
Block Ciphers in Idealized Models:
Automated Proofs and New Security Results

Miguel Ambrona

Midnight

Madrid, Spain

miguel.ambrona@iohk.io

Pooya Farshim

IOG

Zurich, Switzerland

Durham University

Durham, United Kingdom

pooya.farshim@gmail.com

Patrick Harasser

Cryptoplexity

Technische Universität Darmstadt

Darmstadt, Germany

patrick.harasser@tu-darmstadt.de

Abstract
We develop and implement AlgoROM, a tool to systematically ana-

lyze the security of a wide class of symmetric primitives in idealized

models of computation. The schemes that we consider are those that

can be expressed over an alphabet consisting of XOR and function

symbols for hash functions, permutations, or block ciphers.

We implement our framework in OCaml and apply it to a number

of prominent constructions, which include the Luby–Rackoff (LR),

key-alternating Feistel (KAF), and iterated Even–Mansour (EM)

ciphers, as well as substitution-permutation networks (SPN). The

security models we consider are (S)PRP, and strengthenings thereof

under related-key (RK), key-dependent message (KD), and more

generally key-correlated (KC) attacks.

Using AlgoROM, we are able to reconfirm a number of classi-

cal and previously established security theorems, and in one case

we identify a gap in a proof from the literature (Connolly et al.,

ToSC’19). However, most results that we prove with AlgoROM are

new. In particular, we obtain new positive results for LR, KAF, EM,

and SPN in the above models. Our results better reflect the con-

figurations actually implemented in practice, as they use a single

idealized primitive. In contrast to many existing tools, our auto-

mated proofs do not operate in symbolic models, but rather in the

standard probabilistic model for cryptography.

Keywords
Automated Proofs, IdealizedModels, Luby–Rackoff, Key-Alternating

Feistel, Even–Mansour, Substitution-Permutation Network.

1 Introduction
Our community’s understanding of cryptographic constructions

has reached a level of maturity where large parts of the design and

analysis of schemes can potentially be automated. Such automa-

tion, if possible, would address a number of shortcomings of the

traditional pen-and-paper-based approach. First, security proofs

can be error-prone or hard to carry out (or even verify) by hand.

This, in turn, may lead authors to work towards weaker results, and

introduce unnecessary assumptions to simplify analyses.
1
Second,

small tweaks to a construction typically require redoing security

1
For example, a number of existing works study the security of permutation-based

constructions with respect to independent round permutations, whereas the use of a

single permutation more closely conforms to practice. The analyses of the latter are

often more challenging, involving many more case distinctions.

proofs “from scratch,” which of course is a tedious task. Further-

more, given the richness of design spaces, automation would allow

researchers to focus their (creative) efforts on studying a wider class

of schemes, leading, for instance, to improvements in efficiency.

Automated tools can act as a sanity check and a first filter to assist

designers in their search for good schemes. Finally, any future en-

hancements to a tool, such as the class of schemes covered, proof

techniques that are automated, or formal verification of underlying

components, translates into added trust in the analyzed schemes.

Mechanized design and analyses have appeared in the literature

with various degrees of automation. Examples include the analysis

of the hardness of group-based assumptions [3, 5, 6, 12, 14], sym-

bolic analysis of cryptosystems [31, 59], automated discovery of

attacks [63], and automated synthesis [13, 48, 57]. Most of these

works, however, use symbolic methods, which require extra effort

to show that they lead to actual computational security [1, 15].

Additionally, some of these symbolic models (e.g., standard XOR-

theories) are known to be incompatible with computational sound-

ness, at least for an unbounded number of symbolic operations [66].

We refer to Section 1.4 for further discussion of related works.

1.1 Our contributions
In this paper we continue the aforementioned lines of research.

We develop and implement AlgoROM, an automated analysis tool

for symmetric cryptographic schemes in a number of idealized

models, including the random-oracle, random-permutation, and

ideal-cipher models. The novelty of our work lies in automating
game-playing proofs for a wide class of schemes: AlgoROM auto-

matically determines the relevant bad events which one has to

identify when applying the game-playing technique “by hand”

(and allow transitioning to an appropriate target game), and then

analyzes their probabilities. The latter is done via a subroutine

called Collider, which is our core algorithmic contribution. Remark-

ably, the methodology we develop leads to computational security.
We then apply AlgoROM to a wide range of constructions, span-

ning hash functions and block ciphers, in a variety of security

models. We reconfirm a number of existing results, and in one case

find a flaw in prior work [30]. Most of our results, however, are

new: Compared to the state of the art, we establish security both of

more practical configurations that have not yet been studied, and

with respect to stronger security models. As we discuss below, this

is likely due to the overwhelming effort needed to carry out full

proofs by hand. We refer to Section 6 for a presentation of selected

security results that we obtain using our tool, and next give an

overview of our methodology and algorithmic contributions.

1

https://orcid.org/0000-0001-5927-9235
https://orcid.org/0000-0003-2746-3585
https://orcid.org/0009-0005-6095-9402

1.2 Proof framework
Idealized models. Idealized models of computation are a stan-

dard methodology to render proofs of security tractable and assess

the soundness of cryptographic schemes, especially those that are

simple, efficient, and deployed in practice. They are widely used

in provable security, ranging from block ciphers and hash func-

tions to public-key encryption and more advanced primitives such

as succinct non-interactive arguments of knowledge (SNARKs).

Three such models that we consider in this work are the random-

oracle (RO), random-permutation (RP), and ideal-cipher (IC) models.

In the RO model all parties are given oracle access to a uniformly

random function on a given domain and range, while in the RP

model (resp., the IC model) this access is to a (keyed) random per-

mutation and its (keyed) inverse. When proving schemes secure in

these models, evaluations of some specific function (resp., permuta-

tion or block cipher) appearing in the scheme are replaced by invo-

cations to the corresponding ideal object. Notable examples of con-

structions that have been studied in these models include the key-

alternating Feistel (KAF) [53, 55] and iterated Even–Mansour (EM)

ciphers [37], substitution-permutation networks (SPN) [28, 34], and

compression functions [47, 62].

Schemes. The class of schemes that we consider fall under a

language involving constants, variables, XOR-ing of expressions,

applying a function symbol (and possibly its inverse) to an expres-

sion, and concatenation/projection of expressions. The schemes

mentioned above, as well as many others, can all be expressed

in this language. Our tool contains the necessary procedures to

manipulate such expressions.

Security models. The security models that we consider are also

those that can be expressed in the XOR-language above. For block

ciphers we investigate the standard goals of (strong) PRP-security

(which we call CPA and CCA for notational uniformity), where

outputs are required to be indistinguishable from random when

computed using a random secret key. We then consider CPA/CCA-

security extended to related-key (RK) attacks, where an adversary

can see evaluations on offsets of the secret key. We also study

security on key-dependent (KD) inputs [46], where block cipher

inputs can depend on the key via adversarially chosen offsets. Fi-

nally, we consider a combined RK and KD model, the so-called

key-correlated (KC) model [23, 30].

The security notions above are standard and widely studied. CPA

and CCA are of course basic security requirements. RK-security

is a popular notion (especially under offsets), and is relevant both

from a constructive perspective (e.g., for building tweakable ciphers,

where it is assumed that a construction behaves independently on

keys that are offsets of each other [54], or in practical protocols such

as 3GPP) and from a cryptanalytic perspective (e.g., in the context of

fault injection attacks [8, 20]). KD-security is relevant, for example,

in the context of full disk encryption, where the encryption key

(on HDD) itself gets encrypted. KC-security is a more recent (and

stronger) combined notion; it has applications, for example, in MPC

and the garbling of XOR gates via the free-XOR approach [9].

Security proofs. We now outline our approach to proving security

of the constructions above in these security models. Recall that a

forgetful random oracle (FRO) is an oracle that returns independent

random outputs regardless of its inputs, thus not respecting func-

tional consistency. FROs have been extensively used in provable

security; we refer to Shoup’s tutorial [65] for instructive examples.

A core first step in our tool is to systematically replace a suffi-

cient number of invocations of the underlying ideal primitives in a

scheme with FROs, with the goal that its outputs are fully random-

ized and hence indistinguishable from those of its ideal counterpart.

In more detail, the steps taken by AlgoROM are as follows.

Oracle replacement: AlgoROM will exhaustively search over all

possible replacements of oracle gates with FROs, until one that

randomizes the construction is found. This replacement is ap-

plied to all interfaces of the scheme, which for block ciphers are

the encryption and decryption algorithms, and for hash func-

tions the evaluation procedure. We emphasize that only oracle

gates in the scheme may be replaced; direct oracles offered to

the adversary are never changed. We let G0 be the security game

for the original scheme in the real world, and G1 be the security

game for the scheme with replaced oracle gates. Eventually, our

goal is to bound the difference in winning games G0 and G1.

Randomization: We need to prove that the oracle outputs in

game G1 are uniform. For this, we formulate a simple game G
′
1

where the interfaces of the scheme return forgetful random out-

puts. (Note that this is now done for the entire interfaces, and

not for single oracle gates.) To show that G1 and G
′
1
are close,

we apply a randomization detection procedure that expresses

the randomness used by the FROs in terms of the randomness

contained in the scheme outputs, thus showing that they are in

one-to-one correspondence. This can be carried out via simple

algebraic manipulations; see Section 2 for an example.
2

Switching: In the notions that we consider, one side of the security
game typically offers oracles implementing random functions

or ciphers. In the latter case, we rely on the standard RP/RF

switching lemma to argue that forgetful random outputs are close

to those of an ideal cipher, as long as there are no repeated queries.

This step is independent of the details of the construction; it is

proven once and for all, and reused across different analyses.

Indistinguishability until bad: We next bound the difference be-

tween G0 and G1. To do so, we identify a set of bad events until

which the two games are identical. We consider the oracles in

the two games implemented via lazy sampling (to enable code-

based analysis). That is, oracles are realized via tables and, when

asked a query not yet in the domain of the table, they choose a

correctly distributed reply and store it in their table before re-

turning it. FROs work analogously, but do not store the sampled

outputs. A difference in the construction outputs of G0 and G1

then arises when an oracle in game G0 uses an entry in a table

that is not stored by FRO in G1. This translates to the bad event

where the adversary queries a replaced oracle on an input which

is also queried at a different point: If that happens, G0 would

return a consistent answer, whereas G1 would answer indepen-

dently of outputs generated so far. AlgoROM enumerates all

such bad events corresponding to a repeated query to a replaced

oracle. In more detail, AlgoROM computes the expressions for

2
Looking into existing literature, a natural step here would be to use tools from static

equivalence [27, 52]. This, however, introduces a symbolic step in the overall analysis,

which we aim to avoid.

2

the queries corresponding to the two colliding queries, which are

then equated to form the winning condition of a collision game.

These collision games are represented in an appropriate format

so they can be analyzed later. When the model offers encryption

and decryption oracles, the order of the queries is important. Ac-

cordingly, AlgoROM needs to consider separate collision games

for the cases where both queries are to encryption, the first is

an encryption and the second a decryption query or vice versa,

both are decryption queries, the first is an encryption and the

second a primitive query, and so on. Further care is needed when

dealing with invertible primitives: The bad event corresponds to

an entry which would have been used in G1 if the oracle had not

been replaced, and this entry could arise as a result of a forward

or a backward query.

Collision analysis: We rely on the fundamental lemma of code-

based game-playing [18] and conclude by bounding the prob-

ability of the bad events above. We do this in G1 (which has a

simpler structure), wherewe can allow for an unbounded number

of queries to the construction oracle(s), because their replies are

random and can be simulated. (This is unlike symbolic tools, and

the result of automating standard cryptographic proofs.) Note

that the number of primitive queries is still bounded, as the win-

ning condition involves a bounded number of primitive queries

(the construction only makes a bounded number of queries),

and replies to the remaining queries can be assumed random

and independent of the collision game. This step is performed

by our Collider procedure, which forms our main algorithmic

contribution. We now take a closer look at this procedure.

1.3 Collision analysis
The types of collision games that arise in our analysis consist of a

sequence of steps, in each of which the stateful adversary AF
with

oracle access to an ideal primitive F either outputs an element𝑋𝑖 , or

receives an element 𝐶 𝑗 , all of which are in the XOR-language. The

order in which the adversary and the game exchange these elements

is encoded by a partial order 𝜎 . The adversary wins the game if the

elements 𝑋𝑖 and 𝐶 𝑗 satisfy a set of equalities and inequalities that

may use F. These (in)equalities will always be in the XOR-language,

since they arise from considering constructions that are themselves

within this language.

Deciding whether or not such collision games can be won is

performed via the Collider procedure of AlgoROM, and is one of

our main contributions. Collider starts with a collision game and

progressively refines it to one or more games until either a solution

is found, or it is declared that no solution exists for any of the games.

These refinements are performed through the application (in any

order) of a number of rules, which we briefly discuss below.

Peeling: This rule identifies the set of queries 𝑋 to ideal primitives

in the current set of (in)equalities defining the collision game.

The answer F(𝑋) to query 𝑋 to F is replaced by a fresh random

variable 𝐶 , and the dependency 𝑋 <𝜎 𝐶 is introduced to encode

that query 𝑋 must correspond to a game step that precedes the

one where the adversary learns 𝐶 . The rule is sound because

outputs of F are unpredictable and independent, and thus if F(𝑋)
appears in the winning condition of the game, query 𝑋 must

come as part of one of the queries of the adversary.

Assignment: If an adversarially chosen variable 𝑋 must satisfy an

expression in terms of some variables, all of which appear prior

to 𝑋 , then this rule fixes 𝑋 in terms of those variables.

Contradiction: If the equations defining a game contain a contra-

diction (encoded as 0 ≠ 0), then the game cannot be won.

Unpredictability: This rule uses the fact that if an unpredictable

variable 𝐶 must satisfy an expression in terms of some set of

variables, all of which appear prior to 𝐶 (i.e., 𝐶 is “out of the

adversary’s control”), then the game is unwinnable, except with

negligible probability.

Partitioning: For each pair of variables 𝑉 ,𝑊 ∈ {𝑋𝑖 ,𝐶 𝑗 }, this rule
considers two sub-cases, one where they are the same (i.e., with

unified variables 𝑉 ↦→𝑊), and one where they are distinct (by

adding a new inequality 𝑉 ≠𝑊).

Ordering: For two variables 𝑉 ,𝑊 ∈ {𝑋𝑖 ,𝐶 𝑗 } that are are labeled
as different and not already ordered, this rule considers two sub-

cases consisting of ordering the variables in the two possible

ways 𝑉 <𝜎 𝑊 and𝑊 <𝜎 𝑉 .

The formal semantics for the rules above can be found in Fig. 13,

and a more detailed discussion in the proof of Lemma 5.2. For a con-

crete example showing how these rules are applied, see Section 5.

To prove termination of Collider, we associate a 4-tuple of posi-
tive integers to its state, and show that each rule results in at least

one of the components strictly decreasing. Termination then fol-

lows from the fact that these state values must all be positive. For

completeness (i.e., no solution is missed), notice that whenever

Collider outputs false, the input game is indeed not solvable as

either a contradiction has been reached or an unpredictable value is

guessed (note that no solution is removed by the intermediate steps).

Soundness (i.e., no new solutions are introduced) follows from the

fact that the final solution returned by Collider corresponds to an

adversary that can win the initial game: All free variables are in-

stantiated randomly, and the remaining ones by enforcing the given

equations. By the union bound, such an assignment also satisfies

the inequalities involved with high probability.

Related keys and key-dependent inputs. To prove security in CCA

models, AlgoROM checks if an encryption (resp., decryption) query

is trivial in the sense that it was an output of decryption (resp., en-

cryption), and if so does not consider it as constituting a valid pair of

queries that can trigger a bad event. In the KD and KC security mod-

els, we allow the adversary to also pick key-dependent messages

(and in the KC model also ciphertexts) of the form

∑𝑟
𝑖=1

𝛼𝑖𝐾𝑖 ⊕ Δ
for 𝛼𝑖 ∈ {0, 1}, where 𝐾𝑖 are components of the key, and Δ is an

adversarially chosen offset. For the RK and KCmodels we also allow

the adversary to offset keys in the form𝐾⊕Δ. Accordingly, collision
games in these models are considered with respect to related keys

and/or key-dependent inputs. AlgoROM considers each of the 2
𝑟

possibilities for the 𝛼𝑖 , and carries out the analysis with respect to

an arbitrary chosen Δ.

1.4 Related works
Malozemoff et al. [57] focus on automatic synthesis of IND$-CPA-

secure encryption schemes. They view a synthesized construction

as a graph, and show that if it has a “valid labeling,” then the con-

struction is IND$-CPA-secure. Their approach is to reduce security

to a problem which is then fed to an SMT solver.

3

Hoang et al. [48] generate thousands of AE schemes with prov-

able security guarantees, in particular new competitive variants of

OCB and CCM.

Gagné et al. [42] use compositional Hoare logic to analyze en-

cryption schemes. They show that if each operation in a scheme

updating a distribution over states of the program remains indistin-

guishable from uniform, then the scheme is secure.

In the Linicrypt framework of Carmer and Rosulek [25], algo-

rithms make calls to a random oracle and otherwise manipulate

values via fixed linear operations. McQuoid et al. [58] build on this

framework and study the collision-resistance and second-preimage

resistance for Linicrypt programs, as long as they achieve domain

separation on their random-oracle queries.

