
Efficiently-Thresholdizable Batched Identity Based
Encryption, with Applications

Amit Agarwal*

University of Illinois
Urbana-Champaign (UIUC)
amita2@illinois.edu

Rex Fernando
Aptos Labs

rex1fernando@gmail.com

Benny Pinkas
Bar Ilan University
benny@pinkas.net

Abstract

We propose a new cryptographic primitive, “batched identity-based encryption” (Batched
IBE), and its thresholdized version. The new primitive allows encrypting messages with spe-
cific identities and batch labels, where the latter can represent, for example, a block number
on a blockchain. Given an arbitrary subset of identities for a particular batch, our primitive
enables efficient issuance of a single decryption key that can be used to decrypt all ciphertexts
having identities that are included in the subset while preserving the privacy of all other ci-
phertexts. At the heart of our construction is a new technique that enables public aggregation
(i.e. without knowledge of any secrets) of any subset of identities, into a succinct digest. This
digest is used to derive, via a master secret key, a single succinct decryption key for all identities
that were digested in this batch. In a threshold system, where the master key is distributed as
secret shares among multiple authorities, our method significantly reduces the communication
(and in some cases, computation) of the authorities. It achieves this by making their costs for
key issuance independent of the batch size.

We present a concrete instantiation of a Batched IBE scheme based on the KZG polynomial
commitment scheme by Kate et al. (Asiacrypt’10) and a modified form of the BLS signature
scheme by Boneh et al. (Asiacrypt’01). The construction is proven secure in the generic group
model (GGM).

In a blockchain setting, the new construction can be used for achieving mempool privacy
by encrypting transactions to a block, opening only the transactions included in a given block
and hiding the transactions that are not included in it. With the thresholdized version, multi-
ple authorities (validators) can collaboratively manage the decryption process. Other possible
applications include scalable support via blockchain for fairness of dishonest majority MPC,
and conditional batched threshold decryption that can be used for implementing secure Dutch
auctions and privacy preserving options trading.

*Part of this work was done while the author was an intern at Aptos Labs.

1

Contents

1 Introduction 3
1.1 Our results . 4
1.2 Cryptographic Applications . 5
1.3 Related Works . 5
1.4 Concurrent Works . 6

2 Technical Overview 7

3 Applications 11
3.1 Mempool privacy . 11
3.2 Fair Dishonest majority MPC via Blockchain . 12
3.3 Conditional Batched Threshold Decryption . 13

4 Preliminaries 15
4.1 Bilinear Groups . 15
4.2 Generic group model (GGM) . 15
4.3 Polynomial Commitment . 17
4.4 Digital Signatures . 17
4.5 Collision-Resistant Hash Function Families . 18

5 Defining Batched Identity Based Encryption 18
5.1 Syntax . 18
5.2 Correctness, Non-triviality and Security . 19

6 Our Batched Identity Based Encryption construction 21
6.1 Construction . 21
6.2 Analysis . 23

6.2.1 Efficiency . 23
6.2.2 Correctness . 23
6.2.3 Security . 24

7 Extensions and Optimizations 32
7.1 Thresholdizing the scheme . 32
7.2 Outsourcing the digest computation . 32
7.3 Batching the Decryption Procedure . 33
7.4 Non-Malleability for Mempool Privacy Application 34
7.5 Combining non-malleability and batched decryption 41

8 Concrete Performance 42

9 Conclusion and Open Problems 44

2

A Thresholdizable Batched Identity Based Encryption 50
A.1 Syntax . 50
A.2 Correctness, Non-triviality and Security . 51
A.3 Construction . 53
A.4 Correctness . 53
A.5 Security . 53

1 Introduction

This paper studies problems related to efficient batch decryption of identity-based encryption
(IBE), and particularly threshold batch decryption in a blockchain setting. The solutions we pro-
pose support batched threshold decryption of arbitrary subsets of ciphertexts, and can be used to
provide a scalable support via blockchain for achieving fairness in dishonest majority MPC.

Both standard threshold encryption and threshold identity-based encryption have received
much attention in the blockchain setting. For example, (standard) threshold encryption has been
used to achieve mempool privacy [BO22] (further discussed below), and threshold IBE has been
used to achieve “encryption to the future” [Cam+21; GMR23; Döt+23; Cer+23]. With encryption
to the future, the idea is that if the validators of a particular chain (namely, the nodes responsible
for running the chain) have shared an IBE master secret key, then during a block they can release
decryption keys for the ID which is that block’s number or the time on which that block is pub-
lished. Anyone who wants to encrypt a message to be decrypted at a specific block in the future,
or at a specific time, can use the IBE public key with the appropriate ID. However, a major draw-
back of this technique is that it decrypts all messages encrypted to a specific block, and does not
enable to dynamically choose which of these messages to decrypt.

A possible solution to the aforementioned all-or-nothing decryption problem is to encrypt each
message using a separate key. In that case, if there are B ciphertexts to be decrypted, and n
holders of the secret key shares (i.e., the validators, in the blockchain setting), with a decryption
threshold of Ω(n), standard threshold decryption requires these parties to do O(nB) computation
and communication (per party that needs to decrypt the message).

On particular setting where this overhead is especially problematic is that of achieving mem-
pool privacy. The goal of mempool privacy stems from the way that transactions are submitted
to blockchains. Before transactions are finalized, they are held in a memory pool (mempool), which
is publicly readable. That a mempool is public is inherent: it must be readable by all the valida-
tors so that they are able to build the next block, and the design of blockchains as permissionless
networks allows for anyone to run a validator. The fact that the mempool is public and contains
information on what transactions will be in future blocks makes it ripe for exploitation. Such
exploitation is widespread, and has been termed miner-extractable value, or MEV.1 The main tech-
nique for combating this type of abuse is to encrypt the transactions in the mempool, and to only
decrypt the transactions in a block after the block has been finalized (see, e.g., [Kav+23] and ref-
erences within). That way, although the mempool is still public, it is opaque. In addition, since

1This concept was introduced in [Dai+20] which explored transaction reordering and front-running in decentralized
exchanges (DEXs) on the Ethereum blockchain. The term MEV refers to the additional profits validators can extract by
reordering, censoring, or including transactions in a specific way within a block. This result was groundbreaking
because it highlighted a significant and underexplored vulnerability in decentralized finance (DeFi) systems. This
result has since been highly influential in research on blockchain economics, consensus protocols, and DeFi security.

3

a block has limited capacity and might not include all transactions submitted to it, it is crucial
that the decryption process can choose to decrypt any subset of the transactions encrypted to the
block, while keeping hidden the transactions outside of this subset. On the other hand, indepen-
dent threshold decryption of each transaction incurs a total overhead of O(nB) communication
and computation, which will likely be too high for modern blockchains that are built to achieve
high throughput and very low latency. Several recent works have studied this problem and have
proposed solutions which we discuss in Section 1.3 and ??.

1.1 Our results

We introduce and construct a new primitive, which we call Batched Identity Based Encryption
(Batched IBE). This new notion solves the efficiency problem described above for threshold de-
cryption, and also has several other interesting applications, in both the threshold and the non-
threshold setting. Our new notion works as follows.

• As with standard IBE, encryptions are done with respect to some ID. In addition, an encryp-
tion also specifies a batch label.

• Any set of IDs, up to a pre-specified maximum batch size, can be publicly aggregated to pro-
duce a succinct digest.

• A succinct decryption key can be computed from this digest, a specified batch label, and a
master secret key. This computation is done in constant time relative to the batch size. The
key can then be used to decrypt any ciphertext that was encrypted with respect to any ID in
the digest and the matching batch label.

• Optionally, the decryption key computation can be thresholdized.

We have the following contributions in this work.

• In Section 5, we formally define the notion of Batched Identity Based Encryption (Batched
IBE).

• In Section 6, we provide an efficient construction for Batched IBE based on Type-3 pairings
and prove its security in the Generic Group Model (GGM).

• In Section 7, we discuss different optimizations which can be used to speed up the diges-
tion and decryption process in our basic construction and an efficient way to add non-
malleability for mempool privacy application.

• In Section A, we define a threshold verison of Batched IBE, called Thresholdizable Batched
IBE , and efficiently extend our non-threshold construction to the threshold version.

• In Section 8, we discuss the implementation of our scheme and analyze its concrete perfor-
mance, both in the threshold and non-threshold setting.

• In Section 1.2 and Section 3, we provide many interesting applications of our primitive.

4

1.2 Cryptographic Applications

Our construction opens up a wide range of applications. We briefly describe a few of them here
and provide more detailed descriptions in Section 3. The mempool privacy application was al-
ready discussed in the beginning of Section 1. Another application is for fair dishonest-majority
MPC via blockchain [Cho+17]. In this context, we demonstrate how Batched IBE can efficiently im-
plement the theoretical construction presented in [Cho+17] and replace general-purpose Witness
Encryption. Notably, the decryption overhead of the servers in this construction involves only a
few exponentiations and is independent of the number of MPC computations they support. More
broadly, in Section 3 we outline a general framework for using our Batched IBE scheme as a means
for “conditional” batched threshold decryption, with applications such as secure Dutch auction
and options trading.

1.3 Related Works

Prior works have studied the aforementioned efficiency problem for threshold decryption, specif-
ically in the context of mempool privacy, and have proposed solutions. We succinctly summarize
these works and our distinction in Table 1. We now proceed to briefly describe these related works.

Computation Per batch

Scheme Communication Public Private setup needed ?

Threshold Encryption O(nB) O(nB) O(B) No

[ElG86; CG99; BO22]

Choudhuri et. al. O(n) O(B logB) + O(n) O(B logB) Yes

[Cho+24a]

This work O(n) O(B logB) +O(n) O(1) No

Table 1: Comparison of the per-server communication and computation costs required for per-
forming batched threshold decryption for a batch size B and n servers, represented in terms of the
number of group/field elements and group/field operations respectively w.r.t a group/field size
of O(λ) bits where λ is the security parameter. For computation, we separately show the public
and private computation cost where private refers to any local computation that is performed us-
ing a local secret state (e.g. secret key share). We also show whether the scheme requires a batch
specific setup phase. This table only lists the approaches whose security guarantee matches with
that of our scheme.

Until recently, there were two standard approaches. The first approach [BO22] independently
encrypts and decrypts each transaction using a standard threshold encryption [CG99; ElG86]. As
discussed in the introduction, this approach has the disadvantage of incurring O(nB) communi-
cation cost between the validators (holding shares of the decryption key), i.e. the communication
cost scales linearly with the batch size B.

The second approach [Cam+21; GMR23; Döt+23; Cer+23] is based on using threshold IBE [BF01]
as a mechanism for “encryption to the future.” That is, in each round, the validators collabora-

5

tively compute and publish a single decryption key corresponding to the current block number b, by
setting the IBE ID to be b. This single key can be used to decrypt an arbitrary number of cipher-
texts that have been encrypted towards this block. Thus, this solution has the benefit of incurring
just O(n) communication per validator (instead of O(nB) as in the first approach). Notice, how-
ever, that this decryption is all-or-nothing and opens all ciphertexts with the corresponding ID b,
whether or not they have actually been included in the block. As explained earlier, blocks have
limited capacity, and if the mempool is large enough then many transactions in the mempool will
get left out of any given next block. With this IBE approach, these transactions which get left out
of a block completely lose their privacy. As such, threshold IBE solves the efficiency problem but
yields a fundamentally weaker privacy guarantee in terms of mempool privacy.

Recently, [Cho+24a] attempts to provide a solution to resolve the shortcomings associated with
the two standard approaches described above. Specifically, they end up with an online phase
which has O(n) communication per validator, i.e. independent of the batch size B, and allows
arbitrary subsets of ciphertexts to be decrypted, but relies on an expensive offline per-block interactive
setup phase. The first version of [SAS24] also achieves similar syntactic parameters, namely sub-
linear communication per validator and an expensive per-block setup phase, but does so with a
weaker “time-lock” security definition: a ciphertext is only guaranteed to be hidden before the
corresponding block decryption key is released, but there are no guarantees about its privacy
afterwards, even if the block did not contain the ciphertext.

1.4 Concurrent Works

Concurrent and independent to our work, two other works, namely [Cho+24b] and [Bor+24],
achieve similar results to ours. In addition, the work of [SAS24] has also been updated, replacing
its original construction with one that is substantially more similar to ours.2 In terms of presen-
tation, all these works present their construction as a batched threshold encryption scheme, whereas
we present it as a batched identity-based encryption (IBE) scheme (which is optionally thresholdiz-
able). The works of [Cho+24b] and [Bor+24] focus on the specific application of mempool privacy,
whereas we discuss a wider range of applications, such as fairness in dishonest majority MPC, se-
cure dutch auctions, and privacy preserving options trading. The fact that our scheme is presented
as an IBE aids in exploring these applications.

Comparison to [Cho+24b] and [SAS24]: The technical ideas in [Cho+24b] and the updated
version of [SAS24] are quite similar to ours, except that those works provide a security proof
in the Algebraic Group Model (AGM) whereas we use the Generic Group Model (GGM). In the
GGM, we are able to prove a more adaptive version of security than the works of [Cho+24b;
Sue24]. Both of these works rely on non-interactive zero-knowledge (NIZKs) to achieve ciphertext
non-malleability (which is required for the mempool privacy application), whereas we are able to
leverage our stronger security definition along with a standard signature scheme to achieve the
same property without NIZKs (see Section 7.4). As discussed in Section 8 when comparing to the

2To avoid confusion, we note that the authors of [SAS24] have significantly revised their paper with a new title and
a new construction, but have posted this revision to the same ePrint record (2024/762). The old title is “Extractable
Witness Encryption for Signed Vector Digests from Pairings and Trust-Scalable One-Time Programs” and the new title
is “Constant-Cost Batched Partial Decryption in Threshold Encryption.”

6

earlier work of [Cho+24a] (which also uses NIZKs to achieve non-malleability), avoiding general-
purpose NIZKs allows for nontrivial performance improvements when compared to constructions
that require them.

Comparison to [Bor+24]: The construction in [Bor+24] is markedly different from ours (and [Cho+24b;
SAS24]), and thus it offers some tradeoffs w.r.t our construction. We discuss these tradeoffs here.
First, [Bor+24] allows the ciphertexts to use identities from only a polynomial sized identity space,
whereas we can support an exponential sized identity space. In applications where the identities
are selected randomly by different encryptors, it is essential that there is no collision among the
identities. This is not an issue when the identity space is exponential and [Cho+24b; SAS24]) but
does become an issue when the identity space is of polynomial size. To reduce the identity colli-
sion probability, [Bor+24] discusses two possible solutions: (1) Each ciphertext can be created w.r.t
O(log κ) different random identities, where κ is a statistical security parameter (e.g. log κ = 40),
which ensures that there exists a perfect matching between the ciphertexts and identity space with
overwhelming probability. (On the other hand, this solution does not address collisions caused by
malicious clients who deliberately collide identities.) (2) Each ciphertext is created w.r.t a single
random identity but decryption of ciphertexts is performed in smaller sub-batches (by splitting
the batch of size B into α smaller disjoint sub-batches each of size B/α). In the threshold setting,
this leads to a communication cost of O(α) between the authorities (holders of the shares of the
master secret key) and the probability of collision reduces exponentially as α increases. Note that
in our work, due to the exponential identity space, there is no such collision problem and each
ciphertext is always created w.r.t a single identity and thus the communication cost between the
authorities in the threshold setting is always O(1) group elements.

Second, the size of the public parameter in [Bor+24] grows quadratically with the size of
identity space whereas in our construction grows linearly with the batch size (which is typically
much smaller than the size of identity space). Third, each ciphertext in our construction (and
equivalently in [Cho+24b; SAS24]) is tied to not just an identity but also a batch label. This means
that if ctid,t is a ciphertext created w.r.t identity id and batch label t, then ctid,t can only be decrypted
during batch t and not in other batches. This can be seen as a shortcoming in some applications,
for example mempool privacy, where one could hope to include the ciphertexts (representing
encrypted transactions) in a future batch t′ (representing a future block) if they were not included
in the current batch/block t. In our construction, this would require generating two different
independent ciphertexts, ctid,t and ctid,t′ , tied to batch label t and t′ respectively. Interestingly, the
construction in [Bor+24] does not have this caveat; each ciphertext ct is tied only to the identity
id and not to the batch label. This means that a ciphertext ctid, generated w.r.t identity id, can be
decrypted in any batch which need not be decided at the time of creating the ciphertext.

2 Technical Overview

Standard IBE versus Batched IBE. In a standard Identity-Based Encryption (IBE) scheme, we
have a universe I of public identities (for example, these could be email ids) and users can create
a ciphertext ct w.r.t any id ∈ I so that ct can be decrypted given the identity specific-secret key
skid. These identity-specific secret keys skid are typically issued by an authority (resp. a set of
authorities) holding a master secret key msk (resp. shares of msk) which is used to derive the

7

identity-specific secret key skid.
We would like to extend this standard IBE to a batched setting where we have a pool of cipher-

texts {ct1, . . . , ctn} and each ctj is a ciphertext w.r.t. some identity idj ∈ I. Given a dynamically
selected3 public batch of identities S ⊆ I, we would like the authority to release a secret key skS
which is succinct (i.e., independent of the size of set S), and which enables the decryption of all ci-
phertexts ctj where idj ∈ S while ensuring that all ciphertexts ctj corresponding to idj /∈ S remain
hidden.

