Inj-QPRFk2

in Construc-
tion 4.5, according to Theorem 4.7, this extraction can be efficiently done
through using Algorithm 1. Furthermore, B computes tn = t −

∑n−1
i=1 ti.

And for the consistency of the following queries by A, we need to reprogram
Inj-QPRFk2

(H2) at (tn, n) such that Inj-QPRFk2
(tn, n) := g′n(i.e., H2(tn, n) :=

g′n). Note that the distribution of tn are uniform, which follows that of t.
The formal simulation strategy is described in Key Pair Generation part
of Figure 14.
According to Theorem 4.8, B reprograms the random oracle H2 to make
g′n ← H2(tn, n) will not be noticed by A. Becausethe distribution of tn are
uniform, we have

|Pr[G9]− Pr[G8]| ≤
(

4 +
√

2
)√

Qh2−
qkN

2 + 2(εQPRF + εInj-QPRF).

Up until now, notice that the key generation query is simulated according to
SimGenn in Figure 14. This implies that B can be fully simulated without using
any secret key.

57

Based on this, our next goal is to show that in G9, the probability of A forg-
ing a valid message-signature pair (µ∗,Sig∗) /∈ MSset is negligible in λ. In order
to do this, we need to establish an efficient reduction: if A outputs a valid forge
(µ∗,Sig∗) /∈ MSset, then B can solve some underlying hard problems. Particular-
ly, we need to embed a challenge commitment key ck ← Eqv-CGen(cppEqv) and

an instance of MSISq,k,`+1,β , which is denoted as [A′|I] with A′
$←− R

k×(`+1)
q .

As in G9 the combined public key (A, t) is uniformly distributed in Rk×`q ×Rkq ,
replacing it with MSISq,k,`+1,β instance doesn’t change the view of the adversary
at all, where A′ := [A|t]. Moreover, according to the simulation of H3, it is guar-
anteed that ck follows the uniform distribution over Eqv-Sck, which is perfectly
indistinguishable from honestly generated ck← Eqv-CGen(cppEqv).

Below, we follow the proof idea of [57] for proving the strong unforgeability
in G9, i.e., Pr[G9] ≤ negl(λ). Particularly, we first show that there is an effi-
cient extractor Ext in Figure 12, such that given a valid message-signature pair
(µ∗,Sig∗) /∈ MSset in G9, Ext(pp, pk, µ∗,Sig∗) can output a solution for MSIS
problem with overwhelming probability, just as formalized in the following Lem-
ma C.2. And then, we bound the probability Pr[G9] by the union bound of two
events happen: Ext succeeds and Ext fails.

Lemma C.2 There exists an extractor Ext presented in Figure 12, such that if
A could output a valid forge (µ∗,Sig∗) /∈ MSset in G9, then Ext(pp, pk, µ∗,Sig∗)
will output a solution for MSISq,k,`+1,β problem except with probability (2(Qs +

1)2−(t logm)/2 +Qs · t · ε′bind + Qs(Qs+1)
2 · 2−t·ϑ), where ε′bind is the advantages of

breaking Inv-TCOM for any adversary, and ϑ is the min-entropy of the output of
Eqv-TCommittck(td).

Proof. According to the basic structure of valid forge signature Sig∗, for any
i ∈ [t], if there exists one different index j 6= J∗i such that zi,j satisfies: (1)
‖zi,j‖ ≤ Bn; (2) Eqv-Openck∗(com

∗
i , r
∗
i ,wi := Azi,j − c∗i,jt) = 1, then we know

Eqv-Openck∗(com
∗
i , r
∗
i ,w

∗
i := Az∗i − c∗i,J∗i t)

=Eqv-Openck∗(com
∗
i , r
∗
i ,wi := Azi,j − c∗i,jt) = 1,

where ck∗ ← H3(µ∗, pk), ck′∗ ← H4(µ∗, pk), c∗i,j ← H0(i, j, µ∗, pk, ck∗, ck′∗) for all

i ∈ [t], j ∈ [m], J∗1 ||...||J∗t ← H5(pk, µ∗, {com∗i }i∈[t], {c∗i,j}i∈[t],j∈[m], {c̃om
∗
i,j}i∈[t],j∈[m]),

and zi,j = Invck′∗(c̃om
∗
i,j , td

′) with td′ ← Inv-TCGen(cppInv, r), r = QPRFk4
(µ∗, pk).