Meadows [59] considers the IND$-CPA security for symmetric

schemes built out of modes of operation. This work identifies a

syntactically checkable sufficient condition for IND$-CPA security.

Barthe et al. [11] introduce logics for proving CPA and CCA-

security of padding-based public-key encryption schemes, and au-

tomated methods for finding attacks against these notions. They

also develop ZooCrypt, a toolset implementing these methods.

In this work, we automate the standard game-hopping proof

technique, and our results hold in cryptographic idealized models.

We prove security of a wider set of cryptographic primitives under

a variety of notions. In particular, we are able to prove new security

results, in an automated way, about existing schemes.

1.5 Paper outline
To illustrate the steps taken by AlgoROM to prove security, we

present in Section 2 the analysis of the CPA-security of a 3-round

KAF. In Section 3 we recall the formal definition of our reference

XOR-theory, the well-known class of constructions that fall un-

der it, and the security models that we consider (which also fall

within the XOR-theory). In Section 4 we provide the details of

our proof framework, focusing on oracle replacement and gener-

ating (non-normal) collision games. Section 5 contains the details

of our Collider procedure. We present our experimental results in

Section 6, and conclude with future directions in Section 7.

2 A Concrete Example
To exemplify the steps of our algorithm, we present the CPA-

security analysis of the 3-round KAF with distinct round func-

tions F1, F2, and F3, key 𝐾 , and key schedule [𝐾, 0, 𝐾],3 as per-

formed by AlgoROM. For formal definitions of this construction

and security notion, please see Section 3. On input 𝐿 | 𝑅, the output
of the encryption procedure is 𝐶1 | 𝐶2, where

𝐶1 = 𝑅 ⊕ F2 (𝐿 ⊕ F1 (𝑅 ⊕ 𝐾)) , and

𝐶2 = 𝐿 ⊕ F1 (𝑅 ⊕ 𝐾) ⊕ F3

(
𝑅 ⊕ 𝐾 ⊕ F2 (𝐿 ⊕ F1 (𝑅 ⊕ 𝐾))

)
.

The queries made to the round functions when computing 𝐶1 | 𝐶2

are

𝑄1e (𝐾, 𝐿 | 𝑅) = 𝑅 ⊕ 𝐾 , 𝑄2e (𝐾, 𝐿 | 𝑅) = 𝐿 ⊕ F1 (𝑅 ⊕ 𝐾) , and

𝑄3e (𝐾, 𝐿 | 𝑅) = 𝑅 ⊕ 𝐾 ⊕ F2 (𝐿 ⊕ F1 (𝑅 ⊕ 𝐾)) .

3
This means that 𝐾 , 0, and 𝐾 are XOR-ed into the inputs of the first, second, and third

round functions F1 , F2 , and F3 , respectively.

Game CG:

𝐾, $1, $2←←{0, 1}k; 𝐿1 | 𝑅1←←AF1,F2,F3

𝐿2 | 𝑅2←←AF1,F2,F3 (𝑅1 ⊕ $2 | 𝐿1 ⊕ F1 (𝑅1 ⊕ 𝐾) ⊕ $3)
return

(
(𝑄2e (𝐾, 𝐿1 | 𝑅1) = 𝑄2e (𝐾, 𝐿2 | 𝑅2))

∧ (𝐿1 | 𝑅1 ≠ 𝐿2 | 𝑅2)
)

Figure 1: The (2e, 2e) collision game of 3-round KAF analysis.

Replacements. There are 8 possible replacements of round func-

tions with forgetful random oracles (FROs). These correspond to re-

placing F𝑖 for all 𝑖 in ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, or {1, 2, 3}.
(The last case, for example, corresponds to replacing all F𝑖 with
FROs.) AlgoROM tries these one by one, and for each forms the

associated randomization and collision games. It first checks ran-

domization and, if successful, goes on to analyze the corresponding

collision games. If randomization fails for a candidate replacement,

that replacement is discarded and the next one is examined.

Randomization. To exemplify this step, we first consider the

candidate replacement {3}, i.e., we let F3 be replaced by an FRO.

The output of encryption on 𝐿 | 𝑅 is now the pair 𝐶′
1
| 𝐶′

2
, where

𝐶′
1
= 𝑅 ⊕ F2 (𝐿 ⊕ F1 (𝑅 ⊕ 𝐾)) , 𝐶′

2
= 𝐿 ⊕ F1 (𝑅 ⊕ 𝐾) ⊕ $3 ,

and $3 is the output of the FRO in round 3. It is easy to see that this

replacement does not result in full randomization of the outputs,

because for fixed 𝐿, 𝑅,𝐾 , F1, and F2, the output part𝐶
′
1
is completely

determined. Therefore, AlgoROM will discard this replacement.

Now suppose that the next candidate replacement examined

by AlgoROM is {2, 3}, i.e., we let F2 and F3 be replaced by FROs.

The output of encryption on 𝐿 | 𝑅 is now the pair 𝐶′′
1
| 𝐶′′

2
, where

𝐶′′
1
= 𝑅 ⊕ $2 , 𝐶′′

2
= 𝐿 ⊕ F1 (𝑅 ⊕ 𝐾) ⊕ $3 ,

and $2 and $3 are the outputs of the FROs in rounds 2 and 3. Ob-

serve that the construction is now randomized: We can rewrite the

equations above as

$2 = 𝑅 ⊕ 𝐶′′
1
, $3 = 𝐿 ⊕ F1 (𝑅 ⊕ 𝐾) ⊕ 𝐶′′2 ,

and conclude that for fixed 𝐿, 𝑅, 𝐾 , and F1, the output ciphertexts

and the randomness of FROs are in one-to-one correspondence.

In other words, this replacement results in full randomization.

AlgoROM will thus proceed with this replacement.

Collision games. Next, AlgoROM constructs the collision games

for the replacement {2, 3}. These correspond to collisions in queries

(2p, 2e) , (2e, 2p) , (3p, 3e) , (3e, 3p) , (2e, 2e) , (3e, 3e) ,

where 2p means a primitive query to F2 and 2e means a query to F2

as a result of an encryption query, and similarly for 3p and 3e.

As an example, the collision game for (2e, 2e) is given inGameCG

of Fig. 1. The winning condition is:

𝐿1 ⊕ F1 (𝑅1 ⊕ 𝐾) = 𝐿2 ⊕ F1 (𝑅2 ⊕ 𝐾) ∧ 𝐿1 | 𝑅1 ≠ 𝐿2 | 𝑅2 .

Furthermore, variables 𝐿1, 𝑅1, 𝐿2, and 𝑅2 must be chosen be-

fore 𝐾 is known (we assume w.l.o.g. that all random variables are

revealed to the adversary at the end of the game). This is denoted by

𝐿1, 𝑅1, 𝐿2, 𝑅2 <𝜎 𝐾 , where 𝜎 is a partial order on the game variables.

4

For the analysis of this collision game, we first purify the game

by introducing auxiliary variables 𝑋1 and 𝑋2 as follows:

𝐿1 ⊕ F1 (𝑋1) = 𝐿2 ⊕ F1 (𝑋2) ∧ 𝐿1 | 𝑅1 ≠ 𝐿2 | 𝑅2

∧ 𝑋1 = 𝑅1 ⊕ 𝐾 ∧ 𝑋2 = 𝑅2 ⊕ 𝐾 .

We could now perform partitioning and consider two different

cases: (i) 𝑋1 = 𝑋2 and (ii) 𝑋1 ≠ 𝑋2.

Case (i) is easy to rule out: The first equation simplifies to 𝐿1 = 𝐿2,

and combining the last two we also get 𝑅1 ⊕ 𝐾 = 𝑅2 ⊕ 𝐾 , which
implies 𝑅1 = 𝑅2. But this contradicts inequality 𝐿1 | 𝑅1 ≠ 𝐿2 | 𝑅2.

Now consider case (ii), i.e., add inequality 𝑋1 ≠ 𝑋2 to the system.

This allows us to apply the peeling rule to the first equation. That is,
we introduce fresh unpredictable variables𝑌1 and𝑌2 with𝑋1 <𝜎 𝑌1

and 𝑋2 <𝜎 𝑌2, and modify the first equation to be 𝐿1 ⊕𝑌1 = 𝐿2 ⊕𝑌2.

Equation 𝑋1 = 𝑅1 ⊕ 𝐾 now gives 𝐾 <𝜎 𝑋1. This is because we

have 𝑅1 <𝜎 𝐾 , and if 𝑋1 <𝜎 𝐾 , we could apply the unpredictability
rule: Sampling𝐾 after 𝑅1 and𝑋1 have been chosen would make this

equation unsatisfiable except with negligible probability. Therefore,

we must have 𝐿1, 𝐿2 <𝜎 𝐾 <𝜎 𝑋1 <𝜎 𝑌1. Analogously, we deduce

from 𝑋2 = 𝑅2 ⊕ 𝐾 that 𝐿1, 𝐿2 <𝜎 𝐾 <𝜎 𝑋2 <𝜎 𝑌2. This allows us

to apply the unpredictability rule to equation 𝐿1 ⊕ 𝑌1 = 𝐿2 ⊕ 𝑌2,

either on variable 𝑌1 (if 𝑌2 <𝜎 𝑌1) or on 𝑌2 (otherwise), deriving the

final contradiction. After having found a contradiction in all case

distinctions, we conclude that this collision game is unwinnable.

Rest of the analysis. Next, AlgoROM analyzes all other collision

games in the same manner. All these games can be shown to be

unwinnable (except with negligible probability), hence the construc-

tion is proven to be CPA-secure.

3 Preliminaries
Basic notation. We let N B {0, 1, . . . } be the set of natural num-

bers and {0, 1}∗ be the set of finite-length bit strings. For 𝑛 ∈ N,
we write [𝑛] B {1, . . . , 𝑛}, and denote the empty string by 𝜀. For

any 𝑋,𝑌 ∈ {0, 1}∗, 𝑋 | 𝑌 denotes the concatenation of 𝑋 and 𝑌 .

Vectors are written in boldface, and unless stated otherwise or

clear from the context, indexes of vectors and strings start from 1.

The cardinality of a set X is denoted |X|, and the length of a

string 𝑋 ∈ {0, 1}∗ or a vector 𝑽 by |𝑋 | or |𝑽 |. Given sets D and R,
the sets of functions from D to R and of permutations on D are

denoted as Func(D,R) and Perm(D); when D = {0, 1}𝑑 (resp.,

R = {0, 1}𝑟), we abbreviate D by 𝑑 (resp., R by 𝑟). We write P− for

the inverse of a permutation P. Sampling from a random variableX
is denoted𝑋←←X; whenX is a finite set, this means sampling from

the uniform distribution over X. For a table T, we write T[𝑥] ← 𝑦

to mean that the 𝑥-th entry of T is set to 𝑦. We write Dom(T) for
the set of values 𝑥 such that T[𝑥] ≠ ⊥, and Rng(T) for the set of
all𝑇 [𝑥] with 𝑥 ∈ Dom(T). Given a function F, we let F𝑛 B F◦· · ·◦F
(𝑛 times) denote its 𝑛-th functional power.

Cryptographic games [18]. We use the code-based game-playing

framework of Bellare and Rogaway. A game G is a random variable

run by a challenger C and an adversaryA. The challenger initializes

the game by setting up a challenge value, which is then handed

over to A, who is tasked with solving it. To model potential out-

of-bound capabilities, C may offer A a set of oracles that help the

adversary find a solution. The output ofA is then passed back to C,

Game RP/RF-CCA
A
𝑛 :

𝑏←←{0, 1}; F,G←← Func(𝑛, 𝑛)
if 𝑏 = 0:

F←← Perm(𝑛); G← F−

𝑏′←←AF,G
; return (𝑏 = 𝑏′)

Figure 2: Definition of the RP/RF-CCA game from the RP/RF

switching lemma.

who verifies the purported solution and returns a decision bit. We

say that adversary A wins game G if C’s final output is 1; in this

case we write G
A = 1 or, more briefly, G

A
.

Let G1 and G2 be two games, run with an adversary A, whose

descriptions are identical except for the consequent inside one if-

branch, and let Bad be the event that the boolean condition in the

if-statement is triggered. Then | Pr[GA
1
] − Pr[GA

2
] | ≤ Pr[Bad].

The RP/RF switching lemma [18, 50]. The RP/RF-ATK advantage

of an adversary A making at most 𝑞 oracle queries is bounded by

Adv
rp/rf-cpa

𝑛 (A) ≤ 𝑞2/2𝑛+1 , Adv
rp/rf-cca

𝑛 (A) ≤ 3𝑞2/2𝑛 ,

where Adv
rp/rf-atk

𝑛 (A) B 2 · Pr

[
RP/RF-CCA

A
𝑛

]
− 1, and the game

RP/RF-CCA
A
𝑛 is given in Fig. 2 (top left). If ATK = CPA, we require

that A never queries oracle G. If ATK = CCA, A never queries G
on an output of F or vice versa.

XOR-theory. The XOR-algebra is a tuple 𝑨 = (𝐴, 𝐹, 𝑖, 𝑜), where
𝐴 = {0, 1}𝑙 for some 𝑙 ∈ N, and 𝐹 is the set containing ⊕ : 𝐴2 → 𝐴,

projections 𝜋𝑖,𝑛 : 𝐴𝑛 → 𝐴 of all 𝑛 ∈ N and all 1 ≤ 𝑖 ≤ 𝑛, and

additional function symbols for the oracles offered by any given

security game. Functions 𝑖, 𝑜 : 𝐹 → N return the input and output

arity of each function in 𝐹 .

The algebra of first-order terms over the XOR-algebra 𝑨 is a

pair 𝑻 B 𝑻 (𝑨) B (𝑇, 𝛼), where 𝑇 is a set and 𝛼 : 𝑇 → N is a

function with the following property: 𝑇 is the smallest set𝑈 such

that (1) if 𝑡 ∈ 𝐴 ∪𝑉 , where 𝑉 B {𝑥𝑖 }𝑖∈N, then 𝑡 ∈ 𝑈 and 𝛼 (𝑡) = 1;

(2) if 𝑡, 𝑡 ′ ∈ 𝑈 , then 𝑡 | 𝑡 ′ ∈ 𝑈 and 𝛼 (𝑡 | 𝑡 ′) = 𝛼 (𝑡) + 𝛼 (𝑡 ′); and
(3) if 𝑡 ∈ 𝑈 and 𝑓 ∈ 𝐹 such that 𝛼 (𝑡) = 𝑖 (𝑓), then 𝑓 (𝑡) ∈ 𝑈
and 𝛼 (𝑓 (𝑡)) = 𝑜 (𝑓).

The XOR-theory is the algebra of first-order terms above, where

we enforce on the collection of terms the set of equalities generated

by the following equations: (1) for every 𝑡1, 𝑡2, 𝑡3 ∈ 𝐴∪𝑉 , 𝑡1⊕0
𝑙 = 𝑡1,

𝑡1 ⊕ 𝑡1 = 0
𝑙
, 𝑡1 ⊕ 𝑡2 = 𝑡2 ⊕ 𝑡1, and 𝑡1 ⊕ (𝑡2 ⊕ 𝑡3) = (𝑡1 ⊕ 𝑡2) ⊕ 𝑡3; (2) for

every 𝑡1, 𝑡2, 𝑡3 ∈ 𝑇 , 𝑡1 | 𝑡2 | 𝑡3 B 𝑡1 | (𝑡2 | 𝑡3) = (𝑡1 | 𝑡2) | 𝑡3; (3) for
every𝑛 ∈ N, 1 ≤ 𝑖 ≤ 𝑛, and 𝑡1, . . . , 𝑡𝑛 ∈ 𝐴∪𝑉 , 𝜋𝑖,𝑛 (𝑡1 | · · · | 𝑡𝑛) = 𝑡𝑖 ;
(4) for every 𝑡 ∈ 𝑇 with 𝛼 (𝑡) = 𝑞, 𝜋1,𝑞 (𝑡) | · · · | 𝜋𝑞,𝑞 (𝑡) = 𝑡 ; (5) for
every invertible function symbol 𝑓 ∈ 𝐹 and every 𝑥, 𝑘 ∈ 𝐴 ∪ 𝑉 ,
𝑓 −1 (𝑘, 𝑓 (𝑘, 𝑥)) = 𝑥 and 𝑓 (𝑘, 𝑓 −1 (𝑘, 𝑥)) = 𝑥 .

3.1 Cryptographic schemes
We now recall hash functions and block ciphers, the main primitives

we consider in this work. After fixing their syntax, we formalize

some popular constructions of these primitives.

5

Proc. I
ROM(𝒎,𝒏) :

for 𝑖 = 1 to |𝒏|:
F𝑖←←

Func(𝒎𝑖 , 𝒏𝑖)
return F

Proc. I
RPM(𝒏) :

for 𝑖 = 1 to |𝒏|:
P𝑖←←

Perm(𝒏𝑖)
return (P,P−)

Proc. I
ICM(𝒌,𝒏) :

for 𝑖 = 1 to |𝒏|:
E𝑖←←Block(𝒌𝑖 , 𝒏𝑖)
D𝑖 ← E−

𝑖
return (E,D)

Figure 3: Random variables returning the oracles for the
corresponding idealized models. Here, |𝒌 | = |𝒎 | = |𝒏|.