A naive solution to achieve this would be to simply have skS be the set of standard IBE secret
keys for the individual identities in the batch S, i.e, skS = {skj |idj ∈ S}. While this works, the
secret key skS here has size proportional to |S|which is not succinct.

Boneh-Franklin IBE. Our starting point is the (standard) IBE scheme of Boneh-Franklin [BF01],
hereafter referred to as BF-IBE. Here, the master secret key msk is the signing key of a BLS signature
scheme [BLS01] and skid is simply a BLS signature on id using the signing key msk. Recall that a
BLS signature scheme is defined on a pairing-friendly group (G1,G2,GT) of prime order p with
group operation + : Gi × Gi → Gi and a pairing operation ◦ : G2 × G1 → GT . For a group
Gi with generator gi, we will use the notation [x]i to represent the group element x · gi in the
group Gi where x ∈ Zp. The signer holds a signing key msk ∈ Zp and publishes a verification
key vk = [msk]2. The signature on a message m ∈ {0, 1}∗ is simply σm = msk ·H(m) ∈ G1 where
H : {0, 1}∗ → G1 is a hash function modeled as Random Oracle. To verify a claimed signature σ
on a message m, the following pairing check is performed.

[1]2 ◦ σ = vk ◦H(m)

Coming back to the BF-IBE construction, the authority holds a BLS signing key msk and uses it to
derive an identity-specific secret key skid := σid = msk ·H(id). To encrypt a message m ∈ GT w.r.t.
identity id, the encryptor samples a random r ← Zp and produces the following ciphertext

ct = (ct1, ct2) = (r · [1]2, r · (vk ◦H(id)) +m)

Given an identity secret key skid := σid, the message can be recovered as ct2 − (ct1 ◦ skid).

Extension to the batched setting using an accumulator. We would like to extend the above basic
BF-IBE construction to the batched setting. As mentioned earlier, simply concatenating the indi-
vidual skid values of all ids in the batch S ⊆ I doesn’t lead to a succinct key for the batch. To
remedy this, we use a cryptographic accumulator scheme. Such a scheme enables compressing
a set S = {s1, . . . , sn} of items into a succinct public digest d. Using the set S and digest d, it is
possible to compute a short cryptographic proof πs proving that a specific element s is contained
in S. The verification algorithm, given the digest d, claimed element s and proof πs, outputs a bit
indicating either accept or reject. The completeness of the scheme ensures that correctly generated
proofs πs for s ∈ S always pass the verification check, whereas soundness ensures that it is hard
for a computationally bounded adversary to compute valid proofs πs for s /∈ S.

Given such an accumulator scheme, a natural approach is to create a succinct digest d for the
public batch of identities S = {id1, . . . , idn}, and then compute a succinct secret key for the batch
by setting skS to be a BLS signature on the digest d, i.e. skS := σS = msk · H(d) ∈ G1. Now,

3By “dynamic”, we mean that the subset S of identities can be selected after the ciphertexts have been created.

8

one could hope to create an encryption scheme where a ciphertext ct, generated w.r.t. a specific
identity id, is decryptable given a triple (d, πid, skS) as a witness, and if and only if the following
two conditions hold: 1) πid is a valid membership proof of id w.r.t. the digest d, 2) skS is a valid
signature on the digest d.

Challenges and next steps. Although the above template conceptually works, it is not clear how
to build an efficient encryption scheme satisfying the required properties and, in general, it seems
to require a general purpose witness encryption [Gar+13; Gar+16; Tsa22; VWW22] which requires
strong cryptographic assumptions and/or is often inefficient in practice.

We utilize the observation in [Gar+24] that the BF-IBE construction can be seen as a special
case of a general technique which transforms a public linear constraint system, defined over some
cryptographically hard, pairing-friendly groups, into an efficient witness encryption scheme. In
such a constraint system, each constraint involves some public group elements (which are part
of the statement) and some private group elements (which are part of the witness). The “linear-
ity” condition requires that the witness group elements are never paired with each other in the
constraint. To be specific, we can consider the following linear constraint system containing n
constraints and m witness elements.

a1,1 ◦ w1 + . . .+ a1,m ◦ wm = b1

a2,1 ◦ w1 + . . .+ a2,m ◦ wm = b2

. . . = . . .

an,1 ◦ w1 + . . .+ an,m ◦ wm = bn

where {ai,j}i∈[n],j∈[m] and {bi}i∈[n] are public group elements in G2 and GT respectively whereas
{wi}i∈[m] are private witness elements in G1 (highlighted in grey). The above system of con-
straints can be succinctly expressed as

A ◦ w = b

where

A =

a1,1 . . . a1,m
...

...
...

an,1 . . . an,m

 , w =

 w1

...
wm

 , b =

b1
...
bn


Given such a constraint system, a message m ∈ GT can be witness-encrypted in the following

way (analogous to BF-IBE encryption).

ct = (ct1, ct2) = (rT ·A, rT · b+m)

where r← Zn
p is a randomly sampled column vector and rT denotes its transpose. Intuitively,

one could think of the term rT · b as a one-time-pad that is applied to the message m.

Given a witness w, the message can be recovered from ct by simply computing ct2 − ct1 ◦ w
(again analogous to BF-IBE decryption).

9

Recall from our template discussed earlier that in the context of batched IBE, we want to create
an encryption scheme where a ciphertext ct, generated w.r.t. a specific identity id, is decryptable
given a witness triple w = (d, πid, skS), iff the following two conditions hold: 1) πid is a valid
membership proof of id w.r.t. the digest d, 2) skS is a valid signature on the digest d. Each of these
two conditions will induce a constraint on the witness w. Therefore, in order for us to utilize the
aforementioned general technique of building an encryption scheme from a constraint system, we
need to select our cryptographic ingredients, namely the accumulator and signature scheme, in a
careful way so that the induced constraints are linear w.r.t. the witness w.

Observation 1. Our first obervation is that the well-known KZG commitment scheme [KZG10]
satisfies the required property of linear verification. Let d denote the digest created out of a set
S ⊆ I = Zp. Without going too much into the details of the KZG scheme, we note that the digest
d is created by interpolating a univariate polynomial f whose roots are all the elements in set
S, and evaluating it at a secret point τ “in the exponent”. In other words, d is simply [f(τ)]1.
The verification of a membership proof πid ∈ G1 w.r.t. id ∈ I involves checking the following
constraint.

[1]2 ◦ d = ([τ]2 − [id]2) ◦ πid

where [τ]2 is a public group element generated during a one-time setup phase.

Observation 2. Unfortunately, the BLS signature scheme [BLS01], which we have been discussing
so far in the context of BF-IBE, does not satisfy the desired property of linear verification in our
context. To be more specific, while the BLS verification constraint is linear w.r.t. a signature (which
is the skS part of our witness w), it is not linear w.r.t. the message being signed (which is the digest
d part of our witness w). In our context, the unmodified BLS verification constraint would look as
follows,

[1]2 ◦ skS = vk ◦H(d)

As we can see, this constraint involves applying the hash function H on the digest d, which is
a highly non-linear operation! It turns out that by adding a slight modification to the BLS signature
scheme, we can restore linearity to the constraint. Let α← G1 be a random group element whose
discrete logarithm is unknown to any party. Then, the modified BLS scheme would sign a message
m ∈ G1 as σm := msk · (m+α). The verification constraint for a claimed signature σ on a message
m ∈ G1 would simply check whether [1]2 ◦σ = vk◦ (m+α) holds. Translating the notations to our
context, where we need to sign the digest d to produce skS , the verification constraint would be,

[1]2 ◦ skS = vk ◦ (d + α)

We note that this modification to the BLS scheme does not come for free. Firstly, it requires α
to be generated as part of the setup. Secondly, if α is reused for signing more than once, then it
can be used to forge signatures4. Thirdly, there is concrete forgery attack against this scheme in

4Given signatures σm1 := msk · (m1 + α) and σm2 := msk · (m2 + α) on messages m1 and m2 respectively, one can
easily get a valid signature σm3 := 2σm1 − σm2 = msk · (2m1 −m2 + α) on message m3 := (2m1 −m2)

10

Type-1 and Type-2 pairing group (even when α is used only once)5. The first two limitations can
be easily addressed by generating a fresh α as the output of a random oracle on a nonce (which
could be the batch label in our context). To address the third limitation, we restrict ourselves to
Type-3 pairing groups and prove the security of our overall scheme in the GGM.

Putting things together. Given these two ingredients (KZG commitments and modified BLS),
we can now express our verification constraints in a form that is linear w.r.t. the witness w =
(d, πid, skS).

[1]2 ◦ d = ([τ]2 − [id]2) ◦ πid

[1]2 ◦ skS = vk ◦ (d + α)

Rearranging the above constraint system, we get the following matrix form.

(
[1]2 [id]2 − [τ]2 0
vk 0 −[1]2

)
︸ ︷︷ ︸

A

◦

 d
πid
skS


︸ ︷︷ ︸

w

=

(
[0]T

−(vk ◦ α)

)
︸ ︷︷ ︸

b

Given such a linear constraint system, a message m can be encrypted by sampling r← Z2
p and

computing

ct = (ct1, ct2) = (rT ·A, rT · b+m)

as described earlier. Given a witness w, the message can be recovered from ct by simply
computing ct2 − ct1 ◦w.

3 Applications

3.1 Mempool privacy

As was described in Section 1, our result enables users to submit transactions to a specific block,
where the details of each transaction are encrypted using its unique ID and a batch label equal to
the block number. Once the validators agree on the transactions that will be included in the block,
they aggregate the IDs of these transactions to produce a succinct digest. Given this digest, the
validators compute a succinct decryption key for this block. The computation of this decryption
key is the only procedure requiring access to a secret (namely, the master secret key), and is thus
the only operation that must be computed by a threshold computation. Finally, given the succinct
decryption key of this block, it is possible to decrypt all transactions that were included in the
digest. All other transactions that were submitted to the block but were not included in it, remain
hidden.

5In such groups, one can use vk = [msk]2 to get [msk]1 = msk · [1]1. Given a signature σm1 := msk · (m1 + α) on
message m1, we can derive a signature σm2 := σm1 +msk · [1]1 = msk · (m1 + 1 + α) on message m2 = m1 + 1

11

As mentioned in [Cho+24a], the application of mempool privacy has a specific requirement
that ciphertexts must satisfy a form of non-malleability. To get the required non-malleability prop-
erty, they rely on the generic technique of using NIZK proofs for achieving CCA2-security. We
observe that our Batched IBE scheme already satisfies a form of adaptive security and this can
be leveraged to achieve non-malleability significantly more cheaply than [Cho+24a] by replacing
NIZK proofs with standard digital signatures. We refer the readers to Section 7.4 for the formal
details.

3.2 Fair Dishonest majority MPC via Blockchain

Secure Multi-party Computation (MPC) allows two or more parties to compute any public func-
tion over their privately-held inputs, without revealing any information beyond the result of the
computation. An extremely desirable property of such a MPC protocol is fairness, namely ensur-
ing that either all parties learn the output or no one does. Unfortunately, in a dishonest majority
setting (where the adversary can actively corrupt more than half the number of parties), achieving
fairness is impossible [Cle86] in general in the standard MPC model [Gol09]. Yet this property is
crucial for applications like sealed-bid auctions and contract signing, where information asymme-
try can be exploited by a malicious party.

An intriguing method introduced in [Cho+17] suggests achieving fairness through witness
encryption (WE) and public bulletin boards such as blockchains. The parties execute an unfair
MPC protocol, completely off-chain, to compute a WE ciphertext of the output, rather than the
output itself. The construction ingeniously employs a “release token” as a witness for decrypting
the WE ciphertext. First, each party generates a secret share of the release token, ensuring that
the token value is shared between all parties. The statement used for encrypting the output with
WE is designed so that its valid witness is a proof of publishing the full release token on a public
bulletin board. This proof can correspond, for example, for a signature of the blockchain on all
shares of the release token. In that case, to decrypt the output a party must have all shares of the
release token be published on the blockchain. As a result, all shares are available to all parties, not
only to the last party to provide its share.

While the result in [Cho+17] is theoretical and requires general-purpose WE which is pro-
hibitively inefficient, we observe that a slightly modified version of their idea can be efficiently
instantiated using our Batched IBE primitive.

• Instead of computing a WE ciphertext, the MPC computes an encryption to a specific ID that
identifies this MPC session, and a specific block label.

• Additionally, before executing the MPC, the MPC participants deploy a smart contract that
stores the public keys of all MPC participants. This smart contract will order the blockchain
to release the output of the MPC computation only given a signature on the ID from each of
the participants in this computation. (Essentially, the signature of participant i corresponds
to the agreement of this participant to the publication of the output.)

• The blockchain follows the smart contract, and only if all participants provided their signa-
tures, it includes this instance ID in the digest of IDs whose decryption is enabled.

This construction has several nice properties. First, it enables a blockchain to support fairness
for an arbitrary number of MPC instances, while running between its validators a single threshold

12

computation whose overhead is independent of the number of MPC instances. This property
is crucial for scaling, since blockchain validators typically already have a high load related to
executing transactions and achieving consensus. Second, the validators do not need to decrypt
the results of each MPC session. They merely compute (in constant time) the decryption key that
enables the decryption of every MPC session for which all release approvals were given. Third,
our specific construction of Batched IBE based on pairing-friendly groups is compatible with the
popular SPDZ MPC framework [Dam+12] which is one of the most efficient MPC protocol for
performing general-purpose (unfair) secure computation in a dishonest majority setting. In [SA19;
Dal+20], it is shown that the SPDZ framework (which natively works over a field) can be efficiently
extended to perform secure computation over groups. In the context of fair MPC application, the
parties would be required to securely emulate via MPC the encryption procedure of the Batched
IBE construction, which requires just 6 group exponentiations. Based on the results provided
in [Dal+20], we estimate that the overhead of this computation would be less than 20 ms (resp. 500
ms) when using SPDZ MPC protocol in a LAN (resp. continent-wide WAN) setting. (These results
correspond to a two-party computation, or to a 3-party computation with an honest majority. The
addition to the MPC computation includes sampling a random group element k, encrypting it
using our Batched IBE scheme, and encrypting the actual output y using k as a symmetric key.
This final encryption can use k as a one-time pad, if the length of y is not longer than the length
of k, or otherwise use AES encryption with k as the key. The overhead of computing an AES
encryption should be marginal compared to the IBE encryption.)

3.3 Conditional Batched Threshold Decryption

More generally, our (thresholdizable) Batched IBE construction enables a form of conditional batch
threshold decryption of ciphertexts.

• The fact the decryption is conditional enables to decide at the last minute which ciphertexts
will be decrypted.

• The threshold property enables to distribute trust between multiple servers or validators.
These servers check if the condition is met and, if so, enable decryption.

• The batch property enables scalability, since the threshold computation of the servers is in-
dependent of the number of ciphertexts that need to be decrypted.

Let us elaborate more on the “batch” and the “conditional decryption” properties.

The “batch label” notion. In its simplest form, the batch label can correspond to an event that
progresses monotonically along a single dimension. The most obvious examples are batch labels
corresponding to a block id or to the time. In particular, the latter option implements time-lock
encryption (see [RSW96] and followup work). This implementation of time-lock encryption is more
scalable than the notion based on moderately-hard computation, while trust becomes dependent
on the assumption that the server (or a large enough number of the servers in a threshold setting)
are not malicious.

A more complex batch label can correspond to a combination of multiple events in different
dimensions. For example, it could correspond to the event “(the USD/EUR exchange rate is above
1 OR the GBP/JPY rate is below 200) AND the date is January 1, 2026”. The servers responsible

13

for producing the decryption key for batches will only process the ciphertexts having a batch label
that matches the specified event of interest.

Conditional decryption. The server, or group of servers sharing the master secret key, can de-
cide to enable decryption for any arbitrary subset of the ciphertexts that have the same batch label.
There are many examples where this subset cannot be predicted in advance. For instance, the fair-
MPC application, or a Dutch auction application described below. As another example, consider
the mempool privacy application where each encrypted transaction submitted to a block has a
public maximal fee that its sender is willing to pay, and a public upper bound on the amount of
gas that the transaction might consume. A block has limited capacity in terms of gas, and there-
fore the validators need to solve a knapsack problem in order to find which subset of submitted
transactions will maximize their revenues. Their decision on which transactions to decrypt will
be based on the solution to this problem.

Sample applications Let us further explore some applications that our construction can support.

• Secure Dutch auctions on the blockchain: A Dutch auction is an auction where the price starts
high and gradually decreases, and the first bidder to accept the current price wins. This type
of auction helps determine the market value by finding the highest acceptable price, with a
process that is transparent and visible to all participants. We would like to implement this type
of auction in a non-interactive manner, while hiding all bids except for the highest one(s).6

Suppose that the price of the good for sale, i.e. the item being auctioned, has a price resolution
of m values (say, m = 1000), and that bidder i wants to bid a price of bi ∈ [1,m]. This bidder
submits m encryptions with batch labels 1, . . . ,m, where the encryption with label bi is of a 1
value, and all encryptions with labels greater than bi are of 0. (The encryptions of labels smaller
than bi can be arbitrary.) All bidders write a smart contract which begins with decrypting all
encryptions with label m. If all these encryptions are of 0, then in the next block the encryptions
with label m − 1 are decrypted, etc. This process stops when one of the decrypted values is 1.
When this happens, the bidder (or bidders) who encrypted a 1 value for the current label are
declared the winners and have to pay a price equal to the current label. No further values are
decrypted. It is easy to verify that this process implements the Dutch auction and hides all bids
except for the winning ones. In terms of latency, each price point is decrypted in a separate
block, but given the existence of low-latency blockchains, such as as Aptos, Sui or Solana, with
sub-second block latency, the overall run time of the auction can be sufficiently fast for many
applications. As for efficiency, a single blockchain can support a very large number of auctions,
since a single threshold computation by the validators enables to decrypt the bids of all relevant
auctions, and the decryption itself can be done publicly and does not require threshold compu-
tation.