We know that if the above equality holds, then we have Az∗i − c∗i,J∗i
t =

Azi,j − c∗i,jt, from which we get

(A|I|t)
(

z∗i − zi,j
c∗i,j − c∗i,J∗i

)
= 0.

Recalling that (A′|I) = (A|t|I) is an instance of MSISq,k,`+1,β problem, we have

found a valid solution if β =
√

(2Bn)2 + 4κ, since ||z∗i − zi,j || ≤ 2Bn and

0 < ||c∗i,J∗i − c
∗
i,j || ≤

√
4κ.

58

Then, similar to Theorem 18 in [57], we first define the following two events:

– E1: The valid forge signature in G9 is malleable. This means if

Sig∗ = (µ∗, {com∗i }i∈[t], {c̃om
∗
i,j}i∈[t],j∈[m], {r∗i }i∈[t], {(r′∗i,J∗i , z

∗
i,J∗i

)}i∈[t])

is a valid forge output by the adversary in G6. Then, there exists another
signature

Ŝig
∗

= (µ∗, {com∗i }i∈[t], {c̃om
∗
i,j}i∈[t],j∈[m], {r∗i }i∈[t], {(r̂′∗i,J∗i , ẑ

∗
i,J∗i

)}i∈[t])

is valid too. But the differences between Sig∗ and Ŝig
∗

are only on the pairs
(r′∗i , z

∗
i) and (r̂′∗i , ẑ

∗
i).

– E2: The valid forge signature in G9 can be only verified successfully for
zi,j = Invtck′∗(c̃omi,j , td

′), with j = J∗i , where td′ ← H′4(µ∗, pk). According to
the binding property of Eqv-TCOM, this means the following two conditions
happen simultaneously:

Eqv-Openck∗(com
∗
i , r
∗
i ,w

∗
i := Az∗i − c∗i,J∗i t) = 1,

Eqv-Openck∗(com
∗
i , r
∗
i ,wi := Azi,j − c∗i,jt) 6= 1, for j 6= J∗i .

Intuitively, E1 implies that the forged signature is computed from one of the
simulated signatures from MSset. E2 implies that for each comi with i ∈ [t],
there are exactly one position j ∈ [m] such that zi,j can be verified as the
valid response. Clearly, if the above defined events E1, E2 do not happen and
binding property of Eqv-TCOM holds, then the above extraction by Ext should
be successful. Particularly, it holds

Pr[Ext succeeds] ≥ 1− Pr[E1 ∪ E2]

≥ 1− (Pr[E1] + Pr[E2]).

Thus, it suffices to show the upper bounds of Pr[E1] and Pr[E2] are negligible

in λ, i.e., Pr[E1] ≤ Qs · t · ε′bind + Qs(Qs+1)
2 · 2−t·ϑ and Pr[E2] ≤ 2(Qh + 1) ·

2−(t·logm)/2, in the following Lemmas C.3 and C.4. ut

Lemma C.3 (Non-malleability of valid signature in G9) Suppose
Inv-TCOM is secure and ε′bind is the advantage of breaking its binding for any
adversary, and let Qs be the number of signature queries conducted by A in G9,
then

Pr[E1] ≤ Qs · t · ε′bind +
Qs(Qs + 1)

2
· 2−t·ϑ.

Proof (Sktech). For G9, we define the event E1 more formally as follows. Sup-
pose (µ,Sig) = (µ, {comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {ri}i∈[t], {(r′i,Ji , zi,Ji)}i∈[t]) ∈
MSset to be one of simulated message-signature pairs output by B. Then, as a
malleable forgery, we assume that the adversary outputs a new valid message-
signature pair (µ∗,Sig∗) /∈ MSset such that QDS2.Ver(pk, µ

∗,Sig∗) = 1, with

59

(µ∗,Sig∗) = (µ, {comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {ri}i∈[t], {(r′
∗
i,Ji , z

∗
i,Ji

)}i∈[t]). In oth-
er words, such a valid message-signature forgery (µ∗,Sig∗) differs from the related
(µ,Sig) ∈ MSset only in the (r′, z)-components.