Hash functions. Let k,m, n ∈ N with m, n ≥ 1. A hash function

with key length k, input length m, and output length n is a func-

tion H : {0, 1}k × {0, 1}m → {0, 1}n. We denote by Hash(k,m, n)
the set of all such hash functions.

Block ciphers. Let k, n ∈ N with n ≥ 1. A block cipher with key

length k and block length n is a function E : {0, 1}k × {0, 1}n →
{0, 1}n such that E(𝐾, ·) is a permutation on {0, 1}n for every 𝐾 ∈
{0, 1}k. We denote by Block(k, n) the set of all such block ciphers.

Every block cipher E uniquely defines a map D ∈ Block(k, n)
via E(𝐾,D(𝐾,𝑀)) = D(𝐾, E(𝐾,𝑀)) = 𝑀 for every 𝐾 ∈ {0, 1}k and

𝑀 ∈ {0, 1}n, called inverse block cipher to E and denoted E− B D.

Constructions. Often applications such as hash functions and

block ciphers are not designed from the ground up, but built via a

construction C from a vector of “simpler” primitives Q (which in

turn can be, for instance, simpler hash functions, permutations, or

block ciphers). In this paper, we are interested in constructions C

that make black-box use of Q; that is, C can only depend on the

input-output behavior of the primitives in Q, but not otherwise on

their code. Thus, for the purpose of this work, a construction is a

circuit C with Boolean and oracle gates of different types which,

once the oracle gates are fixed, results in an instance of the applica-

tion to be constructed. For a vector of primitives Q, we write C
Q

for the circuit C when all oracle gates of type 𝑖 are set to Q𝑖 , for
all 𝑖 ∈ [|Q|]. If C is a construction of a block cipher, we denote

by C
−
the construction of the inverse block cipher.

Idealized models [17, 64]. A successful methodology to study

many forms of security of a wide range of applications C
Q
is to

carry out the analysis in a so-called idealized model of computation.

In this setting, one treats (some of) the underlying primitives Q as

random reference objects O that are meant to idealize the instanti-

ations in Q. In more detail, the challenger of the idealized security

game first samples objects O according to a distribution specified

by the model. He then runs the game describing the security notion,

but replaces all evaluations of Q with calls to O. He also offers O
as a set of oracles to all parties playing the game, who are expected

to interact with O in place of Q.

For an idealized model MOD, we denote by IMOD the random

variable returning the oracles for MOD. Examples of idealized

models include the random-oracle model ROM(𝒎, 𝒏), the (two-

sided) random-permutation model RPM(𝒏), and the ideal-cipher

model ICM(𝒌, 𝒏), whose initialization functions are presented in

Fig. 3. A combination of these models (with interfaces offering

oracles of different types), or models sampling from different distri-

butions (where, e.g., related random objects are offered at distinct

interfaces) are also possible.

MD
F (𝐾,𝑀):

𝐷 ← 0
𝑛−k | 𝐾

parse𝑀 = 𝑀1 | · · · | 𝑀𝑡
for 𝑖 = 1 to 𝑡 :

𝐷 ← OCF
𝑖
(𝑀𝑖 | 𝐷)

return 𝐷

Sp
P,P− (𝐾,𝑀):

𝐷 ← 0
𝑟+𝑐−k | 𝐾

parse𝑀 = 𝑀1 | · · · | 𝑀𝑡
for 𝑖 = 1 to 𝑡 :

𝐷 ← OCP,P−
𝑖
(𝐷 ⊕ (𝑀𝑖 | 0𝑐))

return 𝐷 [1..𝑟]

Figure 4: Left: Definition of the 𝑡-round Merkle–Damgård
construction in ROM(𝒎′, 𝒏). Here, |𝑀𝑖 | = 𝑚 for every 𝑖 ∈ [𝑡].
Right: Definition of the 𝑡-round sponge construction in
RPM(𝒏). Here, |𝑀𝑖 | = 𝑟 for every 𝑖 ∈ [𝑡].

Oracle and key configurations. An oracle configuration (OC) is a

vector OC of stateless deterministic circuits, each with access to ℓ

oracles provided by the idealized model. A key configuration (KC)

is a vector KC of stateless deterministic circuits, each taking as

input the secret key and returning a round key. We write C[OC]
for a construction C whose queries are specified by an oracle con-

figuration OC, and also C
− [OC−] for the inverse construction.

When we want to make the key configuration explicit, we also

write C[OC,KC] and C
− [OC−,KC−], respectively.

OCs are meant to determine which oracles the construction

queries in each round. Examples are OC B F, where a different
oracle is called in each round, or OC B (F) B (F, . . . , F), with
the same oracle repeating throughout. Different patterns, more

complex expressions (e.g., F2
or F2 ◦ F1) or nested constructions

are also possible. Similarly, KCs specify how the round keys are

computed from the “master” secret key. Cases of interest include

pairwise different round keys, some random and some constant

keys, or some keys being fixed offsets of other keys.

We only consider OCs and KCs that can be expressed in the

XOR-language, and will specify their signature separately for every

application we present.

We now recall a few classical constructions of hash functions

and block ciphers that we will study in this work, beginning with

hash functions. Throughout, let k,𝑚, 𝑛, 𝑡 ∈ N with𝑚,𝑛, 𝑡 ≥ 1.

Merkle–Damgård [33, 60]. Assume k ≤ 𝑛, let 𝒎′ B (𝑚 + 𝑛)ℓ
𝑖=1

,

𝒏 B (𝑛)ℓ
𝑖=1

, and fix OC ∈ Func(𝑚 + 𝑛, 𝑛)𝑡 . The 𝑡-round Merkle–

Damgård construction in the ROM(𝒎′, 𝒏) with oracle configura-

tion OC is MD
F B MD

k,𝑚,𝑛,𝑡 [OC]F ∈ Hash(k, 𝑡𝑚, 𝑛) where, for
every 𝐾 ∈ {0, 1}k and 𝑀 ∈ {0, 1}𝑡𝑚 , MD

F (𝐾,𝑀) is defined in

Fig. 4 (left).

Sponge [19]. Assume k ≤ 𝑐 , let 𝒏 B (𝑟 + 𝑐)ℓ
𝑖=1

, and fix OC ∈
Perm(𝑟 + 𝑐)𝑡 . The 𝑡-round sponge construction in the RPM(𝒏)
with oracle configuration OC is Sp

P,P− B Sp
k,𝑟 ,𝑐,𝑡 [OC]P,P− ∈

Hash(k, 𝑡𝑟, 𝑟) where, for every 𝐾 ∈ {0, 1}k and 𝑀 ∈ {0, 1}𝑡𝑟 ,
Sp

P,P− (𝐾,𝑀) is defined in Fig. 4 (right).

PGV [21, 62]. Assume k ≤ 𝑛, and fix (𝐾, �̄�,𝑂) ∈ {𝑀,𝐷,𝑀 ⊕
𝐷, 0𝑛}3. The PGV compression function in the ICM(𝑛, 𝑛) with as-

signment (𝐾, �̄�,𝑂) is the function F
E,E− B F

E,E−

𝑛,�̄�,�̄�,�̄�
∈ Func(2𝑛, 𝑛)

defined via F
E,E− (𝑀 | 𝐷) B E(𝐾, �̄�) ⊕ 𝑂 . Here, 𝑀,𝐷 ∈ {0, 1}𝑛

denote the left and right halves of the input, respectively.

6

𝜓F (𝑀):
𝐶 ← 𝑀

for 𝑖 = 1 to 𝑡 :

parse 𝐶 = 𝐿 | 𝑅
𝐶 ← 𝑅 | OCF

𝑖
(𝑅)⊕𝐿

return 𝐶

SPN
P,P− (𝐾,𝑀):

𝐶 ← 𝑀

for 𝑖 = 1 to 𝑡 :

𝐾𝑖 ← KC𝑖 (𝐾); 𝐶 ← A𝑖 (𝐾𝑖 ,𝐶)
parse 𝐶 = 𝐶1 | · · · | 𝐶𝑤
for 𝑗 = 1 to𝑤 : 𝐶 𝑗 ← OCP,P−

𝑖 𝑗
(𝐶 𝑗)

𝐶 ← 𝐶1 | · · · | 𝐶𝑤
𝐾𝑡+1 ← KC𝑡+1 (𝐾)
𝐶 ← A𝑡+1 (𝐾𝑡+1,𝐶)
return 𝐶

CC
E,E− (𝐾,𝑀):

𝐶 ← 𝑀 ; for 𝑖 = 1 to 𝑡 : 𝐾𝑖 ← KC𝑖 (𝐾); 𝐶 ← OCE,E−
𝑖
(𝐾𝑖 ,𝐶)

return 𝐶

Figure 5: Top left: Definition of the Feistel permutation
in the ROM(𝒏, 𝒏). Here, 𝐿 and 𝑅 denote the left and right
halves of the input. Top right: Definition of the substitution-
permutation cipher in the RPM(𝒏). Here, |𝐶 𝑗 | = 𝑛 for ev-
ery 𝑗 ∈ [𝑤]. Bottom: Definition of the cascade cipher in
the ICM(𝒌, 𝒏).

The 𝑡-round PGV construction in the ICM(𝑛, 𝑛) with assign-

ment (𝐾, �̄�,𝑂) is the hash function PGV
E,E− B PGV

E,E−

k,𝑛,�̄�,�̄�,�̄�,𝑡
B

MD

F
E,E−
�̄�,�̄�,�̄�

k,𝑛,𝑛,𝑡
∈ Hash(k, 𝑡𝑛, 𝑛).

We next recall some prominent constructions of block ciphers.

Throughout, fix k, 𝑘, 𝑛,𝑤, ℓ, 𝑡 ∈ N with 𝑛,𝑤, 𝑡 ≥ 1.

Feistel permutation [41, 55]. Let 𝒏 B (𝑛)ℓ
𝑖=1

, OC ∈ Func(𝑛, 𝑛)𝑡 .
The 𝑡-round Feistel permutation in the ROM(𝒏, 𝒏) with configu-

ration OC is 𝜓F = 𝜓𝑛,𝑡 [OC]F ∈ Perm(2𝑛) defined in Fig. 5 (top

left).

Remark. Note that the “textbook” version of the Feistel permu-

tation omits the swap in the final round. We chose to present the

“uniform” variant since it is easier to describe, and swapping in the

final round does not affect security.

Key-alternating Feistel (KAF) cipher [53]. Let 𝒏 B (𝑛)ℓ
𝑖=1

, and

fix OC ∈ Func(𝑛, 𝑛)𝑡 and KC ∈ Func(k, 𝑛)𝑡 . The 𝑡-round key-

alternating Feistel cipher in the ROM(𝒏, 𝒏) with configuration

(OC,KC) is KAF
F = KAF

k,𝑛,𝑡 [OC,KC]F ∈ Block(k, 2𝑛) where
KAF

F (𝐾,𝑀) B 𝜓𝑛,𝑡 [OC′]F′ (𝑀) for every 𝐾 ∈ {0, 1}k and 𝑀 ∈
{0, 1}2𝑛 . Here, OC′F

′
𝑖 = F′

𝑖
and F′

𝑖
(𝑅) B OCF

𝑖
(KC𝑖 (𝐾) ⊕ 𝑅) for

every 𝑅 ∈ {0, 1}𝑛 and 𝑖 ∈ [𝑡].

Luby–Rackoff (LR) cipher [55]. Let 𝒎 B (𝑘 + 𝑛)ℓ
𝑖=1

, 𝒏 B (𝑛)ℓ
𝑖=1

,

and fixOC ∈ Func(𝑘+𝑛, 𝑛)𝑡 ,KC ∈ Func(k, 𝑘)𝑡 . The 𝑡-round Luby–
Rackoff cipher in the ROM(𝒎, 𝒏) with configuration (OC,KC)
is the block cipher LR

F = LR
k,𝑘,𝑛,𝑡 [OC,KC]F ∈ Block(k, 2𝑛),

where LR
F (𝐾,𝑀) B 𝜓𝑛,𝑡 [OC′]F′ (𝑀) for every 𝐾 ∈ {0, 1}k and

𝑀 ∈ {0, 1}2𝑛 . Here, OC′F
′
𝑖 = F′

𝑖
and F′

𝑖
(𝑅) B OCF

𝑖
(KC𝑖 (𝐾) | 𝑅)

for every 𝑅 ∈ {0, 1}𝑛 and 𝑖 ∈ [𝑡].

Substitution-permutation network (SPN) [41, 64]. Let 𝒏 B (𝑛)ℓ
𝑖=1

,

fix OC ∈ Perm(𝑛)𝑡×𝑤 , KC ∈ Func(k, 𝑘)𝑡+1, A ∈ Block(𝑘,𝑤𝑛)𝑡+1.

Game CR
A
C,I:

O←← I; 𝐾∗←←{0, 1}k
(𝑀,𝑀′) ←←AO (𝐾∗)
return

(
C
O (𝐾∗, 𝑀) =

C
O (𝐾∗, 𝑀′)

)
Game PRF-CPA

A
C
:

O←← I; 𝑏←←{0, 1}
𝐾∗←←{0, 1}k; F← C

O (𝐾∗, ·)
if 𝑏 = 0: F←← Func(m, n)
𝑏′←←AO,F

; return (𝑏 = 𝑏′)

Figure 6: Left: Game defining the CR-security of C. Right:
Game defining the PRF-CPA-security of C. In both figures,
C is a construction of a hash function with key, input and
output lengths k, m and n from oracles O.

The 𝑡-round substitution-permutation network in the RPM(𝒏) with
diffusion layer A and configuration (OC,KC) is the block cipher

SPN
P,P− = SPN

k,𝑘,𝑛,𝑤,𝑡 [OC,KC,A]P,P− ∈ Block(k,𝑤𝑛) where, for
every 𝐾 ∈ {0, 1}k and 𝑀 ∈ {0, 1}𝑤𝑛 , SPN

P,P− (𝐾,𝑀) is defined in

Fig. 5 (top right).

Even–Mansour (EM) cipher [37]. Let 𝒏 B (𝑛)ℓ
𝑖=1

, and fix OC ∈
Perm(𝑛)𝑡 and KC ∈ Func(k, 𝑛)𝑡+1. The 𝑡-round Even–Mansour

cipher in the RPM(𝒏) with configuration (OC,KC) is the block

cipher EM
P,P− = EM

k,𝑛,𝑡 [OC,KC]P,P− ∈ Block(k, 𝑛), where we

let EM
P,P− (𝐾,𝑀) B SPN

k,𝑛,𝑛,1,𝑡 [OC,KC,A′]P,P− (𝐾,𝑀) for every
𝐾 ∈ {0, 1}k and 𝑀 ∈ {0, 1}𝑛 . Here, A′

𝑖
(𝐾,𝐶) B 𝐾 ⊕ 𝐶 for every

𝐾,𝐶 ∈ {0, 1}𝑛 and 𝑖 ∈ [𝑡 + 1].

Cascade cipher [2, 18, 36]. Let 𝒌 B (𝑘)ℓ
𝑖=1

, 𝒏 B (𝑛)ℓ
𝑖=1

, and

fix OC ∈ Block(𝑘, 𝑛)𝑡 and KC ∈ Func(k, 𝑘)𝑡 . The 𝑡-round cas-

cade cipher in the ICM(𝒌, 𝒏) with configuration (OC,KC) is the
cipher CC

E,E− B CC
k,𝑘,𝑛,𝑡 [OC,KC]E,E− ∈ Block(k, 𝑛) where, for

every 𝐾 ∈ {0, 1}k and 𝑀 ∈ {0, 1}𝑛 , CC
E,E− (𝐾,𝑀) is defined in

Fig. 5 (bottom).

3.2 Security notions
Having introduced the constructions that we will later investigate,

we now recall the security notions for these constructions that we

target in this work, starting with those for hash functions. Since our

analyses will be in appropriate idealized models of computation, we

formulate these notions in that setting. Throughout, fix a construc-

tion C
O ∈ Hash(k,m, n) of a hash function with access to oraclesO

provided by a model MOD with initialization function I B IMOD,

and let A be an adversary in the game formalizing the security

notion.

Collision resistance [32]. The CR advantage of A against C is

Adv
cr

C,I (A) B Pr

[
CR
A
C,I

]
,

where the game CR
A
C,I is defined in Fig. 6 (left). Here, adversary A

is required to return messages𝑀,𝑀′ ∈ {0, 1}m that are distinct.

PRF-CPA-security [43]. The PRF-CPA advantage ofA against C

is

Adv
prf-cpa

C,I (A) B 2 · Pr

[
PRF-CPA

A
C,I

]
− 1 ,

where the game PRF-CPA
A
C,I is defined in Fig. 6 (right). This notion

is usually called PRF-security in the literature; we choose a slightly

different terminology for naming consistency with other notions.

7

Game PRP-CCA
A
C,I:

O←← I; 𝑏←←{0, 1}; 𝐾∗←←{0, 1}k; P← C
O (𝐾∗, ·)

if 𝑏 = 0: P←← Perm(n)
𝑏′←←AO,P,P−

; return (𝑏 = 𝑏′)

Figure 7: Game defining the PRP-CCA-security of a construc-
tion C of a block cipher with key and block lengths k and n

from oracles O.

We now move on to the security notions for block ciphers. Fix

a construction C
O ∈ Block(k, n) of a block cipher with access

to oracles O provided by a model MOD with initialization func-

tion I B IMOD, and let A be an adversary in the game formalizing

the security notion. The placeholder ATK ∈ {CPA,CCA} indicates
the adversarial capabilities considered in the model. We begin with

the notion of PRP-security.