• Options trading: European options are a type of financial derivative that grants the holder the
right, but not the obligation, to buy or sell an underlying asset at a predetermined price on a
specified date, known as the expiration date. The defining feature of European options is that

6A Dutch auction is roughly the interactive equivalent of the (non-interactive) first-price sealed-bid auction. So a
non-interactive implementation of a Dutch auction is also an implementation of a sealed-bid first-price auction.

14

they can only be exercised on the expiration date, not before. Our construction can be used to
hide the terms of such options until the expiration date, and only reveal and execute an option
if its holder chooses to execute it. More specifically, every option is encrypted with a batch label
that is equal to its expiration date, and with an ID that identifies its holder. Before or at the
expiration date, the holder of the option must send a signed execution command to authorize
it. A digest of all options which were authorized to be executed is computed. Afterwards, the
server (resp. set of servers) that has the master key (resp. shares of master secret key) publishes
the corresponding decryption key that enables to decrypt and execute the authorized options
while maintaining the privacy of remaining options.

4 Preliminaries

Notation We use λ to denote a computational security parameter, [n] to represent the set of
integers {1, . . . , n}, x ← S to denote that x is an element sampled uniformly at random from set
S. We use bold-letters to indicate vectors and matrices. For a vector v of length n, we use the
notation vi to indicate the ith co-ordinate of v where i ∈ [n]. By poly(λ) and negl(λ), we mean the
class λO(1) and 1

λω(1) . Given a security parameter λ, we use PPT to denote probabilitic poly(λ)-time
Turing Machines with poly(λ)-sized advice.

4.1 Bilinear Groups

We follow the notation used in [Gar+24], Section 3.1. A bilinear group, denoted as BG, is a set
of three groups (G1,G2,GT) of prime order p, with a (non-degenerate) bilinear map or pairing,
denoted as e. This map takes one element from G1 and one element from G2 and produces an
element in GT . The groups G1 and G2 are referred to as source groups, while GT is the target
group. The groups G1,G2 have random generators g1, g2, and we use the notation [x]s to represent
x · gs in the group Gs, for s ∈ {1, 2, T}, where x ∈ Zp and the generator of GT is gT = e(g1, g2). The
group operation is additive, and therefore [x]s + [y]s = [x+ y]s.

We can represent the pairing operation e([x]1, [y]2) as [x]1 ◦ [y]2 = [y]2 ◦ [x]1 = [x · y]T . (This
notation makes it easier to write expressions which compose pairings with linear operations.) As a
result, the operation ◦ is commutative and can be applied to vectors of equal length. For example,
for u ∈ (G1)

n,v ∈ (G2)
n, where u = ([u1]1, . . . , [un]1) and v = ([v1]2, . . . , [vn]2), we have that uT ◦

v = [u1v1 + · · ·unvn]T . It is further possible to use this notation for matrix-vector multiplication.
If A ∈ (G1)

n×m and b ∈ (G2)
m, then A ◦ b is the vector in (GT)

n with the coordinates (A1 ◦
b, . . . ,An ◦ b) where Ai is the ith row vector of the matrix A.

4.2 Generic group model (GGM)

At a high level, this model captures the class of ‘generic’ adversaries - adversaries that don’t ex-
ploit concrete representations of the elements of the group and only perform generic group opera-
tions. This model is aimed to capture the possible algebraic attacks that an adversary can perform.
The following description of Shoup’s GGM [Sho97] is taken from [Zha22]. Let p ∈ Z be a positive
integer, and let S ⊆ {0, 1}∗ be a set of strings of cardinality at least p. We will assume an upper
bound is known on the length of strings in S. An arbitrary group G of prime order p is generically
modeled by sampling a random injection L : Zp → S, which we will call the labeling function. We

15

will think of L(x) as corresponding to (the string representation) of gx, where g ∈ G is a fixed
generator of the group G. All parties are able to make the following queries:

• Labeling queries. The party submits x ∈ Zp, and receives L(x).

• Group operations. The party submits (ℓ1, ℓ2, a1, a2) ∈ S2 × Z2
p. If there exists x1, x2 ∈ Zp

such that L(x1) = ℓ1 and L(x2) = ℓ2, then the party receives L(a1x1 + a2x2). Otherwise, the
party receives ⊥.

We note that the labeling map L need not be explicitly materialized all at once. In fact, it is
typical in security proofs to sample such a map in a lazy fashion as the queries are made. When
performing such a lazy sampling, we will think of L as a “dictionary” and use x ∈ L to mean the
action of checking whether the element x exists as a “key” in L.

In a bilinear group BG, the parties are equipped with labeling queries and group operations in
Gi, with a random labeling function Li : Zp → Si for Si ⊆ {0, 1}∗ and i ∈ {1, 2, T}. Additionally,
the parties can make the following query for pairing operation [BBG05].

• Pairing operation. The party submits (ℓ1, ℓ2) ∈ S1 × S2. If there exists x1, x2 ∈ Zp such
that L1(x1) = ℓ1 and L2(x2) = ℓ2, then the party receives LT (x1 · x2). Otherwise, the party
receives ⊥.

The typical GGM does not capture an adversary’s ability to “hash” arbitrary strings into the
group To model this, we can extend the GGM with an appropriate hashing oracle as discussed
in [LPS23; Bau+23]. Here, a hash function H : {0, 1}∗ → Zp is sampled at random and parties can
make the following query.

• Hash query. The party submits x ∈ {0, 1}∗ and receives L(H(x)).

Security proofs in the GGM. The security of a cryptographic scheme is usually defined by a
game where two parties, namely the challenger and the adversary, interact as per some specifi-
cation and the challenger finally outputs a bit b indicating the verdict of the game (b = 1 for win
and b = 0 for lose). When writing security proofs in the GGM, the challenger is supposed to sim-
ulate the GGM oracle towards the adversary. Let n ∈ Z be a positive integer. The game usually
involves the challenger sampling some secrets x1, . . . , xn ∈ Zp and leaking L(f(x1, . . . , xn)) to the
adversary for some f .

A standard technique for security proofs in the GGM, introduced in [Sho97], is the following.
Instead of explicitly sampling secret xi ∈ Zp, the challenger replaces it with an indeterminate Xi.
Additionally, the domain of the labeling function is expanded from Zp to Zp[X1, . . . , Xn], the set
of all n variate polynomials with coefficients in Zp. Now, instead of leaking L(f(x1, . . . , xn)) to the
adversary, the challenger leaks L(f(X1, . . . , Xn)). This model, where the challenger substitutes all
the secrets with their corresponding indeterminates, is known as the “symbolic model”. Proving
security in this model boils down to showing independence between a target polynomial and the
polynomials whose labels/encodings are present in the view of the adversary. We will use this
technique in proving the security of our scheme.

16

4.3 Polynomial Commitment

A polynomial commitment enables the computation of a compact value, denoted as com, for a
polynomial f that may have a high degree over a finite field F. Subsequently, one can compute
concise openings to prove that the polynomial committed to by com evaluates to some value β at
a specific point α. The polynomial commitment must be binding, meaning it should be infeasible
to open the same point to two distinct values. We refer the reader to [KZG10] for the detailed
definition of polynomial commitments.

The KZG polynomial commitment scheme [KZG10] uses as public parameters powers of a
secret point τ in the exponent of a group generator. In the group G1 used in our construction these
would be the values [τ]1, . . . , [τ

d]1, where d is an upper bound on the degree of the polynomial.
These parameters are computed in a setup phase, and the value of τ is kept secret. Committing
to a polynomial is done by evaluating it in the exponent at point τ , namely computing [f(τ)]1. A
crucial property is that this computation can be done using the public powers of τ , but without
knowledge of τ itself.

Theorem 4.1 ([KZG10; Chi+20]). If the d-DLOG assumption holds with respect to parameter generation
algorithm of the KZG commitment scheme described in [KZG10], then that commitment scheme is a correct
and binding polynomial commitment scheme in the AGM, according to the definitions of [KZG10; Chi+20].

4.4 Digital Signatures

A signature scheme consists of three algorithms (Setup,Sign,Verify):

• Setup(1λ) → (sk, vk) is a randomized algorithm that takes as input a security parameter 1λ

and outputs a keypair (sk, vk).

• Sign(sk,m) → σ is a (potentially randomized) algorithm which takes as input a signing key
sk and a message m, and outputs a signature σ.

• Verify(vk,m, σ) → 0 or 1 is a deterministic algorithm which takes as input a verification key
vk, a message m, and a signature σ, and either accepts or rejects.

In Section 7.4, we will require a signature scheme that satisfied strong existential unforgeability,
which we define below:

Definition 4.2 (Strong existential unforgeability). A signature scheme (Setup, Sign,Verify) satisfies
strong existential unforgeability if for all PPT adversaries A, it holds that

Pr

[
Verify(vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ Q :

(sk, vk)← Setup(1λ)

(m∗, σ∗)← ASign(vk,·)(1λ, vk)

]
< negl(λ),

where Q is the set of query-response pairs (mi, σi) generated by the interaction betweenA and
Sign(vk, ·).

17

4.5 Collision-Resistant Hash Function Families

We define collision-resistance for a hash function familyH:

Definition 4.3 (Collision-resistance). A hash function familyH: is collision-resistant if for all PPT
adversaries A the following holds:

Pr

[
H(x1) = H(x2) :

H
$←− H(1λ)

(x1, x2)← A(1λ, H)

]
< negl(λ).

5 Defining Batched Identity Based Encryption

5.1 Syntax

As in a standard IBE [BF01], a Batched IBE will include a Setup algorithm (with an additional
parameter for batch size) which generates public parameters and KeyGen algorithm that generates
a public key pk and a master secret key msk. Typically, KeyGen will be executed by a central
authority which privately stores msk and publishes pk publicly. Using the pk, anyone can encrypt
a message m w.r.t. a specific id, along with a batch label t, to produce a ciphertext. In contrast to a
standard IBE where the authority issues identity specific secret keys, our Batched IBE will enables
secret key issuance for a batch of identities. To capture this, we split the secret key derivation
process into two parts: 1) A Digest algorithm that, given a batch of identities, produces a digest,
2) A ComputeKey algorithm that, given a digest and the batch label, produces a secret key sk. We
note that only the ComputeKey algorithm uses the master secret key. The Digest algorithm only
uses public information that is accessible to all participants. Finally, anyone holding the digest-
batch label-specific key secret key sk can use the Decrypt algorithm to decrypt all ciphertexts whose
identities were part of the digest.

Definition 5.1 (Batched IBE Syntax). A Batched IBE scheme BIBE is specified by six algorithms:
Setup, KeyGen, Encrypt, Decrypt, Digest, ComputeKey.

• Setup(1λ, 1B) → params: A randomized algorithm that takes as input a security parameter
λ ∈ N and a batch size B = B(λ). It outputs params (system parameters) which includes
a description of the message spaceM, identity space I, batch label space T and ciphertext
space C.

• KeyGen(params)→ (msk, pk): a randomized algorithm that takes as input params and outputs
msk (master secret key) and pk (public key).

• Encrypt(pk,m, id, t) → c: a randomized algorithm that takes as input a message m ∈ M, an
identity id ∈ I, a batch label t ∈ T , public key pk and outputs a ciphertext c ∈ C.

• Digest(pk, {id1, . . . , idB})→ d: a deterministic algorithm that takes as input the public key pk
and a list of identities id1, . . . , idB where each idi ∈ I. It outputs a digest d.

• ComputeKey(msk, d, t) → sk: a deterministic algorithm that takes as input the master secret
key msk, digest d, batch label t and outputs a digest-batch label-specific secret key sk.

18

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t) → m: a deterministic algorithm that takes as input a ci-
phertext c, secret key sk, digest d, a list of identities id1, . . . , idB and an identity-batch label
pair (id, t). It outputs a message m ∈M.

Remark. We note that the syntax doesn’t enforce any restrictions on how the batch list {id1, . . . , idB}
is selected as input for the Digest algorithm. We leave this choice to higher-level applications that
use the BIBE primitive. One such application, namely mempool privacy, is discussed in Sec-
tion 7.4. Other applications are discussed in Section 1.2.

Remark. Optionally, a Batched IBE scheme might include a batched version of Decrypt procedure,
BatchDecrypt(CT, sk, d, {id1, . . . , idB}, t) → {m1, . . . ,mB}, which will be able to decrypt a set of
ciphertexts CT, encrypted w.r.t ids from {id1, . . . , idB}, with efficiency better than naively invoking
Decrypt on each ciphertext in the set CT. Our construction in Section 6 will have this feature as
described in Section 7.3.

5.2 Correctness, Non-triviality and Security

The above algorithms should satisfy the following requirements.

Definition 5.2 (Batched IBE Correctness). For all λ ∈ N, B ∈ N,m ∈ M, t ∈ T , id ∈ I, S ⊆ I s.t.
|S| = B and id ∈ S, the following should hold:

Pr

[
Decrypt(c, sk, d, S, id, t) = m

∣∣∣∣∣
params← Setup(1λ, 1B)

(pk,msk)← KeyGen(params)
c← Encrypt(pk,m, id, t)

d← Digest(pk, S)
sk← ComputeKey(msk, d, t)

]
= 1

Definition 5.3 (Batched IBE Non-triviality/Efficiency). We require that the running time of ComputeKey
be independent of the batch size B (which implies that the digest d and sk are also independent of
B)

Remark. We enforce the above requirement for the following reasons: 1) Without this require-
ment, one could come up with a trivial scheme using standard IBE where the secret key sk for
a set of ids {id1, . . . , idB} and batch label t is simply the standard IBE secret keys for identities
{id1||t, . . . , idB||t}. Here, the running time of ComputeKey and its output sk will be O(B). 2) This
feature, while already useful in a non-threshold setting, becomes even more useful in a threshold
setting where the msk is split among multiple authority members (using a secret sharing scheme)
and they securely emulate the execution of ComputeKey procedure using their share of msk to
produce sk. In such a setting, the above requirement will ensure that the running time and com-
munication cost of the secure emulation is independent of the batch size (which can be a huge
cost saving in practice). We refer the readers to Section A for more details regarding the threshold
setting.

Our definition of security is an adaptation of the standard definition of IBE by Boneh et.
al. [BF01] and captures the fact that any ciphertext c created w.r.t. an identity id∗ and batch la-
bel t∗ remains hidden as long as at least one of the following two conditions hold: 1) The sk for
batch with label t∗ has not been released, 2) id∗ is not included in the batch with label t∗. More-
over, we allow each batch label to be used only once as this is what our construction achieves and

19

suffices for many of the discussed applications (where batch label can be considered as a “round
number”)

Definition 5.4 (Batched Identity Based Encryption Security). We define a security game ExptBIBEA,b (1λ, B)
with respect to adversary A in the box below.

We say that a batched IBE scheme is secure if for all B ∈ N, for all PPT adversaries A there
exists some negligible function ϵA such that the following holds:∣∣∣Pr[ExptBIBEA,0 (1λ, B) = 1]− Pr[ExptBIBEA,1 (1λ, B) = 1]

∣∣∣ < ϵA(λ).

The security game ExptBIBEA,b (1λ, B).

Setup: The challenger takes as input the security parameter λ and the batch size B. It
runs params ← Setup(1λ, 1B), and then runs (msk, pk) ← KeyGen(params). Finally, it sends
(params, pk) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of key computation queries:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

– Compute a secret key sk ← ComputeKey(msk, d, t), using the digest d computed
from the previous step.

– Send sk to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈M and an identity-batch label pair (id∗, t∗) on which it
wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger computes c← Encrypt(pk,mb, id
∗, t∗) and sends c to A.

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of key computation queries, with the additional restriction that A cannot query (t∗, ids) with
id∗ ∈ ids:

20

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

– Compute a secret key sk ← ComputeKey(msk, d, t), using the digest d computed
from the previous step.

– Send sk to A.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

6 Our Batched Identity Based Encryption construction

6.1 Construction

In this section, we will provide a construction of BIBE scheme based on Kate et. al. [KZG10] poly-
nomial commitment scheme and the modified BLS signature scheme that we discussed in Sec-
tion 2. We show the formal construction in Fig. 1. The key details of the construction are as
follows. The construction is in a Type-3 asymmetric pairing setting, with groups G1,G2,GT of
order p, and a pairing operation e(G1,G2)→ GT . The message space is GT and the identity space
is Zp. The construction also uses a hash function H whose range is G1.

Key generation includes choosing a random master secret key msk← Zp and a random secret
parameter τ ← Zp. The secret key is msk, while the public key includes a powers-of-Tau setting of
order B in G1, namely ([τ]1, . . . , [τ

B]1, as well as the following two elements in G2, [τ]2 and [msk]2,
corresponding to raising the generator g2 ∈ G2 to the powers of τ and msk.

The encryption of a message m with identity id to a batch label t, includes computing a matrix
A ∈ (G2)

2×3 and a vector b ∈ (GT)
2. In addition to being dependent on the public key, A

depends on the identity id, whereas b depends on the batch label (and therefore b is identical for
all messages encrypted to this batch label). The encryption is c = (c1, c2) = (rT ·A, rT · b + m),
where r is a random column vector in (Zp)

2. Note that c1 is a vector of dimension 3 in G2, and c2
is an element of GT .

The digest algorithm takes B identities and then interpolates a polynomial of degree B in
Zp whose roots are these identities, and whose leading coefficient is 1. The digest d is the KZG
commitment of this polynomial, namely the value of this polynomial at the point [τ]1.