According to G3, we know that H5 needs to be reprogrammed for each
signature generation query. Thus, for certain (µ,Sig) ∈ MSset, we use H′5 to
denote the corresponding state of H5 just after B outputting this Sig for µ.
Similarly, we use H′′5 to denote the final state of H5, after B receiving the
forged message-signature pair (µ∗,Sig∗) from the adversary A. This means when
verifying the validness of the forged signature, we will use H′′5(·) to compute
J∗1 ||...||J∗t . But in order to verify the validness of the simulated signature Sig
output by B, we use H′5(·) to compute J∗1 ||...||J∗t . Here for simplicity, we de-
note πhalf := ({comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m]). And thus, we can
rewrite J∗1 ||...||J∗t = H′′5(pk, µ, πhalf) and J1||...||Jt = H′5(pk, µ, πhalf).

Below, we analyze the event E1. Let D1 be the event H′5(pk, µ, πhalf) =
H′′5(pk, µ, πhalf), and D̄1 be the event H′5(pk, µ, πhalf) 6= H′′5(pk, µ, πhalf).

According to the total probability, it holds

Pr[E1] = Pr[E1|D1] Pr[D1] + Pr[E1|D̄1] Pr[D̄1]

≤ Pr[E1|D1] + Pr[D̄1].

Conditioned on D1, E1 implies that there exists at least one i ∈ [t] such that
Inv-Commitck′(z

∗
i , r
′∗
i,Ji) = Inv-Commitck′(zi, r

′
i,Ji

) = c̃omi,Ji , but (z∗i , r
′∗
i,Ji) 6=

(zi, r
′
i,Ji

). Clearly, this contradicts with the binding property of Inv-TCOM scheme.
Thus, it holds Pr[E1|D1] ≤ Qs · t · ε′bind, since the adversary has conducted sig-
nature queries for Qs times.

On the other hand, the event D̄1 implies that H5 has been reprogrammed
at the same point x := (pk, µ, πhalf) for two times, during all the Qs times

signature queries. According to the fact (1) comi :=
∑
u∈[n]com

(u)
i with com

(n)
i ←

Eqv-TCommittck(td) and (2) the output of Eqv-TCommittck(td) has sufficient min-
entropy ϑ, it holds that the min-entropy of x is at least t ·ϑ. Thus, this happens

with probability at most Qs(Qs+1)
2 · 2−t·ϑ.

As a corollary , it holds

Pr[E1] ≤ Qs · t · ε′bind +
Qs(Qs + 1)

2
· 2−t·ϑ.

ut

Lemma C.4 (E2) Suppose after making Qs times signature queries for µi in
G6, A gives a forgery Sig∗ such that QDS2.Ver(pk, µ

∗,Sig∗) = 1, where Sig∗ =
({com∗i }i∈[t], {c̃om

∗
i,j}i∈[t],j∈[m], {r∗i }i∈[t], {r′∗i }i∈[t], {z∗i }i∈[t]). Then

Pr[E2] ≤ 2(Qs + 1)2−(t·logm)/2,

Proof (Sktech). This proof is almost identical to the Lemma 17 of [57], but
with “Inv-Commit, Inv” instead of G,G−1, respectively, i.e., we replace G with a
homomorphic trapdoor commitment that can be inverted. And according to the

60

computational binding of Eqv-TCOM, we can use Eqv-Openck∗(com
∗
i , r
∗
i ,wi :=

Azi,j − ci,jt) = 1 and ||zi,j || ≤ Bn to represent the validness of Σ-protocol in
Lemma 17 of [57]. ut

According to Lemma C.2, if the extraction is successful, B can solve the
MSISq,k,`+1,β problem with β =

√
(2Bn)2 + 4κ.

Thus, we get
Pr[ExSucess] ≤ AdvMSISq,k,`+1,β

.

and

Pr[ExFail] ≤ 2(Qs + 1)2−(t logm)/2 +Qs · t · ε′bind +
Qs(Qs + 1)

2
· 2−t·ϑ.

Finally, we know

Pr[G9] = Pr[G9|ExFail] Pr[ExFail] + Pr[G9|ExSucess] Pr[ExSucess]

≤ Pr[ExFail] + Pr[ExSucess]

≤ 2(Qs + 1)2−(t logm)/2 +Qs · t · ε′bind +
Qs(Qs + 1)

2
· 2−t·ϑ + AdvMSISq,k,`+1,β

.