PRP-ATK-security [43, 55]. The PRP-ATK advantage of A a-

gainst C is

Adv
prp-atk

C,I (A) B 2 · Pr

[
PRP-ATK

A
C,I

]
− 1 ,

where the game PRP-ATK
A
C,I B PRP-CCA

A
C,I is given in Fig. 7 (top).

If ATK = CPA, we require that A never queries the oracle P− .
Again, PRP-CPA and PRP-CCA are usually called PRP and SPRP,

but renamed here for naming consistency.

The more advanced security models we consider allow the ad-

versary to obtain encryptions under keys 𝐾 that depend on the

challenge key 𝐾∗ (RK-CPA-security), or encryptions under 𝐾∗ of
plaintexts𝑀 that depend on 𝐾∗ (KD-CPA-security). Here, the rela-

tion between 𝐾∗ and 𝐾 (resp.,𝑀) is chosen by the adversary, who

queries its oracle on a derivation function𝜙 (resp.,𝜓) from a set of al-

lowed relations Φ (resp., Ψ). The actual encryption key𝐾 used (resp.,

the message𝑀 being encrypted) by the oracle is then 𝐾 = 𝜙 (𝐾∗)
(resp.,𝑀 = 𝜓 (𝐾∗)). A combination of these notions, called KC-CPA-

security, is also possible, where the adversary can query functions 𝜉

from a set Ξ which specify pairs (𝐾,𝑀) = 𝜉 (𝐾∗), and then obtain

an encryption of 𝑀 under 𝐾 . In the CCA setting, the above also

applies to decryptions and ciphertexts.

RK/KD/KC functions. For the purpose of this work, we con-

sider (1) the set Φ of RK-derivation functions 𝜙 (𝐾∗) B 𝐾∗ ⊕ Δ
for Δ ∈ {0, 1}k; (2) the set Ψ of KD-derivation functions𝜓 (𝐾∗) B∑𝑟
𝑖=1

𝛼𝑖𝐾
∗
𝑖
⊕ Δ for 𝛼𝑖 ∈ {0, 1} and an offset Δ, where 𝐾∗

𝑖
are com-

ponents of 𝐾∗; and (3) the set Ξ of KC-derivation functions which

consist of RK-derivation functions 𝜙 in the first (key) coordinate

and KD-derivation functions𝜓 in the second (message) coordinate.

RK-ATK-security [16, 20, 51]. The RK-ATK advantage of A a-

gainst C is

Adv
rk-atk

C,I (A) B 2 · Pr

[
RK-ATK

A
C,I

]
− 1 ,

where the game RK-ATK
A
C,I B RK-CCA

A
C,I is given in Fig. 8 (top).

We require thatA only queries functions𝜙𝑒 , 𝜙𝑑 ∈ Φ. If ATK = CPA,

A is never allowed to query the oracle RKDec.

Game RK-CCA
A
C,I:

O←← I; 𝑏←←{0, 1}
𝐾∗←←{0, 1}k; E← C

O

if 𝑏 = 0:

E←←Block(k, n)
𝑏′←←AO,RKEnc,RKDec

return (𝑏 = 𝑏′)

Proc. RKEnc(𝜙𝑒 , 𝑀):
𝐾 ← 𝜙𝑒 (𝐾∗); 𝐶 ← E(𝐾,𝑀)
return 𝐶

Proc. RKDec(𝜙𝑑 ,𝐶):

𝐾 ← 𝜙𝑑 (𝐾∗);𝑀 ← E− (𝐾,𝐶)
return𝑀

Game KD-CCA
A
C,I:

O←← I; 𝑏←←{0, 1}
𝐾∗←←{0, 1}k; E← C

O

if 𝑏 = 0:

E←←Block(k, n)
CL← []
𝑏′←←AO,KDEnc,KDDec

return (𝑏 = 𝑏′)

Proc. KDEnc(𝜓𝑒):
𝑀 ← 𝜓𝑒 (𝐾∗); 𝐶 ← E(𝐾∗, 𝑀)
CL← CL : 𝐶; return 𝐶

Proc. KDDec(𝜓𝑑):

𝐶 ← 𝜓𝑑 (𝐾∗); if 𝐶 ∈ CL: return ⊥
𝑀 ← E− (𝐾∗,𝐶); return𝑀

Game KC-CCA
A
C,I:

O←← I; 𝑏←←{0, 1}
𝐾∗←←{0, 1}k; E← C

O

if 𝑏 = 0:

E←←Block(k, n)
ML← []; CL← []
𝑏′←←AO,KCEnc,KCDec

return (𝑏 = 𝑏′)

Proc. KCEnc(𝜉𝑒):
(𝐾,𝑀) ← 𝜉𝑒 (𝐾∗)
if (𝐾,𝑀) ∈ ML: return ⊥
𝐶 ← E(𝐾,𝑀); CL← CL : (𝐾,𝐶)
return 𝐶

Proc. KCDec(𝜉𝑑):
(𝐾,𝐶) ← 𝜉𝑑 (𝐾∗)
if (𝐾,𝐶) ∈ CL: return ⊥
𝑀 ← E− (𝐾,𝐶); ML← ML : (𝐾,𝑀)
return𝑀

Figure 8: Games defining the SEC-CCA-security of a construc-
tion C of a block cipher with key and block lengths k and n

from oracles O. Here, SEC ∈ {RK,KD,KC}.

KD-ATK-security [22, 24]. TheKD-ATK advantage ofA againstC

is

Adv
kd-atk

C,I (A) B 2 · Pr

[
KD-ATK

A
C,I

]
− 1 ,

where KD-ATK
A
C,I B KD-CCA

A
C,I is given in Fig. 8 (center). We

require that A only queries functions 𝜓𝑒 ,𝜓𝑑 ∈ Ψ. If ATK = CPA,

A is never allowed to query the oracle KDDec.

KC-ATK-security [30]. The KC-ATK advantage ofA against C is

Adv
kc-atk

C,I (A) B 2 · Pr

[
KC-ATK

A
C,I

]
− 1 ,

where the game KC-ATK
A
C,I B KC-CCA

A
C,I is given in Fig. 8 (bot-

tom).We require that adversaryA only queries functions 𝜉𝑒 , 𝜉𝑑 ∈ Ξ.

If ATK = CPA, A is never allowed to query the oracle KCDec.

4 Indistinguishability up to Collisions
In this section, we further expand on the single steps of our au-

tomated proof strategy outlined in the Introduction. Throughout,

let C be a construction with access to oracles O provided by an

idealized model MOD, whose queries are specified by an oracle con-

figuration OC, for which we want to prove SEC-ATK-security for

any SEC and ATK presented above. Without loss of generality, we

8

𝐿 𝐿′

F1 F2 F3

𝑅 𝑅′


𝐿 𝐿′

F1 $2 $3

𝑅 𝑅′



AF2

F1

F3

𝑀 P1 P2 𝐶

𝐾1 𝐾2 𝐾3

𝐶 P−
2

P−
1 𝑀

𝐾3 𝐾2 𝐾1

𝐾1 𝐾2 𝐾3

𝑀 P1 $2 𝐶

𝐾3 𝐾2 𝐾1

𝐶 P−
2

$1 𝑀

A

P±
1

P±
2

Figure 9: Left: Oracle replacement for the 3-round Feistel per-
mutation. Right: Oracle replacement for the 2-round Even–
Mansour cipher. In both figures, the real construction is rep-
resented on top, and the one with modified oracles at the
bottom. Direct oracles are never modified, and are available
in both settings.

assume that an adversary A playing this game never queries any

oracle twice on the same input.
4
Furthermore, for every two-sided

oracle provided by the game (i.e., every invertible oracle in O, plus

the inverse construction if ATK = CCA), we assume that A does

not make a forward query and then a backward query on the result,

or vice versa. Denote by G0 the game corresponding to the real

world of the considered SEC-ATK-game.

Oracle replacement. As its first step, AlgoROM tries to replace

some of the oracle gates in C (and C
−
, if the considered security

model grants two-sided access to the construction) with forgetful

random oracles $, which on every invocation return a fresh random

string of the appropriate length, even when called twice on the

same input. The algorithm’s goal is to replace sufficiently many

oracle gates with $ so that the outputs of the resulting construction

(and the inverse, in case of two-sided access) are fully randomized.

To denote oracle replacement, we substitute the corresponding

entry in OC with $. For example, consider the three-round Feistel

permutation with configuration OC = (F1, F2, F3). Then OC′ =
(F1, $2, $3) means that the oracles in the last two rounds are re-

placed with FROs (see Fig. 9 (left)). Similarly, given the two-round

Even–Mansour cipher with OC = (P1, P2) and OC− = (P−
2
, P−

1
),

then OC′ = (P1, $2) and OC−′ = (P−
2
, $1) mean that the last per-

mutation (both in the forward and backward direction) is replaced

with an FRO (see Fig. 9 (right)). Notice that when ATK = CCA,

we allow to modify the oracle configuration independently for the

direct construction and its inverse.

We remark that this notation does not mean that the original con-

struction is considered in an “augmented” idealized model, where

FROs are added to O and certain gates are re-wired to invoke $.

Rather, it denotes a modified construction C[OC′] in the original

model where certain oracle gates in C are replaced with FRO gates,

akin to changes done in game-hopping proofs. In particular, the

oracles offered directly to the adversary are never changed.

4
This is not always without loss of generality (e.g., in the CPA-model for randomized

encryption), but for the models and primitives considered here, it is.

Game Rand-CPA
A
C,OC′,I:

O←← I
𝑏←←{0, 1}; 𝑏′←←AO,Ch

return (𝑏 = 𝑏′)

Proc. Ch(𝑀):
if 𝑏 = 1: return C[OC′]O (𝑀)
𝐶←←{0, 1}n; return 𝐶

Game Rand-CCA
A
C,OC±′,I:

O←← I; 𝑏←←{0, 1}
𝑏′←←AO,ChEnc,ChDec

return (𝑏 = 𝑏′)

Proc. ChEnc(𝑀):
if 𝑏 = 1: return C[OC′]O (𝑀)
𝐶←←{0, 1}n; return 𝐶

Proc. ChDec(𝐶):
if 𝑏 = 1: return C

− [OC−′]O (𝐶)
𝑀←←{0, 1}n; return𝑀

Figure 10: Top: Definition of the randomizability game for a
construction C and modified oracle configuration OC′ with
one-sided access. Bottom: Definition of the randomizability
game for a construction C and modified oracle configura-
tions OC′ and OC−′ with two-sided access.

This oracle replacement step is automated in our proofs, where

AlgoROM replaces OC𝑖 with $ and then checks if the construction

outputs are indeed random (see next step). As for which oracle

gates to replace, we proceed via a “guided exhaustive search”: Note

that most natural cryptographic constructions would be trivially

randomized if all gates were replaced with $. However, AlgoROM
tries to replace sufficiently many gates so as to randomize the

construction, but not so many that collisions between replaced

and not-replaced oracles can be trivially found, as this would lead

to a large distinguishing advantage between C[OC] and C[OC′].
For typical constructions the replaced rounds will be some of the

“innermost” calls, as these are the “hardest to control” for the ad-

versary (assuming two-sided access to the construction). However,

experiments show that this is not always the case.

To give some examples, when running experiments for Feistel-

based constructions, AlgoROM replaces two consecutive rounds.

For Even–Mansour ciphers, a single round is sufficient (see Fig. 9).

For substitution-permutation networks, depending on the width of

the construction, many replacements may be needed.

Randomization. Once AlgoROM has fixed a candidate oracle

configuration OC′ (and OC−′, in case of two-sided access) to re-

place OC (and OC−), it attempts to prove that the modified con-

struction is indeed randomized. That is, it seeks to show that for

every input to C[OC′] (and C
− [OC−′]), the outputs are uniformly

random. Formally, this is captured by the Rand-ATK advantage of

an adversary A against C and OC′ (and OC−′), defined as

Adv
rand-atk

C,OC(±)′,I
(A) B 2 · Pr

[
Rand-ATK

A
C,OC(±)′,I

]
− 1 ,

where the games Rand-ATK
A
C,OC(±)′,I

are given in Fig. 10. AlgoROM

recognizes an oracle replacement as randomizing if this advantage

is 0. If the candidate replacement is not randomizing, it is discarded

and the next one is tested.

Randomization is checked as follows: The outputs of C[OC′]
(and C

− [OC−′]) are functions of the randomness of the FROs.

AlgoROM tries to invert the expressions of the outputs of the

9

scheme and re-express (parts of) the FRO outputs in terms of the

construction outputs (i.e., it “solves for $”). If it succeeds, this estab-

lishes a one-to-one correspondence between the randomness of the

FROs and the construction outputs. Since FRO outputs are random

by definition, this means that the construction outputs must be

random too. In the constructions that we consider, this correspon-

dence can be established via simple manipulation of expressions;

see Section 2 for a concrete example.

Bad-event definition. Once AlgoROM has fixed an oracle config-

urationOC′ (andOC−′, if ATK = CCA) which results in a random-

ized construction, it proceeds with examining the SEC-ATK-game

for C[OC′], which we denote by G1. Note, however, that mov-

ing from G0 to G1 comes at the cost of an event Bad (defined in

both games) which captures the inconsistencies in oracle responses

between the two games. We describe this event next.

To define the event Bad, it is useful to think of the oracles offered
by the model as implemented via lazy sampling. In G0, every ora-

cle gate maintains its own table, which (partially) implements the

primitive it is associated to: If, upon an oracle call, the gate finds

that query stored in its own table, it returns the corresponding

answer. If not, it first checks the tables of all other gates imple-

menting the same primitive, to see if a reply for that query has

already been set elsewhere. If so, the corresponding value is again

returned (but not added to the gate’s own table); if not, a fresh

and correctly distributed value is generated, and the gate’s table

is updated accordingly. Lazy sampling in G1 works analogously,

except that the FRO gates no longer check or update any tables, but

simply return random values of the correct length.

With this description of G0 and G1 in mind, the event Bad we

seek to define is the event that, in the execution of G1, two oracle

gates which in G0 do implement the same primitive, and of which

at least one is replaced in G1, are called on colliding inputs. (This

also includes direct queries to the primitive oracles, which are never

replaced but may still account for collisions with oracle gates in

the construction.) Indeed, for such a query the oracles in G0 return

consistent answers, whereas those in G1 will likely not.

More precisely, denote by Bad(p,𝑖e) the event that a collision

occurs between the input of the 𝑖-th oracle gate as a result of a

query to C[OC′], and a direct query to the primitive P which this

gate used to implement in C[OC]. Similarly, let Bad(𝑗e,𝑘e)
be the

event that a collision occurs between inputs of the 𝑗-th and the 𝑘-th

oracle gates as a result of two queries to C[OC′]. Then we have

Bad =
∨

Bad(p,𝑖e)∨∨Bad(𝑗e,𝑘e)
, with 𝑖 ∈ L(p,e) and (𝑗, 𝑘) ∈ L(e,e) ,

where

L(p,e) B {𝑖 ∈ [𝑡] : OC′𝑖 = $} ,

L(e,e) B {(𝑗, 𝑘) ∈ [𝑡]2 : OC′𝑗 = $ ∧OC𝑗 = OC𝑘 } .
Observe that if P is invertible, then P and P− are counted as separate
oracles in this setting. Also notice that for the pairs (𝑗, 𝑗) ∈ L(e,e) ,
the corresponding queries to C[OC′] have to be different (other-

wise such a collision can be trivially triggered), whereas they don’t

have to be different for all other pairs (𝑗, 𝑘) ∈ L(e,e) with 𝑗 ≠ 𝑘 .
If ATK = CCA, we must add collisions that arise from querying

the construction twice in the backward direction, as well as once in

each direction. That is, we also consider eventsBad(p,𝑖d) ,Bad(𝑗d,𝑘d)

and Bad(𝑟e,𝑠d)
for 𝑖 ∈ L(p,d) , (𝑗, 𝑘) ∈ L(d,d) , and (𝑟, 𝑠) ∈ L(e,d) ,

where

L(p,d) B {𝑖 ∈ [𝑡] : OC−′𝑖 = $} ,

L(d,d) B {(𝑗, 𝑘) ∈ [𝑡]2 : OC−′𝑗 = $ ∧OC−𝑗 = OC−
𝑘
} ,

L(e,d) B
{
(𝑟, 𝑠) ∈ [𝑡]2 :

(OC′𝑟 = $ ∧OC𝑟 = OC−𝑠) ∨
(OC−′𝑟 = $ ∧OC−𝑟 = OC𝑠)

}
.

Finally, to account for adaptivity, observe that each event Bad(p,𝑖e)

(and Bad(p,𝑖d) , if present) is actually a disjunction of two bad events,
one each depending on whether the primitive is queried before or

after the construction while generating a collision. The same holds

for all other bad events with indices 𝑗 ≠ 𝑘 (resp., 𝑟 ≠ 𝑠).

By the fundamental lemma of game-playing, the distinguishing

advantage between games G0 and G1 is then upper-bounded by∑︁
Pr

[
Bad(p,𝑖e)

]
+
∑︁

Pr

[
Bad(𝑗e,𝑘e)] +∑︁ Pr

[
Bad(p,𝑖d)

]
+
∑︁

Pr

[
Bad(𝑗d,𝑘d)] +∑︁ Pr

[
Bad(𝑟e,𝑠d)]

,

(1)

with indices ranging over the sets defined above.