The compute-key algorithm outputs the secret key sk := msk · (d+H(t)) ∈ G1. This is the only
algorithm that uses the master secret key msk.

Decryption is computed independently for every ciphertext c. The decryption of a message
with identity id involves interpolating a polynomial which has roots in all identities in the digest,
except for id, and computing a KZG opening proof π using this polynomial. The ciphertext is
parsed as (c1, c2), and decrypted by computing message c2 − c1 ◦ (d, π, sk)T .

Theorem 6.1. Assuming Type-3 pairing group BG, there exists a construction (Fig. 1) for Batched IBE

21

BIBE construction

• Setup(1λ, 1B): Output three groups G1,G2,GT of order p, where p is a λ-bit prime, equipped
with generators g1, g2, gT , respectively, and an efficiently computable pairing operation ◦ :
G2 × G1 → GT . Set the message spaceM := GT , identity space I := {0, . . . , p − 1}, and
batch label space T := {0, 1}λ. Also output a randomly sampled hash function H : T → G1.

• KeyGen(params) : Sample msk ← Zp and τ ← Zp. Output msk, pk :=
([τ]1, . . . , [τ

B]1, [τ]2, [msk]2).

• Encrypt(pk,m, id, t) : Let A be a matrix in (G2)
2×3 and b be a vector in (GT)

2, defined as
follows.

A :=

(
[1]2 [id]2 − [τ]2 0

[msk]2 0 −[1]2

)

b :=

(
[0]T

−([msk]2 ◦H(t))

)
Sample a (column) vector r = (r1, r2)← (Zp)

2 and output the ciphertext c where

c = (rT ·A, rT · b+m)

• Digest(pk, {id1, . . . , idB}) : Let f(X) =
∑B

i=0 fi ·Xi be a univariate polynomial of degree B

over Zp with roots at id1, . . . , idB and leading coefficient 1. Output digest d :=
∑B

i=0 fi · [τ i]1.

• ComputeKey(msk, d, t) : Output the secret key sk := msk · (d+H(t)).

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t): Let q(X) =
∑B−1

i=0 qi ·Xi be a univariate polynomial of
degree B − 1 with roots at {id1, . . . , idB} \ {id} and leading coefficient 1. Set π :=

∑B−1
i=0 qi ·

[τ i]1 and set w to be the following vector.

w =

 d
π
sk


Finally, parse c as (c1, c2) and output the decrypted message m∗ := c2 − c1 ◦w.

Figure 1: Our construction for Batched Identity Based Encryption (BIBE)

22

which is secure in the Generic group model.

6.2 Analysis

6.2.1 Efficiency

Parameter Size

Public parameters size B|G1|+ 2|G2|
Ciphertext size 3|G2|+ |GT |
Digest size |G1|
Decryption key size |G1|

Table 2: Parameter sizes for our Batched IBE construction (Fig. 1).

We discuss the computation cost of each of the algorithms in Fig. 1. Setup requires O(λ) opera-
tions. KeyGen requires O(B) group exponentiations. Encrypt requires O(1) group exponentiations.
Digest and Decrypt require O(B logB) field multiplications (via DFT) and O(B) group exponen-
tiations. In addition, Decrypt requires a single multipairing of size 3. ComputeKey requires O(1)
group operations (independent of batch size B). We summarize the concrete parameter sizes be-
low in Table 2.

6.2.2 Correctness

The correctness of the scheme is straight forward. Given a ciphertext c = (c1, c2), and a witness w
generated as per the specified algorithms, we have the following decrypted message.

m∗ = c2 − c1 ◦w
= rT · b+m− (rT ·A) ◦w

= −r2([msk]2 ◦H(t)) +m−
(
[r1 + r2 ·msk]2, [r1 · id]2 − [r1 · τ]2,−[r2]2

)
◦

 d
π
sk


= −r2([msk]2 ◦H(t)) +m−

(
[r1 + r2 ·msk]2, [r1 · id]2 − [r1 · τ]2,−[r2]2

)
◦

 [ΠB
i=1(τ − idi)]1

[ΠB
i=1,idi ̸=id(τ − idi)]1

msk · ([ΠB
i=1(τ − idi)]1 +H(t))


= −r2([msk]2 ◦H(t)) +m− [r1 ·ΠB

i=1(τ − idi) + r2 ·msk ·ΠB
i=1(τ − idi)

− r1 ·ΠB
i=1(τ − idi)− r2 ·msk ·ΠB

i=1(τ − idi)]T + [r2]2 ◦msk ·H(t)

= m

23

6.2.3 Security

We will prove the security of our scheme in the GGM model equipped with hash queries. In this
model, the challenger will implement the group oracle and the hash oracle (along with an oracle
for key computation queries as defined in the security game ExptBIBE earlier).

Theorem 6.2. For all B ∈ N and all unbounded adversariesAmaking at most q queries (including queries
to the group oracle, hash oracle, and key computation queries), we have:∣∣∣Pr[ExptBIBE,GGMA,0 (1λ, B) = 1]− Pr[ExptBIBE,GGMA,1 (1λ, B) = 1]

∣∣∣ ≤ 2

(
q +B + 5

2

)
(B + 2)

p

where ExptBIBE,GGM refers to the same experiment ExptBIBE as defined in Thm. 5.4 except that we
specialize it for our specific Construction (Fig. 1) and model it in the GGM, i.e., all the group and hash
operations performed by the adversary are simulated by the challenger as defined in the GGM model (Sec-
tion 4.2). We formally define the experiment below.

The security game ExptBIBE,GGMA,b (1λ, B).

Setup: The challenger takes as input the security parameter λ and the batch size B. It runs
params ← Setup(1λ, 1B). Let S1 = S2 = ST = {0, 1}p′ where 2p

′ ≥ p and p is λ bit prime
(denoting the group order) contained in params. Then it initializes the maps including the
labeling function Li : Zp → S for each i ∈ {1, 2, T} and the hash function H : {0, 1}∗ → Zp.
During the KeyGen phase, it performs the following steps:

• Sample emsk ← S2, msk← Zp. Set L2(msk) := emsk and S2 := S2 \ {emsk}.

• Sample τ ← Zp.

• For i ∈ [B − 1], sample eτ i ← S1 and set L1(τ
i) := eτ i and S1 := S1 \ {eτ i}.

• Sample e′ ← S2 and set L2(τ) = e′ and S2 := S2 \ {e′}.

It sets pk = (L1(τ), . . . , L1(τ
B), L2(τ), L2(msk)) and sends (params, pk) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of the following types of queries:

Labeling query: For each labeling query for group Gi, the challenger receives a value v ∈ Zp

from A. If v /∈ Li, it samples z ← Si, sets Li(v) := z and Si := Si \ {z}. It sends Li(v) to A.

Group operation: For each group operation query for group Gi, the challenger receives
(ℓ1, ℓ2, a1, a2) ∈ ({0, 1}p′)2 × Z2

p. If there doesn’t exists x1, x2 ∈ Zp such that Li(x1) = ℓ1
and Li(x2) = ℓ2, then send ⊥ to A. Otherwise, execute an internal labeling query step on
group Gi with input x3 := a1x1 + a2x2 and send Li(x3) to A.

24

Pairing operation: The challenger receives (ℓ1, ℓ2) ∈ {0, 1}p
′ × {0, 1}p′ . If there doesn’t exist

x1, x2 ∈ Zp such that L1(x1) = ℓ1 and L2(x2) = ℓ2, then the challenger sends ⊥ to A. Other-
wise, it computes x3 = x1 · x2. It executes an internal labeling query step for group GT with
input x3 and sends LT (x3) to A.

Hash query: For each hash query, the challenger receives a string s ∈ {0, 1}∗ from A. If
s /∈ H , the challenger samples z ← Zp. It sets H(s) := z and executes an internal labeling
query step for group G1 with input z. It sends L1(z) to A.

Key computation query:

• A sends a list ids of B identities, S = {id1, . . . , idB} ⊆ I, along with a batch label t ∈ T
to the challenger.

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:

– Let f(X) =
∑B

i=0 fi · Xi be a univariate polynomial of degree B over Zp with
roots at id1, . . . , idB and leading coefficient 1. If f(τ) /∈ L1, then execute an internal
labeling query step for group G1 with input f(τ).

– If t /∈ H , execute an internal hash query step with input t.

– Let P := (f(τ)+H(t)) ·msk. If P /∈ L1, then execute an internal labeling query step
for group G1 with input P .

– Finally, send the secret key sk := L1(P) to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈ {0, 1}p
′

and an identity-batch label pair (id∗, t∗) on
which it wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger executes the following steps.

– If t∗ /∈ H , execute a hash query step internally using input t∗.

– Let A be a matrix and b be a vector defined as follows.

A :=

(
1 id∗ − τ 0

msk 0 −1

)

25

b :=

(
0

−H(t∗) ·msk

)
– Sample a (column) vector r← (Z∗

p)
2. Compute a list y of four Zp values where

y = (rT ·A, rT · b)

– Parse y as (y0, y1, y2, y3). For each i ∈ {0, 1, 2, 3}, execute an internal labeling query
step for group G2 with input yi.

– Send the ciphertext c = (L2(y0), L2(y1), L2(y2), L2(y3 + L−1
2 (mb))) to A

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of all the query types that were part of Pre-challenge queries with the following additional
restriction on key computation queries: A cannot query (t∗, ids) with id∗ ∈ ids. More formally,
we have the following:

Key computation query:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger executes the same steps as described in the Pre-challenge
queries.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

Proof. To prove Thm. 6.2, we will proceed in two steps. In the first step, we will show that the
difference between symbolic versions of the experiments ExptBIBE,GGMA,0 and ExptBIBE,GGMA,1 , denoted

by ExptBIBE,SMA,0 and ExptBIBE,SMA,1 respectively, is zero (Thm. 6.3). In the second step, we will show

that for b ∈ {0, 1}, the difference between ExptBIBE,GGMA,b and ExptBIBE,SMA,b is at most ϵ =
(
q+B+5

2

) (B+2)
p

(Thm. 6.4). Combining these two steps implies the following:

ExptBIBE,GGMA,0 ≈ϵ Expt
BIBE,SM
A,0 ≡ ExptBIBE,SMA,1 ≈ϵ Expt

BIBE,GGM
A,1

which implies that ExptBIBE,GGMA,0 ≈2ϵ Expt
BIBE,GGM
A,1 and completes the proof of Thm. 6.2.

Corollary 6.2.1. For B = poly(λ), q = poly(λ) and all unbounded adversariesAmaking at most q queries
(including queries to the group oracle, hash oracle, and key computation queries), we have:∣∣∣Pr[ExptBIBE,GGMA,0 (1λ, B) = 1]− Pr[ExptBIBE,GGMA,1 (1λ, B) = 1]

∣∣∣ ≤ negl(λ)

Lemma 6.3. For all B ∈ N and all unbounded adversaries A, we have:∣∣∣Pr[ExptBIBE,SMA,0 (1λ, B) = 1]− Pr[ExptBIBE,SMA,1 (1λ, B) = 1]
∣∣∣ = 0

26

The security game ExptBIBE,SMA,b (1λ, B).

Setup: The challenger takes as input the security parameter λ and the batch size B. It runs
params ← Setup(1λ, 1B). Let S1 = S2 = ST = {0, 1}p′ where 2p

′ ≥ p and p is a prime (denot-
ing the group order) contained in params. Then it initializes the maps including the labeling
function Li : Zp → S for each i ∈ {1, 2, T} and the hash function H : {0, 1}∗ → Zp. During the
KeyGen phase, it performs the following steps:

• Sample emsk ← S2, sets L2(Xmsk) := emsk where Xmsk is an indeterminate corresponding
to the master secret key msk. Set S2 := S2 \ {emsk}.

• Let Xτ be an indeterminate.

• For i ∈ [B − 1], sample eτ i ← S1 and set L1(X
i
τ) := eτ i and S1 := S1 \ {eτ i}.

• Also, sample e′ ← S2 and set L2(Xτ) := e′ and S2 := S2 \ {e′}.

It sets pk = (L1(Xτ), . . . , L1(X
B
τ), L2(Xτ), L2(Xmsk)) and sends (params, pk) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of the following types of queries:

Labeling query: For each labeling query for group Gi, the challenger receives a value v ∈ Zp

from A. If v /∈ Li, it samples z ← Si, sets Li(v) := z and Si := Si \ {z}. It sends Li(v) to A.

Group operation: For each group operation query for group Gi, the challenger receives

(ℓ1, ℓ2, a1, a2) ∈ {0, 1}p
′2 × Z2

p. If there doesn’t exist polynomials x1, x2 ∈ Zp[∗] such that
L(x1) = ℓ1 and L(x2) = ℓ2, then send ⊥ to A. Otherwise, execute an internal labeling query
step for group Gi with polynomial x3 = a1x1 + a2x2 and send Li(x3) to A.

Pairing operation: The challenger receives (ℓ1, ℓ2) ∈ {0, 1}p
′ × {0, 1}p′ . If there doesn’t exist

polynomials x1, x2 ∈ Zp[∗] such that L1(x1) = ℓ1 and L2(x2) = ℓ2, then the challenger sends
⊥ toA. Otherwise, it computes polynomial x3 = x1 ·x2. It executes an internal labeling query
step for group GT with input x3 and sends LT (x3) to A.

Hash query: For each hash query, the challenger receives a string s ∈ {0, 1}∗ from A. If
s /∈ H , then the challenger sets H(s) := Xs , where Xs is an indeterminate, and executes an
internal labeling query step for group G1 with input Xs. It sends L1(H(s)) to A.

Key computation query:

• A sends a list ids of B identities, S = {id1, . . . , idB} ⊆ I, along with a batch label t ∈ T
to the challenger.

27

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:

– Let f(Xτ) =
∑B

i=0 fi · Xi
τ be a univariate polynomial of degree B over Zp with

roots at id1, . . . , idB and leading coefficient 1. If f(Xτ) /∈ L1, the challenger samples
z ← {0, 1}∗ and sets L1(f(Xτ)) := z.

– If t /∈ H , it executes a hash query step with input t.

– Let P := (f(Xτ) +H(t)) ·Xmsk be a polynomial where the indeterminates are Xτ ,
H(t) and Xmsk. If P /∈ L1, the challenger samples z ← {0, 1}∗ and sets L1(P) := z.

– Finally, it sends the secret key sk := L1(P) to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈ {0, 1}∗ and an identity-batch label pair (id∗, t∗) on
which it wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger executes the following steps.

– If t∗ /∈ H , execute a hash query step internally using input t∗.

– Let A be a matrix and b be a vector defined as follows.

A :=

(
1 id∗ −Xτ 0

Xmsk 0 −1

)

b :=

(
0

−H(t∗) ·Xmsk

)

– Let Xr :=

(
Xr1

Xr2

)
be a vector of two indeterminates. Compute a list y of four

polynomials where

y = (Xr
T ·A,Xr

T · b)

– Parse y as (y0, y1, y2, y3). For each i ∈ {0, 1, 2, 3}, set L2(yi)← {0, 1}∗.

– Send the ciphertext c = (L2(y0), L2(y1), L2(y2), L2(y3 + L−1
2 (mb))) to A

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of key computation queries, with the additional restriction that A cannot query (t∗, ids) with
id∗ ∈ ids:

28

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger executes the same steps as described in the Pre-challenge
queries.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

Proof. To prove the above lemma, we will introduce an intermediate hybrid experiment ExptHyb,SM
A (1λ, B)

and show that for b ∈ {0, 1}, the following holds:

ExptBIBE,SMA,b (1λ, B) ≡ ExptHyb,SMA (1λ, B) (1)

ExptHyb,SM
A (1λ, B) is same as ExptBIBE,SMA,b (1λ, B) except that the fourth component of the cipher-

text c in the challenge round is computed as follows:

• The challenger defines an indeterminate u and sets L2(u)← S2 and updates S2 := S2\L2(u).

• The challenger sets the fourth component of ciphertext c to be L2(u).

To prove Eq. (1), we need to show that the polynomial y3 involved in the ciphertext of chal-
lenge round of ExptBIBE,SMA,b (1λ, B) is independent of the polynomials corresponding to all the other
group element encodings which are in the view of adversary.

Without loss of generality, we will assume that the adversary makes n key computation queries
with batch labels t1, . . . , tn and requests a challenge on ti∗ = t∗ for some i∗ ∈ [n] and identity id∗.
We will use f i to denote the degree B univariate polynomial having as roots the ids used in the ith

key computation query. Without loss of generality, we will assume that the hash queries are made
on all the batch labels t1, . . . , tn.

We will now list down the polynomials corresponding to the encodings held by the adversary.