Summing up all above analysis, we conclude that the statement of theorem holds.
ut

D Two Round Multi-Signature from lattices in the
QROM

In this section we describe our two-round multi-signature scheme QMS2 in the
key-verification model. We remark that with the help of the multi-proof straight-
line extractable NIZKPoK in the key generation stage, our QMS2 can be proven
secure relying on essentially the same idea as QDS2. And the main difference from
n-out-of-n signature is that, the protocol requires no interactive key generation
at all, and instead for each signing execution a party receives a set of public keys
 L together with a message to be signed. Particularly, our construction of two-
round multi-signature QMS2 = (Setup,Gen,Sign,Ver,KVer) is formally specified
in Figures 17, 18, 19. As the number of participants may change for each signing
attempt, in this section we define n to be the maximum number of signers allowed
in a single execution of signing protocol, i.e., only L of cardinality at most n is
a valid input. Without loss of generality, we assume that each signer assign
the index n to itself, and consider other signers’ indices as 1, ..., n′ − 1, where
n′ = | L| ≤ n. As we will use the multi-proof straight-line extractable NIZKPoK
in the QROM [19] as a building block, we first recall it before presenting the
formal construction of our QMS.

D.1 Non-interactive Zero-knowledge Proof of Knowledge

Let’s recall the notion of non-interactive zero-knowledge proof of knowledge
(NIZKPoK) system.

61

Definition D.1 ([19]) Let R be a relation (and LR is the related language).
A non-interactive proof system Π for R (or LR) is a tuple of PPT algorithms
(Setup,Prove,Verify) having the following interfaces (where 1λ are implicit inputs
to Prove,Verify):

– Setup(1λ) : given a security parameter λ, outputs a string CRS.
– Prove(CRS, x, w): given a string CRS and a statement-witness pair (x,w) ∈ R

(or w is the witness for x ∈ LR), outputs a proof π.
– Verify(CRS, x, π): given a string CRS, a statement x, and a proof π, either

accepts or rejects.

A secure NIZKPoK should have four properties: Completeness, Soundness,
and Zero-knowledge, Straight-line extractability.

– Completeness: for every (x,w) ∈ R and every λ, Verify(CRS, x, π) accepts
with probability 1, over the choice of CRS← Setup(1λ) and π ← Prove(CRS, x, w).

– Soundness: let LR be the language defined by relation R. For any ppt ad-
versary A,

PrCRS←Setup(1λ)

[
∃x s.t.π∗ ← A(CRS, x) : Verify(CRS, x, π∗) accepts ∧ x /∈ LR

]
≤ negl(λ).

– Zero-Knowledge: There exists two ppt algorithms (SimSetup,SimProve), such
that, for any ppt adversary A we have |Pr[A wins] − 1

2 | ≤ negl(λ) in the
following game:
1. The challenger samples (ĈRS, tk)← SimSetup(1λ) such that ĈRS is indis-

tinguishable from CRS output by Setup, and gives the simulated ĈRS to
A.

2. The adversary A chooses (x,w) ∈ R and gives these to the challenger.

3. The challenger samples π0 ← Prove(CRS, x, w), π1 ← SimProve(ĈRS, x, tk), b←
{0, 1} and gives πb to A.

4. The adversary A outputs a bit b′ and wins if b′ = b.

Notice that in the above zero-knowledge game, if we allow the adversary A to
choose any polynomial numbers of (xi, wi) ∈ R, and all the resulting {πi,0} and
{πi,1} are still indistinguishable, we say that Π is a multi-proof NIZKPoK system.

Moreover, we consider straight-line extractability. Here, the adversary can
pick the statements adaptively. In order to perform extraction in this stronger
setting, the common reference string is simulated and the corresponding trapdoor
is provided to the extractor.

Definition D.2 (Multi-Proof Straight-Line Extractability [19]) An
NIZKPoK system is multi-proof straight-line extractable, if there exists a ppt
oracle simulator SimSetup and a ppt extractor Ext with the following properties:

CRS indistinguishability. For any ppt adversary A, we have

Adv(A) : =
∣∣∣Pr[CRS← Setup(1λ) : A(CRS) = 1]

− Pr[(ĈRS, tk)← SimSetup(1λ) : A(ĈRS) = 1]
∣∣∣ ≤ negl(λ).