Collision game formation. In its next step, AlgoROM bounds the

probability of each bad event (in G1) defined above. To that end,

each such event is first converted into a collision game, which an

adversary C can win if and only if A triggers the corresponding

event. This is done as follows: For each bad event, we compute the

expressions corresponding to the colliding queries, which are then

equated to form the winning condition of the collision game.

Note that the oracle for the construction (and its inverse, if

present) is randomized in G1. We denote by Adv
coll

C
(C) the sum of

all advantages in these collision games, ranging over all bad events

considered in (1).

Switching. Finally, if the ideal world in the SEC-ATK-security

game for C[OC] offers construction oracles that are not uniformly

random functions, we need to bound the difference between G1

(which has randomized construction oracles) and this game. In the

case of random permutation oracles (the only case considered in

this work), this can be done via the RP/RF switching lemma. Note

that this step is redundant if the construction oracles in the ideal

world of the SEC-ATK-security game implement random functions.

Collecting all terms defined above, we obtain the following result.

Theorem 4.1 (Indistinguishability up to collisions). Let C

be a construction in the modelMOD, whose oracle queries are specified
by an oracle configurationOC. Then for any adversaryA in the SEC-

ATK-security game for C there exist adversaries B, C and D with

Adv
sec -atk

C,I (A) ≤ Adv
rand-atk

C,OC(±)′,I
(B) + Adv

coll

C
(C)

+ Adv
rp/rf-atk

n
(D) ,

where OC′ (and OC−′, if ATK = CCA) is the oracle replacement
chosen by AlgoROM, and n is the block length of C. Here, B makes
the same number of primitive and construction queries asA, C makes
a number of queries proportional to all queries of A, and D makes
the same number of queries as A makes to C.

10

Game 𝑅-Coll
A
I :

O←← I
for 𝑖 = 1 to 𝑛, either:

i) 𝑉𝑖←←{0, 1}𝑛
give 𝑉𝑖 to AO

ii) 𝑉𝑖←←AO

return 𝑅O (𝑉1, . . . ,𝑉𝑛)

Game Toy
A
𝑛 :

F←← Func(𝑛, 𝑛)
𝐶1←←{0, 1}𝑛 ; 𝑋1←←AF (𝐶1)
𝐶2←←{0, 1}𝑛 ; 𝑋2←←AF (𝐶2)
return

(
𝑋1 ⊕ 𝑋2 ⊕ 𝐶2 =

F(𝐶1 ⊕ 𝑋2) ⊕ F(𝐶2)
)

Figure 11: Left: Template for a collision game. Right: A con-
crete example.

5 Analyzing Collision Games
In this section, we provide a procedure for deciding whether or not

an adversary can win a general class of so-called collision games.
We start with formal definitions and then give a concrete example.

Collision game. A collision game consists of a sequence of steps

and a winning condition. Steps can be of two types: (i) A value

is sampled uniformly at random and given to the adversary (who

is stateful), or (ii) The adversary outputs a value. The adversary

wins the game if certain (in)equalities between the values are met.

Fig. 11 (left) describes the general form of a collision game, where 𝑅

is a relation in the XOR-language describing the winning condi-

tion. Alternatively, a collision game can be seen as a tuple (𝑅, <)
where < is a total order on a sequence of formal adversary vari-

ables 𝑋1, . . . , 𝑋𝑘 and challenger variables 𝐶1, . . . ,𝐶ℓ . We define the

advantage of an adversary A in winning such a game as

Adv
coll (A) B Pr

[
𝑅-Coll

A
I

]
.

We say that a collision game is winnable if there exists an adversary

against the game that has a non-negligible advantage. Otherwise,

we say that the game is unwinnable. To simplify our presentation,

in the remainder of this section we focus on collision games that

involve a single random oracle in Func(𝑛, 𝑛). We refer to the end of

the section for an explanation of how our decision procedure can

be generalized to several oracles, including (keyed) permutations.

For the sake of performance, in our decision procedure we seek

to express several collision games at once, e.g., games where the

order of some steps is not yet specified. To that end, we introduce

the notion of a family of collision games.

Family of collision games. A pair (𝐸, 𝜎) is called a family of colli-

sion games if 𝐸 is a set of equalities and inequalities in the XOR-

language on certain formal variables, and 𝜎 is a strict partial order

on the variables.

We use the convention that adversary variables are named𝑋𝑖 and

challenger variables 𝐶 𝑗 , and we let 𝑉 and𝑊 be variables of either

type. The family of collision games is defined as the set of all games

whose order of variables is compatible with the partial order 𝜎 . Con-

cretely, we say that a collision game (𝑅, <) belongs to family (𝐸, 𝜎)
if relation 𝑅 coincides with (in)equalities 𝐸, and the total order <

is compatible with the partial order 𝜎 . Formally, 𝑅(𝑉1, . . . ,𝑉𝑛) = 𝐸
and 𝑉 < 𝑊 ⇒ 𝑊 ≮𝜎 𝑉 . For example, the following family of

Collider(𝑅, <):
𝐸 ← 𝑅(𝑉1, . . .𝑉𝑛); 𝜎 ← <; F ← (𝐸, 𝜎)
return IsWinnable(F)

IsWinnable(F):
Ω← set of rules applicable to F
if Ω = ∅: return true

pick rule ∈ Ω

if

(
rule(F) = ⊥

)
: return false

return

(
∃F ′ ∈ rule(F) : IsWinnable(F ′)

)
Figure 12: Decision procedure for the winnability of a col-
lision game. Procedure IsWinnable is calls itself recursively.
Neither the order in which rules are picked in IsWinnable,
nor that in which subfamilies F ′ are analyzed in the recur-
sive call, have been specified. Completeness, soundness and
termination are not affected by this order, though concrete
performance may be different.

games contains the Toy game depicted in Fig. 11 (right):

𝐸 = {𝑋1 ⊕ 𝑋2 ⊕ 𝐶2 = F(𝐶1 ⊕ 𝑋2) ⊕ F(𝐶2)} ,
𝜎 : 𝐶1 <𝜎 𝑋1 and 𝑋1 <𝜎 𝑋2 .

Note that the partial order 𝜎 does not relate 𝑋2 and 𝐶2. Thus this

family also contains another collision game (distinct from the Toy

game), where 𝐶2 is given to the adversary after it outputs 𝑋2.

We assume that collision games are purified in the sense that

expressions that are input to F consist of a single variable. To purify
a game, AlgoROM recursively replaces equations of the form F(𝑒) ⊕
𝑒′ = 0, where 𝑒 and 𝑒′ are expressions, by F(𝑋) ⊕ 𝑒′ = 0 and 𝑋 = 𝑒 .

In Fig. 12 we describe our Collider procedure for deciding when

a given collision game is winnable. The procedure starts with an

input collision game and forms an initial family containing only

this game. It then (heuristically) picks a rule from the set of collider
rules Ω defined in Fig. 13, each transforming a family of games

into a set of families or ⊥, and applies it to the given family. If

no rule can be picked, the procedure returns “winnable,” and in

case of ⊥, it outputs “unwinnable.” If neither is the case, Collider
recursively applies this procedure to each family of games in the set,

and returns “winnable” as long as one of them is declared “winnable,”

and “unwinnable” otherwise. Note that the choice of rule is not
non-deterministic: Once a rule is picked, only that rule is applied

in that step.

Collider properties. We say that Collider is sound if it always

outputs false when given an unwinnable collision game. We say

that Collider is complete if it always outputs true when given a

winnable collision game. We say that Collider always terminates if,

for any collision game, it outputs a value in finitely many steps.

The remainder of this section is dedicated to the following theo-

rem. We here present the theorem in the asymptotic language, and

discuss concrete bounds in the proof.

Theorem 5.1 (Collider). Collider is sound, complete, and always
terminates.

11

Peeling:
({𝐹 (𝑉) ⊕ 𝑒 ⊲⊳ 0} ∪ 𝐸, 𝜎)

({𝐶 ⊕ 𝑒 ⊲⊳ 0} ∪ 𝐸 [𝐹 (𝑉) ↦→ 𝐶], 𝜎 s.t. 𝑉 < 𝐶)
for fresh 𝐶 , if ∀𝑊 ≠ 𝑉 s.t. 𝐹 (𝑊) ∈ terms(𝐸) : (𝑉 ≠𝑊) ∈ 𝐸

Assignment:
({𝑋 ⊕ 𝑒 = 0} ∪ 𝐸, 𝜎)
({𝑋 = 𝑒} ∪ 𝐸 [𝑋 ↦→ 𝑒], 𝜎)

if 𝑒 B 𝑉1⊕· · ·⊕𝑉𝑘 with∀𝑖 ∈ [𝑘] : (𝑉𝑖 <𝜎 𝑋)∧(𝑋 ∈ vars(𝐸))
∧ (𝐹 (𝑋) ∉ terms(𝐸))

Contradiction:
({0 ≠ 0} ∪ 𝐸, 𝜎)

⊥

Unpredictability:

(
{𝐶 ⊕

⊕𝑘
𝑖=1

𝑉𝑖 = 0} ∪ 𝐸, 𝜎
)

⊥
if ∀𝑖 ∈ [𝑘] : 𝑉𝑖 <𝜎 𝐶

Partitioning:
(𝐸, 𝜎)

(𝐸 [𝑉 ↦→𝑊], 𝜎 [𝑉 ↦→𝑊]) | ({𝑉 ≠𝑊 } ∪ 𝐸, 𝜎)
with (𝑉 =𝑊), (𝑉 ≠𝑊) ∉ 𝐸

Ordering:
(𝐸, 𝜎)

(𝐸, 𝜎 s.t. 𝑉 <𝑊) | (𝐸, 𝜎 s.t.𝑊 < 𝑉)
if 𝑉 ,𝑊 belong to a common equation, 𝑉 ≮𝜎 𝑊 ,𝑊 ≮𝜎 𝑉 ,
and (𝑉 ≠𝑊) ∈ 𝐸

Figure 13: Collider rules Ω. Here ⊲⊳ ∈ {=,≠}. We use𝑋 for vari-
ables controlled by the adversary and𝐶 for random variables
sampled in the game. 𝑉 and𝑊 are used for both 𝑋 and 𝐶.
Expressions 𝑒 and 𝑒′ are in the XOR-language, and 𝐸 [𝑒 ↦→ 𝑒′]
means replacing any occurrence of expression 𝑒 with expres-
sion 𝑒′ in all equations in 𝐸.

Fig. 13 describes the formal semantics of the collider rules. Every

such rule expresses how a single family of games (on top of the

horizontal line) is replaced by one or more families (below the line),

as long as the side conditions are met.

The following lemma guarantees that each rule is sound and

complete in the sense that the original family contains a winnable

game if and only if at least one of the resulting families does.

Lemma 5.2 (Winnability preservation). Every rule in Fig. 13,
transforming a family of games into one or more families, is such that
the original family contains a winnable game if and only if at least
one of the resulting families does.

Proof. We inspect each rule individually.

Peeling: This rule produces a single family of collision games. The

oracle query 𝑋 to F is replaced by a fresh random variable 𝐶 .

The dependency 𝑋 <𝜎 𝐶 is introduced to model the fact that

query 𝑋 must correspond to a game step that precedes the step

where the adversary learns 𝐶 . Clearly, an adversary against the

new family of games can be turned into an adversary against the

original family. The converse is also true assuming a probability

loss, due to the fact that A has oracle access to F. Say we have

an adversary A against the original family of games, that can

win at least one of the games in the family with probability 𝛿 .

We build an adversary B that can win at least one of the games

in the new family with probability 𝛿/𝑞, where 𝑞 is the number

of queries performed by A to its oracle. (There is a one-to-one

correspondence between the games of the original family and

those of the new one. B will succeed in the game corresponding

to the one that A wins.) First, let us assume w.l.o.g. that A
never repeats a query and that it performs all the queries in 𝐸

to its oracle F (possibly at the end of the game, when all the

unpredictable variables have been given to the adversary). B
will work as follows:

(1) Guess index 𝑖 ∈ [𝑞].
(2) Run the game where A is successful, answering A’s queries

with B’s own oracle F, until A performs the 𝑖-th query 𝑄 .

(3) Use 𝑄 as the value that B must choose on the game step

introduced after the peeling rule, and get 𝐶 , the value of the

fresh variable created during the rule transition.

(4) Answer the 𝑖-th query with 𝐶 , and continue the execution

of A.

If the guess 𝑖 was correct, the value that A finally chooses for

variable 𝑉 will be 𝑄 , thus B has perfectly simulated A’s game

and B will be successful if A is.
5
(Guessing the relevant query

is necessary because A may potentially decide to choose what

value to give to 𝑉 based on all query answers.) We conclude

that B will win with probability at least 𝛿/𝑞.
Since 𝑞 is polynomial, either both families contain a winnable

game, or neither does. However, observe that this loss magnifies

with every application of the peeling rule. The loss will remain

polynomial if this rule is applied a constant number of times.

Assignment: This rule captures the fact that if an equation of the

form 𝑋 ⊕ 𝑒 = 0 is present, and the value of 𝑒 is fully deter-

mined before the step where 𝑋 is picked by the adversary, then

without loss of generality, we can restrict attention to adver-

saries that set 𝑋 to 𝑒 . Thus, this rule produces a single family

of collision games that is identical to the original one. Note

that in any possible collision game in the original family, the

step where 𝑋 is produced must follow the steps involving all

other variables 𝑉1, . . . ,𝑉𝑘 , given the side condition. Since equa-

tion 𝑋 ⊕ 𝑉1 ⊕ · · · ⊕ 𝑉𝑘 = 0 must be satisfied, we can assume

without loss of generality that the adversary has instantiated

the value of 𝑋 as 𝑉1 ⊕ · · · ⊕ 𝑉𝑘 , a value that is available when
choosing 𝑋 . Therefore, the replacement 𝑋 ↦→ 𝑉1 ⊕ · · · ⊕ 𝑉𝑘 is

sound. Note that equation𝑋 = 𝑒 is kept, to possibly keep track of

a solution to the game. However, variable 𝑋 disappears from the

remaining equations. A side condition of this rule is that 𝑋 ap-

pears in more than one equation. This prevents us from applying

this rule more than once (which would prevent termination).

Contradiction: Clearly a family of games containing an equation

of the form 0 ≠ 0 does not contain a single winnable game.

Unpredictability: This rule models the fact that an equality in-

volving a random variable that is not “under the control” of

the adversary will be satisfied only with negligible probabil-

ity. Note that all games in the original family contain an equa-

tion𝐶 ⊕𝑉1 ⊕ · · · ⊕𝑉𝑘 = 0, where variable𝐶 is sampled uniformly

5
Note that the side condition of the peeling rule guarantees that, if A is successful,𝑄

is different from all other queries to F.

12

after the value of all other variables𝑉𝑖 has been chosen byA (be-

cause their game step precedes the one where𝐶 is provided). The

probability that this equation is satisfied is thus 1/2𝑛 , where 𝑛 is

the output length of the oracle.

Partitioning: This rule produces two families of collision games:

One having unified variables 𝑋 ↦→ 𝑋 ′, and the other containing

a new equation 𝑋 ≠ 𝑋 ′. This is exclusive and exhaustive, and

thus, if the original family contains a winnable game, at least one

of the resulting families will. For the sake of termination, this

rule has the side condition that both (𝑋 = 𝑋 ′) and (𝑋 ≠ 𝑋 ′) do
not appear in the equations of the original family. This prevents

us from applying the rule more than once.

Ordering: This rule imposes an order on two incomparable steps

of the original family of games. We assume both possible orders

in the resulting families, so the rule is sound and complete. For

the sake of termination, this rule cannot be applied if 𝜎 already

imposes an ordering on the variables.

We incur a loss of factor 𝑞 for each application of the peeling rule,

and a loss of factor 2 each time we use partitioning or ordering.

Furthermore, we pick up an additive loss of 1/2𝑛 (with 2
𝑛
the size

of the domain and range of the RO), in the unpredictability rule.

Assuming that there are at most 𝑡 function calls in the winning

condition of the initial game with at most 𝑠 variables, we obtain

a final bound of at most O(𝑡22𝑠𝑞𝑡/2𝑛), which is asymptotically

negligible. □

Proof (of Theorem 5.1). Weprove termination, soundness, and

completeness separately.

Termination. We show that, on input any collision game (with

a finite number of steps, equations and oracle queries), Collider
always produces an output in finitely many iterations.

Let 𝜇 be the function that maps a family of collision games

into N4
, defined as 𝜇 (𝐸, 𝜎) = (𝑛𝑓 , 𝑛𝜎 , 𝑛⊲⊳, 𝑛𝑣), where:

• 𝑛𝑓 is the number of oracle queries in the equations 𝐸;

• 𝑛𝜎 is the number of pairs of variables that are not comparable

through 𝜎 ;

• 𝑛⊲⊳ is the number of pairs of variables (𝑉 ,𝑊) s.t. (𝑉 =𝑊),
(𝑉 ≠𝑊) ∉ 𝐸;
• 𝑛𝑣 is the number of variables that appear in more than one

equation in 𝐸.

We define 𝜇 (⊥) = (0, 0, 0, 0). Consider the lexicographic order

over N4
. By definition 𝜇 (F) ≥ (0, 0, 0, 0) for any family F . Ter-

mination follows from the fact that 𝜇 is strictly decreasing with

respect to every rule in Fig. 13, which can be checked by inspection

of every rule.