L1 =

{
1, {Xi

τ}i∈[B], {H(ti)}i∈[n], {(f i(Xτ) +H(ti)) ·Xmsk)}i∈[n]

}

L2 =

{
1, Xτ , Xmsk, Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ)︸ ︷︷ ︸

rT ·a2

,−Xr2︸ ︷︷ ︸
rT ·a3

}

The polynomial y3 involved in ExptBIBE,SMA,b is (−Xr2 ·H(ti∗) ·Xmsk) and we wish to show that it
is outside the span of L1⊗L2, i.e., it is linearly independent of the list of polynomials obtained by
multiplying polynomials in L1 with polynomials in L2. Let’s assume, for the sake of contradiction,
that this is not the case, i.e., y3 happens to be a linear combination of polynomials in L1 ⊗ L2.
Then, by inspection, we have the following observations about the coefficients of the polynomials
involved in the linear combination:

29

• Let S1 ⊆ L1 and S2 ⊂ L2 be the following sets:

S1 =

{
1, {Xi

τ}i∈[B], {H(ti)}i∈[n], {(f i(Xτ) +H(ti)) ·Xmsk)}i∈[n]

}

S2 =

{
1, Xτ , Xmsk

}

The coefficients of the polynomials in S1 ⊗ S2 will be zero because the monomials in such
polynomials do not occur in the target polynomial and are not present as monomials in other
polynomials inL1 ⊗ L2 (therefore they cannot be cancelled out).

• The coefficients of terms generated by the following completion will be zero for the same
reason as above. {

1, {Xi
τ}i∈[B], {H(ti)}i∈[n]

}
⊗

{
−Xr2︸ ︷︷ ︸
rT ·a3

}

• Similarly, the coefficients of the polynomials generated by the following completion will be
zero as they contain monomials of the form H(ti) ·Xr2 ·X2

msk and H(ti) ·Xmsk ·Xr1 ·Xτ which
are neither present in the target polynomial nor in other polynomials in L1 ⊗ L2.{

(f i(Xτ) +H(ti)) ·Xmsk)}i∈[n]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ)︸ ︷︷ ︸

rT ·a2

}

• The coefficients of terms generated by the following completion will be zero.{
{H(ti)}i∈[n]

}
⊗

{
Xr1(id

∗ −Xτ)︸ ︷︷ ︸
rT·a2

}

The reason is that it generates polynomials having monomials of the form H(ti) · Xr1 · Xτ .
Since these monomials occur neither in the target polynomial, nor as monomials in the poly-
nomials generated by other terms in L1 ⊗ L2, their coefficients will be zero.

• The coefficients of terms generated by the following completion will be zero.{
{H(ti)}i∈[n]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT·a1

}

The polynomials generated by this completion contains monomials of the form H(ti) ·Xr1 .

The only other completion which generates this polynomial is

{
{H(ti)}i∈[n]

}
⊗

{
Xr1(id

∗ −Xτ)︸ ︷︷ ︸
rT·a2

}
.

30

However, by previous observation, the coefficient of all terms of those completion are zero
which, in turn, forces the coefficient of all terms in this completion to be also zero.

Finally, we are left with the following completion terms.

S1 :=

{
{Xi

τ}i∈[B]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ)︸ ︷︷ ︸

rT ·a2

}

S2 :=

{
{(f i(Xτ) +H(ti)) ·Xmsk)}i∈[n]

}
⊗

{
−Xr2︸ ︷︷ ︸
rT ·a3

}

We note that each polynomial in S2 has a monomial of the form H(ti) ·Xmsk ·Xr2 . For all i ∈
[n], i ̸= i∗, the coefficients of such polynomials would be zero as the monomial is neither present
in the target polynomial nor in the other polynomials generated by the remaining completion.
Hence, we are left with the following polynomials in the completion.

({
{Xi

τ}i∈[B]

}
⊗

{
Xr1 +Xr2 ·Xmsk︸ ︷︷ ︸

rT ·a1

, Xr1(id
∗ −Xτ)︸ ︷︷ ︸

rT ·a2

})⋃{
− (f i∗(Xτ) +H(ti∗)) ·Xmsk) ·Xr2

}

=

{
{Xi

τ · (Xr1 +Xr2 ·Xmsk)}i∈[B], {Xi
τ ·Xr1(id

∗ −Xτ)}i∈[B],−(f i∗(Xτ) +H(ti∗)) ·Xmsk ·Xr2

}

Recall that the target polynomial y3 is (−Xr2 · H(ti∗) · Xmsk). Let {ci, di}i∈[0,B], e ∈ Zp be
coefficients s.t.

−Xr2 ·H(ti∗) ·Xmsk =

B∑
i=0

ci ·Xi
τ · (Xr1 +Xr2 ·Xmsk)

+
B∑
i=0

di ·Xi
τ ·Xr1(id

∗ −Xτ)

− e(f i∗(Xτ) +H(ti∗)) ·Xmsk ·Xr2

From the above, it is clear that e = 1 to get the (−Xr2 ·H(ti∗) ·Xmsk) monomial on the R.H.S.
This implies that

∑B
i=0 ci ·Xi

τ = f i∗(Xτ) so that the monomials involving Xr2 , Xmsk vanish on the
R.H.S. Hence, we have the following remaining constraint.

f i∗(Xτ) ·Xr1 =
B∑
i=0

di ·Xi
τ ·Xr1 · (Xτ − id∗)

The above constraint implies that id∗ is a root of the polynomial f i∗(Xτ) which is a contradic-
tion as per the rules of the security game.

31

Lemma 6.4. For all B ∈ N and all unbounded adversaries A making at most q queries (including queries
to the group oracle, hash oracle, and key computation queries), for b ∈ {0, 1}, we have:∣∣∣Pr[ExptBIBE,GGMA,b (1λ, B) = 1]− Pr[ExptBIBE,SMA,b (1λ, B) = 1]

∣∣∣ ≤ (q +B + 5

2

)
(B + 2)

p

Proof. To prove this, we consider the following experiment7: At the end of ExptBIBE,SMA,b , the chal-

lenger samples uniformly random values from Zp for all the indeterminates involved in ExptBIBE,SMA,b

and replaces all the polynomials with their evaluations. This is a perfect simulation of ExptBIBE,GGMA,b

unless the following bad event happens: The sampled values result in a an identical evaluation of
polynomials which are not identical. For any pair of polynomials (f1, f2), of total degree (d1, d2)

respectively, we can bound the probability of this bad event happening to be at most max(d1,d2)
p us-

ing Schwartz-Zippel lemma [Sch80; Zip79]. There are q+B+5 polynomials in total across all three
groups (q polynomials from queries and B+5 polynomials from the setup phase) with maximum
total degree at most B + 2. Therefore, union bounding across all possible pairs of polynomials
gives us a maximum failure probability of

(
q+B+5

2

) (B+2)
p .

7 Extensions and Optimizations

7.1 Thresholdizing the scheme

In our Batched IBE scheme (Thm. 5.1), the master secret-key msk is held by a central authority
which runs ComputeKey procedure to derive the batch label specific secret keys sk and distribute
them as necessary. In many applications, including the ones we discussed in the introduction,
it is favorable to distribute this trust among multiple authorities. Specifically, instead of a sin-
gle authority holding the complete msk, we would like to have multiple, let’s say n, authorities
where each authority i ∈ [n] holds a “partial” master secret key mski (e.g., in the form of secret
shares of msk) and the adversary can corrupt at most a threshold f number of authorities. In such
a distributed setting, it is highly desirable to construct a scheme where multiple authorities can
securely issue the batch label specific secret keys sk without leaking their “partial” master secret
key mski. Our construction in Fig. 1 readily admits such an efficient threshold version. This is due
to the fact that the ComputeKey procedure in our construction simply computes a BLS-like signa-
ture which can be efficiently thresholdized as observed in prior works [Bol03]. For completeness,
we define Thresholdizable Batched Identity Based Encryption in Section A and show how our
non-threshold construction can be modified to obtain a threshold version.

7.2 Outsourcing the digest computation

In our construction, the digest d = Digest(pk, {id1, . . . , idB}) is computed as a KZG commitment
to the polynomial f(X) =

∑B
i=0 fi ·Xi that has roots at id1, . . . , idB and leading coefficient 1. The

digest is d :=
∑B

i=0 fi · [τ i]1.

7We note that the master theorem proved in [BBG05] cannot be directly applied here as the adversary can make
oracle queries other than standard group operations such as key computation queries. To account for this difference,
we redo the analysis here which essentially follows the same style that is used in proving the master theorem.

32

We note that the work of computing the digest d = Digest(pk, {id1, . . . , idB}) can be outsourced
to a single server, such that the result can be efficiently verified by everyone. The main observation
is that, since the polynomial f(X) can be represented as f(X) =

∏B
i=1(X − idi) then for any value

z in the field, the value f(z) can be efficiently computed using only B multiplications, which is
much faster than interpolating the polynomial and computing the digest.

Verification can thus be implemented using the Fiat-Shamir paradigm:

• The server which computed the digest d computes a random field point z = H(d), and
computes y = f(z).

• To provide an evaluation proof for the KZG commitment d, it computes the quotient polyno-
mial q(X) = f(X)−y

X−z and then computes and publishes a KZG evaluation proof π = [q(τ)]1.

• Given d and π, anyone can compute z = H(d) and then efficiently compute y = f(z). Then
the proof can be verified by checking that [1]2 ◦ (d− y) = ([τ]2 − [z]2) ◦ π.

One can use the well-known Schwartz-Zippel lemma [Sch80; Zip79] to show that the above
procedure satisifies soundness.

The work of computing the group multiplications in d :=
∑B

i=0 fi · [τ i]1 can also be distributed
among m servers. The result can be efficiently verified by everyone, given that they have access
to the polynomial f(X). (Computing f(X) itself is non-trivial, as it is essentially computing an
interpolation.)

Assume that this work is distributed between m servers such that server k = 1, . . . ,m com-
putes dk :=

∑k·B/m−1
i=(k−1)·B/m fi · [τ i]1. (To simplify the notation we assume that B/m is an integer.)

Then, given these results from the servers it is easy to compute d =
∑m

k=1 dk. The work of each
server is roughly 1/m the work of computing d. The main remaining issue is how to efficiently
verify that each dk is computed correctly (or, in the case of outsourcing to a single server, verifying
that it computed d correctly). We note that server k actually computes a KZG commitment dk for
the polynomial fk =

∑kB/m−1
i=(k−1)B/m fi ·Xi. This polynomial is of degree kB

m − 1 ≤ B. Therefore dk

can be verified using the same procedure outlined above for verifying d.8

7.3 Batching the Decryption Procedure

Some applications, such as mempool privacy, require multiple ciphertexts to be decrypted by a
single party (e.g. blockchain validator in the mempool privacy application) once the secret key
sk for a particular batch (or block in the mempool privacy application) is released. Assuming the
number of ciphertexts is O(B), a naive application of Decrypt will result in a total decryption time
of O(B2 logB) for our Batched IBE construction as per the analysis in Section 6.2.1. We discuss

8It is possible to do an efficient optimistic verification of the work of the servers, in the sense that if all servers are
honest then the result can be efficiently verified without interpolating f(X). Otherwise, after interpolating f(X) it is
possible to identify which server k provided an incorrect dk value. The proof process is as follows. First, a value z is
computed as H(d1, . . . , dm). Then each server provides yk = fk(z) and a proof that the polynomial committed to by
dk has the output yk at the point z. The verifier computes f(z) and verifies that it is equal to

∑m
k=1 yk. If d =

∑m
k=1 dk

is not a commitment to f(X), the by the Schwartz-Zippel theorem this check fails with all but negligible probability.
(Note that this is not a check that each dk is computed correctly, but rather that d =

∑m
k=1 dk is correct, which is the

property that we need.

33

The batch decryption procedure BatchDecrypt.

BatchDecrypt({c1, . . . , cB}, sk, d, {id1, . . . , idB}, id, t):

• (KZG opening proof computation) Use [FK23] to derive openings π1, . . . , πB for the
roots {id1, . . . , idB} of the polynomial f(X) := (X − id1) . . . (X − idB), with respect to
digest d.

• (Decryption) For each i ∈ [B]:

1. Set

wi =

 d
πi
sk

 .

2. Parse ci as (ci,1, ci,2), and set mi = ci,2 − ci,1 ◦w.

• Output {m1, . . . ,mB}.

Figure 2: Batching the decryption procedure in our Batched IBE construction.

below how to improve this time. Note that in this section, we refer to “time” as the total number
of group and field operations required to perform a task.

Note that the computation that dominates the running time for decryption is the computa-
tion of KZG commitment opening proofs. The time for computing all the B proofs naively is
O(B2 logB), whereas the time for the remaining work after the opening proofs are finished is
simply O(B). The work of [FK23] shows how to compute a set of opening proofs for a KZG com-
mitment much more efficiently than the naive approach. Specifically, assume as in our decryp-
tion procedure we have a KZG commitment to a polynomial of degree B, and we need opening
proofs for each of its B roots. [FK23] show that if the polynomial has been constructed so the
roots are all part of some set of roots of unity Ω, then it is possible to compute all openings in
time O(|Ω| log|Ω|). Specifically, if we want to support a maximum batch size B, we can set Ω
such that |Ω| = B, and then as long as we choose the IDs from Ω, we can batch-decrypt in time
O(B logB + B) = O(B logB). In addition, [FK23] show that even if the roots of the polynomial
are chosen arbitrarily, it is still possible to compute the B openings in time O(|Ω| log2|Ω|). So if the
particular application requires more flexibility in choosing IDs, it is still possible to batch-decrypt
in time O(B log2B + B) = O(B log2B). We formally a batch decryption procedure BatchDecrypt
in Fig. 2.

7.4 Non-Malleability for Mempool Privacy Application

In the mempool privacy application, the ciphertext encrypts transaction details and the mempool
contains contains many such ciphertexts (which represent pending transactions in an encrypted
form). Note that such a mempool is public, i.e. all the ciphertexts are publicly visible. By some ar-
bitrary (possibly adversarial) process, a subset of the ciphertexts lying in the mempool are selected

34

whose underlying transaction would be included in the next block9. Once the subset is finalized,
all the ciphertexts in this subset are decrypted, executed and recorded in the next block.

Combining the fact that the mempool is public and the subset selection process is adversarial,
we want to prevent the following malleability attack: The adversary observes a ciphertext ct sub-
mitted by an honest user in the mempool, creates a new ciphertext ct∗ by mauling ct in a way so
that the plaintext m∗ underlying ct∗ is related in some way to the plaintext m underlying ct, and
then includes ct∗ in the subset while excluding ct. Once ct∗ is decrypted, it would reveal m∗ and
hence leak information about m even though ct was never selected in the subset. This implies that
the adversary managed to learn information about the transaction m while preventing m from
being executed in the next block, something which is not desirable in the mempool privacy ap-
plication. A naive application of Batched IBE to mempool privacy does not prevent this: imagine
clients choose a random ID id and submit (id, ct) to the mempool. An adversary can simply sub-
mit a different (id, ct∗) , where ct∗ was computed using the same ID as as an honest party, and can
include (id, ct∗) in the subset while excluding (id, ct). Once the Batched IBE secret key is released
for the subset, it will enables decryption of all ciphertexts that have an identity which is the subset,
including ct, even though the ciphertext ct itself is not part of the subset.

As mentioned in [Cho+24a], the application of mempool privacy has a specific requirement
that ciphertexts must satisfy a form of non-malleability. Specifically, the authors of [Cho+24a]
state that “adding non-malleability to ciphertexts corresponds closely to securing [the] encryption
scheme against chosen ciphertexts.” To get CCA2-security, they rely on generic technique of using
NIZK proofs. We observe that our Batched IBE scheme already satisfies a form of adaptive se-
curity where the adversary is allowed to make key computation queries even after observing the
challenge ciphertext. We can use this fact to achieve non-malleability significantly more cheaply
than [Cho+24a]. Specifically, instead of using NIZK proofs, we will leverage a standard signature
scheme to prevent the attack described before. The high-level idea is the following: To encrypt
a message m (which represents transaction details in the mempool privacy application), an hon-
est user would sample a signing key pair (vkSign, skSign), set id = H(vkSign) where H is a hash
function, and then encrypt m under identity id and batch label t (which represents the next block
number in the mempool privacy application) using our Batched IBE scheme to create a ciphertext
ctBIBE. Instead of sending ctBIBE to the mempool, the user would be required to send an expanded
ciphertext ct = (vkSign, ctBIBE, σ) where σ is a signature on ct using signing key skSign.

Assuming the block capacity is B, once a subset of B such expanded ciphertexts, {ct1, . . . , ctB},
are selected, a set S of approved identities is computed. To do so, each expanded ciphertext cti is
parsed as (vkSigni , ctBIBEi , σi) and the identity idi = H(vkSigni) corresponding to ctBIBEi is added to the
set S only if σi is a valid signature on ctBIBEi w.r.t vkSigni . Once the set S is computed, the decryp-
tion process begins by invoking the DigestBIBE procedure on set S followed by ComputeKeyBIBE

and finally DecryptBIBE. The reason why using signatures in this fashion suffices to counter the
malleability attacks discussed before is the following. Suppose an adversary observes an hon-
est ciphertext ct = (vkSign, ctBIBE, σ) and would like to create a new mauled ciphertext c̃t =

(ṽkSign, c̃tBIBE, σ̃), where c̃tBIBE ̸= ctBIBE, in a way so that by having just c̃tBIBE decrypted, it would
learn information about the plaintext underlying the honestly generated ctBIBE. To do so, it needs

to be the case that the identity ĩd = H(ṽkSign) corresponding to c̃tBIBE matches with the identity

9This subset selection needs to be done because the size of mempool can be unbounded but the size of a block is
bounded.

35

id = H(vkSign) corresponding to ctBIBE (otherwise the plaintext underlying ctBIBE is hidden via

the security of BIBE scheme). Now there are two cases: either ṽkSign ̸= vkSign or ṽkSign = vkSign.
The former case means that the adversary found a hash collision (which would not be possible
for a polynomial time adversary) and the latter case means that the adversary was able to forge a
signature (which would not be possible by the unforgeability of the signature scheme).