62

Straight-Line Extractability. There exists constants c, e1, e2 and polynomial
p(λ) such that for any QH = poly(λ), Qs = poly(λ) and ppt adversary A that
makes at most QH random oracle queries, and generates at most Qs statement
proof pairs with

Pr
[
(ĈRS, tk)← SimSetup(1λ), {(xi, πi)}i∈[Qs] ← AH(·)(ĈRS) :

∀i ∈ [Qs],Verify
H(·)(ĈRS, xi, πi) = 1

]
≥ µ(λ),

we have

Pr
[
(ĈRS, tk)← SimSetup(1λ), {(xi, πi)}i∈[Qs] ← AH(·)(ĈRS),

{wi ← Ext(1λ, QH , Qs, 1/µ, tk, xi, πi)}i∈[Qs] :

∀i ∈ [Qs], (xi, wi) ∈ R ∧ VerifyH(·)(ĈRS, xi, πi) = 1
]

≥ 1

2
· µ(λ)− negl(λ).

Moreover, the running time of Ext is upper bounded by Qe1H ·Qe2s ·
1
µc · p(λ).

Below, we recall the instantiation of NIZKPoK for MSIS relation. Particularly,
for the following language

LB,q =
{

(Ā,u) ∈ Rk×(`+k)
q ×Rkq : ∃ x ∈ R`+k such that 0 < ‖x‖ ≤ B and Ā · x = u

}
,

there are practical multi-proof straight-line extractable NIZKPoK systems for
LB,q, according to [19].

D.2 Construction

Protocol QMS2.Gen(pp)

The protocol is parameterized by public parameters described in Table 2, matrix A, together with
the common reference string CRS of the used multi-proof NIZKPoK system Π. Then, conduct the
following steps:

1. Sample a secret key shares sn
$←− S`+kη and compute a public key share tn := Asn;

2. Runs Π.Prove(CRS,A, tn, sn) to output a NIZKPoK proof πn as an appendix of public key.

If the protocol does not abort, Pn obtain (skn, pkn) = (sn, (tn, πn)) as local output.

Fig. 17. Gen Protocol of Our Two-Round Multi-Signature Scheme

As the construction and proof of QMS2 is almost same to these of QDS2,
below we highlight the differences in red color.

Given a multi-proof straight-line extractable NIZKPoK systemΠ = (Π.Setup,
Π.Prove, Π.Verify)) for LB,q just as defined in Definition D.1, we make a brief
overview of our QMS2 scheme as follows.

63

– The Setup works most like the one for QDS2, but it additionally outputs a

matrix A = [A|I] ∈ R
k×(`+k)
q as part of public parameters, so we assume

that A is generated by a trusted third party. And the input lengths of QROM
is changed and we show these as follows.

• l∗0 = log(m · t · |M|) + k ·N · log q · (n+ 1) + log |Eqv-Sck|+ log |Inv-Sck|
• l∗3 = l∗4 = log |M|+ n · k ·N · log q

• l∗5 = nk ·N log q + log |M|+ t log |Eqv-Scom|+mt log(2Nκ|Inv-Scom|)

Besides, the Setup algorithm runs Π.Setup to output the common string
reference CRS.

– The Gen is formally specified in Figure 17, which consists of the following
two stages:

• Samples sn
$←− S`+kη , and computes tn = Asn ∈ Rkq .

• Takes CRS,A, tn, sn as input, and runs Π.Prove(CRS,A, tn, sn) to out-
put a NIZKPoK proof πn as an appendix of public key.

Finally, the algorithm outputs (pk, sk) = ((tn, πn), sn).

– The signing protocol Sign and verification Ver are described in Figures 18
and 19. The main differences from QDS2.Sign and QDS2.Ver is that at the
beginning stages of QDS2.Sign and QDS2.Ver, each participant need to first
verify the well-formedness of other participant’s public keys.

– The key verification algorithm KVer is just run the verification algorithm
Π.Verify of the NIZKPoK system Π.

D.3 Correctness and Security

As the correctness of QMS2 is quite similar to that of Theorem 5.1, here we omit
it for simplicity. Below, we just focus on the security. Similar to QDS2 in Section
5, here we also focus on the strong unforgeability, i.e., we show that our QMS2

is SUF-CMA secure.