Note that in the worst-case scenario, Collider will explore all
possible ordered partitions of the game variables. For an upper

bound 𝑘 on the number of variables, the algorithm may take time in

the order of 𝑘!/2(log 2)𝑘+1, the 𝑘-th ordered Bell number. The total

number of game variables can be upper-bounded by the number of

steps in the game plus the number of oracle queries in the equations.

We next show the soundness and completeness of our algorithm.

Recall that soundness requires that the algorithm does not intro-

duce additional solutions: if the output is true, the game is indeed

winnable. On the other hand, completeness guarantees that the

algorithm does not miss any solutions: if the output is false, the
game is indeed unwinnable.

Soundness. We now show that if Collider outputs true, then the

given game must be winnable. Note that the family of collision

games given on the first call to IsWinnable only contains one colli-

sion game, the one of interest. This is because 𝜎 is set to be the total

order < on the existing game variables. Note that Collider outputs
true if we eventually arrive at a family of collision games where

no rule is applicable. We will see that there must be a winnable

collision game in such a family. Combined with Lemma 5.2, this

implies soundness.

Now consider a family of collision games (𝐸, 𝜎) where no rule
is applicable. In these games, 𝜎 can be made a total order arbitrar-

ily and all variables can be made different. Since all variables are

different, all occurrences of 𝐹 (𝑉) can be removed by peeling. Fur-

thermore, every equation will have a leading variable which can be

found and removed from other equations by assignment. More con-

cretely, all equalities in 𝐸 must be of the form𝑉1⊕· · ·⊕𝑉𝑘 = 0 where

there is a “leading” variable𝑉𝑗 which, according to 𝜎 , comes after all

other variables in the equation. Also, such a leading variable does

not appear in any other equation. Furthermore, all inequalities are

of the form𝑉1 ⊕ · · · ⊕𝑉𝑘 ≠ 0 where each𝑉𝑖 is not a leading variable

of any equation. We claim that the following adversary wins any

collision game in the family with overwhelming probability. First,

instantiate all non-leading variables uniformly and independently

at random. Then, following the order imposed by 𝜎 , instantiate the

leading variables so that they satisfy their corresponding equation.

(Note that all the information necessary to do so will be available.)

This mechanism clearly satisfies all equalities in the game. All the

inequalities will also be satisfied with overwhelming probability.

This is because the probability that one individual inequality is vio-

lated can be upper-bounded by 1/2𝑛 . By the union bound, if there

are 𝑛𝑖 inequalities, the probability that the described adversary is

successful is 1 − 𝑛𝑖/2𝑛 , which is overwhelming.

Completeness. Finally we show completeness: If Collider outputs
false, then the given game must be unwinnable. As in the proof

of soundness, note that the initial call to IsWinnable is a family

of games that only contains the collision game of interest. Thus

completeness follows directly from Lemma 5.2 and the fact that

the two collider rules that output ⊥ do so from a family of games

that does not contain a single winnable game. This observation is

obvious for the contradiction rule. For the unpredictability rule, note

that all games in the original family contain an equation 𝐶 ⊕ 𝑉1 ⊕
· · · ⊕𝑉𝑘 = 0, where variable𝐶 is sampled uniformly after the value

of all other variables 𝑉𝑖 is fixed. The probability that this occurs is

negligible and out of the control of the adversary. □

Analyzing collisions is the main component of the proof strategy

used by AlgoROM. As a result, the corollary below follows from

Theorem 5.1.

Corollary 5.3. AlgoROM is sound and complete with respect to
the proof technique, and always terminates. That is, if a construction
has a collision-based game-hopping proof, then AlgoROM will find
it, and it will never classify an insecure scheme as secure.

13

We emphasize that this corollary does not entail that the tool

is complete with respect to classifying a scheme as either secure

or insecure: There may exist constructions that are secure, but

for which the indistinguishability-up-to-collision proof technique,

which AlgoROM automates, cannot be applied.

An example. We present a concrete example to illustrate the rules

in Fig. 13. Consider the Toy game in Fig. 11 (right). As described

in Fig. 12, after purification, we start with the family of collision

games below, which only contains the Toy game at this point. We

represent the strict partial order 𝜎 as an acyclic graph, where there

is a path between nodes 𝑉 and𝑊 if and only if 𝑉 <𝜎 𝑊 .

𝐸 =


𝑋1 ⊕ 𝑋2 ⊕ 𝐶2 =

F(𝑋3) ⊕ F(𝐶2) ,
𝑋3 = 𝐶1 ⊕ 𝑋2

 𝐶1 𝑋1 𝐶2 𝑋2 𝑋3

We first apply the partitioning rule on 𝑋3 and 𝐶2 and get two new

systems, one where we apply replacement 𝑋3 ↦→ 𝐶2, and one with

an additional inequality 𝑋3 ≠ 𝐶2. Let us analyze the former:

𝐸 =

{
𝑋1 ⊕ 𝑋2 ⊕ 𝐶2 = 0 ,

𝐶2 = 𝐶1 ⊕ 𝑋2

}
𝐶1 𝑋1 𝐶2 𝑋2

We can now apply the assignment rule to the first equation and

leading variable 𝑋2 (given that 𝑋1 <𝜎 𝑋2 and 𝐶2 <𝜎 𝑋2). We get:

𝐸 =

{
𝑋2 = 𝑋1 ⊕ 𝐶2 ,

𝐶1 ⊕ 𝑋1 = 0

}
𝐶1 𝑋1 𝐶2 𝑋2

Now, we apply the assignment rule on the second equation and

leading variable 𝑋1 (given that 𝐶1 <𝜎 𝑋1):

𝐸 =

{
𝑋2 = 𝐶1 ⊕ 𝐶2 ,

𝑋1 = 𝐶1

}
𝐶1 𝑋1 𝐶2 𝑋2

At this point no more rules can be applied, which means that all

collision games in this family are winnable. Indeed, each of the two

equalities has a leading variable that goes after all other variables in
its equation andwhich does not appear in any other equation. An ad-

versary could instantiate all variables that do not lead any equation

uniformly at random (in this case there are no such variables), and

then instantiate the leading variables in order as their correspond-

ing equation dictates. In this case, the adversary chooses 𝑋1 B 𝐶1

and then 𝑋2 B 𝐶1 ⊕ 𝐶2. We conclude that the original collision

game is also winnable.

If the branch with 𝑋3 ↦→ 𝐶2 had resulted in an abortion, we

would still need to explore the other branch with 𝑋3 ≠ 𝐶2. Such a

branch could be winnable even if the previous one was not, due

to the presence of inequalities in the equations. However, for this

specific example, this other branch is not winnable. We invite the

reader to verify this fact.

Supporting permutations. We conclude by discussing how our

rules can be extended to support multiple oracles including per-

mutations and block ciphers. Having multiple oracles is easy and

would simply require having one peeling rule per oracle. For per-

mutations, we need to account for the fact that they can also be

executed backwards. This allows the adversary to choose the value

of 𝑃 (𝑒) at the price of not being able to choose the value for 𝑒 , e.g.,

in order to set 𝑃 (𝑒) B 𝑋 one can set 𝑒 B 𝑃− (𝑋). Permutations can

be captured with a non-deterministic purification process (leading

to multiple collision games that must all be analyzed). In particular,

an expression like 𝑃± (𝑒) ⊕ 𝑒′ = 0 would be purified in both the fol-

lowing ways (for a fresh variable 𝑋): (i) 𝑃± (𝑋) ⊕ 𝑒′ = 0 and 𝑋 = 𝑒 ;

or (ii) 𝑃∓ (𝑋) = 𝑒 and 𝑋 ⊕ 𝑒′ = 0. This logic can be easily extended

to capture block ciphers, as well as multi-arity oracles.

6 Selected Experimental Results
We next give a selection of results obtained through AlgoROM and

discuss how they relate to prior works; see Table 1,
6
where entries

typeset in green represent new results obtained using our tool. We

evaluate AlgoROM by corroborating existing results, and use it to

prove constructions secure which, to the best of our knowledge,

have not been studied before. We have experimented with many

configurations using the tool; those in Table 1 are the ones that

AlgoROM found to be secure while minimizing keying material

and round complexity. Note that AlgoROM is flexible and can be

used to analyze many more schemes and configurations.

As mentioned in the introduction, for several applications, many

existing works focus on the case of independent round functions

and permutations, despite this being a less accurate model of con-

structions used in practice, which often use identical round func-

tions. We believe that this is because, in the latter setting, the num-

ber of collisions to be analyzed grows quadratically (rather than

linearly) in the number of rounds, resulting in an overwhelming

number of cases to be resolved by hand. Furthermore, the complex-

ity of the equations also grows with the number of rounds, making

their manual analyses even more error-prone. In that sense, we

believe that pen-and-paper proofs that use indistinguishability-up-

to-collision would be very difficult, if not practically impossible, for

most constructions analyzed by our tool, not to mention that they

are error-prone and less reliable.
7

We note, however, that manual proofs may still be possible via

novel proof techniques that, for example, exploit the specific struc-

ture of a particular scheme (even if the tool runs for a long time).

For example, a proof might first identify a useful property of, say, 4

contiguous rounds of Feistel in a Feistel-based construction, and

then exploit this property to prove the security of the full scheme.

AlgoROM is written in OCaml, and its full source code is avail-

able under

https://gitlab.com/ambrona/algorom .

The tool contains a series of early-decision and termination rules

to speed up the analysis. All experiments were run on a 10-core

3.2GHz Apple M1 Pro and 16GB of RAM, though AlgoROM only

uses a single core. Collider is the computationally most intensive

procedure, especially with multiple rounds of queries. Other de-

manding steps include projections (e.g., in SPN), and RKA/KDM

functions with multiple key components. We give a selection of

timings for our experiments below. In Appendix A, we provide a

sample output produced by our tool when run on 3-round KAF

with different round functions and the same key in the CPA model.

6AlgoROM can produce a detailed output explaining various steps of the analysis. A

full proof transcript, however, often involves a large number of case distinctions, and

thus we focus on the final results delivered.

7
To exemplify this growth in complexity, observe that AlgoROM takes time in the

order of milliseconds to confirm known results from the literature, whereas it takes

much longer for the more challenging constructions not studied before (KC-CPA

security of 10-round KAF took approximately 165 hours).

14

https://gitlab.com/ambrona/algorom

Table 1: Summary of our main CPA and CCA-security results.
“O” stands for oracle, “S” indicates using the same function in
each round, and “D” different round functions. New results
are highlighted in green, and non-highlighted results are
contained in the literature. We have presented key schedules
with minimal keying material. See the text for a selection
of timings. The exponents in the 2-SP column denote the
number of rounds, plus one. A diamond ♦ indicates no result,
capping the experiment run-time to one week.

O LR KAF EM 2-SP

IND- S [𝐾,0,𝐾⊕Δ] [𝐾,0,𝐾,𝐾] [𝐾,𝐾] [[𝐾1,𝐾2]4]
CPA D [𝐾,0,𝐾] [𝐾,0,𝐾] [𝐾,𝐾] [[𝐾1,𝐾2]4]

RK- S [𝐾,0,𝐾,𝐾⊕Δ] [𝐾,0,0,𝐾,𝐾] [𝐾,𝐾,𝐾] [[𝐾1,𝐾2]5]
CPA D [𝐾,0,𝐾] [𝐾,0,0,𝐾] [𝐾,𝐾,𝐾] [[𝐾1,𝐾2]5]

KD- S [𝐾,0,𝐾⊕Δ] [𝐾,0,0,0,0,0,0,𝐾⊕Δ] [𝐾,𝐾,𝐾⊕Δ,𝐾⊕Δ] [[𝐾1,𝐾2]5]
CPA D [𝐾,0,𝐾] [𝐾,0,0,0,𝐾] [𝐾,𝐾,𝐾] [[𝐾1,𝐾2]5]

KC- S [𝐾,0,𝐾,𝐾⊕Δ] [𝐾,0,0,0,0,0,0,0,𝐾,𝐾⊕Δ] [𝐾,𝐾,𝐾,𝐾⊕Δ,𝐾] ♦
CPA D [𝐾,0,𝐾] [𝐾,0,0,0,𝐾,𝐾] [𝐾,𝐾,𝐾,𝐾] [[𝐾1,𝐾2]7]

IND- S [𝐾,0,0,𝐾⊕Δ] [𝐾,0,𝐾,𝐾] [𝐾,𝐾] [[𝐾1,𝐾2]5]
CCA D [𝐾,0,0,𝐾] [𝐾,0,0,𝐾] [𝐾,𝐾] [[𝐾1,𝐾2]5]

RK- S [𝐾,0,𝐾,𝐾⊕Δ] [𝐾,0,0,0,𝐾,𝐾] [𝐾,𝐾,𝐾,𝐾] [[𝐾1,𝐾2]7]
CCA D [𝐾,0,0,𝐾] [𝐾,0,0,0,𝐾,𝐾] [𝐾,𝐾,𝐾,𝐾] [[𝐾1,𝐾2]6]

KD- S [𝐾,0,0,𝐾⊕Δ] [𝐾,0,0,0,0,0,0,𝐾⊕Δ] [𝐾,𝐾,𝐾⊕Δ,𝐾⊕Δ] [[𝐾1,𝐾2]7]
CCA D [𝐾,0,0,𝐾] [𝐾,0,0,0,0,𝐾] [𝐾,𝐾,𝐾] [[𝐾1,𝐾2]6]

KC- S [𝐾,0,𝐾,𝐾⊕Δ] ♦ [𝐾,𝐾,𝐾,𝐾⊕Δ,𝐾,𝐾,𝐾] ♦
CCA D [𝐾,0,0,𝐾] [𝐾,𝐾,0,𝐾,𝐾,0,𝐾,𝐾] [𝐾,𝐾,𝐾,𝐾,𝐾] ♦

LR ciphers. AlgoROM proves the following results for LR ciphers.

IND: This notion was studied in [56] for identical round functions,

showing that the construction with key schedule [𝐾1, 𝐾2, 𝐾3]
is CPA-secure (resp., [𝐾1, 𝐾2, 𝐾3, 𝐾4] is CCA-secure). AlgoROM
confirms these results and shows that they extend, with iden-

tical (resp., independent) round functions to the simple key

schedule [𝐾, 0, 𝐾 ⊕ Δ] (resp., [𝐾, 0, 𝐾]) for CPA-security, and
to [𝐾, 0, 0, 𝐾 ⊕ Δ] (resp., [𝐾, 0, 0, 𝐾]) for CCA-security.

RK: This notion was studied in [10] for identical round functions,

showing that the construction with key schedule [𝐾1, 𝐾2, 𝐾2] is
CPA-secure (resp., [𝐾1, 𝐾2, 𝐾1, 𝐾2] is CCA-secure) for claw-free
and switch-free RK-derivation functions. AlgoROM confirms

these results, when restricting the RK-functions to key offsets

(i.e., XOR-RKA-security). It finds that they extend, with iden-

tical round functions to the key schedule [𝐾, 0, 𝐾, 𝐾 ⊕ Δ] for
CCA-security, and with independent functions to [𝐾, 0, 𝐾] for
CPA-security and to [𝐾, 0, 0, 𝐾] for CCA-security. The results for
identical round functions are new.

KD: To the best of our knowledge, LR ciphers have not yet been

studied in this setting. AlgoROM proves CPA-security with iden-

tical (resp., independent) round functions and key schedule

[𝐾, 0, 𝐾 ⊕ Δ] (resp., [𝐾, 0, 𝐾]), and CCA-security with key sched-

ule [𝐾, 0, 0, 𝐾 ⊕ Δ] (resp., [𝐾, 0, 0, 𝐾]).
KC: AlgoROM proves that the construction with identical round

functions and key schedule [𝐾, 0, 𝐾, 𝐾 ⊕ Δ] is CCA-secure, and
the one with independent round functions and key schedule

[𝐾, 0, 𝐾] is CPA-secure (resp., [𝐾, 0, 0, 𝐾] is CCA-secure). To the

best of our knowledge, these results are new.

AlgoROM analyzes the LR configurations shown in Table 1 in

a matter of milliseconds. The hardest case is the KC-CCA secu-

rity analysis, which took 53ms. All constructions are proven by

replacing the 2nd and 3rd round functions.

KAF ciphers. We obtain the following results for KAF ciphers.

IND: This notion was studied in [53] for independent round func-

tions and keys. AlgoROM proves CCA-security with identical

round functions and key schedule [𝐾, 0, 𝐾, 𝐾], and CPA-security

(resp., CCA-security) with independent round functions and key

schedule [𝐾, 0, 𝐾] (resp., [𝐾, 0, 0, 𝐾]).
RK: This notion was studied in [45] for identical round functions

and correlated round keys. AlgoROM proves CPA-security with

identical (resp., independent) round functions and key sched-

ule [𝐾, 0, 0, 𝐾, 𝐾] (resp., [𝐾, 0, 0, 𝐾]), and CCA-security with key

schedule [𝐾, 0, 0, 0, 𝐾, 𝐾] in both settings. To the best of our

knowledge, these results are new.
8

KD: This notion was studied in [38] for identical round functions

and correlated round keys, showing that a 4-round construc-

tion is CCA-secure. The authors require the KD-derivation func-

tions to be offset-free, claw-free and XOR-offset-free. Our results,

although less general, include the case of XOR-combinations

of keys, which escapes their requirements. AlgoROM proves

CCA-security for identical round functions and key schedule

[𝐾, 0, 0, 0, 0, 0, 0, 𝐾 ⊕ Δ], and CPA-security (resp., CCA-security)

for independent functions and key schedule [𝐾, 0, 0, 0, 𝐾] (resp.,
[𝐾, 0, 0, 0, 𝐾, 𝐾]). All these results are new.