In the remainder of this section, we will formalize the above ideas by defining the syntax and
semantics of a Batched Encryption scheme (BE) aimed towards capturing the mempool privacy
application. We note that the difference between a Batched Encryption scheme and Batched IBE
scheme is that the former doesn’t have any explicit notion of identities and resembles more like a
standard public-key encryption scheme. We then provide a construction for BE scheme (Fig. 3) by
combining a BIBE scheme along with a signature scheme Sign.

Syntax:

• Setup(1λ, 1B) → params: A randomized algorithm that takes as input a security parameter
λ ∈ N and a batch size B = B(λ). It outputs params (system parameters) which includes a
description of the message spaceM, batch label space T and ciphertext space C.

• KeyGen(params) → (pk, sk): a randomized algorithm that takes as input params and outputs
sk (secret key) and pk (public key).

• Encrypt(pk, t,m) → ct: a randomized algorithm that takes as input a public key pk along
with the batch label t ∈ T and message m ∈M. It outputs a ciphertext ct ∈ C.

• Decrypt(sk, {ct1, . . . , ctB}, t) → {m1, . . .mB}: a deterministic algorithm that takes as in-
put B ciphertexts, {ct1, . . . , ctB}, along with a batch label t ∈ T and outputs B plaintexts
{m1, . . .mB}.

Definition 7.1 (Batched Encryption Correctness). For all λ ∈ N, B ∈ N, {m1, . . . ,mB} ∈ MB, t ∈
T , the following should hold:

Pr

[Decrypt(sk, {ct1, . . . , ctB}, t)
=

{m1, . . . ,mB}

∣∣∣∣∣
params← Setup(1λ, 1B)

(pk, sk)← KeyGen(params)
∀i ∈ [B] : cti ← Encrypt(pk,mi, t)

]
= 1

Definition 7.2 (Batched Encryption Non-triviality/Efficiency). We require that Decrypt can be split
into two parts: 1) A public part, meaning computation without using the secret key sk, whose run-
ning time depends on the batch size B, 2) A private part, meaning computation using sk, whose
running time is independent of the batch size B.

Remark. Similar to the motivation for defining the non-triviality/efficiency for Batched IBE scheme,
we enforce the above requirement for the following reasons: 1) Without this requirement, one
could come up with a trivial Batched Encryption scheme using a standard public key encryption
scheme where the running time of Decrypt that depends on the secret key sk will be O(B). 2) This
feature is useful in a threshold setting where the sk is split among multiple parties (using a secret
sharing scheme) and these parties need to securely emulate the execution of Decrypt procedure
using their share of sk. In such a setting, the above requirement will ensure that the running time

36

and communication cost of the secure emulation is independent of the batch size B (which can be
a huge cost saving in practice).

Definition 7.3 (Batched Encryption Security). We say that a Batched Enc. scheme is secure if for all
B ∈ N, for all PPT adversaries A there exists some negligible function ϵA such that the following
holds: ∣∣∣Pr[Exptmempool

A,0 (1λ, B) = 1]− Pr[Exptmempool
A,1 (1λ, B) = 1]

∣∣∣ < ϵA(λ)

with respect to the security game Exptmempool
A,b (1λ, B) defined below.

The security game Exptmempool
A,b (1λ, B).

Setup: The challenger takes as input the security parameter λ and the batch size B. It
runs params ← Setup(1λ, 1B), and then runs (pk, sk) ← KeyGen(params). Finally, it sends
(params, pk) to A.

The rest of the game proceeds in rounds, as follows.

Pre-challenge queries: Amay issue an arbitrary number of batch decryption queries:

• A sends ⟨{ct1, . . . , ctB}, t⟩ to the challenger.

• If a decryption query has already been made with batch label t, the challenger halts the
game.

• The challenger runs Decrypt(sk, {ct1, . . . , ctB}, t)→ {m1, . . .mB}.

• The challenger sends {m1, . . .mB} to A.

Challenge round: Once during the game, A may decide that the current round is the chal-
lenge round. The challenge round proceeds as follows:

• A sends t∗ and {m0,m1} to the challenger.

• The challenger runs Encrypt(pk, t∗,mb)→ ct∗.

• The challenger sends ct∗ to A.

Post-challenge queries: After the challenge rounds,Amay again issue an arbitrary number
of batch decryption queries, with the additional restriction that A cannot query (CT, t∗) with
ct∗ ∈ CT:

• A sends ⟨{ct1, . . . , ctB}, t⟩ to the challenger.

• If a decryption query has already been made with batch label t or if ct∗ ∈ {ct1, . . . , ctB},
the challenger halts the game.

37

• The challenger runs Decrypt(sk, {ct1, . . . , ctB}, t)→ {m1, . . .mB}.

• The challenger sends {m1, . . .mB} to A.

Output: At any time, A can halt and output a bit b′ ∈ {0, 1}. The experiment then ends with
the same output b′.

Remark (Thresholdizing the scheme). One can define a thresholdizable version of Batched En-
cryption scheme (TBE) where the secret key sk is split among multiple, let’s say n, parties (using a
secret sharing scheme) in a manner similar to how we extend the definition of Batched IBE scheme
to the threshold setting (see Section A) where correctness and security are required to hold against
an adversary which corrupts at-most

⌊
n−1
2

⌋
of the parties. In such a TBE scheme, the Decrypt pro-

cedure is an interactive protocol and the non-triviality requirement is that the communication cost
of such a protocol should be independent of the batch size B.

Theorem 7.4. Assuming the existence of a Batched Identity Based Encryption scheme BIBE, a collision-
resistant hash function family, and a strongly existential-unforgeable signature scheme Sign , there exists
(Fig. 3) a Batched Encryption scheme BE.

The correctness of our BE scheme follows directly from the correctness of BIBE scheme and
Sign scheme. Also, the non-triviality of our BE scheme follows from the non-triviality of BIBE
scheme.

We now proceed to prove the security of our BE scheme. Let A be a PPT adversary against
the game Exptmempool. We build a sequence of hybrids to show that

∣∣∣Pr[Exptmempool
A,0 (1λ, B) = 1] −

Pr[Exptmempool
A,1 (1λ, B) = 1]

∣∣∣ < ϵA(λ).

• Exptmempool,0
A,b : This is same as Exptmempool

A,b , instantiated with the scheme from Fig. 3.

• Exptmempool,1
A,b : This is same as Exptmempool,0

A,b , except that:

– During the challenge round, the experiment parses ct∗ = (vk∗,Sign, ct∗,BIBE, σ∗), and
saves vk∗,Sign. If H(vk∗,Sign) is equal to the hash of some verification key given by the
adversary during a pre-challenge query, the experiment halts and outputs “FAIL 1”.

– during each post-challenge query, before decryption, the experiment parses each cti =

(vkSigni , ctBIBEi , σi), and if vkSigni ̸= vk∗,Sign but H(vkSigni) = H(vk∗,Sign), it halts and out-
puts “FAIL 1”.

• Exptmempool,2
A,b : This is same as Exptmempool,1

A,b , except that:

– during each post-challenge query, after verifying that after checking that ct∗ /∈ {ct1, . . . , ctB}
and after verifying the signatures included in each ciphertext, the experiment parses
each cti = (vkSigni , ctBIBEi , σi), and if vkSigni = vk∗,Sign, it halts and outputs “FAIL 2”.

To finish the proof of security, we state and prove the following claims of indistinguishability
of adjacent pairs of hybrids.

38

Batched Encryption (BE) construction.

• Setup(1λ, 1B): Execute SetupBIBE(1λ, 1B) → params. Choose a hash function H :
{0, 1}∗ → I where I is identity space of BIBE scheme. Output params and H .

• KeyGen(params): Execute KeyGenBIBE(params) → (mskBIBE, pkBIBE). Set (pkBE, skBE) :=
(pkBIBE,mskBIBE) and output (pkBE, skBE)

• Encrypt(pkBE, t,m):

1. Sample random signing keypair (skSign, vkSign).

2. Set id = H(vkSign).

3. Use BIBE to encrypt message m: set ctBIBE = BIBE.Encrypt(pkBE,m, id, t).

4. Use signature scheme to compute signature σ ← Sign(skSign, ct).

5. Output ctBE := (vkSign, ctBIBE, σ).

• Decrypt(skBE, {ctBE1 , . . . , ctBEB }, t):

1. Let S be a set representing the set of “approved” ids, initialized to be empty.

2. For each i, perform the following steps:

(a) Parse ctBEi = (vkSigni , ctBIBEi , σi).

(b) If σi is not a valid signature on ctBIBEi w.r.t vkSigni , then set mi := ⊥.

(c) Otherwise, add idi = H(vkSigni) to S.

3. DigestBIBE(pkBE, S)→ d

4. ComputeKey(skBE, d, t)→ skBIBE

5. For each idi ∈ S, Decrypt(ctBIBEi , skBIBE, d, S, idi, t)→ mi.

6. Output {m1, . . . ,mB}.

Figure 3: Our construction for Batched Encryption scheme BE using the Batched Identity Based
Encryption scheme BIBE (Fig. 1) and an arbitrary signature scheme Sign.

39

Claim. Let A be a PPT adversary against the game Exptmempool. Assuming H is chosen from a collision-
resistant hash function family, for all b ∈ {0, 1},∣∣∣Pr[Exptmempool,0

A,b (1λ, B) = 1]− Pr[Exptmempool,1
A,b (1λ, B) = 1]

∣∣∣ < ϵA(λ).

Proof. Assume that the claim does not hold. This implies that the probability that Exptmempool,1
A,b (1λ, B)

outputs “FAIL 1” is non-negligible. We can then build a reduction to collision-resistance of the
hash function. The reduction receives H from the challenger, and then runs Exptmempool,1

A,b (1λ, B),
outputting H as part of the setup; if the output of the experiment is “FAIL 1”, then the reduction
sends the vkSigni and vk∗,Sign which caused failure to the collision-resistance challenger.

Since Exptmempool,1
A,b (1λ, B) outputs “FAIL 1” exactly when vkSigni and vk∗,Sign form a collision

over H , and since the probability of “FAIL 1” is non-negligible by assumption, we have contra-
dicted collision-resistance of H .

Claim. Let A be a PPT adversary against the game Exptmempool. Assuming the signature scheme satisfies
strong existential unforgeability, for all b ∈ {0, 1},∣∣∣Pr[Exptmempool,1

A,b (1λ, B) = 1]− Pr[Exptmempool,2
A,b (1λ, B) = 1]

∣∣∣ < ϵA(λ).

Proof. Assume that the claim does not hold. This implies that the probability that Exptmempool,2
A,b (1λ, B)

outputs “FAIL 2” is non-negligible. We can then build a reduction to existential unforgeability of
the signature scheme.

The reduction works as follows. It runs Exptmempool,2
A,b (1λ, B) until the challenge round. During

that round, it asks for a verification key from the existential unforgeability challenger, and uses
this as vk∗,Sign, hashing it to get the ID that it uses to generate the ciphertext ct∗,BIBE. It then queries
the signature oracle of the existential unforgeability game to get a signature σ∗ over the message
ct∗,BIBE before sending (vk∗,Sign, ct∗,BIBE, σ∗) to A. After this, if at any point Exptmempool,2

A,b (1λ, B)

halts with output “FAIL 2”, then the reduction sends message ctBIBEi and σi for which vkSigni =
vk∗,Sign to the existential unforgeability challenger.

The experiment outputs “FAIL 2” only if the following holds, with respect to some i:

• σi verifies correctly under vkSigni ,

• vkSigni = vk∗,Sign, the verification key given by the existential forgeability challenger, and

• ct∗ = (vk∗,Sign, ct∗,BIBE, σ∗) ̸= (vkSigni , ctBIBEi , σi) = cti.

Notice that the first and last condition together imply that (ct∗,BIBE, σ∗) ̸= (ctBIBEi , σi). Thus,
a “FAIL 2” output implies that the reduction was able to produce a valid message-signature pair
that that was not queried to the signature oracle, breaking strong existential unforgeability of the
signature scheme.

Claim. Let A be a PPT adversary against the game Exptmempool. Assuming the BIBE scheme satisfies the
security definition in Thm. 5.4,∣∣∣Pr[Exptmempool,2

A,0 (1λ, B) = 1]− Pr[Exptmempool,2
A,1 (1λ, B) = 1]

∣∣∣ < ϵA(λ).

40

Proof. Assume that the claim does not hold. We build a reduction to the security game of the BIBE.
The reduction runs Exptmempool,2

A,0 (1λ, B), with the following two changes:

• During the challenge round, instead of running EncryptBIBE directly, it sends a query (m0,m1, id
∗, t∗)

to the BIBE challenger, where m0, m1, and t∗ are the plaintexts and batch label chosen by A,
and id∗ = H(vkSign,∗) is the hash of the verification key chosen by Exptmempool,2

A,0 (1λ, B). Af-
ter receiving the response ciphertext ctBIBE,∗ from the BIBE challenger, it computes the final
challenge round response in the same way as Exptmempool,2

A,0 (1λ, B).

• During the pre-challenge and post-challenge queries, after running all the verification steps
in Exptmempool,2

A,0 (1λ, B), it parses each cti as (vkSigni , ctBIBEi , σi), sets idi = H(vkSigni), and sends
the set {id1, . . . , idn} and t to the BIBE challenger. It then gets a secret key back and uses this
to compute the plaintexts to return to A.

Observe that when b = 0, the reduction’s behavior differs from the behavior of Exptmempool,2
A,0 (1λ, B)

if and only if it sends a query to the BIBE challenger which results in the BIBE challenger aborting.
A BIBE abort happens in three cases:

• During a pre-challenge query, a batch label t is given that has already been used. The reduc-
tion, following the logic of Exptmempool,2

A,0 , checks this is not the case before issuing a BIBE query, so
this will never happen.

• During the challenge round, the t∗ and id∗ given to the BIBE challenger are such that a key
computation query has already been made w.r.t. t∗ and including id∗. The reduction, following
the logic of Exptmempool,2

A,0 , aborts if id∗ = idi = H(vkSigni) for some vkSigni given by the adversary
during the pre-challenge queries, so this will never happen.

• During a post-challenge query, a batch label t is given that has already been used, or t = t∗

and the challenge id id∗ is in the list ids sent to the BIBE challenger. The reduction, following
the logic of Exptmempool,2

A,0 , would have output “FAIL 1” or “FAIL 2” before querying the BIBE oracle
if this were the case, so this will never happen.

Because of this, the reduction has identical behavior to Exptmempool,2
A,0 (1λ, B) when b = 0. In the

same way, the reduction has identical behavior to Exptmempool,2
A,1 (1λ, B) when b = 1. This means

that an adversary who can distinguish these two experiments causes the reduction to contradict
security of the BIBE scheme.

Corollary 7.4.1. Assuming the existence of a Thresholdizable Batched Identity Based Encryption scheme
TBIBE (Fig. 5), a collision-resistant hash function family, and a secure signature scheme Sign, there exists
a Thresholdizable Batched Encryption scheme TBE.

7.5 Combining non-malleability and batched decryption

When combining the extensions described in Sections 7.3 and 7.4, we need to modify our Batched
IBE construction slightly to make these extensions mutually compatible. This is because one of

41

the batch decryption extensions described in Section 7.3 requires the identity space to be Bth roots
of unity, where B = poly(λ) is the batch size. On the other hand, the non-malleability extension
described in Section 7.4 requires the identity space to be the output space of a hash function, which
must be of super-polynomial (in λ) size to guarantee security.

The modification is simple: Instead of encoding the identities {id1, . . . , idB} as the roots of
polynomial when computing the digest, we encode them as evaluation points (which is in fact the
standard way of encoding a vector when computing the KZG [KZG10] polynomial commitment).
Specifically, each identity id will now be a pair of field elements (idx, idy) where we interpret the
first element as the x co-ordinate and the second element as the y co-ordinate. We describe this
alternative construction in Fig. 4. The security proof for this modified construction is similar to
the security proof of our main construction.

This modification allows us to simultaneously apply the extensions described in Sections 7.3
and 7.4. To enable the batch decryption extension Section 7.3, we can restrict the space of idx to be
Bth roots of unity. To enable the non-malleability extension Section 7.4, we can set the space of idy
to be the output space of a hash function H and derive idy := H(vkSign) as described in Fig. 3.

8 Concrete Performance

In this section, we discuss the concrete performance of our scheme. We have implemented our
Batched IBE construction (Fig. 1) in rust, using the arkworks framework [con22] and the BLS12-
381 curve. The benchmarks were run using a Google Cloud VM of type t2d-standard-4, with
a four-core AMD EPYC Milan CPU and 16GB of RAM. All benchmarks were run with parallelism
enabled. Table 3 shows the time taken to compute a digest, to compute a decryption key, to en-
crypt, and to decrypt, with respect to several different batch sizes. We have omitted benchmarking
the setup time, since our setup is simply a KZG powers-of-tau setup plus a BLS key-generation,
both of which are standard and have been well-studied.

Batch Size Digest ComputeKey Encrypt Decrypt

100 11.5 ms 720 µs 6.4 ms 9.1 ms

1,000 104.4 ms 643 µs 6.5 ms 88.7 ms

10,000 877 ms 681 µs 6.4 ms 778.5 ms

100,000 8.6 s 759 µs 6.4 ms 8.6 s

Table 3: Running times for a single invocation of different procedures in our Batched IBE scheme
for varying batch sizes.