Theorem D.3 Suppose the trapdoor commitment schemes Inv-TCOM and Eqv-
TCOM are secure, additively homomorphic, have uniform keys and uniform
commitment. Particularly, the output of Eqv-TCommittck(td) has sufficient min-
entropy ϑ. Suppose Π = (Π.Setup, Π.Prove, Π.Verify)) is a multi-proof straight-
line extractable NIZKPoK system for LB,q, just as defined in Definition D.1. And
suppose there exists QPRF that can be programable and invertible simultaneously.
For any quantum polynomial-time adversary A that initiates a single key gener-
ation protocol by querying OQMS2

n with sid = 0, initiates Qs signature generation
protocols by querying OQMS2

n with sid 6= 0, and makes Qh quantum superpositions
queries to random oracle H0,H3,H4,H5, the protocol QMS2 of Figures 17, 18, 19
is QMS-SUF-CMA secure under MSISq,k,`+1,β and MLWEq,k,`,η assumptions in

the QROM, where β =
√

(2Bn)2 + 4κ+ η2(4κ · (`+ k)). Concretely, using other
parameters specified in Table 2, the advantage of A is bounded as follows.

64

Protocol QMS2.Sign(sid, skn, pkn, µ, L)

The protocol is parameterized by public parameters described in Table 2 and matrix A, and relies

on the random oracles H0 : {0, 1}l
∗
0 → C, H3 : {0, 1}l

∗
3 → Eqv-Sck, H4 : {0, 1}l

∗
4 → Inv-Sck and

H5 : {0, 1}l
∗
5 → {0, 1}l5 . The protocol assumes that QMS2.Gen(pp) has been previously invokes. If a

party halts with ⊥ at any point, then all Sign(sid, skn, pkn, µ, L) executions are aborted.
Inputs

1. Pn receives a unique sessions ID sid, skn = sn, pk = tn and message µ ∈M as input and a list
of public keys L as input. If n′ := | L| > n or tn /∈ L or Π.Verify(CRS, Ā, tj , πj) = 0 for certain
(tj , πj) ∈ L, then send out ⊥. Otherwise parse L as {t1, ...tn′−1, tn}.

2. Pn verifies that sid has not been used before (if it has been, the protocol is not executed).
3. Pn locally computes a per-message commitment key ck← H3(µ, L), ck′ ← H4(µ, L).

Signature Generation Pn works as follows:

1. Compute the first group messages as follows:
(a) for i = 1 to t; conduct as follows:

i. Sample y
(n)
i ← D`+ks and compute w

(n)
i := Ay

(n)
i .

ii. Compute com
(n)
i ← Eqv-Commitck(w

(n)
i , r

(n)
i) with r

(n)
i

$←− D(Eqv-Sr).
iii. for j = 1 to m, conduct as follows:

A. Derive challenges ci,j ← H0(i, j, µ, ck, ck′, L).

B. Computes signature shares z
(n)
i,j = ci,jsn + y

(n)
i .

C. Run the rejection sampling Rej(z
(n)
i,j , ci,jsn, σ)→ {0, 1}.

iv. If the above rejection sampling algorithm outputs 0 for certain j ∈ [m], then send out
⊥, and go to the step i.

(b) Compute c̃om
(n)
i,j ← Inv-Commitck′ (z

(n)
i,j , r

′(n)
i,j) where r

′(n)
i,j

$←− D(Inv-Sr) for all i ∈ [t], j ∈
[m].

(c) Send out ({com(n)
i }i∈[t], {c̃om

(n)
i,j }i∈[t],j∈[m]).

2. Upon receiving ({com(u)
i }i∈[t], {c̃om

(n)
i,j }i∈[t],j∈[m]) for all u ∈ [n′ − 1] compute the signature

shares as follows:
(a) For each u ∈ [n′−1], derive per-user challenges ci,j ← H0(i, j, µ, ck, ck′, L) where i ∈ [t], j ∈

[m]. Set comi :=
∑
u∈[n′−1]com

(u)
i + com

(n)
i and c̃omi,j :=

∑
u∈[n′−1] c̃om

(u)
i,j + c̃om

(n)
i,j for

all i ∈ [t], j ∈ [m].
(b) Get challenges J1||...||Jt ← H5(L, µ, {comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m]).

(c) Send out ({z(n)
i,Ji
}i∈[t], {r

(n)
i }i∈[t], {r

′(n)
i,Ji
}i∈[t]).