KC: AlgoROM proves CPA-security for identical (resp., indepen-

dent) round functions and key schedule [𝐾, 0, 0, 0, 0, 0, 0, 0, 𝐾,
𝐾 ⊕ Δ] (resp., [𝐾, 0, 0, 0, 𝐾, 𝐾]), and CCA-security for indepen-

dent round functions and key schedule [𝐾,𝐾, 0, 𝐾,𝐾, 0, 𝐾, 𝐾].
All these results are new.

Analyzing KAF constructions turns out to be somewhat chal-

lenging for AlgoROM. (RK-)CPA/CCA analysis is in the order of

milliseconds. KD-CPA/CCA took 4s. The most complex case (which

is also the hardest among all experiments performed) is the KC-

CPA security analysis of the 10-round KAF with identical round

functions, which approximately took 165 hours. We have not been

able to prove CCA results in the setting of identical round functions

(limiting tests to at most one week). With further optimizations,

or a multi-core extension, KC-CCA-security with identical round

functions may be within reach.

EM ciphers. We obtain the following results for EM ciphers.

IND: It is well-known that the 1-round constructionwith key sched-
ule [𝐾,𝐾] is CCA-secure [35]. AlgoROM confirms this.

RK: This notion was studied in [29, 40] for independent round

permutations, showing that the construction with key sched-

ule [𝐾,𝐾, 𝐾] (resp., [𝐾,𝐾, 𝐾, 𝐾]) is XOR-RKA-CPA-secure (resp.,
CCA-secure). AlgoROM confirms these results, and proves the

same configurations secure with identical round permutations.

The latter results are new.

8
We note that [45] achieve their results under conditions that are incomparable to

ours. Their most efficient construction has fewer rounds, but a more complex (and

highly non-linear) key schedule, and uses whitening keys, which we don’t. When

restricting to linear key schedules, their general result does not include the very simple

key schedule we have found.

15

KD: This notion was studied in [39] for independent round per-

mutations, showing that the construction with key schedule

[𝐾1, 𝐾2, 𝐾3] (resp., [𝐾1, 𝐾2]) is CCA-secure for offset-free (and
claw-free) KD-derivation functions. They also study the case

of identical round functions, proving that [𝐾1, 𝐾2, 𝐾3] gives a
CCA-secure construction for claw-free and XOR-offset-free KD-

derivation functions. AlgoROM confirms the former set of re-

sults; note that, again, the XOR-combinations of keys escapes the

latter result. AlgoROM proves CCA-security for identical (resp.,

independent) round functions and key schedule [𝐾,𝐾, 𝐾 ⊕ Δ,
𝐾 ⊕ Δ] (resp., [𝐾,𝐾, 𝐾]). These results are new.

KC: This notion was studied in [30] for independent round per-

mutations, showing that the construction with key schedule

[𝐾,𝐾, 𝐾, 𝐾] is CCA-secure when the KC-derivation functions

are restricted to offsets [30, Theorem 2]. The authors use bad-

event analysis to replace the 3rd permutation in encryption and

the 1st (furthermost) permutation in decryption with FROs.

Using the tool, however, we have identified a collision not consid-

ered in [30]. AlgoROM reports that a collision can be triggered

after these replacements by querying encryption on (𝐾 ⊕ Δ, 𝑀)
to get a ciphertext𝐶 , and then decryption on (𝐾 ⊕Δ⊕𝐶′⊕𝐶,𝐶′)
with a 𝐶′ ≠ 𝐶 . Indeed, the encryption query results in the 3rd

permutation being queried on𝑄 B P2 (P1 (𝑀 ⊕𝐾 ⊕ Δ) ⊕𝐾 ⊕ Δ)
in the forward direction, with the resulting ciphertext being

𝐶 = P3 (𝑄) ⊕ 𝐾 ⊕ Δ. The decryption query results in the 3rd per-

mutation being queried on𝐶′ ⊕𝐾 ⊕Δ⊕𝐶′ ⊕𝐶 = 𝐾 ⊕Δ⊕𝐶 in the

backwards direction. Expanding𝐶 we get𝐾⊕Δ⊕P3 (𝑄)⊕𝐾⊕Δ =

P3 (𝑄), i.e., this backwards query to the 3rd permutation should

result in𝑄 . This is not guaranteed in the ideal world and is there-

fore a collision whose probability must be bounded, but was not

considered in [30]. (In fact, the proof strategy suggested in [30]

also fails for RK-CCA security.)

In a similar vein, it may be that also other proofs involve miss-

ing cases which, although not invalidating the stated theorems,

have been overlooked in the analyses. The tool, on the other

hand, exhaustively lists all cases that need to be considered. This

further highlights the possibility of errors in hand-made proofs,

and how an automatic tool can help in avoiding them.

AlgoROM proves CPA-security with identical (resp., indepen-

dent) round functions and key schedule [𝐾,𝐾, 𝐾, 𝐾 ⊕Δ, 𝐾] (resp.,
[𝐾,𝐾, 𝐾, 𝐾]), and CCA-security with [𝐾,𝐾, 𝐾, 𝐾 ⊕ Δ, 𝐾, 𝐾, 𝐾]
(resp., [𝐾,𝐾, 𝐾, 𝐾, 𝐾]). All these results are new.

AlgoROM analyzes the listed EM constructions in a matter of

millisecond. The hardest case is the KC-CCA-security analysis,

which took 127ms. Different proofs use different replacements. For

example, the KC-CCA proof replaces the 3rd round permutation in

encryption and the 2nd round permutation in decryption.

SP networks. AlgoROM proves the following results for SP net-

works. Note that, due to the restrictions in our grammar, the class

of diffusion layers that we consider is confined to binary matrices.

Furthermore, the complexity of SPNs grows quickly and we are able

to analyze only width-2 and width-3 constructions, the latter only

for IND-security. Except for the configurations in the IND case, all

other results that we obtain are new.

IND: AlgoROM proves CCA-security of a width-2 SPN with four

rounds, repeating round keys [𝐾1, 𝐾2], identical round permuta-

tions, and alternating diffusion with matrices

𝑀1 B

(
1 1

0 1

)
and 𝑀2 B

(
1 0

1 1

)
.

With one less round we get CPA-security. AlgoROM can also

handle width-3 SPNs, proving CCA-security with 5 rounds, re-

peating keys [𝐾1, 𝐾2, 𝐾3], distinct permutations, and diffusion

matrices

𝑀1 B
©­«
1 1 1

1 1 0

0 1 1

ª®¬ , 𝑀2 B
©­«
1 1 1

1 1 0

1 0 1

ª®¬ , and 𝑀3 B
©­«
1 1 1

1 0 1

0 1 1

ª®¬ .

RK: AlgoROM proves the first CPA-security (resp., CCA-security)

result for SPNs, for a 4-round (resp., 6-round), width-2 SPN with

identical permutations, key schedule and diffusion layers as

above. In the CCA case, we can reduce the number of rounds

to 5 with 5 · 2 = 10 different round permutations.

KD: AlgoROM proves that the same construction that is proven RK-

ATK-secure is also KD-ATK-secure, with ATK ∈ {CPA,CCA}.
KC: The analysis of SPNs in the KC-setting is complex. AlgoROM

is only able to show CPA-security with different permutations

in 6 rounds.

Analyzing SPNs is challenging for AlgoROM, and we focused on

width-2 and width-3 constructions. The IND-CPA/CCA analyses

of width-2 constructions are in the order of milliseconds. RK-CCA-

security took approximately 400s, and KD-CCA 700s. The KC-CPA

analysis of the 6-round width-2 SPN with different permutations

took about 4300s. The CCA-security analysis of the width-3 SPN

with different (resp., identical) round permutations took 104s (277s).

Other experiments. We have used AlgoROM to experiment with

other novel designs, including SP networks with missing S-boxes,

which are relevant for MPC-friendly symmetric primitives [4, 44].

As an example, the tool shows that 4-round SP of width 2 (with the

above 2 × 2 diffusion layers) is IND-CCA secure even if 5 out of

the 8 S-boxes are removed (the 2nd round left, 3rd round right, and

4th round left S-boxes alone are sufficient for security). We stress

that AlgoROM can be used to explore alternative design patterns

for many more existing schemes (e.g., the Hades strategy [44]).

We have also applied our tool to the CR and RK/KD/KC-CPA-

security of the PGV hashes, as well as Merkle–Damgård with a fixed

number of message blocks (and no strengthening) and the Sponge

construction. In particular, the tool confirms the collision-resistance

security of the 12 secure PGV modes [21, 62].

7 Conclusion and Future Directions
Automation is a prominent direction in cryptologic research, and

there has been a long series of works in this area. There are im-

portant motivations for this: avoiding mistakes that creep in when

proofs are done by hand, enabling proofs for constructions that are

simply too complex and laborious to be analyzed manually, and

exploring richer design spaces. AlgoROM touches on all these as-

pects, and we believe it is a valuable first step for the automation of

meaningful proofs of security in standard (i.e., computational) ideal-

ized models. Specifically, we have used the tool to identify a flaw in

a previous proof [30], we have proven several new security results,

16

and we have explored the design space of existing constructions

for new round-function and round-key configurations in different

security models. The analyses that AlgoROM performs can involve

a large number of complex case distinctions that exceed what is

possible by hand. (Even manually verifying proof transcripts pro-

duced by the tool can become intractable.) As noted above, this is

especially the case when analyzing practical constructions that use

the same round function or permutation in every round.

We believe that our approach can be extended to study other

primitives or security notions. Authenticated encryption, for ex-

ample, is a natural next step. As mentioned above, the tool cur-

rently supports constructions with an arbitrary but fixed number of

rounds. Extending it to deal with an unbounded number of rounds

may be possible by introducing new logic (e.g., inductive reasoning).

Another natural extension of our work would be to automate

other proof techniques (beyond the game-based approach) such as

the H-coefficient and the expectation methods [26, 49, 61], which

can potentially deliver tighter bounds. We believe that the tech-

niques underlying Collider can be adapted to do so.

Acknowledgments
We thank all our reviewers for their time and valuable feedback.

Most of this work was performed while Miguel Ambrona was em-

ployed by NTT Laboratories. Pooya Farshim was supported in part

by EPSRC grant EP/V034065/1. Patrick Harasser was funded by the

Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.

References
[1] Martín Abadi and Phillip Rogaway. 2002. Reconciling TwoViews of Cryptography

(The Computational Soundness of Formal Encryption). Journal of Cryptology 15,

2 (March 2002), 103–127. https://doi.org/10.1007/s00145-001-0014-7

[2] William Aiello, Mihir Bellare, Giovanni Di Crescenzo, and Ramarathnam Venkate-

san. 1998. Security Amplification by Composition: The Case of Doubly-Iterated,

Ideal Ciphers. In CRYPTO’98 (LNCS, Vol. 1462), Hugo Krawczyk (Ed.). Springer,

Heidelberg, 390–407. https://doi.org/10.1007/BFb0055743

[3] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. 2013. Using SMT

solvers to automate design tasks for encryption and signature schemes. In ACM
CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM

Press, 399–410. https://doi.org/10.1145/2508859.2516718

[4] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In EUROCRYPT 2015, Part I
(LNCS, Vol. 9056), Elisabeth Oswald and Marc Fischlin (Eds.). Springer, Heidelberg,

430–454. https://doi.org/10.1007/978-3-662-46800-5_17

[5] Miguel Ambrona, Gilles Barthe, Romain Gay, and Hoeteck Wee. 2017. Attribute-

Based Encryption in the Generic Group Model: Automated Proofs and New

Constructions. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal

Malkin, and Dongyan Xu (Eds.). ACM Press, 647–664. https://doi.org/10.1145/

3133956.3134088

[6] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. 2016. Automated Un-

bounded Analysis of Cryptographic Constructions in the Generic Group Model.

In EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin and Jean-Sébastien

Coron (Eds.). Springer, Heidelberg, 822–851. https://doi.org/10.1007/978-3-662-

49896-5_29

[7] Miguel Ambrona, Pooya Farshim, and Patrick Harasser. 2024. AlgoROM. https:

//gitlab.com/ambrona/algorom

[8] R. Anderson and M. Kuhn. 1997. Low Cost Attacks on Tamper Resistant Devices.

In 5th Security Protocols Workshop (LNCS, Vol. 1361). Springer, Heidelberg, 125–
136.

[9] Benny Applebaum. 2016. Garbling XOR Gates “For Free” in the Standard Model.

Journal of Cryptology 29, 3 (July 2016), 552–576. https://doi.org/10.1007/s00145-

015-9201-9

[10] Manuel Barbosa and Pooya Farshim. 2015. The Related-Key Analysis of Feistel

Constructions. In FSE 2014 (LNCS, Vol. 8540), Carlos Cid and Christian Rechberger

(Eds.). Springer, Heidelberg, 265–284. https://doi.org/10.1007/978-3-662-46706-

0_14

[11] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine

Lakhnech, Benedikt Schmidt, and Santiago Zanella Béguelin. 2013. Fully auto-

mated analysis of padding-based encryption in the computational model. In ACM
CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM

Press, 1247–1260. https://doi.org/10.1145/2508859.2516663

[12] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov,

and Benedikt Schmidt. 2014. Automated Analysis of Cryptographic Assumptions

in Generic Group Models. In CRYPTO 2014, Part I (LNCS, Vol. 8616), Juan A. Garay

and Rosario Gennaro (Eds.). Springer, Heidelberg, 95–112. https://doi.org/10.

1007/978-3-662-44371-2_6

[13] Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov, Benedikt Schmidt,

and Mehdi Tibouchi. 2015. Strongly-Optimal Structure Preserving Signatures

from Type II Pairings: Synthesis and Lower Bounds. In PKC 2015 (LNCS, Vol. 9020),
Jonathan Katz (Ed.). Springer, Heidelberg, 355–376. https://doi.org/10.1007/978-

3-662-46447-2_16

[14] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. 2015. Automated Proofs

of Pairing-Based Cryptography. In ACM CCS 2015, Indrajit Ray, Ninghui Li, and
Christopher Kruegel (Eds.). ACM Press, 1156–1168. https://doi.org/10.1145/

2810103.2813697

[15] Mathieu Baudet, Véronique Cortier, and Steve Kremer. 2005. Computationally

Sound Implementations of Equational Theories Against Passive Adversaries. In

ICALP 2005 (LNCS, Vol. 3580), Luís Caires, Giuseppe F. Italiano, Luís Monteiro,

Catuscia Palamidessi, and Moti Yung (Eds.). Springer, Heidelberg, 652–663. https:

//doi.org/10.1007/11523468_53

[16] Mihir Bellare and Tadayoshi Kohno. 2003. A Theoretical Treatment of Related-

Key Attacks: RKA-PRPs, RKA-PRFs, and Applications. In EUROCRYPT 2003 (LNCS,
Vol. 2656), Eli Biham (Ed.). Springer, Heidelberg, 491–506. https://doi.org/10.

1007/3-540-39200-9_31

[17] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Par-

adigm for Designing Efficient Protocols. In ACM CCS 93, Dorothy E. Denning,

Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby (Eds.). ACM

Press, 62–73. https://doi.org/10.1145/168588.168596

[18] Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption

and a Framework for Code-Based Game-Playing Proofs. In EUROCRYPT 2006
(LNCS, Vol. 4004), Serge Vaudenay (Ed.). Springer, Heidelberg, 409–426. https:

//doi.org/10.1007/11761679_25

[19] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2007.

Sponge Functions. ECRYPT hash workshop.

[20] Eli Biham. 1994. New Types of Cryptanalytic Attacks Using related Keys (Ex-

tended Abstract). In EUROCRYPT’93 (LNCS, Vol. 765), Tor Helleseth (Ed.). Springer,
Heidelberg, 398–409. https://doi.org/10.1007/3-540-48285-7_34

[21] John Black, Phillip Rogaway, and Thomas Shrimpton. 2002. Black-Box Analysis of

the Block-Cipher-Based Hash-Function Constructions from PGV. In CRYPTO 2002
(LNCS, Vol. 2442), Moti Yung (Ed.). Springer, Heidelberg, 320–335. https://doi.

org/10.1007/3-540-45708-9_21

[22] John Black, Phillip Rogaway, and Thomas Shrimpton. 2003. Encryption-Scheme

Security in the Presence of Key-Dependent Messages. In SAC 2002 (LNCS,
Vol. 2595), Kaisa Nyberg and Howard M. Heys (Eds.). Springer, Heidelberg, 62–75.

https://doi.org/10.1007/3-540-36492-7_6

[23] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz. 2014. Encryption Schemes

Secure under Related-Key and Key-Dependent Message Attacks. In PKC 2014
(LNCS, Vol. 8383), Hugo Krawczyk (Ed.). Springer, Heidelberg, 483–500. https:

//doi.org/10.1007/978-3-642-54631-0_28

[24] Jan Camenisch and Anna Lysyanskaya. 2001. An Identity Escrow Scheme with

Appointed Verifiers. In CRYPTO 2001 (LNCS, Vol. 2139), Joe Kilian (Ed.). Springer,

Heidelberg, 388–407. https://doi.org/10.1007/3-540-44647-8_23

[25] Brent Carmer and Mike Rosulek. 2016. Linicrypt: A Model for Practical Cryp-

tography. In CRYPTO 2016, Part III (LNCS, Vol. 9816), Matthew Robshaw and

Jonathan Katz (Eds.). Springer, Heidelberg, 416–445. https://doi.org/10.1007/978-

3-662-53015-3_15

[26] Shan Chen and John P. Steinberger. 2014. Tight Security Bounds for Key-

Alternating Ciphers. In EUROCRYPT 2014 (LNCS, Vol. 8441), Phong Q. Nguyen
and Elisabeth Oswald (Eds.). Springer, Heidelberg, 327–350. https://doi.org/10.