Mempool Privacy: Comparison with [Cho+24a] and related works. In addition to implement-
ing the vanilla version of our scheme, we also implemented the extensions in Sections 7.1 and 7.3
to 7.5, in order to compare the performance of our scheme with that of [Cho+24a]. That is, we
implemented a version of our scheme with threshold decryption key computation, with batched
decryption using [FK23] (as described in Fig. 2), and with signature verification over the submitted
ciphertexts (as described in Fig. 3). We used the ed25519-dalek library for signatures.

42

BIBE construction

• Setup(1λ, 1B): Output three groups G1,G2,GT of order p, where p is a λ-bit prime, equipped
with generators g1, g2, gT , respectively, and an efficiently computable pairing operation ◦ :
G2×G1 → GT . Set the message spaceM := GT , identity space I := I1×I2 where I1 is the
B sized subset of Zp containing Bth roots of unity and I2 := {0, . . . , p− 1}, and batch label
space T := {0, 1}λ. Also output a randomly sampled hash function H : T → G1.

• KeyGen(params) : Sample msk ← Zp and τ ← Zp. Output msk, pk :=
([τ]1, . . . , [τ

B−1]1, [τ]2, [msk]2).

• Encrypt(pk,m, id, t) : Parse id as (idx, idy). Let A be a matrix in (G2)
2×3 and b be a vector in

(GT)
2, defined as follows.

A :=

(
[1]2 [idx]2 − [τ]2 0

[msk]2 0 −[1]2

)

b :=

(
[1]2 ◦ [idy]1

−([msk]2 ◦H(t))

)
Sample a (column) vector r = (r1, r2)← (Zp)

2 and output the ciphertext c where

c = (rT ·A, rT · b+m)

• Digest(pk, {id1, . . . , idB}) : Let f(X) =
∑B−1

i=0 fi · Xi be a univariate polynomial of degree
B − 1 over Zp with evaluation points as id1, . . . , idB . Output digest d :=

∑B
i=0 fi · [τ i]1.

• ComputeKey(msk, d, t) : Output the secret key sk := msk · (d+H(t)).

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t): Parse each idi as (idix , idiy) and id as (idx, idy). Let S =
{(x, y)|(idix , idiy) ∈ {id1, . . . , idB} \ {id} ∧ x := idix ∧ y := (idiy − idy) · (idix − idx)

−1. Let
q(X) =

∑B−2
i=0 qi · Xi be a univariate polynomial of degree B − 2 with evaluation points

being elements of S. Set π :=
∑B−2

i=0 qi · [τ i]1 and set w to be the following vector.

w =

 d
π
sk


Finally, parse c as (c1, c2) and output the decrypted message m∗ := c2 − c1 ◦w.

Figure 4: Alternative construction for Batched Identity Based Encryption by encoding identities
as evaluation points (instead of roots) of the digest polynomial with the difference from the orig-
inal construction (Fig. 1) highlighted in blue. This construction supports the extension described
in Section 7.5.

43

Batch Size [Cho+24a] w/o Setup [Cho+24a] w/ Setup Ours

8 83.218 ms 18.08 s 30.96 ms

32 337.5 ms 18.34 s 114.7 ms

128 1.422 s 19.42 s 462.1 ms

512 6.02 s 24.02 s 1.92 s

Table 4: Total time to decrypt an entire batch of ciphertexts for the mempool privacy application
for varying batch sizes. We compare with [Cho+24a] where “Setup” refers to the per-batch setup
phase needed in the construction of [Cho+24a]. Our scheme doesn’t have such a per-batch setup
phase.

In order to get an accurate comparison, we reran the benchmarks from [Cho+24a] on the same
Google Cloud VM of type t2d-standard-4 which we used for benchmarking our scheme, us-
ing their publicly-available source code.10. We instantiated our scheme with the same threshold
parameters (number of servers n = 16, corruption threshold f = 8) as in their benchmark, and
with IDs chosen as roots of unity to enable the fast version of [FK23] during decryption. In Ta-
ble 4 we show, for both our scheme and [Cho+24a], the total computation time for a single batch
decryption (i.e. total time to decrypt a batch of B ciphertexts). Recall that [Cho+24a] requires an
expensive, per-batch-decryption setup phase. The MPC protocol for computing this setup phase
was not implemented by them, as far as we know, but [Cho+24a] estimates in their paper that it
would take around 18 seconds. We have included the time for their scheme both with and without
this setup cost.

9 Conclusion and Open Problems

We proposed a new cryptographic primitive called “batched identity-based encryption” (Batched
IBE) and its thresholdized version. We provided an efficient construction for this primitive using
pairing friendly groups along with useful extensions, applications and implementation bench-
marks. We now discuss some interesting future directions.

• Proving security in non-idealized models. We prove the security of our construction in the
Generic Group Model (GGM). Currently, it is unclear whether the security of this scheme
can be reduced to a simple “DLOG-style” computational assumption without resorting to
idealized models.

• Removing the need for batch label. In our Batched IBE scheme, each ciphertext is tied
not only to an identity but also to a batch label. This means that if ctid,t is a ciphertext
created w.r.t identity id and batch label t, then ctid,t can only be decrypted in batch t and
not in other batches. This can be seen as a shortcoming in some applications, for example
mempool privacy, where one could hope to include the ciphertexts (representing encrypted
transactions) in a future batch t′ (representing a future block) if they were not included in

10URL is https://github.com/guruvamsi-policharla/batched-threshold-encryption.

44

the current batch/block t. In our construction, this would require generating two different
independent ciphertexts, ctid,t and ctid,t′ , tied to batch labels t and t′, respectively.

Ideally, a scheme where the ciphertexts are not linked to the batch or block number would
be the best way to handle this issue. This is an interesting problem that we currently lack
a solution for our specific construction approach. Having said that, we note that in our
construction users can proactively submit several ciphertexts with several sequential block
numbers at once (rather than waiting for the non-inclusion event and then re-encrypting).
The exact number of these ciphertexts can be set based on the probability of block inclusion
for a transaction (which depends on how in-demand block space is). Given that the encryp-
tion time is quite fast (≈ 6.5 ms) and ciphertext sizes are relatively small (≈ 864 bytes), we
expect the performance overhead to be reasonable unless the block inclusion probability is
very low.

• Support for weighted thresholds. As described in Section 7.1 and Section A, our construc-
tion can be extended to a threshold setting where the trust of key issuance is distributed
across n authorities out of which f can be corrupt. It would be interesting to explore whether
we can efficiently extend the construction to a weighted threshold setting where each author-
ity i ∈ [n] has a prescribed weight wi ∈ N and the usual threshold f is replaced with a
threshold in terms of total weight value. This modeling makes sense for a Proof of Stake
(PoS) blockchain where each validator has a specific stake which represents its “weight”.

• Reducing/Eliminating the setup phase. Our construction requires a one-time setup phase
which generates “powers-of-tau” and a public-private key pair. In the threshold setting, this
setup would have to be performed in a distributed fashion. While there are many known ef-
ficient protocols for performing this task [Gen+99; FS01; Das+22; NBBR16; Nik+24; WCB25;
DXR24], and there is also a possibility of reusing existing setups such as [Eth; Zfn], it would
be interesting to explore whether the setup phase can be reduced/eliminated by leveraging
the silent-setup techniques such as in [Gar+24].

Acknowledgements

We would like to thank Alin Tomescu and Andrei Tonkikh for many useful discussions related to
this project.

References

[Bau+23] Balthazar Bauer, Pooya Farshim, Patrick Harasser, and Markulf Kohlweiss. “The uber-
knowledge assumption: A bridge to the AGM”. In: Cryptology ePrint Archive (2023).

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. “Hierarchical identity based encryption
with constant size ciphertext”. In: Annual international conference on the theory and ap-
plications of cryptographic techniques. Springer. 2005, pp. 440–456.

[BF01] Dan Boneh and Matt Franklin. “Identity-based encryption from the Weil pairing”. In:
Annual international cryptology conference. Springer. 2001, pp. 213–229.

45

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short signatures from the Weil pair-
ing”. In: International conference on the theory and application of cryptology and informa-
tion security. Springer. 2001, pp. 514–532.

[BO22] Joseph Bebel and Dev Ojha. “Ferveo: Threshold decryption for mempool privacy in
bft networks”. In: Cryptology ePrint Archive (2022).

[Bol03] Alexandra Boldyreva. Efficient threshold signature, multisignature and blind signature
schemes based on the Gap-Diffie-Hellman-group signature scheme, PKC 2003, LNCS 2139.
2003.

[Bor+24] Jan Bormet, Sebastian Faust, Hussien Othman, and Ziyan Qu. “BEAT-MEV: Epoch-
less Approach to Batched Threshold Encryption for MEV Prevention”. In: Cryptology
ePrint Archive (2024).

[Cam+21] Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring,
and Jesper Buus Nielsen. Encryption to the Future: A Paradigm for Sending Secret Mes-
sages to Future (Anonymous) Committees. Cryptology ePrint Archive, Paper 2021/1423.
2021. URL: https://eprint.iacr.org/2021/1423.

[Cer+23] Andrea Cerulli, Aisling Connolly, Gregory Neven, Franz-Stefan Preiss, and Victor
Shoup. “Vetkeys: How a blockchain can keep many secrets”. In: Cryptology ePrint
Archive (2023).

[CG99] Ran Canetti and Shafi Goldwasser. “An efficient threshold public key cryptosystem
secure against adaptive chosen ciphertext attack”. In: International Conference on the
Theory and Applications of Cryptographic Techniques. Springer. 1999, pp. 90–106.

[Chi+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updatable
SRS”. In: Advances in Cryptology - EUROCRYPT 2020. Ed. by Anne Canteaut and Yu-
val Ishai. Vol. 12105. Lecture Notes in Computer Science. Springer, 2020, pp. 738–768.

[Cho+17] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian
Miers. “Fairness in an unfair world: Fair multiparty computation from public bul-
letin boards”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017, pp. 719–728.

[Cho+24a] Arka Rai Choudhuri, Sanjam Garg, Julien Piet, and Guru-Vamsi Policharla. “Mem-
pool Privacy via Batched Threshold Encryption: Attacks and Defenses”. In: Cryptol-
ogy ePrint Archive (2024).

[Cho+24b] Arka Rai Choudhuri, Sanjam Garg, Guru-Vamsi Policharla, and Mingyuan Wang.
“Practical Mempool Privacy via One-time Setup Batched Threshold Encryption”. In:
Cryptology ePrint Archive (2024).

[Cle86] Richard Cleve. “Limits on the security of coin flips when half the processors are
faulty”. In: Proceedings of the eighteenth annual ACM symposium on Theory of comput-
ing. 1986, pp. 364–369.

[con22] Arkworks contributors. arkworks zkSNARK ecosystem. 2022. URL: https://arkworks.
rs.

46

https://eprint.iacr.org/2021/1423
https://arkworks.rs
https://arkworks.rs

[Dai+20] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. “Flash Boys 2.0: Frontrunning in Decentralized
Exchanges, Miner Extractable Value, and Consensus Instability”. In: 2020 IEEE Sym-
posium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020.
IEEE, 2020, pp. 910–927. DOI: 10.1109/SP40000.2020.00040. URL: https:
//doi.org/10.1109/SP40000.2020.00040.

[Dal+20] Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya Shulman.
“Securing DNSSEC keys via threshold ECDSA from generic MPC”. In: Computer
Security–ESORICS 2020: 25th European Symposium on Research in Computer Security,
ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings, Part II 25. Springer.
2020, pp. 654–673.

[Dam+12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. “Multiparty compu-
tation from somewhat homomorphic encryption”. In: Annual Cryptology Conference.
Springer. 2012, pp. 643–662.

[Das+22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias,
and Ling Ren. “Practical asynchronous distributed key generation”. In: 2022 IEEE
Symposium on Security and Privacy (SP). IEEE. 2022, pp. 2518–2534.

[Döt+23] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. “McFly: verifi-
able encryption to the future made practical”. In: International Conference on Financial
Cryptography and Data Security. Springer. 2023, pp. 252–269.

[DXR24] Sourav Das, Zhuolun Xiang, and Ling Ren. “Powers of Tau in Asynchrony”. In:
NDSS. 2024.

[ElG86] Taher ElGamal. “On computing logarithms over finite fields”. In: Advances in Cryp-
tology—CRYPTO’85 Proceedings 5. Springer. 1986, pp. 396–402.

[Eth] Ethereum Ceremony. URL: https://ceremony.ethereum.org/.

[FK23] Dankrad Feist and Dmitry Khovratovich. “Fast amortized KZG proofs”. In: IACR
Cryptol. ePrint Arch. (2023), p. 33. URL: https://eprint.iacr.org/2023/033.

[FS01] Pierre-Alain Fouque and Jacques Stern. “One round threshold discrete-log key gen-
eration without private channels”. In: Public Key Cryptography: 4th International Work-
shop on Practice and Theory in Public Key Cryptosystems, PKC 2001 Cheju Island, Korea,
February 13–15, 2001 Proceedings 4. Springer. 2001, pp. 300–316.

[Gar+13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. “Witness encryption and
its applications”. In: Proceedings of the forty-fifth annual ACM symposium on Theory of
computing. 2013, pp. 467–476.

[Gar+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. “Candidate indistinguishability obfuscation and functional encryption for
all circuits”. In: SIAM Journal on Computing 45.3 (2016), pp. 882–929.

[Gar+24] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. “Thresh-
old Encryption with Silent Setup”. In: Annual International Cryptology Conference. Springer.
2024, pp. 352–386.

47

https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://ceremony.ethereum.org/
https://eprint.iacr.org/2023/033

[Gen+99] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. “Secure dis-
tributed key generation for discrete-log based cryptosystems”. In: Advances in Cryp-
tology—EUROCRYPT’99: International Conference on the Theory and Application of Cryp-
tographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18. Springer.
1999, pp. 295–310.

[GMR23] Nicolas Gailly, Kelsey Melissaris, and Yolan Romailler. “tlock: Practical timelock en-
cryption from threshold bls”. In: Cryptology ePrint Archive (2023).

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, 2009.

[Kav+23] Alireza Kavousi, Duc V. Le, Philipp Jovanovic, and George Danezis. BlindPerm: Effi-
cient MEV Mitigation with an Encrypted Mempool and Permutation. Cryptology ePrint
Archive, Paper 2023/1061. 2023. URL: https://eprint.iacr.org/2023/1061.

[KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. “Constant-size commitments
to polynomials and their applications”. In: Advances in Cryptology-ASIACRYPT 2010:
16th International Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings 16. Springer. 2010, pp. 177–194.

[LPS23] Helger Lipmaa, Roberto Parisella, and Janno Siim. “Algebraic group model with
oblivious sampling”. In: Theory of Cryptography Conference. Springer. 2023, pp. 363–
392.

[NBBR16] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb. “Distributed key generation pro-
tocol with a new complaint management strategy”. In: Security and communication
networks 9.17 (2016), pp. 4585–4595.

[Nik+24] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. “Powers-of-tau
to the people: Decentralizing setup ceremonies”. In: International Conference on Applied
Cryptography and Network Security. Springer. 2024, pp. 105–134.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
Crypto. Technical Report MIT-LCS-TR-684. Massachusetts Institute of Technology,
1996. URL: https://people.csail.mit.edu/rivest/pubs/RSW96.pdf.

[SA19] Nigel P Smart and Younes Talibi Alaoui. “Distributing any Elliptic Curve Based Pro-
tocol: With an Application to MixNets.” In: IACR Cryptol. ePrint Arch. 2019 (2019),
p. 768.

[SAS24] Sora Suegami, Shinsaku Ashizawa, and Kyohei Shibano. Constant-Cost Batched Partial
Decryption in Threshold Encryption. Cryptology ePrint Archive, Paper 2024/762. 2024.
URL: https://eprint.iacr.org/2024/762.

[Sch80] Jacob T Schwartz. “Fast probabilistic algorithms for verification of polynomial iden-
tities”. In: Journal of the ACM (JACM) 27.4 (1980), pp. 701–717.

[Sho97] Victor Shoup. “Lower bounds for discrete logarithms and related problems”. In: Ad-
vances in Cryptology—EUROCRYPT’97: International Conference on the Theory and Ap-
plication of Cryptographic Techniques Konstanz, Germany, May 11–15, 1997 Proceedings
16. Springer. 1997, pp. 256–266.

48

https://eprint.iacr.org/2023/1061
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://eprint.iacr.org/2024/762

[Sue24] Sora Suegami. “Extractable Witness Encryption for Signed Vector Digests from Pair-
ings and Trust-Scalable One-Time Programs”. In: Cryptology ePrint Archive (2024).

[Tsa22] Rotem Tsabary. “Candidate witness encryption from lattice techniques”. In: Annual
International Cryptology Conference. Springer. 2022, pp. 535–559.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. “Witness encryption and
null-IO from evasive LWE”. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer. 2022, pp. 195–221.

[WCB25] Faxing Wang, Shaanan Cohney, and Joseph Bonneau. “SoK: Trusted setups for powers-
of-tau strings”. In: Cryptology ePrint Archive (2025).

[Zfn] Conclusion of the Powers of Tau Ceremony. URL: https://zfnd.org/conclusion-
of-the-powers-of-tau-ceremony/.

[Zha22] Mark Zhandry. “To label, or not to label (in generic groups)”. In: Annual International
Cryptology Conference. Springer. 2022, pp. 66–96.