3. Upon receiving ({z(u)
i,Ji
}i∈[t], {r

(u)
i }i∈[t], {r

′(u)
i,Ji
}i∈[t]) for all u ∈ [n′−1] compute the combined

signature as follows:

(a) For each u ∈ [n′ − 1], compute Ji and ci,Ji as before, and reconstruct w
(u)
i := Az

(u)
i,Ji
−

ci,Jitu and validate the signature shares

||z(u)
i,Ji
|| ≤ B, Eqv-Openck(com

(u)
i , r

(u)
i ,w

(u)
i) = 1

and
Inv-Openck′ (c̃om

(u)
i,Ji

, r
′(u)
i,Ji

, z
(u)
i,Ji

) = 1.

for all i ∈ [t]. If the check fails for some u then send out ⊥.

(b) Compute zi,Ji :=
∑
u∈[n′−1]z

(u)
i,Ji

+ z
(n)
i,Ji

, ri :=
∑
u∈[n′−1]r

(u)
i + r

(n)
i and r′i,Ji

:=∑
u∈[n′−1]r

′(u)
i,Ji

+ r
′(n)
i,Ji

for all i ∈ [t].

If the protocol does not abort, Pn obtains a signature ({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi,Ji}i∈[t],
{ri}i∈[t], {r′i,Ji}i∈[t]) as local output.

Fig. 18. Sign Protocol of Our Two-Round Multi-Signature Scheme

AdvQDS-SUF-CMA
QDS2

(A) ≤ 2εInj-QPRF + 5εQPRF + e(Qh +Qs + 1)
[
(Qh +Qs)(εtd + εtd′)

+ 2(Qh +Qs) · εQPRF + (4 +
√

2)
√
Qh2

−t·ϑ
4 + 2εQPRF + t · (m− 1) · negl(λ)

+ t ·Qs · εRej + (4 +
√

2)
√
Qh(2

−qklN
4 + 2

−qkN
4) + 4(εQPRF + εInj-QPRF)

+ AdvMLWEq,k,`,η + 2(Qh + 1)2−(t logm)/2 +Qs · t · ε′bind +
Qs(Qs + 1)

2
· 2−t·ϑ

+ AdvMSISq,k,`+1,β

]
65

Protocol QMS2.Ver({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi}i∈[t], {ri}i∈[t], {r′i,Ji}i∈[t]), µ, L)

Upon receive a message µ, signature Sig = ({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi}i∈[t], {ri}i∈[t],
{r′i,Ji}i∈[t]), and a set of public keys L, if | L| > n then reject the signature. Otherwise work as

follows:

1. Check public key in L, i.e., run Π.Verify algorithm. If there exist certain (tj , πj) ∈ L such that
Π.Verify(CRS, Ā, tj , πj) = 0, then send out ⊥. Otherwise, conduct the following steps.

2. Generate commitment keys ck ← H3(µ, L) and ck′ ← H4(µ, L), Com-
pute challenges ci,j ← H0(i, j, µ, ck, ck′, L) Then Compute J1||...||Jt ←
H5(L, µ, {comi}i∈[t], {ci,j,u}i∈[t],j∈[m],u∈[n′], {c̃omi,j}i∈[t],j∈[m]) , where n′ = | L|. Com-

pute t =
∑
u∈ L tu.

3. Perform the checks as follows:
(a) for i = 1 to t do:

Check that ci,1, ..., ci,m pairwise distinct.
(b) for i = 1 to t do:

check that ||zi|| ≤ Bn.
(c) for i = 1 to t do:

Reconstruct wi := Azi − ci,Jit, check Eqv-Openck(comi, ri,wi) = 1.
(d) for i = 1 to t do:

Check Inv-Openck′ (c̃omi,Ji , r
′
i,Ji

, zi) = 1.

If all checks succeed then return 1, otherwise, return 0.

Fig. 19. Ver Algorithm of Our Two-Round Multi-Signature Scheme

As this proof is almost same as the proof for QDS2 in Theorem 5.2, for simplic-
ity of presentation, we just highlight the difference: how to use Ext(pp, µ∗,Sig∗)
in Figure 20 to output a solution for MSISq,k,`+1,β problem for a different β,
with the help of multi-proof NIZKPoK system Π.