1007/978-3-642-55220-5_19

[27] Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. 2013. Deciding

equivalence-based properties using constraint solving. Theoretical Computer
Science 492 (2013), 1–39.

[28] Benoît Cogliati, Yevgeniy Dodis, Jonathan Katz, Jooyoung Lee, John P. Stein-

berger, Aishwarya Thiruvengadam, and Zhe Zhang. 2018. Provable Security

of (Tweakable) Block Ciphers Based on Substitution-Permutation Networks. In

CRYPTO 2018, Part I (LNCS, Vol. 10991), Hovav Shacham and Alexandra Boldyreva

(Eds.). Springer, Heidelberg, 722–753. https://doi.org/10.1007/978-3-319-96884-

1_24

[29] Benoit Cogliati and Yannick Seurin. 2015. On the Provable Security of the

Iterated Even-Mansour Cipher Against Related-Key and Chosen-Key Attacks. In

EUROCRYPT 2015, Part I (LNCS, Vol. 9056), Elisabeth Oswald and Marc Fischlin

(Eds.). Springer, Heidelberg, 584–613. https://doi.org/10.1007/978-3-662-46800-

5_23

17

https://doi.org/10.1007/s00145-001-0014-7
https://doi.org/10.1007/BFb0055743
https://doi.org/10.1145/2508859.2516718
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3133956.3134088
https://doi.org/10.1145/3133956.3134088
https://doi.org/10.1007/978-3-662-49896-5_29
https://doi.org/10.1007/978-3-662-49896-5_29
https://gitlab.com/ambrona/algorom
https://gitlab.com/ambrona/algorom
https://doi.org/10.1007/s00145-015-9201-9
https://doi.org/10.1007/s00145-015-9201-9
https://doi.org/10.1007/978-3-662-46706-0_14
https://doi.org/10.1007/978-3-662-46706-0_14
https://doi.org/10.1145/2508859.2516663
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-662-46447-2_16
https://doi.org/10.1007/978-3-662-46447-2_16
https://doi.org/10.1145/2810103.2813697
https://doi.org/10.1145/2810103.2813697
https://doi.org/10.1007/11523468_53
https://doi.org/10.1007/11523468_53
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/978-3-642-54631-0_28
https://doi.org/10.1007/3-540-44647-8_23
https://doi.org/10.1007/978-3-662-53015-3_15
https://doi.org/10.1007/978-3-662-53015-3_15
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-319-96884-1_24
https://doi.org/10.1007/978-3-662-46800-5_23
https://doi.org/10.1007/978-3-662-46800-5_23

[30] Aisling Connolly, Pooya Farshim, and Georg Fuchsbauer. 2019. Security of

Symmetric Primitives against Key-Correlated Attacks. IACR Trans. Symm. Cryptol.
2019, 3 (2019), 193–230. https://doi.org/10.13154/tosc.v2019.i3.193-230

[31] Judicaël Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and Yas-

sine Lakhnech. 2008. Towards automated proofs for asymmetric encryption

schemes in the random oracle model. In ACM CCS 2008, Peng Ning, Paul F. Syver-
son, and Somesh Jha (Eds.). ACM Press, 371–380. https://doi.org/10.1145/1455770.

1455817

[32] Ivan Damgård. 1988. Collision Free Hash Functions and Public Key Signature

Schemes. In EUROCRYPT’87 (LNCS, Vol. 304), David Chaum and Wyn L. Price

(Eds.). Springer, Heidelberg, 203–216. https://doi.org/10.1007/3-540-39118-5_19

[33] Ivan Damgård. 1990. A Design Principle for Hash Functions. In CRYPTO’89
(LNCS, Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg, 416–427. https:

//doi.org/10.1007/0-387-34805-0_39

[34] Yevgeniy Dodis, Jonathan Katz, John Steinberger, Aishwarya Thiruvengadam,

and Zhe Zhang. 2017. Provable Security of Substitution-Permutation Networks.

Cryptology ePrint Archive, Report 2017/016. https://eprint.iacr.org/2017/016.

[35] Orr Dunkelman, Nathan Keller, and Adi Shamir. 2012. Minimalism in Cryptogra-

phy: The Even-Mansour Scheme Revisited. In EUROCRYPT 2012 (LNCS, Vol. 7237),
David Pointcheval and Thomas Johansson (Eds.). Springer, Heidelberg, 336–354.

https://doi.org/10.1007/978-3-642-29011-4_21

[36] Shimon Even and Oded Goldreich. 1983. On the Power of Cascade Ciphers. In

CRYPTO’83, David Chaum (Ed.). Plenum Press, New York, USA, 43–50.

[37] Shimon Even and YishayMansour. 1997. A Construction of a Cipher from a Single

Pseudorandom Permutation. Journal of Cryptology 10, 3 (June 1997), 151–162.

https://doi.org/10.1007/s001459900025

[38] Pooya Farshim, Louiza Khati, Yannick Seurin, and Damien Vergnaud. 2021. The

Key-Dependent Message Security of Key-Alternating Feistel Ciphers. In CT-
RSA 2021 (LNCS, Vol. 12704), Kenneth G. Paterson (Ed.). Springer, Heidelberg,

351–374. https://doi.org/10.1007/978-3-030-75539-3_15

[39] Pooya Farshim, Louiza Khati, and Damien Vergnaud. 2017. Security of Even–

Mansour Ciphers under Key-Dependent Messages. IACR Trans. Symm. Cryptol.
2017, 2 (2017), 84–104. https://doi.org/10.13154/tosc.v2017.i2.84-104

[40] Pooya Farshim and Gordon Procter. 2015. The Related-Key Security of Iterated

Even-Mansour Ciphers. In FSE 2015 (LNCS, Vol. 9054), Gregor Leander (Ed.).
Springer, Heidelberg, 342–363. https://doi.org/10.1007/978-3-662-48116-5_17

[41] Horst Feistel. 1973. Cryptography and computer privacy. Scientific American 228,

5 (1973), 15–23.

[42] Martin Gagné, Pascal Lafourcade, Yassine Lakhnech, and Reihaneh Safavi-Naini.

2016. Automated Proofs of Block Cipher Modes of Operation. J. Autom. Reason.
56, 1 (2016).

[43] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1984. How to Construct

Random Functions (Extended Abstract). In 25th FOCS. IEEE Computer Society

Press, 464–479. https://doi.org/10.1109/SFCS.1984.715949

[44] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Rotaru, and

Markus Schofnegger. 2020. On a Generalization of Substitution-Permutation

Networks: The HADES Design Strategy. In EUROCRYPT 2020, Part II (LNCS,
Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 674–704.

https://doi.org/10.1007/978-3-030-45724-2_23

[45] Chun Guo. 2019. Understanding the Related-Key Security of Feistel Ciphers From

a Provable Perspective. IEEE Transactions on Information Theory 65, 8 (2019).

[46] Shai Halevi and Hugo Krawczyk. 2007. Security under key-dependent inputs.

In ACM CCS 2007, Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.

Syverson (Eds.). ACM Press, 466–475. https://doi.org/10.1145/1315245.1315303

[47] Shoichi Hirose. 2006. Some Plausible Constructions of Double-Block-Length

Hash Functions. In FSE 2006 (LNCS, Vol. 4047), Matthew J. B. Robshaw (Ed.).

Springer, Heidelberg, 210–225. https://doi.org/10.1007/11799313_14

[48] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. 2015. Automated

Analysis and Synthesis of Authenticated Encryption Schemes. In ACM CCS 2015,
Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). ACM Press, 84–95.

https://doi.org/10.1145/2810103.2813636

[49] Viet Tung Hoang and Stefano Tessaro. 2016. Key-Alternating Ciphers and Key-

Length Extension: Exact Bounds and Multi-user Security. In CRYPTO 2016, Part I
(LNCS, Vol. 9814), Matthew Robshaw and Jonathan Katz (Eds.). Springer, Heidel-

berg, 3–32. https://doi.org/10.1007/978-3-662-53018-4_1

[50] Russell Impagliazzo and Steven Rudich. 1989. Limits on the Provable Con-

sequences of One-Way Permutations. In 21st ACM STOC. ACM Press, 44–61.

https://doi.org/10.1145/73007.73012

[51] Lars R. Knudsen. 1993. Cryptanalysis of LOKI91. InAUSCRYPT’92 (LNCS, Vol. 718),
Jennifer Seberry and Yuliang Zheng (Eds.). Springer, Heidelberg, 196–208. https:

//doi.org/10.1007/3-540-57220-1_62

[52] Steve Kremer and Laurent Mazaré. 2007. Adaptive Soundness of Static Equiva-

lence. In ESORICS 2007 (LNCS, Vol. 4734), Joachim Biskup and Javier López (Eds.).

Springer, Heidelberg, 610–625. https://doi.org/10.1007/978-3-540-74835-9_40

[53] Rodolphe Lampe and Yannick Seurin. 2015. Security Analysis of Key-Alternating

Feistel Ciphers. In FSE 2014 (LNCS, Vol. 8540), Carlos Cid and Christian Rechberger
(Eds.). Springer, Heidelberg, 243–264. https://doi.org/10.1007/978-3-662-46706-

0_13

[54] Moses Liskov, Ronald L. Rivest, and David Wagner. 2002. Tweakable Block

Ciphers. In CRYPTO 2002 (LNCS, Vol. 2442), Moti Yung (Ed.). Springer, Heidelberg,

31–46. https://doi.org/10.1007/3-540-45708-9_3

[55] Michael Luby and Charles Rackoff. 1986. How to Construct Pseudo-Random

Permutations from Pseudo-Random Functions (Abstract). In CRYPTO’85 (LNCS,
Vol. 218), Hugh C. Williams (Ed.). Springer, Heidelberg, 447. https://doi.org/10.

1007/3-540-39799-X_34

[56] Michael Luby and Charles Rackoff. 1988. How to construct pseudorandom

permutations from pseudorandom functions. SIAM J. Comput. 17, 2 (1988).
[57] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. 2014. Automated

Analysis and Synthesis of Block-Cipher Modes of Operation. In CSF 2014 Com-
puter Security Foundations Symposium, Anupam Datta and Cedric Fournet (Eds.).

IEEE Computer Society Press, 140–152. https://doi.org/10.1109/CSF.2014.18

[58] Ian McQuoid, Mike Rosulek, and Lawrence Roy. 2021. Batching Base Oblivious

Transfers. In ASIACRYPT 2021, Part III (LNCS, Vol. 13092), Mehdi Tibouchi and

Huaxiong Wang (Eds.). Springer, Heidelberg, 281–310. https://doi.org/10.1007/

978-3-030-92078-4_10

[59] Catherine Meadows. 2020. Symbolic and Computational Reasoning About Cryp-

tographic Modes of Operation. Cryptology ePrint Archive, Report 2020/794.

https://eprint.iacr.org/2020/794.

[60] Ralph C. Merkle. 1990. One Way Hash Functions and DES. In CRYPTO’89 (LNCS,
Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg, 428–446. https://doi.org/10.

1007/0-387-34805-0_40

[61] Jacques Patarin. 2009. The “Coefficients H” Technique (Invited Talk). In SAC 2008
(LNCS, Vol. 5381), Roberto Maria Avanzi, Liam Keliher, and Francesco Sica (Eds.).

Springer, Heidelberg, 328–345. https://doi.org/10.1007/978-3-642-04159-4_21

[62] Bart Preneel, René Govaerts, and Joos Vandewalle. 1994. Hash Functions Based on

Block Ciphers: A Synthetic Approach. In CRYPTO’93 (LNCS, Vol. 773), Douglas R.
Stinson (Ed.). Springer, Heidelberg, 368–378. https://doi.org/10.1007/3-540-

48329-2_31

[63] Itsaka Rakotonirina, Miguel Ambrona, Alejandro Aguirre, and Gilles Barthe.

2022. Symbolic Synthesis of Indifferentiability Attacks. In ASIACCS 22, Yuji
Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako (Eds.). ACM Press, 667–681.

https://doi.org/10.1145/3488932.3497759

[64] Claude E. Shannon. 1949. Communication theory of secrecy systems. Bell Systems
Technical Journal 28, 4 (1949), 656–715.

[65] Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security

proofs. Cryptology ePrint Archive, Report 2004/332. https://eprint.iacr.org/2004/

332.

[66] Dominique Unruh. 2010. The impossibility of computationally sound XOR.

Cryptology ePrint Archive, Report 2010/389. https://eprint.iacr.org/2010/389.

18

https://doi.org/10.13154/tosc.v2019.i3.193-230
https://doi.org/10.1145/1455770.1455817
https://doi.org/10.1145/1455770.1455817
https://doi.org/10.1007/3-540-39118-5_19
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://eprint.iacr.org/2017/016
https://doi.org/10.1007/978-3-642-29011-4_21
https://doi.org/10.1007/s001459900025
https://doi.org/10.1007/978-3-030-75539-3_15
https://doi.org/10.13154/tosc.v2017.i2.84-104
https://doi.org/10.1007/978-3-662-48116-5_17
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/978-3-030-45724-2_23
https://doi.org/10.1145/1315245.1315303
https://doi.org/10.1007/11799313_14
https://doi.org/10.1145/2810103.2813636
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/3-540-57220-1_62
https://doi.org/10.1007/3-540-57220-1_62
https://doi.org/10.1007/978-3-540-74835-9_40
https://doi.org/10.1007/978-3-662-46706-0_13
https://doi.org/10.1007/978-3-662-46706-0_13
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1007/3-540-39799-X_34
https://doi.org/10.1109/CSF.2014.18
https://doi.org/10.1007/978-3-030-92078-4_10
https://doi.org/10.1007/978-3-030-92078-4_10
https://eprint.iacr.org/2020/794
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1007/3-540-48329-2_31
https://doi.org/10.1145/3488932.3497759
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2010/389

A Sample Output
The source code of AlgoROM is available under [7]. main.ml is the
main test file. test_lr.ml, test_kaf.ml, test_em.ml, and test_-
sp.ml, respectively, contain our experiments for the LR, KAF, EM,

and SPN ciphers. Our other experiments, including those for hash

function, are included under test_des.ml.
We give a sample output produced by AlgoROM when run on

3-round KAF with different round functions and the same key in

the PRP-CPA model. We have cleaned the output to make it more

readable. Note that this is a simple example. Often, the outputs

produced by the tool are too overwhelming to be read by a human.

Analyzing Enc then Enc, with oracles in queries [2, 3]

queries on call Enc(L, R):
* R + k to F1
* F1(R + k) + L + k to F2$2
* F2$2(F1(R + k) + L + k) + R + k to F3$3

queries on call Enc(L', R')
* R' + k to F1
* F1(R' + k) + L' + k to F2$2
* F2$2(F1(R' + k) + L' + k) + R' + k to F3$3

Unpredictable variables: [k, #ct1, #ct2]
Adversarial variables: [L, R, L', R', X]

Analyzing collision - Type: Direct (2)
query1: F1(R + k) + L + k
query2: X
winning_condition:

eqs: F1(R + k) + L + k + X = 0
ineqs:
no solution

Analyzing collision - Type: Direct (3)
query1: F2$2(F1(R + k) + L + k) + R + k
query2: X
replacement $2 -> #ct1 + R
winning_condition:

eqs: #ct1 + k + X = 0
ineqs:
no solution

Analyzing collision - Type: Double (2, 2)
query1: F1(R + k) + L + k
query2: F1(R' + k) + L' + k
winning_condition:

eqs: F1(R + k) + F1(R' + k) + L + L' = 0
ineqs: [L + L', R + R'] != [0, 0]
no solution

Analyzing collision - Type: Double (3, 3)
query1: F2$2(F1(R + k) + L + k) + R + k
query2: F2$2(F1(R' + k) + L' + k) + R' + k
replacement F2$2 -> #ct1 + R
winning_condition:

eqs: R' + #ct1 + F2$2'
ineqs: [L + L', R + R'] != [0, 0]
order: L < #ct1, R < #ct1
no solution

Secure! Proven with $'s on rounds [2, 3]
9 ms: KAF[(F1, k) (F2, k) (F3, k)] is provably CPA secure :)

19

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Proof framework
	1.3 Collision analysis
	1.4 Related works
	1.5 Paper outline

	2 A Concrete Example
	3 Preliminaries
	3.1 Cryptographic schemes
	3.2 Security notions

	4 Indistinguishability up to Collisions
	5 Analyzing Collision Games
	6 Selected Experimental Results
	7 Conclusion and Future Directions
	Acknowledgments
	References
	A Sample Output