[Zip79] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In: International
symposium on symbolic and algebraic manipulation. Springer. 1979, pp. 216–226.

49

https://zfnd.org/conclusion-of-the-powers-of-tau-ceremony/
https://zfnd.org/conclusion-of-the-powers-of-tau-ceremony/

A Thresholdizable Batched Identity Based Encryption

In this section, we describe a threshold version of the Batched IBE scheme which we defined
in Thm. 5.1. At a high-level, this threshold version is aimed to capture settings where one would
like to distribute the trust of key issuance across multiple authorities among which the adversary
can corrupt at most some threshold number of authorities. Specifically, instead of a single author-
ity holding the complete msk, we would like to have multiple, let’s say n, authorities where each
authority i ∈ [n] holds a “partial” master secret key mski (e.g., in the form of secret shares of msk).
Accordingly, the ComputeKey procedure (as defined in Batched IBE) will be split into two parts: 1)
ComputeKeyShare algorithm which will be used by each authority to produce a partial secret key
w.r.t a specific batch using its private partial master secret key mski, 2) ComputeKeyAggregate al-
gorithm which can be used to combine the partial secret key w.r.t a specific batch into a full secret
key.

In the following sections, we will formally define the syntax and semantics of Thresholdizable
Batched IBE . We will then present a construction of Thresholdizable Batched IBE (which is a
straightforward adaptation of our Batched IBE construction) and analyze it. For the ease of read-
ability, we will highlight all the differences between Thresholdizable Batched IBE and Batched
IBE in blue.

A.1 Syntax

Definition A.1 (Thresholdizable Batched IBE Syntax). A Thresholdizable Batched IBE scheme
TBIBE is specified by seven algorithms: Setup, KeyGen, Encrypt, Decrypt, Digest, ComputeKeyShare,
ComputeKeyAggregate.

• Setup(1λ, 1B, 1n, 1f) → params: A randomized algorithm that takes as input a security pa-
rameter λ ∈ N, a batch size B = B(λ), number of authorities n = n(λ) and corruption
threshold f = f(λ). It outputs params (system parameters) which includes a description of
the message spaceM, identity space I, batch label space T and ciphertext space C.

• KeyGen(params) → ({mski}i∈[n], {pki}i∈[n], pk): a randomized algorithm that takes as input
params and outputs n many mski (partial master secret key), n many pki (partial public key)
and a single pk (global public key).

• Encrypt(pk,m, id, t) → c: a randomized algorithm that takes as input a message m ∈ M, an
identity id ∈ I, a batch label t ∈ T , global public key pk and outputs a ciphertext c ∈ C.

• Digest(pk, {id1, . . . , idB})→ d: a deterministic algorithm that takes as input the global public
key pk and a list of identities id1, . . . , idB where each idi ∈ I. It outputs a digest d.

• ComputeKeyShare(mski, d, t) → ski: a deterministic algorithm that takes as input the partial
master secret key mski, digest d, batch label t and outputs a partial digest-batch label-specific
secret key ski.

• ComputeKeyAggregate({pki}i∈[n], {ski}i∈[n], d, t)→ sk: a deterministic algorithm that takes as
input all the partial public keys {pki}i∈[n] and all the partial digest-batch label-specific secret
key {ski}i∈[n] and outputs a digest-batch label-specific secret key sk.

50

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t) → m: a deterministic algorithm that takes as input a ci-
phertext c, secret key sk, digest d, a list of identities id1, . . . , idB and an identity-batch label
pair (id, t). It outputs a message m ∈M.

A.2 Correctness, Non-triviality and Security

The above algorithms should satisfy the following requirements.

For correctness, we generalize the correctness requirement of the (non-threshold) Batched IBE to
allow the adversary to (statically) corrupt at most f out of n authorities, where f ≤

⌊
n−1
2

⌋
is the

corruption threshold, and get their partial master secret-keys, and observe the partial secret-keys
issued by uncorrupted authorities for arbitrary inputs of the adversary’s choice.

Definition A.2 (Thresholdizable Batched IBE Correctness). For all λ ∈ N, B ∈ N, n ∈ N, f ≤
⌊
n−1
2

⌋
,m ∈

M, t ∈ T , id ∈ I, S ⊆ I s.t. |S| = B and id ∈ S, Cor ⊂ [n] s.t. |Cor| ≤ f and for any unbounded
adversary A, the following should hold:

Pr

[
Decrypt(c, sk, d, S, id, t) = m

∣∣∣∣∣

params← Setup(1λ, 1B, 1n)
({mski}i∈[n], {pki}i∈[n], pk)← KeyGen(params)

c← Encrypt(pk,m, id, t)
d← Digest(pk, S)

∀i ∈ [n] \ Cor, ski ← ComputeKeyShare(mski, d, t)

∀i ∈ Cor, ski ← A{ComputeKeyShare(mskk,·,·)}k∈[n]\Cor({mskj}j∈Cor,
{pkj}j∈[n]\Cor, pk,m, id, t, c, S)

sk← ComputeKeyAggregate({pki}i∈[n], {ski}i∈[n], d, t)

]
= 1

Definition A.3 (Thresholdizable Batched IBE Non-triviality/Efficiency). We require that the run-
ning time of ComputeKeyShare and ComputeKeyAggregate be independent of the batch size B
(which implies that the digest d and sk are also independent of B). We also require that the running
time of ComputeKeyShare and the size of sk be independent of the number of authorities n.

For security, we generalize the security requirement of the (non-threshold) Batched IBE to allow
the adversary to (statically) corrupt at most f out of n authorities, where f ≤

⌊
n−1
2

⌋
, get their

partial master secret-keys, and observe the partial secret-keys issued by uncorrupted authorities
for arbitrary inputs of the adversary’s choice while constrained to the same rules as defined earlier
in the non-threshold version.

Definition A.4 (Thresholdizable Batched IBE Security). We define a security game ExptTBIBEA,b (1λ, B, n)
with respect to adversary A in the box below.

We say that a Thresholdizable Batched IBE scheme is secure if for all n ∈ N, f ≤
⌊
n−1
2

⌋
, B ∈ N,

for all PPT adversaries A, for all Cor ⊂ [n] s.t. |Cor| ≤ f , there exists some negligible function ϵA
such that the following holds:∣∣∣Pr[ExptTBIBEA,0 (1λ, B, n, f,Cor) = 1]− Pr[ExptTBIBEA,1 (1λ, B, n, f,Cor) = 1]

∣∣∣ < ϵA(λ).

51

The security game ExptTBIBEA,b (1λ, B, n, f,Cor).

Setup: The challenger takes as input the security parameter λ and the batch size B. It runs
params← Setup(1λ, 1B, 1n, 1f), and then runs
({mski}i∈[n], {pki}i∈[n], pk)← KeyGen(params).
Finally, it sends (params, pk, {mski}i∈Cor, {pki}i∈[n]) to A.

The rest of the game proceeds in rounds, as follows.
Pre-challenge queries: Amay issue an arbitrary number of key computation queries:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t, the challenger
halts the game.

• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

– For all i ∈ [n] \ Cor, compute a partial secret key
ski ← ComputeKeyShare(mski, d, t), using the digest d computed from the previous
step.

– Send {ski}i∈[n]\Cor to A.

Challenge round: Once during the game,Amay decide that the current round is the challenge
round. The challenge round proceeds as follows:

• A sends two messages m0,m1 ∈M and an identity-batch label pair (id∗, t∗) on which it
wishes to be challenged.

• If key computation query (ids, t) has already been made with batch label t = t∗ and
where id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger computes c← Encrypt(pk,mb, id
∗, t∗) and sends c to A.

Post-challenge queries: After the challenger round, A may again issue an arbitrary number
of key computation queries, with the additional restriction that A cannot query (t∗, ids) with
id∗ ∈ ids:

• A sends a list ids of B identities along with a batch label t to the challenger.

• If a key computation query has already been made with batch label t or if t = t∗ and
id∗ ∈ ids, the challenger halts the game.

• Otherwise, the challenger does the following:

– Compute a digest d← Digest(pk, ids) of the ids in ids using public key pk.

52

– For all i ∈ [n] \ Cor, compute a partial secret key
ski ← ComputeKeyShare(mski, d, t), using the digest d computed from the previous
step.

– Send {ski}i∈[n]\Cor to A.

Output: At any point in time,A can decide to halt and output a bit b′ ∈ {0, 1}. The game then
halts with the same output b′.

A.3 Construction

Theorem A.5. Assuming Type-3 pairing group BG, there exists a construction (Fig. 5) for Thresholdizable
Batched IBE which is secure in the Generic group model.

A.4 Correctness

The correctness follows directly from the correctness of our non-threshold version of the scheme
along with the robustness property of threshold BLS signatures [Bol03] which ensures that any
f + 1 valid partial signatures (which corresponds to partial digest-batch label-specific secret keys
ski in our scheme) suffice to reconstruct the aggregate signature (which corresponds to the digest-
batch label-specific secret key sk in our scheme). Since f ≤

⌊
n−1
2

⌋
in our setting, we will always

have a set of n− f ≥ f + 1 valid partial ski’s to reconstruct the final sk.

A.5 Security

We will prove the security of our construction in the GGM model equipped with oblivious sam-
pling. In this model, the challenger will implement the group oracle and the hash oracle (along
with an oracle for key computation queries as defined in the security game).

Theorem A.6. For all B = poly(λ), n = poly(λ), f ≤
⌊
n−1
2

⌋
, for all Cor ⊂ [n] s.t. |Cor| ≤ f , and all

unbounded adversaries A making at most q = poly(λ) queries (including queries to the group oracle, hash
oracle, and key computation queries), we have∣∣∣Pr[ExptTBIBE,GGMA,0 (1λ, B, n, f,Cor) = 1]− Pr[ExptTBIBE,GGMA,1 (1λ, B, n, f,Cor) = 1]

∣∣∣ ≤ negl(λ)

where ExptTBIBE,GGM refers to the same experiment ExptTBIBE as defined in Thm. A.4 except that we
specialize it for our specific Construction (Fig. 5) and model it in the GGM, i.e., all the group and hash
operations performed by the adversary are simulated by the challenger as defined in the GGM model (Sec-
tion 4.2). This is done in a manner similar to ExptBIBE,GGM in Thm. 6.2.

Proof. To prove the above theorem, we will show that the security of the threshold version of our
construction w.r.t ExptTBIBE,GGM can be reduced to the security of the non-threshold version of our
construction w.r.t. ExptBIBE,GGM.

Assume, for the sake of contradiction, that Thm. A.6 is false. Then, there exists B = poly(λ), n =
poly(λ), f ≤

⌊
n−1
2

⌋
, Cor ⊂ [n] s.t. |Cor| ≤

⌊
n−1
2

⌋
, there exists an adversary A making at most q

queries s.t. there exists a polynomial polyA where

53

TBIBE construction

• Setup(1λ, 1B, 1n, 1f): Output three groups G1,G2,GT of order p, where p is a λ-bit prime,
equipped with generators g1, g2, gT , respectively, and an efficiently computable pairing
operation ◦ : G2 × G1 → GT . Set the message space M := GT , identity space I :=
{0, . . . , p − 1}, and tag space T := {0, 1}λ. Also output a randomly sampled hash func-
tion H : T → G1.

• KeyGen(params) : Sample msk ← Zp and τ ← Zp. Set {mski}i∈[n] ← ShamirShare(msk, f, n),
i.e, n shamir shares of msk using a degree f polynomial. For all i ∈ [n], set pki := [mski]2.
Output {mski}i∈[n], {pki}i∈[n], pk := ([τ]1, . . . , [τ

B]1, [τ]2, [msk]2).

• Encrypt(pk,m, id, t) : Let A be a matrix in (G2)
2×3 and b be a vector in (GT)

2, defined as
follows.

A :=

(
[1]2 [id]2 − [τ]2 0

[msk]2 0 −[1]2

)

b :=

(
[0]T

−([msk]2 ◦H(t))

)
Sample a (column) vector r = (r1, r2)← (Zp)

2 and output the ciphertext c where

c = (rT ·A, rT · b+m)

• Digest(pk, {id1, . . . , idB}) : Let h(X) =
∑B

i=0 hi ·Xi be a univariate polynomial of degree B

over Zp with roots at id1, . . . , idB and leading coefficient 1. Output digest d :=
∑B

i=0 hi ·[τ i]1.

• ComputeKeyShare(mski, d, t) : Output the partial secret key ski := mski · (d+H(t)).

• ComputeKeyAggregate({pki}i∈[n], {ski}i∈[n], d, t): Let U = {i|i ∈ [n], [1]2 ◦ ski = pki ◦ (d +
H(t))} which represents the set of valid partial secret keys. Let V = {v1, . . . , vk} ⊆ U be
any arbitrary subset of U of size k = f + 1 and let Li(0) = Πj ̸=i

(−vj)
(vi−vj)

be the ith Lagrange
coefficient for all i ∈ [k]. Output sk = L1(0) · skv1 + . . .+ Lk(0) · skvk .

• Decrypt(c, sk, d, {id1, . . . , idB}, id, t): Let q(X) =
∑B−1

i=0 qi ·Xi be a univariate polynomial of
degree B − 1 with roots at {id1, . . . , idB} \ {id} and leading coefficient 1. Set π :=

∑B−1
i=0 qi ·

[τ i]1 and set w to be the following vector.

w =

 d
π
sk


Finally, parse c as (c1, c2) and output the decrypted message m∗ := c2 − c1 ◦w.

Figure 5: Our construction for Thresholdizable Batched IBE (TBIBE) where the differences from
the non-threshold Batched IBE construction (Fig. 1) are highlighted in blue.

54

∣∣∣Pr[ExptTBIBE,GGMA,0 (1λ, B, n, f,Cor) = 1]− Pr[ExptTBIBE,GGMA,1 (1λ, B, n, f,Cor) = 1]
∣∣∣ > 1

polyA(λ)

We will now construct an adversary B which will contradict Corollary 6.2.1. The adversary B
works as follows:

• Let Cor′ = Cor ∪ S where S ⊆ [n] \ Cor is an arbitrary subset s.t. |S| = f − |Cor|.

• During the Setup and KeyGen phase, B performs the following steps:

– Receive (params, pk) from the challenger.

– For all i ∈ Cor′, sample mski ← Zp and perform a G2 labeling query step using input
mski to obtain pki = [mski]2.

– Let U = Cor′ ∪ {0}. For all u ∈ U , let Lu be the lagrange polynomial of degree f .

– Set pk0 := pk.

– For all i ∈ [n] \Cor′, perform G2 group operation queries to obtain pki :=
∑

∀u∈U Lu(i) ·
pku.

– Send (params, pk, {mski}i∈Cor, {pki}i∈[n]) to A.

• During the key computation queries (during pre-challenge and post-challenge phases), B per-
forms the following steps.

– It receives a list ids of B identities along with a batch label t and forwards it to the
challenger.

– If the challenger halts the game, then B also halts.

– Otherwise, B receives sk from the challenger and performs the following steps.

* Compute a digest d ← Digest(pk, ids) of the ids in ids using public key pk and G1

group operation queries.

* Perform a hash query step to obtain H(t).

* For i ∈ Cor′, perform a G2 group operation query to obtain ski := mski · (d+H(t)).

* Let U = Cor′ ∪ {0}. For all u ∈ U , let Lu be the lagrange polynomial of degree f .

* Set sk0 := sk.

* For all i ∈ [n] \Cor′, use G2 group operation queries to get ski :=
∑

∀u∈U Lu(i) · sku.

* Send {ski}i∈[n]\Cor to A.

• During the challenge round, B forwards transparently forwards the messages received from
A to the challenger and vice-versa.

• For all labeling queries, group operation queries, hash queries and pairing operation queries
received from A, forward it to the challenger, and then forward the response received back
to A.

55

By construction of B, the following holds:

Pr[ExptBIBE,GGMB,0 (1λ, B) = 1] = Pr[ExptTBIBE,GGMA,0 (1λ, B, n, f,Cor) = 1]

Pr[ExptBIBE,GGMB,1 (1λ, B) = 1] = Pr[ExptTBIBE,GGMA,1 (1λ, B, n, f,Cor) = 1]

Moreover, the adversary B makes at most q′ = poly(q, n) = poly(λ) queries to the challenger.
Hence, we get that,∣∣∣Pr[ExptBIBE,GGMB,0 (1λ, B) = 1]− Pr[ExptBIBE,GGMB,1 (1λ, B) = 1]

∣∣∣ > 1

polyA(λ)

which contradicts Corollary 6.2.1.

56

	Introduction
	Our results
	Cryptographic Applications
	Related Works
	Concurrent Works

	Technical Overview
	Applications
	Mempool privacy
	Fair Dishonest majority MPC via Blockchain
	Conditional Batched Threshold Decryption

	Preliminaries
	Bilinear Groups
	Generic group model (GGM)
	Polynomial Commitment
	Digital Signatures
	Collision-Resistant Hash Function Families

	Defining Batched Identity Based Encryption
	Syntax
	Correctness, Non-triviality and Security

	Our Batched Identity Based Encryption construction
	Construction
	Analysis
	Efficiency
	Correctness
	Security

	Extensions and Optimizations
	Thresholdizing the scheme
	Outsourcing the digest computation
	Batching the Decryption Procedure
	Non-Malleability for Mempool Privacy Application
	Combining non-malleability and batched decryption

	Concrete Performance
	Conclusion and Open Problems
	Thresholdizable Batched Identity Based Encryption
	Syntax
	Correctness, Non-triviality and Security
	Construction
	Correctness
	Security