According to the basic structure of valid forge signature Sig∗, for any i ∈ [t],
if there exists one different index j 6= J∗i such that zi,j satisfies: (1) ‖zi,j‖ ≤ Bn;
(2) Eqv-Openck∗(com

∗
i , r
∗
i ,wi :=Azi,j −

∑
u∈[n∗−1] ci,jtu − ci,jtn)

= 1, then we know

Eqv-Openck∗(com
∗
i , r
∗
i ,w

∗
i := Az∗i,J∗i −

∑
u∈[n∗−1]

c∗i,J∗i tu − c
∗
i,J∗i

tn)

=Eqv-Openck∗(com
∗
i , r
∗
i ,wi := Azi,j −

∑
u∈[n∗−1]

c∗i,jtu − c∗i,jtn),

where ck∗ ← H3(µ∗, L∗), ck′∗ ← H4(µ∗, L∗), c∗i,j ← H0(i, j, µ∗, ck∗, ck′∗, L∗) for all

i ∈ [t], j ∈ [m], J∗1 ||...||J∗t ← H5(µ∗, {com∗i }i∈[t], {c∗i,j}i∈[t],j∈[m], {c̃om
∗
i,j}i∈[t],j∈[m],

 L∗), and zi,j = Invck′∗(c̃om
∗
i,j , td

′) with td′ ← Inv-TCGen(cppInv, r), r = QPRFk4
(µ∗,

 L∗).

We know that if the above equality holds, then we have

Az∗i,J∗i −
∑

u∈[n∗−1]

c∗i,J∗i tu − c
∗
i,J∗i

tn = Azi,j −
∑

u∈[n∗−1]

c∗i,jtu − c∗i,jtn. (12)

66

Furthermore, for any u ∈ [n∗−1], we can extract sku = su, i.e., runΠ.Ext(CRS, tk,A, tu, πu)
to get su, such that A · su = tu. In this case, (12) can be rewritten as

Az∗i,J∗i −
∑

u∈[n∗−1]

(c∗i,J∗i Asu)− c∗i,J∗i tn = Azi,j −
∑

u∈[n∗−1]

(c∗i,jAsu)− c∗i,jtn.

(13)

Furthermore, from (13), we have

A

z∗i,J∗i −
∑

u∈[n∗−1]

c∗i,J∗i su

− c∗i,J∗i tn = A

zi,j −
∑

u∈[n∗−1]

c∗i,jsu

− c∗i,jtn.
(14)

From (14), we get

(A|I|tn)

(
z∗i,J∗i

− zi,j +
∑
u∈[n∗−1](c

∗
i,j∗ − c∗i,J∗i)su

c∗i,J∗i
− c∗i,j

)
= 0.

Recalling that (A′|I) = (A|tn|I) is an instance of MSISq,k,`+1,β problem, we have

found a valid solution if β =
√

(2Bn)2 + 4κ+ η2(4κ · (`+ k)), since ||z∗i −zi,j || ≤
2Bn, 0 < ||c(n)∗

i,J∗i
− c(n)∗

i,j || ≤
√

4κ and ‖su‖ = η
√
`+ k.

Input :H0,H3,H4,H5, Sig = ({comi}i∈[t], {c̃omi,j}i∈[t],j∈[m], {zi}i∈[t], {ri}i∈[t],
{r′i,Ji}i∈[t], µ, L), ck ← H3(µ, L), ck′ ← H4(µ, L), r ← QPRFk4

(µ, L), td′ ← Inv-TCGen(cppInv, r),

compute t =
∑
u∈ L tu and derive challenges ci,j ← H0(i, j, µ, ck, ck′, L) for all i ∈ [t], j ∈ [m],

J1||...||Jt ← H5({comi}i∈[t], {ci,j}i∈[t],j∈[m], {c̃omi,j}i∈[t],j∈[m], L) .

For any u ∈ [n∗ − 1], we can extract sku = su, i.e., run Π.Ext(CRS, tk,A, tu, πu) to get su.
for i = 1 to t do

for j = 1 to m except Ji do
for each z′ ← Inv(c̃omi,j , td

′) do

if ||z′|| ≤ B∧Eqv-Openck(comi, ri,wi := Az′ − ci,jt = Az′ −
∑
u∈[n∗−1] ci,jtu − ci,jtn),

where n∗ = |L|.
return

(zi−z′+
∑
u∈[n∗−1](ci,j−ci,Ji)su
ci,Ji

−ci,j

)
.

Fig. 20. Extractor for QMS2

67

	Scalable Two-Round n-out-of-n and Multi-Signatures from Lattices in the Quantum Random Oracle Model

